

Universidade de Brasília

Faculdade de Economia, Administração, Contabilidade e Ciências da Informação e Documentação - FACE

Curso de Graduação em Economia

PRODUTIVIDADE DO TRABALHO: UMA TENTATIVA DE EXPLICAÇÃO E SUA RELAÇÃO COM A COMPETITIVIDADE

Autora: Bárbara de Azevedo Lima Joffily

Orientador: Roberto de Goes Ellery Junior

Monografia apresentada à Faculdade de Economia, Administração, Contabilidade e Ciências da Informação e Documentação – FACE, da Universidade de Brasília – UnB, como requisito à obtenção de graduação em Economia.

PRODUTIVIDADE DO TRABALHO: UMA TENTATIVA DE EXPLICAÇÃO E SUA RELAÇÃO COM A COMPETITIVIDADE

Bárbara de Azevedo Lima Joffily

Aprovada por:		
	Professor orientador: Roberto Goes Ellery J	unior
	Professor: Victor Gomes	

AGRADECIMENTOS

Gostaria de agradecer ao professor Victor Gomes que se disponibilizou a participar da banca da monografia e ao professor Ellery, que me inspirava antes mesmo de ser meu orientador com suas aulas de macroeconomia e que me ajudou muito desde a escolha do tema até a entrega da monografia.

Gostaria de agradecer a minha família que sempre me apoiou. Principalmente a minha mãe e ao meu padrasto que leram e releram a monografia procurando qualquer erro e ao meu pai que como aluno da UnB conseguiu me entender melhor nesse período final do curso.

Gostaria de agradecer ao meu namorado que me ouviu por mais tempo que gostaria falando sobre a minha monografia, que me dava calma quando eu achava que não ia conseguir e que me apoiou em todos os meus projetos esse ano. Seu companheirismo foi muito importante para que eu conseguisse chegar até aqui.

Por fim, gostaria de agradecer a todos os colegas e professores que cruzaram o meu caminho durante os anos de graduação. Eles me mostraram novas opiniões e ajudaram a formar a minha. Passar pela faculdade com pessoas tão incríveis com certeza me motivou a concluir o curso e a seguir estudando.

RESUMO

O trabalho está dividido em seis capítulos. O primeiro é a introdução que aborda o motivo pelo qual o crescimento econômico tornou-se um tema importante para os países. Depois de mostrar a importância do tema, esse capítulo inicia a explicação sobre as principais teorias que abordam o crescimento econômico e que serão desenvolvidas no próximo capítulo.

O segundo capítulo é o de fundamentação teórica. A primeira parte desse capítulo explica um dos modelos mais importantes para o estudo do desenvolvimento econômico, o modelo Neoclássico ou o modelo de Solow. O modelo de Solow é um modelo simplificado, mas algumas de suas conclusões serão importantes para o desenvolvimento do trabalho. A segunda parte do capítulo demonstra o modelo AK, que pode ser derivado a partir do modelo de Solow e que é um dos modelos mais simples sobre o crescimento endógeno.

O terceiro capítulo é o de metodologia. Esse capítulo explica as bases teóricas que serão utilizadas para desenvolver o modelo de Regressão Linear Múltipla. Além disso, explica também um método de correlação.

O quarto capítulo é o de análise. Nesse capítulo será desenvolvido o modelo de regressão a partir dos dados levantados para determinar quais variáveis determinam a produtividade do trabalho. Além disso será examinada a correlação entre a produtividade do trabalho e a competitividade de 60 países examinados.

O quinto capítulo traz as conclusões obtidas a partir dos resultados encontrados no quarto capítulo. Finalmente, o sexto capítulo traz toda a bibliografia utilizada durante o trabalho.

ABSTRACT

The paper is divided in six chapters. The first chapter is the introduction that discusses why economic growth has become an important issue for the countries. After showing the importance of the topic, this chapter begins the explanation of the main theories that address economic growth and will be developed in the next chapter.

The second chapter is the theoretical foundation. The first part of this chapter explains one of the most important models for the study of economic development, the Neoclassical Model ou the Solow Model. The Solow Model is a simplified model, but some of their findings will be important for the development of the paper. The second part of the chapter demonstrates the AK Model, which can be derived from de Solow Model and is one of the simplest models of endogenous growth.

The third chapter is the methodology. This chapter explains the theoretical bases that will be used to develop the model of Multiple Linear Regression. In addition, this chapter also explains a method of correlation.

The fourth chapter is the analysis. In this chapter will be developed the regression model from data collected to determine which variables determine labor productivity. Also in this chapter will be examined the correlation between labor productivity and competitiveness of 60 countries examined.

The fifth chapter discusses the conclusions drawn from the results found in the fourth chapter. Finally, the sixth chapter brings all the bibliography used to write the paper.

LISTA DE FIGURAS

Figura 1: Divisão da produção entre consumo e investimento	9
Figura 2: Equilíbrio de Longo Prazo	14
Figura 3: Diagrama de Fase	14
Figura 4: Regra de ouro da acumulação do capital	19

LISTA DE TABELAS

Tabela 1: Variáveis Base Para Regressão	31
Tabela 2.a: Teste F Para a Primeira Regressão	4
Tabela 2.b: Teste t Para a Primeira Regressão	34
Tabela 3.a: Teste F Para a Segunda Regressão3	5
Tabela 3.b: Teste t Para a Segunda Regressão	35
Tabela 4.a: Teste F Para a Segunda Regressão Com Método "Stepwise"3	36
Tabel 4.b: Teste t Para a Segunda Regressão Com Método "Stepwise"3	37
Tabela 5: Correlação Entre a Produtividade do Trabalho e Competitividade	

SUMÁRIO

1	INTRODUÇÃO	1
	FUNDAMENTAÇÃO TEÓRICA 1 Modelo de Crescimento Neoclássico ou Modelo de Solow	
	2.1.2 Análise Gráfica do Modelo Neoclássico 2.1.3 Modelo Neoclássico e o Crescimento no Equilíbrio de Prazo 2.1.4 Parez de Oure de Madele de Calerra.	Longo 16
	2.1.4 Regra de Ouro do Modelo de Solow 2.1.5 Principais Conclusões do Modelo Neoclássico	
2.2	2 Modelo AK	
	2.2.1 Modelo AK (externalidades)	
	METODOLOGIA 1 Regressão Linear Múltilpla 2 Coeficiente Linear de Pearson	24
4	ANÁLISES	29
5	CONCLUSÕES	39
6	BIBLIOGRAFIA	41
7	ANEXO	46

1 INTRODUÇÃO

A realização de crescimento econômico, sustentado em termos de acréscimo de renda nacional de pleno emprego ou "potencial produtivo", tornou-se um dos principais objetivos de política econômica da maioria dos países desde a Segunda Guerra Mundial. (HYWEL JONES, 1979)

No início dos anos 1980, o trabalho desenvolvido por Paul Romer e Robert Lucas na universidade de Chicago reacendeu o interesse dos macroeconomistas pelo crescimento econômico ao destacar a economia das "ideias" e do capital humano. (CHARLES JONES, 2000)

É possível distinguir três abordagens na teorização do crescimento econômico. A primeira delas é a "grande teoria", que pretende capturar a essência de todas as sociedades de toda a História. Os economistas mais conhecidos que trabalharam com essa linha de pensamento foram Smith, Ricardo, Malthus, Mill, Marx e, mais recentemente, Rostow com a "decolagem para o crescimento autossustentável". O problema desse tipo de teoria é que ela raramente é precisa. Uma vez que a "grande teoria" pretende capturar o todo abrangente do processo histórico do crescimento econômico e do desenvolvimento, ela não é compatível com o rigor e com a precisão de uma abordagem mais formal. (HYWEL JONES, 1979)

A segunda abordagem são as "teorias do desenvolvimento econômico". Essas teorias estão ligadas às "grandes teorias", com a diferença que elas pretendem ser aplicadas aos problemas particulares dos países em desenvolvimento. (HYWEL JONES, 1979)

A terceira abordagem se dá pelas "teorias modernas de crescimento econômico". Essas teorias levam o nome de moderna, porque foram desenvolvidas mais recentemente. Para ser considerada uma "teoria moderna" é necessário usar um número relativamente pequeno de variáveis econômicas precisamente definidas na construção de um modelo formal de um aspecto do processo de crescimento. É importante reconhecer que as

similaridades de estilo e propósito das teorias modernas são tais que se pode argumentar, razoavelmente, que as diferenças importantes não estão dentro dessa categoria geral, mas entre elas e as "grandes teorias" ou as "teorias do desenvolvimento". Apesar disso, muitas "teorias modernas" têm grandes afinidades com o estilo das "grandes teorias" e muitas teorias que pretendem uma aplicação no contexto de um país subdesenvolvido particular foram construídas no estilo de "teorias modernas". (HYWEL JONES, 1979)

O principal objetivo dessa monografia é analisar a produtividade do trabalho. Dessa forma, como será desenvolvido no segundo capítulo, a abordagem que melhor explica como a produtividade do trabalho leva ao crescimento econômico é a das "teorias modernas de crescimento econômico" pela divisão de *HYWEL JONES*.

Os dois modelos abordados que auxiliaram no entendimento da importância da produtividade do trabalho são: o Modelo de Solow e o Modelo AK. O Modelo de Solow tem como objetivo demonstrar que a economia pode crescer no longo prazo de forma permanente, sustentada e com equilíbrio estável, mesmo sem a intervenção do governo. A conclusão mais importante para o trabalho é o papel da produtividade como determinante do crescimento de longo prazo.

O Modelo AK é um modelo simples que leva em consideração o crescimento endógeno e que pode ser deduzido a partir do Modelo de Solow. O principal conclusão desse modelo é que a taxa de crescimento do produto é igual à taxa de crescimento do estoque de capital. Dessa forma, o governo pode aumentar a taxa de crescimento da economia de modo permanente ao aumentar permanentemente a taxa de investimento.

Esses dois modelos servirão de base para o desenvolvimento do modelo de regressão que buscará explicar a produtividade do trabalho. As variáveis utilizadas para desenvolver o modelo foram investimento e competitividade, além de todos os dados estatísticos levantados pelo relatório Doing Business. Para explicar ainda mais a produtividade do trabalho, que é o principal objetivo do monografia, foi utilizada a correlação dessa variável com a competitividade.

