i

Universidade de Brasilia — UnB
Faculdade de Ciéncias e Tecnologias em Engenharia — FCTE

Engenharia de Software

Da Analise a Implementacao: Migracao da
Infraestrutura de laaS para FaaS com Foco na
Reducao de Custos no AgroMart

Autores: Kalebe Lopes da Cunha e Murilo Schiler Lopes
Santana

Orientador: Prof. Dr. André Luiz Peron Martins Lanna

Brasilia, DF
2025

Y

Kalebe Lopes da Cunha e Murilo Schiler Lopes Santana

Da Analise a Implementacao: Migracao da Infraestrutura
de laaS para FaaS com Foco na Reducao de Custos no
AgroMart

Monografia submetida ao curso de graduagao
em Engenharia de Software da Universidade
de Brasilia, como requisito parcial para ob-
tencao do Titulo de Bacharel em Engenharia
de Software .

Universidade de Brasilia — UnB

Faculdade de Ciéncias e Tecnologias em Engenharia — FCTE

Orientador: Prof. Dr. André Luiz Peron Martins Lanna

Brasilia, DF
2025

Kalebe Lopes da Cunha e Murilo Schiler Lopes Santana

Da Analise a Implementacao: Migracao da Infraestrutura
de laaS para FaaS com Foco na Reducao de Custos no
AgroMart

Monografia submetida ao curso de graduagao
em Engenharia de Software da Universidade
de Brasilia, como requisito parcial para ob-
tencao do Titulo de Bacharel em Engenharia
de Software .

Brasilia, DF
2025

Resumo

O AgroMart é um aplicativo que conecta produtores rurais e consumidores por meio do
modelo de Comunidades que Sustentam a Agricultura (CSAs). Essas comunidades per-
mitem a comercializacao direta de alimentos, promovendo um consumo mais sustentavel

e aproximando os consumidores dos produtores locais.

Na arquitetura de implantagao atual, o agricultor arca com custos em délares para manter
sua CSA em funcionamento, pois o Agromart estd implantado em uma arquitetura tradi-
cional de TaaS. Como buscamos tornar essa solucao acessivel ao maior niimero possivel de
agricultores, ndo podemos impor custos a eles pela escolha do Agromart. Portanto, é es-
sencial analisar a viabilidade de uma alternativa de implantacao que seja sempre gratuita

e acessivel ao agricultor e, caso exista, implementa-la.

Este Trabalho de Conclusao de Curso (TCC) propde a migragao da API de dicionério e
do backend STRAPI da aplicagao, que atualmente operam sob o modelo de Infraestrutura
como Servi¢o (IaaS) utilizando instancias Amazon Elastic Compute Cloud (EC2), para
uma arquitetura baseada no paradigma de computagao serverless, especificamente Funcao
como Servigo (FaaS), através da AWS Lambda.

A pesquisa abordara a viabilidade técnica e econdmica dessa migracao, investigando se a
infraestrutura pode operar dentro dos limites do plano gratuito da AWS, reduzindo custos
operacionais. Além disso, sera analisada a capacidade das APIs de ultrapassar os limites
da camada gratuita e as implicacoes de custos adicionais, bem como a necessidade de
modificagoes na aplicacdo para garantir uma migracao eficiente, sem impactos negativos

na experiéncia do usuario.

A adocao de computacgao serverless oferece beneficios como reducao de custos com in-
fraestrutura, escalabilidade automéatica e menor complexidade operacional. Este trabalho
documenta todas as etapas envolvidas na transicao de arquiteturas tradicionais para ser-

verless.

Palavras-chave: Serverless Computing, Fungao como Servigo (FaaS), AWS Lambda,
Escalabilidade, Redugao de Custos, Infraestrutura como Servico (IaaS), Cold-start, Agro-

mart, Computagado em Nuvem.

Abstract

AgroMart is an application that connects rural producers and consumers through the
Community-Supported Agriculture (CSA) model. These communities enable the direct
commercialization of food, promoting more sustainable consumption and bringing con-

sumers closer to local producers.

In the current deployment architecture, farmers bear costs in dollars to keep their CSA
operational, as AgroMart is implemented using a traditional Infrastructure as a Service
(IaaS) model. Since our goal is to make this solution accessible to as many farmers as
possible, we cannot impose costs on them for choosing AgroMart. Therefore, it is essential
to analyze the feasibility of a deployment alternative that is always free and accessible to

farmers and, if viable, implement it.

This Final Year Project (TCC) proposes migrating the application’s dictionary API and
STRAPI backend, which currently operate under the [aaS model using Amazon Elastic
Compute Cloud (EC2) instances, to an architecture based on the serverless computing

paradigm, specifically Function as a Service (FaaS), through AWS Lambda.

The research will address the technical and economic feasibility of this migration, inves-
tigating whether the infrastructure can operate within the AWS free tier limits to reduce
operational costs. Additionally, it will analyze whether the APIs may exceed the free tier
limits and the implications of additional costs, as well as the necessary modifications to
the application to ensure an efficient migration without negatively impacting the user

experience.

Adopting serverless computing offers benefits such as cost reduction, automatic scalabil-
ity, and lower operational complexity. This project documents all the steps involved in

transitioning from traditional architectures to serverless.

Keywords: Serverless Computing, Function as a Service (FaaS), AWS Lambda, Scala-
bility, Cost Reduction, Infrastructure as a Service (IaaS), Cold-start, AgroMart, Cloud
Computing.

Lista de ilustracoes

Figura 1 — Tabela de precos EC2 13
Figura 2 — Arquitetura AgroMart L. 15
Figura3 — Roadmap 22
Figura 4 — Estrutura Analitica do Projeto 23
Figura 5 — BPMN o 24
Figura 6 — Procurar CSA -antes 36
Figura 7 — Procurar CSA -depois 36
Figura 8 — Ajuste de requisi¢ao e de url Endereco - antes 37
Figura 9 — Ajuste de requisicao e de url Endereco - depois 37
Figura 10 — Ajuste de parametro e url Login - antes 38
Figura 11 — Ajuste de pardmetro e url Login - depois 38
Figura 12 — Ajuste de parametro e url Cadastro - antes 39
Figura 13 — Ajuste de parametro e url Cadastro - depois 39
Figura 14 — Ajuste de pardmetro e url Usudrio - antes 40
Figura 15 — Ajuste de parametro e url Usudrio - depois 40
Figura 16 — Fluxo Cadastro de Usuario. 47
Figura 17 — Fluxo Login 47
Figura 18 — Fluxo Meus Dados 48
Figura 19 — Fluxo Meus Enderecos 48
Figura 20 — Fluxo Planos 48
Figura 21 — Fluxo Pedidos 49
Figura 22 — Fluxo WhatsApp 49
Figura 23 — Fluxo Logout 49
Figura 24 — Assinante 51
Figura 25 — Cesta 52
Figura 26 — Enderecoo 52
Figura 27 — Usudrio 52
Figura 28 — Produtos 53
Figura 29 — Planos 53

Figura 30 — Planos 54

Lista de tabelas

Tabela 1 — Tamanhos médios das entidades armazenadas no DynamoDB. 54
Tabela 2 — Numero maximo de registros armazenaveis por entidade. 95
Tabela 3 — Tamanhos médios das entidades armazenadas no DynamoDB conside-

rando multiplos registros. oo 55

Lista de abreviaturas e siglas

API Application Programming Interface

AWS Amazon Web Services

CMM Capability Maturity Model

CMS Content Management System

CSAs Comunidades que Sustentam a Agricultura

DynamoDB Dynamic Database

EC2 Elastic Compute Cloud

FaaS Funcao como Servigo

HTTP Hypertext Transfer Protocol
I/0 Input/Output

[aaS Infraestrutura como Servico

iOS iPhone Operating System

JS JavaScript

NoSQL Not Only Structured Query Language
TCC Trabalho de Conclusao de Curso
TI Tecnologia da Informacao

UnB Universidade de Brasilia

URL Uniform Resource Locator

XP Extreme Programming

EBS Elastic Block Store

1.1
1.2
121
1.2.2
1.3
1.4
141
1411
1412
1413
1414
1.4.2
1.4.3
1.4.4
1.45
1.4.6
1.4.7
1.4.8

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6

Sumario

INTRODUCAO ittt e e e et e et e et e
Histdria do AgroMart oo
Problema
Calculo do Custo Mensal de um Servidor EC2 t3.medium na AWS
Resultados
Objetivo Geral
Objetivos Especificos
Analisar a Atual Arquitetura do AgroMart
Arquitetura Geral L. Lo
API Diciondrio L L
APl Principal Backend
Aplicativo Mobile oL o
Dockerizacdo da API Strapi e da APl Dicionério.
Migracdo das APIs para um Ambiente Serverless
Automacao do Deploy da APl Principalem FaaS
Refatoracdo da Aplicacdo Mobile paraa APl FaaS
Andlise de Servicos "Sempre Gratuito"da AWS
Estratégias para Minimizacdo de Custos no AWS Lambda

Anélise de Carga e Dimensionamento API FAAS

REFERENCIAL TEORICOt ittt e e
Engenharia de Softwareo
Manutencdao Adaptativa e Perfectiva em Engenharia de Software . .
Computacaoem Nuvem

Escalabilidade de Aplicacoes em Nuvem

METODOLOGIA e e e e e e e e e
Scrum . . L
Extreme Programming (XP)
Roadmap
Estrutura Analitica do Projeto(EAP)
Business Process Model and Notation
Escolha de Ferramentas para a Migracao

IMPLEMENTACOES ittt e it e
Processo de Dockerizacdao da API Strapi e da API Dicionario

4.2
421
422
4.3
4.4
4.4.1
4.42
4.43
4.5
451
4.6
4.7
4.7.1
472
4721
4722
4723
473
4731
4.7.3.2
4733

Migracao das APIs para um Ambiente Serverless
Processo de migracao da APl dicionario
Processo de migracao da APl Backend
Automacao do Deploy da API Principalem FaaS
Refatoracao do Mobile para consumir a APl em FaaS
Adaptacdo das Requisicdes para a AWS Lambda
Atualizacoes no Coédigo do Aplicativo
Impactos da Refatoracdoo
Analise de Servico "Sempre Gratuito''da AWS
Por que a AWS é melhor que as opcdes "ilimitadas"do Google e Oracle? . .
Estratégias para Minimizacao de Custos no AWS Lambda
Anidlise de Carga e Dimensionamento das APIs FAAS
Levantamento de dados sobre a api-dicionario em FAAS
Anidlise de Carga e Dimensionamento de Usuarios na APl Principal FAAS

Cendrios de caso de uso do backend,
Casosde Uso e e
Resultado oL
Analise de carga e dimensionamento do banco na API Principal FAAS . . .
Registros das entidadeso
Andlise L e

Resultados e
CONCLUSADttt e e e e e e e e e e e e e e e e

DESENVOLVIMENTOS FUTUROS

REFERENCIAS e e e e e e e e s s i

11

1 Introducao

O conceito de Comunidade que Sustenta a Agricultura (CSA) surgiu como uma
alternativa colaborativa onde consumidores e pequenos produtores de alimentos formam
parcerias diretas que facilitam a comercializagao de produtos frescos e sustentaveis. Neste
contexto, o aplicativo Agromart funciona como uma ponte digital entre produtores e

consumidores, facilitando essas conexoes.

A infraestrutura em nuvem desempenha um papel essencial para aplica¢des como
o Agromart, que depende de um sistema robusto para lidar com variagoes de trafego de
usuarios, além de garantir a confiabilidade no atendimento as demandas de produtores e
consumidores. A capacidade de uma aplicacao escalar eficientemente e manter os custos

sob controle sao pontos cruciais para seu sucesso no mercado.

