Título: | Um estudo sobre a classificação e separação on-line de fonte sonora monofônica usando redes neurais recorrentes rasas e profundas |
Autor(es): | Bauchspiess, Daniel |
Orientador(es): | Lamar, Marcus Vinicius |
Assunto: | Processamento de som por computador Processamento de sinais - técnicas digitais Redes neurais (Computação) |
Data de apresentação: | Mai-2021 |
Data de publicação: | 3-Mai-2022 |
Referência: | BAUCHSPIESS, Daniel. Um estudo sobre a classificação e separação on-line de fonte sonora monofônica usando redes neurais recorrentes rasas e profundas. 2021. 75 f., il. Trabalho de conclusão de curso (Bacharelado em Engenharia Mecatrônica) — Universidade de Brasília, Brasília, 2021. |
Resumo: | Neste trabalho, são estudados o uso de redes neurais para abordar dois problemas: classificação de instrumentos musicais e separação de fonte sonora monofônica. Para a classificação, as redes estudadas foram das arquiteturas Multilayer Perceptron e recorrente de Elman, recebendo como sinal de entrada cinco descritores sonoros correspondentes a um trecho de um sinal de áudio de um instrumento musical ao longo do tempo. A classificação é feita em cada trecho do sinal de áudio, devendo classificá-lo como som de contrabaixo ou flauta. O melhor resultado para treinamento em apenas uma nota de cada instrumento alcançou uma acurácia de 97,19%, e o melhor resultado quando treinado em 6 notas de cada instrumento alcançou 96,44% de acurácia. Para a tarefa de separação on-line de uma fonte sonora mixada, em seus canais componentes, a partir da análise sequencial de suas amostras no tempo, são analisadas redes recorrentes rasas de Elman e profundas LSTM. Os resultados obtidos indicam que as estruturas neurais testadas são promissoras e podem atingir alta qualidade na separação, tendo o SDR como figura de mérito. |
Abstract: | In this project, neural networks were developed to tackle two problems: musical instrument clas-sification and monophonic sound source separation. For the classification phase, the developednetworks were the Multilayer Perceptron and the recurrent Elman, being fed five sound descrip-tors related to a chunk of a musical instrument audio signal as input. Each audio signal chunkis classified between contrabass and flute. The best result from training in one note of each ins-trument achieved 97.19% accuracy, and the best training in six notes of each instrument achieved96.44% accuracy. In the subject of online separation of a mixed sound source, Elman shallowneural networks and deep LSTM are inspected through sequential analysis of the samples in itschannels in time. The results show that the tested neural structures are promising and can givea high quality separation using SDR as evaluation metrics. |
Informações adicionais: | Trabalho de conclusão de curso (graduação) — Universidade de Brasília, Faculdade de Tecnologia, Curso de Graduação em Engenharia de Controle e Automação, 2021. |
Licença: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor que autoriza a Biblioteca Digital da Produção Intelectual Discente da Universidade de Brasília (BDM) a disponibilizar o trabalho de conclusão de curso por meio do sítio bdm.unb.br, com as seguintes condições: disponível sob Licença Creative Commons 4.0 International, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta. |
Aparece na Coleção: | Engenharia Mecatrônica
|
Todos os itens na BDM estão protegidos por copyright. Todos os direitos reservados.