
Universidade de Brasília – UnB
Faculdade de Ciências e Tecnologias em Engenharia - FCTE

Engenharia de Software

UnBSign: Desenvolvimento de uma API de
Assinatura Digital Integrada a Web e PKI

Autor: Sidney Fernando Ferreira Lemes
Orientador: Prof. Dr. John Lenon Cardoso Gardenghi

Brasília, DF
2025

Sidney Fernando Ferreira Lemes

UnBSign: Desenvolvimento de uma API de Assinatura
Digital Integrada a Web e PKI

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software.

Universidade de Brasília – UnB

Faculdade de Ciências e Tecnologias em Engenharia - FCTE

Orientador: Prof. Dr. John Lenon Cardoso Gardenghi

Brasília, DF
2025

Sidney Fernando Ferreira Lemes
UnBSign: Desenvolvimento de uma API de Assinatura Digital Integrada a

Web e PKI/ Sidney Fernando Ferreira Lemes. – Brasília, DF, 2025-
99 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. John Lenon Cardoso Gardenghi

Trabalho de Conclusão de Curso – Universidade de Brasília – UnB
Faculdade de Ciências e Tecnologias em Engenharia - FCTE , 2025.
1. Assinatura Digital. 2. Criptografia. I. Prof. Dr. John Lenon Cardoso

Gardenghi. II. Universidade de Brasília. III. Faculdade de Ciências e Tecnologias
em Engenharia. IV. UnBSign: Desenvolvimento de uma API de Assinatura Digital
Integrada a Web e PKI

CDU 02:141:005.6

Sidney Fernando Ferreira Lemes

UnBSign: Desenvolvimento de uma API de Assinatura
Digital Integrada a Web e PKI

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software.

Trabalho aprovado. Brasília, DF, 18 de fevereiro de 2025 – Data da aprovação do
trabalho:

Prof. Dr. John Lenon Cardoso
Gardenghi
Orientador

Prof. Dr. Bruno César Ribas
Convidado 1

Prof. Dr. Tiago Alves da Fonseca
Convidado 2

Sérgio de Almeida Cipriano Júnior
Convidado 3

Brasília, DF
2025

Agradecimentos

À medida que chego ao final desta jornada chamada graduação, gostaria de expres-
sar minha gratidão a todos que contribuíram para este momento. Primeiramente agradeço
a Deus. Também agradeço aos amigos que fiz ao longo do caminho e que pretendo levar
por muitos anos. Agradeço também os professores e ao meu orientador, John Lennon,
cuja orientação e apoio foram fundamentais nesta etapa final. Em especial, quero agrade-
cer aos meus pais, Sidney e Adaide, que tanto se esforçaram e caminharam debaixo do sol
para que eu pudesse caminhar na sombra. Sem o apoio e sacrifício deles, essa conquista
não seria possível.

Resumo
Este trabalho tem como objetivo o desenvolvimento de uma API (Application Program-
ming Interface, ou Interface de Programação de Aplicações) para assinatura digital, com
a finalidade de ser integrada futuramente à Universidade de Brasília (UnB). A proposta
busca contribuir para a segurança dos processos administrativos da instituição, além de
promover a adoção de uma solução padronizada de assinatura digital, visando à maior
uniformidade e adesão por parte da comunidade acadêmica. A API foi concebida de modo
a alinhar-se às normas legais vigentes, garantindo conformidade com as exigências regu-
latórias aplicáveis.

Como parte do projeto, foi desenvolvida uma aplicação web simples, juntamente com uma
PKI (Public Key Infrastructure, ou infraestrutura de chaves públicas), com o objetivo
de demonstrar o funcionamento da API. Essa implementação possibilita a visualização
prática de sua integração e usabilidade, além de fornecer um ambiente controlado para
testes e validação das funcionalidades de assinatura digital.

Para o desenvolvimento da solução, foram realizadas análises das legislações pertinentes,
avaliações das tecnologias disponíveis para assinatura e certificação digital, e aplicadas
técnicas de Engenharia de Software. Dessa forma, a expectativa é que a solução possa
servir como uma alternativa viável para a instituição, contribuindo para a modernização
e padronização de seus fluxos de trabalho.

Palavras-chave: Assinatura Digital. Criptografia. Certificado digital.

Abstract
The aim of this work is to develop an API (Application Programming Interface) for digital
signatures, to be integrated into the University of Brasília (UnB) in the future. The
proposal seeks to contribute to the security of the institution’s administrative processes,
as well as promoting the adoption of a standardized digital signature solution, with a view
to greater uniformity and adherence by the academic community. The API was designed
to align with current legal standards, ensuring compliance with applicable regulatory
requirements.

As part of the project, a simple web application was developed, along with a PKI (Public
Key Infrastructure), with the aim of demonstrating how the API works. This implemen-
tation enables practical visualization of its integration and usability, as well as providing
a controlled environment for testing and validating the digital signature functionalities.

To develop the solution, the relevant legislation was analyzed, the available digital sig-
nature and certification technologies were evaluated and software engineering techniques
were applied. In this way, the solution is expected to serve as a viable alternative for the
institution, contributing to the modernization and standardization of its workflows.

Key-words: Digital Signature. Cryptography. Digital Certificate.

Lista de ilustrações

Figura 1 – Processo de criptografia e decriptografia simétrica 18
Figura 2 – Componentes e processo de transmissão de uma mensagem utilizando

criptografia assimétrica . 19
Figura 3 – Digrama básico da função de hash criptográfica 21
Figura 4 – Processo de emissão de um certificado digital por uma CA. 21
Figura 5 – Componentes e processo de uma PKI simples 23
Figura 6 – Hierarquia da ICP-Brasil . 24
Figura 7 – Assinatura simples em um documento 25
Figura 8 – Diagrama simplificado de assinatura digital 26
Figura 9 – Diagrama simplificado de verificação da assinatura digital 27
Figura 10 – Assinatura digital com Referência Básica 29
Figura 11 – Inclusão de referências internas no documento PDF 30
Figura 12 – Fluxo de trabalho de GCES . 37
Figura 13 – Fluxo de Desenvolvimento do Projeto 38
Figura 14 – Quadro Kanban . 48
Figura 15 – Arquitetura em Camadas da API REST UnBSign 52
Figura 16 – Diagrama da Arquitetura MVC da Web App 54
Figura 17 – Hierarquia da PKI Simples . 55
Figura 18 – Diagrama de Arquitetura da API PKI 56
Figura 19 – Diagrama Funcional de Cadastro de Usuário 58
Figura 20 – Diagrama Funcional de Login e Assinatura de Documento 60
Figura 21 – Diagrama Funcional de Validação de Assinatura 60
Figura 22 – Arquitetura do Sistema Web com Containers Docker 62
Figura 23 – Interface Interativa Swagger . 72
Figura 24 – Estrutura de diretórios da PKI . 81
Figura 25 – Hierarquia e respectivos componentes da PKI 83
Figura 26 – Tabela users . 85
Figura 27 – Tela de cadastro de usuários . 87
Figura 28 – Telas de Login . 88
Figura 29 – Tela de upload de arquivos para assinatura 89
Figura 30 – Tela de upload para assinatura com apresentação do arquivo e posici-

onamento de carimbo . 89
Figura 31 – Carimbo de Assinatura em um Documento 90
Figura 32 – Tela de upload de arquivos para validação 91
Figura 33 – Tela de upload de resultados para validação de arquivos 92

Lista de tabelas

Tabela 1 – Épicos . 41
Tabela 2 – Histórias de Usuário . 41
Tabela 3 – Requisitos Funcionais para Web App 43
Tabela 4 – Requisitos da API . 45
Tabela 5 – Endpoints da API UnBSign . 71
Tabela 6 – Parâmetros de Endpoint . 71
Tabela 7 – Dicionário de Dados . 85

Sumário

1 INTRODUÇÃO . 13
1.1 Justificativa . 14
1.2 Objetivos . 14
1.2.1 Objetivo Geral . 14
1.2.2 Objetivos Específicos . 15
1.2.3 Organização do Documento . 15

2 REFERENCIAL TEÓRICO . 17
2.1 Segurança da Informação . 17
2.1.1 Criptografia . 18
2.1.2 Criptografia assimétrica . 19
2.1.3 Funções de hash criptográficas . 20
2.2 Certificado Digital . 20
2.2.1 Tipos de Certificado Digital . 22
2.3 Infraestrutura de Chaves Públicas . 22
2.4 Legislação sobre Chaves Públicas e Assinatura Eletrônica 23
2.4.1 ICP-Brasil . 23
2.4.2 Assinaturas Eletrônicas . 24
2.5 Assinatura Digital . 25
2.5.1 Políticas de Assinatura . 28
2.5.2 Requisitos para geração e validação de assinaturas digitais 30
2.6 API (Application Programming Interface) 32
2.7 Web App . 32

3 METODOLOGIA . 34
3.1 Classificação . 34
3.2 Metodologia para Pesquisa do Referencial Teórico 34
3.3 Metodologia de Desenvolvimento . 35
3.3.1 Gerência de Configuração e Evolução de Software 36
3.3.2 Fluxo de Desenvolvimento . 38

4 DESENVOLVIMENTO DO SOFTWARE 40
4.1 Épicos, Histórias de Usuário e Requisitos 40
4.1.1 Épicos e Histórias de Usuário . 40
4.1.2 Requisitos . 42
4.2 Aplicação da Metodologia de Desenvolvimento 47

4.3 Tecnologias . 48
4.3.1 Tecnologias da API UnBSign . 48
4.3.2 Tecnologias da Web App . 49
4.3.3 Tecnologias da API PKI . 50
4.4 Arquitetura . 50
4.4.1 Arquitetura da API REST . 51
4.4.2 Arquitetura da Web App . 54
4.4.3 Arquitetura da API PKI . 55
4.4.3.1 PKI Simples . 55
4.4.3.2 Estrutura Spring Boot da PKI . 55

5 RESULTADOS . 57
5.1 Diagrama de Arquitetura Funcional 57
5.2 Deploy da Aplicação para Testes . 61
5.3 API UnBSign . 63
5.3.1 Configuração de Segurança . 63
5.3.2 Assinatura e Validação de PDFs . 63
5.3.2.1 Controlador PdfController . 63
5.3.2.2 Serviços PdfSignService e PdfValidateSignService 64
5.3.3 Emissão e Controle de Certificados Digitais 69
5.3.3.1 Controlador CertificateController . 69
5.3.3.2 Serviço CertificateService . 70
5.3.4 Referência de Endpoints da API . 71
5.3.5 Documentação da API com Springdoc . 71
5.4 API PKI . 72
5.5 Web App . 73

6 CONCLUSÃO . 74
6.1 Dívidas Técnicas e Sugestões de Melhorias Futuras 75

REFERÊNCIAS . 77

APÊNDICES 80

APÊNDICE A – ESTRUTURAÇÃO DA PKI E API REST PARA
EMISSÃO DE CERTIFICADOS 81

A.1 Estruturação de diretórios e arquivos da PKI 81
A.2 API REST para Emissão de Certificados 83

APÊNDICE B – DESCRIÇÃO MODELAGEM DE BANCO DE DA-
DOS E DO BACKEND PARA WEB APP 85

B.1 Modelagem e Migração de Banco de Dados 85
B.2 Backend . 86
B.3 Telas do Usuário . 87

ANEXOS 94

ANEXO A – POLÍTICA DE ASSINATURA 95
A.1 Políticas de Assinatura 1 . 95
A.1.1 Identificador da Política de Assinatura . 95
A.1.1.1 Nome da Política de Assinatura . 95
A.1.1.2 Object Identifier (OID) . 95
A.1.1.3 Novas Versões . 95
A.1.1.4 Proteção contra Alterações Indevidas . 95
A.1.2 Data da Criação . 95
A.1.3 Entidade Criadora da Política de Assinatura 95
A.1.4 Campo de Aplicação . 96
A.1.4.1 Aplicabilidade . 96
A.1.4.2 Utilização Geral . 96
A.1.4.3 Assinaturas Múltiplas . 96
A.1.5 Política de Validação da Assinatura . 96
A.1.5.1 Período para Assinatura . 96
A.1.5.2 Regras Comuns . 96
A.1.5.3 Regras de Signatário e Verificador . 96
A.1.5.4 Regras do Signatário . 96
A.1.5.4.1 Dados Externos ou Internos à Assinatura . 96

A.1.5.4.2 Atributos Assinados Obrigatórios . 96

A.1.5.4.3 Atributos Não-Assinados Obrigatórios . 97

A.1.5.4.4 Referências à Cadeia de Certificação . 97

A.1.5.4.5 Valores da Cadeia de Certificação . 97

A.1.5.4.6 Regras Adicionais do Signatário . 97

A.1.5.5 Uso de Múltiplas Assinaturas . 97
A.1.5.5.1 Estruturas de Assinatura . 97

A.1.5.5.2 Conteúdo Dinâmico . 97

A.1.5.6 Regras do Verificador . 97
1 Os tópicos Object Identifier (OID), Novas Versões, Proteção contra Alterações Indevidas, Entidade

Criadora da Política de Assinatura, Período para Assinatura, Raiz Confiável, Conjunto de Políticas
de Certificado Aceitável e Forma de Verificação do Status da Cadeia de Certificação (Revogação) não
se aplicam ao contexto real, sendo utilizados somente de forma didática para este trabalho.

A.1.5.6.1 Atributos Não-Assinados Obrigatórios . 97

A.1.5.6.2 Regras Adicionais do Verificador . 98

A.1.6 Condições de Confiabilidade dos Certificados dos Signatários 98
A.1.6.1 Validação da Cadeia de Certificação . 98
A.1.6.1.1 Raiz Confiável . 98

A.1.6.1.2 Restrição do Caminho de Certificação . 98

A.1.6.1.3 Conjunto de Políticas de Certificado Aceitável 98

A.1.6.1.4 Restrições de Nome . 98

A.1.6.1.5 Restrições de Políticas de Certificado . 98

A.1.6.2 Forma de Verificação do Status da Cadeia de Certificação (Revogação) 99
A.1.7 Condições de Confiabilidade do Carimbo de Tempo 99
A.1.8 Condições de Confiabilidade dos Atributos 99
A.1.9 Conjunto de Restrições de Algoritmos . 99

13

1 Introdução

Observa-se que a interação entre os diversos setores da sociedade tem incorporado,
em diferentes graus, elementos digitais. “Nos últimos anos, a tecnologia vem avançando ra-
pidamente, impulsionada por tecnologias emergentes e mudanças culturais”(Serasa, 2024).
Na parte que diz respeito à digitalização de processos e modernização de práticas admi-
nistrativas, a tecnologia de assinatura eletrônica, também chamada de assinatura digital,
surge como uma ferramenta para autenticação de documentos que tem potencial para ser
mais segura e eficiente. “As assinaturas digitais são uma ferramenta poderosa e agora são
aceitas como legalmente vinculantes em muitos países; elas podem ser usadas para certifi-
car contratos ou autenticar documentos, para autenticação de pessoas físicas ou jurídicas
e como componentes de protocolos mais complexos.”(KATZ, 2010) . Embora ela possa,
em seu mais alto nível de confiabilidade, utilizar criptografia, é importante ressaltar que,
apesar de ser um método seguro, não está isento de vulnerabilidades. A segurança desses
algoritmos depende de fatores como a complexidade das chaves, a robustez dos algoritmos
utilizados, e a proteção contra ataques cibernéticos que possam comprometer as chaves
privadas, tornando necessário um acompanhamento contínuo e atualizações para manter
o nível de proteção desejado.

No mundo digital, com frequência deseja-se indicar o dono ou o criador
de um documento ou deixar claro que alguém concorda com o conteúdo
de um documento. A assinatura digital é uma técnica criptográfica que
cumpre essas finalidades no mundo digital (KUROSE; ROSS, 2021).

Ainda que a Universidade de Brasília (UnB) já adote outras formas de gestão
de documentos, como o Sistema Eletrônico de Informações (SEI), como é apresentado
em (UnB, 2024), a implementação dessa tecnologia poderia complementar as práticas
existentes, proporcionando uma solução interna alinhada às necessidades específicas da
instituição.

Considerando o uso do Sistema Integrado de Gestão (SIG-UnB), “um conjunto de
ferramentas online adotado para unificar e modernizar os diversos sistemas internos de
gestão da instituiçã” (SIGUnB, 2020), propõe-se o desenvolvimento de uma interface de
programação de aplicações (API) para assinatura digital, que futuramente possa ser inte-
grada ao Sistema Integrado de Gestão de Atividades Acadêmicas (SIGAA). Tal integração
pode fortalecer a eficiência nos processos administrativos, ampliando a conectividade e a
uniformidade entre os sistemas, e contribuindo para uma gestão mais integrada na uni-
versidade, dado que o SIGAA, como citado acima, tem como objetivo unificar os sistemas
internos e proporcionar maior coesão nas operações acadêmicas e administrativas.

Capítulo 1. Introdução 14

1.1 Justificativa
A implementação de uma ferramenta para assinatura digital na UnB é relevante,

uma vez que “[...] as assinaturas eletrônicas são válidas e reconhecidas legalmente” (GOV.BR,
2020). A Lei nº 14.063, de 23 de Setembro de 2020, dispõe sobre as regras para uso das
assinaturas eletrônicas nas interações entre pessoas e instituições privadas com os entes
públicos e entre os próprios órgãos e entidades públicas (BRASIL, 2020).

O desenvolvimento de uma API de assinatura digital no contexto da Universidade
de Brasília (UnB) apresenta-se como uma alternativa estratégica às soluções atualmente
disponíveis.O SEI, mencionado anteriormente, não apresenta diretrizes claras sobre o uso
por discentes em UnB (2016), onde fala sobre assinatura eletrônica, além de não ser
amplamente adotado por esse público. Como consequência, os estudantes podem recorrer
a ferramentas externas, o que pode eventualmente representar riscos à segurança e à
integridade dos documentos assinados. “O processo de assinatura digital pode ser feito
diretamente em programas de edição de texto e também em PDFs, mas há um risco
nessa opção. Isso porque, a gestão desses documentos é precária e podem se perder os
arquivos.”(Equipe TOTVS, 2024). Já o assinador do Gov.br, apesar de ser uma solução
gratuita e oferecer um nível avançado de segurança, mesmo sendo do governo federal,
impõe uma dependência de uma plataforma externa à instituição.

Diante desse cenário, o desenvolvimento de uma solução própria, integrada ao
ecossistema tecnológico da UnB, pode se configurar como uma alternativa para auxiliar na
integração digital da instituição. Um sistema de assinatura digital interno teria o potencial
de impactar positivamente a experiência da comunidade acadêmica e administrativa.

1.2 Objetivos

1.2.1 Objetivo Geral

O objetivo geral deste trabalho é desenvolver um MVP (Minimum Viable Product),
ou Produto Mínimo Viável, de uma API REST (Application Programming Interface - Re-
presentational State Transfer) para assinatura digital, em conformidade com a legislação
vigente. Um MVP é a versão mais simples de um produto, criada para testar sua viabili-
dade com o mínimo de esforço, como explica Lean Startup Glossary (2015). Além da API,
será desenvolvida uma aplicação web (web app) e uma infraestrutura simples de chaves
públicas integradas a ela, demonstrando seu funcionamento na prática.

Para alcançar esse objetivo, serão adotadas abordagens de Engenharia de Software,
incluindo metodologias ágeis e práticas de integração contínua (Continuous Integration
– CI). O desenvolvimento será guiado pela criação de épicos com histórias de usuário e
pela elicitação de requisitos, garantindo alinhamento com as necessidades dos usuários e

Capítulo 1. Introdução 15

as melhores práticas de mercado.

