
Universidade de Brasília – UnB
Faculdade de Ciências e Tecnologias em Engenharia – FCTE

Engenharia de Software

Da Análise à Implementação: Migração da
Infraestrutura de IaaS para FaaS com Foco na

Redução de Custos no AgroMart

Autores: Kalebe Lopes da Cunha e Murilo Schiler Lopes
Santana

Orientador: Prof. Dr. André Luiz Peron Martins Lanna

Brasília, DF
2025

Kalebe Lopes da Cunha e Murilo Schiler Lopes Santana

Da Análise à Implementação: Migração da Infraestrutura
de IaaS para FaaS com Foco na Redução de Custos no

AgroMart

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software .

Universidade de Brasília – UnB

Faculdade de Ciências e Tecnologias em Engenharia – FCTE

Orientador: Prof. Dr. André Luiz Peron Martins Lanna

Brasília, DF
2025

Kalebe Lopes da Cunha e Murilo Schiler Lopes Santana

Da Análise à Implementação: Migração da Infraestrutura
de IaaS para FaaS com Foco na Redução de Custos no

AgroMart

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software .

Brasília, DF
2025

Resumo
O AgroMart é um aplicativo que conecta produtores rurais e consumidores por meio do
modelo de Comunidades que Sustentam a Agricultura (CSAs). Essas comunidades per-
mitem a comercialização direta de alimentos, promovendo um consumo mais sustentável
e aproximando os consumidores dos produtores locais.

Na arquitetura de implantação atual, o agricultor arca com custos em dólares para manter
sua CSA em funcionamento, pois o Agromart está implantado em uma arquitetura tradi-
cional de IaaS. Como buscamos tornar essa solução acessível ao maior número possível de
agricultores, não podemos impor custos a eles pela escolha do Agromart. Portanto, é es-
sencial analisar a viabilidade de uma alternativa de implantação que seja sempre gratuita
e acessível ao agricultor e, caso exista, implementá-la.

Este Trabalho de Conclusão de Curso (TCC) propõe a migração da API de dicionário e
do backend STRAPI da aplicação, que atualmente operam sob o modelo de Infraestrutura
como Serviço (IaaS) utilizando instâncias Amazon Elastic Compute Cloud (EC2), para
uma arquitetura baseada no paradigma de computação serverless, especificamente Função
como Serviço (FaaS), através da AWS Lambda.

A pesquisa abordará a viabilidade técnica e econômica dessa migração, investigando se a
infraestrutura pode operar dentro dos limites do plano gratuito da AWS, reduzindo custos
operacionais. Além disso, será analisada a capacidade das APIs de ultrapassar os limites
da camada gratuita e as implicações de custos adicionais, bem como a necessidade de
modificações na aplicação para garantir uma migração eficiente, sem impactos negativos
na experiência do usuário.

A adoção de computação serverless oferece benefícios como redução de custos com in-
fraestrutura, escalabilidade automática e menor complexidade operacional. Este trabalho
documenta todas as etapas envolvidas na transição de arquiteturas tradicionais para ser-
verless.

Palavras-chave: Serverless Computing, Função como Serviço (FaaS), AWS Lambda,
Escalabilidade, Redução de Custos, Infraestrutura como Serviço (IaaS), Cold-start, Agro-
mart, Computação em Nuvem.

Abstract
AgroMart is an application that connects rural producers and consumers through the
Community-Supported Agriculture (CSA) model. These communities enable the direct
commercialization of food, promoting more sustainable consumption and bringing con-
sumers closer to local producers.

In the current deployment architecture, farmers bear costs in dollars to keep their CSA
operational, as AgroMart is implemented using a traditional Infrastructure as a Service
(IaaS) model. Since our goal is to make this solution accessible to as many farmers as
possible, we cannot impose costs on them for choosing AgroMart. Therefore, it is essential
to analyze the feasibility of a deployment alternative that is always free and accessible to
farmers and, if viable, implement it.

This Final Year Project (TCC) proposes migrating the application’s dictionary API and
STRAPI backend, which currently operate under the IaaS model using Amazon Elastic
Compute Cloud (EC2) instances, to an architecture based on the serverless computing
paradigm, specifically Function as a Service (FaaS), through AWS Lambda.

The research will address the technical and economic feasibility of this migration, inves-
tigating whether the infrastructure can operate within the AWS free tier limits to reduce
operational costs. Additionally, it will analyze whether the APIs may exceed the free tier
limits and the implications of additional costs, as well as the necessary modifications to
the application to ensure an efficient migration without negatively impacting the user
experience.

Adopting serverless computing offers benefits such as cost reduction, automatic scalabil-
ity, and lower operational complexity. This project documents all the steps involved in
transitioning from traditional architectures to serverless.

Keywords: Serverless Computing, Function as a Service (FaaS), AWS Lambda, Scala-
bility, Cost Reduction, Infrastructure as a Service (IaaS), Cold-start, AgroMart, Cloud
Computing.

Lista de ilustrações

Figura 1 – Tabela de preços EC2 . 13
Figura 2 – Arquitetura AgroMart . 15
Figura 3 – Roadmap . 22
Figura 4 – Estrutura Analítica do Projeto . 23
Figura 5 – BPMN . 24
Figura 6 – Procurar CSA - antes . 36
Figura 7 – Procurar CSA - depois . 36
Figura 8 – Ajuste de requisição e de url Endereço - antes 37
Figura 9 – Ajuste de requisição e de url Endereço - depois 37
Figura 10 – Ajuste de parâmetro e url Login - antes 38
Figura 11 – Ajuste de parâmetro e url Login - depois 38
Figura 12 – Ajuste de parâmetro e url Cadastro - antes 39
Figura 13 – Ajuste de parâmetro e url Cadastro - depois 39
Figura 14 – Ajuste de parâmetro e url Usuário - antes 40
Figura 15 – Ajuste de parâmetro e url Usuário - depois 40
Figura 16 – Fluxo Cadastro de Usuário . 47
Figura 17 – Fluxo Login . 47
Figura 18 – Fluxo Meus Dados . 48
Figura 19 – Fluxo Meus Endereços . 48
Figura 20 – Fluxo Planos . 48
Figura 21 – Fluxo Pedidos . 49
Figura 22 – Fluxo WhatsApp . 49
Figura 23 – Fluxo Logout . 49
Figura 24 – Assinante . 51
Figura 25 – Cesta . 52
Figura 26 – Endereço . 52
Figura 27 – Usuário . 52
Figura 28 – Produtos . 53
Figura 29 – Planos . 53
Figura 30 – Planos . 54

Lista de tabelas

Tabela 1 – Tamanhos médios das entidades armazenadas no DynamoDB. 54
Tabela 2 – Número máximo de registros armazenáveis por entidade. 55
Tabela 3 – Tamanhos médios das entidades armazenadas no DynamoDB conside-

rando múltiplos registros. 55

Lista de abreviaturas e siglas

API Application Programming Interface

AWS Amazon Web Services

CMM Capability Maturity Model

CMS Content Management System

CSAs Comunidades que Sustentam a Agricultura

DynamoDB Dynamic Database

EC2 Elastic Compute Cloud

FaaS Função como Serviço

HTTP Hypertext Transfer Protocol

I/O Input/Output

IaaS Infraestrutura como Serviço

iOS iPhone Operating System

JS JavaScript

NoSQL Not Only Structured Query Language

TCC Trabalho de Conclusão de Curso

TI Tecnologia da Informação

UnB Universidade de Brasília

URL Uniform Resource Locator

XP Extreme Programming

EBS Elastic Block Store

Sumário

1 INTRODUÇÃO . 11
1.1 História do AgroMart . 12
1.2 Problema . 12
1.2.1 Cálculo do Custo Mensal de um Servidor EC2 t3.medium na AWS 13
1.2.2 Resultados . 14
1.3 Objetivo Geral . 14
1.4 Objetivos Específicos . 15
1.4.1 Analisar a Atual Arquitetura do AgroMart 15
1.4.1.1 Arquitetura Geral . 15
1.4.1.2 API Dicionário . 15
1.4.1.3 API Principal Backend . 16
1.4.1.4 Aplicativo Mobile . 16
1.4.2 Dockerização da API Strapi e da API Dicionário 16
1.4.3 Migração das APIs para um Ambiente Serverless 16
1.4.4 Automação do Deploy da API Principal em FaaS 17
1.4.5 Refatoração da Aplicação Mobile para a API FaaS 17
1.4.6 Análise de Serviços "Sempre Gratuito"da AWS 17
1.4.7 Estratégias para Minimização de Custos no AWS Lambda 17
1.4.8 Análise de Carga e Dimensionamento API FAAS 17

2 REFERENCIAL TEÓRICO . 18
2.1 Engenharia de Software . 18
2.2 Manutenção Adaptativa e Perfectiva em Engenharia de Software . . 18
2.3 Computação em Nuvem . 19
2.4 Escalabilidade de Aplicações em Nuvem 20

3 METODOLOGIA . 21
3.1 Scrum . 21
3.2 Extreme Programming (XP) . 21
3.3 Roadmap . 22
3.4 Estrutura Analítica do Projeto(EAP) 22
3.5 Business Process Model and Notation 23
3.6 Escolha de Ferramentas para a Migração 24

4 IMPLEMENTAÇÕES . 26
4.1 Processo de Dockerização da API Strapi e da API Dicionário 26

4.2 Migração das APIs para um Ambiente Serverless 28
4.2.1 Processo de migração da API dicionário 29
4.2.2 Processo de migração da API Backend . 30
4.3 Automação do Deploy da API Principal em FaaS 33
4.4 Refatoração do Mobile para consumir a API em FaaS 35
4.4.1 Adaptação das Requisições para a AWS Lambda 35
4.4.2 Atualizações no Código do Aplicativo . 36
4.4.3 Impactos da Refatoração . 40
4.5 Análise de Serviço "Sempre Gratuito"da AWS 41
4.5.1 Por que a AWS é melhor que as opções "ilimitadas"do Google e Oracle? . . 42
4.6 Estratégias para Minimização de Custos no AWS Lambda 43
4.7 Análise de Carga e Dimensionamento das APIs FAAS 45
4.7.1 Levantamento de dados sobre a api-dicionário em FAAS 45
4.7.2 Análise de Carga e Dimensionamento de Usuários na API Principal FAAS . 46
4.7.2.1 Cenários de caso de uso do backend . 46
4.7.2.2 Casos de Uso . 47
4.7.2.3 Resultado . 50
4.7.3 Analise de carga e dimensionamento do banco na API Principal FAAS . . . 51
4.7.3.1 Registros das entidades . 51
4.7.3.2 Análise . 54
4.7.3.3 Resultados . 55

5 CONCLUSÃO . 57

6 DESENVOLVIMENTOS FUTUROS 58

REFERÊNCIAS . 60

11

1 Introdução

O conceito de Comunidade que Sustenta a Agricultura (CSA) surgiu como uma
alternativa colaborativa onde consumidores e pequenos produtores de alimentos formam
parcerias diretas que facilitam a comercialização de produtos frescos e sustentáveis. Neste
contexto, o aplicativo Agromart funciona como uma ponte digital entre produtores e
consumidores, facilitando essas conexões.