Atualmente, o backend da Agromart estd hospedado na Amazon Web Services
(AWS) via Elastic Compute Cloud (EC2), um modelo de infraestrutura como servigo
(IaaS) no qual recursos computacionais como maquinas virtuais sdo gerenciados pelos
usuarios. Embora esta abordagem proporcione flexibilidade e controle, pode se ter muita
ociosidade em seus servicos, o que pode levar a custos elevados sem uso. A migracao do
Agromart para um modelo de fungao como servico (FaaS) via AWS Lambda oferece uma
alternativa mais eficiente e escalavel. Diferentemente da IaaS, o FaaS permite a execugao
sob demanda de fungoes especificas, eliminando a necessidade de provisionar servidores
ociosos, escalando automaticamente conforme o volume de requisi¢oes e resultando em
uma economia significativa de custos operacionais. (SILVA;CARVALHO, 2021)

A transicao para a computacio serverless, particularmente através do FaaS, pos-
sibilita a elasticidade necessaria para que o Agromart atenda a picos de demanda sem
incorrer em altos custos de infraestrutura (FERREIRA IGOR FARIAS, 2023). Esse mo-
delo garante que o sistema seja escalavel conforme a necessidade, sem que os desenvol-
vedores precisem gerenciar manualmente os recursos subjacentes. Isso é particularmente

importante para a Agromart, que pode enfrentar variacoes sazonais na demanda.

Este trabalho ird analisar a migracao do backend do Agromart de um ambiente
[aaS para FaaS, com foco na reducao de custos operacionais. Inicialmente, sera feita uma
analise tedrica sobre ambos os modelos de computagdo em nuvem (IaaS e FaaS), desta-
cando suas vantagens e desvantagens. Em seguida, serd realizado um estudo experimental

para explorar os limites, beneficios e precaucoes envolvidas na migracao.

Capitulo 1. Introdugdo 12

1.1 Histéria do AgroMart

O AgroMart foi criado com o objetivo de conectar pequenos agricultores e consu-
midores, promovendo a producao sustentdavel por meio de Comunidades que Sustentam a
Agricultura (CSAs). A ideia nasceu durante um hackathon na Universidade de Brasilia,
campus Gama, inspirado pela histéria de uma produtora que implementou uma barraca
da honestidade para melhorar suas vendas. Inicialmente, o projeto era simples, permitindo
aos agricultores divulgar pontos de venda e os consumidores acessarem informagoes sobre

a disponibilidade de produtos.

Com o tempo, o projeto evoluiu, recebendo apoio de professores e especialistas
para otimizar suas funcionalidades. A partir de pesquisas e entrevistas, foi desenvolvido
um aplicativo mobile que atenderia de maneira mais adequada as necessidades dos agri-
cultores e co-agricultores, chamado de AgroMart. A principal caracteristica do AgroMart
¢é sua capacidade de individualizar as CSAs, facilitando a organizacao da producao e o

escoamento dos alimentos de forma agil e eficiente.

A evolugao do projeto nao parou por ai. Foram realizadas varias iteragoes para
melhorar sua eficiéncia ao longo dos anos, como a automagao de processos e a migra-
¢ao da infraestrutura para solucdes mais economicas. Hoje, o AgroMart continua sendo
aprimorado com foco em economia, escalabilidade, seguranca e integracao de novas fun-

cionalidades, visando sempre facilitar o acesso a alimentos frescos e sustentaveis.

1.2 Problema

O principal problema enfrentado pelo Agromart reside no elevado custo de ma-
nutencao de sua infraestrutura atual e também no possivel problema de escalabilidade
visto que a maquina utilizada atualmente para servir a aplica¢gdo nao possui bons poderes
computacionais, ou seja, pode trazer diversos problemas para os usuarios como travamen-
tos, lentidoes e até mesmo reinicializagoes do servidor caso haja um pico de requisi¢oes

simultaneas.

A API Dicionario e o Backend do Agromart estdo hospedados na Amazon Web
Services (AWS) utilizando o Elastic Compute Cloud (EC2), que, apesar de oferecer flexi-
bilidade e controle ao usuario, demanda o provisionamento continuo de servidores, inde-
pendentemente da carga de trabalho. Essa abordagem gera custos elevados desnecessarios,
principalmente em periodos de baixa demanda, devido a necessidade de manter a infraes-
trutura operacional mesmo quando o trafego no aplicativo é reduzido ou nulo (FERREIRA
IGOR FARIAS, 2023).

A instancia do servidor EC2 atualmente utilizado para disponibilizar a API Dici-

onario e o Backend do AgroMart possui as seguintes caracteristicas:

Capitulo 1. Introdugdo 13

e Tipo de instancia: t3.medium
o vCPUs: 2

o Memoria RAM: 4 Gb

o Armazenamento: 30 Gb

o Sistema Operacional: Linux

Instancia
L. Performance de Créditos de Largura de banda Largura de banda Preco sob Instincia
Memdria ~ R B N ’ reservada por 3
Nome vCPUs) linha de base por CPU obtidos para expansdo de para expansdo do demanda por reservada por .
(GiB) anos efetiva por
vCPU por hora rede (Gbps) EBS (Mbps) hora* 1 ano - por hora* hora®
ora
t3.nano 2 0.5 5% 6 5 Até 2.085 USD 0,0052 USD 0,003 UsD 0,002
t3.micro 2 1,0 10% 12 5 Até 2.085 usD 0,0104 UsD 0,006 usD 0,005
t3.small 2 20 20% 24 5 Até 2.085 USD 0,0209 UsD 0,012 UsD 0,008
t3.medium 2 40 20% 24 5 Ate 2.085 UsSD 0,0418 UsD 0,025 usD 0,017
t3.large 2 8,0 30% 36 5 Até 2.780 USD 0,0835 UsD 0,05 UsD 0,036
t3.xlarge 4 16,0 40% 9% 5 Ate 2.780 UsD 0,1670 UsD 0,099 UsD 0,067
t3.2xlarge 8 32,0 40% 192 5 Até 2.780 USD 0,3341 UsD 0,199 usD 0,133

Figura 1 — Tabela de precos EC2

1.2.1 Calculo do Custo Mensal de um Servidor EC2 t3.medium na AWS

Para estimar o custo mensal de um servidor Amazon EC2 t3.medium, considera-
se a tarifa sob demanda de 0,0418 ddélares por hora, conforme divulgado pela Amazon

Web Services (AWS). O célculo é realizado com base nos seguintes pardmetros:

« Custo por hora: 0,0418 USD/hora

e Nuimero total de horas no més:

24 horas/dia x 30 dias/més = 720 horas/més (1.1)

« Cotacao do délar: 5,70 BRL/USD

Dessa forma, o custo mensal em ddlares é obtido por:

Crnensal,usp = 0,0418 x 720 = 30,096 USD (1.2)

Convertendo esse valor para reais, considerando a cotagao de 5,70 BRL/USD:

CrnensalBL = 30,096 x 5,70 = 171,55 BRL (1.3)

Capitulo 1. Introdugdo 14

1.2.2 Resultados

O custo estimado para manter um servidor EC2 t3.medium em funcionamento
continuo durante um més é de aproximadamente R$ 171,55. Vale ressaltar que este
calculo nao inclui custos adicionais, como armazenamento EBS, transferéncia de dados
ou licenciamento de software, os quais podem impactar significativamente o valor final da
fatura na AWS.

Além disso, vale frisar que o gerenciamento manual de recursos limita a capacidade
do sistema de escalar automaticamente de forma eficiente, o que impacta negativamente

a experiéncia do usuario em momentos de pico de utilizacao.

A migracao do backend para um modelo de Fungao como Servigo (FaaS) no AWS
Lambda surge como uma possivel solucao vidavel, pois permite a execucao de fungoes sob
demanda, eliminando a necessidade de servidores ociosos e promovendo uma escalabili-
dade automatica conforme a demanda varia (SILVA;CARVALHO, 2021). A transigao para
o FaaS tem o potencial de reduzir significativamente os custos operacionais do Agromart
e aumentar sua capacidade de atender a cargas varidveis sem comprometer o desempenho

da aplicacao.

1.3 Objetivo Geral

O objetivo geral deste trabalho é avaliar a viabilidade da adogdo do FaaS pelos
sistemas do Agromart. Essa mudanca visa migrar o backend e a api dicionario do Agro-
mart, atualmente hospedada na Amazon Web Services (AWS) Elastic Compute Cloud
(EC2), para uma arquitetura baseada em Fungao como Servico (FaaS), utilizando o AWS
Lambda e o framework Serverless. Essa migracao visa melhorar a eficiéncia do uso de
recursos computacionais, reduzindo os custos operacionais associados a infraestrutura dos

servidores.

Sabendo que o Agromart estabelece a conexao entre agricultores e consumidores
por meio das Comunidades que Sustentam a Agricultura (CSAs), os custos operacionais
sao financiados pelos membros associados a cada CSA. Nesse contexto, a adocao do Func-
tion as a Service (FaaS) surge como uma alternativa estratégica para otimizar a eficiéncia
financeira do sistema. (RIBEIRO; MAGALHAES, 2023).

Com essa abordagem, espera-se que a migracao para o FaaS contribua para a
reducao dos custos operacionais, garantindo maior viabilidade econdmica para as CSAs
envolvidas e promovendo um modelo mais sustentavel de gestao e escalabilidade do ser-
vigo. Além disso, a arquitetura baseada em FaaS permite uma alocacdo mais eficiente
de recursos computacionais, reduzindo o desperdicio de capacidade ociosa e ajustando

automaticamente a infraestrutura conforme a demanda do sistema.

Capitulo 1. Introdugdo 15

Outro beneficio relevante estd na reducdo da complexidade de manutengao, uma
vez que a responsabilidade pela administracao dos servidores e da infraestrutura sub-
jacente é delegada ao provedor de servicos em nuvem. Dessa forma, a equipe de de-
senvolvimento pode concentrar esforcos na melhoria das funcionalidades do Agromart,

aprimorando a experiéncia dos usuarios e fortalecendo o ecossistema das CSAs.

1.4 Objetivos Especificos

1.4.1 Analisar a Atual Arquitetura do AgroMart

A arquitetura atual do Agromart é estruturada em trés componentes principais,
cada um com responsabilidades bem definidas que, quando integrados, visam fornecer
um bom funcionamento do sistema. A seguir, detalharemos cada um desses componentes,

analisando suas fungoes e interagoes no contexto geral do projeto.

1.4.1.1 Arquitetura Geral

API_Dicionario

‘ Administrador ‘ API_Dicionario

Figura 2 — Arquitetura AgroMart

1.4.1.2 API Dicionario

A primeira camada do sistema é composta pela API do Dicionario que foi de-
senvolvida em JavaScript. Essa API desempenha um papel fundamental no processo de
cadastro e gerenciamento das URLs especificas de cada CSA participante do Agromart.
Através dessa API, o sistema tem acesso as URLs tnicas de cada CSA, as quais serao
consultadas posteriormente pela API principal. Esse componente atua como o ponto ini-
cial de conexao entre o Agromart e as diferentes CSAs, fornecendo um ponto central para

registrar e gerenciar essas URLs.

Capitulo 1. Introdugdo 16

1.4.1.3 API Principal Backend

A API principal do Backend do Agromart, também desenvolvida em JavaScript,
é o nucleo do sistema. Ela é responsavel por gerenciar as informagcoes essenciais do Agro-
mart, como dados de produtos, planos, clientes e lojas. A API principal realiza consultas
dindmicas a URL cadastrada pela API do Dicionario, permitindo que o Agromart acesse
e gerencie as informagdes de cada CSA individualmente. Cada CSA mantém seu proprio
servidor EC2, o que, embora proporcione auto- nomia, implica em custos elevados devido
a necessidade de infraestrutura separada para cada unidade. Essa arquitetura, ao invés de
otimizar os recursos, acaba impactando dire- tamente o orgamento das CSAs, tornando-o

menos eficiente em termos de custo-beneficio.

1.4.1.4 Aplicativo Mobile

O componente final da arquitetura é o aplicativo mével, que fornece a interface com
o usudrio para o Agromart. Através do app, os usuarios podem interagir diretamente com o
sistema, realizando as operagoes baseadas nas informacoes gerenciadas pela API principal.
O aplicativo mobile faz requisi¢des para a API, obtendo os dados necessarios para exibigao
ao usuario, utilizando a URL gerada para cada CSA especifica. Esse componente é crucial
para garantir a acessibilidade e a experiéncia do usuario, permitindo que as operacoes do

Agromart sejam realizadas de maneira eficiente em dispositivos moveis.

1.4.2 Dockerizacao da API Strapi e da API Dicionéario

Antes da migragao para a arquitetura Function as a Service (FaaS), é essencial a
containerizacao das APIs para uma compreensao detalhada do funcionamento do sistema
legado Agromart e de suas regras de negocio. Para isso, serd desenvolvido um ambiente de
execuc¢ao baseado em Docker Compose, permitindo a inicializacao da aplicacdo em dife-
rentes ambientes, juntamente com o banco de dados PostgreSQL, de maneira padronizada

e eficiente.

