Utilize este link para identificar ou citar este item: https://bdm.unb.br/handle/10483/34709
Arquivos neste item:
Arquivo Descrição TamanhoFormato 
2022_RamonMoreiraGoncalves_tcc.pdfTrabalho de Conclusão de Curso 331,79 kBAdobe PDFver/abrir
Título: Otimização para o problema da cadeia de caracteres mais próxima
Autor(es): Gonçalves, Ramon Moreira
Orientador(es): Zörnig, Peter
Assunto: Biologia computacional
Programação linear
Data de apresentação: 2022
Data de publicação: 8-Mai-2023
Referência: GONÇALVES, Ramon Moreira. Otimização para o problema da cadeia de caracteres mais próxima. 2022. 28 f., il. Trabalho de Conclusão de Curso (Bacharelado em Estatística) — Universidade de Brasília, Brasília, 2022.
Resumo: Este trabalho aborda o Problema da Cadeia de Caracteres Mais Próxima (PCCP) - Closest String Problem (CSP). O objetivo do problema ´e encontrar uma cadeia de caracteres que minimiza a máxima distancia para um conjunto de cadeias com mesmo comprimento e alfabeto fixo. A métrica utilizada é a distancia de Hamming, que ´e definida como o número de posições nas quais duas sequencias diferem. O CSP tem muitas aplicações, principalmente na biologia computacional e na teoria dos códigos. O objetivo dessa dissertação é implementar dois modelos presentes na literatura que buscam solucionar o CSP por meio de programação linear inteira, e então verificar as vantagens de um modelo em relação ao outro. O primeiro modelo aparece em Meneses et al. (2004, sec. 2.4) e também em Festa (2007, p. 228). Já o segundo modelo ´e proposto por Zornig (2011, p. 5612). Para verificar qual modelo ´e melhor, foram feitas simulações com diversos comprimentos de sequencias, a fim de observar o número de restrições e variáveis nos modelos. O segundo modelo se saiu melhor nos testes, pois o número de restrições e variáveis não depende do comprimento das sequencias. Palavras-chave: Problema da Cadeia de Caracteres Mais Próxima, Distancia de Hamming, Relaxamento LP, Teoria dos códigos, Biologia Computacional.
Abstract: This work addresses the Closest String Problem (CSP). The purpose of the problem is to find a string of characters that minimizes the maximum distance for a set of strings with same length and fixed alphabet.The metric used is the Hamming distance, which is defined as the number of positions at which two sequences differ. The CSP has many applications, mainly in computational biology and theory of codes. The objective of this dissertation is to implement two models present in the literature that seek to solve the CSP through integer linear programming, and then check the advantages of one model over the other.The first model appears in Meneses et al. (2004, sec. 2.4) and also in Festa (2007, p. 228). The second model is proposed by Z¨ornig (2011, p. 5612). To verify which model is better, simulations were performed with different sequence lengths, in order to observe the number of constraints and variables in the models. The second model performed better in the tests, as the number of constraints and variables do not depend on the length of the sequences.
Informações adicionais: Trabalho de Conclusão de Curso (graduação) — Universidade de Brasília, Departamento de Estatística, 2022.
Licença: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor que autoriza a Biblioteca Digital da Produção Intelectual Discente da Universidade de Brasília (BDM) a disponibilizar o trabalho de conclusão de curso por meio do sítio bdm.unb.br, com as seguintes condições: disponível sob Licença Creative Commons 4.0 International, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta.
Aparece na Coleção:Estatística



Todos os itens na BDM estão protegidos por copyright. Todos os direitos reservados.