Título: | Um sistema portátil de tradução de posturas do alfabeto manual de libras em voz utilizando luva instrumentalizada com sensores IMU |
Autor(es): | Carvalho, Cesar Augusto de |
Orientador(es): | Lamar, Marcus Vinicius |
Assunto: | Surdos - meios de comunicação Língua brasileira de sinais Aprendizado de máquina Língua de sinais Processamento de sinais - técnicas digitais |
Data de apresentação: | 12-Dez-2019 |
Data de publicação: | 2-Fev-2021 |
Referência: | CARVALHO, Cesar Augusto de. Um sistema portátil de tradução de posturas do alfabeto manual de libras em voz utilizando luva instrumentalizada com sensores IMU. 2019. xv, 88 f., il. Trabalho de Conclusão de Curso (Bacharelado em Engenharia da Computação)—Universidade de Brasília, Brasília, 2019. |
Resumo: | Surdos enfrentam dificuldades diariamente por problemas de comunicação, mesmo que
sejam capazes física e intelectualmente de exercer praticamente qualquer tarefa que al-
guma pessoa ouvinte exerceria. Tecnologias vestíveis estão se tornando cada vez mais
comuns em dispositivos como smartwatches e smartbands, porém poucas dessas tecnolo-
gias surgem com o objetivo de auxiliar os surdos. A Língua Brasileira de Sinais (Libras)
é a língua oficial da comunidade surda no Brasil e é tão completa quanto qualquer língua
oral. Pensado nisso, este trabalho propõe um sistema de baixo custo para tradução em
tempo real de posturas manuais de Libras, mais especificamente a soletração do alfabeto
manual, para português. O sistema proposto consiste em uma luva com cinco sensores
que possuem acelerômetro e giroscópio, um em cada dedo, e um microcontrolador que se
comunica via Bluetooth a um smartphone, que realiza o processamento dos dados obtidos
pelos sensores em uma rede neural e classifica a postura manual realizada.
O sistema proposto neste trabalho foi testado com três classificadores diferentes: i)
Perceptron multicamadas (MLP); ii) K vizinhos mais próximos (KNN); e iii) Redes de
funções de base radial (RBFN). O melhor desempenho em tempo real foi obtido pelo clas-
sificador RBFN, com 99,84% de acurácia no conjunto de dados de teste. Além disso, foi
obtida uma acurácia de 99,93% no MLP e 99,69% no KNN. Apesar de uma melhor acurá-
cia, o MLP não se mostrou adequado para a utilização em tempo real porque não fornece
um limiar muito confiável quando é fornecida uma entrada de uma classe desconhecida
para a rede. Dessa forma, este protótipo se mostrou adequado para solucionar o problema de
tradução de sinais de Libras, sendo sugerido que futuramente seja adaptado para novos
sinais. |
Abstract: | Deaf people face difficulties daily due to communication problems, even if they are able
physically and intelectually to perform virtually any task that a hearing person would
perform. Wearable technologies are becoming increasingly common in devices such as
smartwatches and smartbands, but few of these technologies emerge to help deaf people.
Brazilian Sign Language (Libras) is the official language of the deaf community in Brazil
and is as complete as any oral language.
With this in mind, this work proposes a low cost system for real time translation of
manual Libras postures, specifically the spelling of the manual alphabet, to Portuguese.
The proposed system consists of a glove with five sensors that have accelerometer and
gyroscope, one on each finger, and a microcontroller that communicates via Bluetooth to
a smartphone, which processes the data obtained by the sensors in a neural network and
classifies the manual Libras posture performed.
The system proposed in this work was tested with three different classifiers: i) Multi-
Layer Perceptron (MLP); ii) K-Nearest Neighbors (KNN); and iii) Radial Basis Function
Networks (RBFN). The best real time performance was obtained by the RBFN classifier,
with 99,84% accuracy in the test dataset. In addition, an accuracy of 99.83% in MLP
and 99.69% in KNN was obtained. Despite its better accuracy, MLP was not suitable for
real-time use because it does not provide a very reliable threshold when an input of an
unknown class is provided to the network.
Thus, this prototype proved to be adequate to solve the problem of Libras signal
translation, and it is suggested that in the future it will be adapted to new signals. |
Informações adicionais: | Trabalho de Conclusão de Curso (graduação)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Ciência da Computação, 2019. |
Licença: | A concessão da licença deste item refere-se ao termo de autorização impresso assinado pelo autor que autoriza a Biblioteca Digital da Produção Intelectual Discente da Universidade de Brasília (BDM) a disponibilizar o trabalho de conclusão de curso por meio do sítio bdm.unb.br, com as seguintes condições: disponível sob Licença Creative Commons 4.0 International, que permite copiar, distribuir e transmitir o trabalho, desde que seja citado o autor e licenciante. Não permite o uso para fins comerciais nem a adaptação desta. |
Aparece na Coleção: | Engenharia da Computação
|
Todos os itens na BDM estão protegidos por copyright. Todos os direitos reservados.