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Resumo

Este trabalho tem como objetivo analisar, no contexto da Relatividade Geral, a forma-
¢do da sombra de buracos negros a partir do estudo de geodésicas nulas na métrica de
Schwarzschild. A motivagao central surge do artigo Black Hole Shadows, Photon Rings,
and Lensing Rings (2019), de Gralla, Holz e Wald, que propoe uma revisao conceitual
da interpretacao da regiao escura observada em imagens como as produzidas pelo projeto
Event Horizon Telescope (EHT). O estudo indica que a sombra observada por um observa-
dor distante pode nao coincidir exatamente com a curva critica de fétons, principalmente

em contextos fisicos mais realistas onde hé a presenca de um disco de acrecao.

Para alcancar os objetivos propostos, o trabalho é estruturado em duas etapas. A pri-
meira consiste na fundamentacao tedrica dos principais conceitos da Relatividade Geral,
incluindo a solucao de Schwarzschild e os aspectos geométricos associados a espacos-tempo
curvos. A segunda etapa é dedicada a analise detalhada das trajetérias de fotons em torno
de buracos negros classicos, relacionando seus parametros de impacto as diferentes estru-
turas observadas. A analise visa contribuir para aumentar a capacidade de interpretar
a imagem de buracos negros, destacando a importancia das fontes de luz no contorno

observado e da métrica utilizada na modelagem.

Palavras-chave: Buracos negros; Relatividade Geral; Sombra de buraco negro; Métrica
de Schwarzschild; Métrica de Kerr; Geodésicas nulas; Pardmetro de impacto; Anel de

fotons; Disco de acregao.
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Introducao

Previstos teoricamente como solucoes das equagoes de campo de Einstein, os bura-
cos negros sao regioes do espaco-tempo marcadas por campos gravitacionais tao intensos
que nada, nem mesmo a luz, consegue escapar de sua atragao a partir de uma certa dis-
tancia. Essa fronteira é popularmente conhecida como o horizonte de eventos. Buracos
negros descritos pelas solugoes de vacuo da Relatividade Geral (RG) podem ser descritos
como “singularidades fisicas”, pontos onde a densidade tende ao infinito, resultantes da

concentragao de grandes quantidades de massa em volumes extremamente reduzidos.

Inicialmente tratados como solugoes matematicas exdticas, esses objetos surgem a
partir da métrica proposta por Karl Schwarzschild em 1916, que descreve o espago-tempo

ao redor de corpos esfericamente simétricos e nao rotativos:

2GM 2GMN\ !
d52:_<1_ G )dt2+<1— ¢ ) dr? 4+ r*d6* 4+ r? sin® 0 do? (1)
T T

Onde {r,0, ¢} representam, respectivamente, as coordenadas radial, polar e azi-

mutal; G é a constante gravitacional; e M denota a massa do corpo central.

Nesta métrica, existe uma indefinicao em r = 2G'M, inicialmente acompanhada
de termos da época, como “corpo invisivel” ou “gravidade infinita”. O proprio Einstein,
acompanhado de outros fisicos de renome como Arthur Eddington, interpretou a solucgao
proposta como um artefato matematico, algo separado da realidade fisica, onde r = 2G M
seria apenas uma singularidade de coordenadas (EINSTEIN, 1939; EDDINGTON, 1923).

Estudos posteriores de fisicos como Georges Lemaltre mostraram ser possivel con-
tornar a singularidade da métrica de Schwarzschild por meio de uma mudanca de coorde-
nadas, indicando que a regiao do problema inicial correspondia a uma fronteira geométrica
e ndo a uma divergéncia fisica (LEMAITRE, 1931). Outro resultado importante foi ob-
tido em 1931 por Subrahmanyan Chandrasekhar, que, no artigo The Maximum Mass of
Ideal White Dwarfs, demonstrou que uma ana branca possui uma massa limite, depen-
dente da composicao estelar. Acima dessa massa critica, o colapso gravitacional torna-se

inevitavel, levando a formacao de estrelas de néutrons ou de objetos ainda mais densos

(CHANDRASEKHAR, 1931).

Poucos anos depois, em 1939, o artigo On Continued Gravitational Contraction,
publicado por J. Robert Oppenheimer e Hartland Snyder, corroborou a descoberta de
Chandrasekhar ao demonstrar que, ao esgotar seu combustivel nuclear, uma estrela sufi-

cientemente massiva pode colapsar sob seu proprio campo gravitacional, dando origem a
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uma regiao do espago-tempo com velocidade de escape superior a luminar (OPPENHEI-
MER; SNYDER, 1939).

Contudo, somente a partir da década de 1960 que o conceito de “buraco negro”
passou a ser aceito como uma entidade fisica real, popularizando-se rapidamente na co-
munidade cientifica. Esse perfodo contou com os trabalhos de Stephen Hawking e Roger
Penrose, que apresentaram os teoremas da singularidade, argumentando que a formagao
de certas entidades fisicas nao era apenas possivel, mas inevitavel. Mais precisamente, a
primeira formulacao destes teoremas foi dada por Penrose (PENROSE, 1965), sendo Haw-
king responséavel por complementé-la ao fim da década (HAWKING, 1967). Oficialmente,
a formalizacdo do conceito foi dada no artigo Introducing the Black Hole, publicado por
Remo Ruffini e John Archibald Wheeler na Physics Today em janeiro de 1971 (RUFFINTI;
WHEELER, 1971).

Apesar dos sélidos fundamentos tedricos sobre a formacao e a inevitabilidade dos
buracos negros, apenas recentemente foram obtidas confirmagoes observacionais diretas.
Entre essas evidéncias, destaca-se o estudo do movimento das estrelas na regiao central
da Via Lactea, com énfase especial nas observacoes das orbitas das estrelas proximas a
Sagittarius A*, uma intensa fonte de emissao em radio. Os astronomos Reinhard Genzel
e Andrea Ghez, cujos trabalhos se desenvolveram de forma independente, receberam o
Prémio Nobel de Fisica de 2020 pelas contribuigoes fundamentais a esse campo (GHEZ

et al., 2008; GENZEL; EISENHAUER; GILLESSEN, 2010).

O estudo empregou técnicas avancadas de Optica adaptativa, que permitiram a
observacao detalhada dos movimentos dessas estrelas. Os resultados indicaram que elas
orbitam em torno de uma grande quantidade de massa invisivel e extremamente concen-
trada, levando a conclusao inevitavel da existéncia de um buraco negro supermassivo no

nucleo da galaxia.

Além disso, & medida que os avancos nas observagoes astronémicas se consolida-
vam, outros projetos estavam em desenvolvimento para detectar outro fenémeno previsto
pela teoria da Relatividade Geral: as ondas gravitacionais. Essas ondas podem ser gera-
das por diversos eventos cosmicos, como fusoes de estrelas de néutrons ou buracos negros

(sistemas bindrios, em geral), supernovas, entre outros.

Em 14 de Setembro de 2015, o projeto LIGO (Laser Interferometer Gravitational-
Wave Observatory), ativo desde 2002, registrou seu primeiro sinal apés 13 anos de fun-
cionamento. Utilizando o observatério LIGO, a colaboragao cientifica conseguiu detectar
pela primeira vez as ondas gravitacionais, um fenémeno previsto por Einstein ha um
século. O sinal histérico foi denominado GW150914, e a auséncia de contrapartida ele-
tromagnética sugeriu que o sinal foi gerado pela fusao de um sistema binario de buracos
negros de massa estelar, ocorrida a cerca de 1.3 bilhao de anos-luz da Terra. Essa deteccao,

premiada com o Nobel de Fisica em 2017, ndo apenas confirmou a existéncia das ondas
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gravitacionais, mas também forneceu a primeira prova direta da existéncia dos buracos
negros como predito pela relatividade geral (ABBOTT; COLLABORATION; COLLA-
BORATION), 2016).

Enquanto os resultados do LIGO representavam um marco na detecgao de buracos
negros por meio de ondas gravitacionais, outro avanco histérico, desta vez diretamente ob-
servacional, foi alcancado: a obtengao da primeira imagem da sombra de um buraco negro.
Esse feito foi alcangado pelo projeto EHT (Event Horizon Telescope), uma colaboragao
global que conecta diversos radiotelescopios ao redor do planeta, formando, por meio da
técnica de interferometria, um telescopio virtual com resolugao angular equivalente a de

um telescépio do tamanho da Terra.