1.2.2 Objetivos Específicos

• Investigar a legislação pertinente ao uso de assinatura digital;

• Analisar as tecnologias disponíveis para implementação de assinatura digital, certi-
ficação digital e manipulação de documentos;

• Empregar técnicas de Engenharia de Software para projetar e desenvolver um soft-
ware de assinatura digital;

1.2.3 Organização do Documento

A organização deste documento segue uma estrutura metodológica que objetiva
facilitar a compreensão e o desenvolvimento. O conteúdo está distribuído nos seguintes
capítulos, além da introdução:

• 2 - Referencial Teórico: apresenta uma revisão da literatura sobre temas funda-
mentais para o desenvolvimento do sistema, como segurança da informação, crip-
tografia, certificados digitais, infraestrutura de chaves públicas e as legislações re-
lacionadas. A partir deste referencial, são discutidos os conceitos que embasam o
projeto, incluindo a infraestrutura necessária para a implementação de assinaturas
digitais válidas e seguras;

• 3 - Metodologia: são detalhadas as abordagens adotadas para a pesquisa e o de-
senvolvimento do sistema. A metodologia inclui a classificação dos tipos de pesquisa,
a abordagem adotada para a pesquisa bibliográfica e a metodologia de desenvolvi-
mento utilizada, com ênfase na gerência de configuração e evolução de software.
Também são apresentados os fluxos de desenvolvimento e o cronograma do projeto,
proporcionando uma visão clara das etapas a serem seguidas;

• 4 - Desenvolvimento do Software: são abordadas as histórias de usuário e os
requisitos do sistema, além das tecnologias utilizadas na construção da API UnB-
Sign, Web App e API PKI (Public Key Infrastructure, ou Infraestrutura de Chaves
Públicas). A arquitetura das soluções é detalhada, incluindo a arquitetura da API
REST, da Web App e da API PKI, com uma explicação sobre a estrutura e funciona-
mento de cada componente. O objetivo é ilustrar como as tecnologias e arquiteturas
escolhidas se integram para atender aos requisitos do sistema de assinatura digital;

• 5 - Resultados: apresenta os resultados obtidos durante o desenvolvimento do
sistema. Nele, são exibidos diagramas de arquitetura funcional que ilustram a inte-
gração dos componentes do sistema. Além disso, são discutidos em detalhe a API

Capítulo 1. Introdução 16

UnBSign, a API PKI e o Web App, com foco nas funcionalidades implementadas,
como a assinatura e validação de documentos PDF, a emissão e controle de certifi-
cados digitais, e os endpoints da API.

• 6 - Conclusão: oferece uma análise dos resultados alcançados e das contribuições
do projeto. São discutidas as considerações finais sobre a implementação e as dívidas
técnicas, assim como sugestões de melhorias para futuras versões do sistema. Este
capítulo visa fornecer uma visão crítica do trabalho realizado e indicar os próximos
passos para o aprimoramento da solução;

17

2 Referencial Teórico

O referencial teórico está estruturado em seções que abordam aspectos essenciais
da segurança da informação. Inicia-se com uma introdução ao conceito de segurança,
seguida por uma análise breve sobre criptografia, abrangendo suas principais variantes,
como a criptografia assimétrica e as funções de hash. Em seguida, são explorados os
certificados digitais, com uma explicação detalhada sobre seus diferentes tipos, além das
Infraestruturas de Chaves Públicas. Posteriormente, discute-se a legislação relacionada às
chaves públicas e à assinatura eletrônica, com destaque para a ICP-Brasil(Infraestrutura
de Chaves Públicas Brasileira) e as características das assinaturas eletrônicas. A seção se
encerra com uma análise aprofundada da assinatura digital, consolidando a compreensão
do tema, além de abordar conceitos de API e Web App.

2.1 Segurança da Informação
O uso da assinatura digital está intimamente relacionado à segurança da informa-

ção, a qual pode ser dividida no atendimento aos seguintes requisitos: confidencialidade,
autenticação, não repúdio e integridade (TANENBAUM; FEAMSTER, 2021). Conside-
rando que mensagem no contexto deste trabalho é definida como o conjunto de dados que
está sendo transmitido, estes requisitos, também explicados por Tanenbaum e Feamster
(2021), podem ser definidas como:

• Sigilo ou Confidencialidade: A mensagem deve ser cifrada com o intuito de que
somente o remetente e o destinatário entendam seu conteúdo;

• Autenticação: A identidade do remetente e do destinatário precisam ser confirmadas
um pelo outro;

• Não repúdio: Deve-se certificar que a mensagem recebida é de fato legítma, ou seja,
quando uma mensagem é enviada ao destinatário, este pode provar que o suposto
remetente de fato enviou a mensagem;

• Integridade: refere-se à garantia de que a mensagem enviada não foi alterada de
forma não autorizada durante sua transmissão. Isso significa que é fundamental
assegurar que o conteúdo enviado seja exatamente o mesmo que o recebido, sem ter
sido modificado por acidente, interferência de terceiros ou qualquer outro problema
no caminho da comunicação.

Capítulo 2. Referencial Teórico 18

A proteção de uma mensagem pode ser realizada por meio da criptografia, que
emprega chaves para garantir a segurança da informação. Dependendo do contexto, fun-
ções de hash criptográficas também podem ser utilizadas para assegurar a integridade da
mensagem, ou seja, garantir que ela não tenha sido alterada durante o processo de trans-
missão. A criptografia pode ser aplicada tanto em sistemas de chaves simétricas quanto
assimétricas, sendo que, no caso de chaves públicas, a autenticidade da chave pode ser
validada por meio de certificados digitais.

2.1.1 Criptografia

A criptografia pode ser entendida na própria origem da palavra: “do Grego kryptós
‘escondido’, mais graphé, ‘escrita’. A rigor, qualquer mensagem que exija um processo de
decifração para ser entendida e que seja escrita cai nessa definição” (Origem da Palavra,
2014). Sendo assim, criptografia é a área que utiliza técnicas para proteger informações
por meio de algoritmos de cifração.

Como explica Tanenbaum e Feamster (2021), a ideia é que a mensagem a ser
cifrada, conhecida como texto em claro, é transformada por meio de uma função pa-
rametrizada por uma chave (algoritmo de codificação), processo denominado cifração,
ou processo de criptografia. Posteriormente, a saída desse processo, chamada de texto
cifrado, é transmitida ao destinatário. O destinatário utiliza uma chave (algoritmo de
decodificação - que é essencialmente o reverso do algoritmo de codificação) para converter
os dados criptografados de volta para sua forma original, permitindo sua compreensão,
em um processo chamado decifração.

Quando remetente e destinatário utilizam a mesma chave tanto para cifrar quanto
para decifrar a mensagem, trata-se de criptografia simétrica. Em contraste, na criptografia
assimétrica, são empregadas duas chaves distintas: uma para cifrar e outra diferente para
decifrar a mensagem.

Na Figura 1 está um modelo simplificado do processo de criptografia simétrica:

Figura 1 – Processo de criptografia e decriptografia si-
métrica

Fonte: Stallings (2013).

O texto em claro X é criptografado
usando a chave K, resultando no
texto cifrado. Em seguida, o texto
cifrado é decifrado usando a mesma
chave K, gerando o texto de saída
compreensível pelo remetente.

Existem diversas técnicas e algoritmos de criptografia simétrica, mas que fogem ao

Capítulo 2. Referencial Teórico 19

escopo deste trabalho, visto que ao tratar de assinatura digital, estamos mais interessados
em criptografia assimétrica.

2.1.2 Criptografia assimétrica

A criptografia assimétrica, também chamada de criptografia de chave pública, foi a
maior e talvez a única verdadeira revolução na área da criptografia, afirma Stallings (2013).
Este modelo de criptografia utiliza duas chaves distintas nos processos de criptografia
e decriptografia, por isso ela é assimétrica, ao contrário da criptografia simétrica que
utiliza somente uma chave. Como será discutido mais a frente, o uso de criptografia
assimétrica tem resultados em como os requisitos de confidencialidade, distribuição de
chaves e autenticação são aplicados.

As chaves assimétricas são definidas por NIST (2013) como duas chaves associadas,
uma pública e outra privada, que são usadas para executar ações que se complementam,
como cifrar e decifrar informações ou gerar e verificar assinaturas. Além disso, como
explica Kurose e Ross (2021), com apenas o algoritmo criptográfico e a chave de crip-
tografia (pública ou privada), a chave de decriptografia não pode ser derivada de forma
viável computacionalmente.

Além das chaves assimétricas, os outros componentes de um processo de criptogra-
fia assimétrica são a mensagem, o algoritmo de criptografia, o texto cifrado e o algoritmo
de decriptografia. Na Figura 2 é possível ver o processo de criptografia assimétrica e seus
componentes.

Figura 2 – Componentes e processo de transmissão de uma mensagem utilizando cripto-
grafia assimétrica

Fonte: SECTIGO (2020)

O processo acima opera basicamente da seguinte forma:

Capítulo 2. Referencial Teórico 20

1. Os participantes geram um par de chaves: uma pública e uma privada;

2. Cada participante guarda sua chave privada em segredo, enquanto a chave pública
pode ser amplamente divulgada;

3. Quando um participante deseja enviar uma mensagem para o outro, a chave pública
do participante destinatário é usada para cifrar a mensagem, garantindo que apenas
ele possa descriptografá-la utilizando sua chave privada;

4. O participante destinatário utiliza sua chave privada para decifrar a mensagem
recebida. Como a chave privada é mantida em segredo, somente o destinatário pode
realizar essa operação com sucesso.

O processo explicado acima também pode ser feito da seguinte forma: o remetente
utiliza sua chave privada para cifrar a mensagem, e o destinatário usa a chave pública do
remetente para decriptografá-la. Dessa forma, o destinatário pode verificar a autenticidade
da mensagem, pois só a chave pública do remetente pode decriptografá-la com sucesso.
Isso garante a autenticidade da mensagem.

2.1.3 Funções de hash criptográficas

A ideia principal de uma função de hash, também chamada de função de resumo,
é ser uma função matemática que transforma uma mensagem de entrada em uma saída
única de tamanho fixo, ou seja, uma mudança na mensagem original, origina um hash
diferente. Stallings (2013) aponta que uma função de hash é considerada boa se, dado
um grande conjunto de entradas, as saídas produzidas são distribuídas uniformemente e
aparentemente aleatórias.

Para aplicação em segurança, as funções de hash utilizadas são chamadas de fun-
ções de hash criptográficas. Segundo Kurose e Ross (2021), uma função de hash criptográ-
fica deve garantir que seja extremamente difícil em termos de processamento encontrar
duas mensagens diferentes que resultem no mesmo valor de hash, fenômeno conhecido
como colisão. Na Figura 3, é mostrado o diagrama que ilustra o processo de hash de uma
mensagem com tamanho L, resultando em um hash h.

2.2 Certificado Digital
Outro aspecto importante no contexto da assinatura digital é ter uma forma segura

para divulgar a chave pública de um titular, permitindo que outras entidades, como
pessoas e empresas, possam verificar a autenticidade das chaves públicas desse titular. Ou
seja, deve haver um meio de certificar se a chave pública realmente pertence ao titular
alegado, garantindo que ela não foi alterada ou forjada por um terceiro mal-intencionado, e

Capítulo 2. Referencial Teórico 21

Figura 3 – Digrama básico da função de hash criptográfica

Fonte:Stallings (2013)

para isso existe um certificado. “A principal função de um certificado é vincular uma chave
pública ao nome de um protagonista. Os certificados em si não são secretos ou protegidos”
(TANENBAUM; FEAMSTER, 2021). Existem diversos tipos de cerficados, sendo que os
certificados digitais são aqueles emitidos pelas chamadas Autoridades Certificadoras (CA).
Uma CA verifica a identidade de uma entidade e emite um certificado digital, associando
a chave pública da entidade à sua identidade verificada. A confiança na identidade está
ligada à confiança na CA e em suas técnicas de verificação. A simplificação do processo
de emissão de um certificado por uma CA pode ser visualizada na Figura 4.

Figura 4 – Processo de emissão de um certificado digital por uma CA.

Fonte:Kurose e Ross (2021)

Sendo assim, Souza e Neto (2017) resume que um certificado digital é um arquivo
eletrônico que contém dados do indivíduo ou entidade, junto com sua Chave Pública,
emitido e chancelado digitalmente por uma CA. Ele serve como prova de identificação,
equivalente a documentos físicos como carteira de identidade e passaporte.

Além do aspecto de garantia da autencidade da chave pública, outro aspecto impor-
tante é o reconhecimento legal de chaves. No Brasil isso é feito por meio da Infraestrutura
de Chaves Públicas Brasileiras, ICP-Brasil, que será discutida mais adiante.

Capítulo 2. Referencial Teórico 22

2.2.1 Tipos de Certificado Digital

Conforme descrito pela ICP-Brasil, existem três categorias de certificados digitais.
“A diferença de cada tipo é o nível de segurança e o modo de armazenamento das chaves”
(ITI, 2020). O certificado Tipo A é designado para uso em assinaturas digitais. O Tipo S
é voltado para o aumento da confidencialidade das transações. Por fim, o Tipo T, também
conhecido como carimbo de tempo ou timestamp, é empregado para assegurar a data e a
hora das transações, sendo essencial para garantir a temporalidade e a tempestividade dos
documentos. Ele é frequentemente utilizado em conjunto com outros tipos de certificado.

Neste trabalho, o foco principal recai sobre o certificado Tipo A. Este é extensiva-
mente empregado para realizar assinaturas digitais em uma ampla gama de documentos
e transações eletrônicas, dentre outras possíveis aplicações. Suas funções primordiais in-
cluem a identificação do assinante, a garantia da autenticidade da operação e a confirma-
ção da integridade do documento assinado. Os modelos mais comuns do certificado Tipo
A são o A1, com validade de um ano, e o A3, que pode ser válido por até cinco anos.

2.3 Infraestrutura de Chaves Públicas
A Infraestrutura de Chave Pública (PKI,Public Key Infrastructure) é um sistema

que combina, políticas e procedimentos para garantir a segurança de comunicações digi-
tais, possibilitando a autenticação, integridade e confiabilidade de dados. A PKI é com-
posta por ferramentas que criam e gerenciam certificados digitais para diferentes enti-
dades (usuários, organizações ou dispositivos). “A função da PKI é fornecer um modo
de estruturar esses componentes e definir padrões para os vários documentos e protoco-
los”(TANENBAUM; FEAMSTER, 2021).

Uma PKI simples funciona como um sistema de confiança para autenticar e prote-
ger comunicações digitais, utilizando certificados digitais. O funcionamento básico apre-
sentado na Figura 5 é o seguinte:

1. Criação de Pares de Chaves: o usuário ou dispositivo gera um par de chaves
(pública e privada). A chave privada é mantida em segredo, enquanto a chave pública
será compartilhada.

2. Solicitação de Certificado: O usuário envia uma Solicitação de Assinatura de
Certificado (CSR, Certificate Signing Request) para uma Autoridade Certificadora
(CA). O CSR contém informações necessárias para solicitar um certificado digital,
que inclui a chave pública do solicitante e dados, como nome, organização e domínio.

3. Emissão de Certificado: A CA após verificar a identidade do solicitante de acordo
com o nível de validação requerido, emite um certificado digital. O certificado X.509

Capítulo 2. Referencial Teórico 23

contém informações como a identidade do proprietário, a chave pública, o período
de validade e a assinatura digital da CA, que autentica o certificado e assegura que
ele não foi alterado.

4. Verificação de Validade: Os terceiros que recebem o certificado podem verificar
sua autenticidade por meio da assinatura digital da CA.

Figura 5 – Componentes e processo de uma PKI simples

Fonte: Bizagi. Disponível em: X.509 overview.

A hierarquia de PKI é uma estrutura organizada de entidades confiáveis, geral-
mente composta por uma Autoridade Certificadora Raiz (Root CA) no topo, que emite
certificados para Autoridades Certificadoras Intermediárias. Essas intermediárias, por sua
vez, emitem certificados para os usuários finais ou servidores. A raiz é a autoridade mais
confiável, e os certificados são válidos em cadeia até a raiz, garantindo a confiança em
todas as entidades da hierarquia. “Uma cadeia de certificados como essa, que volta à
raiz, às vezes é chamada corrente de confiança ou caminho de certificação. A técnica é
amplamente utilizada na prática”(TANENBAUM; FEAMSTER, 2021).

2.4 Legislação sobre Chaves Públicas e Assinatura Eletrônica

2.4.1 ICP-Brasil

A Medida Provisória 2.200-2 de 24 de agosto de 2001 institui a ICP-Brasil: “[...]
para garantir a autenticidade, a integridade e a validade jurídica de documentos em forma
eletrônica, das aplicações de suporte e das aplicações habilitadas que utilizem certificados
digitais, bem como a realização de transações eletrônicas seguras” (BRASIL, 2001).

“A Infraestrutura de Chaves Públicas Brasileira (ICP-Brasil) é uma cadeia hie-
rárquica de confiança que viabiliza a emissão de certificados digitais para identificação
virtual do cidadão” (ITI, 2017). O modelo brasileiro adotado para certificação é baseado
em uma raiz única. A ICP-Brasil não apenas atua como Autoridade Certificadora Raiz

Capítulo 2. Referencial Teórico 24

(CA-Raiz), mas também é responsável por credenciar e descredenciar outros participan-
tes, supervisionar e auditar processos, emitir, distribuir, revogar e gerenciar os certificados
das Autoridades Certificadoras (CAs). A ICP-Brasil é hierarquizada da seguinte forma:
a CA Raiz (Autoridade Certificadora Raiz), as CAs (Autoridades Certificadoras) de pri-
meiro nível e segundo nível, as ARs (Autoridades de Registros), e, finalmente, o usuário
final. O diagrama dessa hierarquia pode ser vista na Figura 6.

Figura 6 – Hierarquia da ICP-Brasil

Fonte: Benefícios e Aplicações da Certificação Digital, 2012

2.4.2 Assinaturas Eletrônicas
De forma objetiva, a assinatura eletrônica pode ser entendida como qualquer tipo

de assinatura realizada por dispositivos eletrônicos.

Uma assinatura eletrônica representa um conjunto de dados, no formato
eletrônico, que é anexado ou logicamente associado a um outro conjunto
de dados, também no formato eletrônico, para conferir-lhe autentici-
dade ou autoria. A assinatura eletrônica, portanto, pode ser obtida por
meio de diversos dispositivos ou sistemas, como login/senha, biometria,
impostação de Personal Identification Number (PIN) etc. (ICP-Brasil,
2015a)

De acordo com a definição mencionada sobre assinatura eletrônica, essa forma
de autenticação de documentos já é regulamentada no Brasil desde a Medida Provisória
2.200-2 de 24 de agosto de 2001. No entanto, a partir da Lei n.º 14.063/2020 (BRASIL,
2020), a assinatura eletrônica foi categorizada em três níveis de confiança:

Capítulo 2. Referencial Teórico 25

• Assinatura eletrônica simples: ocorre quando uma única assinatura é gerada sobre
um conteúdo digital disponível. Ela utiliza métodos menos refinados de identificação
do signatário, permite identificar o seu signatário e anexa ou associa dados a outros
dados em formato eletrônico do signatário. A implementação de uma assinatura
simples pode ser vista na Figura 7.

• Assinatura Eletrônica Avançada: utiliza certificados que não são emitidos pela ICP-
Brasil ou qualquer outro meio reconhecido para comprovação da autoria e integri-
dade de documentos eletrônicos (BRASIL, 2020).

• Assinatura Eletrônica Qualificada: utiliza certificado digital emitido pela ICP-Brasil,
nos termos da Medida Provisória 2.200-2/2001.

Figura 7 – Assinatura simples em um documento

Fonte: ICP-Brasil (2015a)

Ainda em Brasil (2020), é determinado o uso de diferentes tipos de assinatura
eletrônica de acordo com o contexto e o grau de segurança requerido. A assinatura eletrô-
nica simples é admitida em interações de menor impacto com entes públicos e em algumas
outras situações específicas. Já a assinatura eletrônica avançada pode ser utilizada nas
mesmas situações da simples, além de no registro de atos perante juntas comerciais. Por
fim, a assinatura eletrônica qualificada é obrigatória em todas as interações eletrônicas
com entes públicos, incluindo as mencionadas anteriormente. Além disso, seu uso é exigido
em atos assinados por chefes de Poder, Ministros de Estado, titulares de Poder ou órgão
constitucionalmente autônomo de ente federativo, na emissão de notas fiscais eletrônicas
(exceto para pessoas físicas ou MEIs), em atos de transferência e registro de bens imóveis,
e em outras situações previstas em lei.

2.5 Assinatura Digital
Com base nas tecnologias já mencionadas, como criptografia, funções de hash e

certificação, a assinatura digital (assinatura eletrônica avançada e assinatura eletrônica
qualificada) se destaca como o método mais robusto de assinatura eletrônica para garantir
os requisitos de segurança da informação de uma mensagem: sigilo, autenticação, não
repúdio e integridade.

Capítulo 2. Referencial Teórico 26

Uma assinatura digital é um mecanismo de autenticação que permite
ao criador de uma mensagem anexar um código que atua como uma
assinatura. Normalmente a assinatura é formada pelo hash da mensagem
e pela encriptação da mensagem com a chave privada do criador. A
assinatura garante a origem e a integridade da mensagem. (STALLINGS,
2013)

Sendo assim, reunindo as ideias discutidas é possível diagramar o processo simpli-
ficado de uma assinatura digital, que pode ser visto na Figura 8.