A infraestrutura em nuvem desempenha um papel essencial para aplicações como
o Agromart, que depende de um sistema robusto para lidar com variações de tráfego de
usuários, além de garantir a confiabilidade no atendimento às demandas de produtores e
consumidores. A capacidade de uma aplicação escalar eficientemente e manter os custos
sob controle são pontos cruciais para seu sucesso no mercado.

Atualmente, o backend da Agromart está hospedado na Amazon Web Services
(AWS) via Elastic Compute Cloud (EC2), um modelo de infraestrutura como serviço
(IaaS) no qual recursos computacionais como máquinas virtuais são gerenciados pelos
usuários. Embora esta abordagem proporcione flexibilidade e controle, pode se ter muita
ociosidade em seus serviços, o que pode levar a custos elevados sem uso. A migração do
Agromart para um modelo de função como serviço (FaaS) via AWS Lambda oferece uma
alternativa mais eficiente e escalável. Diferentemente da IaaS, o FaaS permite a execução
sob demanda de funções específicas, eliminando a necessidade de provisionar servidores
ociosos, escalando automaticamente conforme o volume de requisições e resultando em
uma economia significativa de custos operacionais. (SILVA;CARVALHO, 2021)

A transição para a computação serverless, particularmente através do FaaS, pos-
sibilita a elasticidade necessária para que o Agromart atenda a picos de demanda sem
incorrer em altos custos de infraestrutura (FERREIRA IGOR FARIAS, 2023). Esse mo-
delo garante que o sistema seja escalável conforme a necessidade, sem que os desenvol-
vedores precisem gerenciar manualmente os recursos subjacentes. Isso é particularmente
importante para a Agromart, que pode enfrentar variações sazonais na demanda.

Este trabalho irá analisar a migração do backend do Agromart de um ambiente
IaaS para FaaS, com foco na redução de custos operacionais. Inicialmente, será feita uma
análise teórica sobre ambos os modelos de computação em nuvem (IaaS e FaaS), desta-
cando suas vantagens e desvantagens. Em seguida, será realizado um estudo experimental
para explorar os limites, benefícios e precauções envolvidas na migração.

Capítulo 1. Introdução 12

1.1 História do AgroMart
O AgroMart foi criado com o objetivo de conectar pequenos agricultores e consu-

midores, promovendo a produção sustentável por meio de Comunidades que Sustentam a
Agricultura (CSAs). A ideia nasceu durante um hackathon na Universidade de Brasília,
campus Gama, inspirado pela história de uma produtora que implementou uma barraca
da honestidade para melhorar suas vendas. Inicialmente, o projeto era simples, permitindo
aos agricultores divulgar pontos de venda e os consumidores acessarem informações sobre
a disponibilidade de produtos.

Com o tempo, o projeto evoluiu, recebendo apoio de professores e especialistas
para otimizar suas funcionalidades. A partir de pesquisas e entrevistas, foi desenvolvido
um aplicativo mobile que atenderia de maneira mais adequada às necessidades dos agri-
cultores e co-agricultores, chamado de AgroMart. A principal característica do AgroMart
é sua capacidade de individualizar as CSAs, facilitando a organização da produção e o
escoamento dos alimentos de forma ágil e eficiente.

A evolução do projeto não parou por aí. Foram realizadas várias iterações para
melhorar sua eficiência ao longo dos anos, como a automação de processos e a migra-
ção da infraestrutura para soluções mais econômicas. Hoje, o AgroMart continua sendo
aprimorado com foco em economia, escalabilidade, segurança e integração de novas fun-
cionalidades, visando sempre facilitar o acesso a alimentos frescos e sustentáveis.

1.2 Problema
O principal problema enfrentado pelo Agromart reside no elevado custo de ma-

nutenção de sua infraestrutura atual e também no possível problema de escalabilidade
visto que a máquina utilizada atualmente para servir a aplicação não possui bons poderes
computacionais, ou seja, pode trazer diversos problemas para os usuários como travamen-
tos, lentidões e até mesmo reinicializações do servidor caso haja um pico de requisições
simultâneas.

A API Dicionário e o Backend do Agromart estão hospedados na Amazon Web
Services (AWS) utilizando o Elastic Compute Cloud (EC2), que, apesar de oferecer flexi-
bilidade e controle ao usuário, demanda o provisionamento contínuo de servidores, inde-
pendentemente da carga de trabalho. Essa abordagem gera custos elevados desnecessários,
principalmente em períodos de baixa demanda, devido à necessidade de manter a infraes-
trutura operacional mesmo quando o tráfego no aplicativo é reduzido ou nulo (FERREIRA
IGOR FARIAS, 2023).

A instância do servidor EC2 atualmente utilizado para disponibilizar a API Dici-
onário e o Backend do AgroMart possui as seguintes características:

Capítulo 1. Introdução 13

• Tipo de instância: t3.medium

• vCPUs: 2

• Memória RAM: 4 Gb

• Armazenamento: 30 Gb

• Sistema Operacional: Linux

Figura 1 – Tabela de preços EC2

1.2.1 Cálculo do Custo Mensal de um Servidor EC2 t3.medium na AWS

Para estimar o custo mensal de um servidor Amazon EC2 t3.medium, considera-
se a tarifa sob demanda de 0,0418 dólares por hora, conforme divulgado pela Amazon
Web Services (AWS). O cálculo é realizado com base nos seguintes parâmetros:

• Custo por hora: 0,0418 USD/hora

• Número total de horas no mês:

24 horas/dia × 30 dias/mês = 720 horas/mês (1.1)

• Cotação do dólar: 5,70 BRL/USD

Dessa forma, o custo mensal em dólares é obtido por:

𝐶mensal,USD = 0, 0418 × 720 = 30, 096 USD (1.2)

Convertendo esse valor para reais, considerando a cotação de 5,70 BRL/USD:

𝐶mensal,BRL = 30, 096 × 5, 70 = 171, 55 BRL (1.3)

Capítulo 1. Introdução 14

1.2.2 Resultados

O custo estimado para manter um servidor EC2 t3.medium em funcionamento
contínuo durante um mês é de aproximadamente R$ 171,55. Vale ressaltar que este
cálculo não inclui custos adicionais, como armazenamento EBS, transferência de dados
ou licenciamento de software, os quais podem impactar significativamente o valor final da
fatura na AWS.

Além disso, vale frisar que o gerenciamento manual de recursos limita a capacidade
do sistema de escalar automaticamente de forma eficiente, o que impacta negativamente
a experiência do usuário em momentos de pico de utilização.

A migração do backend para um modelo de Função como Serviço (FaaS) no AWS
Lambda surge como uma possível solução viável, pois permite a execução de funções sob
demanda, eliminando a necessidade de servidores ociosos e promovendo uma escalabili-
dade automática conforme a demanda varia (SILVA;CARVALHO, 2021). A transição para
o FaaS tem o potencial de reduzir significativamente os custos operacionais do Agromart
e aumentar sua capacidade de atender a cargas variáveis sem comprometer o desempenho
da aplicação.

1.3 Objetivo Geral
O objetivo geral deste trabalho é avaliar a viabilidade da adoção do FaaS pelos

sistemas do Agromart. Essa mudança visa migrar o backend e a api dicionário do Agro-
mart, atualmente hospedada na Amazon Web Services (AWS) Elastic Compute Cloud
(EC2), para uma arquitetura baseada em Função como Serviço (FaaS), utilizando o AWS
Lambda e o framework Serverless. Essa migração visa melhorar a eficiência do uso de
recursos computacionais, reduzindo os custos operacionais associados à infraestrutura dos
servidores.

Sabendo que o Agromart estabelece a conexão entre agricultores e consumidores
por meio das Comunidades que Sustentam a Agricultura (CSAs), os custos operacionais
são financiados pelos membros associados a cada CSA. Nesse contexto, a adoção do Func-
tion as a Service (FaaS) surge como uma alternativa estratégica para otimizar a eficiência
financeira do sistema. (RIBEIRO; MAGALHãES, 2023).

Com essa abordagem, espera-se que a migração para o FaaS contribua para a
redução dos custos operacionais, garantindo maior viabilidade econômica para as CSAs
envolvidas e promovendo um modelo mais sustentável de gestão e escalabilidade do ser-
viço. Além disso, a arquitetura baseada em FaaS permite uma alocação mais eficiente
de recursos computacionais, reduzindo o desperdício de capacidade ociosa e ajustando
automaticamente a infraestrutura conforme a demanda do sistema.

Capítulo 1. Introdução 15

Outro benefício relevante está na redução da complexidade de manutenção, uma
vez que a responsabilidade pela administração dos servidores e da infraestrutura sub-
jacente é delegada ao provedor de serviços em nuvem. Dessa forma, a equipe de de-
senvolvimento pode concentrar esforços na melhoria das funcionalidades do Agromart,
aprimorando a experiência dos usuários e fortalecendo o ecossistema das CSAs.

1.4 Objetivos Específicos

1.4.1 Analisar a Atual Arquitetura do AgroMart

A arquitetura atual do Agromart é estruturada em três componentes principais,
cada um com responsabilidades bem definidas que, quando integrados, visam fornecer
um bom funcionamento do sistema. A seguir, detalharemos cada um desses componentes,
analisando suas funções e interações no contexto geral do projeto.

1.4.1.1 Arquitetura Geral

Figura 2 – Arquitetura AgroMart

1.4.1.2 API Dicionário

A primeira camada do sistema é composta pela API do Dicionário que foi de-
senvolvida em JavaScript. Essa API desempenha um papel fundamental no processo de
cadastro e gerenciamento das URLs específicas de cada CSA participante do Agromart.
Através dessa API, o sistema tem acesso às URLs únicas de cada CSA, as quais serão
consultadas posteriormente pela API principal. Esse componente atua como o ponto ini-
cial de conexão entre o Agromart e as diferentes CSAs, fornecendo um ponto central para
registrar e gerenciar essas URLs.

Capítulo 1. Introdução 16

1.4.1.3 API Principal Backend

A API principal do Backend do Agromart, também desenvolvida em JavaScript,
é o núcleo do sistema. Ela é responsável por gerenciar as informações essenciais do Agro-
mart, como dados de produtos, planos, clientes e lojas. A API principal realiza consultas
dinâmicas à URL cadastrada pela API do Dicionário, permitindo que o Agromart acesse
e gerencie as informações de cada CSA individualmente. Cada CSA mantém seu próprio
servidor EC2, o que, embora proporcione auto- nomia, implica em custos elevados devido
à necessidade de infraestrutura separada para cada unidade. Essa arquitetura, ao invés de
otimizar os recursos, acaba impactando dire- tamente o orçamento das CSAs, tornando-o
menos eficiente em termos de custo-benefício.