Com o objetivo de captar a radiagdo emitida por buracos negros supermassivos
relativamente préximos a Terra, como o buraco negro Sgr A* localizado no centro da Via
Lactea, o projeto obteve éxito ao observar o centro da galdxia Messier 87 (M87), onde se
localiza um buraco negro com aproximadamente 6,5 bilhoes de massas solares. Assim,
em 10 de abril de 2019, o projeto EHT revelou ao mundo a primeira imagem ja obtida
da sombra de um buraco negro, fornecendo uma observacao direta e sem precedentes da
regiao proxima ao horizonte de eventos, consolidando uma previsao tedrica feita mais de
um século antes, em 1916.(AKIYAMA et al., 2019)

E possivel afirmar com seguranca que este tema mantém um alto nivel de relevincia
académica hd mais de um século e continuard a ser um campo de intensa investigacao
nos proximos anos. As imagens obtidas em 2019, acompanhadas da expectativa por novas
observagoes em um futuro préximo, destacam o uso das métricas de Schwarzschild e Kerr
para a interpretagao da geometria do espaco-tempo ao redor dos buracos negros. Nesse
contexto, a exploracdo desses dados oferece um vasto campo de pesquisa em aberto, com

potenciais descobertas a serem realizadas.
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1 Objetivos

No ano de 2019, pouco apés a divulgacao da primeira imagem da sombra de um
buraco negro obtida pelo Event Horizon Telescope (EHT), foi publicado por Samuel E.
Gralla, Daniel E. Holz e Robert M. Wald o artigo Black Hole Shadows, Photon Rings,
and Lensing Rings. O trabalho apresenta uma andlise detalhada dos conceitos de shadow,
photon ring e lensing ring, classificando os fétons que compdem essas estruturas com base

em seus parametros de impacto, principalmente no contexto da métrica de Schwarzschild.

(GRALLA; HOLZ; WALD, 2019)

Tal publicacdo teve um impacto significativo ao chamar a atencao da comuni-
dade cientifica para possiveis interpretacoes equivocadas sombra observada na imagem
do EHT. Na métrica de Schwarzschild, fétons observados com parametro de impacto
b. =~ 5,2M (onde M representa a massa do buraco negro) sao aqueles que escaparam de
orbitas proximas a curva critica, regiao onde os fotons executam orbitas circulares ins-
taveis. Por esse motivo, é comum, em um modelo simplificado, associar o raio da curva

critica ao raio da regido escura (sombra) de um buraco negro.

O artigo, no entanto, analisa cenarios fisicos mais realistas e aponta que a regiao
escura observada nem sempre coincide exatamente com a curva critica. Isso se deve a
natureza da fonte de luz: na prética, a radiacao detectada é proveniente de um disco de
acrecao que envolve o buraco negro. Nesse contexto, o raio da regiao efetivamente escura
em geral discorda com o determinado pela curva critica, o que pode levar a erros na

estimativa da massa de buracos negros com base na observacao da sombra.

Tendo em vista esse contexto, a proposta do presente projeto consiste em explorar,
com base no artigo citado, esta visualizacao mais realista de um buraco negro para um
observador distante. O espaco considerado seréd o formulado pela métrica de Schwarzschild,
com o objetivo de entender como diferentes classes de fétons contribuem para a imagem
observada. O trabalho apresentara toda formulagao matematica e tedrica necessaria para
entender e realizar simulagoes semelhantes as apresentadas no artigo, explorando todas
as trajetorias possiveis para fotons nos arredores de buracos negros descarregados e nao

girantes.
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2 Fundamentacao Tedrica

Para fins deste documento, esta se¢cao aborda resumidamente apenas os requisitos
tedricos indispensaveis para a andlise de geodésicas do tipo nulo no espaco-tempo de
Schwarzschild.

2.1 Convencoes e comentarios preliminares.

Adota-se a convencao de assinatura da métrica espacialmente positiva, isto é,
(—,+,+,+). Utiliza-se a notagdo de somagao de Einstein, segundo a qual se assume
a soma implicita sobre indices repetidos em posi¢oes inferior e superior. Os indices la-
tinos i, J, k, . .. referem-se exclusivamente as componentes espaciais (variando de 1 a 3),
enquanto os indices gregos u,v, o, ... percorrem todas as coordenadas do espago-tempo
(de 0 a 3). Derivadas parciais sao eventualmente representadas de forma compacta como

0, ou 0", conforme a posicao do indice e a métrica utilizada.

Ao longo do texto, trabalha-se predominantemente com unidades naturais, nas
quais a velocidade da luz ¢ é igual a 1. Essa escolha simplifica diversas expressoes e
evidéncia a estrutura geométrica da teoria. No entanto, a constante gravitacional G sera
mantida explicita sempre que sua presenca for relevante, a fim de preservar a clareza fisica

de determinadas relagoes.

Este trabalho nao tem como objetivo desenvolver em profundidade os aspectos
formais do calculo tensorial, tampouco os métodos completos de manipulacao de tenso-
res. As operagoes algébricas e diferenciais envolvendo tensores serdo utilizadas quando
necessarias para o desenvolvimento logico dos argumentos, sendo apresentadas de forma
direta e sem demonstracoes detalhadas, exceto nos casos em que tal exposi¢ao se mostrar
essencial para a compreensao do problema tratado. Assume-se familiaridade prévia com

a notacao e as operagoes basicas da algebra tensorial e da relatividade geral.

2.2 Equacoes de Maxwell na relatividade especial.

Esta secao se baseia no desenvolvimento feito em Wald (WALD, 2010) e também
em Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

No contexto da Relatividade Especial, em que o espaco-tempo ¢ tratado como
uma entidade quadridimensional dotada de métrica pseudo-euclidiana, torna-se necessario
reformular diversas leis da fisica classica para que sejam manifestamente covariantes sob

transformacoes de Lorentz. Entre essas leis, destacam-se as equagoes de Maxwell, tanto
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por descreverem os fenomenos eletromagnéticos quanto por incorporarem, de maneira

natural, a estrutura relativistica do espago-tempo.

Na forma classica tridimensional, essas equacoes sao:

V-E=p 2.1
V-B=0 (2.2)
. 9B
E=-— 2
V x 5 (2.3)
L J0E -

Para expressar essas equacoes de forma compativel com a estrutura da relatividade,

introduz-se o tensor de campo eletromagnético F,,, um tensor antissimétrico de

na
segunda ordem, definido por:

v = , com F,, =—F,,.
g Ey, —By 0 B g g
FEys By —B 0

Esse tensor retine, em uma unica entidade, os campos elétrico e magnético. A
densidade de carga p e a densidade de corrente J também sao reunidas em um quadrivetor

corrente:

J' = (p, Iy, Iy, J2).

Com essas defini¢oes, duas das equacoes de Maxwell, aquelas que envolvem fontes,

podem ser condensadas na forma tensorial:

0, Fm = Jv, (2.5)

As equagoes restantes, que nao dependem diretamente da presenga de fontes (isto
é, as equagoes homogéneas), decorrem da antissimetria de F),, e podem ser expressas por

meio da identidade:

a[uFua] =0, (26)

onde os colchetes indicam antissimetrizacao sobre os indices.
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E importante destacar que a antissimetria do tensor F, w implica diretamente na
equacao de continuidade:
0,0, F" = 0,J" =0, (2.7)

garantindo, assim, a conservagao da carga elétrica. Além disso, a equagao da forca

de Lorentz pode ser reformulada utilizando o tensor F*:

A2z
dr?

q dx?
= Nye—F" —. 2.8
L m dr (2:8)

De forma anéloga ao quadrivetor corrente J*, define-se o quadripotencial A* como:

Ar = (¢7 AamAyaAz)a (29)

em que ¢ representa o potencial escalar, e A® as componentes do potencial vetor.

Em termos do quadripotencial, o tensor F),, pode ser escrito como:

F,., =0,A,—0,A, = 1°70,(0,A, —0,A,) = J,. (2.10)

Esta equacao é manifestamente invariante sob a transformacao de gauge:

Al = A+ 0, (2.11)

onde Y é um campo escalar arbitrario. Portanto, é possivel impor a condi¢ao de

gauge de Lorenz, definida por:

DOtp = —0"A, — A, =0. (2.12)

Substituindo essa condi¢ao na equacao 2.10, obtém-se:

00,4, = —J,. (2.13)

Considerando o caso sem fontes, J* = 0, busca-se uma soluc¢ao na forma de onda

plana:

Ay = O, (2.14)

onde C,, ¢ uma amplitude constante e S é a chamada fase. Sob o gauge de Lorenz,

9, A" =0 = C"9,5 = 0. (2.15)
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Além disso, ao substituir essa solu¢do na equacgao 2.13, obtém-se:

C“eis(ié?"&,S —0"50,5) =0, (2.16)
o que implica, por fim, nas seguintes condigoes:

99,5 =0 , (2.17)
9"S8,5 =0 . (2.18)

Essas condigoes serao essenciais posteriormente, para discutir geodésicas do tipo
nulo, pois o termo 0,5 é identificado como o vetor de onda, indicando a direcao de

propagacao do sinal.