Figura 8 – Diagrama simplificado de assinatura digital

Fonte: ICP-Brasil (2015a)

1. O signatário cria um resumo criptográfico do documento eletrônico;

2. O signatário utiliza sua chave privada, que está vinculada a uma chave pública
presente em seu certificado digital, para cifrar o resumo criptográfico, gerando assim
a assinatura digital;

3. O documento eletrônico e a assinatura digital são vinculados entre si, permitindo
sua validação posterior.

A Figura 9 apresenta uma ilustração simplificada do processo de verificação de
assinatura digital utilizando o algoritmo RSA.1, explicado em Rajesh Bondugula (2018):

1. O arquivo original passa por um algoritmo de hash (exemplo: SHA-256), gerando
um código hash único (resumo do conteúdo do arquivo);

2. A assinatura digital, que foi criada usando a chave privada do signatário, é descrip-
tografada utilizando a chave pública correspondente. Esse processo revela o hash
assinado, que foi gerado no momento da assinatura;

1 O RSA (Rivest-Shamir-Adleman) é um algoritmo de criptografia assimétrica que utiliza um par de
chaves: uma pública para criptografar (ou verificar assinaturas) e uma privada para descriptografar
(ou assinar). Sua segurança baseia-se na dificuldade de fatorar números grandes (TANENBAUM;
FEAMSTER, 2021).

Capítulo 2. Referencial Teórico 27

3. Em alguns esquemas de assinatura (exemplo: RSA), a assinatura inclui um preenchi-
mento (padding) para segurança. Esse preenchimento é removido, deixando apenas
o hash original assinado.

4. O hash gerado a partir do arquivo e o hash obtido da assinatura são comparados.
Se os dois valores forem iguais, significa que o documento não foi alterado e a
assinatura é válida. Se forem diferentes, significa que o documento foi modificado
ou a assinatura não pertence ao signatário;

Figura 9 – Diagrama simplificado de verificação da assinatura digital

Fonte: (Rajesh Bondugula, 2018)

A assinatura digital pode ser formalmente representada por meio de duas fun-
ções fundamentais: a função de assinatura 𝑆 e a função de verificação 𝑉 . Essas funções
abstraem o processo de assinatura digital, tornando-o independente do criptossistema
específico utilizado.

A assinatura digital de um documento 𝑑𝑜𝑐 utilizando uma chave privada 𝑠𝑘 é
definida como:

𝜎 = 𝑆(𝑠𝑘, 𝑑𝑜𝑐)

onde 𝜎 representa a assinatura gerada. Esse processo consiste na aplicação de um
algoritmo criptográfico que, normalmente, envolve a geração de um hash do documento e
sua cifragem com a chave privada do signatário.

A verificação da autenticidade da assinatura digital, por sua vez, é realizada uti-
lizando a chave pública 𝑝𝑘 correspondente à chave privada usada na assinatura. Esse
processo é definido pela função:

Capítulo 2. Referencial Teórico 28

𝑉 (𝑝𝑘, 𝑑𝑜𝑐, 𝜎) =

⎧⎪⎨⎪⎩𝑉, se a assinatura for válida

𝐹, caso contrário

onde 𝑉 indica que a assinatura é válida e 𝐹 indica que a assinatura não pode
ser autenticada. O mecanismo de verificação consiste em aplicar a chave pública ao valor
assinado 𝜎 e compará-lo com o hash do documento original, garantindo sua integridade e
autenticidade.

Essa abordagem garante que qualquer modificação no documento após a assinatura
resulte em uma verificação falha, tornando a assinatura digital um mecanismo robusto de
integridade e autenticação na comunicação digital segura.

2.5.1 Políticas de Assinatura

As políticas de assinatura são um conjunto de critérios técnicos e legais para ge-
ração e validação de assinaturas digitais, definindo aspectos como os algoritmos cripto-
gráficos permitidos, a necessidade de certificados digitais emitidos por Autoridades Cer-
tificadoras confiáveis, entre outros. Além disso, elas garantem a interoperabilidade entre
diferentes sistemas e asseguram que os documentos assinados digitalmente sejam aceitos
em diversas jurisdições. “Uma assinatura digital é criada pelo signatário de acordo com
uma política de assinatura. A validade de uma assinatura digital é avaliada pelo verifica-
dor utilizando a mesma política de assinatura usada na criação dessa assinatura digital”
(ICP-Brasil, 2021c).

As políticas de assinatura digital estabelecem regras claras sobre como uma assi-
natura deve ser gerada e verificada, garantindo sua validade jurídica e técnica. A parte
que recebe os documentos assinados pode definir quais políticas aceita em seu processo de
negócios, assegurando que as assinaturas atendam aos seus requisitos de segurança e con-
formidade. Dessa forma, o uso de políticas de assinatura proporciona transparência para
todas as partes envolvidas, deixando explícitos os critérios que tornam um documento
digitalmente assinado válido, como é colocado por ICP-Brasil (2021c).

As políticas de assinatura permitidas na ICP-Brasil são:

• Assinatura Digital com Referência Básica (AD-RB): Utiliza apenas o certi-
ficado digital para validar a assinatura, sem incluir dados adicionais para verificação
posterior.

• Assinatura Digital com Referência do Tempo (AD-RT): Inclui um carimbo
do tempo, registrando a data e hora em que a assinatura foi realizada.

• Assinatura Digital com Referências para Validação (AD-RV): Adiciona re-
ferências externas que possibilitam a verificação posterior, como listas de revogação

Capítulo 2. Referencial Teórico 29

de certificados (CRL), que é uma lista de certificados revogados, ou o OCSP (Online
Certificate Status Protocol), um protocolo que permite verificar em tempo real se
um certificado foi revogado, para garantir que o certificado ainda é válido.

• Assinatura Digital com Referências Completas (AD-RC): Incorpora todas
as informações necessárias para validação dentro do próprio documento, tornando-o
independente de fontes externas.

• Assinatura Digital com Referências para Arquivamento (AD-RA): Inclui
todas as informações para validação e preservação de longo prazo, garantindo a
validade da assinatura por períodos prolongados.

Para este trabalho, será adotada a AD-RB, utilizando o padrão PAdES (PDF
Advanced Electronic Signatures). Como é colocado por ICP-Brasil (2015b), a AD-RB
é composta por quatro elementos essenciais, que estão na Figura 10: o identificador da
política de assinatura, que define as regras utilizadas na criação e verificação da assinatura
digital; os dados da assinatura, que incluem informações adicionadas pelo signatário,
como o instante de criação; e a sequência de códigos da assinatura, que corresponde ao
código criptográfico gerado para garantir a autenticidade, integridade e não repúdio do
documento assinado, e o documento eletrônico em si.

Figura 10 – Assinatura digital com Referência Básica

Fonte: (ICP-Brasil, 2015b).

O PAdES é um padrão para a assinatura de documentos PDF, garantindo auten-
ticidade, integridade e não-repúdio, conforme descrito em ETSI (2009). Ele é compatível
com certificados digitais, permite assinatura de longo prazo e, além disso, este padrão
possibilita a inclusão de referências internas, mostrado na Figura 11, como o próprio cer-
tificado digital e o carimbo de tempo, tornando o documento autossuficiente e facilitando
a verificação.

Capítulo 2. Referencial Teórico 30

Figura 11 – Inclusão de referências internas no documento PDF

Fonte: (ETSI, 2009).

A política de assinatura adotada neste trabalho segue os princípios estabelecidos
em ICP-Brasil (2021a), atendendo aos requisitos mínimos definidos em ICP-Brasil (2021b)
e está detalhada no Anexo A.

É importante destacar que esta política possui caráter didático para os fins deste es-
tudo. Como é explicado por ICP-Brasil (2021b), antes de ser efetivamente implementada,
primeiramente uma Política de Assinatura no contexto da ICP-Brasil deve ser submetida
à CA-Raiz para a obtenção de um identificador. “Identificador da política de assinatura
são dados que identificam de forma unívoca uma política de assinatura, compostos por um
Object Identifier (OID) - ou seja, um identificador - e o resumo criptográfico da política.”
(ICP-Brasil, 2021c).

No processo de assinatura digital, são incorporados a Política de Assinatura em um
formato legível por máquinas, a Lista de Políticas de Assinatura Aprovadas (LPA), que
define as diretrizes aceitas para a assinatura, e a assinatura digital da LPA, garantindo
sua autenticidade e integridade.

No entanto, como a Política de Assinatura (PA) utilizada neste trabalho é mera-
mente ilustrativa, ela é incluída apenas como um exemplo, utilizando o identificador e a
URL fornecidos no Anexo A.

2.5.2 Requisitos para geração e validação de assinaturas digitais

Neste trabalho, a assinatura digital é definida da seguinte forma:

• para assinatura eletrônica avançada:

– esteja associada inequivocamente a um par de chaves criptográficas que permita
identificar o signatário;

– seja produzida por dispositivo seguro de criação de assinatura;

– esteja vinculada ao documento eletrônico a que diz respeito, de tal modo que
qualquer alteração subsequente neste seja plenamente detectável;

Capítulo 2. Referencial Teórico 31

• para assinatura eletrônica qualificada:

– tenha todos os itens da assinatura eletrônica avançada;

– esteja baseada em um certificado ICP-Brasil, válido à época da sua aposição;

Neste contexto, a API desenvolvida no escopo deste trabalho tem como foco a
implementação da assinatura eletrônica avançada.

A geração e verificação de uma assinatura digital em um arquivo PDF neste projeto
seguem as diretrizes estabelecidas em ICP-Brasil (2015b), com as devidas adaptações.
Assim, vale observar os seguintes requisitos:

Para a geração de uma assinatura digital:

• A assinatura deve estar inequivocamente vinculada a uma pessoa ou entidade e ao
documento eletrônico correspondente.

• Deve ser realizada dentro do período de vigência do certificado digital.

• Deve estar em conformidade com as restrições do certificado digital.

• Deve utilizar componentes que assegurem:

– A identificação do documento assinado.

– A integridade do documento.

– A identidade do signatário.

– Os detalhes do certificado empregado.

Para validação de uma assinatura digital:

• Toda assinatura digital deve ser passível de validação.

• Para a validação, são necessários:

– O documento eletrônico assinado.

– A assinatura digital.

– O certificado digital do signatário e sua cadeia de certificação.

• O processo de validação deve:

– Verificar o estado criptográfico da assinatura.

– Garantir autenticidade e autoria por meio da decifração da assinatura com a
chave pública do certificado digital do signatário.

– Confirmar a integridade do documento, comparando seus resumos criptográfi-
cos para assegurar que não houve alterações desde a assinatura.

Capítulo 2. Referencial Teórico 32

2.6 API (Application Programming Interface)
Uma API, que pode ser traduzida como Interface de Programação de Aplicações, é

um conjunto de definições e protocolos que facilita a comunicação entre diferentes sistemas
de software, servindo como uma ponte para que diferentes aplicações troquem informações
de forma padronizada e controlada. A API encapsula a lógica de negócio ao abstrair a
complexidade das operações internas e oferecer uma interface padronizada para interação.
“Uma API oferece uma maneira simples de conectar, integrar e estender sistemas de
software”(BIEHL, 2015). Além disso, é possível aplicar difrentes estilos de arquitetura,
como por exemplo o REST.

A arquitetura REST é uma forma de estruturar uma API de maneira que ela
seja fácil de usar e entender. Em uma API REST, a ideia principal é que o sistema
seja organizado em torno de "recursos", que são as informações ou entidades que a API
manipula. Esses recursos podem ser, por exemplo, um usuário, um documento ou um
produto. Cada recurso é acessado por meio de um endpoint, que pode ser entendido como
uma URL específica que representa uma operação ou recurso disponível na API. Por meio
desses endpoints, usuários ou programas podem enviar requisições para interagir com os
dados da API

Como é colocado por Biehl (2015), as APIs REST são projetadas para realizar ope-
rações fundamentais de gerenciamento de dados, conhecidas como CRUD (criar, ler, atu-
alizar e excluir). Essas operações podem ser associadas diretamente aos métodos HTTP.
A criação de novos recursos é feita com os métodos POST ou PUT, enquanto a leitura de
informações é feita com o método GET. Para atualizar um recurso existente, utiliza-se o
método PUT, e a exclusão de um recurso é feita com o método DELETE.

Por fim, Biehl (2015) também destaca vantagens desse tipo de estilo de API que
será importante para o desenvolvimento do projeto: as APIs REST oferecem benefícios
como escalabilidade e resiliência, pois são sem estado e independentes, permitindo a adição
de servidores para expandir a capacidade do sistema. Elas também se beneficiam do cache
integrado da infraestrutura HTTP, melhorando o desempenho sem necessidade de alte-
rações adicionais. REST suporta diferentes formatos de conteúdo e permite a negociação
entre cliente e servidor. A padronização dos métodos facilita a exploração e uso de APIs,
tornando-as intuitivas e acessíveis. Além disso, o uso correto de métodos e códigos de
status HTTP assegura a visibilidade e monitoramento das interações entre componentes.

2.7 Web App
Uma Web App, ou Aplicação Web, é um software acessado por meio de um nave-

gador de internet, que permite ao usuário interagir e realizar operações em um ambiente

Capítulo 2. Referencial Teórico 33

digital. Diferente de um site estático, uma aplicação web é projetada para responder a
ações do usuário, processar dados e oferecer funcionalidades específicas, como formulários
de envio, painéis interativos, sistemas de login, entre outros. “As aplicações Web têm
uma arquitetura de cliente-servidor. Seu código é dividido em dois componentes: scripts
do lado do cliente e scripts do lado do servidor.” (AWS, 2020). No lado do cliente, o script
é responsável pela interface e interação com o usuário, como botões e formulários. Quando
o usuário interage com a aplicação, como clicar em um botão, o navegador processa essa
ação. No lado do servidor, os scripts processam as solicitações do cliente, como salvar ou
recuperar dados de um banco de dados, e retornam uma resposta. Em alguns casos, o
servidor envia a página completa já processada de volta para o cliente, processo conhecido
como renderização no lado do servidor.

34

3 Metodologia

O presente capítulo trata da metodologia adotada neste trabalho, abordando a
classificação da pesquisa, o fluxo de atividades para a elaboração do TCC, a metodologia
de pesquisa do referencial teórico e a metodologia de desenvolvimento do sistema proposto.
Além disso, é discutida a gerência de configuração e evolução de software para garantir a
qualidade e manutenibilidade do sistema ao longo do tempo.

O método é o conjunto das atividades sistemáticas e racionais que, com
maior segurança e economia, permite alcançar o objetivo - conhecimen-
tos válidos e verdadeiros -, traçando o caminho a ser seguido, detectando
erros e auxiliando as decisões do cientista. (MORESI, 2003).

3.1 Classificação
A pesquisa apresentada neste trabalho é classificada quanto a sua natureza, sua

abordagem e seus fins:

• Quanto à natureza, é uma pesquisa aplicada, pois visa desenvolver uma solução para
um problema específico;

• Quanto à abordagem, é uma pesquisa qualitativa privilegiando a riqueza de detalhes
e a compreensão contextual. Através de ferramentas como observações e análises de
documentos;

• Quanto aos fins, é exploratório, buscando explorar a implementação de técnicas de
criptografia, certificação e assinatura eletrônica no contexto do desenvolvimento do
software de assinatura digital. O objetivo é entender as possibilidades e desafios
relacionados a essas técnicas, bem como identificar as melhores práticas para sua
implementação.

3.2 Metodologia para Pesquisa do Referencial Teórico
Esta fase construtiva, conforme Moresi (2003), envolve a elaboração de um plano de

pesquisa e a realização efetiva da pesquisa, sendo desenvolvida em duas etapas distintas.
A exploração dos conteúdos nessas etapas foi conduzida por meio de pesquisa em livros,
artigos acadêmicos, sites governamentais e outros recursos relevantes que abordam temas
relacionados à assinatura digital.

Capítulo 3. Metodologia 35

Na primeira etapa, foi realizado um estudo sobre o funcionamento da assinatura
digital. O objetivo era decompor o processo em partes que pudessem ser explicadas gra-
dualmente, permitindo assim a compreensão detalhada de cada fase, desde a geração das
chaves até a verificação da integridade do documento assinado.

A segunda etapa teve como objetivo compreender a legislação de chaves públicas
e assinaturas eletrônicas no Brasil. Isso envolveu a análise de leis, medidas provisórias e
regulamentações que regem o uso e a validade das assinaturas digitais no país. Essa análise
contribuiu para uma compreensão abrangente do contexto legal em que o software de
assinatura digital será desenvolvido, garantindo sua conformidade com as normas vigentes.

Essa abordagem metodológica permitiu não apenas a compreensão dos aspectos
técnicos da assinatura digital, mas também a consideração dos aspectos legais e regula-
tórios relevantes para o contexto brasileiro.

3.3 Metodologia de Desenvolvimento
As metodologias de desenvolvimento constituem um conjunto de técnicas e méto-

dos organizacionais empregados para conceber e implementar soluções. Bourque e Fairley
(2014) explica que há uma variedade de métodos disponíveis e é crucial que o engenheiro
de software selecione métodos apropriados para a tarefa de desenvolvimento de software
em questão. Essa escolha pode impactar significativamente o sucesso do projeto de soft-
ware.

A metodologia para o desenvolvimento destre trabalho é uma mescla dos chamados
métodos ágeis.

Os métodos ágeis são considerados métodos leves, na medida em que se
caracterizam por ciclos de desenvolvimento curtos e iterativos, equipes
auto-organizáveis, concepções mais simples, refatorização do código, de-
senvolvimento orientado para os testes, envolvimento frequente do cli-
ente e ênfase na criação de um produto de trabalho demonstrável em
cada ciclo de desenvolvimento (BOURQUE; FAIRLEY, 2014).

No Scrum, uma lista de Itens do Backlog do Produto (PBI) é criada, na qual as
tarefas são identificadas, definidas, priorizadas e estimadas. Cada incremento do software é
testado e lançado, resultando em uma versão funcional a cada ciclo. Os artefatos utilizados
do Scrum são:

• Backlog do Produto: lista de funcionalidades e requisitos de implementação do
projeto;

• Sprint: intervalo de tempo com duração de duas semanas para desenvolver itens
selecionados do Backlog;

Capítulo 3. Metodologia 36

• Reunião de Revisão da Sprint: Reunião para mostrar ao stakeholder, que no
caso deste projeto foi o professor orientador, o que foi feito em relação a entrega
daquela Sprint;

O Kanban é uma abordagem de gestão visual que visa guiar cada tarefa através
de um fluxo de trabalho predefinido. Ele não é apenas um sistema visual de gestão de
trabalho, mas também uma metodologia que enfatiza a visualização do trabalho em pro-
gresso e a limitação da quantidade de trabalho em execução simultaneamente. Os artefatos
utilizados dessa metodologia são:

• Visualização do Fluxo de Trabalho: Garantir que todas as etapas do trabalho
estejam claras, pois o trabalho invisível pode representar riscos para o projeto. O
quadro Kanban oferece uma representação clara do fluxo de trabalho.

• Implementação de Feedback: envolve a análise contínua do desempenho do pro-
cesso e a adaptação com base nas observações. É importante coletar feedback regu-
larmente dos membros da equipe e dos stakeholders;

O XP, ou Extreme Programming, é uma metodologia ágil de desenvolvimento de
software que enfatiza a entrega rápida e frequente de software funcional de alta qualidade.
As práticas-chave do XP utilizadas no projeto são:

• Integração Contínua: cada nova parte desenvolvida é integrada ao código de
forma a assegurar que as mudanças não causem interferências no que já foi desen-
volvido. Cada integração é verificada automaticamente por meio de builds e testes
automatizados, garantindo que o código seja funcional e compatível com o restante
do projeto;

• Refatoração: processo de melhorar o código existente sem alterar seu comporta-
mento externo, tornando-o mais limpo, compreensível e fácil de mante;

3.3.1 Gerência de Configuração e Evolução de Software

Ainda nas palavras de Bourque e Fairley (2014), a Gerência de Configuração e
Evolução de Software (GCES) é uma atividade abrangente que ocorre durante todo o
ciclo de vida de um software. Ela é responsável por gerenciar e controlar a evolução do
software, incluindo o controle de versões e solicitações de mudanças. Isso permite que todas
as partes envolvidas na criação e manutenção do software tenham acesso ao histórico de
modificações, o que fornece informações para compreender o sistema na sua forma atual
e em suas formas anteriores.

O fluxo de GCES pode ser visto na Figura 12 abaixo. Pressman e Maxim (2021)
descreve esse fluxo da seguinte forma: dado que as mudanças podem acontecer a qualquer

Capítulo 3. Metodologia 37

momento, as atividades de GCES são projetadas para (1) identificar a mudança, (2)
controlá-la, (3) garantir que seja implementada corretamente e (4) comunicar as mudanças
para outros envolvidos.

Figura 12 – Fluxo de trabalho de GCES

Fonte: Pressman e Maxim (2021)

.