1.4.3 Migracao das APIs para um Ambiente Serverless

Apébs a andlise da implementacao do sistema Agromart, sera realizada a refatora-
cao do codigo-fonte para sua adaptacao ao ambiente Serverless, utilizando o Serverless
Framework. Um aspecto critico dessa transicao é a preservagao das regras de negbcio ja
implementadas na API Strapi, uma vez que, por se tratar de um Content Management
System (CMS), grande parte do cddigo encontra-se abstraida, dificultando sua compre-

ensao e modificagao direta.

Capitulo 1. Introdugdo 17

1.4.4 Automacdo do Deploy da API Principal em FaaS

Sera desenvolvido um script para automatizar o processo de deploy do back-end
de uma CSA na AWS Lambda. Além disso, esse script serd responsavel por realizar
uma requisicdo a API Dicionario, informando a URL da CSA criada. A configuragao sera
gerenciada por meio de um arquivo .env, contendo as credenciais do proprietario da CSA,

garantindo a seguranca e a flexibilidade do processo de implantacao.

1.4.5 Refatoracao da Aplicacao Mobile para a API Faa$S

A aplicacao movel do Agromart possui uma forte dependéncia da API baseada
no CMS Strapi. Com a migracao para a arquitetura Serverless, serda necessario refato-
rar a légica de requisi¢oes e o tratamento de dados no aplicativo mével, garantindo a
compatibilidade com a nova API FaaS e preservando a integridade das funcionalidades

existentes.

1.4.6 Andlise de Servicos "Sempre Gratuito"da AWS

Sera realizada uma andlise comparativa das plataformas disponiveis para iden-
tificar a solug¢ao mais adequada para oferecer um servigo de custo zero aos agricultores,
dentro dos limites impostos pela provedora de nuvem. O estudo incluira a quantificacao do

consumo de recursos e a justificativa técnica para a escolha da plataforma mais eficiente.

1.4.7 Estratégias para Minimizacdao de Custos no AWS Lambda

Apoés a conclusao da migracao para Serverless, serao definidas estratégias de oti-
mizac¢do para minimizar os custos operacionais da aplicacdo no AWS Lambda. As con-
figuragoes serao ajustadas para garantir um uso eficiente dos recursos computacionais,
evitando escalabilidade desnecessaria durante picos de requisi¢oes e assegurando que a

aplicacao permaneca dentro dos limites do AWS Free Tier.

1.4.8 Andlise de Carga e Dimensionamento APl FAAS

Sera realizado um mapeamento detalhado dos casos de uso da API principal do
Agromart, permitindo a definigdo precisa dos fluxos de interagao entre os servigos. Esse
levantamento sera fundamental para a validacdo do novo modelo arquitetural e para a

garantia da continuidade das funcionalidades essenciais da plataforma.

18

?2 Referencial Tedrico

2.1 Engenharia de Software

A Engenharia de Software é uma disciplina da computacao que envolve a aplicagao
de principios cientificos, tecnoldgicos e gerenciais para o desenvolvimento e manutencao de
sistemas de software de alta qualidade. Essa area surgiu em resposta a chamada "crise do

software", onde projetos de software eram frequentemente entregues com atrasos, acima
do or¢amento, ou com baixa qualidade (WAZLAWICK, 2013).

Na pratica, a Engenharia de Software visa organizar o desenvolvimento de software
por meio de processos estruturados que garantam a eficiéncia, escalabilidade e qualidade
do produto final (WAZLAWICK, 2013). Esses processos incluem etapas como levanta-
mento de requisitos, modelagem, codificacao, testes e manutencao, assegurando que o

produto atenda as necessidades do cliente ao longo de seu ciclo de vida.

A area é dividida em vérias subdisciplinas, incluindo gerenciamento de projetos de
software, manutencao de software, qualidade de software, e processos de engenharia de
software, cada uma focada em um aspecto especifico do ciclo de vida do desenvolvimento.
A aplicacdo de modelos de maturidade, como o CMM (Capability Maturity Model), é
uma das estratégias amplamente utilizadas para melhorar a qualidade dos processos e
dos produtos de software (WAZLAWICK, 2013). Além disso, técnicas como integragao
continua e testes automatizados tém ganhado destaque como praticas essenciais para
garantir a entrega agil de software (WAZLAWICK, 2013).

2.2 Manutencdo Adaptativa e Perfectiva em Engenharia de Soft-

ware

(SWANSON, 1976) propos uma classificagdo das atividades de manutengao em
quatro tipos principais: corretiva, adaptativa, perfectiva e preventiva. A manutencao adap-
tativa refere-se as modificacoes realizadas no software para garantir sua compatibilidade
com mudancas no ambiente operacional, mudancas no ambiente de implantacao, arqui-
tetura de implementacao , bancos de dados, hardware ou novos padroes de comunicagao
(SOMMERVILLE, 2015).

A manutencao perfectiva tem como objetivo melhorar o desempenho, a usabili-
dade e a eficiéncia do software sem alterar sua funcionalidade basica (SWANSON, 1976).
Esse tipo de manutenc¢ao pode incluir refatoramento de cédigo, otimizacao de algoritmos,
aumento da escalabilidade do sistema (SOMMERVILLE, 2015).

Capitulo 2. Referencial Teorico 19

No AgroMart, as manutencgoes adaptativa e perfectiva foram as mais significativas.
Com o objetivo de adaptar o sistema a nova plataforma AWS Lambda e a arquitetura
serverless, foi necessaria uma refatoragao extensa para garantir o funcionamento adequado
das funcionalidades previamente definidas e implementadas. Além disso, foi preciso assegu-
rar que a implementagao estivesse em conformidade com as regras da AWS, especialmente

com relacao ao Always Free Tier.

A otimizagdo do codigo também se fez necessaria. O uso das fungoes precisou
ser rigorosamente controlado, como no caso do getBatch do DynamoDB, para evitar o
excesso de chamadas e garantir o funcionamento dentro dos limites de taxa do Always
Free Tier da AWS. Também foi essencial monitorar e controlar a taxa de escrita e leitura

no DynamoDB para prevenir que os limites do plano gratuito fossem ultrapassados.

2.3 Computacao em Nuvem

A computagao em nuvem é um modelo de fornecimento de servigos de TI em que
recursos computacionais, como armazenamento, processamento e redes, sao disponibili-
zados como servigos através da internet. Este modelo permite que as empresas e usuarios
acessem e utilizem esses recursos sob demanda, sem a necessidade de adquirir ou manter
infraestrutura fisica local. A computagao em nuvem, segundo (CAPPELLOZZA, 2012),
tem despertado grande interesse por seu potencial de alterar significativamente os inves-

timentos em infraestrutura de TI e promover maior flexibilidade na gestao de recursos
(CAPPELLOZZA, 2012).

Entre as caracteristicas principais da computacao em nuvem estao a escalabili-
dade e o pay-per-use. A escalabilidade permite que as empresas ampliem ou reduzam seus
recursos conforme a demanda, enquanto o modelo de pagamento "pay-per-use'assegura
que os custos estao atrelados ao uso real dos servigos, otimizando os investimentos (NO-
GUEIRA, 2013). Além disso, a infraestrutura em nuvem é gerenciada por provedores de
servigos, que garantem a seguranca, manutencao e disponibilidade dos recursos, aliviando

as empresas da responsabilidade por essas operagoes.

A computacao em nuvem pode ser categorizada em diferentes modelos de servigo,
como Infraestrutura como Servi¢o (IaaS), Plataforma como Servigo (PaaS) e Software
como Servico (SaaS). Cada um desses modelos oferece diferentes niveis de controle e
abstragao para o usuario. A IaaS fornece servidores e armazenamento, a PaaS oferece um
ambiente para desenvolvimento de software, e a SaaS disponibiliza aplicativos completos
através da web (CAPPELLOZZA, 2012).

A adogao da computacao em nuvem oferece beneficios como reducao de custos
operacionais, maior flexibilidade e mobilidade no acesso a dados e sistemas, além de

melhorar a eficiéncia no uso de recursos tecnoldgicos. Contudo, ela também apresenta

Capitulo 2. Referencial Teorico 20

desafios, como preocupagoes com a seguranca dos dados e a dependéncia da conectividade
com a internet (CAPPELLOZZA, 2012).

2.4 Escalabilidade de Aplicacées em Nuvem

A escalabilidade de aplicacbes em nuvem refere-se a capacidade de um sistema
aumentar ou diminuir seus recursos de forma eficiente, conforme a demanda dos usuarios.
Isso é fundamental para garantir que uma aplicagao consiga atender a variagoes de trafego

sem comprometer o desempenho, mantendo os custos alinhados ao uso real dos recursos.

Existem dois tipos principais de escalabilidade: vertical e horizontal. A escalabili-
dade vertical envolve aumentar os recursos de uma maquina tnica, como adicionar mais
memoria ou processadores, enquanto a escalabilidade horizontal adiciona novas instancias
de servidores para lidar com a demanda crescente. A computacao em nuvem facilita am-
bos os tipos de escalabilidade, permitindo que as empresas ajustem suas infraestruturas

conforme necesséario sem grandes investimentos iniciais em hardware (FRAN¢A AUDREY
TELES DOS SANTOS, 2023).

Um exemplo comum de escalabilidade horizontal pode ser visto em servigos como o
AWS EC2, que permite adicionar novas instancias automaticamente conforme a carga au-
menta, ou remové-las durante periodos de baixa demanda. Isso é particularmente 1til em
situacoes como eventos sazonais, onde picos de trafego sao previsiveis, como em promogoes
de Black Friday ou no Exame Nacional do Ensino Médio (ENEM), onde a escalabilidade
se torna crucial para evitar quedas de servi¢o devido a sobrecarga (FRAN¢A AUDREY
TELES DOS SANTOS, 2023).

21

3 Metodologia

3.1 Scrum

O Scrum, criado por Jeff Sutherland e Ken Schwaber, é uma metodologia agil
desenvolvida como uma alternativa flexivel a abordagem tradicional em cascata, que se
destacava por ser linear e pouco adaptavel. Com a introdugdo das sprints, que sao ciclos
curtos de desenvolvimento, e a adaptacao continua por meio de reunides regulares, o Scrum
trouxe uma mudanga radical para o desenvolvimento de software (SUTHERLAND, 2014).
As sprints, geralmente com duracao de duas semanas, comegam com uma reuniao de pla-
nejamento onde a equipe decide a quantidade de trabalho que podera ser entregue no ciclo
(FERREIRA, 2017; RIBEIRO; MAGALHAES, 2023). Em alguns casos, como o projeto
Agromart, a implementacao completa do Scrum pode ser desnecessaria, especialmente em
equipes pequenas ou focadas em tarefas imprevisiveis como corre¢ao de erros e defeitos,
onde a estimativa precisa é mais dificil de alcangar. No entanto, mesmo sem adotar to-
das as cerimoOnias e praticas, elementos do Scrum, como a adaptabilidade, flexibilidade
e a autogestao de equipes multifuncionais, sdo essenciais para o sucesso de projetos que
exigem ajustes rapidos diante de adversidades e mudangas de escopo (SUTHERLAND,
2014; FERREIRA, 2017; RIBEIRO; MAGALHAES, 2023).

3.2 Extreme Programming (XP)

Extreme Programming (XP) é um método agil de desenvolvimento de software
iterativo e incremental, que tem como objetivo principal maximizar o valor entregue ao
cliente a cada dia de trabalho da equipe. Criado por Kent Beck, o XP enfatiza a utilizacao
de boas praticas de programacao e desenvolvimento, levando essas praticas ao extremo
para garantir qualidade e eficiéncia (PROGRAMMING, 2013). Os cinco valores funda-
mentais do XP — comunicacao, simplicidade, coragem, respeito e feedback — orientam
o comportamento da equipe de desenvolvimento e asseguram uma entrega continua e efi-
ciente de valor ao cliente (TELES, 2017). Entre as principais préaticas adotadas no XP
estdo a programagao em pares, desenvolvimento orientado a testes (TDD), refatoragao,
c6digo coletivo, design simples e integracao continua. A interagdo constante com o cliente,
por meio de feedbacks frequentes, e a realizacao de reunides didrias (stand-up meetings)
também sao componentes essenciais para garantir que o desenvolvimento permaneca ali-
nhado as necessidades do cliente e ao planejamento das entregas (BECK, 2000). A énfase
do XP na simplicidade, adaptagao rapida as mudancgas e ritmo sustentavel torna esse

método particularmente eficaz para equipes pequenas que precisam responder de forma

Capitulo 3. Metodologia 22

agil a alteragoes de requisitos e garantir a alta qualidade do software entregue (BECK,
2000; TELES, 2017).