2.3 Equacoes de Maxwell na relatividade geral.

Esta secao se baseia no desenvolvimento feito em Wald (WALD, 2010) e também
em Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

A abordagem mais direta e funcional, para generalizar leis da fisica formuladas na
relatividade especial, consiste em reescrever uma lei valida em espacos planos numa forma

tensorial, e atestar sua validade em espacgos curvos.

Para aplicar isto nas equagoes de Maxwell, substitui-se a derivada parcial, respon-

savel por termos nao tensoriais em transformagoes, pela derivada covariante:

Y, P = Jh (2.19)
V[UF;J,V] =0 (220)

O mesmo é feito na equacao 2.10, que define o tensor de for¢a do campo em termos

do quadripotencial:

Fu =V, A, —V,A,, (2.21)

Novamente, esta permanece invariante sob a transformacao A, = A, + Vb, com

1) sendo um escalar arbitrario. Substituindo essa definicdo na equacao 2.19, obtém-se:

V'F,, = V'V, A, — V'V, A,. (2.22)

Escolher 1) tal que:

V'V,ih = —VYA, = VYA, =0, (2.23)
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resulta em:

RO, A, — V'V, A, = J,, (2.24)

Ao comparar esse resultado com aquele obtido na geometria de Minkowski, a
presenca do tensor de Ricci torna evidente a curvatura do espaco-tempo. Caso fossem
apenas substituidas as derivadas parciais por covariantes em 2.13, o termo envolvendo o
tensor de Ricci nao surgiria, o que ressalta a necessidade de cautela na aplicacao desse

procedimento.

Uma forma eficaz de verificar a validade da generalizacao (além da confrontagao
com dados experimentais) é assegurar que a equacao obtida se reduza ao caso plano na
auséncia de curvatura. No caso da equacao 2.24, além de possuir esse limite, ela implica

a conservacao da corrente: V#.J, = 0, o que reforca sua consisténcia.

Considerando que de forma geral, a escala de variagao do campo eletromagnético
¢ muito menor que a da curvatura do espaco, é razoavel esperar uma solucao préxima
aquela obtida em espago plano, visto que localmente (na escala de variagdo do campo) o
espago-tempo se assemelha ao de Minkowski. Nessas condigoes, a solugdo tem o mesmo

formato da equagao 2.14:

A, = Ce™, (2.25)

Porém a amplitude C), nao ¢ constante, e varia lentamente em comparagao a

frequéncia da onda. Substituindo essa forma na equacgao 2.24, obtém-se:

R, Cy e +2ieV,Cpe'® + Ce®(iV'V, S8 — V'SV,.8) =0 (2.26)

Desprezando as derivadas de C), e o termo com o tensor de Ricci por serem pe-

quenos em relacao a VS, segue-se:

V'V,S =0 (2.27)
VYSV,S =0 (2.28)

A partir dos resultados desta aproximacao, conhecida como geometrical optics
approximation, é possivel retomar a discussao sobre a equacao da geodésica para curvas do
tipo nulo. Dado o comportamento da derivada covariante sobre escalares, tal aproximacgao

sugere que:

9"S9,S = 0, (2.29)
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é equacao valida inclusive em espacos curvos. Nessa expressao, identifica-se 9,5 =

k, como o vetor de onda, indicando a dire¢do de propagac¢ao de sinais eletromagnéticos.

Considerando a compatibilidade da derivada covariante com a métrica, tem-se:

V(g7 kok,) =0 = ¢°"k,V  k, = 0. (2.30)

Além disso, como a derivada covariante comuta quando aplicada a escalares,

V,V,S = V,V,5, (2.31)

segue-se diretamente que:

KV, k=0, (2.32)

Logo, esta aproximacao sugere que a luz percorre geodésicas do tipo nulo.

2.4 Linearizacao da gravidade
Esta sec@o se baseia no desenvolvimento feito em Carroll (CARROLL, 2019), e
também em Das (DAS, 2011), consultar essas fontes para mais detalhes.

Como a descrigdo newtoniana da gravidade apresenta bons resultados no limite nao
relativistico, é essencial que uma nova formulagdo da gravitagdo, baseada na geometria
do espago-tempo, recupere tal comportamento em condi¢des apropriadas. Esse regime de

validade ¢ denominado limite newtoniano, definido pelas seguintes condigoes:

» Os corpos envolvidos movem-se com velocidades baixas (v < ¢);
o O campo gravitacional é fraco;
o O campo gravitacional é estatico.

Considerando o parametro afim como o tempo proprio 7, a condi¢cao de baixas

velocidades implica:

dz? dt
—. 2.33
dr < dr ( )

do' < dt =
Aplicando esse limite a equacao geodésica, obtém-se:

2

— 0. (2.34)

" _
dr? t oo dr dr — dr?

dr

R dz? dx° d?at u dt
+ 1o
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Adicionalmente, considerando a definicao do simbolo de Christoffel e a condigao

de campo estatico, tem-se:

1
I = 59”0(80900 + Qo900 — Oxgoo)

1
= —59“0(90900- (2.35)

A condicao de campo gravitacional fraco permite representar a métrica como uma

pequena perturbagao da métrica de Minkowski (em sua forma canonica):

Guv = N + huu; (236)

com |h,,| < 1. Define-se, entdo, sua inversa como:

g =" — " = ¢"g,, = + O(h?), (2.37)

onde h*" = n"?ntrh

Substituindo esses resultados na equacao (2.34), obtém-se:

R dt )\’
2 =3 9hoo <d7> : (2.38)

ops € 0s termos de segunda ordem em h sao desprezados.

Para p = 0, a equacao se reduz a:

d*t dt
) =0 — e = constante. (2-39)

J& para as componentes espaciais (u = i), como nia = 53, a equacao resulta:

2r 1 dt\?

Essa equacao revela uma correspondéncia interessante ao se compara-la com a

equacao do potencial gravitacional ® da teoria classica:

Portanto, a nova teoria da gravitagao reproduz corretamente o limite newtoniano

quando consideradas as condigbes apropriadas. Este resultado implica, por fim, que:



Capitulo 2. Fundamentacio Teorica 19

2.5 Equacao de Einstein

Esta segao se baseia no desenvolvimento feito em Das (DAS, 2011), e também em
Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

E necessario formular uma equagao que relacione a geometria do espaco-tempo
com a distribuicao de matéria. Para isso, considera-se o caso classico da gravitagao: a

equacao de Poisson para o potencial gravitacional Newtoniano,

V20 = 4G, (2.43)

onde p representa a densidade de massa. Para aplicar o método discutido ante-
riormente, é preciso reescrever essa equagao de forma covariante e verificar sua validade
nesse novo contexto. O lado direito da equacao envolve a densidade de massa, indicando
que uma versao covariante deve conter o tensor energia-momento TH”. Além disso, a

linearizacao da gravidade permite escrever:

V2® = dmp — V3o = 4Ty, (2.44)

com Tyy = p interpretado como densidade de energia.

Esse resultado sugere que a equagao tensorial procurada deve conter derivadas da
métrica (até segunda ordem), sendo proporcional ao tensor energia-momento. Um tensor
construido a partir da métrica e de suas derivadas de primeira e segunda ordem ¢ o tensor

de curvatura de Riemann:

o _ o o o A o A
R = 8MFW—8,,FW+F /\FVP—FV)\FW. (2.45)

puv Iz

Para compatibilidade entre os indices, contrai-se esse tensor obtendo o tensor de

Ricci. A simetria dos tensores R, e T"” motiva a seguinte proposta inicial:

R™ = o™, (2.46)

De fato, essa foi a primeira equagao sugerida por Einstein. No entanto, a conser-
vacao da energia e do momento exige que V,R*" = 0, o que, em geral, nao se sustenta.
Um tensor, simétrico, construido com o tensor de Ricci e cuja divergéncia covariante é

nula é o tensor de Einstein:

1
G = Ry — §gw,R com V"G, =0. (2.47)
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Dessa forma, propde-se uma nova equacao para relacionar geometria com a maté-
ria:

G,u,u = OZT;W; (248)

restando determinar o fator de proporcionalidade « e verificar se essa equacao

reproduz a gravitagao Newtoniana no limite apropriado.

A partir da equacao 2.48, tem-se:

R=—al", = —aT, (2.49)

0 que permite reescrever 2.48 como:

1
R™ = o (T“” - QQ“VT) , (2.50)

uma forma mais conveniente para realizar a comparacao com a equacao de Poisson.