2 FUNDAMENTAÇÃO TEÓRICA

2.1 Modelo de Crescimento Neoclássico ou Modelo de Solow

O termo neoclássico possui vários significados e por isso é difícil defini-lo. Os oponentes dessa teoria afirmam que ela é uma doutrina que está preocupada com a justificativa dos aspectos centrais de uma economia capitalista. Todavia, a abordagem neoclássica da teoria do crescimento dominou a discussão contemporânea, porque as conclusões da teoria de crescimento neoclássica estão em melhor acordo com os "fatos" do crescimento real experimentado do que qualquer formulação alternativa. Além disso, a maioria dos economistas foi ensinada na tradição neoclássica e, por isso, essa abordagem é mais natural para eles. Outro ponto favorável à abordagem neoclássica da teoria do crescimento é que ela é particularmente tratável, enquanto permanece, para muitos, intelectualmente satisfatória e é adequada para extensões em várias direções diferentes. Por esses motivos, é importante tentar explicar o que significa "neoclássico" e para isso pode-se identificar três linhas de pensamento. (HYWEL JONES, 1979)

Os economistas neoclássicos originais eram aqueles que, usando os conceitos da "revolução marginalista" no final do Século XIX, concentraram sua análise da formação de preços de bens individuais e fatores de produção em mercados competitivos, e na possível existência de um conjunto de preços que garantiriam a igualdade de oferta e demanda em todos os mercados da economia. (BLAUG, 1968) Assim, a primeira explicação para a expressão "neoclássica" é que ela se refere ao conjunto da teoria econômica que incorpora algumas das ideias centrais dos neoclássicos do Século XIX tanto através de uma abordagem microeconômica geral, "racional", maximizadora para o fenômeno econômico, como através do uso de teorias e conceitos específicos como a explicação da produtividade marginal para salários ou ideias de competição perfeita e flexibilidade perfeita de preços. (HYWEL JONES, 1979)

Outro significado para o termo "neoclássico" é a descrição de teorias que, enquanto não negam necessariamente a validade das estruturas de Keynes, ignoram o que são frequentemente chamadas de "dificuldades" keynesianas assumindo a existência de um governo que persistentemente, continuamente e com sucesso, manipule os instrumentos de politica à sua disposição de modo que mantenha o nível de pleno emprego da demanda agregada. (HYWEL JONES, 1979) Para *MEADE*, a teoria neoclássica do desenvolvimento econômico de crescimento é "baseada na hipótese de uma politica keynesiana idealmente bem sucedida que a todo instante do tempo consegue manter o valor do investimento ao nível desejado". (MEADE, 1961)

Uma terceira interpretação de "neoclássico" se refere à ênfase colocada na subordinação dos problemas de curto prazo às tendências de longo prazo, na moderna teoria econômica clássica. Uma vez que os economistas "clássicos" do início do Século XIX estavam muito mais preocupados com as forças de longo prazo que governavam a macroeconomia do que com o comportamento de mercados individuais. (HYWEL JONES, 1979)

O Modelo de Solow ou Modelo Neoclássico assume o individualismo metodológico. Dessa forma, embora o modelo analise o comportamento da economia como um todo, por trás das tendências da economia existem indivíduos e empresas que buscam maximizar o bem estar e o lucro.

Solow partiu de certas hipóteses para desenvolver sua teoria, porque para ele:

"Toda teoria depende de hipóteses que não são totalmente verdadeiras. É isto que faz a teoria. A arte de bem teorizar é fazer as inevitáveis hipóteses simplificadoras de tal maneira que os resultados não sejam muito sensíveis." (SOLOW, 1956)

As principais hipóteses simplificadores utilizadas por Solow em seu modelo são:

- (H1) O mundo considerado será formado apenas por países que produzem e consomem um único bem homogêneo. Uma implicação dessa hipótese simplificadora é que não há comércio internacional no modelo. (CHARLES JONES, 2000)
- (H2) A função de produção apresenta rendimentos constantes de escala relativamente a todos os fatores acumuláveis ao longo do tempo. Nesse modelo existem dois fatores acumuláveis sendo um deles capital (K) e o outro trabalho, que é medido em termos de eficiência (E = L A), sendo (L) serviços do trabalho e (A) o nível do conhecimento tecnológico.
- (H3) Existem rendimentos marginais decrescentes na acumulação de capital.
- (H4) A força de trabalho (L) cresce a uma taxa constante, positiva e endógena.
- (H5) O conhecimento tecnológico (A) cresce a uma taxa constante, positiva e exógena. Este fator é tido como um bem público, estando livremente disponível e sem custo em toda a economia e em todo o mundo. (CHARLES JONES, 2000)
- (H6) As pessoas poupam uma fração constante de sua renda e gastam parte constante do seu tempo acumulando qualificações. (CHARLES JONES, 2000) Nesse modelo, a poupança é simplesmente investimento e não é necessário incluir no modelo uma função investimento separada. (HYWEL JONES, 1979) A taxa de poupança é constante, positiva e exógena (0 < s < 1).
- (H7) Os mercados do produto e dos fatores produtivos funcionam de forma perfeita. Isto implica que não existem lucros extraordinários e os fatores produtivos são remunerados de acordo com as suas respectivas produtividades marginais.

A partir dessas hipóteses simplificadoras é possível desenvolver o modelo de Solow. O produto homogêneo é produzido nessa economia com três fatores de produção: capital físico (K); serviços do trabalho (L); e, conhecimento tecnológico (A). Como foi explicado na hipótese 2, o trabalho

é medido em termos de eficiência. A função de produção pode ser representada por:

$$Q_t = F(K_t, A_t L_t)$$
 (2.1)

Onde *t* representa o tempo. Sobre a função de produção (2.1) são assumidas as seguintes condições que garantem que os produtos marginais são decrescentes relativamente a cada um dos fatores:

$$F'_{K} > 0$$
, $F''_{K} < 0$, $F'_{AL} > 0$, $F''_{AL} < 0$

Essas condições implicam que a utilização sucessiva de mais uma unidade de qualquer um destes fatores produtivos permite obter aumentos no nível da produção, no entanto estes aumentos são sucessivamente cada vez menores.

Outra característica que pode ser derivada da função de produção (2.1) é a existência de rendimentos constantes de escala. Ou seja, a função de produção é homogênea de grau 1 em relação aos dois fatores produtivos:

$$\Lambda Q = F (\Lambda K, \Lambda AL)$$

Para simplificar, é possível reescrever a função de produção (2.1) em termos intensivos, ou seja, dividindo ambos os termos da função de produção por AL. Dessa forma, todas as variáveis serão dadas em termos de unidade de trabalho eficiente, ou em termos de de eficiência. Essa simplificação permite a comparação de diferentes economias, independentemente dos seus valores absolutos em termos do produto, população, dimensão geográfica, etc.

$$Q_t / A_t L_t = F (K_t / A_t L_t, A_t L_t / A_t L_t)$$

Ou seja, q_t = $f(k_t, 1)$ e essa função pode ser reescrita como:

$$q_t = f(k_t)$$
 (2.2)

Nessa função continua valendo as condições que garantem que o produto marginal é decrescente em relação ao fator k_t .

$$f'(k_t) > 0$$
, $f''(k_t) < 0$

Da função de produção em termos intensivo (2.2), pode-se obter o produto marginal do capital medido em termos de eficiência. Este produto marginal mostra a variação no produto em termos de eficiência que se obtém quando o capital por unidade de trabalho é aumentado em uma unidade. Para obter esse resultado é preciso derivar a função de produção (2.2) em relação a k.

Outra forma de representar a função Q_t é dada por:

$$Q_t = C_t + S_t$$
 (2.3)

Onde C_t é o nível do consumo e S_t é o nível de poupança. Essa nova equação mostra que parte do rendimento não consumida é poupada. Outra equação importante para o modelo explicita a hipótese de a poupança ser automaticamente canalizada para investimento. Ou seja:

$$I_t = S_t$$
 (2.4)

A função de consumo utilizada no modelo depende positivamente do nível do rendimento

$$C_t = b Q_t = (1 - s) Q_t$$
 (2.5)

Sendo b a propensão marginal ao consumo e s a propensão marginal a poupar, 0 < b < 1, e

$$b + s = 1$$
.

A seguinte equação é dada pelas equações (2.3) e (2.4):

$$Q_t = C_t + I_t$$
 (2.6)

Ao utilizar as equações (2.5) e (2.6) é possível obter a função investimento bruto dependente do nível da poupança:

$$I_t = sQ_t$$
 (2.7)

Dessa forma, pode-se observar que o investimento bruto é proporcional ao produto, sendo sua parcela determinada pela taxa de poupança s. Assim, fica

claro que nesse modelo não existe uma função de investimento independente.

Como já feito anteriormente, agora também é possível expressar as equações descritas em termos intensivos, ou seja, dividindo as equações por *AL*. A equação (2.6) em termos intensivos é:

$$q_t = c_t + i_t$$
 (2.8)

Onde c_t é o consumo por trabalhador eficiente ($c_t = C_t / A_t L_t$) e i_t é o investimento por trabalhador eficiente ($i_t = I_t / A_t L_t$). Da mesma forma, o consumo em termos de eficiência é:

$$c_t = (1 - s) q_t$$
 (2.9)

Retomando a equação (2.2), onde $q_t = f(k_t)$, pode-se perceber que $c_t = (1 - s) f(k_t)$. Fazendo o mesmo processo de divisão por A_tL_t com o investimento que é dado por $I_t = sQ_t$, obtém-se:

$$i_t = s f(k_t)$$
 (2.10)

Como as equações (2.8), (2.9) e (2.10) podem ser expressas em função do nível do capital em termos de eficiência, então é possível ilustrar graficamente o comportamento das principais variáveis do lado da procura (q, c, i)

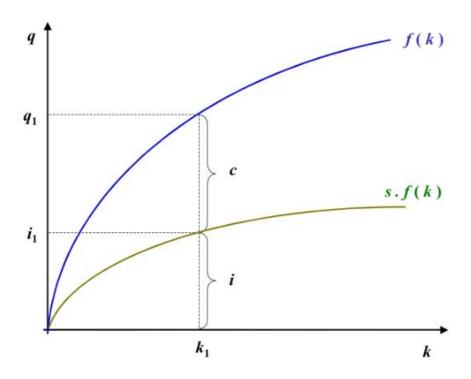


Figura 1: Divisão da produção entre consumo e investimento

Os níveis iniciais de capital, trabalho e progresso tecnológico são dados e são positivos:

$$K_0 > 0$$
, $L_0 > 0$, $A_0 > 0$

Uma hipótese desse modelo é que dos três fatores produtivos, o trabalho e o progresso tecnológico crescem a taxas constantes e exógenas, dadas respectivamente por n e m:

$$\dot{L}_t = n L_t \quad \leftrightarrow \quad \frac{\dot{L}_t}{L_t} = n (2.11)$$

$$\dot{A}_t = m A_t \quad \leftrightarrow \quad \frac{\dot{A}_t}{A_t} = m \quad (2.12)$$

onde o ponto utilizado em cima das variáveis representa a derivada da variável relativamente ao tempo.

A terceira variável que representa o capital físico (K) varia positivamente com o investimento bruto (I_t), ou seja, se o investimento bruto for positivo, aumenta o nível de capital físico, caso contrário, o nível de capital físico diminui. O capital físico também varia negativamente de acordo com a depreciação física do capital, sendo a taxa de depreciação representada por δ que varia de $0 < \delta < 1$, ou seja, um aumento na taxa de depreciação provoca uma diminuição do capital físico.

$$\dot{K}_t = I_t - \delta K_t$$
 0 < δ < 1 (2.13)

O equilíbrio de longo prazo pode ser definido como o estado para o qual cada uma das variáveis endógenas tenderá durante o processo de acumulação de capital ano após ano, num longo período de tempo. Quando a economia alcançar este estado estacionário ("steady state"), as variáveis endógenas passarão a crescer a uma taxa constante, que poderá ser positiva ou nula.