3.3 Roadmap

Um roadmap em engenharia de software é um plano estratégico que descreve a
visao de desenvolvimento de um produto ou projeto ao longo do tempo. Apds termos
definido os objetivos especificos deste trabalho, elaboramos o roadmap para consolidarmos

o planejamento das acoes que serao execultadas.

Figura 3 — Roadmap
Janeiro L

Dockarizacio
ImpleTemir 7
§rqaitetra Se-verless
e api-dicioniria

Migragio na an
API-Dicionario para | 8pi-dicionaria
LT .

Dockerizecéo da apl
o

Implemantar & arquitetura Sarveriess na apl principal

Refatorngho da aplicagio
Moblle pare & 8 pl RAAS

Migragiio na api

Backend para Faas B

Seriph gars o daphoy
da §p-FAAS

Lewnntameanto de dados 1

dan vantagem o Rmbtes. da . 5

Fams 8 m relaglo ao Mss Selvign “Avys fres
para a apl-diclonaria -

| Sarvigs “Always frea® Andlise da Cargd 8 Dimanslonsmema das APls
FAAS

Levantamenio de dedos
das vantagem o limltes da
Fams em relagiio ao lass ‘

para & mpl principal Estratdgias para Evitar

Cuatod Extraa no AWS
Lafiids

Roadmap AgroMart

3.4 Estrutura Analitica do Projeto(EAP)

E uma decomposicao hierarquica das entregas do projeto. Todas as entregas que
contém valor no projeto sao dispostas de forma hierarquica e agrupadas em seus épicos.

A seguir temos as entregas realizadas por este TCC.

Capitulo 3. Metodologia

23

Figura 4 — Estrutura Analitica do Projeto

-

Migragéo na Migragéo da
—— APl-Dicionario — ap?hnclu:nd Documentagio
para Faas para FAAS
—_—l
Dockerizagio
—a- da Dockerizagio
api-dicionério = da api
Roadmap
Implementar Implementar
| B arquitetura a arquitetura
Serverless na || Serveress na
api-dicionério apl principal
[—— EAP
Ce————
Script para o
= deploy da
api-F —
g Bpmn
Refatoragio
da aplicagéo
—*| Mobile para a
api FAAS

EAP AgroMart

3.5 Business Process Model and Notation

¢ uma notacao padronizada para modelagem de processos de negbcio. Ela permite
representar visualmente fluxos de trabalho, tornando-os compreensiveis para analistas
de negdcios, desenvolvedores e stakeholders. Abaixo se encontra o diagrama BPMN do

processo de criagao de uma CSA como um todo:

Capitulo 3. Metodologia 24

Figura 5 — BPMN

- Fool
2
] Freenche 2w
=1
Start
]
'E Criacio do
H Obbém as varkvels de CloudFormation ca Aealizacha do Deploy na
I‘E amblente aplicacdo com o AWE Lambda
Serverless”
E
]
£ Novaﬁ
o Execugio
-
a
=
4]
@
[i]
o
a
E
o
pr
g
< Evento
¥
m
o Freenchimentn da tabela
E ‘cmaTobie” om as dades
& da nowa csa
= Fim

BPMN do Script de criacdo de uma csa

3.6 Escolha de Ferramentas para a Migracao

Para atingir o objetivo deste projeto de melhorar o custo-beneficio utilizando ser-
vigos de infraestrutura oferecidos por provedores de nuvem, utilizaremos as seguintes

ferramentas:

« Javascript:

JavaScript é uma linguagem de programacao de propoésito geral, dinamica, inter-
pretada e amplamente utilizada no desenvolvimento de paginas e aplicativos web.
Além disso, é a linguagem base do framework React Native, que é um framework
desenvolvido pelo Facebook que permite criar aplicativos moveis para plataformas

como i0S e Android, a qual o AgroMart foi escrito.

o Typescript:

TypeScript é uma linguagem de programacao de cdédigo aberto que adiciona tipagem
estatica e recursos avangados ao JavaScript. Ela é basicamente um superconjunto do

JavaScript, o que significa que qualquer codigo JavaScript valido também é valido

Capitulo 3. Metodologia 25

em TypeScript, mas com a adi¢ao de tipos e outras funcionalidades que ajudam no

desenvolvimento de software em larga escala.

« Node.js:

E um ambiente de execucio da linguagem JavaScript no lado do servidor construido
sobre o motor V8 do Google Chrome. Ele permite que desenvolvedores usem JavaS-
cript para criar aplicagdes no servidor. Isso significa que com Node.js, é possivel
usar JavaScript tanto no frontend (navegador) quanto no backend (servidor), faci-
litando o desenvolvimento full-stack. Um dos conceitos fundamentais do Node.js é
que ele roda em uma unica thread. Ao contrario de muitos servidores tradicionais
que criam novas threads ou processos para lidar com cada requisicao, Node.js usa
um unico thread principal para todas as requisicoes. Isso é possivel porque ele lida

com operagoes de I/O de forma assincrona e ndo bloqueante.

 Express.js:

Uma biblioteca para Node.js utilizada para criar as rotas HI'TP que compoem os

pontos de acesso da aplicacao.

« AWS DynamoDB Local:

Um banco de dados NoSQL altamente escalavel, usado para armazenar e recuperar
os dados das aplicagoes. A versao Local é uma versao emulada do DynamoDB usada
durante o desenvolvimento local para simular as interagoes com o banco de dados.

¢ Serverless-offline:

Este plugin permite a emulacdo do ambiente AWS Lambda em um ambiente de
desenvolvimento, eliminando a necessidade de fazer deploy na AWS para testar a

funcionalidade.

« AWS API Gateway:

Servico que gerencia e expoe as APIs da aplicacao FaaS, permitindo que as fungoes

Lambda sejam acessadas via HTTP.

e« DynamoDB - Admin:

Uma interface desenvolvida para gerenciar tabelas do Amazon DynamoDB, permi-

tindo que administradores insiram, atualizem e excluam registros facilmente.

4 |mplementacoes

26

4.1 Processo de Dockerizacao da APl Strapi e da APl Dicionario

Antes da migracao para a arquitetura FaaS, foi necessario realizar a dockerizagao

do sistema, permitindo um estudo pratico e empirico das funcionalidades e regras de

negocio do Agromart.

Para isso, foi criado um ambiente Docker Compose que define dois servigos prin-

cipais: um responsavel por instanciar a aplicagdo Strapi e outro para o banco de dados

PostgreSQL. Essa abordagem possibilitou a validacao do comportamento da APT e do ge-

renciamento de dados antes da transicdo para um ambiente serverless, garantindo maior

confiabilidade no processo de migracao.

Cédigo 4.1 — Service do Strapi

agromart_strapi_service:

container_name: agromart_strapi_container

build:
context:
dockerfile: Dockerfile.strapi

env_file: .env

environment:
HOST: ${HOST}Z
PORT: ${PORT}
APP_KEYS: ${APP_KEYS}
API_TOKEN_SALT: ${API_TOKEN_SALT}
ADMIN_JWT_SECRET: ${ADMIN_JWT_SECRET}
JWT_SECRET: ${JWT_SECRET}
DATABASE_HOST: ${DATABASE_HOST}
DATABASE_PORT: ${DATABASE_PORT}
DATABASE_NAME: ${DATABASE_NAME}
DATABASE_USERNAME: ${DATABASE_USERNAME}
DATABASE_PASSWORD: ${DATABASE_PASSWORD}
EXPO_ACCESS_TOKEN: ${EXPO_ACCESS_TOKEN}
DATABASE_CLIENT: ${DATABASE_CLIENT}
DATABASE_SSL: ${DATABASE_SSL}

ports:
- "1337:1337"

volumes:
- .:/src/app
- agromart_node_modules:/src/app/node_modules

depends_on:

Capitulo 4. Implementagoes

27

- agromart_db_service

Codigo 4.2 — Service do postgreSQL

agromart_db_service:

container_name: agromart_db_container

image: postgres

env_file: .env

environment :
POSTGRES_DB: ${DATABASE_NAME}
POSTGRES_USER: ${DATABASE_USERNAME}
POSTGRES_PASSWORD: ${DATABASE_PASSWORD}

ports:
- "5432:5432"

volumes:

- pgdata:/var/lib/postgresql/data

Codigo 4.3 — Dockerfile Strapi

FROM node:18-alpine

WORKDIR /src/app

COPY package.json ./

RUN yarn install --frozen-lockfile --verbose
COPY

RUN yarn build

CMD ["yarn","start"]

Codigo 4.4 — api dicionario Service

agromart_node_service:

container_name: dicionario_agromart_node_container

build:
context:
dockerfile: Dockerfile.node
env_file: .env
environment:
- PORT=${PORT}
- NODE_ENV=${NODE_ENV}
- CORS_ALLOWED_ORIGIN=${CORS_ALLOWED_ORIGIN}
- JWT_SECRET_KEY=${JWT_SECRET_KEY}
- DB_DATABASE=${DB_DATABASE}
- DB_USERNAME=${DB_USERNAME}
- DB_PASSWORD=${DB_PASSWORD}
- DB_HOST=${DB_HOST}
- DB_PORT=${DB_PORT}
- DATABASE_URL=${DATABASE_URL}

Capitulo 4. Implementagoes 28

- SMTP_HOST=${SMTP_HOST}

- SMTP_PORT=${SMTP_PORT}

- SMTP_USER=${SMTP_USER}

- SMTP_PASSWORD=${SMTP_PASSWORD}

- DEFAULT_MAIL_SENDER=${DEFAULT_MAIL_SENDER}
ports:

- "3000:3000"
volumes:

- .:/app
depends_on:

- agromart_db_service

4.2 Migracao das APls para um Ambiente Serverless

Com o objetivo de garantir a utilizacdo totalmente gratuita do Agromart para
proprietarios de CSA (Community-Supported Agriculture), foi analisada a viabilidade de
um servico de hospedagem que permanecesse sem custos dentro dos limites do Free Tier
da AWS. Identificou-se que a melhor solucao seria a combinagao do AWS Lambda, para
execucao das funcoes, e do Amazon DynamoDB, como banco de dados, desde que respei-
tados os limites estabelecidos pela AWS: 1 milhao de requisi¢bes mensais para aplicagoes

FaaS e 25 GB de armazenamento no DynamoDB.

Diante dessa necessidade, foi realizada a migracao da API Dicionario e do bac-
kend Strapi para uma arquitetura Serverless, utilizando o servico AWS Lambda. Esse
processo foi conduzido por meio do Framework Serverless, que facilita a implementacao e

o gerenciamento de aplicacoes FaaS.

Na nova estrutura, cada endpoint da aplicacao original foi transformado em um
handler, que tem a responsabilidade de processar as requisi¢oes recebidas e fornecer as
respectivas respostas. A configuragdo principal da aplicagdo FaaS é definida no arquivo
serverless.yml, onde sdo especificados os endpoints, seus respectivos handlers, a confi-
guracao das tabelas do DynamoDB, as permissoes necessarias e demais parametros da

infraestrutura.

Para possibilitar o desenvolvimento e os testes em um ambiente local, foi utilizado
o plugin serverless-offline, permitindo a simulacao do comportamento da aplicacao dentro
do ambiente AWS por meio do comando serverless offline. Ja para a simulacao do banco de
dados localmente, foi adotado o plugin serverless-dynamodb, que nao apenas possibilita
a execucao do DynamoDB de forma local, mas também fornece comandos auxiliares na
CLI do Serverless Framework, como a verificacdo de tabelas especificas, consulta de dados
e execucao do banco de forma independente da aplicacdo FaaS por meio do comando

serverless dynamodb start.

Capitulo 4. Implementagoes 29

Além disso, a estrutura de pastas e arquivos nos projetos FaaS segue diretrizes

especificas, garantindo organizacao e manutencao facilitada.