No limite Newtoniano, considerando um fluido composto por corpos massivos, em

baixa velocidade e com interacao interna desprezivel, utiliza-se o tensor energia-momento

da “poeira”:
T — pci;”: CS:. (2.51)
No referencial de repouso do fluido:
% =p,
T* =0,
T =g,T" =—(1+2®)p = p. (2.52)

Na tltima linha, assume-se o regime de perturbagoes fracas, |hoo| < 1. No mesmo

limite, o tensor de Riemann se reduz a:

R’ ~ 8,07 — 9,7 (2.53)

pHY wp’

visto que os termos quadraticos em I' sdo de ordem O?(h). A contragao fornece o

tensor de Ricei:

Ry, = 8,1, — 8,17

op*

(2.54)

Como apenas Ty # 0, considera-se:

ROO - (%Fgo - GOFZO. (255)
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O segundo termo se anula devido a hipdtese de campo estatico. Desenvolvendo o

primeiro termo:

1 .
Ry = 0; [QQZu(aogou + 0090 — 9ugoo)
1 ..
= —0; (292333'900)
1 .
= —582(91'900. (256>

Substituindo gog = —(1 + 2®), obtém-se:

Ry = 0'0;® = V?®. (2.57)
Considerando:
ROO — g(]ag()pRUp

= " 0% — 2n°" 1% + O*(h)| R,,
~ Roo, (258)

pode-se substituir o resultado 2.57 em 2.50, obtendo:

1
V20 =q <p — 5(1 - 2®)p>
a

~ —p. 2.59
5P (2.59)

Comparando com a equagao de Poisson 2.43, conclui-se que a = 87, e a equacao

2.48 torna-se:

G, = 8nGT,,, (2.60)
ou, equivalentemente,
1
R,, = 87G (TW - 2g,WT) . (2.61)

Ambas conhecidas como equagao de Einstein. Na auséncia de matéria (7}, = 0),
essa equagao reduz-se a:
R, =0, (2.62)

denominada equacao de Einstein no vacuo, que serd base para discussoes

posteriores.
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2.5.1 Constante cosmologica

O tensor de Einstein nao é o tnico construido a partir da métrica e de suas de-
rivadas que possui divergéncia covariante nula. E existente a liberdade de se realizar a

seguinte substituicao:

1
G — R — g™ (R4 A), (2.63)

em que A é uma constante. Essa modificacdo mantém a conservagao associada a

V., assim como as demais propriedades desejadas.

A constante A, chamada de constante cosmoloégica, tem relevancia histérica e
pode ser interpretada como uma forma de energia do vacuo, ou uma forga gravitacional
constante que atua uniformemente sobre a matéria. Foi introduzida originalmente por
Einstein, com o objetivo de descrever um universo estatico, em concordancia com as

observagoes astrondémicas disponiveis a época.

2.6 Solucdo de Schwarzschild.

Esta segao se baseia no desenvolvimento feito em Das (DAS, 2011), e também em
Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

Uma das aplicacbes mais diretas, e certamente mais influentes, da equacao de
Einstein estd na determinacao da geometria do espago-tempo ao redor de uma fonte
de massa esfericamente simétrica e estatica. Esta solucdo, obtida inicialmente por Karl

Schwarzschild, é fundamental para o estudo de buracos negros.

Ao considerar a equagao e a defini¢ao do tensor de curvatura, torna-se evidente que
se trata de uma equacao diferencial altamente complexa, cuja resolucao requer encontrar a
métrica g, satisfazendo uma série de condicoes nao lineares. Essa nao linearidade implica
que, em geral, nao se pode obter novas solugoes pela simples combinacao de solugoes

conhecidas, dificultando substancialmente o processo de resolucao.

No entanto, a imposi¢ao de simetrias deste caso, permite uma consideravel simpli-
ficacao do problema. Tais simetrias restringem significativamente a forma geral da métrica
admissivel, viabilizando a obtencao de uma solucao analitica. E esse o caminho trilhado

na derivagao da solugao de Schwarzschild, a qual sera explorada a seguir.

A forma mais direta de explorar as simetrias do problema considerado é por meio
do elemento de linha ds?. Dado que a fonte gravitacional é estdtica, os componentes da
métrica nao podem depender da coordenada temporal. Além disso, a simetria esférica

impoe que a unica dependéncia admissivel seja na coordenada radial r.
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Na geometria de Minkowski, expressa em coordenadas esféricas, o elemento de

linha é dado por:

ds® = —dt* + dr* + r*(d0* + sen®0 d¢?) (2.64)

No presente caso, observa-se uma estrutura semelhante. Termos lineares em dt
(como dtdz') nao devem aparecer, pois uma métrica estdtica deve ser invariante sob
reversdo temporal (t — —t). Da mesma forma, a simetria esférica exclui a presencga de
termos lineares em dfl e d¢, uma vez que o espago-tempo nao pode depender da direcao

angular. Assim, espera-se que a métrica assuma a forma:

ds* = —A(r)dt* + B(r)dr® + 1 [C(r)d6* + D(r)sen’0 d¢’] (2.65)

Considerando ds como um comprimento infinitesimal, pode-se impor restri¢oes
adicionais sobre os componentes angulares da métrica. Em um instante de tempo fixo
(dt = 0), no polo norte de uma casca esférica de raio r (dr = 0), tem-se que o arco

rdf = € leva a:

ds* = O(r)ée. (2.66)

Por outro lado, sobre a linha equatorial, onde § = 7/2 e df = 0, mantendo-se

também dt = dr = 0, um arco rd¢ = € leva a:

ds®> = D(r)e’. (2.67)

Contudo, devido a simetria esférica, ambos os comprimentos devem ser iguais, o

que implica C(r) = D(r), resultando na forma reduzida:
ds® = —A(r)dt* + B(r)dr® + C(r)r*(d6® +* 6 d¢?),
= —A(r)dt* + B(r)dr* + C(r)r* d*. (2.68)
E possivel realizar uma tltima simplificacdo: a funcéo C(r) pode ser absorvida

por uma redefini¢ao da coordenada radial, por meio da transformagao r — r' = /C(r)r.

Com isso, tem-se:

dr , com C'(r)=— (2.69)
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e a métrica assume a forma:

ds* = —A(r')dt* + B(r')(dr')? + (r')?d? (2.70)

Essa ¢ a chamada forma geral do elemento de linha de Schwarzschild, caracterizada
por duas fungdes desconhecidas A(r) e B(r). Redefinindo " — r, os componentes da

métrica podem ser identificados como:

goo = Gt = —A(T)
911 = Grr = B(r>
922 = Gog = r?

933 = Gop = 17sen*(0) (2.71)

Na regiao do espago-tempo onde nao ha matéria, ou seja, no vacuo, é possivel
determinar as fungoes A(r) e B(r) a partir da equagao de Einstein no vécuo:

R, =0 (2.72)

com a condigdo de contorno de que, no infinito, a métrica (2.70) deve tender
a métrica de Minkowski. Para isso, é necessario calcular os simbolos de Christoffel. A

seguir, apresentam-se apenas os componentes nao nulos:

=Th=523 + Th=ig5

F%z - _B7(n7’) ) F%2 - F§1 = 71,7

F%l = féi?) ) F?:& = Pgl = i;

I, = —7;22)9 , I3, = —senflcosb,

I3, =13, =cotd (2.73)

Com os simbolos acima, ¢ possivel calcular as componentes do tensor de Ricci R,

Considerando as equagdes Ry, Ri1 e Roo:

—0 (2.74)

A'(r)  A'(r) (A/(T) B’(T)) LA

2B(r) 4B(r) \ A(r) = B(r)

A'(r)  A'(r) (A'(r) [ B'(r)\ [ Br)
2A(r) 4A(r)< )* =0 (2.75)
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1 r Al(r)  B'(r)\ _
B<r>+2B<r><A<r> B<r>> =0 (276)

A combinacgao das duas primeiras equagoes, conforme abaixo,

B(r), ., 1(B(r) Al _
A(T) Ry—Ri1 =0 = . (B(T) + A(T)) 0, (277)

leva a relagao:

A'(r)B(r) + A(r)B'(r) =0 = A(r)B(r) = constante (2.78)

Aplicando a condigao assintética,

lim A(r) = lim B(r) =1 = A(r)B(r) =1, (2.79)
tem-se: 1
A(r) = 2.80
"= 553 (2.50)
Substituindo esse resultado na equacao de Rss, obtém-se:
d
Ar)y+rA'(r)=1 = o —(rA(r)) =1, (2.81)
cuja solucao é:
Ar) =1+ ; (2.82)

para alguma constante c. Como apenas trés das dez equagoes de (2.72) foram utili-
zadas, é necessario verificar que a solugao obtida satisfaz também as demais componentes

do tensor de Ricci.