Para atingir o equilíbrio de longo prazo do modelo é necessário utilizar as equações que foram determinadas até aqui. As cinco equações a seguir resumem o modelo de crescimento econômico desenvolvido por Solow:

$$Q_t = F(K_t, L_t, A_t)$$
 a função de produção

$$I_t = s Q_t$$
 o investimento

$$\dot{K}_t = I_t - \delta K_t$$
 a variação do capital

$$\dot{L}_t = n \, L_t \qquad \leftrightarrow \qquad rac{\dot{L}_t}{L_t} = n \quad a \; variação \; do \; trabalho$$

$$\dot{A}_t = m\,A_t \quad \leftrightarrow \quad \frac{\dot{A}_t}{A_t} = m \;\; a \; variação \; do \; progresso \; tecnológico \;\;$$

Para encontrar o equilíbrio de longo prazo é mais fácil utilizar todas as variáveis na sua forma intensiva, ou seja, em termos de eficiência, porque

assim pode-se reduzir o modelo a uma única equação de movimento. A variável capital físico (K_t) representada na sua forma intensiva (k_t) é:

$$k_t \equiv \frac{K_t}{A_t L_t} = \frac{K_t}{E_t}$$
 (2.14)

A sua variação ao longo do tempo é dada por sua derivada total relativamente ao tempo:

$$\dot{k}_t = \frac{\partial k_t}{\partial K_t} \frac{dK_t}{dt} + \frac{\partial k_t}{\partial E_t} \frac{dE_t}{dt} \qquad (2.15)$$

Agora calculando as derivadas parciais da equação (2.14), obtém-se:

$$\frac{\partial k_t}{\partial K_t} = \frac{1}{E_t} \quad e \quad \frac{\partial k_t}{\partial E_t} = -\frac{K_t}{E_t^2}$$

E utilizando as definições:

$$\frac{dK_t}{dt} \equiv \dot{K}_t \quad e \quad \frac{dE_t}{dt} \equiv \dot{E}_t$$

É possível reescrever a equação (2.15) como:

$$\dot{k} = \frac{\dot{k}}{E} - \frac{K}{E} \frac{\dot{E}}{E} \tag{2.16}$$

Sabendo que a definição da taxa de crescimento de E é g_E , então a equação anterior se transforma em:

$$\dot{k} = \frac{\dot{K}}{F} - \frac{K}{F} g_E \tag{2.17}$$

Substituindo a variação do capital que aparece na equação anterior pela equação (2.13) e relembrando que E = AL, logo a taxa de crescimento de E é dada pelas taxas de crescimento do trabalho e do progresso tecnológico ($g_E = g_L + g_A = n + m$). Fazendo todas essas transformações na equação (2.17):

$$\dot{k} = \frac{I - \delta K}{F} - k \left(n + m \right) \tag{2.18}$$

Como foi demostrado na equação (2.7), o investimento é proporcional ao produto, num montante dado pela taxa de poupança ($I = s \ Q$). O que faz com que a equação anterior seja reescrita como:

$$\dot{k} = \frac{sQ}{F} - \delta \frac{K}{F} - k (n+m)$$
 (2.19)

Fazendo a substituição das variáveis em sua forma intensiva temos como resultado:

$$\dot{k} = sq - \delta k - k (n+m) \qquad (2.20)$$

Lembrando da definição q = f(k), a equação anterior se transforma em:

$$\dot{k} = s f(k) - (\delta + n + m) k$$
 (2.21)

A equação (2.21) é a equação fundamental do modelo de Solow e a partir dela é possível determinar o equilíbrio de longo prazo. Ou seja, é possível descobrir o valor de k_t para o qual a economia converge no longo prazo, tudo mais constante. O nível de equilíbrio (k^*) é obtido igualando a equação (2.21) a zero. É possível determinar o nível de equilíbrio dessa forma, porque no equilíbrio a quantidade de capital por unidade de trabalho eficiente não se altera. Dessa forma, a nova equação encontrada é:

$$s f(k^*) = (\delta + n + m)k^*$$
 (2.22)

Assim, no estado estacionário, o investimento em termos absolutos serve apenas para compensar a depreciação do capital em termos absolutos e para repor o nível do capital por unidade de trabalho eficiente.

2.1.2 Análise Gráfica do Modelo Neoclássico

Graficamente é preciso representar as componentes da equação (2.22) fundamental do modelo:

$$\dot{k} = s f(k) - (\delta + n + m) k$$

Sendo $s f(k^*)$ o investimento em termos de eficiência e $(\delta + n + m) k^*$ a necessidade de reposição do capital. Uma vez que essas duas funções dependem do seu nível de k^* , o equilíbrio entre elas se encontra no ponto A.

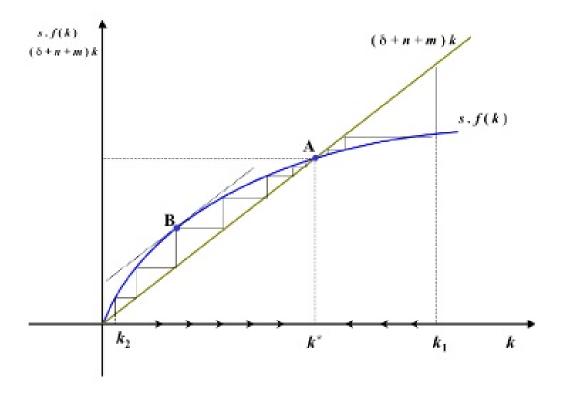


Figura 2: Equilíbrio de Longo Prazo

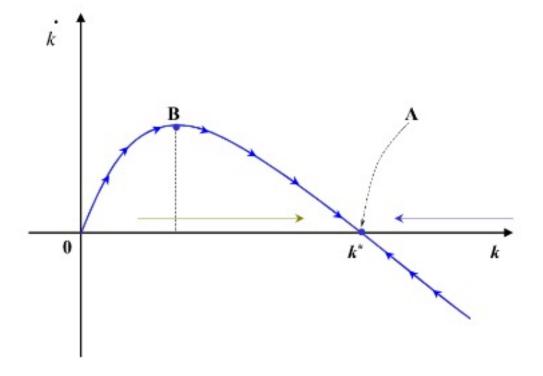


Figura 3: Diagrama de Fase

Quando os níveis de capital por unidade de trabalho eficiente são menores que o nível de equilíbrio de longo prazo, como ilustrado na figura 2 por k_2 , significa que o investimento é maior do que a necessidade de reposição do capital por unidade de trabalho eficiente. Nesse caso, a função $s\ f\ (k_2\)$ está acima da função $(\ \delta\ +\ n\ +\ m\)\ k_2$ e, como resultado, $\dot k_2\ >\ 0$. Dessa forma, o estoque de capital em termos de eficiência crescerá com o tempo e a acumulação de capital terá valores cada vez menores até alcançar o ponto de equilíbrio k^* , uma vez que a diferença entre as funções da equação $(\ 2.22\)$ vai diminuindo com o tempo.

Analisando o caso ilustrado na figura 2 por k_1 , em que os níveis de capital por unidade de trabalho eficiente são superiores ao nível de equilíbrio de longo prazo percebe-se que a necessidade de reposição do capital é superior ao investimento. Isso ocorre porque a função ($\delta + n + m$) k está acima da função s f(k), o que faz com que o estoque de capital por unidade de trabalho eficiente diminua, ou seja, $k_1 < 0$. Essa diminuição será cada vez menor à medida que o estoque de capital eficiente se aproxima de k^* .

A conclusão que se pode chegar depois dessa analise é que, independentemente do ponto de partida, a economia tenderá a k^* , ou seja, a economia tenderá para o nível de capital por unidade de trabalho eficiente de equilíbrio de longo prazo. O que mostra que somente existe um equilíbrio que se dá em k^* .

A partir da análise feita para os pontos k_1 e k_2 é possível determinar se o equilíbrio k^* é estável ou instável supondo que a economia se encontra em equilíbrio e que algum choque faça essa economia se deslocar de k^* para k_1 ou para k_2 . Como foi visto anteriormente, essa economia irá convergir para o mesmo equilíbrio de longo prazo de antes do choque. A conclusão que se pode chegar é que o equilíbrio k^* de longo prazo é um equilíbrio estável, porque independentemente do choque que afetá-la, ela sempre convergirá para o equilíbrio de longo prazo inicial.

A figura 3 relaciona a variação de k por período de tempo, \dot{k} , e o valor de k em cada período. Nesse gráfico, a variável k tem duas fases, na

primeira fase $\dot{k}>0$, onde k vai aumentando com o tempo, e na segunda fase $\dot{k}<0$, onde k vai diminuindo com o tempo. A figura 3 pode ser obtida a partir da figura 2, porque pela equação (2.22) ou \dot{k} é positivo e aumenta ou é negativo e diminui dependendo da relação entre s f (k) e (δ + n + m) k. Considerando valores muito perto de zero, a diferença entre s f (k) – (δ + n + m) k vai ficando maior à medida que k aumenta, fazendo com que k seja positivo e que ele aumente até certo ponto. Ao chegar no ponto B da figura 2, a diferença entre s f (k) – (δ + n + m) k começa a ficar cada vez menor até alcançar o ponto A. Dessa forma, o k continua positivo, mas, ao ficar mais próximo de A, k cresce a taxas cada vez mais perto de zero. No ponto A da figura 2, k chega ao ponto de equilíbrio, porque nesse ponto k k = 0. Pontos à direita do ponto k onde k > k fazem com que k seja negativo e, por isso, k diminui até voltar ao ponto de equilíbrio. O diagrama de fase confirma a conclusão alcançada anteriormente que afirmava que o equilíbrio do modelo de Solow existe, é único e é estável.

2.1.3 Modelo Neoclássico e o Crescimento no Equilíbrio de Longo Prazo

Após a analise de equilíbrio de longo prazo, é importante analisar como essa economia que conseguiu alcançar o equilíbrio irá se comportar. Ou seja, qual será o comportamento das outras variáveis no equilíbrio. Lembrando que foi definido que no equilíbrio de longo prazo:

$$\dot{k}_t = 0$$

Então a taxa de crescimento do capital por unidade de trabalho eficiente ($g_k = \frac{k}{k}$) será igual a zero.

$$g_k = 0$$

Depois de definido qual é a taxa de crescimento do capital por unidade de trabalho eficiente é possível deduzir a taxa de crescimento das outras variáveis. A taxa de crescimento do capital em termos absolutos, uma vez que K = kE, será a soma da taxa de crescimento do capital por unidade

de trabalho eficiente, g_k , que é nula, e da taxa de crescimento do trabalho em termos eficientes, g_E . Como foi definido que E = AL, então a taxa de crescimento de E será dada pela soma da taxa de crescimento do trabalho (g_L) e da taxa de crescimento do progresso tecnológico (g_A). Em linguagem matemática: $g_K = g_k + g_E = 0 + (n + m)$.

$$g_K = n + m$$
 (2.23)

A função de produção é homogênea de grau um relativamente a K e a AL, então o produto deve crescer à mesma taxa destes dois fatores produtivos. Estas taxas de crescimento foram demonstradas como sendo $g_K = n + m$ e $g_E = n + m$. Logo, $g_K = g_E$ e portanto:

$$g_K = n + m$$
 (2.24)

Como foi definido em (2.5) que a função consumo é $C_t = bQ_t$, sendo b uma constante, então $g_C = g_Q = n + m$. Dessa forma, fica provado que as variáveis expressas em termos de valores absolutos crescem todas à mesma taxa. Assim fica definido que a taxa de crescimento de longo prazo da economia é $g = g_K = g_C = g_Q = n + m$. Na construção do modelo foi feita a hipótese de que as taxas de crescimento da população (g_L) e do conhecimento tecnológico (g_A) são exógenas e constantes, sendo $g_L = n$ e $g_A = m$. Essas duas taxas de crescimento podem ser também apresentadas em termos per capita:

$$g_{K/L} = g_K - g_L = n + m - n = m$$
 (2.25)

$$g_{Q/L} = g_{Q} - g_{L} = n + m - n = m$$
 (2.26)

Com a demonstração de todas as taxas de crescimento, fica claro que o crescimento econômico não depende de qualquer força econômica de natureza endógena, uma vez que foi assumido que n e m são exógenas. Dessa forma, a politica econômica nada pode fazer no sentido de fomentar o crescimento econômico no longo prazo. Todavia, isso não significa que não existe papel para o governo. Se o governo for capaz de influenciar a determinação do nível da taxa de poupança, então ele poderá levar a economia no longo prazo para um bem-estar social máximo. Sem a

intervenção do governo, não é possível garantir que a taxa de poupança que os agentes econômicos decidem manter seja aquela que maximiza o bemestar social no longo prazo.