A estrutura de pastas e alguns arquivos especificos, para os projetos em FAAS,

seguem algumas diretrizes :

« /handlers: diretério onde serd salvo o arquivo "handler'que tera todos os métodos

referentes a cada um dos endoints.

« repository/dynamodb-client-config.js: Arquivo que realiza configuragoes no
DynamoDB e exporta métodos para a interacdo com o DynamoDB. Nele ¢é rea-

lizado a instanciagao do cliente "AWS.DynamoDB.DocumentClient(options)".

« repository: Diretorio para os repositorios, esses que sao responsaveis de se comu-

nicar com o "dynamodb-client-config".

« offline/migrations: Arquivos criados mais para o entendimento futuro das tabelas
do que implementagao de fato. O "dynamoDB'"cria as tabelas através desse arquivo.
Além do entendimento de futuros mantenedores ajudou para deixar mais enxuto o

arquivo serverless.yml.

« /services: Alguns "Handler’s"se beneficiam do uso de services, para separacao de

responsabilidades. Este diretério é onde sdo armazenados os services criados.

4.2.1 Processo de migracao da API dicionario

Os endpoints responsaveis pela criacao e recuperaciao de uma ou multiplas CSA’s
foram convertidos em trés funcgoes distintas, cada uma correspondendo a uma operacao
especifica. Cada fungdo possui um handler dedicado, responsavel por processar as requi-

sigoes e fornecer as respostas apropriadas.

Codigo 4.5 — Arquivo de rotas da aplicagao original

import { Router } from ’express’;
import * as csaController from ’@/controllers/csa’;
const router = Router ();
router.route(’/?)
.get (csaController.getCsas)

.post(csaController.createCsa);

router.route(’/:id?)

.get (csaController.getcsaById)

Capitulo 4. Implementagoes 30

export default router;

Codigo 4.6 — Configuracao no serverless.yml para os endpoints

functions:
obter:

handler: handler.getCsas

events:
- http:
path: /
method: get
cors: true
obterUm:

handler: handler.getcsaById

events:
- http:
path: /{id}
method: get
cors: true
create:

handler: handler.createCsa
events:
- http:
path: /
method: post

cors: true

4.2.2 Processo de migracao da APl Backend

A migragao da API Strapi apresentou maior complexidade devido ao seu tamanho
e as suas regras de negbcio, que diferem da API Dicionario. No entanto, a abordagem
utilizada foi similar: para cada entidade, foi desenvolvido um handler contendo métodos

que substituem os endpoints da API original.

Dado o volume de codigo da aplicacao FaaS, uma andlise completa seria inviavel e
pouco produtiva. Portanto, este trabalho se concentrara nos aspectos mais relevantes da

migracao, destacando as diferencas em relagdo a API Dicionario.

e Populando o retorno de todas as lojas

Por se tratar de um banco de dados NoSQL, o relacionamento entre as entidades
¢ armazenado diretamente no documento da entidade, por meio de uma proprie-

dade do tipo lista. Optamos por salvar apenas os IDs das entidades relacionadas,

Capitulo 4. Implementagoes 31

exigindo uma busca adicional sempre que for necessario popular os dados completos

da entidade referenciada.

Para otimizar esse processo, utilizamos o método dynamoDb.batchGet(params) no
arquivo dynamo-client-config. Essa abordagem permite realizar uma tnica requisi-
¢ao para recuperar todos os IDs armazenados no array de relacionamentos, evitando
multiplas requisi¢oes individuais para cada item. A implementacao foi realizada no
arquivo LojaRepository.js, garantindo a correta recuperagao e associacao de dados

entre Planos, Cestas e Produtos Avulsos.

Codigo 4.7 — Lojas Repository

const getLojasComRelacionamentos = async function () {
try {

const result = await getAllLojas ();

const lojas = result.Items;

let idsCestas new Set();

let idsPlanos = new Set();

let idsProdutos = new Set();

// Coletando IDs nicos de cestas, planos e produtos
lojas.forEach((loja) => {
(loja.cestas || []).forEach((id) => idsCestas.add(id));
(loja.planos || []).forEach((id) => idsPlanos.add(id));
(loja.produto_avulsos || []).forEach((id) =>
idsProdutos.add(id));
)

// Buscando todas as entidades relacionadas de uma s vez
const [cestas, planos, produtos] = await Promise.all ([
dynamoDbLib.batchGet ("CestasTable", Array.from(
idsCestas)),

dynamoDbLib.batchGet ("PlanosTable", Array.from(
idsPlanos)),

dynamoDbLib.batchGet (
"ProdutosAvulsosTable",
Array.from(idsProdutos)

) ¢

DN

// Criando um mapa de ID Objeto para facilitar
associa o

const cestasMap = Object.fromEntries (cestas.map((c) => [c.
id, c1));

const planosMap = Object.fromEntries(planos.map((p) => [p.
id, pl));

Capitulo 4. Implementagoes 32

const produtosMap = Object.fromEntries (produtos.map((p) =>
[p.id, pl));

// Preenchendo os relacionamentos dentro de cada loja
lojas.forEach((loja) => {

loja.cestas = (loja.cestas || []).map(
(id) => cestasMap[id] || null
)
loja.planos = (loja.planos || []).map(
(id) => planosMap[id] || null
)
loja.produto_avulsos = (loja.produto_avulsos || []).map
(
(id) => produtosMap[id] || null
)

1SN

return lojas;
} catch (error) {
throw new Error(
"Erro ao buscar lojas com relacionamentos: " + error.

message

Codigo 4.8 — Método getBach no arquivo dynamo-client-config

const batchGet = async (tableName, ids) => {

if (ids.length === 0) return [];

const params = {
RequestItems: {
[tableName]: {
Keys: ids.map((id) => ({ id })),

¥
T
}s
try {
const result = await dynamoDb.batchGet (params) .promise () ;
return result.Responses[tableName] || [];

} catch (error) {
throw new Error(
‘Erro ao buscar m ltiplos itens em ${tableNamel}: ¢ +

error . .message

Capitulo 4. Implementagoes 33

4.3 Automacao do Deploy da API Principal em Faa$

O objetivo deste script é automatizar o processo de deploy, eliminando a necessidade
de digitar manualmente todos os comandos da AWS CLI e do Serverless Framework.
Além disso, ele unifica e define claramente as variaveis que precisam ser preenchidas,

garantindo uma execucao mais eficiente e padronizada.

Ao final do processo, o script realiza um POST para a API Dicionério, enviando a
URL da nova CSA implantada. Para maior acessibilidade, o script foi desenvolvido
para ser executado em Windows e ja inclui a instalagdo automatica das dependéncias

necessarias.

Cédigo 4.9 — Script de automagao do Deploy

Define as vari veis que o cliente deve preencher

$AWS_ACCESS_KEY_ID = "AKIA2S2Y36QFEEUPKO6F"
$AWS_SECRET_ACCESS_KEY = "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"
$AWS_REGION = "us-east-1"

$PROJECT_DIR = $PSScriptRoot # Caminho da aplica o Serverless

$URL_API_DICIONARIO = "https://aywcbxk6ql.execute-api.us-east-1.
amazonaws .com/dev/"

$NOME_CSA = "CSA SCRIPT"

$NOME_RESPONSAVEL = "Murilo SCRIPT"

$EMAIL_CSA = "EMAIL@email.com"

Fun o para verificar se um comando existe
function CommandExists {
param (

[string] $command

)
$exists = $false
try {
if (Get-Command $command -ErrorAction Stop) {
$exists = $true
}
} catch {}

return $exists

Instalar Node.js, se necess rio

if (-not (CommandExists "mnode")) {

Capitulo 4. Implementagoes

34

29 Write-Output "Instalando Node.js..."

30 Invoke -WebRequest -Uri "https://nodejs.org/dist/v18.17.1/node-

v18.17.1-x64 .msi" -0OutFile "nodejs.msi"

31 Start -Process -FilePath "nodejs.msi" -Wait -ArgumentList "/
quiet"
32 Remove-Item "nodejs.msi"

35 |# Instalar Serverless Framework, se necess rio
36 |if (-not (CommandExists "serverless")) {
37 Write-Output "Instalando Serverless Framework..."

38 npm install -g serverless

41 |# Instalar AWS CLI, se necess rio
42 |if (-not (CommandExists "aws")) {
13 Write-Output "Instalando AWS CLI..."

14 Invoke -WebRequest -Uri "https://awscli.amazonaws.com/AWSCLIV2.

msi" -OutFile "AWSCLIV2.msi"

15 Start -Process -FilePath "AWSCLIV2.msi" -Wait -ArgumentlList
quiet"

16 Remove-Item "AWSCLIV2.msi'"

19 |# Configurar credenciais da AWS

50 |aws configure set aws_access_key_id $AWS_ACCESS_KEY_ID

51 |aws configure set aws_secret_access_key $AWS_SECRET_ACCESS_KEY
52 |aws configure set region $AWS_REGION

54 |# Navegar at o diret rio do projeto
55 | Set-Location $PROJECT_DIR

57 |# Instalar depend ncias do projeto

583 |npm install

60 |# Fazer deploy
61 | serverless deploy 2>&1 | Tee-Object -Variable deployOutput

63 |# Capturar URL Base da API

Il/

64 | $apiUrls = $deployOutput | Select-String -Pattern "(https://[a-zA-

Object { $_.Matches.Value }
65 | $baseApilUrl = $apiUrls | Select-String -Pattern "“https

-0bject { $_.Matches.Value }

Z0-9.-]1+\.amazonaws\.com/[a-zA-Z0-9/-]1+)" -AllMatches | ForEach-

:\/\/["\/]1+\/dev" -AllMatches | Select-0Object -First 1 | ForEach

Capitulo 4. Implementagoes

35

78

Requisicao POST para a api dicionario, salvando nela a URL

criada

$headers = @{

"Content -Type" = "application/json"
}
$body = ef{
nomeCSA = "$NOME_CSA"
responsavelCSA = "$NOME_RESPONSAVEL"
emailCSA = "$EMAIL_CSA"
urlBase = "$baseApilUrl"

} | ConvertTo-Json -Depth 10

Invoke -WebRequest -Uri "$URL_API_DICIONARIO"
-Method Post ¢
-Headers $headers

-Body $body ¢

-UseBasicParsing | Out-Null

4

da

csa

4.4 Refatoracao do Mobile para consumir a APl em Faa$

Com a migracao do backend do Agromart para uma arquitetura baseada em FaasS,

foi necessario realizar ajustes no aplicativo mével para garantir a compatibilidade com a

nova API hospedada na AWS Lambda. Essas modificagoes foram essenciais para adequar o

consumo de requisi¢oes sob demanda, otimizando a comunicagao entre o app e 0s servicos

em nuvem.

4.4.1 Adaptacdo das RequisicGes para a AWS Lambda

A principal mudancga na refatoracao foi a alteragao dos endpoints utilizados no

aplicativo. No modelo anterior, as requisi¢des eram feitas para um servidor EC2 com URLs

estaticas e pré-definidas. Com a adocao do FaaS, foi necessario modificar as chamadas

para utilizar os endpoints da AWS API Gateway, que atuam como intermediarios entre o

aplicativo e as fun¢oes Lambda.

Os ajustes envolveram:

o Atualizagao das URLs das requisi¢gdes para os novos endpoints gerenciados pelo API

Gateway.

» Modificacao do formato das requisi¢oes, garantindo compatibilidade com a execucao

assincrona das func¢oes Lambda.

Capitulo 4. Implementagoes 36

o Implementacao de novas regras de autenticacdo, caso necessario, considerando a

possivel integracao com AWS TAM ou API Keys.