Abaixo seguem as sete equagoes restantes, comecando pelo ultimo elemento da

diagonal:

B sen’d 5, B'(r) B 5 B
R33 = sen“0 — B0 + rsen 93(7“) =sen“f - Ry =0
0 (1 0
ng = % <T> — E(cot 9) 0 y

Riz = 0,19 — 0,17, + 19,y —T7, T =0,
Rig = 0,15, — ol + T3, — 7\ =0,
Rog = 0,13, — 0,17, + 19,1, — T30, =0 |
Rog = 0,19y — .17 +T9,T5y — T3\ 2y =0 |
Ray = 0,1 — 0519, + 9,13 — T3 T2, =0 .
(2.83)
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Conclui-se que a solucao é compativel com todas as dez equacoes, e portanto a

métrica é expressa na forma:

-1
ds? = — (1 + ;) di? + (1 + ;) dr? + r?d0? (2.84)

A processo de linearizagao da gravidade permite definir:

A solugao da teoria newtoniana para um dnico corpo orbitante dita ® = —GM/r,

logo a métrica, conhecida como solugao de Schwarzschild tem a forma final:

2GM 2GM\
d32:—<1— G )dt2—|—<1— G ) dr? + r2dQ?, (2.86)

T T

onde M é a massa do corpo “fonte” do campo gravitacional. Nota-se que esta

solugao respeita perfeitamente a condicao de contorno em r — oo.

2.6.1 Singularidades.

A métrica de Schwarzschild apresenta divergéncias aparentes nas posi¢oes r =
2GM e r = 0. O questionamento que isto levanta é se estas singularidades sdo consequén-
cias do sistema de coordenadas escolhido, ou se realmente se traduzem como pontos

singulares no espaco-tempo.

Para ilustrar esse tipo de questionamento, é 1itil considerar a métrica de Minkowski
escrita em coordenadas esféricas. Nessa representacio, a componente g% = r=2 da métrica,
inversa diverge em r = 0, embora seja um fato que esse ponto do espago é regular. Assim,
torna-se evidente que a simples divergéncia de componentes métricos nao é, por si s6, um

indicativo suficiente da presenca de uma singularidade fisica.

E, portanto, necessario dispor de uma ferramenta que permita identificar singulari-
dades que sejam independentes do sistema de coordenadas. Espera-se que uma verdadeira
singularidade do espaco-tempo esteja associada a presenca de curvatura infinita, o que

remete ao estudo do tensor de curvatura de Riemann R’ cujo papel é justamente

oy’
caracterizar a geometria local do espago-tempo.

Entretanto, avaliar diretamente os componentes de um tensor nao garante in-
variancia sob transformacoes de coordenadas. A solucao estd em considerar invariantes

escalares construidos a partir do tensor de Riemann, tais como:

R, R'R,, R“™R,pu, - (2.87)

Nz
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Se algum desses escalares divergir em certo ponto do espago-tempo, tal divergéncia
sera valida em qualquer sistema de coordenadas, caracterizando, portanto, uma singula-

ridade fisica (ou real).

No caso da métrica de Schwarzschild, o escalar dado por

48G*M*

0O v _
R Ryoy = =5

, (2.88)

diverge claramente em r = 0, evidenciando que esse ponto corresponde a uma verdadeira
singularidade do espaco-tempo. Por outro lado, nao ha nenhum escalar que denuncie uma
singularidade presente em r = 2G'M, indicando que a divergéncia observada nesta posicao

nao possui carater fisico, mas sim coordenado.

Essa interpretacao é reforcada pela existéncia de sistemas de coordenadas alterna-
tivos, nos quais a métrica é regular em r = 2GM, demonstrando que esse ponto é uma

secao bem definida do espago-tempo.

Ainda assim, é importante destacar que a métrica de Schwarzschild é uma solucgao
da equagao de Einstein no vacuo e, portanto, sua validade se restringe a regido exterior
a fonte gravitacional. A analise de r = 0, nesse contexto, é apenas formal, uma vez que a

solugao nao descreve adequadamente o interior do corpo que gera o campo gravitacional.

De maneira analoga, em muitos casos fisicos, o raio r = 2GM encontra-se no
interior do corpo material, tornando sua interpretacao inaplicavel. Contudo, existem casos
particulares, como os buracos negros, em que esse raio representa uma superficie com

significado geométrico e causal bem definido.

2.7 Geodésicas do tipo nulo no espaco-tempo de Schwarzschild.

Esta segao se baseia no desenvolvimento feito em Das (DAS, 2011), e também em
Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

As geodésicas do tipo nulo descrevem o movimento de particulas sem massa, como
fotons, em um dado espaco-tempo. No caso da métrica de Schwarzschild, essas trajeto-
rias sao fundamentais para a compreensao de fendmenos 6pticos associados a estrelas e
buracos negros, como lentes gravitacionais e sombras. Nesta secao, analisam-se algumas

propriedades dessas geodésicas.

2.7.1 Vetores de Killing

Considere uma métrica arbitraria, expressa como:

ds® = g, dztdz”. (2.89)
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Se, em uma determinada direcdo coordenada z° , a métrica for tal que:
O+ G = 0, (2.90)
entao o espago-tempo ¢ invariante sob transformagoes do tipo:

7 =17 +a . (2.91)

Tal transformacao caracteriza uma isometria, ou seja, uma transformacao que
preserva a métrica (e, portanto, os intervalos), resultando em consequéncias imediatas
para as equacoes de movimento. Para entender esse ponto, é 1til considerar a equacao da
geodésica para uma particula massiva, escrita na forma:

dx® _ dx”

—V,— =0. 2.92
dr 7 dr 0 (2.92)

Essa equacao pode ser reescrita de maneira mais compacta utilizando o quadrimo-

mento:
P°Vepu =0, (2.93)

No caso de fétons, uma forma equivalente é obtida ao se adotar um parametro
afim A\, tal que:
daxt

p— 2 2.94
P= (2.94)

conforme ja discutido anteriormente. Ao reescrever a equagao (2.93) de forma

explicita, tem-se:
P’ 0oy — p"Féup)\ = 0. (2.95)

O primeiro termo desta equagao representa a variagao de p, ao longo da curva

at(N):
dz® 0 dp
T0opp = ——=—(pu) = —=. 2.96
J& o segundo termo resulta em:
oA o 1 Ap
p Fa,up)\ =p 59 (aagup + augop - 6pgu0) D,
1
= ip"pp(&,gﬂp + OuGop — OpGpo);
1
= =070’ 0uGsp- (2.97)

2

Substituindo ambos os resultados na equacao (2.93), obtém-se:

1 dpy

TP _
5P P Oudop =~y (2.98)
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Portanto, se a métrica nao depende explicitamente de z? , ha conservacao do

quadrimomento na direcao correspondente, ou seja:

d
Op+ G = 0 = apg* =0. (2.99)

Sempre que a métrica for independente de uma coordenada, havera uma isometria
associada. No entanto, o reciproco nao é garantido pois podem existir mais isometrias do
que coordenadas. Além disso, certas representacoes coordenadas podem ocultar simetrias,

como no caso da métrica plana em coordenadas esféricas:

ds® = —dt* + dr* + r*d0* + r* sin*(0) d¢>. (2.100)

Assim, torna-se util uma formulagao covariante para identificar isometrias. Com

esta finalidade, para cada " tal que J,+g,, = 0, define-se o vetor:

K=0, = K'=34".. (2.101)

Esse vetor é o gerador infinitesimal da isometria associada. Nesse caso, a quanti-
dade:
por = K'p, = K,p* (2.102)

¢é conservada, pois se trata de um escalar ao longo da curva. De fato:

pvvy(Kﬂpu) = pl/&/(Kupu)

=0 )
~ N o
d
= — Py, 2.103
P (2.103)
de modo que:
d
P’V (Kup') =0 <= b = 0. (2.104)
E possivel expandir o lado esquerdo dessa condicao:
pVVV(Kup'u) = prMVVK/L + pVKuVVpu
=p'P'Vi Ky, (2.105)

onde foi usada a simetria de p”p*, e o fato de que p”V,p* = 0 para uma geodésica.

Esse resultado leva a formulacao da equagao de Killing:

V(VKH) =0 = p”V,,(Kup“) =0. (2.106)

Tal equacao define os chamados vetores de Killing — campos vetoriais que

geram isometrias do espago-tempo e asseguram a conservagao da quantidade K,p* ao
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longo da trajetéria da particula. No caso em que 0,+ seja um vetor de Killing, a equacao
reduz-se a:

d
VeKy=0 = —pe=0. (2.107)

Por fim, dado que vetores de Killing geram isometrias e cada isometria continua
corresponde a um vetor de Killing, hA um mapeamento bijetivo entre vetores de

Killing e isometrias do espacgo-tempo.

2.7.2 Aplicacao na métrica de Schwarzschild

Com base nas simetrias conhecidas da geometria de Schwarzschild, é possivel apli-
car o formalismo dos vetores de Killing para identificar, de forma explicita, grandezas
conservadas associadas ao movimento de particulas nesse espago-tempo. A construcgao
dessa métrica fundamenta-se em dois aspectos principais: a independéncia temporal

e a simetria esférica.

