Utilize este link para identificar ou citar este item: https://bdm.unb.br/handle/10483/28131
Arquivos neste item:
Arquivo Descrição TamanhoFormato 
2019_MiguelDeCarvalhoPacha_tcc.pdf7,33 MBAdobe PDFver/abrir
Registro completo
Campo Dublin CoreValorLíngua
dc.contributor.advisorSilva, Eduardo Peixoto Fernandes da-
dc.contributor.authorPachá, Miguel de Carvalho-
dc.identifier.citationPACHÁ, Miguel de Carvalho. Compressão do sinal de cor de uma nuvem de pontos baseada em cortes de geometria. 2019. 64 f., il. Trabalho de conclusão de curso (Bacharelado em Engenharia Elétrica)—Universidade de Brasília, Brasília, 2019.pt_BR
dc.descriptionTrabalho de conclusão de curso (graduação)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2019.pt_BR
dc.description.abstractPoint clouds, ou nuvens de pontos, são um método de representação de imagens tridimensionais cada vez mais difundido. As imagens em 3D são úteis não só na criação de ambientes imersivos com fins de entretenimento, mas também nas mais diversas apli cações industriais, acadêmicas e até mesmo forenses. Point clouds são adaptadas a muitas tarefas de visão computacional, tendo destaque entre elas aplicações em carros autônomos. De fato, dados representados por nuvens de pontos gerados por sensores como o LiDAR já são utilizados para navegação e segurança destes veículos. O volume de dados deste tipo de aplicação vem crescendo exponencialmente, e estas informações precisam ser transmiti das de maneira eficiente por canais cuja capacidade é naturalmente limitada. Isto cria um desafio: como representar point clouds de maneira eficiente? Este trabalho visa resolver uma parte deste problema. Aqui é proposto um esquema de codificação sem perdas do sinal de cor de imagens tridimensionais representadas em point clouds. O procedimento desenvolvido utiliza informações oriundas da geometria das nuvens para agrupar pontos parecidos. As sequências de pontos assim geradas apresentam redundância no sinal de cor. Esta redundância é explorada com a utilização de um codificador diferencial. O sinal gerado por esse passo é por sua vez alimentado a um codificador aritmético adapta tivo. Os algoritmos propostos apresentaram taxas entre 10 e 17 bpov para as nuvens de pontos estudadas. Os algoritmos desenvolvidos foram implementados em linguagem de programação Python com o auxílio de bibliotecas de código aberto.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subject.keywordImagens, ilustrações, etc.pt_BR
dc.subject.keywordCompressão de dadospt_BR
dc.subject.keywordImagens - análisept_BR
dc.subject.keywordGeometriapt_BR
dc.subject.keywordAlgoritmospt_BR
dc.subject.keywordCodificadorespt_BR
dc.titleCompressão do sinal de cor de uma nuvem de pontos baseada em cortes de geometriapt_BR
dc.typeTrabalho de Conclusão de Curso - Graduação - Bachareladopt_BR
dc.date.accessioned2021-08-11T14:41:35Z-
dc.date.available2021-08-11T14:41:35Z-
dc.date.submitted2019-11-20-
dc.identifier.urihttps://bdm.unb.br/handle/10483/28131-
dc.language.isoPortuguêspt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor que autoriza a Biblioteca Digital da Produção Intelectual Discente da Universidade de Brasília (BDM) a disponibilizar o trabalho de conclusão de curso por meio do sítio bdm.unb.br, com as seguintes condições: disponível sob Licença Creative Commons 4.0 International, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta.pt_BR
dc.description.abstract1Point clouds are computer representations of three-dimensional objects. They are used in creating immersive environments in virtual reality; in the quality control of man ufacturing processes; and even in crime scene investigations. One growing application of this technology is the acquisition and processing of environment data for autonomous vehicles, where point cloud representations generated by LiDAR systems are useful for computational vision tasks such as route planning and collision avoidance. The increasing volume of this type of data being acquired and processed creates a problem: how can this information be represented efficiently? Inherent limitations in storage and transmission could hinder the development of novel applications. Thus, the compression of point cloud data is crucial to the spread of those new technologies. This work aims to further the efforts already made to tackle this challenge. Here we present a compression scheme for a point cloud’s color attributes. The scheme consists in processing the cloud’s geometry and segmenting it into groups of points we call filaments, which are arrays of voxels that are transmitted sequentially. Each filament’s color signal is fed to a differential encoder, the output of which is encoded using adaptive arithmetic compression. The proposed algorithms reached bitrates between 10 and 17 bpov for the example point clouds. All the processes were implemented using open-source tools and most of the work was done in Python.pt_BR
Aparece na Coleção:Engenharia Elétrica



Todos os itens na BDM estão protegidos por copyright. Todos os direitos reservados.