2.1.4 Regra de Ouro do Modelo de Solow

A maximização do bem-estar social de equilíbrio de longo prazo, que pode ser alcançada por influência das decisões tomadas pelo governo, é obtida quando o nível do consumo por trabalhador eficiente é máximo. O nível máximo de consumo que os agentes econômicos podem obter no longo prazo é designado pela "regra de ouro da acumulação de capital".

A regra de ouro da acumulação de capital consiste em determinar o valor da taxa de poupança, o que significa encontrar o nível de investimento e, com ele, o nível do consumo que leva a uma situação de equilíbrio estacionário, no qual o consumo per capita é máximo. Para encontrar a equação de equilíbrio de longo prazo, é preciso utilizar as equações:

$$q_t = f(k_t)$$
 (2.2)
 $c_t = (1 - s) q_t$ (2.9)
 $i_t = s f(k_t)$ (2.10)

Combinando essas equações, é possível encontrar a equação de equilíbrio:

$$c^* = f(k^*) - s f(k^*)$$
 (2.27)

Utilizando a equação (2.22) pode-se reescrever a equação (2.27) como:

$$c^* = f(k^*) - (\delta + n + m)k^*$$
 (2.28)

Sabendo que o objetivo da regra de ouro da acumulação de capital é maximizar o consumo por trabalhador eficiente, então é necessário maximizar a equação (2.28). O resultado dessa maximização será:

$$f'(k) = (\delta + n + m)$$
 (2.29)

O lado esquerdo da equação (2.29) é a produtividade marginal do capital, PMG_k . O que se pode interpretar da equação acima é que a regra de ouro impõe que a produtividade marginal do capital, líquida das taxas de depreciação do capital, de crescimento populacional e de crescimento do progresso tecnológico, seja nula. Ou seja, reescrevendo a equação (2.29):

PMG
$$_{k} = \delta + n + m$$
 (2.30)

A análise gráfica pode ser feita a partir da figura 4:

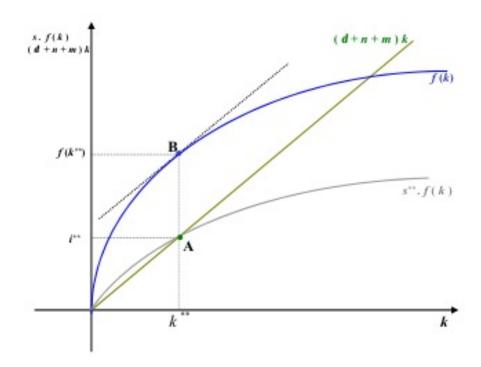


Figura 4: Regra de ouro da acumulação do capital

Como pode ser visto na figura 4, o consumo atinge o seu ponto máximo no local onde a inclinação da tangente à função de produção é igual à inclinação da função ($\delta + n + m$) k. Dessa forma, a maximização do consumo ocorre somente no ponto B, porque nesse ponto a distância entre f(k) e s f(k), ou seja, o consumo por trabalhador eficiente, é máxima.

O que se pode concluir da regra de ouro de acumulação de capital é que existe um nível de capital por trabalhador associado a um equilíbrio de

longo prazo que é ótimo do ponto de vista social, uma vez que maximiza o consumo da coletividade. O equilíbrio pode ser alcançado ao se alterar a taxa de poupança para um nível que maximize o consumo. Porém, não existe no modelo garantia de que a taxa de poupança necessária para maximizar o consumo seja alcançada pelos agentes econômicos privados. Dessa forma, esse seria o papel do governo na economia: evitar desperdício de recursos fazendo com que fosse alcançada a regra de ouro de acumulação de capital.

2.1.5 Principais Conclusões do Modelo Neoclássico

Depois de demonstrado como o Modelo Neoclássico ou o Modelo de Solow foi elaborado, pode-se chegar à algumas conclusões importantes:

- (C1) O equilíbrio desse modelo existe e é único.
- (C2) O equilíbrio de longo prazo do modelo é estável, porque independentemente do ponto de partida, a economia converge para uma trajetória de crescimento equilibrado.
- (C3) No equilíbrio de longo prazo, o produto per capita e o capital per capita crescem apenas se existir crescimento no nível do conhecimento tecnológico (m > 0). Dessa forma, a melhoria das condições médias de vida depende inteiramente da taxa de crescimento da tecnologia.
- (C4) O crescimento econômico não depende de qualquer força econômica de natureza endógena uma vez que a taxa de crescimento da população é n + m e estas duas taxas são assumidas como exógenas pelo modelo.
- (C5) A regra de ouro de acumulação do capital afirma que é possível alcançar um nível máximo de consumo para os agentes privados, mas é pouco provável que esses agentes atinjam esse nível por iniciativa individual. É nesse aspecto que o Governo pode intervir para maximizar o consumo na economia.

2.2 Modelo AK

O modelo AK é um dos modelos mais simples que levam em consideração o crescimento endógeno. Esse modelo é facilmente deduzido a partir do modelo original de Solow ao modificar a função de produção.

$$Y = AK$$
 (2.31)

Onde A é uma constante positiva, que reflete o nível de tecnologia, e os produtos médio e marginal do capital são dados pela constante A>0, fazendo com que o produto marginal do capital, PMG_k , seja sempre positivo. O significado do produto marginal do capital ser sempre positivo equivale dizer que o produto não cai quando é acrescentada uma unidade de capital a mais durante o processo de produção. Essa é a diferença entre o modelo de Solow e o modelo AK, uma vez que no primeiro a acumulação de capital caracteriza-se por retornos decrescentes de escala, ou seja, cada unidade de capital acrescentada é menos produtiva que a unidade de capital investida anteriormente.

As hipóteses mais importantes para a dedução do modelo AK são:

- **(H1)** A taxa de poupança (s) dos agentes é constante.
- **(H2)** A população cresce a uma velocidade constante (*n*).
- (H3) A taxa de depreciação (δ) é constante.
- (H4) A economia é fechada e não existem gastos públicos.

De acordo com essas hipóteses e das identidades de contabilidade nacional, a função de produção é:

$$Y_t = C_t + I_t$$
 (2.32)

Como os agentes optam por consumir ou poupar, então a poupança é igual ao investimento – o que foi usado no desenvolvimento do modelo de Solow na equação (2.4). A função de produção pode ser reescrita como:

$$Y_t = C_t + S_t$$
 (2.33)

Usando a mesma tecnologia utilizada no modelo de Solow é possível reescrever a equação (2.33) como:

$$Y_{t} = (1 - s)Y_{t} + \dot{K} + \delta K_{t}$$
 (2.34)

Simplificando a equação (2.34) e isolando \dot{K} :

$$\dot{K} = s Y_t - \delta K_t$$
 (2.35)

A equação (2.35) é a equação que descreve a acumulação de capital do mesmo modo que a equação (2.13) o fez no modelo de Solow. Para seguir os passos que foram feitos no desenvolvimento do modelo de Solow é preciso utilizar as variáveis per capita. Para isso basta dividir a equação (2.35) por *L*:

$$\frac{\dot{K}}{L} = \frac{sY_t}{L} - \frac{\delta K_t}{L} \tag{2.36}$$

Ao definir k = K/L e fazer sua derivada a fim de encontrar a variação do capital físico, assim como foi feito no modelo de Solow, obtémse:

$$\dot{k} = \frac{\dot{K}L - K\dot{L}}{LL} = \frac{\dot{K}}{L} \frac{L}{L} - \frac{K}{L} \frac{\dot{L}}{L} = \frac{\dot{K}}{L} - kn$$
 (2.37)

Reorganizando a expressão encontrada em (2.37) é possível encontrar:

$$\frac{\dot{K}}{L} = \dot{k} + k \, n \tag{2.38}$$

Ao substituir a equação (2.38) na equação (2.36) é fácil perceber que:

$$\dot{k} + k n = sy - \delta k \qquad (2.39)$$

Rearranjando a equação (2.39) de modo a isolar a constante \dot{k} resulta em uma equação parecida com a equação (2.21), que era a equação fundamental do modelo de Solow:

$$\dot{k} = sy - (\delta + n)k \tag{2.40}$$

Substituindo a tecnologia AK na equação acima:

$$\dot{k} = sAk - (\delta + n)k \tag{2.41}$$

Dividindo a equação (2.41) por k:

$$\frac{\dot{k}}{k} = sA - (n + \delta) \tag{2.42}$$

Da equação (2.42) é possível afirmar que a taxa de crescimento do estoque de capital per capita é uma função crescente da taxa de investimento da economia. Voltando à equação de produção do modelo (2.31) e tirando o logaritmo e derivando é possível chegar a:

$$g_y = \frac{y}{y} = sA - (n + \delta) (2.44)$$

Dessa forma, o resultado fundamental do modelo de crescimento AK é que a taxa de crescimento do produto é igual à taxa de crescimento do estoque de capital. A consequência desse resultado é que as politicas do Governo que aumentam permanentemente a taxa de investimento da economia aumentarão a taxa de crescimento da economia também de modo permanente. O modelo AK gera crescimento de modo endógeno, ou seja, não é preciso supor que qualquer variável no modelo cresça a uma taxa exógena a fim de gerar crescimento per capita.

2.2.1 Modelo AK (externalidades)

Reapresentando o modelo AK agora utilizando a função de produção como:

$$Y = B K^{\alpha} L^{1-\alpha}$$
 (2.45)

Supondo que cada empresa considere o nível *B* como dado, mas que a acumulação de capital gere novos conhecimentos sobre a produção da economia como um todo. Dessa forma:

$$B = A K^{1-\alpha}$$
 (2.46)

Onde A é uma constante. O que se pode dizer sobre a equação (2.46) é que "um subproduto acidental da acumulação de capital pelas empresas da economia é a melhora na tecnologia que as empresas aplicam na produção. Uma empresa individual não reconhece esse efeito quando acumula capital porque é pequena em relação à economia. É nesse sentido que o progresso tecnológico é *externo* à empresa. As empresas não acumulam capital porque ele melhora a tecnologia, elas acumulam capital porque ele é um insumo útil à produção. Contudo, acontece que a acumulação de capital proporciona um beneficio inesperado ao resto da economia: resulta em novo conhecimento". (CHARLES JONES, 2000)

3 METODOLOGIA

3.1 Regressão Linear Múltipla

Para identificar as variáveis econômicas que melhor explicam as produtividades dos anos de 2005 e 2010, fez-se uso da Regressão Linear Múltipla. Essa técnica estatística consiste em modelar uma equação capaz de indicar a relação entre variáveis explicativas e uma variável resposta.

A forma geral de um modelo de regressão linear múltiplo pode ser escrita da forma:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip} + \varepsilon_i$$
 (3.1)

Em que y_i é a variável resposta da produtividade do i-ésimo país (i = 1, ..., 60); β_j , j = 0, 1, ..., p são os parâmetros de regressão; x_k , l = 1, 2, ..., p são as variáveis explicativas e ε_i é o erro aleatório.

Alguns pressupostos importantes devem ser destacados (Neter et al., 1981):

- Os erros ε_i são variáveis aleatórias independentes e identicamente distribuídas e seguem uma Normal com média zero e variância constante σ^2 , isto é, $\varepsilon_i \sim N(0, \sigma^2)$;
- As variáveis explicativas x_1, x_2, \dots, x_p são não correlacionadas.