A métrica de Schwarzschild é dada por:

dsQ:—(l—QGM>dt2+( 26

~1
1— ) dr?® + r*(d6* + sin® 0 dp?). (2.108)

r r
A independéncia da métrica em relagao a coordenada temporal é evidente e garante
que 0y seja um vetor de Killing, o qual denotado por 7),. Esta simetria estd associada a

invariancia sob transla¢ées no tempo.

Outro vetor de Killing evidente é d5, denotado K, e associado & simetria rotacional
em torno do eixo z. Essa simetria traduz a invariancia sob rotagoes no plano azimutal.

Assim, tem-se:

: aogw/ =0,
.+ 030 = 0. (2.109)

Contudo, a simetria esférica implica que o espacgo é invariante sob rotacoes em
qualquer dire¢@o. Portanto, todas as componentes do momento angular, {L,, L,, L.}, sdo
conservadas. Essa propriedade garante que particulas em movimento nesse espago seguem
trajetérias em um plano fixo. Por conveniéncia, pode-se tomar esse plano como sendo o

equatorial:

H(A):g = Zizé:o. (2.110)

Por fim, as quantidades conservadas associadas aos vetores de Killing podem ser

extraidas a partir da relacao:

dh
P’V (Kp')=0 = KN% = constante. (2.111)
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Adotando a convengao (0 =t¢, 1 =7, 2 =60, 3 = ¢), os vetores de Killing nas

componentes da métrica de Schwarzschild sao:

K, =gu,(0s)" = K,=(0,0, 0, r*sin®0), (2.112)

2GM )

T, = gw(@) = T,= (—1+, 0,0, 0 (2.113)
T

Dessa forma, obtém-se duas quantidades conservadas ao longo das trajetorias das

particulas nesse espago-tempo:

=1, (2.114)

(1 — z(iM) t=k. (2.115)

Cabe observar que, embora a notagao utilizada seja mais apropriada para particu-
las sem massa (como os fétons), todo o desenvolvimento permanece valido para particulas

massivas, bastando ajustar a parametrizacao (A — 7, por exemplo).

2.7.3 Orbitas de fétons

Uma vez determinadas as quantidades conservadas, é possivel analisar diretamente
as trajetérias percorridas por fétons no entorno de uma dada fonte gravitacional. Consi-

derando que fotons obedecem a equagao da geodésica para um parametro afim A, tem-se:

dxt i dz? dxP

da da? dz? _ 2.11
e gy an (2.116)

o que, aliado as constantes conservadas k e [, fornece a equagao para a componente

w=r:

2 —rd? = 0. (2.117)

r —

—1 -2
(1 B QGM) . (1 B 2GM> GMT"2

r r 72 72

Vale lembrar que, para fétons, impoe-se a condicao ds? = 0, a qual, na métrica de

Schwarzschild, assume a forma:

-1
(1 - 2GM> £ — (1 - QGM) i —r?sin® 0% = 0. (2.118)
r T

Adotando a condigao 6 = /2, ja discutida anteriormente, essa equagao pode ser

reescrita como:
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-1
(1 - 2GM> i — (1 - 2GM> i —1%9? = 0

T T
12 -1 2
:><1_2GM>t‘_<1_2GM) LS
r 2 r ¢?
k2 r 2GMN\ " [(dr)’ 9
(1 ) 231%)12‘<1‘r> (i) ~r =
1 (dr\> 1 2GM K\
;$r4<d¢> +72<1_ ' )_<l> — 0. (2.119)

Observa-se que, nesse desenvolvimento, sao descartadas solu¢oes de queda radial,
uma vez que estas correspondem a ¢ = 0, representando fotons que se dirigem diretamente

a singularidade. Tais trajetorias nao serao consideradas nesta analise.

A equagao (2.119) é nao linear e de resolugdo complexa. Para facilitar sua andlise,

aplica-se a substituicdo u = r~!, obtendo:

du\ k\?

— (1 —-2GMu) —|~] =0. 2.12
<d¢> + u( GMu) <l> 0 (2.120)
Ao diferenciar essa equacao em relacao a ¢, obtém-se:

do \ d¢?

Logo, u(¢) satisfaz uma das seguintes equagoes:

+u— 3GMu2> =0. (2.121)

2
3:; —0. ou Uy seaul (2.122)

d¢?
A primeira condigao implica uma trajetéria com raio constante. Isso pode ser visto

ao observar:

du  dud\ -7
— = = =0. 2.123
dp  dide l ( )
Para uma oOrbita circular, impoem-se as condigoes r = # = 0. Substituindo tais

condic¢oes na equacgao da geodésica para a componente radial, obtém-se:

0
G =r¢* (2.124)

72
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Por outro lado, inserindo essas mesmas condicoes na equacao do vinculo ds? = 0,

chega-se a:

<1 — 261M> i2 = r2g?. (2.125)

Combinando essas duas expressoes, deduz-se:

(1 - 3GM> #=0. (2.126)
r

Como t = 0 ndo possui significado fisico (a particula ndo evoluiria temporalmente),
a Unica solucao valida é r = 3G M. Esse resultado indica que, na métrica de Schwarzs-
child, érbitas circulares de fotons s6 sao possiveis nesse raio. Embora esse valor ndo seja
fisicamente relevante para a maioria das estrelas (por estar em seu interior), ele se torna

crucial na descricao de buracos negros.
Retomando, a outra possibilidade para u(¢) é satisfazer a equagao:
d*u

40 +u = 3G Mu?. (2.127)

Dado que 3GM < 1 em muitas situagoes praticas, é conveniente tratar essa equa-

¢ao perturbativamente. Considera-se, portanto, a solugao homogénea:

d2
dd:; Yu=0 = u(p)=Asin(¢+0), (2.128)
com 0 uma fase arbitraria, a qual pode ser desconsiderada por simplicidade. Assume-

se entao a forma:

u(¢p) = Asin(d) + eus(9), (2.129)

com € = 3GM e uy(¢) representando a corre¢ao de primeira ordem. Substituindo

na equacao original e mantendo apenas os termos de primeira ordem em ¢, obtém-se:

d2u1 . 2
€ i + eu; = Aesin®(o). (2.130)

A solugao para essa equacgao é:
A2

ui(¢) = - <1 + ;cos(2¢)> : (2.131)
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e, portanto, a solu¢do aproximada para r é:

Ae

s A (sin(o) + 57+ L cos(20)) (2.132)

Para interpretar a constante A, basta considerar a solu¢do homogénea:

rsin(¢) = T (2.133)

No plano equatorial (§ = 7/2), a quantidade r sin(¢) representa a coordenada y da
trajetoria em coordenadas esféricas. Assim, essa equacao descreve uma linha reta paralela

ao eixo x, a uma altura fixa y = 1/A:

Figura 1 — Representacao da solu¢do homogénea. Fonte: Das (DAS, 2011).

Com essa figura, torna-se evidente que a solugdo homogénea descreve a trajetoria
de fétons nao influenciados pela curvatura gravitacional. A partir dessa interpretacao, a
constante A é convenientemente reescrita como A = 1/, e a solugdo assume a forma:
1 1 € €
-~ — (sin(qﬁ) +o—+— Cos(2<;5)) . (2.134)
r

To 27’0 6T0

Para fins de comparagao, apresenta-se a seguir uma figura gerada com base nessa
funcao. A curva em azul corresponde a solucao completa, enquanto a linha tracada repre-
senta a solugdo homogénea, tangente a curva. Os valores de €, ry e § foram ajustados com

fins didaticos:

Figura 2 — Curva resultante da solugdo aproximada para a trajetoria do foton.
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3 SolucOes exatas para trajetorias de fotons

no espaco de Schwarzschild

O capitulo anterior encerrou-se com uma primeira andlise das geodésicas do tipo
nulo na métrica de Schwarzschild. O desenvolvimento foi conduzido de forma mais simples,
primeiramente descartando solugdes sem momento angular e, ao final, utilizando métodos

perturbativos.

Este capitulo tem como objetivo a obtencao, de forma mais rigorosa, das solugoes
possiveis para a equagao diferencial (3.1). O desenvolvimento das solugoes apresentadas
a seguir é inspirado em S. Chandrasekhar (CHANDRASEKHAR; THORNE, 1985).

oM\ [ dt\’ oM\ " dr\? do\’
122 =) (1= 22 — 1 =r*=] =0. 1
L=2)) 05 () (&) e e
Anteriormente, as seguintes grandezas conservadas foram obtidas:

r’o =1, (3.2)
(1- 26M )i=k (3.3)

r

Com elas, é possivel reescrever a equagao (3.1) na forma:

(Z;Z)Q +u*(1 — 2Mu) — (;’“)2 = 0. (3.4)

onde foi realizada a substituicdo u = %, e G =1 foi aplicado.

