Utilize este link para identificar ou citar este item: https://bdm.unb.br/handle/10483/30280
Arquivos neste item:
Arquivo Descrição TamanhoFormato 
2021_MarceloAxelChiapinottoDeNazare_tcc.pdf3,74 MBAdobe PDFver/abrir
Registro completo
Campo Dublin CoreValorLíngua
dc.contributor.advisorOliveira, Roberta Barbosa-
dc.contributor.authorNazaré, Marcelo Áxel Chiapinotto de-
dc.identifier.citationNAZARÉ, Marcelo Áxel Chiapinotto de. Segmentação do ventrículo esquerdo em imagens de ressonância magnética usando rede neural convolucional e modelo Chan-Vese. 2021. 54 f., il. Trabalho de Conclusão de Curso (Bacharelado em Engenharia da Computação) — Universidade de Brasília, Brasília, 2021.pt_BR
dc.descriptionTrabalho de Conclusão de Curso (graduação) — Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2021.pt_BR
dc.description.abstractUma das principais causas de morte em todo o mundo são as doenças cardiovasculares. Um dos exames utilizados para o diagnóstico dessas doenças é a ressonância magnética, que é um exame de imageamento cardíaco não invasivo. A partir desse exame é possível visualizar a estrutura do coração. Um passo fundamental do exame é a segmentação do ventrículo esquerdo para posteriormente identificar alguma anomalia no funcionamento do coração. Esse procedimento, geralmente, é realizado manualmente por um especialista, o que exige tempo e esforço e pode ocasionar falhas no diagnóstico. O objetivo deste trabalho é comparar métodos de deep learning, com um método tradicional de segmentação e um método híbrido para identificar o ventrículo esquerdo em imagens de ressonância magnética cardíaca. Com essa finalidade, os modelos de CNNs U-net tradicional e Attention U-net foram aplicados, bem como o modelo de contorno ativo Chan-Vese. Além disso, foi avaliado um modelo híbrido considerando a U-net tradicional para melhorar o resultado do modelo Chan-Vese. Foram considerados conjuntos de treinamento, validação e teste, utilizando a base de dados Sunnybrook. Os métodos foram comparados sem a aplicação de pré-processamento de imagens, e aplicando técnicas de realce de imagens e data augmentation para avaliar o efeito de cada uma das técnicas sobre os métodos. O método de segmentação que obteve o melhor desempenho foi a U-net tradicional sem aplicação de pré-processamento, com 0,890 de coeficiente Dice e 0,997 de acurácia. Os resultados do método híbrido também se mostraram promissores em relação a utilização individual do modelo Chan-Vese.pt_BR
dc.rightsAcesso Abertopt_BR
dc.subject.keywordRessonância magnéticapt_BR
dc.subject.keywordSegmentação de imagenspt_BR
dc.subject.keywordAprendizado de máquinapt_BR
dc.titleSegmentação do ventrículo esquerdo em imagens de ressonância magnética usando rede neuralconvolucional e modelo Chan-Vesept_BR
dc.typeTrabalho de Conclusão de Curso - Graduação - Bachareladopt_BR
dc.date.accessioned2022-03-30T12:20:28Z-
dc.date.available2022-03-30T12:20:28Z-
dc.date.submitted2021-11-12-
dc.identifier.urihttps://bdm.unb.br/handle/10483/30280-
dc.language.isoPortuguêspt_BR
dc.rights.licenseA concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor que autoriza a Biblioteca Digital da Produção Intelectual Discente da Universidade de Brasília (BDM) a disponibilizar o trabalho de conclusão de curso por meio do sítio bdm.unb.br, com as seguintes condições: disponível sob Licença Creative Commons 4.0 International, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta.pt_BR
dc.description.abstract1One of the leading causes of death worldwide is cardiovascular disease. Every year, more people die from these diseases than from any other cause. One of the tests to diagnose these diseases is magnetic resonance imaging, which is a non-invasive cardiac imaging test, From this exam, it is possible to visualize the structure of the heart. A fundamental step in the exam is the segmentation of the left ventricle to later identify any abnormality in the functioning of the heart. This procedure is usually performed manually by a specialist, which requires time and effort, which can lead to diagnostic failures. The goal of this work is to compare deep learning methods, with a traditional segmentation method and a hybrid method to identify the left ventricle in cardiac magnetic resonance images. For this purpose, the traditional U-net and Attention U-net CNN models were applied, as well as the Chan-Vese active contour model. Furthermore, a hybrid model considering the traditional U-net was evaluated to improve the result of the Chan-Vese model. Training, validation, and testing sets were considered, using the Sunnybrook database. The methods were compared without applying image pre-processing and applying image enhancement and data augmentation techniques to assess the effect of each technique on the methods. The segmentation method that obtained the best performance was the traditional U-net without pre-processing application, with 0.890 of Dice coefficient and 0.997 of accuracy. The results of the hybrid method were also promising in relation to the individual use of the Chan-Vese model.pt_BR
Aparece na Coleção:Engenharia da Computação



Todos os itens na BDM estão protegidos por copyright. Todos os direitos reservados.