4.4.2 Atualizacdoes no Cédigo do Aplicativo

Para ilustrar as alteracoes feitas no cddigo, a seguir sao apresentados os trechos
modificados. Esses diffs foram extraidos do histérico de commits no GitHub e demonstram

a adaptacao do coédigo para consumir a API em FaaS corretamente.

|-. an
setLoading(

await apiDicionario.get(csa/${data.CsaCode
og(resp.data
p.data) {

EetLﬁaﬂing

handleSubmit = useCallback(
setLoading (15

urlApiDic

data.CsaCode
ngify
resp.data?.Item) {
setChosenCsal(r ata?.Item);

Figura 7 — Procurar CSA - depois

Capitulo 4. Implementagoes 37

g; neighbor

cl
nume r

handleSubmit =
da { g g tring; co nent: stri street: ing; neighborhoo

data?.data).then(console.log(’ ' + JSON.stringify(response.data.data)

Figura 9 — Ajuste de requisicao e de url Endereco - depois

Capitulo 4. Implementagoes 38

t axios.post(urllauth/

identifier: usernan

;
.stringify(user)],

user });

ceInfo(us

Figura 10 — Ajuste de parametro e url Login - antes

nc
emai username,
senha: password

}

.post(

Figura 11 — Ajuste de parametro e url Login - depois

Capitulo 4. Implementagoes 39

email }: Sign

{ nome, senha, email }:

Iri
.getItem

5 .post(
nome,
senha,
ail,

Figura 13 — Ajuste de parametro e url Cadastro - depois

Capitulo 4. Implementagoes 40

awalt initializeApi()
] awalt api.put(rs/${user.id}",

lame: name

data =
username: data.nome,
email: data.email,
id: user.id

it updateUser(data);

Figura 15 — Ajuste de parametro e url Usuario - depois

4.4.3 Impactos da Refatoracao
A refatoragao trouxe beneficios significativos para o funcionamento do aplicativo
movel, incluindo:
e Reducao do tempo de resposta das requisicoes em cenarios de baixa demanda, pois

os servidores nao permanecem ativos o tempo todo.

e Otimizacao do consumo de recursos, reduzindo custos operacionais devido a natu-

reza sob demanda da arquitetura FaaS.

Capitulo 4. Implementagoes 41

« Facilidade de escalabilidade, permitindo que as fung¢oes Lambda se ajustem auto-

maticamente conforme o volume de requisicoes.

4.5 Andlise de Servico "Sempre Gratuito"da AWS

Apos conversas com o orientador Prof. Dr. André Luiz Lanna, foi levantada a
necessidade de se ter um ambiente de deploy totalmente gratuito para o agricultor. Es-
colhemos a melhor combina¢ao no mercado que é sempre gratuito, respeitando algumas

limitagoes, que ¢ o servico Lambda junto ao DynamoDB.

Os limites impostos pela AWS para a Lambda e para o DynamoDB sao estes
(SERVICES, 2025a) (SERVICES, 2025b) :

- AWS Lambda:

» Solicitagoes mensais gratuitas: 1 milhao de invocagoes.

o Tempo de computagao gratuito: 400.000 GB-segundos por més.
GB-segundo mede o consumo de memoéria ao longo do tempo. Por exemplo, uma
funcao Lambda com 1 GB de memoria que executa por 1 segundo consome 1 GB-

segundo.

o Transferéncia de dados: 100 GiB de respostas HT'TP por més, além dos primeiros 6

MB por solicitagao, que sao gratuitos.

- DynamoDB:

o Armazenamento: 25 GB gratuitos.

 Capacidade provisionada: 25 unidades de capacidade de leitura (RCUs) e 25 unida-
des de capacidade de gravacao (WCUs), suficientes para processar até 200 milhoes

de solicitagoes por més.

Unidade de leitura: 1 unidade permite até 2 leituras por segundo para itens de até
4 KB (fortemente consistente).

Unidade de escrita: 1 unidade permite 1 escrita por segundo para itens de até 1 KB.

Exemplo pratico: Se sua aplicagao precisa ler e escrever itens pequenos (até 1 KB),

as unidades gratuitas permitem:

Até 50 leituras/segundo (eventualmente consistentes) ou 25 leituras/segundo (for-

temente consistentes) Até 25 gravagoes/segundo

Capitulo 4. Implementagoes 42

45.1 Por que a AWS é melhor que as opcdes "ilimitadas"do Google e Oracle?

Trés grandes plataformas se destacam para a implantacao de projetos FaaS: AWS,

Google Cloud e Oracle. Mas, por que a AWS foi a escolha?

A AWS se destaca na arquitetura FaaS e bancos NoSQL gratuitos porque oferece
o unico plano verdadeiramente ilimitado para pequenas e médias aplicagoes. Mas para
entender por que o Google Cloud e o Oracle Cloud nao sao tao vantajosos, é fundamental

analisar as limita¢oes ocultas dessas plataformas.

- AWS X Google Cloud

o Execucgoes FaaS gratis: Nesse ponto o Goolgle oferece o dobro de requisi¢oes

gratuitas que a AWS, 2 milhoes.

« Armazenamento gratuito O Firestore disponibiliza somente 1 GB de armazena-

mento gratuito equanto que a AWS libera 25gb dedicados a cada aplicagao.

« Leituras e Gravagoes Aqui ja temos os limites rigidos inviabilizando o Google
Cloud. 50.000/dia de leituras gratuitas (depois cobra 0.06 ddlares por 100K leitu-
ras), 20.000/dia de escritas gratuitas (depois cobra 0.18 délares por 100K grava-
¢oes) e 10.000/dia de delegoes gratuitas (depois cobra 0.02 por 100K exclusoes).
Google Cloud cobra por cada requisi¢ao diferente da AWS que caso vocé nao passe
das 25/50 unidades de leitura e 25 de escrita nao sera cobrado nunca.(GOOGLE,
2025a)(GOOGLE, 2025b)

Resumo : Se sua aplicacao faz 100.000 leituras/dia, no DynamoDB é gratuito (den-
tro das 25 unidades provisionadas), mas no Firestore custa 0.06/dia — 1.80/més.
Se precisar de 500.000 gravagoes/dia, o custo no Firestore sobe para 0.90/dia —
27 /més.

- AWS X Oracle

o Execucoes FaaS gratis: Também oferece o dobro comparado a AWS.

« Armazenamento gratuito: 25gb dedicados a cada aplicagao. Ja a "Oracle"disponibiliza

os 25 GB porém compartilhado entre todos os servigos !

« Leituras e Gravagdes: A "AWS'é Ilimitada dentro das 25/50 RCU e 25 WCU.
Ja a Oracle 133 milhoes de RCU (depois cobra 0.30 de ddlares por milhao) e 25
milhoes WCU (depois cobra 2.25 por milhdo) (CLOUD, 2025)

Capitulo 4. Implementagoes 43

Resumo: No DynamoDB é gratuito dentro da capacidade provisionada. Na Ora-
cle se sua aplicagao fizer 150 milhoes de leituras/més custa: 17 milhoes extras x
0.30/milhdao = 5.10/més. Se fizer 50 milhoes de gravagoes/més, no Oracle custa: 25
milhoes extras x 2.25/milhao = 56.25/més

A AWS foi escolhida pois trabalha com limites de de taxa de transmissao, e nao

limites estaticos. Caso seja respeitados estas taxas nao sera cobrado do agricultor. Nos en-

trega maior previsibilidade e controle de custos. Flexibilidade para crescer sem cobrancas

inesperadas

4.6

Estratégias para Minimizacao de Custos no AWS Lambda

No servico Lambda :

Definir um limite de simultaneidade (tag "reservedConcurrency")

Bloqueia o nimero maximo de execugoes simultaneas. Se atingir o limite, novas

execugoes serao enfileiradas ou rejeitadas.

Cédigo 4.10 — reservedConcurrency em uma function

getLojas:
handler: handlers/loja.getLojas
reservedConcurrency: 5
events:
- http:
path: lojas
method: get

cors: true

Configurar Timeout (tag "timeout") Evita fun¢oes rodando por muito tempo

e consumindo mais GB-segundos.

Codigo 4.11 — "reservedConcurrency'em uma function

provider:

timeout: 5

Reduzir Meméria Alocada (tag "memorySize") Menos meméria alocada para

cada function evitando o consumo de GB-segundos.

Codigo 4.12 — "reservedConcurrency'em uma function

Capitulo 4. Implementagoes 44

provider:

memorySize: 128

No Amazon DynamoDB :

Configurar "Throttling"

Se a capacidade provisionada for atingida, o banco nao cobra extra, apenas torna as
requisi¢oes mais lentas ou as rejeita com erro HT'TP 400 (Provisioned Throughpu-
tExceededException).Essa condicao é atingida configurando as tags 'BillingMode"e

"Provisioned Throughput".

Codigo 4.13 — BillingMode em uma tabela

LojasTable:
Type: AWS::DynamoDB::Table
Properties:
TableName: LojasTable
AttributeDefinitions:
- AttributeName: id
AttributeType: S
KeySchema:
- AttributeName: id
KeyType: HASH
BillingMode: PROVISIONED
ProvisionedThroughput:
ReadCapacityUnits: 1
WriteCapacityUnits: 1

Configurar o "auto scaling"do "DynamoDB":

Queremos ter uma escalabilidade controlada . O Auto Scaling aumenta somente até

3 unidades na leitura, evitando gastos excessivos.

Cédigo 4.14 — auto scaling

AgroMartTableScalingRead:
Type: AWS::ApplicationAutoScaling::ScalableTarget
Properties:
MaxCapacity: 3
MinCapacity: 1
ResourceId: table/AgroMartTable
RoleARN: arn:aws:iam::${aws:accountId}:role/
DynamoDBAutoScalingRole
ScalableDimension: dynamodb:table:ReadCapacityUnits

ServiceNamespace: dynamodb

Capitulo 4. Implementagoes 45

12 | AgroMartTableScalingWrite:

13 Type: AWS::ApplicationAutoScaling::ScalableTarget

14 Properties:

15 MaxCapacity: 3

16 MinCapacity: 1

17 ResourceId: table/AgroMartTable

18 RoleARN: arn:aws:iam::${aws:accountIdl}:role/
DynamoDBAutoScalingRole

19 ScalableDimension: dynamodb:table:WriteCapacityUnits

20 ServiceNamespace: dynamodb

Com essas configuragoes visamos limitar a autonomia da AWS para com a nossa
aplicagao. Definimos limites para que que o backend do Agromart esteja preso e obtenha-

mos uma seguranca e confianca maior na questao de custos.

4.7 Analise de Carga e Dimensionamento das APls FAAS

4.7.1 Levantamento de dados sobre a api-dicionario em FAAS

Neste trecho, serao levantados dados sobre as duas APIs, analisando os impactos de
cada uma sobre o Always Free Tier da AWS. A seguir, sera detalhado em que momentos

do uso do AgroMart sao feitas requisi¢oes para a API do Diciondrio.

As requisicoes para a API do Dicionario ocorrem em quatro momentos especificos:
o Ao criar uma nova CSA.
o Ao recuperar multiplas CSAs.

o Ao recuperar uma unica CSA.

e Ao deletar uma CSA.

Quando o usuério seleciona o ID de uma CSA no aplicativo mével, esse ID é salvo
para as proximas utilizac¢oes, ou seja, a busca pelo ID de uma CSA ocorre apenas uma
vez por sessao de uso. ((FREITAS; CELLA, 2023))

Quais cenarios de testes tém a tendéncia de bater 1 milhao de requisi¢oes no

més ?

e 1 cendrio: O usuario busca todas as csa’s e escolhe uma para se acessar.

Somente 1 requisicao ao endpoint "GetAll"é utilizado.

Capitulo 4. Implementagoes 46

2 cenario:Os administradores Decidem criar mais uma csa.

Somente 1 requisicao ao endpoint "Creat'é utilizado".

e 3 cenario:Os administradores buscam todas as csas para ver em algo em especifico
dentre elas.
Somente 1 requisicdo ao endpoint "GetAll"é necessério, visto que esse endpoint ja
retorna alumas informagoes importantes das CSA’s.

e 4 cenario:Os administradores buscam uma em especifico para analise.

Somente 2 requisicao com os endpoint’s "GetAll'mais o "GetByld".

e 5 cenario:Os administradores buscam deletar uma csa.

Somente 1 requisicao ao endpoint "Delete".

Sera que sera extrapolado o armazenamento maximo do free tier do Dynamo?

Ap0s a realizagao de diversas implantagoes de csa’s e popularmos a api-dicionario
com suas "URI’s", vimos que em média o tamanho médio de um item no DynamoDB da

api-dicionario se da por volta dos 170 Bytes.
Discussao dos resultados

Ap06s o levantamento de dados podemos ver o pouquissimo impacto da api-dicionario

nos limites estabelecidos para o "Aways Free tier'da AWS.

As funcionalidades que necessitam da api dicionaria sao extremamente pontuais e
nao ordinarias. Sao decisdes tomadas no nivel gerencial de uma csa, o que nao acarreta

medo a cerca do limite provisionado da AWS para requisigoes.