3.1 Solucao radial

A fim de cumprir a lacuna deixada no capitulo anterior, sera aqui considerado o

caso em que (b = 0. A equagao (3.1) neste caso se torna:

dr
— = xk 3.5
d)\ ) ( )
Dado que:
. 2G M\ !
t:k:<1— (i ) : (3.6)

é possivel encontrar a seguinte solu¢do para o tempo do observador:

dr 2M r
—i(l—r>:>t—i—/r_2Mdr. (3.7)
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Por fim,

t==x{r+2Mllog(r —2M) - 1]+ C} (3.8)

— ['r—i—ZMlog (2;4—1” + L, (3.9)

Aqui se torna evidente que o tempo para o observador tende ao infinito conforme r — 2M.

Neste ponto, é proveitoso definir a variavel r,, tal que:

ry =1+ 2M log (7’_1) = t=4r, +C.. (3.10)
2M
Esta variavel possui os limites:
lim r, = —oco, lim r, = oo, (3.11)
r—2M r—00

e representa o espago “acessivel” r = (2M, +00) para a particula no referencial do

observador distante.

Por completude, a solugao r(A) é dada por:

r(A) = £kA +. (3.12)

Note que, de acordo com o tempo proprio, nao hé impedimento algum para a

particula cruzar r = 2M.

3.2 Orbitas criticas

Retornando a atencao para casos mais gerais, a equacao (3.4) é reescrita na forma:

AP 2 sy, a2t (3.13)
— | = u’—u'+ —= = f(u = —. .
do b? ’ l

Nota-se a definicao de b, chamado parametro de impacto. Definitivamente as
possiveis solugbes desta equagao estao relacionadas as raizes da fungao f(u), pois indicam
pontos de retorno para u(¢). Tomando uso das férmulas de Vieta, as raizes deste polinémio

sao tais que:

(A + U + Uz = m, (314)
—1

. . = - 3.15

U2 s = o e (3.15)

Isto indica necessariamente a presenca de uma raiz negativa, onde as outras 2
podem ser reais positivas ou complexo conjugadas. A primeira alternativa ainda pode ser

dividida em dois casos, onde as duas raizes positivas sao iguais ou distintas.
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Para um melhor entendimento, verifica-se a disposi¢cao das raizes graficamente:

(a) Caso 1 (b) Caso 2 (c) Caso 3

Figura 3 — Graficos da func¢ao f(u) para diferentes pardmetros de impacto.

Os casos 2 e 3 possuem uma analise mais direta, pois sdo os casos onde as raizes
nao negativas sao reais. O caso 2 retrata o caso onde as raizes coincidem, e o caso 3 retrata

0 caso onde as raizes sao distintas.

Tratando as raizes positivas como pontos de inflexdo na trajetoria, ja é possivel
concluir que no caso 3, duas orbitas sdo matematicamente possiveis. A primeira permanece
no intervalo 0 < u < sy, e a segunda no intervalo uz < u, dado que f(u) ndo pode ser

negativo.

A solugao para o caso 2 resulta numa trajetoria circular instdavel, a mesma obtida
no capitulo anterior, e portanto é considerada especial entre as demais. O caso 1 é menos
trivial e discuti-lo sem antes desenvolver a equacgao diferencial ndao é de grande proveito,
mas o que se pode dizer é que o intervalo de u para possiveis solucoes de interesse abrange

toda a reta R..

3.21 Caso?2

Dada a solucao especial que surge deste caso, é proveitoso comecar a analise bus-

cando duas raizes positivas coincidentes. Em termos de suas raizes, tem-se f(u) na forma:

flu) =2M(u —uy)(u — ug)(u — us). (3.16)
Dado que us = us,

flu) = (u—us)’q(u) = f'(u) = 2(u — uz)q(u) + (u— u2)’q'(u), (3.17)

conclui-se que no caso de raiz dupla, de forma geral, f(us) = f'(uz) = 0. Neste
caso especifico:

f'(u) =6Mu* —2u=0 = u=(3M)"". (3.18)
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Substituindo este valor em f(u), obtém-se:

2 11
FABM) = s = gt =0 = be=3V3 (3.19)

O parametro de impacto b. para esta solucao é destacado como parametro de

impacto critico. Ao substituir b = b. nas férmulas de Vieta, tem-se:

—1 1

= 3N

E a equacao diferencial se torna:

du\’
— | =2Mu® — : 21
<d¢> u’ —u + STIVE (3.21)
E possivel integrar esta equacao diferencial,
1 du
¢ = / (3.22)
V2M V' (y—1/3M)y/(u+1/6M)

= ¢y — 2tanh ™! (\/W\/m) . (3.23)

Assim é obtida a solugao para u(¢), na forma:

1 1

u() = gy tanh? L (6 — do) — - (3.24)

Para que u(0) = 0, tém-se os seguintes valores de ¢y:

Posr = +2tanh™* <\}§> (3.25)

u(¢)
u(¢)

o
1.0
1 0.5
0.0
) 2 4 6 8 10 )

(a) para ¢o (b) para ¢g—

Figura 4 — Solugao para ¢+, com M =1
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E evidente que a escolha com significado fisico corresponde a ¢y = ¢o_. Os graficos

para u(¢) e r(¢) seguem abaixo:

u(¢)

90°

Figura 5 — Grafico em coordenadas polares para u(¢) e r(¢)

Logo, a solugao exata mostra como fotons com parametro de impacto critico b = b,
sdo capturados na érbita circular em r = 3M (nos graficos acima, M = 1), assim como

demonstrado no capitulo anterior.

3.2.1.1 Sobre uy < u

A solucao encontrada por meio da integragao da equacao diferencial relata a histo-
ria de uma particula confinada no intervalo ro < r < oo. Porém, o grafico 3b nao impede

a existéncia de uma solugao no intervalo us < u (0 <7 < rg).

Uma substituicao que expressa esse dominio para u é dada por:

1 1 27
= - < 2
u 3M+2Mtan 5 (0<~y<m) (3.26)

Ao aplicar esta substituicao na equacgao diferencial, obtém-se:

du\’ 1 \?2 v v [dv\? Y\ 1 v
- tan? —sect L [ =L ] = <1 t 2> tan® —. 2
(dgb) <2M) Mg (dgb) MY FTTER (3:27)

Simplificar e integrar esta equacao, resulta em ¢(7):

(Z;f — sin’ % = ¢(y) =2log [tan (Z)] +C. (3.28)

Ao aplicar esta relagdo na substitui¢ao (3.26), obtém-se finalmente a solugao u(¢):

o—C
e2(4=0) = tan% — u= i : ‘

531t Ao (3.29)
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Para C' = 0, esta solucao é tal que:

. 1 2e? )
o <3M T M - 1)?) =co = Jnpr=>0. (3:30)
assim como,
1 2¢? 1
li = = i = 3M. 3.31
s <3M M - 1)2> SM oo (3.31)

Conclui-se que esta solucao é o “par” previsto pelo grafico 3b, descrevendo um

foton com origem na singularidade, capturado na orbita circular em r = 3M.

De fato, graficamente, esta solugdo tem esse comportamento:

Figura 6 — Grafico em coordenadas polares para u(¢) e r(¢).

3.2.2 Caso 3

Busca-se agora a solucao correspondente ao grafico 3¢, com duas raizes positivas e
distintas. Ao relembrar as relagoes 3.15, é possivel escrever as 3 raizes de f(u) na seguinte

forma:

P—2M-Q 1 P—2M+Q

TP BT TP

aip iz (3.32)

Uy =

Ela imediatamente satisfaz a relacao de soma, com () sendo uma constante a

determinar. Além disso, a relagdo u; < us < uz permanece, resultando em:

S 1 _P-2M+Q
s = U2 p AMP

— P-6M+@Q >0, (3.34)

(3.33)
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e7
1 P—-2M-Q
Ug > U] — F AMP (335)
— P—6M—-Q<0 3.36
= |Q| > |P —6M]|, (3.37)

Nota-se que esta configuracao é especialmente intuitiva para a orbita confinada

em 0 < u < ug, na qual 7, = P seria o “periélio”. Ao escrever f(u) na forma:

P—2M — | P—2M
P2—(2M —Q)? P—2M - P—2M)?—Q?
:2Mu3—u2+u[ 8(MP2 9 5D Q]—( SM])Dg < (3.39)

e comparar com a expressao (3.13), obtém-se a seguinte relagao para Q:

[P2—(2M—Q)2 ) P—2M—Q] =0 = Q*=(P—2M)(P+6M).  (3.40)

8M P? 2P?
E para b,
1 Q*—(P-2M)*> (P—-2M)(P+6M)— (P —2M)>?
— = (3.41)
b2 8M P3 8M P3
P3
=\ = 42
= b Y (3.42)

Dada a inequagao (3.37), a definigdo de () tem uma importante consequéncia:

Q* > (P —6M)? (3.43)
= (P —2M)(P+6M) > (P —6M)? (3.44)
= P > 3M. (3.45)

Pensando na érbita respectiva ao intervalo 0 < u < uy, o ponto mais préximo

da singularidade esta além do raio definido para trajetoria circular.