1.4.1.4 Aplicativo Mobile

O componente final da arquitetura é o aplicativo móvel, que fornece a interface com
o usuário para o Agromart. Através do app, os usuários podem interagir diretamente com o
sistema, realizando as operações baseadas nas informações gerenciadas pela API principal.
O aplicativo mobile faz requisições para a API, obtendo os dados necessários para exibição
ao usuário, utilizando a URL gerada para cada CSA específica. Esse componente é crucial
para garantir a acessibilidade e a experiência do usuário, permitindo que as operações do
Agromart sejam realizadas de maneira eficiente em dispositivos móveis.

1.4.2 Dockerização da API Strapi e da API Dicionário

Antes da migração para a arquitetura Function as a Service (FaaS), é essencial a
containerização das APIs para uma compreensão detalhada do funcionamento do sistema
legado Agromart e de suas regras de negócio. Para isso, será desenvolvido um ambiente de
execução baseado em Docker Compose, permitindo a inicialização da aplicação em dife-
rentes ambientes, juntamente com o banco de dados PostgreSQL, de maneira padronizada
e eficiente.

1.4.3 Migração das APIs para um Ambiente Serverless

Após a análise da implementação do sistema Agromart, será realizada a refatora-
ção do código-fonte para sua adaptação ao ambiente Serverless, utilizando o Serverless
Framework. Um aspecto crítico dessa transição é a preservação das regras de negócio já
implementadas na API Strapi, uma vez que, por se tratar de um Content Management
System (CMS), grande parte do código encontra-se abstraída, dificultando sua compre-
ensão e modificação direta.

Capítulo 1. Introdução 17

1.4.4 Automação do Deploy da API Principal em FaaS

Será desenvolvido um script para automatizar o processo de deploy do back-end
de uma CSA na AWS Lambda. Além disso, esse script será responsável por realizar
uma requisição à API Dicionário, informando a URL da CSA criada. A configuração será
gerenciada por meio de um arquivo .env, contendo as credenciais do proprietário da CSA,
garantindo a segurança e a flexibilidade do processo de implantação.

1.4.5 Refatoração da Aplicação Mobile para a API FaaS

A aplicação móvel do Agromart possui uma forte dependência da API baseada
no CMS Strapi. Com a migração para a arquitetura Serverless, será necessário refato-
rar a lógica de requisições e o tratamento de dados no aplicativo móvel, garantindo a
compatibilidade com a nova API FaaS e preservando a integridade das funcionalidades
existentes.

1.4.6 Análise de Serviços "Sempre Gratuito"da AWS

Será realizada uma análise comparativa das plataformas disponíveis para iden-
tificar a solução mais adequada para oferecer um serviço de custo zero aos agricultores,
dentro dos limites impostos pela provedora de nuvem. O estudo incluirá a quantificação do
consumo de recursos e a justificativa técnica para a escolha da plataforma mais eficiente.

1.4.7 Estratégias para Minimização de Custos no AWS Lambda

Após a conclusão da migração para Serverless, serão definidas estratégias de oti-
mização para minimizar os custos operacionais da aplicação no AWS Lambda. As con-
figurações serão ajustadas para garantir um uso eficiente dos recursos computacionais,
evitando escalabilidade desnecessária durante picos de requisições e assegurando que a
aplicação permaneça dentro dos limites do AWS Free Tier.

1.4.8 Análise de Carga e Dimensionamento API FAAS

Será realizado um mapeamento detalhado dos casos de uso da API principal do
Agromart, permitindo a definição precisa dos fluxos de interação entre os serviços. Esse
levantamento será fundamental para a validação do novo modelo arquitetural e para a
garantia da continuidade das funcionalidades essenciais da plataforma.

18

2 Referencial Teórico

2.1 Engenharia de Software
A Engenharia de Software é uma disciplina da computação que envolve a aplicação

de princípios científicos, tecnológicos e gerenciais para o desenvolvimento e manutenção de
sistemas de software de alta qualidade. Essa área surgiu em resposta à chamada "crise do
software", onde projetos de software eram frequentemente entregues com atrasos, acima
do orçamento, ou com baixa qualidade (WAZLAWICK, 2013).

Na prática, a Engenharia de Software visa organizar o desenvolvimento de software
por meio de processos estruturados que garantam a eficiência, escalabilidade e qualidade
do produto final (WAZLAWICK, 2013). Esses processos incluem etapas como levanta-
mento de requisitos, modelagem, codificação, testes e manutenção, assegurando que o
produto atenda às necessidades do cliente ao longo de seu ciclo de vida.

A área é dividida em várias subdisciplinas, incluindo gerenciamento de projetos de
software, manutenção de software, qualidade de software, e processos de engenharia de
software, cada uma focada em um aspecto específico do ciclo de vida do desenvolvimento.
A aplicação de modelos de maturidade, como o CMM (Capability Maturity Model), é
uma das estratégias amplamente utilizadas para melhorar a qualidade dos processos e
dos produtos de software (WAZLAWICK, 2013). Além disso, técnicas como integração
contínua e testes automatizados têm ganhado destaque como práticas essenciais para
garantir a entrega ágil de software (WAZLAWICK, 2013).

2.2 Manutenção Adaptativa e Perfectiva em Engenharia de Soft-
ware
(SWANSON, 1976) propôs uma classificação das atividades de manutenção em

quatro tipos principais: corretiva, adaptativa, perfectiva e preventiva. A manutenção adap-
tativa refere-se às modificações realizadas no software para garantir sua compatibilidade
com mudanças no ambiente operacional, mudanças no ambiente de implantação, arqui-
tetura de implementação , bancos de dados, hardware ou novos padrões de comunicação
(SOMMERVILLE, 2015).

A manutenção perfectiva tem como objetivo melhorar o desempenho, a usabili-
dade e a eficiência do software sem alterar sua funcionalidade básica (SWANSON, 1976).
Esse tipo de manutenção pode incluir refatoramento de código, otimização de algoritmos,
aumento da escalabilidade do sistema (SOMMERVILLE, 2015).

Capítulo 2. Referencial Teórico 19

No AgroMart, as manutenções adaptativa e perfectiva foram as mais significativas.
Com o objetivo de adaptar o sistema à nova plataforma AWS Lambda e à arquitetura
serverless, foi necessária uma refatoração extensa para garantir o funcionamento adequado
das funcionalidades previamente definidas e implementadas. Além disso, foi preciso assegu-
rar que a implementação estivesse em conformidade com as regras da AWS, especialmente
com relação ao Always Free Tier.

A otimização do código também se fez necessária. O uso das funções precisou
ser rigorosamente controlado, como no caso do getBatch do DynamoDB, para evitar o
excesso de chamadas e garantir o funcionamento dentro dos limites de taxa do Always
Free Tier da AWS. Também foi essencial monitorar e controlar a taxa de escrita e leitura
no DynamoDB para prevenir que os limites do plano gratuito fossem ultrapassados.

2.3 Computação em Nuvem
A computação em nuvem é um modelo de fornecimento de serviços de TI em que

recursos computacionais, como armazenamento, processamento e redes, são disponibili-
zados como serviços através da internet. Este modelo permite que as empresas e usuários
acessem e utilizem esses recursos sob demanda, sem a necessidade de adquirir ou manter
infraestrutura física local. A computação em nuvem, segundo (CAPPELLOZZA, 2012),
tem despertado grande interesse por seu potencial de alterar significativamente os inves-
timentos em infraestrutura de TI e promover maior flexibilidade na gestão de recursos
(CAPPELLOZZA, 2012).

Entre as características principais da computação em nuvem estão a escalabili-
dade e o pay-per-use. A escalabilidade permite que as empresas ampliem ou reduzam seus
recursos conforme a demanda, enquanto o modelo de pagamento "pay-per-use"assegura
que os custos estão atrelados ao uso real dos serviços, otimizando os investimentos (NO-
GUEIRA, 2013). Além disso, a infraestrutura em nuvem é gerenciada por provedores de
serviços, que garantem a segurança, manutenção e disponibilidade dos recursos, aliviando
as empresas da responsabilidade por essas operações.

A computação em nuvem pode ser categorizada em diferentes modelos de serviço,
como Infraestrutura como Serviço (IaaS), Plataforma como Serviço (PaaS) e Software
como Serviço (SaaS). Cada um desses modelos oferece diferentes níveis de controle e
abstração para o usuário. A IaaS fornece servidores e armazenamento, a PaaS oferece um
ambiente para desenvolvimento de software, e a SaaS disponibiliza aplicativos completos
através da web (CAPPELLOZZA, 2012).

A adoção da computação em nuvem oferece benefícios como redução de custos
operacionais, maior flexibilidade e mobilidade no acesso a dados e sistemas, além de
melhorar a eficiência no uso de recursos tecnológicos. Contudo, ela também apresenta

Capítulo 2. Referencial Teórico 20

desafios, como preocupações com a segurança dos dados e a dependência da conectividade
com a internet (CAPPELLOZZA, 2012).

2.4 Escalabilidade de Aplicações em Nuvem
A escalabilidade de aplicações em nuvem refere-se à capacidade de um sistema

aumentar ou diminuir seus recursos de forma eficiente, conforme a demanda dos usuários.
Isso é fundamental para garantir que uma aplicação consiga atender a variações de tráfego
sem comprometer o desempenho, mantendo os custos alinhados ao uso real dos recursos.

Existem dois tipos principais de escalabilidade: vertical e horizontal. A escalabili-
dade vertical envolve aumentar os recursos de uma máquina única, como adicionar mais
memória ou processadores, enquanto a escalabilidade horizontal adiciona novas instâncias
de servidores para lidar com a demanda crescente. A computação em nuvem facilita am-
bos os tipos de escalabilidade, permitindo que as empresas ajustem suas infraestruturas
conforme necessário sem grandes investimentos iniciais em hardware (FRANçA AUDREY
TELES DOS SANTOS, 2023).

Um exemplo comum de escalabilidade horizontal pode ser visto em serviços como o
AWS EC2, que permite adicionar novas instâncias automaticamente conforme a carga au-
menta, ou removê-las durante períodos de baixa demanda. Isso é particularmente útil em
situações como eventos sazonais, onde picos de tráfego são previsíveis, como em promoções
de Black Friday ou no Exame Nacional do Ensino Médio (ENEM), onde a escalabilidade
se torna crucial para evitar quedas de serviço devido à sobrecarga (FRANçA AUDREY
TELES DOS SANTOS, 2023).