E sobre o banco de dados seriam necessarias quase que 150 milhoes de csa’s para

se extrapolar o limite da Aws.

4.7.2 Analise de Carga e Dimensionamento de Usuarios na APl Principal
FAAS

Esta sessao visa analisar a quantidade de requisi¢oes recebidas por uma API de-
senvolvida em AWS Lambda, identificando o consumo por usudrio e determinando a
quantidade maxima de usuarios suportados dentro do limite gratuito de um milhao de

requisicoes por mes.

4.7.2.1 Cenarios de caso de uso do backend

Para entender o impacto da utilizagdo da API e calcular a quantidade de requisi-

¢Oes geradas por usudrio, foi realizado um mapeamento detalhado de todos os casos de

Capitulo 4. Implementagoes 47

uso da aplicacdo. Esse processo envolveu a identificagdo de cada funcionalidade disponi-

vel para o usudrio e a andlise das interagoes que resultam em chamadas a fungdo AWS

Lambda.

O mapeamento foi documentado por meio de diagramas de casos de uso, que
estao listados logo abaixo, ilustrando as principais operagoes executadas pelos usuarios
e a frequéncia estimada de cada uma delas. A partir dessa analise, foi possivel calcular
a quantidade média de requisi¢oes geradas por um unico usuario durante um periodo de

um mes.

4.7.2.2 Casos de Uso

niciar o Informar o Prosseguir
Usuério deseja se . codigo da Validagao do para Cadastro
> N ——Sim—- e — ——Valido f
Start ‘g:‘i:sisnu cadastrar? (Sim/No)y CSA para cddigo da CSA id cadastro bem-sucedido End
9 conexdo do usuério
i
Exibir
mensagem
Invalido——— deerroe \
solicitar o
cédigo
novamente
Encerramento
do
» Processo J

de login
sem
cadastro

Figura 16 — Fluxo Cadastro de Usuario

o Requisicao 1: Validar CSA na Api Dicionario
GET: .../dev/idCsa

« Requisicao 2: Criar usuario no backend

POST: .../dev/usuarios.

O usuario O nome de. LI

O usuério = = concedido e
Start » abreo digita nome g USUBFD 8 8 i » usuério > End
licath de usudrio e senha estdo e
aplicativo . correlosy redirecionado

para o painel

Exibir
mensagem de
erro e solicitar
que o usudrio

tente

novamente

Figura 17 — Fluxo Login

» Requisigao 1: Verificar Usuario e Senha informados

POST: .../dev/auth

Capitulo 4. Implementagoes

48

Usudrio na Deseja acessar Seleciona b Tt Altera e
Start —— tela —— configuragdes do —Sim— 'Meus ———» eseja al eﬁ; Sim | nomee - > alteracies End
principal usuério? Dados" Qgmajelenills email G
Permanece -
Nao—= natela
principal
Figura 18 — Fluxo Meus Dados
o o~ . s .
» Requisigao 1: Atualizar dados usuario
PUT .../dev/usuarios/idUsuario
. Déseja acessar Acessar Alterar Alterando
Start ————» ‘éf:"“'r:‘n”cl"zl ——»(configuracdes do Sim— 'Meus - » endereco de ——Sim—- endereco 3“5;2/56;5— » End
P P usudrio? Enderegos' entrega? de entrega ¢
Voltar para
—————Nao—#Configuragdes
de Usuério
Permanecer
C na tela
principal
Figura 19 — Fluxo Meus Enderecos
« Requisigao 1: Criar/Atualizar enderego
PUT .../dev/endereco
0 usuério
Usuério esta clica no Acessar a Acessar Marcar a Atuali Visualizar
Start > natela »| icone de »<funcionalidade de >—Sim—# Meus »C(opgao de pula——sim—a- ATETEA * planos do End
principal configurages Meus planos? planos cesta? s Usuério
de usuario

Nac

Permanece

na tela
principal

Figura 20 — Fluxo Planos

« Requisicao 1: Procurar Planos

GET ...dev/assinantes

» Requisig¢ao 2: Pular Cesta

PUT ...dev/assinantes/70d38276-6d0e-4af2-b3d8-c91bd556e3fe

Capitulo 4. Implementagoes

49

O usuério

continua |
na tela
principal

f

Nac

O usudrio

4 O usuério 0 usuério Visualizar
Iniclo - "sma"a » deseja selecionar ——Sim—»C_ seleciona | dadosda > Fim
principal uma loja? uma loja loja
Visualizar ‘Adicionar Adicionar
planos da planos ao Sim— planosao —,
loja carrinho? carrinho
Adicionar
I
Visualizar Adicionar D”’:{"“"S e e
p:’nadlomlzs P;;‘_;ﬁﬁ‘sugn Sim——— carrinho Pedidos
Visualizar Adicionar Adicionar
cestas da cestasao ———Sim— cestasao —
loja carrinho? carrinho
Figura 21 — Fluxo Pedidos
« Requisicao 1: Obter lojas
GET ...dev/lojas
. .
o Requisicao 2: Obter histérico de compras
GET ...dev/extratoes?user=cfa7eebe-7054-4acl-891a-990ef738ab7e
AN Unusrt Deséja acessar 0 Usuirio
start 8| e - SSZC:'L‘:\{E:: Sim——» se.ec?l;.;ﬂma »(funcionaidads Sim——»- fedireconado o Ena
ojer o pelo WhatsABp? WhatsApp .
R Usuério
C tela principal
Figura 22 — Fluxo WhatsApp
» Requisicao 1: Obter lojas
GET ...dev/lojas
Inici ’ I‘O "E"él'iu Tela de O usuério o .
son | "nicaite = TR Configuragoes, .| visuslizaas Ena
aplicativo codn:iglsjzflf;es ¢ 3522;123"1 co‘;’;;;ﬁzgggg opgao 'Sair'

Figura 23 — Fluxo Logout

« Nao possui requisi¢oes

Capitulo 4. Implementagoes 50

Cada operacao da aplicacao, como consultas, insercoes, atualizacoes e exclusoes de
dados, foi analisada para determinar sua contribui¢ao no volume total de requisi¢oes. Com
base no comportamento esperado dos usuarios e nos fluxos de uso mapeados, chegou-se a

estimativa de que um tnico usuario realiza, em média, 96 requisi¢des mensais a API.

Com essa métrica definida, foi possivel calcular a capacidade maxima de usuarios
suportados antes que a aplicagao ultrapasse o limite gratuito da AWS Lambda. Conside-
rando que o servi¢o permite até 1.000.000 de requisi¢oes gratuitas por més, a capacidade

de usudrios pode ser determinada pela seguinte formula:

(4.1)

Onde:

o Upax representa o nimero maximo de usuarios suportados dentro do limite gratuito;
e Ruax € 0 limite maximo de requisigdes mensais (1.000.000);

e R, corresponde a média de requisi¢oes por usudrio (96).
Aplicando os valores:

1.000.
Unax = 009%000 ~ 10.416 (4.2)

Ou seja, a API pode atender aproximadamente 10.416 usudrios por més em cada

CSA antes de ultrapassar o limite gratuito da AWS Lambda.

4.7.2.3 Resultado

A API pode atender aproximadamente 10.416 usuarios por més em cada CSA
antes de ultrapassar o limite gratuito da AWS Lambda. E um ntimero bem distante da
atual realidade do AgroMart, pois nosso levantamento revela que a maior CSA (Floresta)

possui cerca de 30 usuarios mensais.

Dessa forma os mantenedores das CSAs poderao trabalhar de forma tranquila sem
ter que se preocupar com gastos de infraestrutura, pois as atuais condi¢oes sao mais que
suficientes para a aplicacao funcionar e, além disso, suportam com folga um eventual pico

de usuérios.

Vale destacar que um monitoramento continuo das métricas da AWS CloudWatch
(disponivel no site da AWS) é essencial para evitar custos inesperados e garantir a efici-
éncia da solucdo. O mapeamento detalhado dos casos de uso também pode servir como
base para futuras otimizagoes, permitindo ajustes na logica da aplicagao para minimizar

o consumo desnecessario de recursos computacionais.

Capitulo 4. Implementagoes 51

4.7.3 Analise de carga e dimensionamento do banco na API Principal FAAS

Esta secdo tem como objetivo avaliar o consumo de armazenamento da API bac-
kend do Agromart, implementada em um ambiente FaaS, e verificar em quais circuns-
tancias esse consumo pode ultrapassar o limite de 25 GB estabelecido pelo Free Tier do

Amazon DynamoDB.

Para isso, seré determinado o tamanho médio dos registros de cada uma das prin-
cipais entidades armazenadas no DynamoDB. Com base nesses valores, serd realizada
uma simulacao considerando cinco registros por entidade, permitindo estimar o impacto
no uso total de armazenamento e identificar possiveis cenarios que levem a superacao do

limite gratuito.

4.7.3.1 Registros das entidades

Para a nossa andlise iremos ter como base os seguintes registros, com seus respec-

tivos espaco médio ocupado no Banco DynamoDB.

o Assinante: 185 Bytes

nome : " Muril .
id": "BO7a@7e9-15a1-443f-a031-abe361lcf3es7",

cestas _disponiveis™: 5,

'99c7921@-581a-4381-9c8d-a8d%baad2das"

lojas": [
'f3e44c5a-3b5d-4735-be96-d367340207E5"
1,

created at":

[
=2
[N
Ln
=3

-02-24T20:27:01.564Z",

usuario_id": "ab5f63es-142b-4d7c-917e-"

1 by

Figura 24 — Assinante

o Cesta: 200 Bytes

Capitulo 4. Implementagoes

52

e

(S

'id": "3azaeaBbd-el@4-46806-accP-eadlfe2bdcda”,
'valoxr": 5@,

‘quantidade”: &,

‘descricaon”: "Cesta basica de frutas ",
‘imagem”: "basetd imagem”,

‘lojas": []

Figura 25 — Cesta

« Endereco: 280 Bytes

==

cidade”: "Endereco Murilo®,

complemento®: "Do lado da Distribuidora®™,
numero”: “151",

pairro”: "Guara®“,

id": "aBa8fc9c-53aa-4de7-8703-463c21247cas”,
userId”: "abbff3es-142b-4d7c-917e-33147c70bEEL"
cep": "99999999"

I II_.E" : "l-q-“

Figura 26 — Endereco

o Usuario: 185 Bytes

i

(S

‘'senha”: "MuriloSenha”,
‘created at": "2025-0@2-24T20:87:57.8087",
‘nome”: "Murilo Schiler Lopes Santana”,

'id": "ab5f63e6-142b-4d7c-917e-8al147c70b580L",

‘email”: "muriloschiler@email.com”

Figura 27 — Usuario

r

Capitulo 4. Implementagoes

53

o Produtos: 180 Bytes

[
'valoxr": 25,
‘imagem” : "Base 64 imadem”,
‘nome”: “Farofa”,
‘unidade_medida”: “"Gramas”,
‘id": "fbcal737-91bb-46f4-84d7-4bodoBca7dae",
‘quantidade": 1@,
‘loja_id": [1,
‘descricao”: “"Farofa”
]

[aa]

b

Figura 28 — Produtos

o Planos: 250 Bytes

‘quantidade _de cestas": 4,

'valoxr": 156,

‘imagem": "base 64 Imadem”,

‘aszinantes": [
"ab5f63en-142b-4d7c-917e-583147c70bEEL"

I

‘nome”: "Plano Trimestral®,

'id”: "73c8d317-2419-4e0f-acal-03=691f4e3c4”,

‘lojas": [].,

‘quantidade”: 1@,

‘descricao”: "Descrigdo Plano Trimestral”

Figura 29 — Planos

 Loja : 500 Bytes

Capitulo 4. Implementagoes 54

rda

‘nmome”: “"Loja Exemplo™,

‘descricao”: "Descrigdo da loja”,

‘bannex”: “"http://exemplo.com/banner.jpg”,
‘tipos_de_entrega": "Entregar”,

‘contato”: 1234567390,

‘'chpj”: 12345678000195,

‘endexreco”: "",

‘cestas": ["3aaeaBbd-e104-4606-acc9-eadlfe2bdcda”],
‘planos": ["99c79e10@-581a-4a831-9c8d-a8d9baad2dae”],
‘assinantes”: ["29725055-4@ck-46836-ba9l-5bf1@971a78b"],
‘produtos”: ["fbcal737-91bb-46%f4-34d7-4b9d0Rcd7dBe"]

Figura 30 — Planos

4.7.3.2 Andlise

Vamos comecar dimensionando a quantidade total de cada umas das entidades

sobre o tamanho total do DynamoDB disponivel.