Tendo em vista este fluxo de trabalho para gerenciar o projeto, é necessário utili-
zar ferramentas que permitam sua aplicação utilizando os artefatos das metodologias de
desenvolvimento mencionados acima. Um aspecto fundamental disso é o controle de ver-
são, que “[...]combina procedimentos e ferramentas para gerenciar diferentes versões dos
objetos de conguração criados durante o processo de software” (PRESSMAN; MAXIM,
2021). Além disso, é necessário ter um repositório centralizado para armazenar e compar-
tilhar o código-fonte e outros artefatos do projeto, que sirva como um ponto central onde
é possível controlar as diferentes versões do software.

Para o controle de versões será utilizado o Git: “O Git é um sistema de controle de
versão distribuído, gratuito e de código aberto, projetado para lidar com tudo, de projetos
pequenos a muito grandes, com rapidez e eficiência” (Git, 2024).

O repositório do projeto será hospedado no GitHub, que é uma plataforma de
hospedagem de repositórios Git na nuvem, que oferece recursos adicionais como controle
de acesso, gerenciamento de problemas (issues), integração contínua e revisão de código.

Essas ferramentas desempenham um papel crucial na aplicação eficaz das meto-
dologias ágeis. No Scrum, o Git permite o versionamento do código, enquanto o GitHub
ajuda a organizar o Backlog do Produto e acompanhar o progresso das sprints. No Kan-
ban, o Git e o GitHub proporcionam uma visão clara do fluxo de trabalho, representando
os itens do backlog como issues, além de facilitar a integração contínua e a implemen-
tação de feedbacks. No XP, o Git é essencial para práticas como Integração Contínua
(CI), enquanto o GitHub suporta revisão de código e melhorias contínuas por meio de
refatorações.

Neste projeto, foi utilizado uma Organização do GitHub, dividindo o trabalho em

Capítulo 3. Metodologia 38

três repositórios, o que garantiu um melhor controle das mudanças e uma gestão ágil do
desenvolvimento de software.

3.3.2 Fluxo de Desenvolvimento

Na Figura 13 estão representadas as etapas do fluxo de desenvolvimento. Com a
adoção de uma metodologia híbrida para o projeto, observa-se que o fluxo se caracte-
riza por ciclos de desenvolvimento curtos e iterativos, além de refatorização do código,
enfocando práticas de Scrum, Kanban e XP.

Figura 13 – Fluxo de Desenvolvimento do Projeto

Fonte: Autor.

A descrição das estapas é a seguinte:

• Elicitar requisitos: Os requisitos do sistema são identificados por meio de histórias
de usuários que descrevem as funcionalidades desejadas do ponto de vista do usuário,
ajudando a entender as necessidades e expectativas em relação ao produto final;

• Definir backlog: Gerar o backlog do produto, que é uma lista priorizada de todos
os requisitos elicitados na etapa anterior. O artefato gerado serve como guia para o
desenvolvimento;

• Definir sprint: Um conjunto de itens do backlog é selecionado para ser implemen-
tado durante a sprint;

• Implementar requisitos da sprint: implementar as funcionalidades e requisitos
definidos no backlog da sprint. O objeitov é desenvolver e testar o código, seguindo
as práticas estabelecidas pela metodologia adotada;

• Revisar implementações: é realizada uma revisão para garantir que as funciona-
lidades atendam aos requisitos e expectativas estabelecidos. Se as implementações

Capítulo 3. Metodologia 39

forem aprovadas, novos requisitos são adicionados para implementação. Caso con-
trário, os requisitos em questão são revistos e ajustados para serem implementados
de acordo com as expectativas.

• Gerenciar nova versão: Após a revisão e aprovação das implementações, uma
nova versão do software é gerada e gerenciada. Isso inclui o controle de versão
do código-fonte, registro das alterações realizadas, gerenciamento de branches e
releases, garantindo assim a integridade e evolução do produto ao longo do tempo.

40

4 Desenvolvimento do Software

Este capítulo apresenta o processo de desenvolvimento do software proposto, deta-
lhando suas principais etapas e decisões técnicas. Inicialmente, são descritas as histórias
de usuário e os requisitos. Em seguida, as tecnologias utilizadas na implementação da API
UnBSign, da aplicação web e da API PKI são apresentadas.

Além disso, este capítulo aborda a arquitetura do sistema, destacando a estrutura
da API REST, da aplicação web e da API PKI, explicando seus componentes e interações.

4.1 Épicos, Histórias de Usuário e Requisitos
Nesta seção, é apresentado a organização dos épicos, histórias de usuários e re-

quisitos que guiam o desenvolvimento da API de assinatura digital, chamada a partir
daqui de API UnBSign. Os épicos representam funcionalidades de alto nível, enquanto
as histórias de usuários detalham as necessidades e expectativas dos usuários em relação
ao sistema. Com base nesses elementos, é definido os requisitos funcionais, que especifi-
cam de forma clara e objetiva o comportamento esperado da API e da Web App. Essa
abordagem estruturada visa garantir que as funcionalidades atendam às demandas dos
usuários e estejam alinhadas com os objetivos do projeto.

Como será explicado posteriormente, a PKI será implementada utilizando uma
abordagem simplificada, por meio de diretórios e arquivos, sem a complexidade de uma
infraestrutura distribuída e de alto nível. Nesse modelo, a gestão das chaves e certifi-
cados será realizada de maneira direta e acessível, dispensando requisitos avançados ou
configurações complexas, adequando-se à finalidade e aos objetivos do sistema.

4.1.1 Épicos e Histórias de Usuário

Os épicos e histórias de usuários são explicados em Bourque e Fairley (2014). Os
épicos são descrições de alto nível que englobam grandes funcionalidades ou objetivos do
sistema, servindo como um ponto de partida para decomposição em histórias de usuários
mais específicas. Eles representam as principais áreas de valor do projeto, como autenti-
cação, assinatura digital de documentos, validação de documentos assinados e gestão de
usuários. No contexto deste projeto, os épicos permitem organizar e priorizar o desenvol-
vimento das funcionalidades, garantindo que cada aspecto essencial da API de assinatura
digital seja abordado de forma integrada e eficiente. Na Tabela 1 está os épicos do projeto.

Já as histórias de usuários são descrições curtas e centradas no usuário que deta-
lham necessidades específicas relacionadas aos épicos, conectando os objetivos gerais às

Capítulo 4. Desenvolvimento do Software 41

Tabela 1 – Épicos

ID Descrição
E1 Autenticação e Autorização: Garantir que apenas usuários autenti-

cados e autorizados possam acessar as funcionalidades da API
E2 Upload e Visualização de Documentos: Permitir que o usuário envie

um PDF e visualize o conteúdo antes de prosseguir com a assinatura
E3 Assinatura Digital: Permitir que o usuário assine digitalmente o

documento
E4 Validação de Documentos Assinados: Validar a integridade e au-

tenticidade de um documento já assinado
Fonte: Autor.

funcionalidades práticas do sistema. Cada história reflete o que um usuário deseja alcan-
çar, como visualizar documentos enviados ou assinar um PDF com um certificado digital,
e ajuda a guiar a implementação técnica e a priorização das entregas. Na Tabela 2 apre-
sentada, as histórias de usuários são agrupadas por épicos, oferecendo uma visão clara da
relação entre as metas amplas do sistema e os requisitos detalhados que sustentam sua
construção.

Tabela 2 – Histórias de Usuário

Épico ID História de Usuário Critérios de aceitação
E1 US1 Como usuário, desejo me autenti-

car no sistema
A autenticação deve ser realizada
com email e senha.

E2
US2 Como usuário, desejo enviar um

arquivo PDF
Sistema aceitar apenas arquivos
no formato PDF.

US3 Como usuário, desejo visualizar o
PDF enviado

Visualizar as páginas do PDF en-
viado antes de assinar.

E3
US4 Como usuário, desejo selecionar

o tipo de certificado digital uti-
lizado para assinar o PDF

Opções: Certificado Digital da
Instituição ou Certificado próprio
ICP-Brasil.

US5 Como usuário, desejo escolher a
posição do carimbo da assinatura
no PDF

O sistema deve permitir ao usuá-
rio selecionar as coordenadas do
carimbo da assinatura no docu-
mento.
O carimbo deve conter informa-
ções relevantes (Nome do assi-
nante, data e hora).

Capítulo 4. Desenvolvimento do Software 42

Épico ID História de Usuário Critérios de aceitação
US6 Como usuário, desejo assinar o

PDF com certificado escolhido
O sistema deve realizar a assina-
tura digital do PDF utilizando o
padrão PAdES.
O PDF deve ser retornado ao
usuário assinado para que possa
ser feito o download.

E4
US7 Como usuário, desejo enviar um

PDF para validação
O retorno deve indicar se o docu-
mento é válido e detalhes sobre a
assinatura.

US8 Como usuário, desejo visualizar
os detalhes da assinatura digital
no documento

O sistema deve retornar informa-
ções como o certificado usado, da-
ta/hora e validade da assinatura.

Fonte: Autor.

A partir das histórias de usuários, foram elicitados os requisitos funcionais para
a API e a Web App, estabelecendo de forma clara as funcionalidades necessárias para
atender às demandas identificadas. Essa etapa garante que cada história seja traduzida
em especificações técnicas, divididas entre a API e a interface do usuário, promovendo
uma implementação coerente e alinhada com os objetivos do sistema.

4.1.2 Requisitos

Os requisitos podem ser definidos, no contexto de desenvolvimento de software,
como as funcionalidades, capacidades e restrições de um sistema de software. O principal
objetivo dos requisitos é orientar o desenvolvimento para garantir que o software atenda
às necessidades e expectativas idealizadas sobre o produto final. Os requisitos funcionais
são sobre as funções que o software deve executar. “Um requisito funcional também pode
ser descrito como aquele para o qual um conjunto finito de etapas de teste pode ser escrito
para validar seu comportamento” (BOURQUE; FAIRLEY, 2014).

A elicitação de requisitos consiste em identificar as fontes de requisitos de software
e determinar como o engenheiro de software pode obtê-los. Trata-se de uma etapa crucial
para desenvolver uma compreensão clara do problema que o software deve resolver, como
destacado por Bourque e Fairley (2014). Esse processo pode ser realizado por meio de
diferentes técnicas, escolhidas com base nas fontes de requisitos e nos objetivos almejados.
Neste trabalho, os requisitos foram elicitados a partir das histórias de usuários e pela
aplicação da técnica de Benchmarking, que permitiu comparar soluções existentes para
garantir um alinhamento eficiente às necessidades do sistema proposto.

Capítulo 4. Desenvolvimento do Software 43

A técnica de Benchmarking envolve a análise dos processos executados por em-
presas concorrentes ou ideias similares, especialmente aqueles que apresentam desafios
ou dificuldades semelhantes aos enfrentados pela empresa em questão. No contexto deste
trabalho, essa abordagem é valiosa tanto para o levantamento de requisitos quanto para
a concepção da interface do sistema. Ao examinar como outras organizações lidam com
determinados processos ou problemas, é possível identificar melhores práticas, soluções
inovadoras e áreas de melhoria que podem inspirar e informar o desenvolvimento do
sistema. Essa análise comparativa não apenas ajuda a compreender o estado atual do
mercado e das tecnologias disponíveis, mas também pode fornecer insights cruciais para
a diferenciação e aprimoramento do próprio sistema.

Após a elicitação, os requisitos passam pela etapa de priorização, que determina
quais devem ser implementados primeiro com base em critérios como valor para o negócio,
urgência, viabilidade técnica e impacto no usuário final. A técnica utilizada para isso é
a MoSCoW. Conforme explicado por Wiegers e Beatty (2013), as letras maiúsculas
representam as seguintes prioridades:

• Must (Deve): O requisito deve ser atendido para que a solução seja considerada
um sucesso.

• Should (Deveria): O requisito é importante e deve ser incluído na solução, se pos-
sível, mas não é obrigatório para o sucesso.

• Could (Poderia): É um recurso desejável, mas que pode ser adiado ou eliminado.
Implemente-o somente se o tempo e os recursos permitirem.

• Won’t (Não será): Indica um requisito que não será implementado no momento,
mas que poderá ser incluído em uma versão futura.

Os requisitos funcionais elicitados para a Web App e API a partir das histórias de
usuário e benchmarking podem ser vistos na Tabela 3 e na Tabela 4. Os identificadores
são RFWx para a Web App e RFAx para a API.

Tabela 3 – Requisitos Funcionais para Web App

ID Requisito Prioridade

RFW01
A Web App deve fornecer uma tela de cadastro onde o
usuário possa inserir as seguintes informações: nome
completo, apelido, data de nascimento e senha

Must

RFW02
A Web App deve permitir que o usuário faça login
utilizando seu apelido e senha

Must

Capítulo 4. Desenvolvimento do Software 44

ID Requisito Prioridade

RFW03
O backend, ao autenticar usuário, deve retornar um
token JWT (JSON Web Token) válido

Must

RFW04
A Web App deve armazenar o token JWT no cookie do
navegador.

Must

RFW05
A Web App deve incluir esse token em todas as
requisições subsequentes, no cabeçalho, para acessar
rotas protegidas da API

Must

RFW06
A Web App deve disponibilizar um campo de upload
para que o usuário envie um arquivo PDF

Must

RFW07
O campo de upload deve ser validado para garantir que
apenas arquivos com a extensão .pdf sejam aceitos.

Should

RFW08
A Web App deve exibir uma pré-visualização do PDF
logo após o upload bem-sucedido.

Should

RFW09

A Web App deve exibir o PDF carregado de forma
interativa, permitindo que o usuário visualize as
páginas do documento e identifique o local adequado
para a assinatura

Should

RFW10

O usuário deve ser capaz de selecionar a posição exata
do carimbo dentro do PDF, por meio de uma interface
de arraste, clicando e arrastando o carimbo para a
posição desejada no PDF carregado para
pré-visualização

Should

RFW11 Disponibilizar botão de “Assinar” ao carregar um PDF. Must

RFW12
Ao clicar em "Assinar", envia o arquivo PDF, a posição
do carimbo e o token JWT para a API.

Must

RFW13
Exibir o PDF assinado quando o processo for concluído
e permitir download.

Could

RFW14
A Web App deve permitir que o usuário envie um
documento PDF assinado para validação

Should

RFW15
A Web App deve ter um botão "Validar Documento",
que envia o arquivo PDF assinado para a API

Should

RFW16
A Web App deve exibir uma mensagem de sucesso ou
erro com base no resultado da validação.

Should

RFW17
Ao validar, a Web App deve apresentar as informações
da assinatura em caso de uma assinatura válida no
documento.

Could

Capítulo 4. Desenvolvimento do Software 45

Tabela 4 – Requisitos da API

ID Requisito Prioridade

RFA01
A API permite a autenticação do usuário por meio de
um token JWT válido, que será enviado no cabeçalho
das requisições subsequentes.

Should

RFA02
A API valida o token JWT nas rotas protegidas para
garantir que o usuário está autenticado.

Must

RFA03 A API expõe um endpoint para requisição POST. Must

RFA04
A API recebe um arquivo PDF através de uma
requisição POST no endpoint.

Must

RFA05
A API recebe a posição do carimbo e o número da
página do arquivo PDF através de uma requisição
POST no endpoint.

Must

RFA06
A API armazena certificado digital ICP-Brasil
institucional

Won’t

RFA07
A API realiza a assinatura digital do PDF utilizando a
assinatura eletrônica qualificada utilizando certificado
digital ICP-Brasil institucional

Won’t

RFA08
A API realiza a assinatura digital do PDF utilizando a
assinatura eletrônica qualificada utilizando certificado
digital ICP-Brasil fornecido pelo usuário

Won’t

RFA09
A assinatura digital segue o padrão PAdES, garantindo
a conformidade com as regulamentações de assinaturas
digitais.

Should

RFA10

A API garante que a assinatura digital seja gerada de
forma a manter a integridade do arquivo original,
assegurando que qualquer alteração posterior ao
processo de assinatura invalidará a assinatura.

Must

RFA11 A API retorna o PDF assinado na mesma requisição. Must

RFA12

A lógica de assinatura utiliza um mecanismo de hash
para criar um resumo do documento que será assinado,
garantindo que o conteúdo não possa ser alterado sem
invalidar a assinatura.

Must

RFA13

A API inclui um sistema de verificação que confira a
validade do certificado usado para a assinatura,
assegurando que o certificado não esteja expirado ou
revogado antes de gerar a assinatura.

Could

Capítulo 4. Desenvolvimento do Software 46

ID Requisito Prioridade

RFA14
A API suporta a inclusão de metadados adicionais na
assinatura, como a hora exata da assinatura e o
identificador do processo, para rastreabilidade.

Could

RFA15

A lógica de assinatura é implementada de forma
modular para permitir futuras atualizações ou suporte
a diferentes algoritmos de assinatura sem impactar o
funcionamento da API.

Should

RFA16

A API tem um mecanismo interno de auditoria que
registre cada etapa do processo de assinatura, incluindo
a entrada de dados, a geração de hashes, a assinatura
propriamente dita e a finalização do arquivo assinado.

Won’t

RFA17

A API realiza um processo de verificação automática
de integridade, comparando o documento assinado com
uma versão de teste para garantir que não haja
diferença após a assinatura.

Could

RFA18

A API responde em um formato JSON padronizado
para facilitar a integração com sistemas externos e
assegurar que mensagens de erro e sucesso sejam de
fácil compreensão.

Should

RFA19
A API implementa logs de auditoria em tempo real
para monitorar e alertar sobre possíveis anomalias ou
tentativas de acesso não autorizado.

Won’t

RFA20
A API expõe um endpoint, onde um documento
assinado pode ser enviado para validação da assinatura
digital.

Must

RFA21
A API inclui documentação completa e interativa,
como Swagger/OpenAPI, para facilitar a integração de
desenvolvedores.

Must

RFA22

A API tem suporte a testes de integração e endpoints
simulados para que desenvolvedores possam testar a
assinatura e validação de documentos sem afetar o
ambiente de produção.

Could

RFA23
A API valida a assinatura do documento e verifica sua
autenticidade.

Must

RFA24
A API retorna os detalhes da assinatura digital,
incluindo o nome do assinante, o certificado utilizado e
o status da assinatura (válido ou inválido).

Must

Capítulo 4. Desenvolvimento do Software 47

ID Requisito Prioridade

RFA25

A API retorna mensagens de erro claras caso haja
algum problema com a assinatura ou a validação do
documento (ex: erro de formato, erro de assinatura,
token inválido).

Should

Os requisitos funcionais identificados e priorizados para este projeto podem e serão
incrementados à medida que a proposta evoluir. Este processo de refinamento está previsto
no fluxo de desenvolvimento mostrado na Figura 13.

4.2 Aplicação da Metodologia de Desenvolvimento
O projeto foi desenvolvido utilizando a abordagem ágil, estruturado em cinco

sprints para atender aos requisitos da API de Assinatura Digital e do Web App, garan-
tindo entregas incrementais e funcionais. O planejamento de cada sprint foi guiado pelo
sprint backlog, priorizando as tarefas conforme os objetivos de cada iteração. A gestão das
atividades e o monitoramento do progresso foram realizados por meio da ferramenta de
projetos do GitHub, utilizando issues e boards.

O ciclo de desenvolvimento dividido em cinco sprints que tiveram como objetivo:

• Sprint 1: Implementação do upload de arquivos e lógica de assinatura digital.

• Sprint 2: Criação de carimbos digitais com posicionamento e autenticação de usuá-
rios via JWT.

• Sprint 3: Implementação da interface e rota para validação de documentos.

• Sprint 4: Realização de testes funcionais e refinamento de controles de segurança.

• Sprint 5: Documentação detalhada da API e ajustes finais na interface.

O quadro Kanban foi dividido em cinco colunas:

• Backlog: Tarefas ainda não iniciadas

• Ready: Atividades prontas para execução

• In Progress: Tarefas em andamento

• In Review: Tarefas concluídas e em revisão

• Done: Tarefas finalizadas

Capítulo 4. Desenvolvimento do Software 48

O quadro pode ser visto na Figura 14. Essa organização visual e incremental permi-
tiu acompanhar o progresso e garantir entregas de qualidade ao longo do desenvolvimento.

Figura 14 – Quadro Kanban

Fonte: Autor.

4.3 Tecnologias

4.3.1 Tecnologias da API UnBSign

O desenvolvimento da API foi realizado em Java, devido às soluções que oferece
para a construção de aplicações escaláveis. A escolha da linguagem foi complementada pelo
uso de frameworks modernos e bibliotecas especializadas, que facilitaram a implementação
de funcionalidades essenciais. A seguir, são apresentados os principais aspectos técnicos e
as ferramentas utilizadas na criação desta solução.