21

3 Metodologia

3.1 Scrum
O Scrum, criado por Jeff Sutherland e Ken Schwaber, é uma metodologia ágil

desenvolvida como uma alternativa flexível à abordagem tradicional em cascata, que se
destacava por ser linear e pouco adaptável. Com a introdução das sprints, que são ciclos
curtos de desenvolvimento, e a adaptação contínua por meio de reuniões regulares, o Scrum
trouxe uma mudança radical para o desenvolvimento de software (SUTHERLAND, 2014).
As sprints, geralmente com duração de duas semanas, começam com uma reunião de pla-
nejamento onde a equipe decide a quantidade de trabalho que poderá ser entregue no ciclo
(FERREIRA, 2017; RIBEIRO; MAGALHãES, 2023). Em alguns casos, como o projeto
Agromart, a implementação completa do Scrum pode ser desnecessária, especialmente em
equipes pequenas ou focadas em tarefas imprevisíveis como correção de erros e defeitos,
onde a estimativa precisa é mais difícil de alcançar. No entanto, mesmo sem adotar to-
das as cerimônias e práticas, elementos do Scrum, como a adaptabilidade, flexibilidade
e a autogestão de equipes multifuncionais, são essenciais para o sucesso de projetos que
exigem ajustes rápidos diante de adversidades e mudanças de escopo (SUTHERLAND,
2014; FERREIRA, 2017; RIBEIRO; MAGALHãES, 2023).

3.2 Extreme Programming (XP)
Extreme Programming (XP) é um método ágil de desenvolvimento de software

iterativo e incremental, que tem como objetivo principal maximizar o valor entregue ao
cliente a cada dia de trabalho da equipe. Criado por Kent Beck, o XP enfatiza a utilização
de boas práticas de programação e desenvolvimento, levando essas práticas ao extremo
para garantir qualidade e eficiência (PROGRAMMING, 2013). Os cinco valores funda-
mentais do XP — comunicação, simplicidade, coragem, respeito e feedback — orientam
o comportamento da equipe de desenvolvimento e asseguram uma entrega contínua e efi-
ciente de valor ao cliente (TELES, 2017). Entre as principais práticas adotadas no XP
estão a programação em pares, desenvolvimento orientado a testes (TDD), refatoração,
código coletivo, design simples e integração contínua. A interação constante com o cliente,
por meio de feedbacks frequentes, e a realização de reuniões diárias (stand-up meetings)
também são componentes essenciais para garantir que o desenvolvimento permaneça ali-
nhado às necessidades do cliente e ao planejamento das entregas (BECK, 2000). A ênfase
do XP na simplicidade, adaptação rápida às mudanças e ritmo sustentável torna esse
método particularmente eficaz para equipes pequenas que precisam responder de forma

Capítulo 3. Metodologia 22

ágil a alterações de requisitos e garantir a alta qualidade do software entregue (BECK,
2000; TELES, 2017).

3.3 Roadmap
Um roadmap em engenharia de software é um plano estratégico que descreve a

visão de desenvolvimento de um produto ou projeto ao longo do tempo. Após termos
definido os objetivos específicos deste trabalho, elaboramos o roadmap para consolidarmos
o planejamento das ações que serão execultadas.

Figura 3 – Roadmap

Roadmap AgroMart

3.4 Estrutura Analítica do Projeto(EAP)
É uma decomposição hierárquica das entregas do projeto. Todas as entregas que

contém valor no projeto são dispostas de forma hierárquica e agrupadas em seus épicos.
A seguir temos as entregas realizadas por este TCC.

Capítulo 3. Metodologia 23

Figura 4 – Estrutura Analítica do Projeto

EAP AgroMart

3.5 Business Process Model and Notation
é uma notação padronizada para modelagem de processos de negócio. Ela permite

representar visualmente fluxos de trabalho, tornando-os compreensíveis para analistas
de negócios, desenvolvedores e stakeholders. Abaixo se encontra o diagrama BPMN do
processo de criação de uma CSA como um todo:

Capítulo 3. Metodologia 24

Figura 5 – BPMN

BPMN do Script de criação de uma csa

3.6 Escolha de Ferramentas para a Migração
Para atingir o objetivo deste projeto de melhorar o custo-benefício utilizando ser-

viços de infraestrutura oferecidos por provedores de nuvem, utilizaremos as seguintes
ferramentas:

• Javascript:

JavaScript é uma linguagem de programação de propósito geral, dinâmica, inter-
pretada e amplamente utilizada no desenvolvimento de páginas e aplicativos web.
Além disso, é a linguagem base do framework React Native, que é um framework
desenvolvido pelo Facebook que permite criar aplicativos móveis para plataformas
como iOS e Android, a qual o AgroMart foi escrito.

• Typescript:

TypeScript é uma linguagem de programação de código aberto que adiciona tipagem
estática e recursos avançados ao JavaScript. Ela é basicamente um superconjunto do
JavaScript, o que significa que qualquer código JavaScript válido também é válido

Capítulo 3. Metodologia 25

em TypeScript, mas com a adição de tipos e outras funcionalidades que ajudam no
desenvolvimento de software em larga escala.

• Node.js:

É um ambiente de execução da linguagem JavaScript no lado do servidor construído
sobre o motor V8 do Google Chrome. Ele permite que desenvolvedores usem JavaS-
cript para criar aplicações no servidor. Isso significa que com Node.js, é possível
usar JavaScript tanto no frontend (navegador) quanto no backend (servidor), faci-
litando o desenvolvimento full-stack. Um dos conceitos fundamentais do Node.js é
que ele roda em uma única thread. Ao contrário de muitos servidores tradicionais
que criam novas threads ou processos para lidar com cada requisição, Node.js usa
um único thread principal para todas as requisições. Isso é possível porque ele lida
com operações de I/O de forma assíncrona e não bloqueante.

• Express.js:

Uma biblioteca para Node.js utilizada para criar as rotas HTTP que compõem os
pontos de acesso da aplicação.

• AWS DynamoDB Local:

Um banco de dados NoSQL altamente escalável, usado para armazenar e recuperar
os dados das aplicações. A versão Local é uma versão emulada do DynamoDB usada
durante o desenvolvimento local para simular as interações com o banco de dados.

• Serverless-offline:

Este plugin permite a emulação do ambiente AWS Lambda em um ambiente de
desenvolvimento, eliminando a necessidade de fazer deploy na AWS para testar a
funcionalidade.

• AWS API Gateway:

Serviço que gerencia e expõe as APIs da aplicação FaaS, permitindo que as funções
Lambda sejam acessadas via HTTP.

• DynamoDB - Admin:

Uma interface desenvolvida para gerenciar tabelas do Amazon DynamoDB, permi-
tindo que administradores insiram, atualizem e excluam registros facilmente.

26

4 Implementações

4.1 Processo de Dockerização da API Strapi e da API Dicionário
Antes da migração para a arquitetura FaaS, foi necessário realizar a dockerização

do sistema, permitindo um estudo prático e empírico das funcionalidades e regras de
negócio do Agromart.

Para isso, foi criado um ambiente Docker Compose que define dois serviços prin-
cipais: um responsável por instanciar a aplicação Strapi e outro para o banco de dados
PostgreSQL. Essa abordagem possibilitou a validação do comportamento da API e do ge-
renciamento de dados antes da transição para um ambiente serverless, garantindo maior
confiabilidade no processo de migração.

Código 4.1 – Service do Strapi
1

2 agromart_strapi_service :
3 container_name : agromart_strapi_container
4 build:
5 context : .
6 dockerfile : Dockerfile . strapi
7 env_file : .env
8 environment :
9 HOST: ${HOST}

10 PORT: ${PORT}
11 APP_KEYS : ${ APP_KEYS }
12 API_TOKEN_SALT : ${ API_TOKEN_SALT }
13 ADMIN_JWT_SECRET : ${ ADMIN_JWT_SECRET }
14 JWT_SECRET : ${ JWT_SECRET }
15 DATABASE_HOST : ${ DATABASE_HOST }
16 DATABASE_PORT : ${ DATABASE_PORT }
17 DATABASE_NAME : ${ DATABASE_NAME }
18 DATABASE_USERNAME : ${ DATABASE_USERNAME }
19 DATABASE_PASSWORD : ${ DATABASE_PASSWORD }
20 EXPO_ACCESS_TOKEN : ${ EXPO_ACCESS_TOKEN }
21 DATABASE_CLIENT : ${ DATABASE_CLIENT }
22 DATABASE_SSL : ${ DATABASE_SSL }
23 ports:
24 - "1337:1337"
25 volumes :
26 - .:/ src/app
27 - agromart_node_modules :/ src/app/ node_modules
28 depends_on :

Capítulo 4. Implementações 27

29 - agromart_db_service

Código 4.2 – Service do postgreSQL
1

2 agromart_db_service :
3 container_name : agromart_db_container
4 image: postgres
5 env_file : .env
6 environment :
7 POSTGRES_DB : ${ DATABASE_NAME }
8 POSTGRES_USER : ${ DATABASE_USERNAME }
9 POSTGRES_PASSWORD : ${ DATABASE_PASSWORD }

10 ports:
11 - "5432:5432"
12 volumes :
13 - pgdata :/ var/lib/ postgresql /data

Código 4.3 – Dockerfile Strapi
1

2 FROM node :18- alpine
3 WORKDIR /src/app
4 COPY package .json ./
5 RUN yarn install --frozen - lockfile --verbose
6 COPY . .
7 RUN yarn build
8 CMD [" yarn "," start "]

Código 4.4 – api dicionário Service
1

2 agromart_node_service :
3 container_name : dicionario_agromart_node_container
4 build:
5 context : .
6 dockerfile : Dockerfile .node
7 env_file : .env
8 environment :
9 - PORT=${PORT}

10 - NODE_ENV =${ NODE_ENV }
11 - CORS_ALLOWED_ORIGIN =${ CORS_ALLOWED_ORIGIN }
12 - JWT_SECRET_KEY =${ JWT_SECRET_KEY }
13 - DB_DATABASE =${ DB_DATABASE }
14 - DB_USERNAME =${ DB_USERNAME }
15 - DB_PASSWORD =${ DB_PASSWORD }
16 - DB_HOST =${ DB_HOST }
17 - DB_PORT =${ DB_PORT }
18 - DATABASE_URL =${ DATABASE_URL }

Capítulo 4. Implementações 28

19 - SMTP_HOST =${ SMTP_HOST }
20 - SMTP_PORT =${ SMTP_PORT }
21 - SMTP_USER =${ SMTP_USER }
22 - SMTP_PASSWORD =${ SMTP_PASSWORD }
23 - DEFAULT_MAIL_SENDER =${ DEFAULT_MAIL_SENDER }
24 ports:
25 - "3000:3000"
26 volumes :
27 - .:/ app
28 depends_on :
29 - agromart_db_service

4.2 Migração das APIs para um Ambiente Serverless
Com o objetivo de garantir a utilização totalmente gratuita do Agromart para

proprietários de CSA (Community-Supported Agriculture), foi analisada a viabilidade de
um serviço de hospedagem que permanecesse sem custos dentro dos limites do Free Tier
da AWS. Identificou-se que a melhor solução seria a combinação do AWS Lambda, para
execução das funções, e do Amazon DynamoDB, como banco de dados, desde que respei-
tados os limites estabelecidos pela AWS: 1 milhão de requisições mensais para aplicações
FaaS e 25 GB de armazenamento no DynamoDB.

Diante dessa necessidade, foi realizada a migração da API Dicionário e do bac-
kend Strapi para uma arquitetura Serverless, utilizando o serviço AWS Lambda. Esse
processo foi conduzido por meio do Framework Serverless, que facilita a implementação e
o gerenciamento de aplicações FaaS.