O armazenamento gratuito do DynamoDB ¢é de 25 GB, equivalente a:
25 x 1024% = 26.843.545.600 bytes (4.3)

Considerando as entidades armazenadas no banco, os tamanhos médios dos registros sao

apresentados na Tabela 1.

Entidade Tamanho Médio (bytes)
Usuarios 185
Cesta 200
Endereco 280
Assinantes 228
Produtos 180
Planos 250
Loja (1 cesta, 1 produto, 1 assinante, 1 plano) 500

Tabela 1 — Tamanhos médios das entidades armazenadas no DynamoDB.

A partir desses valores, podemos estimar a quantidade maxima de registros arma-
zenaveis utilizando a equagao:

26.843.545.600
N —

- (4.4)

Capitulo 4. Implementagoes 55

onde N representa o nimero maximo de registros e T' o tamanho médio de cada entidade.

A Tabela 2 apresenta os valores obtidos.

Entidade | Maximo de Registros
Usuarios 145.073.223
Cesta 134.217.728
Endereco 95.155.521
Assinantes 117.691.878
Produtos 149.130.809
Planos 107.374.182
Loja 53.687.091

Tabela 2 — Numero maximo de registros armazenaveis por entidade.

- Cenario com 5 registros de cada entidade

Considerando as entidades armazenadas no banco,o tamanho total de cada tabela

representando um entidade apresentado na tabela 3.

Entidade Tamanho Médio vezes 5 (bytes)
Usuarios 925
Cesta 1000
Enderego 1400
Assinantes 1140
Produtos 900
Planos 1250
Loja (5 cestas, 5 produtos, 5 assinantes, 5 planos) 2500
Total 9115

Tabela 3 — Tamanhos médios das entidades armazenadas no DynamoDB considerando
multiplos registros.

A partir desses valores, podemos estimar a quantidade maxima de cenédrios arma-

zenaveis utilizando a equagao:

26.843.545.600
N =

= (4.5)

Onde N representa o nimero maximo de bytes e 7' o tamanho total de Bytes(9115).

Ao aplicar essa equacdo, obtemos um total de 2.944.985 cenarios idénticos. Isso
significa que, considerando um cenario em que cada entidade possui cinco registros, esse é
o limite estimado de armazenamento garantido para os agricultores no Agromart dentro

das restri¢des do Free Tier do Amazon DynamoDB.

4.7.3.3 Resultados

Os resultados indicam que a api principal dificilmente ira extrapolar os limites da

AWS para o "Aways free tier'. Mesmo considerando a entidade "Loja', que representa um

Capitulo 4. Implementagoes 56

conjunto de registros, seriam necessarias mais de 53 milhoes de instancias para atingir

o limite, mostrando que a cota gratuita é suficiente e dificilmente se tornard um fator

limitante.

o7

5 Conclusao

Este trabalho investigou a viabilidade técnica e econdémica da migracao do backend
do AgroMart de uma arquitetura baseada em Infraestrutura como Servigo (laaS) para
um modelo de computagao serverless utilizando Fungao como Servigo (FaaS) na AWS
Lambda. A proposta visou reduzir custos operacionais, otimizar o consumo de recursos

computacionais e garantir maior escalabilidade ao sistema.

A andlise demonstrou que a manutencao de instancias EC2 para hospedar as APIs
do AgroMart apresenta um custo significativo, com um valor estimado de R$ 171,55
mensais para um servidor t3.medium, sem considerar despesas adicionais como armaze-
namento, transferéncia de dados e licenciamento de software. Além do impacto financeiro,
essa abordagem exige um gerenciamento manual da infraestrutura, o que dificulta a es-
calabilidade dinamica da aplicacao, podendo comprometer a experiéncia do usuario em

periodos de alta demanda.

Em contrapartida, a adocao da arquitetura FaaS mostrou-se uma alternativa pro-
missora. Com a execugao sob demanda das fungdes na AWS Lambda, eliminam-se os
custos associados a ociosidade dos servidores, garantindo um uso mais eficiente dos recur-
sos computacionais. Além disso, a escalabilidade automatica do modelo serverless permite
que a aplicacao se adapte dinamicamente ao volume de requisi¢oes, sem a necessidade de

intervengdes manuais na infraestrutura.

Durante o processo de migracgao, foi necessaria a adaptagao do aplicativo mobile
para consumir a nova API hospedada na AWS Lambda. A refatoragdo envolveu mudan-
cas nos endpoints e ajustes no formato das requisi¢oes. Essas alteracoes garantiram a
compatibilidade do frontend com a nova estrutura backend e minimizaram impactos na

experiéncia do usuario.

Dessa forma, os resultados obtidos indicam que a migracao do AgroMart para o
modelo FaaS pode reduzir significativamente os custos operacionais, ao mesmo tempo
em que melhora a eficiéncia da alocacdo de recursos e a escalabilidade da aplicacao. No
entanto, a viabilidade total da migracao depende da analise continua dos custos a medida
que a demanda pelo sistema cresce, principalmente em relacao as limitacdes da camada

gratuita da AWS e aos custos adicionais que possam surgir.

Por fim, este estudo contribui para o entendimento das vantagens e desafios da
adogao da computacao serverless no AgroMart, servindo como base para futuras pesqui-
sas que busquem otimizar ainda mais a eficiéncia e a sustentabilidade financeira deste

sistemas.

o8

6 Desenvolvimentos Futuros

A migracao do AgroMart para um ambiente serverless demonstrou ser uma al-
ternativa viavel, mas sua evolugao exige a definicao de novos desafios e aprimoramentos.
Dentre os principais aspectos a serem explorados, destacam-se a analise de desempenho,
a escalabilidade do sistema, a implementacao de novas funcionalidades e o reforco das

diretrizes de seguranca.

Um dos desafios primordiais ¢ a realizagdo de um estudo detalhado sobre o desem-
penho da nova arquitetura. E necessério avaliar o comportamento do AgroMart diante
de um aumento no nimero de usuarios simultaneos, requisi¢oes e interagdes com o banco
de dados. Além disso, torna-se fundamental estabelecer os limites operacionais do Always
Free Tier, determinando a capacidade maxima de usuarios e itens suportados dentro dessa
camada gratuita. Com base nessa analise, serd possivel identificar até que ponto o desem-
penho permanece adequado e quais otimizagoes podem ser aplicadas sem comprometer a

seguranca e a estabilidade da aplicacao.

Outro aspecto essencial é a definicao de estratégias de escalabilidade para o Agro-
Mart. Quando os limites do Always Free Tier forem excedidos, sera necessario modificar
as configuracoes do sistema e estabelecer um modelo de planos de uso escalaveis. Isso
permitird que os agricultores tenham diferentes possibilidades de crescimento dentro da

plataforma, garantindo continuidade e previsibilidade nos custos operacionais.

Além da escalabilidade, a implementacao da funcionalidade de pagamento surge
como uma necessidade critica para o AgroMart. Atualmente, essa funcionalidade nao esta
disponivel, e sua introducao deve ser planejada considerando nao apenas a experiéncia
do usuario, mas também o impacto que essa operagao pode ter sobre os limites do plano
gratuito da AWS. Dessa forma, sera possivel assegurar que a aplicacao continue operando

dentro de um modelo sustentavel, sem comprometer sua viabilidade financeira.

Outro aprimoramento essencial diz respeito a autenticagao e autorizagao dos usué-
rios. Para garantir a conformidade com boas praticas de seguranca, é necesséario estabe-
lecer diretrizes robustas que protejam tanto os agricultores quanto os consumidores. Esse

refinamento contribuira para a integridade dos dados e a confiabilidade do sistema.

Por fim, a transicao para serverless resultou na perda do painel administrativo
anteriormente fornecido pelo Strapi, que permitia a gestdao das CSAs pelos agricultores.
Assim, faz-se necessario o desenvolvimento de uma nova solugdo administrativa, assegu-
rando que os produtores tenham acesso a uma interface eficiente para o gerenciamento de

suas operacoes.

Capitulo 6. Desenvolvimentos Futuros 59

Dessa forma, os desenvolvimentos futuros do AgroMart deverao ser pautados na
busca por uma solugao mais estavel, escalavel e acessivel, permitindo que a plataforma

continue a atender as necessidades dos agricultores de maneira eficiente e sustentavel.

60

Referencias

BECK, K. Extreme Programming Ezplained: Embrace Change. [S.1.]: Addison-Wesley
Professional, 2000. Citado 2 vezes nas paginas 21 e 22.

CAPPELLOZZA, O. P. S. . A. Antecedentes da ado¢do da computacdo em nuvem:
Efeitos da infraestrutura, investimento e porte. 2012. Citado 2 vezes nas paginas 19
e 20.

CLOUD, O. Precos Oracle. 2025. Acesso em: 21 fev. 2025. Disponivel em:
<https://www.oracle.com/cloud/free/>. Citado na pagina 42.

FERREIRA IGOR FARIAS, P. L. G. C. S. Uma analise comparativa entre servigos saas

(awsecs) e iaas (aws-ec2). 2023. Citado 2 vezes nas paginas 11 e 12.

FERREIRA, U. J. S. Analise de tecnologias de virtualizacao e hardware de baixo custo
para infraestrutura de nuvem de pequeno porte. 2017. Citado na péagina 21.

FRAN¢A AUDREY TELES DOS SANTOS, . D. C. d. J. S. M. T. W. A. G. d. A. . L.
D.d. L. P. M. T. A utilizaCAo da computaCAo em nuvem como auxllio A escalabilidade
e disponibilidade de serviCos online. 2023. Citado na pagina 20.

FREITAS, A. A.-A. de; CELLA, P. V. de S. Uma evolu¢ao do projeto Agromart:
implantacdo individualizada e automatizada de um ambiente de CSA. Dissertacao
(Trabalho de Conclusao de Curso (TCC)) — Universidade de Brasilia - UnB, Faculdade
UnB Gama - FGA, 2023. Citado na pagina 45.

GOOGLE. Pregos do Firestore. 2025. Acesso em: 21 fev. 2025. Disponivel em:
<https://cloud.google.com/functions/pricing-overview?hl=pt-br>. Citado na pagina
42.

GOOGLE. Precos do Firestore. 2025. Acesso em: 21 fev. 2025. Disponivel em:
<https://cloud.google.com/firestore /pricing?hl=pt-br>. Citado na péagina 42.

NOGUEIRA, P. . T. Computacao em nuvem. 2013. Citado na pagina 19.

PROGRAMMING, E. Extreme Programming: A Gentle Introduction. [S.l.], 2013.
Disponivel em: <http://www.extremeprogramming.org>. Acesso em: 10 set. 2023.
Citado na péagina 21.

RIBEIRO, A. F. C.; MAGALHAES, R. L. T. d. Associacao para aplicagbes agromart de
uma csa em cloud. 2023. Citado 2 vezes nas paginas 14 e 21.

SERVICES, A. W. AWS Lambda Pricing. 2025. Acesso em: 21 fev. 2025. Disponivel em:
<https://aws.amazon.com/pt/lambda/pricing/>. Citado na pégina 41.

SERVICES, A. W. AWS Lambda Pricing. 2025. Acesso em: 21 fev. 2025. Disponivel em:
<https://aws.amazon.com/pt/free/faqs/>. Citado na pagina 41.

SILVA;CARVALHO. Anélise de mecanismos de serverless computing em ambientes de
nuvens computacionais. 2021. Citado 2 vezes nas paginas 11 e 14.

Referéncias 61

SOMMERVILLE, 1. Software Engineering (10th Edition). [S.1.]: Pearson, 2015. Citado
na pagina 18.

SUTHERLAND, J. Scrum: A arte de fazer o dobro do trabalho ma metade do tempo.
[S.L.]: Currency, 2014. Citado na pagina 21.

SWANSON, E. B. The Dimensions of Maintenance. [S.]1.: s.n.], 1976. Citado na pagina
18.

TELES, L. Estudo comparativo sobre métodos ageis de desenvolvimento de software.
2017. Citado 2 vezes nas paginas 21 e 22.

WAZLAWICK, R. S. Engenharia de software - conceitos e praticas. 2013. Citado na
pagina 18.