A verificação destes pressupostos é essencial para validação dos modelos analisados. Neste trabalho, as variáveis estudadas atendem aos pressupostos estabelecidos.

Os parâmetros $\beta_0, \beta_1, \dots, \beta_p$ são estimados pelo Método de Mínimos Quadrados. As somas de quadrados total (SQ_T) e de resíduos (SQ_R) podem ser definidas pelas seguintes notações matriciais:

$$SQ_T = \mathbf{Y}'\mathbf{Y} - n\bar{\mathbf{y}}^2 \tag{3.2}$$

$$SQ_R = \widehat{\boldsymbol{\beta}}' \boldsymbol{X}' \boldsymbol{Y} - n \bar{y}^2 \qquad (3.3)$$

O coeficiente de determinação R^2 , medida que calcula a proporção da variação da variável resposta y que é explicada pelo modelo de regressão, é calculado por:

$$R^2 = \frac{SQ_R}{SQ_T} \tag{3.4}$$

Pode-se mostrar que $0 \le R^2 \le 1$.

Este coeficiente aumenta à medida que novas variáveis são incluídas no modelo. Uma grande quantidade de fatores explicativos, apesar de gerar um elevado coeficiente de determinação, não é viável por questões interpretativas. Por isso, uma melhor medida para avaliar a qualidade do modelo é o R^2 ajustado, denotado por R^2_{ajust} :

$$R_{ajust.}^2 = 1 - \left(\frac{n-1}{n-n}\right)(1-R^2)$$
 (3.5)

Esse coeficiente não necessariamente aumenta com o acréscimo de variáveis no modelo. Devido ao grande número de variáveis analisadas, foi feita uma seleção de variáveis a fim de otimizar $R_{aiust.}^2$

Nesta monografia, a regressão linear utilizada verifica se as variáveis explicativas se relacionam de maneira linear com a variável resposta (ANOVA). A análise de variância é baseada na decomposição da soma de quadrados e nos graus de liberdade associados a variável resposta. O desvio de uma observação em relação à média pode ser decomposto como o desvio da observação em relação ao valor ajustado pela regressão mais o desvio do valor ajustado em relação à média, ou seja:

$$y_i - \bar{y} = (\hat{y}_i - \bar{y}) + (y_i - \hat{y}_i)$$
 (3.6)

Elevando cada componente da equação anterior ao quadrado e somado para todo o conjunto de observações:

$$\sum_{i=1}^{n} (y_i - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 + \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \quad (3.7)$$

onde:

 $\sum_{i=1}^{n}(y_{i}-\bar{y}\,)^{2}$ é a Soma de Quadrados Total (SQ_T).

 $\sum_{i=1}^n (\,\hat{y}_i - \, ar{y}\,)^2$ é a Soma de Quadrados da Regressão (SQ_REG).

 $\sum_{i=1}^{n}(y_i-\hat{y}_i)^2$ é a Soma de Quadrados dos Resíduos (SQ_R).

As somas de quadrado total (SQ_T) e a soma de quadrados dos resíduos (SQ_R) são iguais as que foram apresentadas anteriormente na pelas notações matriciais (3.2) e (3.3).

Grau de liberdade (degree of freedom, DF) é o número de determinações independentes, ou seja, a dimensão da amostra, menos o número de parâmetros estatísticos a serem avaliados na população. Um fato importante é que os graus de liberdade, assim como a soma dos quadrados, é dado pela soma dessas medidas no modelo e nos resíduos.

O quadrado médio (Mean Square) é a razão entre a soma de quadrados e seu respectivo grau de liberdade. A estatística F (F Value) é dada pela razão entre os quadrados médios do modelo (MSM) e do erro (MSE).

$$F = \frac{MSM}{MSE} \qquad (3.8)$$

O p-valor é uma probabilidade condicional de observar um valor da estatística computada, nesse caso F, como maior do que o valor observado, sob a hipótese inicial, H_0 . Um p-valor pequeno fornece evidências contra H_0 . Nesta monografia é adotado um nível de significância fixo para examinar o p-valor. Ao fixar um nível de significância (α), pode-se dizer que uma hipótese nula é rejeitada a este nível, quando o p-valor é menor do que esse nível. Neste trabalho, α é 0,05, isto significa que se o p-valor for menor do que 5%, a hipótese da relação definida inicialmente não ser linear é rejeitada.

Além do teste F, foi feito o teste t. Enquanto o teste F avalia a significância do modelo como um todo, o teste t verifica se cada parâmetro é significativo ou não. A diferença entre os dois testes é a distribuição de probabilidade de origem de cada um. A estatística F segue uma distribuição de Fischer e a estatística t segue uma t-Student. É de interesse que ambas as estatísticas sejam suficientemente grandes, de modo que seus respectivos p-valores sejam inferiores ao nível de significância adotado.

O programa utilizado para desenvolver o modelo de regressão linear múltiplo foi o SAS na sua versão 9.2 e a técnica estatística utilizada foi a Regressão Linear Múltipla. Originalmente havia 97 variáveis para explicar a variável resposta, que nesse caso é a produtividade do trabalho. Essa grande quantidade de variáveis poderiam dificultar a interpretação do modelo, por isso foi preciso selecionar algumas.

O método utilizado para a seleção de variáveis foi o "stepwise". Este método busca aumentar a eficiência média com um número limitado de variáveis. Baseia-se na observação de que algumas variáveis contribuem

pouco para a eficiência média do modelo. Sendo assim, uma vez identificadas, podem ser retiradas no modelo. A maneira pelo qual o método "stepwise" seleciona as variáveis do modelo é começando sem nenhuma variável o modelo de regressão. Para cada uma das possíveis variáveis do modelo, o método calcula estatísticas F que refletem a contribuição que a variável traria para o modelo se fosse usada. Uma vez acrescentada uma variável, o método "stepwise" avalia as variáveis presentes no modelo e remove aquelas que não atingem o critério de corte. (THOMPSON, 2001)

3.2 Coeficiente Linear de Pearson

Além da Regressão Linear Múltipla, também foi utilizada a correlação entre a produtividade do trabalho e a competitividade dos 60 países. A medida utilizada para indicar a correlação entre as variáveis foi o Coeficiente Linear de Pearson. Esse método fornece uma medida da correlação linear (dependência) entre duas variáveis, resultando um valor entre 1 e -1. Quanto mais perto de 1, maior a relação direta entre as variáveis, e quanto mais próximo de -1, maior a relação inversa entre elas. Há vários intervalos de interpretação que, segundo CALLEGARI-JACQUES (2003), são:

- Maior ou igual a 0 até 0,30: correlação fraca.
- Maior ou igual a 0,30 até 0,60: correlação moderada.
- Maior ou igual a 0,60 até 0,90: correlação forte.
- Maior ou igual a 0,90 até 1: correlação muito forte.

A partir da explicação dos métodos utilizados, é possível começar a análise dos dados. Essa análise será feita no quarto capítulo, que tem como objetivo explicar o modelo de regressão alcançado a partir do método de Regressão Linear Múltipla explicado anteriormente.

4 ANÁLISES

As variáveis utilizadas no modelo de Regressão Linear Múltipla estão na tabela 1. A variável resposta é a produtividade do trabalho (X_3 para o ano de 2005 e X_5 para o ano de 2010). As variáveis X_2 e X_4 representam o investimento per capita dos anos de 2005 e 2010. Essas variáveis – produtividade do trabalho e investimento (X_3 , X_5 , X_2 , X_4) – foram retiradas dos dados fornecidos pelo relatório 7.1 da Penn World Table.

"A Penn World Table oferece paridade de poder aquisitivo e contas da renda nacional convertidos para preços internacionais de 189 países / territórios de alguns ou de todos os anos de 1950-2010." (PENN WORLD TABLE)

A variável produtividade do trabalho pode ser definida de maneira simplificada como o PIB dividido pela quantidade de trabalhadores. Comparações internacionais de produtividade do trabalhador requerem a conversão de taxas de produtividade do trabalhador em uma unidade monetária comum e isso é feito usando as taxas de conversão conhecidas como paridades de poder de compra (PPP). O PIB real per capita é o produto da produtividade do trabalho e da parcela da população que está empregada. O crescimento do PIB real per capita ocorre somente com o crescimento na produtividade do trabalho, na parcela da população que está trabalhando, ou de ambos. Entre os fatores que determinam a produtividade do trabalho estão a educação, a quantidade e a qualidade do capital físico utilizado pelos trabalhadores, a disponibilidade de recursos naturais, a aplicação de tecnólogia na produção e na distribuição dos bens e serviços, entre outros. Por causa dos rendimentos marginais decrescentes do capital, acima de certo ponto a expansão do estoque de capital não é a maneira mais eficaz de aumentar a produtividade do trabalho, por isso que as novas tecnologias são uma fonte importante de melhoria da produtividade. (FRANK & BERNANKE, 2009)

A variável competitividade, representada por X_5 , foi retirada do IMD COMPETITIVENESS RANKINGS 2013. O Painel de Competitividade Mundial de 2013 apresenta os rankings globais para as 60 economias abrangidas pelo WCY (World Competitiveness Yearbook).

A competitividade é definida como o conjunto de instituições, políticas e fatores que determinam o nível de produtividade de um país. O nível de produtividade, por sua vez, define o nível de prosperidade que pode ser conquistada por uma economia. O nível de produtividade também determina as taxas de retorno obtidas por investimentos em uma economia, as quais, por sua vez, são os determinantes fundamentais de suas taxas de crescimento. Em outras palavras, uma economia mais competitiva é aquela que é mais suscetível de sustentar o crescimento. (WEF GLOBAL COMPETITIVINESS REPORT 2012-2013)

Todas as outras variáveis ($X_7 - X_{99}$) foram retirados do DOING BUSINESS.

"O projeto Doing Business fornece medidas objetivas das regulamentações aplicáveis às empresas e seu cumprimento em 185 economias." (DOING BUSINESS)

Os países que foram escolhidos foram aqueles países que possuíam todos os dados das variáveis analisadas. Dessa forma, foram escolhidos os 60 países para os quais o WCY apresenta o ranking de competitividade, uma vez que esses países também possuem os outros dados analisados na tabela 1.

