Utilize este link para identificar ou citar este item: https://bdm.unb.br/handle/10483/29340
Arquivos neste item:
Arquivo Descrição TamanhoFormato 
2021_GabrielGomesZiegler_tcc.pdf7,36 MBAdobe PDFver/abrir
Título: Context-Dependent Probabilistic Prior Information Strategy for MRI Reconstruction
Autor(es): Ziegler, Gabriel Gomes
Orientador(es): Miosso, Cristiano Jacques
Coorientador(es): Gusmão, Davi Benevides
Assunto: Compressed Sensing
Prior Information
Data de apresentação: Mai-2021
Data de publicação: 7-Dez-2021
Referência: ZIEGLER, Gabriel Gomes. Context-Dependent Probabilistic Prior Information Strategy for MRI Reconstruction. 2021. 66 f. Trabalho de Conclusão de Curso (Bacharelado em Engenharia de Software)—Universidade de Brasília, Brasília, 2021.
Abstract: Obtaining images from a Magnetic Resonance Imaging (MRI) scan is a challenging task due to the arduous process of obtaining the measurements from the machine and it is practically impossible to collect all the signal of a subject for a given scan. To mitigate this issue, Compressed Sensing (CS) based algorithms have been widely used in academia to achieve high-quality images with much fewer measurements needed. CS is capable of reconstructing MRI images at a sampling rate much lower than the Nyquist rate whilst maintaining sufficient quality. Since its introduction, CS has been significantly improved by the usage of preprocessing techniques like sparsifying filters and prior information, that are focused on improving the quality of the input data used in the CS algorithm. With that in mind, we have improved the prior information theory by utilizing non-deterministic support positions as well as multiple variances for the regions in the image that contain different levels of motion. This is the intuition behind our proposed method Context-Dependent Probabilistic Prior Information (CoDePPI) which parts from an image segmentation based on the motion of an image to address the different levels of confidence that a particular region in the image is part of a support position in other frames of a dynamic MRI. This makes our method more robust by minimizing the introduced error and by maximizing the probability to accurately use values from support regions. Our proposed method has shown better results in MRI reconstruction when compared to the classical prior information algorithm and non-prior information usage. Our method was evaluated in a dynamic cardiac MRI where we had four different motion levels regarding the movement in internal organs throughout the frames in the exam. Additionally, this research also produced Deep Learning (DL) content intended to be used in the improvement of CoDePPI by either utilizing Generative Adversarial Network (GAN)s for support positions generation from an image or by automatizing the segmentation step with a motion-detection model. A generation experiment was done to validate the usage of GANs for signal generation for future experimentation with MRI signal.
Informações adicionais: Trabalho de Conclusão de Curso (graduação)—Universidade de Brasília, Faculdade UnB Gama, 2021.
Licença: A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor que autoriza a Biblioteca Digital da Produção Intelectual Discente da Universidade de Brasília (BDM) a disponibilizar o trabalho de conclusão de curso por meio do sítio bdm.unb.br, com as seguintes condições: disponível sob Licença Creative Commons 4.0 International, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta.
Aparece na Coleção:Engenharia de Software



Todos os itens na BDM estão protegidos por copyright. Todos os direitos reservados.