• Java como linguagem de desenvolvimento

– Amplo ecossistema de frameworks e bibliotecas que melhoram a produção de
aplicações complexas, desde a gestão de banco de dados até a disponibiliza-
ção de rotas. Isso acelera o desenvolvimento, reduz a quantidade de código
necessária;

– Segurança e suporte multiplataforma: possui recursos integrados para garan-
tir a segurança de aplicações, como controle de acesso, verificação de código e
suporte a criptografia. Além disso, a portabilidade da JVM permite que apli-
cações Java sejam executadas de maneira consistente em diferentes sistemas
operacionais, tornando-a uma escolha ideal para ambientes corporativos que
exigem alta segurança e flexibilidade.

• Spring Framework e Spring Boot <https://spring.io/projects/spring-boot>

Capítulo 4. Desenvolvimento do Software 49

– plataforma popular para desenvolvimento de aplicações em Java, conhecida
por sua flexibilidade e arquitetura orientada a aspectos, que permite a criação
de sistemas modulares de alta qualidade.

– uma extensão do Spring que simplifica a configuração e inicialização de proje-
tos, eliminando a complexidade da configuração manual e acelerando o desen-
volvimento de APIs REST.

– Benefícios do Spring Boot: starters para configuração automática de depen-
dências;

• Bibliotecas adicionais

– iTextPDF (<https://itextpdf.com/>): utilizada para criação e manipulação
de documentos PDF, permitindo gerar PDFs dinâmicos e personalizados de
maneira prática e eficiente.

– BouncyCastle (<https://www.bouncycastle.org/>): biblioteca de segurança
que fornece suporte para criptografia, assinaturas digitais e outras operações
essenciais para garantir a proteção e integridade dos dados na API.

• Segurança com JWT

– JSON Web Tokens (JWT): método de autenticação e controle de acesso que
garante que apenas usuários autenticados possam acessar endpoints protegidos.

– Vantagens: tokens autossuficientes que mantêm a identidade do usuário de
forma segura, sem a necessidade de armazenar sessões no servidor.

– Proporciona escalabilidade e integração eficiente entre diferentes partes do sis-
tema, assegurando a confidencialidade e integridade das transações.

4.3.2 Tecnologias da Web App

A Web App foi projetada como uma demonstração prática da API de Assinatura
Digital, ilustrando a implementação de suas rotas e abordando aspectos relacionados à
segurança no acesso e na manipulação de dados. Dividida entre a arquitetura do cliente e
do servidor, a aplicação oferece uma visão clara de como os dois componentes interagem
para criar uma experiência coesa e funcional. A arquitetura do servidor foi desenvolvida
utilizando FastAPI, enquanto a arquitetura do cliente utiliza tecnologias como HTML,
CSS, e JavaScript para uma interface simples, mas que cumpre com o que proposto.

• FastAPI (<https://fastapi.tiangolo.com/>) para o backend: é um framework mo-
derno e de alto desempenho para construção de APIs web, baseado em Python. Ele
oferece suporte integrado a validações de dados, geração automática de documenta-
ção (OpenAPI) e integração simples com tecnologias de autenticação, o que o torna

Capítulo 4. Desenvolvimento do Software 50

ideal para aplicações que precisam demonstrar aspectos de segurança e usabilidade
de rotas.

• HTML, CSS e JavaScript para o front-end: A escolha de HTML e CSS garante uma
estrutura visual clara e estilizada, ideal para a criação de interfaces intuitivas. O Ja-
vaScript permite a implementação de funcionalidades interativas no lado do cliente,
como validações em tempo real e requisições assíncronas à API via Fetch API. O
uso dessas tecnologias fundamenta-se em sua simplicidade e ampla compatibilidade
com navegadores, atendendo ao objetivo de demonstrar a funcionalidade da API
sem complexidades adicionais.

A aplicação foi desenvolvida para demonstrar, de maneira prática, como a API
gerencia autenticação, controle de acesso e validação de assinaturas digitais. Essa aborda-
gem proporciona um ambiente educacional útil tanto para desenvolvedores quanto para
avaliadores que desejam compreender a aplicação e a segurança da API em diferentes
cenários.

4.3.3 Tecnologias da API PKI

A implementação da Infraestrutura de Chave Pública (PKI) foi simplificada uti-
lizando o OpenSSL, uma das ferramentas mais confiáveis e amplamente adotadas para a
criação, gerenciamento e validação de certificados digitais. O OpenSSL fornece uma am-
pla gama de recursos de criptografia, incluindo a geração de chaves públicas e privadas, a
criação de solicitações de assinatura de certificado (CSR), e a assinatura de certificados,
tornando-o ideal para a construção de soluções de segurança.

A integração do OpenSSL com o Spring Boot, com sua integração com bibliotecas
de terceiros, possibilita a criação de uma API de fácil implementação, que atende às
necessidades de segurança de uma infraestrutura PKI, como autenticação, controle de
acesso e validação de assinaturas digitais.

4.4 Arquitetura
A arquitetura de software de um sistema consiste em diferentes estruturas para

entender e analisar o sistema, o que inclui elementos de software e suas características,
conforme é colocado por Bass e Clements (2012). Cada estrutura é composta por um
conjunto de elementos e as interações entre eles. Uma visualização é uma maneira de
representar um conjunto coerente desses elementos arquitetônicos, de modo que possa ser
interpretada pelos envolvidos no sistema. Assim, uma visualização é a representação de
uma ou mais dessas estruturas.

Capítulo 4. Desenvolvimento do Software 51

4.4.1 Arquitetura da API REST

A arquitetura em camadas da API foi projetada de forma que a estrutura está or-
ganizada de maneira a tornar intuitivo o entendimento do papel de cada componente, bem
como a forma como eles interagem entre si.“Uma camada é uma ‘máquina virtual’ abstrata
que fornece um conjunto coeso de serviços por meio de uma interface gerenciada. Cama-
das podem usar outras camadas de forma estritamente gerenciada.”(BASS; CLEMENTS,
2012). Esse modelo em camadas promove uma clara separação de responsabilidades, o
que facilita a evolução do sistema, o diagnóstico de problemas e a implementação de
novas funcionalidades. A Figura 15 apresenta o diagrama que ilustra essa arquitetura,
destacando a disposição das camadas e seus respectivos componentes.

A API REST foi desenvolvida utilizando o framework Spring e o Spring Boot,
com Java como linguagem principal e o servidor Tomcat para hospedar a aplicação. A
arquitetura segue o padrão síncrono com Spring Web MVC, onde os controladores recebem
as requisições e os serviços processam as lógicas de negócios, acessando o keystore para
consultar os certificados digitais necessários para assinatura e validação. Toda a gestão
de dependências é feita pelo Maven, proporcionando um ambiente organizado para a
aplicação.

Capítulo 4. Desenvolvimento do Software 52

Figura 15 – Arquitetura em Camadas da API REST UnBSign

Fonte: Autor.

A camada de Apresentação é responsável por interagir diretamente com os usuários
e expor os pontos de acesso da API. Ela é composta pelos Controllers, que recebem as
requisições HTTP, tratam as entradas e retornam as respostas. Neste caso, temos três
principais controllers:

• CertificateController : gerencia operações relacionadas a certificados digitais. Ele
oferece endpoints para gerar certificados autoassinados, excluir todos os certificados
armazenados, buscar um certificado por ID, e emitir e assinar certificados.

• PdfController : gerencia operações relacionadas à assinatura e validação de PDFs.
Ele oferece dois endpoints principais: um para assinar documentos PDF, utilizando
um arquivo enviado pelo usuário e inserindo uma assinatura digital em uma posição
específica da página, e outro para validar a assinatura de um PDF.

• TestController : oferece dois endpoints de teste: um GET para verificar se a API
está funcionando corretamente, retornando uma mensagem de sucesso, e um POST

Capítulo 4. Desenvolvimento do Software 53

para receber um nome como parâmetro e responder com uma saudação personali-
zada, confirmando que a requisição foi bem-sucedida.

A camada de Negócios contém a lógica central da aplicação, realizando o pro-
cessamento e a implementação das regras de negócio. Os Services são responsáveis por
manipular os dados e interagir com as camadas inferiores. Os serviços mais importantes
no contexto de assinatura digital são:

• CertificateService: responsável pela criação, armazenamento e manipulação de
certificados digitais. Ele gera pares de chaves RSA, cria solicitações de assinatura de
certificado (CSR), envia à autoridade certificadora (PKI) para obter um certificado
assinado e gerencia certificados assinados. Os certificados são armazenados em um
keystore (um repositório seguro usado para armazenar chaves privadas e certificados
digitais, permitindo a gestão e proteção desses ativos criptográficos);

• PdfSignService: responsável por assinar digitalmente documentos PDF, utili-
zando um certificado digital armazenado em um keystore. Ele prepara a aparência
da assinatura, posiciona o campo de assinatura no PDF, e aplica uma assinatura
criptográfica utilizando a chave privada do usuário e o algoritmo SHA-256. O pro-
cesso de assinatura é realizado com a biblioteca iText e a implementação de uma
assinatura externa utilizando o BouncyCastle como provedor de criptografia;

• PdfValidateSignService: responsável por validar assinaturas digitais em arquivos
PDF. Ele carrega o arquivo PDF, verifica as assinaturas presentes e processa cada
uma delas. Para validar a integridade, ele extrai e compara o valor do resumo (hash)
da assinatura no CMS (Cryptographic Message Syntax) com o resumo calculado a
partir do conteúdo assinado no PDF. Além disso, ele verifica o certificado associado
à assinatura, extraindo informações como o CN (Common Name), número de série
e data de assinatura. O serviço também valida o algoritmo de assinatura e fornece
informações sobre a integridade da assinatura.

A camada de Infraestrutura trata dos aspectos técnicos e de suporte à aplicação.
Ela não contém lógica de negócios, mas provê funcionalidades essenciais para o funciona-
mento da aplicação, como segurança e acesso a recursos externos. Os principais compo-
nentes dessa camada são:

• JwtAuthFilter : filtro de autenticação responsável por verificar o token JWT em
cada requisição. Ele garante que apenas usuários autenticados possam acessar os
recursos da API;

• KeyStoreManager : gerencia operações na keystore, permitindo carregar, armaze-
nar, adicionar e remover certificados de maneira segura;

Capítulo 4. Desenvolvimento do Software 54

4.4.2 Arquitetura da Web App

A arquitetura da Web App segue o padrão MVC (Model-View-Controller), onde
as interações do usuário são gerenciadas por uma estrutura modular em torno de uma
aplicação FastAPI, com uma separação clara entre as responsabilidades de front-end e
backend. O backend é responsável pela lógica de negócios, como a autenticação de usuários,
gerenciamento de sessões e manipulação de arquivos. A aplicação utiliza rotas para mapear
diferentes endpoints para renderizar páginas HTML ou processar dados via requisições
POST. O diagrama da arquitetura pode ser visto na Figura 16.

Nesta separação de responsabilidades, as camadas tem as seguintes:

• Model: responsável pela definição dos dados e da lógica de negócios. No caso da
aplicação, os modelos representam os dados relacionados aos usuários e suas intera-
ções com o sistema

• View: responsável pela apresentação dos dados ao usuário, e é composta pelos
arquivos HTML que utilizam o mecanismo de templates Jinja2. Esses templates
são usados para gerar dinamicamente as páginas que o usuário verá, como as telas
de login, cadastro e upload de documentos. A visão é alimentada com dados do
Controller, como o nome do usuário autenticado, e gera o HTML final para exibição.
A separação entre lógica de apresentação (HTML, CSS, JavaScript) e lógica de
controle permite que o front-end seja modificado sem impactar a lógica de negócios.

• Controller : atua como intermediária entre a visão e o modelo. Ele recebe as requisi-
ções HTTP, executa a lógica de negócios necessária (como autenticação de usuários,
criação de tokens, validação de credenciais) e interage com os modelos para obter
ou manipular dados.

Figura 16 – Diagrama da Arquitetura MVC da Web App

Fonte: Autor.

Capítulo 4. Desenvolvimento do Software 55

4.4.3 Arquitetura da API PKI

4.4.3.1 PKI Simples

A arquitetura da Infraestrutura de Chave Pública (PKI) foi desenvolvida com base
em um tutorial simples de PKI disponível em openssl (2024).

O processo de construção da PKI começa com a criação de uma Autoridade Cer-
tificadora (CA) raiz simples e seu respectivo certificado de CA. A seguir, a CA raiz é
utilizada para gerar uma CA de assinatura, que será responsável pela emissão de certi-
ficados para usuários finais. Esse modelo hierárquico permite uma gestão da segurança
digital, onde a CA raiz estabelece a confiança, e a Sub CA é encarregada da emissão dos
certificados de maneira controlada e delegada. Essa organização é apresentada na Figura
17.

Figura 17 – Hierarquia da PKI Simples

Fonte: Autor.

A estrutura de diretórios foi organizada para refletir essa hierarquia, com a CA raiz
e a Sub CA, que se encarrega da emissão de certificados para as entidades finais (usuários
ou sistemas). As entidades finais, por sua vez, são aquelas que recebem os certificados,
permitindo-lhes autenticar sua identidade e garantir a segurança das comunicações.

4.4.3.2 Estrutura Spring Boot da PKI

A arquitetura da API PKI foi projetada utilizando uma abordagem semelhante à
da API UnBSign, com a separação de responsabilidades entre os componentes Controller
e Service. Sua diagramação pode ser vista na Figura 18.

Capítulo 4. Desenvolvimento do Software 56

Figura 18 – Diagrama de Arquitetura da API PKI

Fonte: Autor.

• CertificateController : atua como o ponto de entrada para solicitações relacio-
nadas à assinatura e validação de certificados. Ele expõe endpoints para processar
requisições de assinatura de certificados via /signature, validação de certificados
por meio de /validate e um endpoint de teste /teste. O controlador gerencia os
erros e garante que respostas adequadas sejam enviadas ao cliente, retornando o
certificado assinado ou os resultados da validação.

• CertificateService: implementa a lógica de negócio associada à assinatura e va-
lidação de certificados. Para a assinatura, ele recebe o CSR e o Common Name,
executa o processo utilizando openssl e retorna o certificado assinado. Além disso,
oferece funcionalidade para verificar a validade de múltiplos certificados a partir de
seus números de série, garantindo um retorno estruturado ao cliente.

57

5 Resultados

Este capítulo apresenta os resultados obtidos durante o desenvolvimento da API
UnBSign, bem como das soluções complementares que a acompanham. Para ilustrar a
interação entre os componentes do sistema, é apresentado um diagrama funcional, além da
abordagem utilizada para o deploy, que foi realizada por meio da virtualização com Docker.
Também são destacados os principais elementos da solução, incluindo a configuração de
segurança, os serviços de assinatura e validação de documentos em formato PDF, e a
estrutura da infraestrutura de chaves públicas (PKI).

Os repositórios estão no GitHub em uma organização chamada UnBSign que pode
ser acessada pelo link: <https://github.com/orgs/UnBSign/repositories>.

Os links são:

• UnBSign-API: <https://github.com/UnBSign/UnBSign-API>

• UnBSign-PKI: <https://github.com/UnBSign/UnbSign-PKI>

• UnBSign-WebApp: <https://github.com/UnBSign/UnBSign-WebApp>

5.1 Diagrama de Arquitetura Funcional
O diagrama de arquitetura funcional ilustra como os principais componentes in-

teragem para realizar a funcionalidade de criação e utilização de certificados digitais. Ele
demonstra o fluxo de informações entre o usuário, o Web App e as APIs (UnBSign e
PKI). O foco está na integração entre as camadas do sistema, detalhando as etapas desde
o cadastro do usuário e a geração do certificado digital até o uso desse certificado para
assinar documentos PDF.

O primeiro diagrama, Figura 19, destaca o processo de cadastro do usuário e a
geração do par de chaves, incluindo a criação de um CSR e a assinatura pelo PKI, além
do armazenamento seguro das chaves e do certificado no keystore.

Capítulo 5. Resultados 58

Figura 19 – Diagrama Funcional de Cadastro de Usuário

Fonte: Autor.

1. O usuário preenche os dados necessários na tela de cadastro do Web App e solicita
a criação de uma conta;

2. Web App solicita à API UnBSign a criação de um certificado digital para o usuário;

3. A API UnBSign gera um par de chaves (pública e privada), cria um CSR, que
contém as informações do certificado e envia o CSR para a API PKI assinar;

4. A API PKI recebe o CSR, assina o certificado com sua Sub-CA (subautoridade
certificadora), armazena o CSR e o certificado assinado no banco de dados e retorna
o certificado digital assinado para a API UnBSign.

5. A API UnBSign armazena o certificado e a chave privada do usuário em uma keys-
tore.

6. O Web App recebe a confirmação da API UnBSign sobre a criação do certificado e
informa o sucesso ao usuário.

Capítulo 5. Resultados 59

No segundo diagrama, Figura 20, é mostrado como o usuário, após login, envia
um arquivo PDF para ser assinado digitalmente. O JWT gerado no login autentica o
processo, garantindo a segurança. A API UnBSign acessa as credenciais do keystore para
realizar a assinatura e retorna o documento assinado.

1. O usuário insere suas credenciais no Web App;

2. O sistema valida as credenciais e, se corretas, gera um JWT para autenticação.
Após a autenticação, o JWT é armazenado em um cookie no navegador para futuras
interações seguras;

3. Usuário autenticado pode enviar arquivo para assinatura;

4. O usuário carrega um arquivo PDF para assinatura. O sistema exibe uma pré-
visualização do arquivo e permite a seleção da posição onde a assinatura será apli-
cada.

5. O Web App envia o arquivo PDF e o JWT para a API UnBSign, solicitando a
assinatura.

6. A API UnBSign valida o JWT e decodifica os dados do usuário. Com acesso ao
certificado digital e à chave privada armazenados no Keystore, a API realiza a
assinatura do documento;

7. A API devolve o documento PDF assinado ao Web App e o usuário recebe o arquivo
assinado como resposta;

Capítulo 5. Resultados 60

Figura 20 – Diagrama Funcional de Login e Assinatura de Documento

Fonte: Autor.

No terceiro diagrama, Figura 21, após o upload do documento, o Web App envia a
solicitação à API UnBSign, que verifica a validade das assinaturas digitais e a integridade
do conteúdo do documento. O resultado da validação é retornado ao usuário, confirmando
se o documento permanece íntegro e devidamente assinado.

Figura 21 – Diagrama Funcional de Validação de Assinatura

Fonte: Autor.

1. O usuário realiza o upload de um arquivo PDF no Web App para verificar a validade
das assinaturas digitais e a integridade do documento;

2. A aplicação web encaminha o PDF para a API UnBSign, responsável pela análise
técnica das assinaturas digitais;

Capítulo 5. Resultados 61

3. A API UnBSign extrai informações sobre as assinaturas digitais presentes no PDF,
como o CN (Common Name) do certificado, número de série e data de assinatura.
Verifica a integridade dos dados do documento para garantir que ele não foi alterado
após ser assinado. Valida as assinaturas CMS e prepara um JSON com a lista de
números de série dos certificados extraídos. Esse JSON é enviado para a API PKI.

4. A API PKI verifica se os números de série dos certificados extraídos estão registrados
no banco de dados da PKI. Retorna para a API UnBSign um resultado indicando
se cada certificado é válido ou não.

5. A API UnBSign consolida as informações recebidas da API PKI e retorna um JSON
para o Web App. Esse JSON contém: O hash do documento, o status das assinaturas
(válidas ou não), a confirmação da integridade dos dados do PDF.

6. Com base no JSON retornado pela API UnBSign, o Web App exibe para o usuário
o status do documento, incluindo informações sobre a validade das assinaturas e a
integridade do arquivo.

5.2 Deploy da Aplicação para Testes
A aplicação foi projetada para ser implantada utilizando containers Docker, pro-

porcionando um ambiente virtualizado e eficiente para a realização de testes. Através do
Docker Compose, a arquitetura do sistema é orquestrada de modo que cada serviço seja
executado em containers independentes, o que assegura maior flexibilidade e escalabili-
dade. Embora os serviços estejam em containers distintos, todos estão conectados por
uma rede comum, o que permite uma comunicação entre eles.

Todos os containers estão interligados pela rede unbsign-webapp_unbsign-network.
Esta arquitetura facilita tanto o desenvolvimento quanto a realização de testes, ao mesmo
tempo em que possibilita a escalabilidade e a integração de novos serviços.

A Figura 22 apresenta o diagrama de arquitetura do sistema, ilustrando como
os diferentes serviços, executados em containers Docker, estão conectados por uma rede
compartilhada.

Capítulo 5. Resultados 62

Figura 22 – Arquitetura do Sistema Web com Containers Docker

Fonte: Autor.