Na nova estrutura, cada endpoint da aplicação original foi transformado em um
handler, que tem a responsabilidade de processar as requisições recebidas e fornecer as
respectivas respostas. A configuração principal da aplicação FaaS é definida no arquivo
serverless.yml, onde são especificados os endpoints, seus respectivos handlers, a confi-
guração das tabelas do DynamoDB, as permissões necessárias e demais parâmetros da
infraestrutura.

Para possibilitar o desenvolvimento e os testes em um ambiente local, foi utilizado
o plugin serverless-offline, permitindo a simulação do comportamento da aplicação dentro
do ambiente AWS por meio do comando serverless offline. Já para a simulação do banco de
dados localmente, foi adotado o plugin serverless-dynamodb, que não apenas possibilita
a execução do DynamoDB de forma local, mas também fornece comandos auxiliares na
CLI do Serverless Framework, como a verificação de tabelas específicas, consulta de dados
e execução do banco de forma independente da aplicação FaaS por meio do comando
serverless dynamodb start.

Capítulo 4. Implementações 29

Além disso, a estrutura de pastas e arquivos nos projetos FaaS segue diretrizes
específicas, garantindo organização e manutenção facilitada.

A estrutura de pastas e alguns arquivos específicos, para os projetos em FAAS,
seguem algumas diretrizes :

• /handlers: diretório onde será salvo o arquivo "handler"que terá todos os métodos
referentes a cada um dos endoints.

• repository/dynamodb-client-config.js: Arquivo que realiza configurações no
DynamoDB e exporta métodos para a interação com o DynamoDB. Nele é rea-
lizado a instanciação do cliente "AWS.DynamoDB.DocumentClient(options)".

• repository: Diretório para os repositorios, esses que são responsáveis de se comu-
nicar com o "dynamodb-client-config".

• offline/migrations: Arquivos criados mais para o entendimento futuro das tabelas
do que implementação de fato. O "dynamoDB"cria as tabelas através desse arquivo.
Além do entendimento de futuros mantenedores ajudou para deixar mais enxuto o
arquivo serverless.yml.

• /services: Alguns "Handler’s"se beneficiam do uso de services, para separação de
responsabilidades. Este diretório é onde são armazenados os services criados.

4.2.1 Processo de migração da API dicionário

Os endpoints responsáveis pela criação e recuperação de uma ou múltiplas CSA’s
foram convertidos em três funções distintas, cada uma correspondendo a uma operação
específica. Cada função possui um handler dedicado, responsável por processar as requi-
sições e fornecer as respostas apropriadas.

Código 4.5 – Arquivo de rotas da aplicação original
1

2 import { Router } from ’express ’;
3

4 import * as csaController from ’@/ controllers /csa ’;
5

6 const router = Router ();
7

8 router .route (’/’)
9 .get(csaController . getCsas)

10 .post(csaController . createCsa);
11

12 router .route (’/:id ’)
13 .get(csaController . getcsaById)

Capítulo 4. Implementações 30

14

15 export default router ;

Código 4.6 – Configuração no serverless.yml para os endpoints
1

2 functions :
3 obter:
4 handler : handler . getCsas
5 events :
6 - http:
7 path: /
8 method : get
9 cors: true

10 obterUm :
11 handler : handler . getcsaById
12 events :
13 - http:
14 path: /{id}
15 method : get
16 cors: true
17 create :
18 handler : handler . createCsa
19 events :
20 - http:
21 path: /
22 method : post
23 cors: true

4.2.2 Processo de migração da API Backend

A migração da API Strapi apresentou maior complexidade devido ao seu tamanho
e às suas regras de negócio, que diferem da API Dicionário. No entanto, a abordagem
utilizada foi similar: para cada entidade, foi desenvolvido um handler contendo métodos
que substituem os endpoints da API original.

Dado o volume de código da aplicação FaaS, uma análise completa seria inviável e
pouco produtiva. Portanto, este trabalho se concentrará nos aspectos mais relevantes da
migração, destacando as diferenças em relação à API Dicionário.

• Populando o retorno de todas as lojas

Por se tratar de um banco de dados NoSQL, o relacionamento entre as entidades
é armazenado diretamente no documento da entidade, por meio de uma proprie-
dade do tipo lista. Optamos por salvar apenas os IDs das entidades relacionadas,

Capítulo 4. Implementações 31

exigindo uma busca adicional sempre que for necessário popular os dados completos
da entidade referenciada.

Para otimizar esse processo, utilizamos o método dynamoDb.batchGet(params) no
arquivo dynamo-client-config. Essa abordagem permite realizar uma única requisi-
ção para recuperar todos os IDs armazenados no array de relacionamentos, evitando
múltiplas requisições individuais para cada item. A implementação foi realizada no
arquivo LojaRepository.js, garantindo a correta recuperação e associação de dados
entre Planos, Cestas e Produtos Avulsos.

Código 4.7 – Lojas Repository
1

2 const getLojasComRelacionamentos = async function () {
3 try {
4 const result = await getAllLojas ();
5 const lojas = result .Items;
6 let idsCestas = new Set ();
7 let idsPlanos = new Set ();
8 let idsProdutos = new Set ();
9

10 // Coletando IDs nicos de cestas , planos e produtos
11 lojas. forEach ((loja) => {
12 (loja. cestas || []). forEach ((id) => idsCestas .add(id));
13 (loja. planos || []). forEach ((id) => idsPlanos .add(id));
14 (loja. produto_avulsos || []). forEach ((id) =>

idsProdutos .add(id));
15 });
16

17 // Buscando todas as entidades relacionadas de uma s vez
18 const [cestas , planos , produtos] = await Promise .all ([
19 dynamoDbLib . batchGet (" CestasTable ", Array.from(

idsCestas)),
20 dynamoDbLib . batchGet (" PlanosTable ", Array.from(

idsPlanos)),
21 dynamoDbLib . batchGet (
22 " ProdutosAvulsosTable ",
23 Array.from(idsProdutos)
24),
25]);
26

27 // Criando um mapa de ID Objeto para facilitar
a s s o c i a o

28 const cestasMap = Object . fromEntries (cestas .map ((c) => [c.
id , c]));

29 const planosMap = Object . fromEntries (planos .map ((p) => [p.
id , p]));

Capítulo 4. Implementações 32

30 const produtosMap = Object . fromEntries (produtos .map ((p) =>
[p.id , p]));

31

32 // Preenchendo os relacionamentos dentro de cada loja
33 lojas. forEach ((loja) => {
34 loja. cestas = (loja. cestas || []).map(
35 (id) => cestasMap [id] || null
36);
37 loja. planos = (loja. planos || []).map(
38 (id) => planosMap [id] || null
39);
40 loja. produto_avulsos = (loja. produto_avulsos || []).map

(
41 (id) => produtosMap [id] || null
42);
43 });
44

45 return lojas;
46 } catch (error) {
47 throw new Error(
48 "Erro ao buscar lojas com relacionamentos : " + error.

message
49);
50 }
51 };

Código 4.8 – Método getBach no arquivo dynamo-client-config
1

2 const batchGet = async (tableName , ids) => {
3 if (ids. length === 0) return [];
4

5 const params = {
6 RequestItems : {
7 [tableName]: {
8 Keys: ids.map ((id) => ({ id })),
9 },

10 },
11 };
12

13 try {
14 const result = await dynamoDb . batchGet (params). promise ();
15 return result . Responses [tableName] || [];
16 } catch (error) {
17 throw new Error(
18 ‘Erro ao buscar m l t i p l o s itens em ${ tableName }: ‘ +

error. message
19);

Capítulo 4. Implementações 33

20 }
21 };

4.3 Automação do Deploy da API Principal em FaaS
O objetivo deste script é automatizar o processo de deploy, eliminando a necessidade
de digitar manualmente todos os comandos da AWS CLI e do Serverless Framework.
Além disso, ele unifica e define claramente as variáveis que precisam ser preenchidas,
garantindo uma execução mais eficiente e padronizada.

Ao final do processo, o script realiza um POST para a API Dicionário, enviando a
URL da nova CSA implantada. Para maior acessibilidade, o script foi desenvolvido
para ser executado em Windows e já inclui a instalação automática das dependências
necessárias.

Código 4.9 – Script de automação do Deploy
1

2 # Define as v a r i v e i s que o cliente deve preencher
3 $AWS_ACCESS_KEY_ID = " AKIA2S2Y36QFEEUPKO6F "
4 $AWS_SECRET_ACCESS_KEY = " HON34r76xKzESv1fGZP9tmahZVhXVCw +NpT+khav"
5 $AWS_REGION = "us -east -1"
6 $PROJECT_DIR = $PSScriptRoot # Caminho da a p l i c a o Serverless
7

8 $URL_API_DICIONARIO = "https :// aywcbxk6ql .execute -api.us -east -1.
amazonaws .com/dev /"

9 $NOME_CSA = "CSA SCRIPT "
10 $NOME_RESPONSAVEL = " Murilo SCRIPT "
11 $EMAIL_CSA = " EMAIL@email .com"
12

13 # F u n o para verificar se um comando existe
14 function CommandExists {
15 param (
16 [string] $command
17)
18 $exists = $false
19 try {
20 if (Get - Command $command -ErrorAction Stop) {
21 $exists = $true
22 }
23 } catch {}
24 return $exists
25 }
26

27 # Instalar Node.js , se n e c e s s r i o
28 if (-not (CommandExists "node ")) {

Capítulo 4. Implementações 34

29 Write - Output " Instalando Node.js ..."
30 Invoke - WebRequest -Uri "https :// nodejs .org/dist/v18 .17.1/ node -

v18 .17.1 - x64.msi" -OutFile " nodejs .msi"
31 Start - Process -FilePath " nodejs .msi" -Wait -ArgumentList "/

quiet"
32 Remove -Item " nodejs .msi"
33 }
34

35 # Instalar Serverless Framework , se n e c e s s r i o
36 if (-not (CommandExists " serverless ")) {
37 Write - Output " Instalando Serverless Framework ..."
38 npm install -g serverless
39 }
40

41 # Instalar AWS CLI , se n e c e s s r i o
42 if (-not (CommandExists "aws ")) {
43 Write - Output " Instalando AWS CLI ..."
44 Invoke - WebRequest -Uri "https :// awscli . amazonaws .com/ AWSCLIV2 .

msi" -OutFile " AWSCLIV2 .msi"
45 Start - Process -FilePath " AWSCLIV2 .msi" -Wait -ArgumentList "/

quiet"
46 Remove -Item " AWSCLIV2 .msi"
47 }
48

49 # Configurar credenciais da AWS
50 aws configure set aws_access_key_id $AWS_ACCESS_KEY_ID
51 aws configure set aws_secret_access_key $AWS_SECRET_ACCESS_KEY
52 aws configure set region $AWS_REGION
53