Grupo	Cód.	Variável	Ano		
	X_2	X ₂ Investiment Share of Real GDP Per Capita (ki)			
	X ₃ Real GDP Chain Per Worker (Rgdpwok)				
	X ₄ Investiment Share of Real GDP Per Capita (ki)				
	X_5	Real GDP Chain Per Worker (Rgdpwok)			
	X_6	Competitividade	2013		
ວ A B ⊃	X ₇	Procedures (number)	2005		

	V	Dragaduras (number)	1 2040
	X ₈	Procedures (number)	2010
	X ₉	Procedures (number)	2013
	X ₁₀	Time (days)	2005
	X ₁₁	Time (days)	2010
	X ₁₂	Time (days)	2013
	X ₁₃	Cost (% of income per capita)	2005
	X ₁₄	Cost (% of income per capita)	2010
	X ₁₅	Cost (% of income per capita)	2013
<u>v</u>	X ₁₆	Procedures (number)	2005
Dealing with Construction Permits	X ₁₇	Procedures (number)	2010
ith	X ₁₈	Procedures (number)	2013
» r	X ₁₉	Time (days)	2005
ij ij	X ₂₀	Time (days)	2010
Dealing with struction Per	X ₂₁	Time (days)	2013
ns,	X ₂₂	Cost (% of income per capita)	2005
ပိ	X ₂₃	Cost (% of income per capita)	2010
	X ₂₄	Cost (% of income per capita)	2013
	X ₂₅	Procedures (number)	2010
ity	X_{26}	Procedures (number)	2013
Getting Electricity	X_{27}	Time (days)	2010
Get lec	X_{28}	Time (days)	2013
Ш	X_{29}	Cost (% of income per capita)	2010
	X ₃₀	Cost (% of income per capita)	2013
>	X_{31}	Procedures (number)	2005
Registering Property	X_{32}	Procedures (number)	2010
do.	X_{33}	Procedures (number)	2013
<u>a</u>	X_{34}	Time (days)	2005
ing	X_{35}	Time (days)	2010
ter	X_{36}	Time (days)	2013
gis	X ₃₇	Cost (% of income per capita)	2005
Re	X ₃₈	Cost (% of income per capita)	2010
	X ₃₉	Cost (% of income per capita)	2013
	X_{40}	Strength of legal rights index (0-10)	2005
	X_{41}	Strength of legal rights index (0-10)	2010
	X_{42}	Strength of legal rights index (0-10)	2013
≝	X_{43}	Depth of credit information index (0-6)	2005
Getting Credit	X_{44}	Depth of credit information index (0-6)	2010
၁	X_{45}	Depth of credit information index (0-6)	2013
tinç	X_{46}	Public registry coverage (% of adults)	2005
)eti	X_{47}	Public registry coverage (% of adults)	2010
U	X_{48}	Public registry coverage (% of adults)	2013
	X_{49}	Private bureau coverage (% of adults)	2005
	X_{50}	Private bureau coverage (% of adults)	2010
	X ₅₁	Private bureau coverage (% of adults)	2013
	X ₅₂	Extent of disclosure index (0-10)	2010
ng rs	X_{53}	Extent of disclosure index (0-10)	2013
žći Što	X_{54}	Extent of director liability index (0-10)	2010
a. U)	X_{55}	Extent of director liability index (0-10)	2013
ote Ve	00		
Protecting Investors	X ₅₆	Ease of shareholder suits index (0-10)	2010

	X ₅₈	Strength of investor protection index (0-10)	2010
	X ₅₉	Strength of investor protection index (0-10)	2013
	X ₆₀	Payments (number per year)	2010
	X ₆₁	Payments (number per year)	2013
Se	X ₆₂	Time (hours per year)	2010
a X	X ₆₃	Time (hours per year)	2013
D B	X ₆₄	Profit tax (%)	2013
yin	X ₆₅	Labor tax and contributions (%)	2013
Paying Taxes	X ₆₆	Other taxes (%)	2013
	X ₆₇	Total tax rate (% profit)	2010
	X ₆₈	Total tax rate (% profit)	2013
	X ₆₉	Documents to export (number)	2010
	X ₇₀	Documents to export (number)	2013
ers	X ₇₁	Time to export (days)	2010
ord	X ₇₂	Time to export (days)	2013
ă	X ₇₃	Cost to export (US\$ per container)	2010
SSO	X ₇₄	Cost to export (US\$ per container)	2013
\cr	X ₇₅	Documents to import (number)	2010
9 4	X ₇₆	Documents to import (number)	2013
di	X ₇₇	Time to import (days)	2010
Trading Across Borders	X ₇₈	Time to import (days)	2013
	X ₇₉	Cost to import (US\$ per container)	2010
	X ₈₀	Cost to import (US\$ per container)	2013
_	X ₈₁	Time (days)	2005
cts	X ₈₂	Time (days)	2010
tra	X ₈₃	Time (days)	2013
lo	X ₈₄	Cost (% of claim)	2005
g	X ₈₅	Cost (% of claim)	2010
cin	X ₈₆	Cost (% of claim)	2013
Enforcing Contracts	X ₈₇	Procedures (number)	2005
Е	X ₈₈	Procedures (number)	2010
	X ₈₉	Procedures (number)	2013
	X ₉₀	Time (years)	2005
<u>ج</u>	X ₉₁	Time (years)	2010
enc	X ₉₂	Time (years)	2013
Resolving Insolvency	X ₉₃	Cost (% of estate)	2005
ns	X ₉₄	Cost (% of estate)	2010
) Br	X ₉₅	Cost (% of estate)	2013
Ĭ	X ₉₆	Outcome (0 as piecemeal sale and 1 as going concern)	2013
osi	X ₉₇	Recovery rate (cents on the dollar)	2005
R	X ₉₈	Recovery rate (cents on the dollar)	2010
	X ₉₉	Recovery rate (cents on the dollar)	2013

Tabela 1: Variáveis Base Para Regressão

A tabela 1 apresenta todas as variáveis levantadas antes do uso do método de seleção de variáveis "stepwise". Depois de selecionadas, foi feita uma regressão para os anos de 2005 e 2010, já que esses são os dois anos para os quais existem dados sobre a variável resposta:

produtividade do trabalho. As duas regressões obtidas foram então analisadas pelo método "stepwise". O resultado desse processo é o seguinte modelo:

• 2005: $X_{3i} = -45008 + 839,12X_{6i} - 257,90X_{10i} + 39,23X_{34i} + 2127,7X_{37i} + 6877,78X_{43i} + \epsilon_i$ (R^2 : 0,7993)

X_3	Real GDP Chain Per Worker (Rgdpwok)	2005
X_6	Competitividade	2013
X_{10}	Starting a Business: Time (days)	2005
X_{34}	Registering Property: Time (days)	2005
X_{37}	Registering Property: Cost (% of income per capita)	2005
X_{43}	Getting Credit: Depth of credit information index (0-6)	2005

• 2010:
$$X_{5i} = 18818 + 233,62X_{35i} - 3655,91X_{69i} + 679,51X_{98i} + \epsilon_i$$
 (R^2 : 0,8341)

X_5	Real GDP Chain Per Worker (Rgdpwok)	2010
X_{35}	Registerin Property: Time (days)	2010
X_{69}	Trading Across Boarders: Documents to export (number)	2010
X_{98}	Resolving Insolvency: Recovery rate (cents on the dollar)	2010

Analisando os modelos obtidos é, possível perceber que de todas as variáveis analisadas na tabela 1, aquelas que explicam a produtividade do trabalho de 2005 (X_3) são: a competitividade (X_6), o tempo para se abrir uma empresa (X_{10}), o tempo para se registrar uma propriedade (X_{34}), o custo de se registrar uma propriedade (X_{37}) e as informações para a obtenção de crédito (X_{43}). O R^2 dessa regressão é 0,7993, o que significa que 79,93% da produtividade do trabalho foi explicado pelas variáveis descritas na regressão.

Utilizando essa mesma análise para a regressão obtida para explicar a produtividade do trabalho em 2010 (X_5), fica claro que as variáveis do modelo são: o tempo para se registrar uma propriedade (X_{35}),

os documentos enviados para o exterior necessários para se fazer comércio entre as fronteiras (X_{69}) e a taxa de recuperação ao se resolver insolvência (X_{98}). O R^2 dessa regressão foi 0,8341, o que significa que 83,41% da produtividade do trabalho foi explicado pelas variáveis da regressão e que somente 16,59% da produtividade do trabalho foi explicado por outros motivos que não foram analisados pela regressão.

Outro modelo que foi elaborado para explicar a produtividade foram duas regressões. A primeira regressão utiliza, além do intercepto, as variáveis investimento (X_2) e competitividade (X_6). O resultado dessa regressão foi:

• X_{3i} = -50156 + 506,23 X_{2i} + 1216,41 X_{6i} + ε_i

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	22019214072	11009607036	25.70	< 0001
Error	57	24414652678	428327240		
Corrected Total	59	46433866750			

Tabela 2.a: Teste F Para A Primeira Regressão

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	- 50156	15704	- 3.19	0.0023
X_2	1	506.23249	449.23739	1.13	0.2645
X ₆	1	1216.40815	177.21714	6.86	< 0001

Tabela 2.b: Teste t Para a Primeira Regressão

Como pode ser visto nas tabelas, o modelo como um todo é aceito para uma significância de 5%, uma vez que o p-valor do teste F é menor que 0,0001. Analisando cada parâmetro pelo teste t é surpreendente notar que o investimento (X_2) foi rejeitado por esse teste, enquanto a competitividade (X_6) foi aceita. A conclusão dessa regressão é que o ambiente de negócios é significativo para determinar a renda, enquanto, surpreendentemente, o investimento não é significativo.

• $X_{3i} = 78739 - 200,63X_{2i} - 2730,95X_{7i} - 119,55X_{12i} - 1541,45X_{16i} + 78,85X_{20i} + 984,72X_{37i} + \epsilon_i$

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	6	895334545	1492224242	3.88	0.0058
Error	29	11163367185	38493696		
Corrected Total	35	20116712639			

Tabela 3.a: Test F Para a Segunda Regressão

Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	78739	17298	4.55	< 0001
X_2	1	- 200.63387	583.20388	- 0.34	0.7333
X ₇	1	- 2730.94793	5262.68208	- 0.52	0.6077
X ₁₂	1	- 119.55057	595.49267	- 0.20	0.8423
X ₁₆	1	- 1541.44962	5304.42328	- 0.29	0.7734
X ₂₀	1	78.85306	617.98148	0.13	0.8993
X ₃₇	1	984.71590	889.42667	1.11	0.2773

Tabela 3.b: Teste t Para a Segunda Regressão

X_2	Investiment Share of Real GDP Per Capita (ki)
X_7	Starting a Business: Procedures (number)
X ₁₂	Starting a Business: Time (days)
X ₁₆	Dealing with Construction Permits: Procedures (number)
X_{20}	Dealing with Construction Permits: Time (days)
X ₃₇	Registering Property: Cost (% of income per capita)

A segunda regressão apresentada é uma regressão maior na qual foram incluídas, além do investimento (X_2), as variáveis fornecidos pelo DOING BUSINESS e que estão relacionadas na tabela 1. Pelo teste F, esse modelo foi aceito, uma vez que o p-valor é menor que 5%. Todavia, todos os parâmetros foram rejeitados pelo teste t, uma vez que o p-valor de todos os parâmetros foram maiores do que 5%.

A partir dessa regressão foi utilizado o método "stepwise" para diminuir a quantidade de variáveis tornando mais fácil o entendimento da regressão. Além disso, ao utilizar esse método espera-se que os resultados obtidos para o teste t sejam melhores do que os da regressão anterior.

• $X_{3i} = 76994 - 4158,41X_{7i} + \varepsilon_i$

Analysis of Variance							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	1	8386310325	8386310325	24.31	< 0001		
Error	34	11730402314	345011833				
Corrected Total	35	20116712639					

Tabela 4.a: Teste F Para a Segunda Regressão Com Método "Stepwise"

Variable	Parameter Estimates	Standard Error	t Value	Pr > t
Intercept	76994	7445.15503	106.95	< 0001
X ₇	- 4158.40737	843.44849	24.31	< 0001

Tabela 4.b: Teste t Para a Segunda Regressão Com Método "Stepwise"

X₇ Starting a Business: Procedures (number)

O resultado obtido sugere que de todos os determinantes do ambiente de negócios, a quantidade de procedimentos necessários para abrir uma empresa (X_7) é a variável que captura melhor o impacto no crescimento. Esse resultado surpreende uma vez que, intuitivamente, outras variáveis, como o investimento, deveriam ser mais importantes no crescimento do que os procedimentos para abrir uma empresa.

Como foi explicado no capítulo anterior, o próximo passo será analisar a correlação entre a produtividade do trabalho (X_3 para 2005 e X_5 para 2010) e a competitividade de 2013 (X_6). Essa correlação está demonstrada na tabela 2. Esses dados foram obtidos utilizando o programa SAS e utilizando o método de correlação de Pearson.