• WebApp (porta 8000): Servindo como a interface frontend da aplicação, o We-
bApp gerencia as interações do usuário e se comunica com o backend. Ele também
se conecta ao banco de dados PostgreSQL na porta 5432;

• Banco de Dados (PostgreSQL porta 5431): Armazena as informações utiliza-
das pelo WebApp.

• UnBSign-API (porta 8080): A API principal do sistema, responsável por geren-
ciar as operações e integrar o WebApp com a PKI API. Ela recebe requisições do
WebApp na porta 8080 e se comunica com a PKI API na porta 8081.

• PKI API (porta 8081): Responsável pelas operações de infraestrutura de chave
pública, como a assinatura digital e o gerenciamento de certificados. Ela é acessada
pela UnBSign-API para realizar essas operações;

• Interfaces Externas: As interfaces externas são geradas pelo WebApp, que envia
requisições para a UnBSign-API na porta 8080. Esse fluxo facilita a integração do
sistema com outros serviços, permitindo que a aplicação se comunique com recursos
externos de forma eficiente e segura.

A aplicação de teste pode ser acessada em <https://fcte.john.pro.br/unb-sign/
login>. Caso o acesso não esteja disponível, pode haver interrupções temporárias devido
a problemas técnicos.

Capítulo 5. Resultados 63

5.3 API UnBSign

5.3.1 Configuração de Segurança

A configuração de segurança é definida pela classe SecurityConfig, onde a principal
função é proteger os endpoints da aplicação utilizando o Spring Security. A principal ca-
racterística é a configuração do filtro de autenticação JWT, que garante que as requisições
sejam autenticadas via token de segurança.

O método securityFilterChain configura a proteção dos endpoints. O endpoint
/api/pdf/validation é liberado para acesso público, enquanto /api/pdf/signature
exige autenticação. A sessão é configurada para ser stateless, o que significa que o sistema
não mantém sessões entre as requisições, dependente apenas do JWT para autenticação.

O filtro JwtAuthFilter valida o token JWT presente no cabeçalho Authorization
de cada requisição. Se o token estiver ausente, for inválido ou expirado, a requisição é
rejeitada com status 401 Unauthorized. Caso contrário, o filtro extrai o identificador do
usuário do token e o coloca no contexto de segurança, permitindo que a aplicação acesse
os dados do usuário autenticado.

A classe JwtUtils é responsável pela manipulação do JWT, oferecendo métodos
para extrair o identificador do usuário, validar o token, e decodificar o token para extrair
suas reivindicações, utilizando a chave secreta para garantir a integridade do token.

Essa arquitetura de segurança garante que apenas usuários autenticados com um
token válido possam acessar as funcionalidades protegidas da aplicação, como a assinatura
de PDF e a validação de assinatura.

5.3.2 Assinatura e Validação de PDFs

5.3.2.1 Controlador PdfController

Este controlador tem como objetivo a implementação de funcionalidades para a
assinatura e validação de arquivos PDF, utilizando a plataforma Spring Boot. Foram
implementados dois endpoints principais que permitem, respectivamente, a assinatura
digital de um arquivo PDF e a validação de sua assinatura digital.

• POST /api/pdf/signature: permite a assinatura de arquivos PDF. Ele recebe,
na requisição, o arquivo PDF e informações sobre a posição e página onde a as-
sinatura deve ser inserida. O identificador do usuário é extraído do contexto de
segurança para vincular a assinatura ao usuário autenticado. O arquivo PDF é vali-
dado quanto ao formato de arquivo e integridade antes de ser assinado. A assinatura
digital é aplicada com base nas informações de posição fornecidas, e, após o processo,
o arquivo assinado é retornado ao usuário.

Capítulo 5. Resultados 64

• POST /api/pdf/validation: foi desenvolvido para validar assinaturas digitais
em arquivos PDF. O fluxo começa com a recepção de um arquivo PDF, que é
então validado quanto à sua integridade. Em seguida, um serviço dedicado verifica
a autenticidade da assinatura, confirmando se a assinatura é válida e se o arquivo não
foi alterado após a assinatura. Por fim, o sistema retorna um conjunto de resultados
detalhando a validade da assinatura.

5.3.2.2 Serviços PdfSignService e PdfValidateSignService

O serviço PdfSignService é responsável por assinar digitalmente documentos PDF
utilizando um certificado digital. Ele oferece métodos para configurar a aparência da
assinatura, adicionar um logo ao documento e determinar a posição da assinatura. O
processo de assinatura envolve a extração do certificado e da chave privada de um keystore,
a criação de uma assinatura digital usando o algoritmo de hash SHA256 e a inserção dessa
assinatura no PDF.

O método executeSign é utilizado para orquestrar o processo de assinatura, car-
regando o keystore, validando o certificado do usuário e chamando o método sign para
aplicar a assinatura digital no arquivo PDF. Suas funcionalidades são:

• getCNFromX509Certificate(X509Certificate cert):
Extrai o nome comum (CN) de um certificado X.509.

• setAppearance(PdfSignatureAppearance appearance, String reason,
String location, String certName): Define a aparência da assinatura digital,
incluindo razão, local e um texto descritivo;

• addLogoToAppearance(PdfSignatureAppearance appearance): Adiciona o logo-
tipo à assinatura digital;

• getSignatureRectangle(Float llx, Float lly, Float pageWidth,
Float pageHeight): Calcula a posição e dimensões da assinatura dentro do PDF,
garantindo que esteja dentro dos limites da página;

• setDefaultSignatureRectangle(): Define uma posição padrão para a assinatura
caso não seja especificada;

• setSignaturePosition(PdfReader reader): Analisa o PDF e armazena as coor-
denadas de texto para auxiliar na escolha da posição da assinatura;

• getNextSignatureFieldName(PdfReader reader): Retorna o nome do próximo
campo de assinatura no PDF, garantindo que seja único;

Capítulo 5. Resultados 65

• generateSignaturePolicy(): gera informações sobre a política de assinatura di-
gital, atribuindo um identificador único, calculando o hash do conteúdo da política
utilizando um algoritmo de resumo criptográfico e associando um URL de referência.

• sign(String src, String dest, Certificate[] chain, PrivateKey pk,
String digestAlgorithm, String provider, CryptoStandard subFilter,
String reason, String location, String certName, Integer pageNumber
, Float posX, Float posY):
Realiza a assinatura digital do PDF, posicionando a assinatura conforme as coor-
denadas informadas;

• executeSign(String SRC, String DEST, String id, int pageNumber
, Float posX, Float posY): Carrega o certificado do usuário do keystore e chama
o método sign para assinar o PDF.

O fluxo de uso é:

1. O serviço recebe os parâmetros: caminho do PDF original, caminho do PDF assi-
nado, identificador do certificado (id), número da página,e coordenadas do carimbo
da assinatura;

2. O serviço carrega o keystore, o certificado correspondente ao id é recuperado e a
chave privada associada ao certificado é extraída;

3. O nome comum (CN) do certificado é extraído para compor a assinatura e o serviço
define os metadados da assinatura, incluindo a razão, local e nome do assinante. Se
necessário, a posição da assinatura é ajustada automaticamente;

4. O serviço cria uma assinatura digital no documento. A aparência da assinatura
é configurada (incluindo texto descritivo e logotipo da UnB). O PDF é assinado
utilizando a chave privada e o algoritmo de hash SHA-256;

5. O serviço finaliza a assinatura e retorna o PDF assinado para uso;

Este serviço também utiliza as bibliotecas iText e BouncyCastle. Ambas as bibli-
otecas são amplamente utilizadas para manipulação de PDFs e para criptografia, sendo
fundamentais para a implementação de assinaturas digitais.

As funcionalidades principais do iText permitem adicionar uma assinatura visual,
sendo elas:

• PdfReader: Carrega o documento PDF para assinatura;

• PdfStamper: Aplica a assinatura ao documento carregado.

Capítulo 5. Resultados 66

• PdfSignatureAppearance: Configura a aparência da assinatura, incluindo texto e
imagem (logo);

• MakeSignature: Realiza a assinatura digital usando a chave privada e o certificado
do usuário.

O método MakeSignature.signDetached do iTextPDF possibilita a criação de
uma assinatura digital em um documento PDF de maneira desanexada. Isso significa
que a assinatura é associada ao documento, sem modificar seu conteúdo original, sendo
inserida em um bloco separado de assinatura. Tal abordagem garante que o conteúdo do
PDF permaneça intacto, enquanto a assinatura digital valida a integridade e autenticidade
do documento. O processo ocorre da seguinte forma:

1. Geração do hash do documento: O conteúdo do PDF é processado por meio do
algoritmo de hash SHA-256, gerando um hash do documento;

2. Assinatura do hash: O hash gerado no passo anterior é então assinado digital-
mente utilizando a chave privada associada ao certificado do signatário;

3. Configuração da aparência da assinatura: A aparência visual da assinatura é
configurada, permitindo a inserção de informações como o nome do signatário, data,
localização e logo;

4. Anexação da assinatura: A assinatura digital resultante, junto com a cadeia
de certificados (que inclui a chave pública para validação futura), é anexada ao
documento no campo de assinatura designado;

5. Inclusão da política de assinatura: Essa política define regras e diretrizes que
a assinatura deve seguir, incluindo o identificador único da política, o algoritmo de
hash utilizado, e um URL que referencia a documentação da política.

6. Geração do pdf : O documento PDF resultante contém a assinatura digital no for-
mato CMS (Cryptographic Message Syntax), preservando a integridade do conteúdo
original do PDF.

O CMS (Cryptographic Message Syntax), descrito em R. Housley (2009), define um
formato para proteger dados por meio de criptografia e assinaturas digitais. Ele permite
que as informações sejam encapsuladas de diferentes maneiras, incluindo a possibilidade
de aninhar camadas de proteção. Por exemplo, um dado pode ser assinado digitalmente
e, em seguida, criptografado, ou vice-versa.

Além disso, ICP-Brasil (2021c) explica que o CMS possibilita que atributos adicio-
nais sejam incorporados à assinatura, como o registro do momento em que a assinatura foi

Capítulo 5. Resultados 67

realizada. Também permite a inclusão de contra-assinaturas e co-assinaturas, ampliando
a flexibilidade do processo de autenticação. No entanto, ele não permite assinar apenas
partes de um documento; a assinatura sempre se refere ao conteúdo como um todo.

Neste projeto, a implementação permite a adição de múltiplas assinaturas em um
mesmo documento, viabilizando tanto co-assinaturas, onde diversos signatários assinam
um documento de forma independente, quanto contra-assinaturas, onde uma assinatura
é aplicada sobre outra previamente existente. Para isso, foi desenvolvido de forma a pre-
servar assinaturas anteriores, garantindo que um novo processo de assinatura não invalide
as assinaturas já presentes.

Já as funcionalidades utilizadas do BouncyCastle são:

• BouncyCastleProvider: Adiciona o provedor de criptografia à aplicação.

• ExternalDigest: Calcula o resumo da mensagem (hash) usando SHA-256.

• ExternalSignature: Define a assinatura digital com a chave privada do usuário e
o algoritmo SHA-256.

• PrivateKeySignature: Implementa a assinatura digital usando a chave privada e
o algoritmo SHA-256.

• DigestAlgorithms: Fornece algoritmos de hash, como o SHA-256, para garantir a
integridade do documento.

Por sua vez, o serviço PdfValidateSignService, baseado em (SATRIO, 2022), é um
serviço responsável pela validação de assinaturas digitais em documentos PDF. A principal
função do serviço é verificar a integridade de um PDF assinado digitalmente, checando a
validade da assinatura e o certificado associado. Suas principais funções são:

• validateSignature(String filePath): valida as assinaturas digitais presentes no
PDF, verificando a integridade do documento e a validade dos certificados associa-
dos. Retorna um mapa com informações sobre as assinaturas e o status de validação.

• processSignature(PDSignature signature,
ByteArrayInputStream pdfBytes):
Processa uma assinatura individual, extraindo informações como o certificado, o
algoritmo de digestão, a data de assinatura e verifica a integridade da assinatura.;

• getCNFromCertificate(X509CertificateHolder certificateHolder): Extrai o
Common Name (CN) do certificado digital, que geralmente contém informações
sobre o proprietário do certificado.

Capítulo 5. Resultados 68

• getByteRangeData(ByteArrayInputStream bis, int[] byteRange):
Extrai os dados do PDF que foram assinados, com base no intervalo de bytes espe-
cificado na assinatura.

• validateCertificatesWithPKI(List<String> serialNumbers): Valida os certi-
ficados digitais com um serviço externo de PKI (Public Key Infrastructure), verifi-
cando se os números de série dos certificados são reconhecidos e válidos;

• getDocumentHash(String filePath): Calcula o hash do documento PDF usando
o algoritmo SHA-256.

E o fluxo de execução é o seguinte:

1. Recebe o arquivo PDF como parâmetro;

2. As assinaturas do documento são identificadas e processadas individualmente;

3. Verifica se a assinatura utiliza filtros suportados, como Adobe.PPKLite e
ETSI.CAdES.detached;

4. O campo CN, número de série e chave pública são extraídos do certificado X.509;

5. O intervalo de bytes da assinatura é recuperado para validação;

6. O hash do conteúdo assinado é comparado com o hash armazenado para garantir
integridade;

7. Validação da Assinatura: A assinatura é validada com algoritmos como SHA-1 ou
SHA-256;

8. Os números seriais dos certificados são enviados à API PKI para validação;

9. O resultado da validação é retornado com informações sobre cada assinatura;

As principais bibliotecas utilizadas foram Apache PDFBox, BouncyCastle.

A biblioteca Apache PDFBox foi utilizada para manipulação e leitura de docu-
mentos PDF. Ela foi particularmente importante para extrair as assinaturas e possibilitar
a análise detalhada de seus metadados, como filtro, subfiltro, informações de contato e
motivo.

O BouncyCastle foi utilizado para lidar com estruturas e algoritmos criptográfi-
cos complexos necessários para a validação de assinaturas digitais. A biblioteca fornece
suporte para o processamento de dados assinados no formato PKCS#7, verificação de
informações do certificado digital (como o CN) e cálculo de atributos como o digest da
mensagem. Com isso, foi possível validar a integridade dos dados e autenticar a origem
da assinatura, além de extrair informações detalhadas do certificado.

Capítulo 5. Resultados 69

5.3.3 Emissão e Controle de Certificados Digitais

5.3.3.1 Controlador CertificateController

O CertificiateController tem a finalidade de gerenciar operações relacionadas a
certificados digitais, incluindo a criação, armazenamento, remoção e assinatura de certi-
ficados. Ele fornece endpoints para interagir com os serviços de certificados, utilizando o
CertificateService para executar as operações de negócios. Abaixo, é explicado o funcio-
namento de cada um dos métodos do controlador:

• POST /api/certificates/generate-self-signed: cria um certificado digital
autoassinado. Ao receber um objeto CertificateRequest com os parâmetros id e cn, ele
chama o serviço certificateService.createAndStoreCertificate para gerar e armazenar
o certificado no keystore. Em seguida, retorna uma mensagem confirmando a criação
do certificado;

• DELETE /api/certificates/delete-all: este endpoint foi criado para ser
usado em desenvolvimento. Ele exclui todos os certificados armazenados no keystore.
Caso a operação seja bem-sucedida, retorna uma mensagem informando que todos
os certificados foram deletados, ou uma mensagem de erro em caso de falha;

• GET /api/certificates/certificate/id: permite recuperar um certificado ar-
mazenado com base no identificador (id) fornecido na URL. Se o certificado for
encontrado, é retornado com status 200; caso contrário, uma mensagem de erro é
retornada com status 404.

• POST /api/certificates/issue-certificate: emite e assina um certificado.
Primeiramente, ele gera um CSR, em seguida, o CSR é enviado a API PKI para
assinatura. Se a assinatura for bem-sucedida, o certificado assinado é processado e
armazenado. O método retorna uma mensagem de sucesso ou erro dependendo do
resultado do processo de assinatura e armazenamento;

Os endpoints /delete-all e /generate-self-signed são recomendados para
uso exclusivo em ambientes de desenvolvimento, pois permitem manipulações diretas e
sem controle de certificados armazenados no keystore, o que pode representar riscos de
segurança em ambientes de produção. O primeiro exclui todos os certificados, o que pode
causar perda de dados críticos, enquanto o segundo cria certificados autoassinados, que
não são validados por autoridades certificadoras confiáveis, comprometendo a confiança e
a integridade do sistema em um ambiente de produção.

Capítulo 5. Resultados 70

5.3.3.2 Serviço CertificateService

O serviço CertificateService é responsável por fornecer funcionalidades relacionadas
à geração, armazenamento e processamento de certificados digitais. Ele usa a biblioteca
BouncyCastle para manipulação de certificados X.509 e PKCS#10. Além disso, o serviço
integra-se com a API PKI para assinatura de certificados. Aqui estão os métodos principais
e como eles se conectam:

• createCsr(String id, String commonName): Gera um CSR usando uma chave
pública e privada RSA. Retorna o CSR codificado em Base64.

• generateCsr(PrivateKey privateKey, PublicKey publicKey,
String commonName): Cria o CSR usando a chave privada e pública fornecidas,
com o nome comum especificado.

• createAndStoreCertificate(String id, String cn): Gera um certificado au-
toassinado usando um par de chaves RSA e o nome comum especificado, e armazena
o certificado no keystore.

• processAndStore(String id, String signedCertContent): Processa um cer-
tificado assinado recebido em formato PEM, converte-o para X509 e o armazena no
keystore;

• generateSelfSignedCertificate(KeyPair keyPair,
String cn): Gera um certificado X509 autoassinado a partir de um par de chaves
RSA e um nome comum;

• deleteAllCertificates(): Remove todos os certificados do keystore;

• getCertificateByAlias(String alias): Recupera um certificado do keystore
pelo alias e o retorna como uma string no formato PEM;

• generateRsaKeyPair(): Gera um par de chaves RSA de 2048 bits;

• storeCertificate(String alias, X509Certificate certificate)
: Armazena o certificado X509 no keystore, associado ao alias fornecido;

• convertPemToX509Certificate(String pem): Converte um certificado no for-
mato PEM para o formato X509;

• pkiSignCertificate(MultiValueMap<String, String> body, String id):
Envia uma solicitação para API PKI para assinatura do certificado. Após receber a
resposta, o certificado assinado é processado e armazenado no keystore.

Capítulo 5. Resultados 71

5.3.4 Referência de Endpoints da API

As Tabelas 5 e 6 apresentam os endpoints descritos anteriormente, suas respectivas
funcionalidades e parâmetros necessários. Todos os endpoints seguem o padrão de URL
iniciado com /api/.

Exceto pelo endpoint pdf/validation, todos os demais requerem o envio de um
JWT no cabeçalho de autorização (Authorization Header) para autenticação e validação
de acesso.

Tabela 5 – Endpoints da API UnBSign
Endpoint Descrição

POST /certificates/generate-selfsigned Gera um certificado digital autoassinado.
DELETE /certificates/delete-all Exclui todos os certificados armazenados no keystore.

GET /certificates/certificate/{id}
Recupera o certificado armazenado pelo alias

id.
POST /certificates/issue-certificate Cria e assina um certificado, enviando o CSR a um serviço remoto.

POST /pdf/signature Assina um arquivo PDF.
POST /pdf/validation Valida a assinatura de um arquivo PDF.

GET /test Endpoint de teste.
POST /test Endpoint de teste com envio de um nome.

Fonte: Autor.

Tabela 6 – Parâmetros de Endpoint
Endpoint Parâmetros/Corpo de Requisição

POST /certificates/generate-selfsigned corpo contendo "id"e "cn"
DELETE /certificates/delete-all -

GET /certificates/certificate/{id} Parâmetro de caminho: id
POST /certificates/issue-certificate corpo contendo "id"e "cn"

POST /pdf/signature Corpo contendo o arquivo, posX, posY e pageNumber.
POST /pdf/validation Corpo contendo o arquivo a ser validado.

GET /test -
POST /test Corpo: nome

Fonte: Autor.

5.3.5 Documentação da API com Springdoc

A documentação da API foi elaborada utilizando o Springdoc, uma biblioteca
que simplifica a integração entre o Spring Framework e as especificações do Swagger e
OpenAPI. O Springdoc possibilita a geração automática de documentação detalhada para
APIs REST, extraindo informações diretamente do código-fonte da aplicação, eliminando
a necessidade de criação manual de especificações. Essa abordagem oferece um método
para documentar os endpoints da API, garantindo consistência e precisão.

Por meio do Springdoc, a documentação é construída com base nas anotações pre-
sentes nas classes e métodos da aplicação, fornecendo uma visão estruturada e detalhada

Capítulo 5. Resultados 72

da organização dos serviços e das formas de interação com eles. Adicionalmente, o Spring-
doc integra-se de forma nativa ao Swagger UI, uma interface gráfica interativa que permite
aos desenvolvedores explorar e testar os endpoints da API de maneira intuitiva e prática,
facilitando a compreensão e a validação das funcionalidades disponíveis.