54 # Navegar a t o d i r e t r i o do projeto
55 Set - Location $PROJECT_DIR
56

57 # Instalar d e p e n d n c i a s do projeto
58 npm install
59

60 # Fazer deploy
61 serverless deploy 2>&1 | Tee - Object -Variable deployOutput
62

63 # Capturar URL Base da API
64 $apiUrls = $deployOutput | Select - String -Pattern "(https ://[a-zA -

Z0 -9. -]+\. amazonaws \. com /[a-zA -Z0 -9/ -]+)" -AllMatches | ForEach -
Object { $_. Matches .Value }

65 $baseApiUrl = $apiUrls | Select - String -Pattern "^ https
:\/\/[^\/]+\/ dev" -AllMatches | Select - Object -First 1 | ForEach
- Object { $_. Matches .Value }

66

Capítulo 4. Implementações 35

67 # Requisicao POST para a api dicionario , salvando nela a URL da csa
criada

68

69 $headers = @{
70 "Content -Type" = " application /json"
71 }
72

73 $body = @{
74 nomeCSA = " $NOME_CSA "
75 responsavelCSA = " $NOME_RESPONSAVEL "
76 emailCSA = " $EMAIL_CSA "
77 urlBase = " $baseApiUrl "
78 } | ConvertTo -Json -Depth 10
79

80 Invoke - WebRequest -Uri " $URL_API_DICIONARIO " ‘
81 -Method Post ‘
82 -Headers $headers ‘
83 -Body $body ‘
84 -UseBasicParsing | Out -Null

4.4 Refatoração do Mobile para consumir a API em FaaS
Com a migração do backend do Agromart para uma arquitetura baseada em FaaS,

foi necessário realizar ajustes no aplicativo móvel para garantir a compatibilidade com a
nova API hospedada na AWS Lambda. Essas modificações foram essenciais para adequar o
consumo de requisições sob demanda, otimizando a comunicação entre o app e os serviços
em nuvem.

4.4.1 Adaptação das Requisições para a AWS Lambda

A principal mudança na refatoração foi a alteração dos endpoints utilizados no
aplicativo. No modelo anterior, as requisições eram feitas para um servidor EC2 com URLs
estáticas e pré-definidas. Com a adoção do FaaS, foi necessário modificar as chamadas
para utilizar os endpoints da AWS API Gateway, que atuam como intermediários entre o
aplicativo e as funções Lambda.

Os ajustes envolveram:

• Atualização das URLs das requisições para os novos endpoints gerenciados pelo API
Gateway.

• Modificação do formato das requisições, garantindo compatibilidade com a execução
assíncrona das funções Lambda.

Capítulo 4. Implementações 36

• Implementação de novas regras de autenticação, caso necessário, considerando a
possível integração com AWS IAM ou API Keys.

4.4.2 Atualizações no Código do Aplicativo

Para ilustrar as alterações feitas no código, a seguir são apresentados os trechos
modificados. Esses diffs foram extraídos do histórico de commits no GitHub e demonstram
a adaptação do código para consumir a API em FaaS corretamente.

Figura 6 – Procurar CSA - antes

Figura 7 – Procurar CSA - depois

Capítulo 4. Implementações 37

Figura 8 – Ajuste de requisição e de url Endereço - antes

Figura 9 – Ajuste de requisição e de url Endereço - depois

Capítulo 4. Implementações 38

Figura 10 – Ajuste de parâmetro e url Login - antes

Figura 11 – Ajuste de parâmetro e url Login - depois

Capítulo 4. Implementações 39

Figura 12 – Ajuste de parâmetro e url Cadastro - antes

Figura 13 – Ajuste de parâmetro e url Cadastro - depois

Capítulo 4. Implementações 40

Figura 14 – Ajuste de parâmetro e url Usuário - antes

Figura 15 – Ajuste de parâmetro e url Usuário - depois

4.4.3 Impactos da Refatoração

A refatoração trouxe benefícios significativos para o funcionamento do aplicativo
móvel, incluindo:

• Redução do tempo de resposta das requisições em cenários de baixa demanda, pois
os servidores não permanecem ativos o tempo todo.

• Otimização do consumo de recursos, reduzindo custos operacionais devido à natu-
reza sob demanda da arquitetura FaaS.

Capítulo 4. Implementações 41

• Facilidade de escalabilidade, permitindo que as funções Lambda se ajustem auto-
maticamente conforme o volume de requisições.

4.5 Análise de Serviço "Sempre Gratuito"da AWS
Após conversas com o orientador Prof. Dr. André Luiz Lanna, foi levantada a

necessidade de se ter um ambiente de deploy totalmente gratuito para o agricultor. Es-
colhemos a melhor combinação no mercado que é sempre gratuito, respeitando algumas
limitações, que é o serviço Lambda junto ao DynamoDB.

Os limites impostos pela AWS para a Lambda e para o DynamoDB são estes
(SERVICES, 2025a) (SERVICES, 2025b) :

- AWS Lambda:

• Solicitações mensais gratuitas: 1 milhão de invocações.

• Tempo de computação gratuito: 400.000 GB-segundos por mês.
GB-segundo mede o consumo de memória ao longo do tempo. Por exemplo, uma
função Lambda com 1 GB de memória que executa por 1 segundo consome 1 GB-
segundo.

• Transferência de dados: 100 GiB de respostas HTTP por mês, além dos primeiros 6
MB por solicitação, que são gratuitos.

- DynamoDB:

• Armazenamento: 25 GB gratuitos.

• Capacidade provisionada: 25 unidades de capacidade de leitura (RCUs) e 25 unida-
des de capacidade de gravação (WCUs), suficientes para processar até 200 milhões
de solicitações por mês.

Unidade de leitura: 1 unidade permite até 2 leituras por segundo para itens de até
4 KB (fortemente consistente).
Unidade de escrita: 1 unidade permite 1 escrita por segundo para itens de até 1 KB.

Exemplo prático: Se sua aplicação precisa ler e escrever itens pequenos (até 1 KB),
as unidades gratuitas permitem:

Até 50 leituras/segundo (eventualmente consistentes) ou 25 leituras/segundo (for-
temente consistentes) Até 25 gravações/segundo

Capítulo 4. Implementações 42

4.5.1 Por que a AWS é melhor que as opções "ilimitadas"do Google e Oracle?

Três grandes plataformas se destacam para a implantação de projetos FaaS: AWS,
Google Cloud e Oracle. Mas, por que a AWS foi a escolha?

A AWS se destaca na arquitetura FaaS e bancos NoSQL gratuitos porque oferece
o único plano verdadeiramente ilimitado para pequenas e médias aplicações. Mas para
entender por que o Google Cloud e o Oracle Cloud não são tão vantajosos, é fundamental
analisar as limitações ocultas dessas plataformas.

- AWS X Google Cloud

• Execuções FaaS grátis: Nesse ponto o Goolgle oferece o dobro de requisições
gratuitas que a AWS, 2 milhões.

• Armazenamento gratuito O Firestore disponibiliza somente 1 GB de armazena-
mento gratuito equanto que a AWS libera 25gb dedicados a cada aplicação.

• Leituras e Gravações Aqui já temos os limites rígidos inviabilizando o Google
Cloud. 50.000/dia de leituras gratuitas (depois cobra 0.06 dólares por 100K leitu-
ras), 20.000/dia de escritas gratuitas (depois cobra 0.18 dólares por 100K grava-
ções) e 10.000/dia de deleções gratuitas (depois cobra 0.02 por 100K exclusões).
Google Cloud cobra por cada requisição diferente da AWS que caso você não passe
das 25/50 unidades de leitura e 25 de escrita não será cobrado nunca.(GOOGLE,
2025a)(GOOGLE, 2025b)

Resumo : Se sua aplicação faz 100.000 leituras/dia, no DynamoDB é gratuito (den-
tro das 25 unidades provisionadas), mas no Firestore custa 0.06/dia → 1.80/mês.
Se precisar de 500.000 gravações/dia, o custo no Firestore sobe para 0.90/dia →
27/mês.

- AWS X Oracle

• Execuções FaaS grátis: Também oferece o dobro comparado a AWS.

• Armazenamento gratuito: 25gb dedicados a cada aplicação. Já a "Oracle"disponibiliza
os 25 GB porém compartilhado entre todos os serviços !

• Leituras e Gravações: A "AWS"é Ilimitada dentro das 25/50 RCU e 25 WCU.
Já a Oracle 133 milhões de RCU (depois cobra 0.30 de dólares por milhão) e 25
milhões WCU (depois cobra 2.25 por milhão) (CLOUD, 2025)

Capítulo 4. Implementações 43

Resumo: No DynamoDB é gratuito dentro da capacidade provisionada. Na Ora-
cle se sua aplicação fizer 150 milhões de leituras/mês custa: 17 milhões extras ×
0.30/milhão = 5.10/mês. Se fizer 50 milhões de gravações/mês, no Oracle custa: 25
milhões extras × 2.25/milhão = 56.25/mês

A AWS foi escolhida pois trabalha com limites de de taxa de transmissão, e não
limites estáticos. Caso seja respeitados estas taxas não será cobrado do agricultor. Nos en-
trega maior previsibilidade e controle de custos. Flexibilidade para crescer sem cobranças
inesperadas

4.6 Estratégias para Minimização de Custos no AWS Lambda
No serviço Lambda :

• Definir um limite de simultaneidade (tag "reservedConcurrency")

Bloqueia o número máximo de execuções simultâneas. Se atingir o limite, novas
execuções serão enfileiradas ou rejeitadas.

Código 4.10 – reservedConcurrency em uma function
1

2 getLojas :
3 handler : handlers /loja. getLojas
4 reservedConcurrency : 5
5 events :
6 - http:
7 path: lojas
8 method : get
9 cors: true

• Configurar Timeout (tag "timeout") Evita funções rodando por muito tempo
e consumindo mais GB-segundos.

Código 4.11 – "reservedConcurrency"em uma function
1

2 provider :
3 timeout : 5

• Reduzir Memória Alocada (tag "memorySize") Menos memória alocada para
cada function evitando o consumo de GB-segundos.

Código 4.12 – "reservedConcurrency"em uma function
1

Capítulo 4. Implementações 44

2 provider :
3 memorySize : 128

No Amazon DynamoDB :

• Configurar "Throttling"

Se a capacidade provisionada for atingida, o banco não cobra extra, apenas torna as
requisições mais lentas ou as rejeita com erro HTTP 400 (ProvisionedThroughpu-
tExceededException).Essa condição é atingida configurando as tags "BillingMode"e
"ProvisionedThroughput".

Código 4.13 – BillingMode em uma tabela
1

2 LojasTable :
3 Type: AWS :: DynamoDB :: Table
4 Properties :
5 TableName : LojasTable
6 AttributeDefinitions :
7 - AttributeName : id
8 AttributeType : S
9 KeySchema :

10 - AttributeName : id
11 KeyType : HASH
12 BillingMode : PROVISIONED
13 ProvisionedThroughput :
14 ReadCapacityUnits : 1
15 WriteCapacityUnits : 1

• Configurar o "auto scaling"do "DynamoDB":

Queremos ter uma escalabilidade controlada . O Auto Scaling aumenta somente até
3 unidades na leitura, evitando gastos excessivos.