	X_3	X_5	X_6
X ₃ X ₃	1.00000	0.94873	0.68007
X ₅	0.94873	1.00000	0.65993
X ₆ X ₆	0.68007	0.65993	1.00000

Tabela 5: Correlação Entre a Produtividade do Trabalho e a Competitividade

Analisando os dados obtidos na tabela 5 pode-se verificar que a correlação linear entre a produtividade do trabalho em 2005 e a competitividade em 2013 (X_3 e X_6) é 0.68007. De acordo com a classificação feita por CALLEGARI-JACQUES (2003), a correlação entre X_3 e X_6 é uma correlação forte. Fazendo essa mesma análise para a produtividade do trabalho em 2010 e a competitividade em 2013 (X_5 e X_6), nota-se que a correlação é 0.94873. De acordo com CALLEGARI-JACQUES (2003), a correlação entre X_5 e X_6 é uma correlação muito forte. Esses dois resultados demonstram que existe uma relação direta (forte para as variáveis X_3 e X_6 e muito forte para X_5 e X_6) entre a produtividade do trabalho e a competitividade dos 60 países em questão.

5 CONCLUSÕES

Depois de apresentar a teoria que embasou o desenvolvimento do trabalho no segundo capítulo; explicar a metodologia utilizada no terceiro capítulo; e a análise feita no quarto capítulo, é possível chegar a algumas conclusões importantes.

Desde a Segunda Guerra Mundial os países tem se preocupado com o crescimento econômico sustentado. Esse crescimento se tornou o principal objetivo das políticas econômicas. As teorias de crescimento econômico podem ser divididos em três linhas de abordagem. A primeira linha de abordagem é a "grande teoria", a segunda linha são as "teorias do desenvolvimento econômico" e a terceira linha são as "teorias modernas de crescimento econômico".

As "teorias modernas de crescimento econômico" usam um número relativamente pequeno de variáveis econômicas, precisamente definidas, na construção de um modelo formal de um aspecto do processo de crescimento. Tanto o Modelo de Solow quanto o Modelo AK se enquadram na terceira linha de abordagem.

Solow partiu de hipóteses simplificadoras para desenvolver o seu modelo. Ao final, Solow chegou a algumas conclusões como: a existência de um único equilíbrio no modelo; esse equilíbrio de longo prazo é estável; o produto per capita e o capital per capita crescem apenas se existir o crescimento no nível do conhecimento tecnológico; o crescimento econômico não depende de qualquer força econômica de natureza endógena; o Governo pode interferir de maneira a maximizar o consumo na economia. De todas as conclusões alcançadas por Solow, a mais importante no desenvolvimento do trabalho foi que a produtividade tem papel determinante no crescimento de longo prazo.

O Modelo AK é um modelo facilmente deduzido a partir do Modelo de Solow, mas que, ao contrário deste, considera o crescimento como sendo endógeno. Uma conclusão importante desse modelo é que a taxa de

crescimento do produto é igual à taxa de crescimento do estoque de capital. Assim, o Governo pode aumentar a taxa de crescimento da economia de modo permanente ao aumentar permanentemente a taxa de investimento.

Depois de entender a importância da produtividade no crescimento de longo prazo de acordo com o Modelo de Solow, foi feito um modelo por meio da Regressão Linear Múltipla para esclarecer quais variáveis explicam a produtividade do trabalho. Como existiam muitas variáveis para desenvolver o modelo de regressão, foi necessário eliminar algumas delas para que a regressão resultante fosse mais facilmente interpretada. O método utilizado para eliminar algumas variáveis foi o "stepwise".

O resultado da regressão para o ano de 2005 mostrou que a produtividade do trabalho foi explicada 79,93%, que é o valor do R², pelas variáveis: competitividade; tempo para se abrir uma empresa; tempo para se registrar uma propriedade; custo de se registrar uma propriedade; e informações para a obtenção de crédito.

O resultado da regressão para o ano de 2010 mostrou que a produtividade do trabalho foi explicada 83,41%, que é o valor do R², pelas variáveis: tempo para se registrar uma propriedade; documentos enviados para o exterior necessários para se fazer comércio entre as fronteiras; e taxa de recuperação ao se resolver insolvência.

A regressão que relacionava o crescimento com o investimento e com a competitividade revelou um resultado inesperado ao mostrar que o investimento não é significativo para determinar a renda. Porém o ambiente de negócios, medido pela competitividade, é significativo na determinação da renda.

O resultado obtido sugere que de todos os determinantes do ambiente de negócios, a quantidade de procedimentos necessários para abrir uma empresa (X_7) é a variável que captura melhor o impacto no crescimento. Esse resultado surpreende uma vez que intuitivamente outras variáveis, como o investimento, deveriam ser mais importantes no crescimento do que os procedimentos para abrir uma empresa.

A regressão maior trouxe seis variáveis para explicar a produtividade do trabalho. O modelo foi aceito, mas seus parâmetros foram rejeitados. A partir dessa regressão foi aplicado o método "stepwise" para melhorar os resultados da regressão. O resultado mostrou que a variável mais importante na determinação do crescimento a quantidade de procedimentos necessários para abrir uma empresa. Esse resultado nãoe era previsto pela importância das outras variáveis analisadas, mas pode significar que países com mais burocracia faz com que o crescimento seja dificultado.

A correlação de Pearson entre a produtividade do trabalho para os anos de 2005 e 2010 e a competitividade de 2013 resultou em uma relação direta forte ou muito forte entre essas variáveis.

O modelo de regressão e o resultado da correlação entre a produtividade do trabalho e a competitividade fornecem resultados importantes, porque auxiliam no entendimento da produtividade do trabalho. Uma vez que a produtividade do trabalho é um dos determinantes do crescimento do PIB real e esse é uma das principais preocupações das atuais politicas econômicas.

6 BIBLIOGRAFIA

ARROW, Keneth. *The Economic Implications of Learning by doing.* Review of Economics Studies. 29 (june).1962.

ASCHUAER, David. *Is Public Expenditure Productive?*. Journal of Monetary economics, v.23, p.177-200,1989.

BARRO, Robert & SALA-I-MARTIN, Xavier. *Public Finande in Models of Economic Growth.* The Review of Economic Studies. V.59, p.645-661,1992.

BARRO, Robert & SALA-I-MARTIN, Xavier. *Economic Growth.* New York:Mc Graw-Hill, 1995.

BARRO, Robert. *Government Spending in a Simple Model of Endogenous Growth.* The Journal of Political Economy, vol.98, N° 5, p.103-125, oct. 1990.

BARRO, Robert & SALA-I-MARTIN, Xavier. *Public Finande in Models of Economic Growth.* The Review of Economic Studies. V.59, p.645-661,1992.

BAUMOL, Willian J. Economics: Principles and Policy. V.12. 2011.

BLAUG M. Economic Theory in Retrospect. V.2. Heinemann, 1968.

BRANSON, Willian H. *Theory and Policy*. V.3. 1989.

BRESSER-PEREIRA, Luiz Carlos. *Crescimento e Desenvolvimento Econômico*. Notas de Aula FGV, 208.

BRESSER-PEREIRA, Luiz Carlos. *O Conceito Histórico de Desenvolvimento Econômico*. Notas de Aula FGV, 2006.

BUSSAB, O. Wilton; MORETIN, A. Pedro. Estatística Básica. Atual, 2006.

CALLEGARI-JACQUES, Sidia M. *Bioestatística: princípios e aplicaç*ões. Porto Alegre: Artmed. 2003.

CORSETTI, Giancarlo & ROUBINI, Nouriel. *Optimal Government Spending and Taxation in Endogenous Growth Models*. NBER, Working Papers, N° 5851, 1996.

DOING BUSINESS: http://portugues.doingbusiness.org/

DOMAR, Evsey . D. *Capital Expansion, Rateof Growth, and employment.* Econométrica. Vol.14,1946.

DRAPER, N. R; SMITH, H. Applied Regression Analysis. V.2. Wiley, 1981.

EASTERLY, William & Rebelo, Sérgio. *Fiscal Policy and Economic Growth: An Empirical Investigation. NBER Working Papers*, N° 4499, 1993.

FRANK, Robert H.; BERNANKE, Ben S. *Princípios de Economia*. Techbooks, 2009.

FURTADO, Celso. *Desenvolvimento e subdesenvolvimento*. Fundo de Cultura, 1961.

FURTADO, Celso. O mito do desenvolvimento econômico. Círculo do Livro, 1974.

FURTADO, Celso. *Teoria e política do desenvolvimento econômico*. Ed. Nacional, 1977.

HARROD, R.F. An Essay in Dinamic Theory. Economic Journal. Nº 49, 1939.

IMD COMPETITIVENESS RANKINGS 2013: http://www.imd.org/wcc/

JONES, Charles. *Introdução à Teoria do Crescimento Econômico*. Stanford University. Rio de Janeiro. Editora Campus, 2000.

JONES, Hywell. Modernas Teorias do Crescimento Econômico. São Paulo. Editora Atlas, 1979.

LUCAS, Robert. *Econometric Policy Evaluation: A critique*. Carnegie-Rochester Conference Series. North-Holland, Amsterdã, 1976.

LUCAS, Robert. *On the Mechanics of Economic Development*. Journal of Monetary Economics. V.22. p.3-42, 1988.

MANKIW, N. Gregory, *Macroeconomics*. V.8. 2012.

MEADE, J. E. A Neo-Classical Theory of Economic Growth. Unwin, 1961.

MEIER, Gerald M.; BALDWIN, Robert E. *Desenvolvimento Econômico*. Editora Mestre Jou – São Paulo, 1968.

MENDES, Vivalo; VALE, Sofia. *Modelo de Solow de Equilíbrio de Longo Prazo (Versão Final)*. ISCTE. 2001.

METCALFE, Stanley J.; FONSECA, Maria da Graça D.; RAMLOGAN, Ronald. *Innovation, Competition and Growth: Evolving Complexity or Complex Evolution*. Revista Brasileira de Inovação, V.1. 2002.

NETER, J.; WASSERMAN, W.; WHITMORE, G. *Applied Statistics*. Allyn and Bacon. V.4. 1992.

OLIVEIRA, Gilson Batista. *Uma Discussão Sobre o Conceito de Desenvolvimento*. Revista da FAE. 2002.

PENN WORLD TABLE: https://pwt.sas.upenn.edu/php_site/pwt_index.php

ROMER, David. Advanced Macroeconomics. Mcgraw-Hill, 1996.

ROMER, Paul M. *Increasing Returns and Long-Run Growth*. Journal of Political Economy, vol.94, no 5, 1986.

ROMER, Paul M. *The Origins od Endogenous Growth.* Journal of economic Perspectives: v. 8, N° 8, 1994.

SALA-I-MARTIN, Xavier. Lecture Notes on economic Growth (II): Five Protype Models of Endogenous Growth. NBER Working Papers, N° 3564, 1990.

SAMUELSON, P. *The Pure of Theory of Public Expenditures.* The Review of Economic and Statistics, v. 36, 1954.

SOLOW, Robert M. *A Contribution to the Theory of Economic Growth.* The Quarterly Journal of Economics. V.70. 1956.

STIGLITZ, Joseph E. *A Globalização e Seus Malefícios. A promessa não cumprida de benefícios globais.* Editora Futura, 2002.

STIGLITZ, Joseph E. Making Globalization Work. W. W. Norton, 2006.

THOMPSON, Bruce. Significance, effect sizes, stepwise methods, and other issues: Strong arguments move the field. Journal of Experimental Education. V.70. 2001.