Após a aplicação ser iniciada com sucesso, a documentação da API estará dis-
ponível no navegador através da interface interativa do Swagger, permitindo visualizar e
testar os endpoints da API. A interface pode ser acessada no endpoint /swagger-ui.html.
Essa interface oferece uma visão dos recursos disponíveis e permite realizar chamadas
diretamente para testar o funcionamento da API. A tela da interface interativa pode ser
vista na Figura 23.

Figura 23 – Interface Interativa Swagger

Fonte: Autor.

5.4 API PKI
A construção da API PKI é dividida em duas etapas principais. A primeira etapa

envolve a preparação do ambiente de certificação, abrangendo a criação e organização
dos diretórios e arquivos essenciais para a infraestrutura de chave pública (PKI). Essa
fase garante que todos os componentes necessários estejam devidamente estruturados
para suportar a criação e gerenciamento dos certificados. A segunda etapa é dedicada ao
desenvolvimento da API REST, que oferece um endpoint capaz de receber uma requisição
de assinatura de certificado (CSR) e retornar o certificado assinado. A estruturação dos
diretórios e arquivos da PKI, assim como a API REST para emissão de certificados, são
detalhadas no Apêndice A.

Capítulo 5. Resultados 73

5.5 Web App
A Web App foi desenvolvida com o objetivo de demonstrar o funcionamento da API

UnBSign por meio de uma interface interativa. O backend foi construído utilizando Fas-
tAPI, responsável pela renderização de páginas HTML dinâmicas. A aplicação se conecta
a um banco de dados PostgreSQL, que gerencia o cadastro de usuários, autenticação de
login e a geração de tokens JWT. Esses tokens são utilizados para garantir a autorização e
a comunicação segura com a API de assinatura, permitindo o acesso exclusivo aos serviços
protegidos da API para usuários autenticados. No Apêndice B, encontra-se uma descrição
detalhada sobre a modelagem e migração do banco de dados, além de informações sobre
o backend, as telas de usuário e suas funcionalidades.

74

6 Conclusão

O objetivo principal deste estudo foi alcançado com a apresentação da API UnB-
Sign, a qual possibilita a assinatura digital de arquivos PDF utilizando chaves privadas de
certificados assinados por uma Infraestrutura de Chaves Públicas (PKI). Adicionalmente,
foi desenvolvido um sistema PKI e uma aplicação Web que demonstram o funcionamento
da solução, proporcionando uma visão prática e aplicada da proposta.

O desenvolvimento da API atendeu a todos os requisitos priorizados como Must na
Tabela 4, além de implementar integralmente ou em parte, os requisitos Should e Could,
conforme descrito a seguir:

• RFA14: A API suporta a inclusão de metadados adicionais na assinatura, como a
hora exata da assinatura e o identificador do processo, garantindo a rastreabilidade;

• RFA15: A lógica de assinatura foi projetada de maneira modular, permitindo futuras
atualizações ou suporte a diferentes algoritmos de assinatura sem afetar o funcio-
namento da API. Embora atualmente utilize apenas um algoritmo de assinatura, o
design da API facilita a implementação de novos algoritmos no futuro;

• RFA18: A API responde em um formato JSON padronizado, facilitando a integração
com sistemas externos e garantindo que mensagens de erro e sucesso sejam claras e
compreensíveis;

• RFA25: A API retorna mensagens de erro claras caso ocorra algum problema com
a assinatura ou a validação do documento (por exemplo, erro de formato, erro de
assinatura ou token inválido);

Este trabalho, portanto, apresentou um MVP da aplicação, com foco na imple-
mentação inicial da assinatura digital. Dado o vasto contexto que envolve tanto aspectos
tecnológicos quanto jurídicos, há um considerável potencial para futuras pesquisas e apri-
moramentos. Esses avanços podem incluir o fortalecimento da segurança, garantindo que
dados sensíveis sejam protegidos contra acessos não autorizados e ataques externos, e da
robustez, assegurando que a API continue funcionando de maneira estável, mesmo em si-
tuações de alta demanda ou diante de falhas inesperadas, a ampliação da compatibilidade
com diferentes tipos de certificados digitais, a integração com outros sistemas adminis-
trativos da universidade e a inclusão de novos tipos de documentos para assinatura. Tais
melhorias proporcionarão uma solução cada vez melhor, adaptada às necessidades da ins-
tituição, e contribuirão para a promoção de maior segurança e praticidade nas transações
digitais.

Capítulo 6. Conclusão 75

6.1 Dívidas Técnicas e Sugestões de Melhorias Futuras
Embora o desenvolvimento da API de assinatura digital tenha atendido aos ob-

jetivos iniciais, existem diversas áreas que podem ser aprimoradas para garantir maior
eficiência, segurança e escalabilidade do sistema. As dívidas técnicas a seguir identificam
pontos que precisam de ajustes e melhorias, enquanto as sugestões de melhorias futu-
ras visam consolidar a solução como uma ferramenta robusta, segura e alinhada com as
necessidades da Universidade de Brasília.

• Melhoria na Arquitetura para Facilitar Manutenção e Integração de No-
vas Funcionalidades: A arquitetura atual da aplicação pode ser aprimorada para
facilitar a manutenção e a expansão. A utilização de padrões de design, como o
Strategy Pattern, pode ser implementada para permitir a troca e adição de funcio-
nalidades de forma mais flexível. Isso tornaria a aplicação mais modular, reduzindo
o acoplamento e facilitando a integração de novas funcionalidades, como a adição
de diferentes tipos de documentos ou suporte a novos algoritmos de assinatura;

• Fortalecimento da Segurança da API: A segurança da API é um aspecto cru-
cial, especialmente no contexto de assinatura digital. Para melhorar a proteção dos
dados em trânsito, é fundamental implementar TLS (Transport Layer Security),
garantindo que as comunicações entre o cliente e o servidor sejam criptografadas e
seguras. Além disso, deve-se considerar a implementação de mecanismos de auten-
ticação robustos, como OAuth ou autenticação multifatorial, para aumentar ainda
mais a segurança da aplicação.

• Integração com Certificados Digitais da ICP-Brasil: A compatibilidade com
certificados digitais da ICP-Brasil deve ser uma prioridade para garantir que a API
esteja alinhada com a infraestrutura de chaves públicas nacional. Isso exigirá ajustes
na integração da API, de modo a permitir a validação e assinatura de documentos
utilizando os certificados emitidos pela ICP-Brasil. Esta integração também ajudará
a garantir que a solução esteja em conformidade com os padrões de segurança e
regulatórios brasileiros.

• Desenvolvimento e Consolidação de uma Política de Assinatura: desen-
volver uma política de assinatura robusta que atenda às necessidades de negócios
da UnB. A política deve ser submetida à CA-Raiz para a obtenção de um Identi-
ficador Único (Object Identifier - OID), o que contribuirá para a integração com a
infraestrutura de chaves públicas e permitirá a identificação precisa das assinaturas
digitais realizadas dentro da UnB.

Capítulo 6. Conclusão 76

• Melhorias e Desenvolvimento dos Testes da API: é fundamental melhorar e
desenvolver os testes da API para garantir que a solução mantenha a qualidade ao
longo do tempo.

77

Referências

AWS. O que é uma aplicação Web? Amazon Web Service, 2020. Acesso em: 02 de dezembro
de 2024. Disponível em: <https://aws.amazon.com/pt/what-is/web-application/>.
Citado na página 33.

BASS, L.; CLEMENTS, P. Software Architecture in Practice. 3th. ed. USA: Addison-
Wesley Professional, 2012. ISBN 9780321815736. Citado 2 vezes nas páginas 50
e 51.

BIEHL, M. API Architecture. 2th. ed. USA: API-University, 2015. Citado na página 32.

BOURQUE, P.; FAIRLEY, R. E. SWEBOK V3.0. [S.l.]: IEEE Computer Society,
2014. <https://ieeecs-media.computer.org/media/education/swebok/swebok-v3.pdf>.
Citado 4 vezes nas páginas 35, 36, 40 e 42.

BRASIL. Medida provisória nº 2.200-2, de 24 de agosto de 2001. Diário Oficial
[da] República Federativa do Brasil, Brasília, DF, 2001. Disponível em: <https:
//www.planalto.gov.br/ccivil_03/mpv/antigas_2001/2200-2.htm>. Citado na página
23.

BRASIL. Lei nº 14.063, de 23 de setembro de 2020. Diário Oficial [da] República
Federativa do Brasil, Brasília, DF, 2020. Disponível em: <https://www.planalto.gov.br/
ccivil_03/_Ato2019-2022/2020/Lei/L14063.htm#art5>. Citado 3 vezes nas páginas
14, 24 e 25.

Equipe TOTVS. Assinatura digital é confiável? Como garantir a segurança para seus
documentos. 2024. Acessado em: 19 fev. 2025. Disponível em: <https://www.totvs.com/
blog/gestao-para-assinatura-de-documentos/assinatura-digital-e-confiavel/>. Citado
na página 14.

ETSI. ETSI TS 102 778-1 V1.1.1: Electronic Signatures and Infrastructures (ESI); PDF
Advanced Electronic Signature Profiles; Part 1: PAdES Overview - a framework document
for PAdES. 2009. Acessado em: 20 jan. 2025. Disponível em: <https://www.etsi.org/
deliver/etsi_ts/102700_102799/10277801/01.01.01_60/ts_10277801v010101p.pdf>.
Citado 2 vezes nas páginas 29 e 30.

Git. git. [S.l.]: git, 2024. <https://git-scm.com/>. Citado na página 37.

GOV.BR. Saiba mais sobre a Assinatura Eletrônica. Ministério da Gestão e da
Inovação em Serviços Públicos, 2020. Acesso em: 08 de outubro de 2024. Disponível
em: <https://www.gov.br/governodigital/pt-br/identidade/assinatura-eletronica/
saiba-mais-sobre-a-assinatura-eletronica>. Citado na página 14.

ICP-Brasil. Assinaturas digitais na icp-brasil. Intraestrutura de Chaves Públicas
Brasileira, p. 29, 2015. Citado 3 vezes nas páginas 24, 25 e 26.

ICP-Brasil. Requisitos para geração e verificação de assinaturas digitais na icp-brasil;
doc-icp-15.01. Intraestrutura de Chaves Públicas Brasileira, p. 18, 2015. Citado 2 vezes
nas páginas 29 e 31.

Referências 78

ICP-Brasil. Política de assinatura icp-brasil padrão cades; doc-icp-15.04. Intraestrutura
de Chaves Públicas Brasileira, p. 11, 2021. Citado na página 30.

ICP-Brasil. Requisitos mínimos para políticas de assinatura digital na icp-brasil.
Intraestrutura de Chaves Públicas Brasileira, p. 17, 2021. Citado na página 30.

ICP-Brasil. Visão geral sobre assinaturas digitais na icp-brasil. Intraestrutura de Chaves
Públicas Brasileira, p. 31, 2021. Citado 3 vezes nas páginas 28, 30 e 66.

ITI. ICP-Brasil. [S.l.]: Instituto Nacional de Tecnologia da Informação, 2017.
<https://www.gov.br/iti/pt-br/assuntos/icp-brasil>. Citado na página 23.

ITI. Certificado digital: o que é, para que serve e como fazer um documento virtual.
Instituto Nacional de Tecnologia da Informação, 2020. Acesso em: 18 de junho de
2024. Disponível em: <https://www.gov.br/iti/pt-br/assuntos/noticias/iti-na-midia/
iti-na-midia-certificado-digital-o-que-e-para-que-serve-e-como-fazer-um-documento-virtual#:
~:text=De%20acordo%20com%20o%20Instituto,cart%C3%A3o%20ou%20um%
20token%20criptogr%C3%A1fico.> Citado na página 22.

KATZ, J. Digital Signatures. USA: Springer, 2010. ISBN 978-0-387-27711-0. Citado na
página 13.

KUROSE, J. F.; ROSS, K. W. Redes de computadores e a Internet. 8th. ed. USA:
Bookman, 2021. ISBN 8582605587. Citado 4 vezes nas páginas 13, 19, 20 e 21.

Lean Startup Glossary. Lean Startup Glossary. 2015. Acessado em: 19 fev. 2025.
Disponível em: <https://www.totvs.com/blog/gestao-para-assinatura-de-documentos/
assinatura-digital-e-confiavel/>. Citado na página 14.

MORESI, E. Metodologia de pesquisa. Universidade Católica de Brasília, p. 108, 2003.
Citado na página 34.

NIST. Glossary of Key Information Security Terms. Estados Unidos, 2013. 223 p.
Citado na página 19.

OPENSSL. Simple PKI. OpenSSL, 2024. Acesso em: 26 de dezembro de 2024. Disponível
em: <https://pki-tutorial.readthedocs.io/en/latest/simple/>. Citado na página 55.

Origem da Palavra. Palavra criptografia. 2014. Disponível em: <https://origemdapalavra.
com.br/palavras/criptografia/>. Acesso em: 31 de março 2024. Citado na página 18.

PRESSMAN, R. S.; MAXIM, B. R. Engenharia de software. [S.l.]: AMGH, 2021. Citado
2 vezes nas páginas 36 e 37.

R. Housley. Rfc 5662 - cryptographic message syntax (cms). RFC Editor, p. 56, 2009.
Citado na página 66.

Rajesh Bondugula. RSA sign and verify using Openssl : Behind the scene. 2018.
Acessado em: 19 fev. 2025. Disponível em: <https://medium.com/@bn121rajesh/
rsa-sign-and-verify-using-openssl-behind-the-scene-bf3cac0aade2>. Citado 2 vezes nas
páginas 26 e 27.

SATRIO, M. R. PDF-Signature-Check. 2022. Acessado em: 30 de dezembro de 2025.
Disponível em: <https://github.com/rsatrio/PDF-Signature-Check/>. Citado na
página 67.

Referências 79

SECTIGO. Public and private keys in public key cryptography. 2020. Disponível em:
<https://www.sectigo.com/resource-library/public-key-vs-private-key>. Acesso em: 13
de abril de 2024. Citado na página 19.

Serasa. Transformação digital e seus impactos na sociedade: como a tecnologia
impulsiona comunidades? 2024. Acessado em: 19 fev. 2025. Disponível em: <https://
www.serasaexperian.com.br/conteudos/inovacao-e-tecnologia/transformacao-digital/>.
Citado na página 13.

SIGUnB. Apresentação - SIGUnB. 2020. Disponível em: <https://portalsig.unb.br/
sobre-o-sigunb/apresentacao>. Acesso em: 31 de março 2024. Citado na página 13.

SOUZA, I. P. M. de; NETO, B. B. Certificação digital: Conceitos e aplicações. Fatec
Taquaritinga, p. 14, 2017. Citado na página 21.

STALLINGS, W. Cryptography and Network Security. 6th. ed. USA: Prentice Hall, 2013.
ISBN 0-13-243310-9. Citado 5 vezes nas páginas 18, 19, 20, 21 e 26.

TANENBAUM, A.; FEAMSTER, N. Redes de computadores. 6th. ed. USA: Bookman,
2021. ISBN 8582605609. Citado 6 vezes nas páginas 17, 18, 21, 22, 23 e 26.

UNB. Instrucao da reitoria n. 0003/2016. Portal SEI, Brasília, DF, 2016. Disponível
em: <https://portalsei.unb.br/wp-content/uploads/2025/01/Instrucao_da_Reitoria_
n_003_2016.pdf>. Citado na página 14.

UnB. Projeto UnBDigital. 2024. Acessado em: 18 fev. 2025. Disponível em:
<https://portalsei.unb.br/projeto-de-implantacao/>. Citado na página 13.

WIEGERS, K.; BEATTY, J. Software Requirements. 3th. ed. USA: Microsoft Press,
2013. ISBN 978-0-7356-7966-5. Citado na página 43.

Apêndices

81

APÊNDICE A – Estruturação da PKI e API
REST para Emissão de Certificados

A.1 Estruturação de diretórios e arquivos da PKI
Nesse processo, são criados os diretórios para armazenar chaves privadas, bancos

de dados, CRLs (listas de revogação de certificados), e certificados emitidos, além de
configurar as permissões adequadas de acesso. Também é gerado o banco de dados de
controle de certificados e a numeração dos certificados e CRLs, garantindo que o sistema
tenha um controle adequado e único de cada certificado emitido. A estrutura criada pode
ser visto na Figura 24.

Figura 24 – Estrutura de diretórios da PKI

Fonte: Autor.

A estrutura de diretórios da PKI permite organizar e gerenciar os certificados e
as chaves. O diretório private contém as chaves privadas da CA, db armazena o banco
de dados de certificados e CRLs, certs guarda os certificados assinados e etc contém os
arquivos de configuração da CA. Juntos, garantem a segurança e integridade do processo
de emissão e validação dos certificados.

Os arquivos de configuração, localizados no diretório etc, são responsáveis por
definir as regras e parâmetros para a criação e gestão de certificados digitais dentro da
PKI. Cada arquivo de configuração é projetado para atender a uma função específica
dentro da hierarquia da PKI, assegurando a segurança, integridade e rastreabilidade nas

APÊNDICE A. Estruturação da PKI e API REST para Emissão de Certificados 82

operações de emissão, gerenciamento e validação de certificados.

O arquivo de configuração da unbroot-ca define os parâmetros para a autoridade
certificadora (CA) raiz, como o tamanho da chave RSA, o uso de criptografia para prote-
ger a chave privada, o algoritmo SHA-256 para assinatura, e as extensões do certificado.
Também especifica os detalhes do Distinguished Name (DN) da CA, como nome da orga-
nização, país e nome comum. As configurações controlam a validade do certificado (3652
dias), a geração de números seriais, a política de nomeação, e as extensões de certificados,
incluindo o uso de chaves para assinatura de certificados e listas de revogação (CRL).

O arquivo de configuração unbsub-ca é voltado para uma autoridade certificadora
subordinada (CA de assinatura), responsável pela emissão de certificados para entidades
finais. Ele define o uso de chaves RSA de 2048 bits, protege a chave privada como uso
de criptografia e utiliza o algoritmo SHA-256. As extensões configuram o uso de chaves
para assinatura de certificados e listas de revogação (CRL), e limitam a profundidade da
cadeia de certificação, isto é, a unbsub-ca não pode emitir certificados para outras CAs
(somente para entidades finais, como usuários ou servidores). Já o arquivo enduser confi-
gura a emissão de certificados para usuários finais, definindo parâmetros como o tamanho
da chave, criptografia, algoritmo SHA-256, e as extensões necessárias para assinatura di-
gital e criptografia de chave, com a adição de identificadores de chave para garantir a
rastreabilidade.

Para a criação dos certificados e chaves necessárias, é utilizado o OpenSSL, sendo
uma ferramenta robusta e amplamente usada para gerenciar certificados, criar requisições
de certificados, gerar chaves privadas e públicas, e assinar certificados. O processo para
construção da infraestrutura de certificação hierárquica e segura é o seguinte:

1. Criação da Autoridade Certificadora Raíz (unbroot-ca): gerar um CSR, que
inclui informações como o nome da autoridade, localização e propósito do certificado.
Usando o OpenSSL com o comando openssl req -new, e o arquivo de configuração
(unbroot-ca.conf), a requisição é gerada. O OpenSSL define parâmetros como o nome
comum (CN) e o tamanho da chave. A requisição e a chave privada são salvas.

2. Emissão do certificado autoassinado: Após a criação da requisição de certifi-
cado, a unbroot-ca emite seu próprio certificado autoassinado, utilizando o OpenSSL
com o comando openssl ca -selfsign. Isso gera o certificado unbroot-ca.crt, que é assi-
nado pela própria chave privada da unbroot-ca, tornando-a uma autoridade confiável
e raiz, capaz de assinar outros certificados na hierarquia de certificação.

3. Criação da Autoridade Certificadora Subordinada (unbsub-ca): gerar um
CSR, que será usada para criar seu certificado. Isso é feito com o comando openssl
req -new, utilizando o arquivo de configuração específico (unbsub-ca.conf), que define
os parâmetros necessários, como o nome da autoridade e a chave pública.

APÊNDICE A. Estruturação da PKI e API REST para Emissão de Certificados 83

4. Emissão do certificado para a unbsub-ca: é assinada pela unbroot-ca para es-
tabelecer a hierarquia de confiança. O OpenSSL é utilizado, com o comando openssl
ca, para assinar a requisição da unbsub-ca com a chave privada da unbroot-ca, ge-
rando o certificado da unbsub-ca (unbsub-ca.crt), validando-a como uma autoridade
subordinada confiável.