Código 4.14 – auto scaling
1

2 AgroMartTableScalingRead :
3 Type: AWS :: ApplicationAutoScaling :: ScalableTarget
4 Properties :
5 MaxCapacity : 3
6 MinCapacity : 1
7 ResourceId : table/ AgroMartTable
8 RoleARN : arn:aws:iam ::${aws: accountId }: role/

DynamoDBAutoScalingRole
9 ScalableDimension : dynamodb :table: ReadCapacityUnits

10 ServiceNamespace : dynamodb

Capítulo 4. Implementações 45

11

12 AgroMartTableScalingWrite :
13 Type: AWS :: ApplicationAutoScaling :: ScalableTarget
14 Properties :
15 MaxCapacity : 3
16 MinCapacity : 1
17 ResourceId : table/ AgroMartTable
18 RoleARN : arn:aws:iam ::${aws: accountId }: role/

DynamoDBAutoScalingRole
19 ScalableDimension : dynamodb :table: WriteCapacityUnits
20 ServiceNamespace : dynamodb

Com essas configurações visamos limitar a autonomia da AWS para com a nossa
aplicação. Definimos limites para que que o backend do Agromart esteja preso e obtenha-
mos uma segurança e confiança maior na questão de custos.

4.7 Análise de Carga e Dimensionamento das APIs FAAS

4.7.1 Levantamento de dados sobre a api-dicionário em FAAS

Neste trecho, serão levantados dados sobre as duas APIs, analisando os impactos de
cada uma sobre o Always Free Tier da AWS. A seguir, será detalhado em que momentos
do uso do AgroMart são feitas requisições para a API do Dicionário.

As requisições para a API do Dicionário ocorrem em quatro momentos específicos:

• Ao criar uma nova CSA.

• Ao recuperar múltiplas CSAs.

• Ao recuperar uma única CSA.

• Ao deletar uma CSA.

Quando o usuário seleciona o ID de uma CSA no aplicativo móvel, esse ID é salvo
para as próximas utilizações, ou seja, a busca pelo ID de uma CSA ocorre apenas uma
vez por sessão de uso. ((FREITAS; CELLA, 2023))

Quais cenários de testes têm a tendência de bater 1 milhão de requisições no
mês ?

• 1 cenário: O usuário busca todas as csa’s e escolhe uma para se acessar.

Somente 1 requisição ao endpoint "GetAll"é utilizado.

Capítulo 4. Implementações 46

• 2 cenário:Os administradores Decidem criar mais uma csa.

Somente 1 requisição ao endpoint "Creat"é utilizado".

• 3 cenário:Os administradores buscam todas as csas para ver em algo em específico
dentre elas.

Somente 1 requisição ao endpoint "GetAll"é necessário, visto que esse endpoint já
retorna alumas informações importantes das CSA’s.

• 4 cenário:Os administradores buscam uma em específico para análise.

Somente 2 requisição com os endpoint’s "GetAll"mais o "GetById".

• 5 cenário:Os administradores buscam deletar uma csa.

Somente 1 requisição ao endpoint "Delete".

Será que será extrapolado o armazenamento máximo do free tier do Dynamo?

Após a realização de diversas implantações de csa’s e popularmos a api-dicionário
com suas "URl’s", vimos que em média o tamanho médio de um item no DynamoDB da
api-dicionário se dá por volta dos 170 Bytes.

Discussão dos resultados

Após o levantamento de dados podemos ver o pouquissímo impacto da api-dicionário
nos limites estabelecidos para o "Aways Free tier"da AWS.

As funcionalidades que necessitam da api dicionária são extremamente pontuais e
não ordinárias. São decisões tomadas no nível gerencial de uma csa, o que não acarreta
medo a cerca do limite provisionado da AWS para requisições.

E sobre o banco de dados seriam necessárias quase que 150 milhões de csa’s para
se extrapolar o limite da Aws.

4.7.2 Análise de Carga e Dimensionamento de Usuários na API Principal
FAAS

Esta sessão visa analisar a quantidade de requisições recebidas por uma API de-
senvolvida em AWS Lambda, identificando o consumo por usuário e determinando a
quantidade máxima de usuários suportados dentro do limite gratuito de um milhão de
requisições por mês.

4.7.2.1 Cenários de caso de uso do backend

Para entender o impacto da utilização da API e calcular a quantidade de requisi-
ções geradas por usuário, foi realizado um mapeamento detalhado de todos os casos de

Capítulo 4. Implementações 47

uso da aplicação. Esse processo envolveu a identificação de cada funcionalidade disponí-
vel para o usuário e a análise das interações que resultam em chamadas à função AWS
Lambda.

O mapeamento foi documentado por meio de diagramas de casos de uso, que
estão listados logo abaixo, ilustrando as principais operações executadas pelos usuários
e a frequência estimada de cada uma delas. A partir dessa análise, foi possível calcular
a quantidade média de requisições geradas por um único usuário durante um período de
um mês.

4.7.2.2 Casos de Uso

Figura 16 – Fluxo Cadastro de Usuário

• Requisição 1: Validar CSA na Api Dicionario

GET: .../dev/idCsa

• Requisição 2: Criar usuário no backend

POST: .../dev/usuarios.

Figura 17 – Fluxo Login

• Requisição 1: Verificar Usuário e Senha informados

POST: .../dev/auth

Capítulo 4. Implementações 48

Figura 18 – Fluxo Meus Dados

• Requisição 1: Atualizar dados usuário

PUT .../dev/usuarios/idUsuario

Figura 19 – Fluxo Meus Endereços

• Requisição 1: Criar/Atualizar endereço

PUT .../dev/endereco

Figura 20 – Fluxo Planos

• Requisição 1: Procurar Planos

GET ...dev/assinantes

• Requisição 2: Pular Cesta

PUT ...dev/assinantes/70d38276-6d0e-4af2-b3d8-c91bd556e3fe

Capítulo 4. Implementações 49

Figura 21 – Fluxo Pedidos

• Requisição 1: Obter lojas

GET ...dev/lojas

• Requisição 2: Obter histórico de compras

GET ...dev/extratoes?user=cfa7ee6e-7054-4ae1-891a-990ef738ab7e

Figura 22 – Fluxo WhatsApp

• Requisição 1: Obter lojas

GET ...dev/lojas

Figura 23 – Fluxo Logout

• Não possui requisições

Capítulo 4. Implementações 50

Cada operação da aplicação, como consultas, inserções, atualizações e exclusões de
dados, foi analisada para determinar sua contribuição no volume total de requisições. Com
base no comportamento esperado dos usuários e nos fluxos de uso mapeados, chegou-se à
estimativa de que um único usuário realiza, em média, 96 requisições mensais à API.

Com essa métrica definida, foi possível calcular a capacidade máxima de usuários
suportados antes que a aplicação ultrapasse o limite gratuito da AWS Lambda. Conside-
rando que o serviço permite até 1.000.000 de requisições gratuitas por mês, a capacidade
de usuários pode ser determinada pela seguinte fórmula:

𝑈max = 𝑅max

𝑅𝑢

(4.1)

Onde:

• 𝑈max representa o número máximo de usuários suportados dentro do limite gratuito;

• 𝑅max é o limite máximo de requisições mensais (1.000.000);

• 𝑅𝑢 corresponde à média de requisições por usuário (96).

Aplicando os valores:

𝑈max = 1.000.000
96 ≈ 10.416 (4.2)

Ou seja, a API pode atender aproximadamente 10.416 usuários por mês em cada
CSA antes de ultrapassar o limite gratuito da AWS Lambda.

4.7.2.3 Resultado

A API pode atender aproximadamente 10.416 usuários por mês em cada CSA
antes de ultrapassar o limite gratuito da AWS Lambda. É um número bem distante da
atual realidade do AgroMart, pois nosso levantamento revela que a maior CSA (Floresta)
possui cerca de 30 usuários mensais.

Dessa forma os mantenedores das CSAs poderão trabalhar de forma tranquila sem
ter que se preocupar com gastos de infraestrutura, pois as atuais condições são mais que
suficientes para a aplicação funcionar e, além disso, suportam com folga um eventual pico
de usuários.

Vale destacar que um monitoramento contínuo das métricas da AWS CloudWatch
(disponível no site da AWS) é essencial para evitar custos inesperados e garantir a efici-
ência da solução. O mapeamento detalhado dos casos de uso também pode servir como
base para futuras otimizações, permitindo ajustes na lógica da aplicação para minimizar
o consumo desnecessário de recursos computacionais.

Capítulo 4. Implementações 51

4.7.3 Analise de carga e dimensionamento do banco na API Principal FAAS

Esta seção tem como objetivo avaliar o consumo de armazenamento da API bac-
kend do Agromart, implementada em um ambiente FaaS, e verificar em quais circuns-
tâncias esse consumo pode ultrapassar o limite de 25 GB estabelecido pelo Free Tier do
Amazon DynamoDB.

Para isso, será determinado o tamanho médio dos registros de cada uma das prin-
cipais entidades armazenadas no DynamoDB. Com base nesses valores, será realizada
uma simulação considerando cinco registros por entidade, permitindo estimar o impacto
no uso total de armazenamento e identificar possíveis cenários que levem à superação do
limite gratuito.

4.7.3.1 Registros das entidades

Para a nossa análise iremos ter como base os seguintes registros, com seus respec-
tivos espaço médio ocupado no Banco DynamoDB.

• Assinante: 185 Bytes

Figura 24 – Assinante

• Cesta: 200 Bytes

Capítulo 4. Implementações 52

Figura 25 – Cesta

• Endereço: 280 Bytes

Figura 26 – Endereço

• Usuário: 185 Bytes

Figura 27 – Usuário

Capítulo 4. Implementações 53

• Produtos: 180 Bytes

Figura 28 – Produtos

• Planos: 250 Bytes

Figura 29 – Planos

• Loja : 500 Bytes

Capítulo 4. Implementações 54

Figura 30 – Planos

4.7.3.2 Análise

Vamos começar dimensionando a quantidade total de cada umas das entidades
sobre o tamanho total do DynamoDB disponível.

O armazenamento gratuito do DynamoDB é de 25 GB, equivalente a:

25 × 10243 = 26.843.545.600 bytes (4.3)

Considerando as entidades armazenadas no banco, os tamanhos médios dos registros são
apresentados na Tabela 1.

Entidade Tamanho Médio (bytes)
Usuários 185

Cesta 200
Endereço 280

Assinantes 228
Produtos 180
Planos 250

Loja (1 cesta, 1 produto, 1 assinante, 1 plano) 500

Tabela 1 – Tamanhos médios das entidades armazenadas no DynamoDB.

A partir desses valores, podemos estimar a quantidade máxima de registros arma-
zenáveis utilizando a equação:

𝑁 = 26.843.545.600
𝑇

(4.4)

Capítulo 4. Implementações 55

onde 𝑁 representa o número máximo de registros e 𝑇 o tamanho médio de cada entidade.
A Tabela 2 apresenta os valores obtidos.