WANG, Shaoguang. *The State, Maret Economy, and Transition*. Departament of Political Science, Yale University.

WEF GLOBAL COMPETITIVINESS REPORT 2012-2013

ANEXO 1

A tabela abaixo traz os dados que foram utilizados nas regressões e na correlação. Os dados das demais variáveis, que não foram selecionadas pelos modelos, podem ser encontrados nas fontes citadas na monografia.

	X ₂ : Investiment Share of	X₃: Real GDP Chain Per	X₅: Real GDP Chain Per	
	Real GDP	Worker	Worker	<i>X</i> ₆ :
	Per Capita	(Rgdpwok)	(Rgdpwok)	Competitiidade
	(ki) 2005	2005	2010	2013
Argentina	19,2403114	21099,7321	27148,5714	42,271
Australia	30,5202075	73993,6049	77017,0011	80,513
Austria	24,6147529	73745,0769	75536,5369	74,711
Belgium	26,3970668	76231,7440	78703,3570	73,133
Brazil	18,1521105	14236,3850	15974,6297	52,996
Bulgaria	22,4144480	20438,1085	22726,7913	47,8
Canada	25,2731172	68111,5120	68692,1805	89,128
Chile	26,4736128	26687,2740	26669,2033	67,994
China Version 1	38,9343811	7367,31040	11929,4746	77,04
Colombia	19,5378334	14075,5433	15761,3111	54,365
Croatia	28,8798594	31184,3722	32876,3733	44,114
Czech Republic	24,3566198	40244,5029	46700,1075	64,614
Denmark	25,4837700	65303,3674	64299,5317	83,514
Estonia	30,4614404	32457,5912	33081,2068	64,422
Finland	27,0738501	64146,0918	65769,2154	78,187
France	22,4464636	67721,3442	68386,0566	71,327
Germany	19,8050802	63786,0077	66826,3748	86,197
Greece	24,7618403	57954,5801	56790,6012	49,986
Hong Kong	28,7695728	62270,5986	73968,8214	92,783
Hungary	22,2218240	39522,3774	38902,1555	53,497
Iceland	38,4691764	72274,1180	62589,2767	69,012
India	29,4948592	6077,99885	9010,21498	59,888
Indonesia	20,4847342	6704,15672	8064,76147	61,805
Ireland	30,8118632	81705,5663	72446,1420	79,591
Israel	22,3199198	58320,9402	62451,9344	78,21
Italy	25,9921136	70284,9086	68233,3017	56,328
Japan	28,0804207	60290,6802	60642,5690	74,529
Jordan	46,2521970	16577,3378	17377,0334	48,802
Kazakhstan	24,6445889	16754,7724	22851,0939	64,899

Korea, Republic of	37,0688471	45775,1237	54314,9971	75,169
Latvia	27,9527301	24363,8919	24065,3078	58,678
Lithuania	18,6613409	27789,4971	28532,7571	66,488
Luxembourg	27,0170328	106526,826	101180,471	83,305
Malaysia	24,6749762	24979,6548	28367,9877	83,145
Mexico	22,1817586	28853,3782	27625,4660	65,626
Netherlands	20,2883163	69481,0328	72177,9413	83,158
New Zealand	24,0047780	51777,4741	51829,6759	73,942
Norway	25,8347963	94977,2905	94862,9871	89,585
Peru	18,7291704	11973,5679	13931,1244	56,627
Philippines	21,0875102	6846,74551	7694,23690	63,146
Poland	18,0982168	29366,4776	36343,2866	65,437
Portugal	28,5687421	37953,9660	37706,0001	56,225
Qatar	37,8017719	111631,305	182297,057	85,505
Romania	21,0460336	17533,0097	19745,4665	49,703
Russia	15,8360380	23812,1963	28285,2442	56,809
Singapore	26,1511479	79819,2169	101094,302	89,857
Slovak Republic	24,3431837	31309,0171	38697,0087	54,485
Slovenia	30,8876299	45109,4780	49037,8336	50,996
South Africa	22,0883321	18555,6763	20678,9389	50,627
Spain	30,7038381	58856,9486	54538,8017	56,289
Sweden	18,0111325	66341,8794	68296,1746	90,531
Switzerland	26,0044974	62268,3121	65369,8863	93,357
Taiwan	25,4667032	58428,2813	66776,3659	85,193
Thailand	31,6414196	12257,9055	14154,3842	72,966
Turkey	19,8302938	26074,9051	33704,5498	63,611
Ukraine	14,8145234	11935,7103	13915,4058	54,234
United Arab Emirates	23,0145761	100657,002	91694,3593	88,439
United Kingdom	18,2907903	67149,6526	67025,0575	79,15
United States	24,6004814	83400,8098	82359,2615	100
Venezuela	19,5256651	19557,87315	19511,40489	31,879
L	1 '	,	, , ,	,

	X ₇ : Starting a Business - Procedures (number) 2005	X ₁₀ : Starting a Business - Time (days) 2005	X ₁₂ : Starting a Business - Cost 2005	X ₁₆ : Dealing with Construction Permits - Procedures (number) 2005
Argentina	13	30	26	13
Australia	2	2	2	2
Austria	8	25	25	8
Belgium	4	34	4	4
Brazil	17	152	119	17
Bulgaria	11	32	18	11
Canada	2	3	5	2
Chile	9	27	8	9
China Version 1	13	48	33	13
Colombia	11	42	13	11
Croatia	11	29	9	11
Czech Republic	10	40	20	10
Denmark	5	7	6	5
Estonia	6	72	7	6
Finland	3	14	14	3
France	5	7	7	5
Germany	9	18	22	9
Greece	15	38	11	15
Hong Kong	5	11	3	5
Hungary	6	52	5	6
Iceland	5	5	5	5
India	11	89	27	11
Indonesia	12	151	47	12
Ireland	4	18	10	4
Israel	5	20	21	5
Italy	9	13	6	9
Japan	11	31	23	11
Jordan	10	26	12	10
Kazakhstan	10	26	19	10
Korea, Republic of	6	17	7	10
Latvia	5	16	16	5
Lithuania	8	26	26	8
Luxembourg			19	
Malaysia	10	37	6	10
Mexico	9	58	9	9
Netherlands	7	9	5	7
New Zealand	2	12	1	2
Norway	5	18	7	5

Peru	10	98	26	10
Philippines	17	49	36	17
Poland	10	31	32	10
Portugal	11	76	5	11
Qatar			9	
Romania	5	28	10	5
Russia	9	34	18	9
Singapore	7	8	3	7
Slovak Republic	9	52	16	9
Slovenia	9	60	6	9
South Africa	9	38	19	9
Spain	10	114	28	10
Sweden	3	16	16	3
Switzerland	6	18	18	6
Taiwan	8	48	10	8
Thailand	8	33	29	8
Turkey	6	6	6	6
Ukraine	15	34	22	15
United Arab	10	19	8	10
Emirates	10	13	J	
United Kingdom	6	13	13	6
United States	6	6	6	6
Venezuela	16	141	144	16

	X ₂₀ : Dealing with Construction Permits - Time (days) 2010	X ₃₄ : Registering Property - Time (days) 2005	X ₃₅ : Registering Property - Time (days) 2010	X ₃₇ : Registering Property - Cost 2005
Argentina	26	51	52	8
Australia	2	7	5	4.5
Austria	25	32	32	4.5
Belgium	4	132	79	12.8
Brazil	119	47	33	3.1
Bulgaria	18	19	15	2.4
Canada	5	17	17	1.8
Chile	27	31	31	1.4
China Version 1	38	29	29	4.1
Colombia	20	23	20	2.5
Croatia	22	956	104	5
Czech Republic	20	123	78	3
Denmark	6	42	42	0.6
Estonia	7	51	18	0.7
Finland	14	14	14	4
France	7	183	98	5.9
Germany	45	40	40	4.4
Greece	19	22	22	14
Hong Kong	6	36	45	4.6
Hungary	4	78	17	11
Iceland	5	4	4	2.4
India	30	61	44	13.1
Indonesia	62	39	22	10.3
Ireland	13	38	38	10.3
Israel	20	144	144	9.8
Italy	10	19	18	4.5
Japan	23	14	14	4.4
Jordan	12	21	21	10
Kazakhstan	20	52	39	1.7
Korea, Republic of	14	11	11	6.1
Latvia	16	55	45	2.1
Lithuania	26	3	3	0.9
Luxembourg	24		29	
Malaysia	18	144	144	3
Mexico	13	74	74	5.4
Netherlands	8	7	7	6.3
New Zealand	1	2	2	0.2
Norway	7	1	3	2.5
Peru	41	33	14	3.2

Philippines	42	39	39	4.8
Poland	32	204	197	1.6
Portugal	6	83	12	7.4
Qatar	7		13	
Romania	9	77	26	2.2
Russia	29	37	43	0.5
Singapore	3	21	21	2.7
Slovak Republic	18	22	17	3.1
Slovenia	6	391	391	2
South Africa	22	24	24	11.3
Spain	47	25	13	7.1
Sweden	16	15	15	3
Switzerland	18	16	16	1.4
Taiwan	23	5	5	6.2
Thailand	32	2	2	6.3
Turkey	6	6	6	3
Ukraine	27	114	114	6.4
United Arab	15	10	10	4.2
Emirates	13	10	10	4.4
United Kingdom	13	42	29	4.9
United States	6	12	12	0.5
Venezuela	141	47	38	2.2

	X43:	X69:	
	Getting	Trading	
	Credit -	Across	X98:
	Deth of	Borders -	Resolving
	Credit	Documents	Insolvency
	Information	to Export	- Recovery
	Index 2005	2010	, Rate 2010
Argentina	6	7	29.8
Australia	5	6	78.8
Austria	6	4	71.5
Belgium	4	4	86.3
Brazil	5	7	17.1
Bulgaria	3	5	32.1
Canada	6	3	88.7
Chile	5	6	28.7
China Version 1	2	8	35.3
Colombia	5	5	49.7
Croatia	0	7	30.5
Czech Republic	4	4	20.9
Denmark	4	4	86.5
Estonia	5	3	37.5
Finland	4	4	87.3
France	4	2	44.7
Germany	6	4	80.2
Greece	4	5	44.2
Hong Kong	5	4	79.8
Hungary	5	6	38.4
Iceland	5	5	76.6
India	0	9	23.1
Indonesia	2	4	13.7
Ireland	5	4	86.6
Israel	3	5	44.9
Italy	6	4	56.6
Japan	6	3	92.5
Jordan	2	5	27.3
Kazakhstan	0	10	40.6
Korea, Republic of	5	3	80.5
Latvia	2	5	29
Lithuania	3	5	49.4
Luxembourg		5	41.7
Malaysia	6	5	38.6
Mexico	6	5	64.2
Netherlands	5	4	82.7
New Zealand	5	5	76.2
Norway	4	4	89

Peru	6	6	25.4
Philippines	3	7	4.4
Poland	4	5	34.1
Portugal	5	4	69.4
Qatar		5	52.7
Romania	4	5	28.5
Russia	0	9	41.6
Singapore	3	4	91.3
Slovak Republic	3	6	45.9
Slovenia	3	6	45.5
South Africa	5	8	32.2
Spain	5	5	67.6
Sweden	4	3	75.1
Switzerland	5	4	46.8
Taiwan	5	6	80.9
Thailand	4	5	42.4
Turkey	5	7	20.2
Ukraine	0	6	9.1
United Arab	2	4	26.7
Emirates		4	20.7
United Kingdom	6	44	84.2
United States	6	4	76.7
Venezuela	4	8	6

Os espaços em branco na tabela acima indicam que não existem informações sobre esses dados.