5. Estabelecimento da hierarquia de confiança: A assinatura do certificado da
unbsub-ca pela unbroot-ca cria uma relação de confiança entre as duas autorida-
des certificadoras. Agora, a unbsub-ca pode emitir certificados para entidades finais
(endusers) (como servidores, usuários ou sistemas), e esses certificados serão reco-
nhecidos como válidos, pois foram assinados por uma autoridade confiável.

Esses passos estabelecem e possibilitam o gerenciamento de uma infraestrutura
de certificação hierárquica e segura, conforme ilustrado na Figura 25. A utilização do
OpenSSL facilita a geração de requisições de assinatura de certificados (CSR), a emissão de
certificados digitais e a assinatura. Com base nos arquivos de configuração específicos para
cada autoridade certificadora e para as entidades finais, o OpenSSL assegura a integridade,
autenticidade e confidencialidade dos certificados emitidos, garantindo a segurança de toda
a PKI.

Figura 25 – Hierarquia e respectivos componentes da PKI

Fonte: Autor.

Além disso, embora o OpenSSL suporte a revogação de certificados, essa funcio-
nalidade não é empregada neste trabalho. A API PKI foi projetada com foco exclusivo na
emissão de certificados a partir de CSRs (Certificado de Solicitação de Assinatura), sem
a necessidade de gerenciar a revogação, como será detalhado nas próximas etapas.

A.2 API REST para Emissão de Certificados
A API PKI conta com um controlador, denominado CertificateController, que

expõe o endpoint api/pki/certificates/signature. Além disso, a lógica de negócios é ge-
renciada pelo serviço CertificateService, responsável pelo processamento e assinatura dos
certificados.

APÊNDICE A. Estruturação da PKI e API REST para Emissão de Certificados 84

• POST api/pki/certificates/signature : expõe uma funcionalidade para assi-
nar um certificado, recebendo duas informações principais: o CSR e o nome comum
(Common Name). Ao receber esses dados, o serviço responsável processa a requi-
sição, assina o certificado e retorna o certificado assinado como resposta. Em caso
de erro durante o processo, uma mensagem de erro é retornada com um status
apropriado.

• POST api/pki/certificates/validate : valida uma lista de certificados com
base em seus números de série. Ele recebe uma lista de números de série no corpo
da requisição e retorna um mapa com os resultados (número de série e status de
validação).

• CertificateService: é responsável por assinar certificados e validar números de
série. Para assinar o CSR e gerar o certificado assinado, recebe o CSR e o nome
comum, cria o arquivo correspondente no diretório da PKI e executa a assinatura
com o OpenSSL. Esse processo é automatizado por um script bash, que fornece a
senha e confirma as etapas necessárias. Após a assinatura, o certificado gerado é
extraído e retornado ao usuário. Caso haja qualquer erro durante o processo, uma
exceção é gerada. Para validação, o serviço verifica se os números de série fornecidos
existem no arquivo de banco de dados de certificados da unbsub-ca, retornando um
mapa com o status de cada certificado. Se a lista de números de série for inválida,
uma exceção é lançada.

85

APÊNDICE B – Descrição Modelagem de
Banco de Dados e do Backend para web app

B.1 Modelagem e Migração de Banco de Dados
A tabela utilizado foi de usuários ("users"), que pode ser visto na Figura 26 abaixo.

Figura 26 – Tabela users

Fonte: Autor.

O dicionário de dados na Tabela 7 descreve a estrutura da tabela users utilizada
no projeto. Ele fornece informações detalhadas sobre cada campo, seu tipo de dado, e as
restrições impostas, como a obrigatoriedade de certos campos e a unicidade de outros.

Tabela 7 – Dicionário de Dados
Atributo Tipo de Dado Descrição Requisitos
id VARCHAR Identificador UUID Chave primária, Não Nulo
full_name VARCHAR Nome completo do usuário Não Nulo
username VARCHAR Nome de usuário único para login Único, Não Nulo
dob DATE Data de nascimento do usuário Não Nulo
password VARCHAR Senha do usuário, armazenada em formato hash Não Nulo
is_active BOOLEAN Indica se o token do usuário está ativo Não Nulo

Fonte: Autor.

O modelo de dados da tabela foi definido utilizando o SQLAlchemy, uma biblioteca
que oferece uma abstração para a criação e manipulação de bancos de dados relacionais
de forma segura e eficiente. O uso do SQLAlchemy ajuda a prevenir vulnerabilidades de
segurança, como o SQL injection. Isso ocorre porque a biblioteca utiliza prepared state-
ments e vinculação de parâmetros, o que evita a inserção de código malicioso nas consultas

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 86

SQL. Em vez de construir consultas SQL dinâmicas com concatenação de strings, o SQ-
LAlchemy cria as instruções SQL de forma segura, substituindo os parâmetros por valores
devidamente escapados, minimizando o risco de ataques.

Além disso, as migrações do banco de dados são gerenciadas pelo Alembic, uma
ferramenta que permite realizar alterações no esquema do banco de dados de maneira
controlada e versionada. O Alembic facilita a evolução do banco de dados, permitindo
que alterações no modelo de dados sejam refletidas nas tabelas reais.

B.2 Backend
O backend é responsável por gerenciar a lógica de autenticação de usuários, inte-

ragir com o banco de dados e realizar a comunicação com a API de assinatura digital.

O sistema utiliza para renderizar páginas HTML dinâmicas, com base na interação
do usuário. A aplicação monta o diretório static para arquivos estáticos, como CSS e
JavaScript, e o diretório templates para armazenar os arquivos de templates Jinja2. As
páginas HTML são renderizadas com base nas rotas definidas:

• /signature/upload: Exibe a página de upload de documentos PDF para assina-
tura. A página é renderizada apenas se o usuário estiver autenticado, o que é validado
por meio de um token de autenticação.

• /validation/upload: Exibe a página para validação de documentos assinados.

• /cadastro: Página de cadastro de novos usuários.

• /login: Página de login, onde os usuários inserem suas credenciais.

A autenticação no sistema é gerenciada utilizando tokens JWT (JSON Web To-
ken). Quando o usuário faz login com suas credenciais (nome de usuário e senha), o
sistema gera um token de autenticação utilizando uma chave secreta. Esse token contém
informações essenciais, como o emissor (webapp_test), o ID do usuário, o nome de usuário
e o tempo de expiração (definido para 1 hora).

Este token JWT é utilizado para validar o usuário em sessões subsequentes, garan-
tindo que apenas usuários autenticados possam acessar funcionalidades restritas, como o
upload de documentos para assinatura.

A utilização do JWT oferece uma autenticação sem estado, o que torna o sistema
mais escalável e seguro. Isso ocorre porque o token contém todas as informações necessárias
para verificar a identidade do usuário, eliminando a necessidade de consultar o banco de
dados a cada requisição.

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 87

Ao realizar o logout, o token é invalidado e removido dos cookies, e o atributo
is_active do usuário no banco de dados é atualizado para false, desautenticando o usuário
e encerrando sua sessão de forma eficaz.

B.3 Telas do Usuário
A Web App possui quatro telas de usuários, renderizadas a partir de requisições

GET ao backend, sendo que uma delas exige autorização para acesso. As telas incluem
Cadastro, Login, Upload de Arquivo para Assinatura e Upload de Arquivo para Validação.
As requisições do cliente ao backend ou à API de assinatura são realizadas com a Fetch
API, uma interface JavaScript que permite fazer requisições HTTP assíncronas de forma
simples e eficiente.

A tela de cadastro, como pode ser vista na Figura 27, apresenta um formulário
simples que solicita os seguintes dados do usuário: nome completo, nome de usuário,
data de nascimento e senha. Esses campos são necessários para o cadastro do usuário no
sistema, permitindo que ele tenha acesso aos recursos e funcionalidades da aplicação.

Figura 27 – Tela de cadastro de usuários

Fonte: Autor.

O código JavaScript nesta tela é responsável por capturar a submissão do for-
mulário e realizar a requisição para o backend de forma assíncrona, evitando a recarga
da página. Ao submeter o formulário, ele coleta os dados inseridos no formulário e os
converte para um objeto JSON. Em seguida, uma requisição POST é feita para a rota
/cadastro com o corpo da requisição contendo os dados do usuário. Caso a resposta seja
bem-sucedida (status HTTP 201), o usuário é redirecionado para a tela de login. Se ocor-
rer um erro (status HTTP 422 ou outro), uma mensagem de erro é exibida ao usuário,

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 88

informando sobre o problema no processo de cadastro. Caso haja falha na requisição, um
alerta é exibido, informando que ocorreu um erro ao tentar cadastrar o usuário.

A tela de login, como mostrado na Figura 28, solicita que o usuário forneça seu
nome de usuário e senha previamente cadastrados no sistema. Esses dados são essenciais
para validar a identidade do usuário e permitir o acesso às funcionalidades restritas (no
caso, a página de assinatura).

Figura 28 – Telas de Login

Fonte: Autor.

O código JavaScript associada ao formulário de login captura a submissão do for-
mulário e evita o comportamento padrão de recarregar a página. Ele extrai os valores do
nome de usuário e da senha inseridos no formulário, e envia esses dados para o backend
via uma requisição POST. Caso a autenticação seja bem-sucedida (resposta HTTP 200),
o sistema tenta acessar a página de upload de documentos para assinatura. Se essa so-
licitação também for bem-sucedida, o usuário é redirecionado para a página de upload.
Caso contrário, é exibida uma mensagem de erro no console. Se as credenciais fornecidas
forem inválidas, o usuário será alertado e solicitado a tentar novamente. O código também
lida com erros inesperados, exibindo mensagens adequadas no console caso ocorra algum
problema durante o processo de login.

A tela de upload de arquivos para assinatura, ilustrada na Figura 29, é acessí-
vel exclusivamente para usuários autenticados e autorizados. Para visualizar essa tela,
o cliente deve apresentar um cookie denominado authToken, fornecido pelo backend no
momento da autenticação. Além disso, a tela inclui um botão "Validar Assinatura",
que redireciona para o endpoint responsável por verificar a autenticidade de assinaturas
em documentos.

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 89

Figura 29 – Tela de upload de arquivos para assinatura

Fonte: Autor.

O código JavaScript gerencia o envio e a assinatura de arquivos PDF. O script
verifica se o usuário enviou um arquivo válido e, em caso positivo, exibe o documento
para visualização e manipulação, como visto na Figura 30. A assinatura é realizada com
base na posição de um carimbo digital, que pode ser ajustado dinamicamente pelo usuário
dentro do PDF. Além disso, a tela permite a navegação entre as páginas do documento
e armazena temporariamente os arquivos no sessionStorage para facilitar a manipulação
antes do envio.

Figura 30 – Tela de upload para assinatura com apresentação do arquivo e posicionamento
de carimbo

Fonte: Autor.

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 90

Ao clicar no botão "Assinar", o sistema verifica se o arquivo PDF foi carregado
corretamente e se a posição do carimbo foi determinada. Em seguida, o arquivo é enviado
para a API UnBSign para assinatura, incluindo o token de autenticação (authToken) no
cabeçalho da requisição para garantir que apenas usuários autenticados possam assinar.
Caso a assinatura seja bem-sucedida, o arquivo assinado é gerado e pode ser baixado pelo
usuário. Em caso de erro, uma mensagem de falha é exibida. Um exemplo de carimbo de
assinatura pode ser visto na Figura 31.

Figura 31 – Carimbo de Assinatura em um Documento

Fonte: Autor.

A tela de upload de arquivos para validação, mostrado na Figura 32 está dispo-
nível sem a necessidade de autenticação e permite que o usuário faça o upload de um
arquivo PDF para ser validado. O objetivo dessa funcionalidade é apresentar o resultado
da validação, identificando o titular do certificado digital utilizado em cada assinatura
presente no documento. Caso o PDF contenha múltiplas assinaturas, o sistema fornecerá
as informações relativas a cada uma delas. Além disso, o sistema verifica a integridade do
documento, confirmando se ele não sofreu qualquer adulteração após a assinatura, garan-
tindo que o conteúdo do PDF permaneceu intacto desde o momento em que foi assinado
digitalmente.

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 91

Figura 32 – Tela de upload de arquivos para validação

Fonte: Autor.

O código JavaScript gerencia o envio e a apresentação dos resultados da validação
de arquivos PDF. Após a seleção do arquivo, o sistema envia o arquivo para o servidor
por meio de uma requisição assíncrona, utilizando a API Fetch. O servidor então valida
o arquivo e retorna um resultado indicando se a assinatura no PDF é válida. Caso a
assinatura seja válida, detalhes sobre as assinaturas presentes no documento são exibi-
dos, incluindo informações como nome do assinante, data, ID da assinatura, número do
certificado e o estado de integridade da assinatura. Se houver assinaturas desconhecidas,
uma indicação visual é fornecida, e a mensagem é ajustada para alertar o usuário sobre
a assinatura não reconhecida pela PKI. Caso nenhuma assinatura seja encontrada, uma
mensagem informando isso é exibida. Se a assinatura não for válida, uma mensagem de
erro é apresentada, destacando que a assinatura é inválida. Em qualquer erro de comu-
nicação ou processamento com o servidor, o sistema exibe uma mensagem com detalhes
sobre o erro. Os diferentes resultados podem ser visualizados nas Figuras 33a, 33b, 33c e
33d.

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 92

Figura 33 – Tela de upload de resultados para validação de arquivos

(a) Resultado de validação do arquivo para assinatura vá-
lida

(b) Resultado de validação do arquivo para assinatura in-
válida

APÊNDICE B. Descrição Modelagem de Banco de Dados e do Backend para web app 93

(c) Resultado de validação do arquivo com assinaturas
não reconhecidas

(d) Resultado de validação do arquivo sem assinaturas
Fonte: Autor.

Anexos

95

ANEXO A – Política de Assinatura

A.1 Políticas de Assinatura 1

A.1.1 Identificador da Política de Assinatura

A.1.1.1 Nome da Política de Assinatura

O nome desta Política de Assinatura é POLÍTICA DE ASSINATURA DIGITAL
PARA VALIDAÇÃO DE DOCUMENTOS ELETRÔNICOS, versão 1.0

A.1.1.2 Object Identifier (OID)

O Object Identifier (OID) desta PA, atribuído pelo Instituto Nacional de Tecno-
logia da Informação (ITI) é: 2.16.76.1.5.1.1.1.

A.1.1.3 Novas Versões

Novas versões desta política, se criadas, receberão OID diferenciado, do tipo
2.16.76.1.5.1.1.n+1.

A.1.1.4 Proteção contra Alterações Indevidas

Esta PA está protegida contra alterações indevidas por meio da publicação, no
repositório da AC Raiz da PKI UnB (<http://www.unb.gov.br>) do seu conteúdo assi-
nado digitalmente por chave privada associada a certificado digital do Instituto Nacional
de Tecnologia da Informação, utilizando algoritmo SHA256 com RSA.

A.1.2 Data da Criação

A data de criação desta PA é 25.01.2025.

A.1.3 Entidade Criadora da Política de Assinatura

A entidade criadora desta PA é a Universidade de Brasília (UnB).
1 Os tópicos Object Identifier (OID), Novas Versões, Proteção contra Alterações Indevidas, Entidade

Criadora da Política de Assinatura, Período para Assinatura, Raiz Confiável, Conjunto de Políticas
de Certificado Aceitável e Forma de Verificação do Status da Cadeia de Certificação (Revogação) não
se aplicam ao contexto real, sendo utilizados somente de forma didática para este trabalho.

ANEXO A. Política de Assinatura 96

A.1.4 Campo de Aplicação

A.1.4.1 Aplicabilidade

Esta PA se aplica às assinaturas digitais de transações eletrônicas ou outras situa-
ções em que as informações de verificação das assinaturas digitais, necessárias para dirimir
eventuais contendas futuras, podem ser obtidas por outras formas, como, por exemplo,
podem ser providas por uma das partes, que as tenha registrado em seu sistema. Nessas
situações, é recomendável que exista um acordo prévio, assinado por ambas as partes,
concordando com essa guarda unilateral de dados complementares.

A.1.4.2 Utilização Geral

Ela pode ser utilizada por qualquer pessoa física ou jurídica, órgão de governo ou
outro tipo de entidade, sem restrições.

A.1.4.3 Assinaturas Múltiplas

Segundo esta PA, é permitido o emprego de múltiplas assinaturas.

A.1.5 Política de Validação da Assinatura

A.1.5.1 Período para Assinatura

Esta PA terá validade de 25.01.2025 até 25.01.2027.

A.1.5.2 Regras Comuns

A.1.5.3 Regras de Signatário e Verificador

A.1.5.4 Regras do Signatário

A.1.5.4.1 Dados Externos ou Internos à Assinatura

As assinaturas realizadas segundo esta PA podem ser do tipo attached (que inclui o
conteúdo assinado na assinatura digital) ou detached (que não inclui o conteúdo assinado
na assinatura digital).

A.1.5.4.2 Atributos Assinados Obrigatórios

As assinaturas feitas segundo esta PA definem como obrigatórios os seguintes atri-
butos assinados:

• Message Digest

• Id-contentType

ANEXO A. Política de Assinatura 97

• Id-messageDigest

• Id-aa-signingCertificateV2

• Id-aa-ets-sigPolicyId

A.1.5.4.3 Atributos Não-Assinados Obrigatórios

Não se aplica.

A.1.5.4.4 Referências à Cadeia de Certificação

O atributo Id-aa-signingCertificateV2 deve conter apenas referência ao certificado
do signatário.

A.1.5.4.5 Valores da Cadeia de Certificação

Não se aplica.

A.1.5.4.6 Regras Adicionais do Signatário

A.1.5.5 Uso de Múltiplas Assinaturas

Na utilização de múltiplas assinaturas, todas elas devem empregar os mesmos
algoritmos definidos no item A.1.9. As formas possíveis de múltiplas assinaturas é apenas:

• Co-assinaturas: quando a ordem de inserção das assinaturas não faz diferença;

A.1.5.5.1 Estruturas de Assinatura

No caso de co-assinaturas haverá múltiplas estruturas SignerInfo.

A.1.5.5.2 Conteúdo Dinâmico

O signatário é responsável por se certificar que o documento assinado não contém
qualquer conteúdo dinâmico capaz de modificar o resultado do documento visualizado
ao longo do tempo, como, por exemplo, quantias ou sentenças que se alteram após certa
data.

A.1.5.6 Regras do Verificador

A.1.5.6.1 Atributos Não-Assinados Obrigatórios

Não se aplica.

ANEXO A. Política de Assinatura 98

A.1.5.6.2 Regras Adicionais do Verificador

Caso esteja presente mais de uma assinatura, aposta ao mesmo documento as-
sinado, deve-se validar cada assinatura encontrada independentemente, segundo o item
A.1.6.

A.1.6 Condições de Confiabilidade dos Certificados dos Signatários

A.1.6.1 Validação da Cadeia de Certificação

A.1.6.1.1 Raiz Confiável

A validação deve ser feita tomando como ponto de confiança o certificado da AC-
Raiz UnB, disponível em https://www.unbsign/UnbSign-API/acraiz.

A.1.6.1.2 Restrição do Caminho de Certificação

O número máximo de certificados de AC, no caminho de certificação, entre o
certificado do signatário e a AC-Raiz é 2 (dois).

A.1.6.1.3 Conjunto de Políticas de Certificado Aceitável

Assinaturas digitais geradas segundo esta Política de Assinatura deverão ser cria-
das com chave privada associada a certificado gerado pela API PKI de assinatura, con-
forme definido no DOC-ICP-04, com os seguintes OID:

• Tipo A1: OID 2.16.76.1.2.1.n

• Tipo A2: OID 2.16.76.1.2.2.n

• Tipo A3: OID 2.16.76.1.2.3.n

• Tipo A4: OID 2.16.76.1.2.4.n

A.1.6.1.4 Restrições de Nome

Não se aplica.

A.1.6.1.5 Restrições de Políticas de Certificado

Não se aplica.

ANEXO A. Política de Assinatura 99

A.1.6.2 Forma de Verificação do Status da Cadeia de Certificação (Revogação)

Tanto para o certificado do signatário quanto para os certificados das Autoridades
Certificadoras da cadeia de certificação, a verificação do estado dos certificados deve ser
realizada através de consulta à LCR (Lista de Certificados Revogados), usando os pro-
cedimentos definidos na RFC 3280, ou por meio de consulta OCSP (Online Certificate
Status Protocol), usando os procedimentos definidos na RFC 2560.

A.1.7 Condições de Confiabilidade do Carimbo de Tempo

Não se aplica.

A.1.8 Condições de Confiabilidade dos Atributos

Não se aplica.

A.1.9 Conjunto de Restrições de Algoritmos

Para geração de assinaturas segundo esta política, podem ser utilizados os seguintes
algoritmos:

• RSA/SHA256

• RSA/SHA-1