Entidade Máximo de Registros
Usuários 145.073.223

Cesta 134.217.728
Endereço 95.155.521

Assinantes 117.691.878
Produtos 149.130.809
Planos 107.374.182
Loja 53.687.091

Tabela 2 – Número máximo de registros armazenáveis por entidade.

- Cenário com 5 registros de cada entidade

Considerando as entidades armazenadas no banco,o tamanho total de cada tabela
representando um entidade apresentado na tabela 3.

Entidade Tamanho Médio vezes 5 (bytes)
Usuários 925

Cesta 1000
Endereço 1400

Assinantes 1140
Produtos 900
Planos 1250

Loja (5 cestas, 5 produtos, 5 assinantes, 5 planos) 2500
Total 9115

Tabela 3 – Tamanhos médios das entidades armazenadas no DynamoDB considerando
múltiplos registros.

A partir desses valores, podemos estimar a quantidade máxima de cenários arma-
zenáveis utilizando a equação:

𝑁 = 26.843.545.600
𝑇

(4.5)

Onde 𝑁 representa o número máximo de bytes e 𝑇 o tamanho total de Bytes(9115).

Ao aplicar essa equação, obtemos um total de 2.944.985 cenários idênticos. Isso
significa que, considerando um cenário em que cada entidade possui cinco registros, esse é
o limite estimado de armazenamento garantido para os agricultores no Agromart dentro
das restrições do Free Tier do Amazon DynamoDB.

4.7.3.3 Resultados

Os resultados indicam que a api principal dificilmente irá extrapolar os limites da
AWS para o "Aways free tier". Mesmo considerando a entidade "Loja", que representa um

Capítulo 4. Implementações 56

conjunto de registros, seriam necessárias mais de 53 milhões de instâncias para atingir
o limite, mostrando que a cota gratuita é suficiente e dificilmente se tornará um fator
limitante.

57

5 Conclusão

Este trabalho investigou a viabilidade técnica e econômica da migração do backend
do AgroMart de uma arquitetura baseada em Infraestrutura como Serviço (IaaS) para
um modelo de computação serverless utilizando Função como Serviço (FaaS) na AWS
Lambda. A proposta visou reduzir custos operacionais, otimizar o consumo de recursos
computacionais e garantir maior escalabilidade ao sistema.

A análise demonstrou que a manutenção de instâncias EC2 para hospedar as APIs
do AgroMart apresenta um custo significativo, com um valor estimado de R$ 171,55
mensais para um servidor t3.medium, sem considerar despesas adicionais como armaze-
namento, transferência de dados e licenciamento de software. Além do impacto financeiro,
essa abordagem exige um gerenciamento manual da infraestrutura, o que dificulta a es-
calabilidade dinâmica da aplicação, podendo comprometer a experiência do usuário em
períodos de alta demanda.

Em contrapartida, a adoção da arquitetura FaaS mostrou-se uma alternativa pro-
missora. Com a execução sob demanda das funções na AWS Lambda, eliminam-se os
custos associados à ociosidade dos servidores, garantindo um uso mais eficiente dos recur-
sos computacionais. Além disso, a escalabilidade automática do modelo serverless permite
que a aplicação se adapte dinamicamente ao volume de requisições, sem a necessidade de
intervenções manuais na infraestrutura.

Durante o processo de migração, foi necessária a adaptação do aplicativo mobile
para consumir a nova API hospedada na AWS Lambda. A refatoração envolveu mudan-
ças nos endpoints e ajustes no formato das requisições. Essas alterações garantiram a
compatibilidade do frontend com a nova estrutura backend e minimizaram impactos na
experiência do usuário.

Dessa forma, os resultados obtidos indicam que a migração do AgroMart para o
modelo FaaS pode reduzir significativamente os custos operacionais, ao mesmo tempo
em que melhora a eficiência da alocação de recursos e a escalabilidade da aplicação. No
entanto, a viabilidade total da migração depende da análise contínua dos custos à medida
que a demanda pelo sistema cresce, principalmente em relação às limitações da camada
gratuita da AWS e aos custos adicionais que possam surgir.

Por fim, este estudo contribui para o entendimento das vantagens e desafios da
adoção da computação serverless no AgroMart, servindo como base para futuras pesqui-
sas que busquem otimizar ainda mais a eficiência e a sustentabilidade financeira deste
sistemas.

58

6 Desenvolvimentos Futuros

A migração do AgroMart para um ambiente serverless demonstrou ser uma al-
ternativa viável, mas sua evolução exige a definição de novos desafios e aprimoramentos.
Dentre os principais aspectos a serem explorados, destacam-se a análise de desempenho,
a escalabilidade do sistema, a implementação de novas funcionalidades e o reforço das
diretrizes de segurança.

Um dos desafios primordiais é a realização de um estudo detalhado sobre o desem-
penho da nova arquitetura. É necessário avaliar o comportamento do AgroMart diante
de um aumento no número de usuários simultâneos, requisições e interações com o banco
de dados. Além disso, torna-se fundamental estabelecer os limites operacionais do Always
Free Tier, determinando a capacidade máxima de usuários e itens suportados dentro dessa
camada gratuita. Com base nessa análise, será possível identificar até que ponto o desem-
penho permanece adequado e quais otimizações podem ser aplicadas sem comprometer a
segurança e a estabilidade da aplicação.

Outro aspecto essencial é a definição de estratégias de escalabilidade para o Agro-
Mart. Quando os limites do Always Free Tier forem excedidos, será necessário modificar
as configurações do sistema e estabelecer um modelo de planos de uso escaláveis. Isso
permitirá que os agricultores tenham diferentes possibilidades de crescimento dentro da
plataforma, garantindo continuidade e previsibilidade nos custos operacionais.

Além da escalabilidade, a implementação da funcionalidade de pagamento surge
como uma necessidade crítica para o AgroMart. Atualmente, essa funcionalidade não está
disponível, e sua introdução deve ser planejada considerando não apenas a experiência
do usuário, mas também o impacto que essa operação pode ter sobre os limites do plano
gratuito da AWS. Dessa forma, será possível assegurar que a aplicação continue operando
dentro de um modelo sustentável, sem comprometer sua viabilidade financeira.

Outro aprimoramento essencial diz respeito à autenticação e autorização dos usuá-
rios. Para garantir a conformidade com boas práticas de segurança, é necessário estabe-
lecer diretrizes robustas que protejam tanto os agricultores quanto os consumidores. Esse
refinamento contribuirá para a integridade dos dados e a confiabilidade do sistema.

Por fim, a transição para serverless resultou na perda do painel administrativo
anteriormente fornecido pelo Strapi, que permitia a gestão das CSAs pelos agricultores.
Assim, faz-se necessário o desenvolvimento de uma nova solução administrativa, assegu-
rando que os produtores tenham acesso a uma interface eficiente para o gerenciamento de
suas operações.

Capítulo 6. Desenvolvimentos Futuros 59

Dessa forma, os desenvolvimentos futuros do AgroMart deverão ser pautados na
busca por uma solução mais estável, escalável e acessível, permitindo que a plataforma
continue a atender às necessidades dos agricultores de maneira eficiente e sustentável.

60

Referências

BECK, K. Extreme Programming Explained: Embrace Change. [S.l.]: Addison-Wesley
Professional, 2000. Citado 2 vezes nas páginas 21 e 22.

CAPPELLOZZA, O. P. S. . A. Antecedentes da adoção da computação em nuvem:
Efeitos da infraestrutura, investimento e porte. 2012. Citado 2 vezes nas páginas 19
e 20.

CLOUD, O. Preços Oracle. 2025. Acesso em: 21 fev. 2025. Disponível em:
<https://www.oracle.com/cloud/free/>. Citado na página 42.

FERREIRA IGOR FARIAS, P. L. G. C. S. Uma análise comparativa entre serviços saas
(awsecs) e iaas (aws-ec2). 2023. Citado 2 vezes nas páginas 11 e 12.

FERREIRA, U. J. S. Análise de tecnologias de virtualização e hardware de baixo custo
para infraestrutura de nuvem de pequeno porte. 2017. Citado na página 21.

FRANçA AUDREY TELES DOS SANTOS, I. D. C. d. J. S. M. T. W. A. G. d. A. . L.
D. d. L. P. M. T. A utilizaÇÃo da computaÇÃo em nuvem como auxÍlio À escalabilidade
e disponibilidade de serviÇos online. 2023. Citado na página 20.

FREITAS, A. A.-A. de; CELLA, P. V. de S. Uma evolução do projeto Agromart:
implantação individualizada e automatizada de um ambiente de CSA. Dissertação
(Trabalho de Conclusão de Curso (TCC)) — Universidade de Brasília - UnB, Faculdade
UnB Gama - FGA, 2023. Citado na página 45.

GOOGLE. Preços do Firestore. 2025. Acesso em: 21 fev. 2025. Disponível em:
<https://cloud.google.com/functions/pricing-overview?hl=pt-br>. Citado na página
42.

GOOGLE. Preços do Firestore. 2025. Acesso em: 21 fev. 2025. Disponível em:
<https://cloud.google.com/firestore/pricing?hl=pt-br>. Citado na página 42.

NOGUEIRA, P. . T. Computação em nuvem. 2013. Citado na página 19.

PROGRAMMING, E. Extreme Programming: A Gentle Introduction. [S.l.], 2013.
Disponível em: <http://www.extremeprogramming.org>. Acesso em: 10 set. 2023.
Citado na página 21.

RIBEIRO, A. F. C.; MAGALHãES, R. L. T. d. Associação para aplicações agromart de
uma csa em cloud. 2023. Citado 2 vezes nas páginas 14 e 21.

SERVICES, A. W. AWS Lambda Pricing. 2025. Acesso em: 21 fev. 2025. Disponível em:
<https://aws.amazon.com/pt/lambda/pricing/>. Citado na página 41.

SERVICES, A. W. AWS Lambda Pricing. 2025. Acesso em: 21 fev. 2025. Disponível em:
<https://aws.amazon.com/pt/free/faqs/>. Citado na página 41.

SILVA;CARVALHO. Análise de mecanismos de serverless computing em ambientes de
nuvens computacionais. 2021. Citado 2 vezes nas páginas 11 e 14.

Referências 61

SOMMERVILLE, I. Software Engineering (10th Edition). [S.l.]: Pearson, 2015. Citado
na página 18.

SUTHERLAND, J. Scrum: A arte de fazer o dobro do trabalho na metade do tempo.
[S.l.]: Currency, 2014. Citado na página 21.

SWANSON, E. B. The Dimensions of Maintenance. [S.l.: s.n.], 1976. Citado na página
18.

TELES, L. Estudo comparativo sobre métodos ágeis de desenvolvimento de software.
2017. Citado 2 vezes nas páginas 21 e 22.

WAZLAWICK, R. S. Engenharia de software - conceitos e práticas. 2013. Citado na
página 18.