A dependéncia entre b e P, vista graficamente, torna evidente que o ponto para
P = 3M é tal que b = b.. Logo, o caso de duas raizes positivas distintas é o caso para
b > b..
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6.4 4
6.2 4
6.0 4
5.8 4
5.6 1
5.4 4 \
5.2

25 3.0 35 4.0 45 5.0

Figura 7 — Dependéncia entre b e o parametro P.

3.2.2.1 Sobre 0 <u < uy

E possivel reparametrizar v neste intervalo por meio da substituigao:

u— ]13 = — @ _SZ;GM) (14 cosX). (3.46)

Com esta escolha de variavel, verifica-se diretamente que u(X = 7) = 1/P. Ja no

limite inferior, correspondente a u = 0, a condigdo sobre X = X, resulta em

Q—P+2M
- m———— 3.47
cos Y Q—P—|—6M+ ( )
0 — P+2M
g2 @ P2 (3.48)

2 Q—-P+6M

Para determinar de forma mais precisa o intervalo de variacao de X, é 1til analisar

o comportamento grafico de u(X):

u(x)

15 2.0 25 3.0 35 4.0 a5 5.0
X

Figura 8 — u(x) para P =4M e M = 1.
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Observa-se, conforme discutido anteriormente, que u(X = 7) = 1/P. Mais im-
portante ainda, nota-se que u permanece confinado no intervalo 0 < uw < wuy para
Xoo <X <271 — Xoo

Substituindo em (3.13), apds simplificagoes algébricas sequenciais, obtém-se:

dx\*  Q Q-P+6M _ ,x
L) == 7 = 4
<d¢> 2 < 20 sin” 5 (3.49)
- g (1 — k2 sin? ;C) , (3.50)
Foi entao introduzido o parametro
—P+6M
k2 = Q—+6 (3.51)

2Q

A solugao desta equagao diferencial é dada por

6= 2\/2 [K(k) - F(’Q< k:) ] (3.52)

em que F'(¢, k) denota a integral eliptica incompleta de primeira espécie e

K(k) = F(g k) (3.53)
é a integral eliptica completa de primeira espécie (GRADSHTEYN; RYZHIK, 2014). Os

limites foram escolhidos de modo que ¢ =0a u=1/P.

No limite u — 0 (isto é, r — o), tem-se:

boo = 2 S[K(ls)—F(";’,k)], (3.54)

(3.55)

Q- P+2M\"?
Q—P+6M

Xoo = 2arcsin (

Em posse desta solucao, é instrutivo investigar o comportamento de ¢, no li-
mite P — 3M, o qual corresponde a b — b.. Observa-se que, nas integrais elipticas, a

dependéncia em P aparece apenas no parametro k, para o qual:

. [Q-P+6M _
Plg?r,le_Plgz?M T_l' (3:56)

Para F'(Xe, k), k =1 é definido e tal que:

X X0 dx’ 1 V3+1
F(°°,1):/ = Zlog | ——— . 3.57
2 o V1—sin®X 2 g<\/§—1> (3.57)
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Para a integral K (k) sabe-se que ocorre uma divergéncia no limite k& — 1. Assim,

considera-se uma pequena variagdo em torno do raio critico, escrevendo
P=(3+M, (3.58)

com § < 1, de modo a buscar uma aproximagao assintotica.

Partindo da defini¢ao

Q = /(P —2M)(P +6M), (3.59)
expande-se em série para d pequeno:

Q= 3M+26M+O(52). (3.60)

Dessa forma, o parametro eliptico satisfaz

Q—P+6M 9 4
P=x - — k~1——-0. 3.61
20Q) 9 ( )
E conveniente entdo introduzir
2 _ o 4
kK“=1-—k"= =9, (3.62)

9

onde k' é chamado de complemento do médulo eliptico.

No regime k' — 0, utiliza-se a aproximacao assintética bem conhecida para a

integral eliptica completa de primeira espécie:

4 1
K(k) =~ log 7= log 6 — 5 log 0. (3.63)

Juntando todos os resultados anteriores, obtém-se:

(3.64)

64\/_<\/§_1)] L ‘/352.

Pl—lf:]&aM%ONi1 [ 2(v/3 +1)2 T 9%

E possivel associar este resultado a variagdo do parametro de impacto:

Py [ M33+0) V3.

Nota-se que a corre¢do de primeira ordem em ¢ para b é nula. Definindo

§b = ‘fM 62, (3.66)

tem-se finalmente

lim gbOONfl

Jim [64\/_(\/3_ b ] Log 20 (3.67)

oV r12 | 2 °M
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A seguir apresenta-se a comparagao grafica entre a aproximagao obtida e a expres-

sao exata de ¢u:

Deflexao da luz: ¢«(b) Vs Puaprox(b)

2.51 — ¢.(b)
i ¢mapmx(b)

2.0+

or2n

1.0+

5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 2.0

Figura 9 — Deflexao da luz em fungao do pardmetro de impacto.

Este grafico, com ¢ = 0 no periélio, indica, para cada b, a deflexao total da luz

até o ponto de retorno em u = u,.

Observa-se uma forte concordancia na vizinhanca de b ~ b, (P ~ 3M). Além disso,
mesmo afastando-se deste regime, a discrepancia entre as duas expressoes permanece
pequena. Por fim, ambas as expressoes concordam no aspecto fundamental: a deflexao

torna-se infinita no parametro de impacto critico, correspondente a orbita circular.

Pode-se, portanto, a partir da solu¢ao de ¢, obter r(¢) de forma a visualizar mais

intuitivamente a trajetoria do foton e confirmar a deflexdo até o periélio em r = P.

r(¢)

90°

Figura 10 — Trajetéria do féton para P = 3M + 1074, M =1 .



Capitulo 3. Solugédes exatas para trajetorias de fotons no espago de Schwarzschild

46

Observando a trajetéria para além do ponto de retorno (lembrando que X, < X <

21 — X ), tem-se:

r(¢)

180°

270°

(a) P=10M, M =1
rg)

20°

180°

270°

(b) P=B+107YM, M =1

Figura 11 — Trajetéria do féton além de r = P.
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3.2.2.2 Sobre u > us

Resta agora considerar uma solu¢ao confinada no intervalo [ug, +00), a qual cor-
responde a trajetérias que permanecem entre a singularidade » = 0 e um ponto maximo

r3. Com isto em mente, propoe-se a seguinte substituicao:

1 Q+P—6M X
u—P—l— P sec” 5. (3.68)

Esta substituicao apresenta os seguintes limites:

 Q+P-2M
>l{lg%)u = AP = us, (3.69)
lim u = co. (3.70)

X—m

Neste caso, o intervalo de variagao para X é definido trivialmente como 0 < X < 7.

E aplicada a substituicio acima & equacéo (3.13), apés simplificagoes obtém-se:

x\*  Q Q—P+6M . ,X
() =2 (-5 ), )
= g (1 — k?sin? >2<) : (3.72)

Neste formato, fica evidente que a solugdo é novamente expressa em termos de

integrais elipticas. Escolhendo ¢(0) = 0, tem-se:

¢ = 2\/§F(§, k:) : (3.73)

Desta solu¢do obtém-se a relacdo r(¢), que descreve trajetérias iniciadas em wug
e direcionadas para a singularidade. Tais trajetorias estao representadas, em dois casos

distintos, na figura 12.

3.2.3 Casol

Antes de qualquer andlise mais detalhada, recorda-se que o Caso 1 é caracteri-
zado pela presenca de uma raiz negativa (u; < 0) e de duas raizes complexo-conjugadas

(ug,us € C). Recorda-se também que elas devem satisfazer as relagoes:

L

2M
—1
2M1?

Uy + Ug + Uz = (374)

Uy - U - U3z =

(3.75)
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r(¢)

a0°

180°

270°

(a) P=(3+107HM, M =1
r(¢)

a0°

180°

(b) P=5M, M =1

Figura 12 — Trajetorias no intervalo [ug, +00).
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Definindo de forma geral uy/3 = a & ic, tem-se:
Uyl = = = —— — 2 (3.76)
Uq U2 'LL5—2M U1—2M Qa. .

Deste resultado surge a restricao a > 1/4M, dado que u; deve ser negativo. Com

essas expressoes para as raizes, é possivel escrever o polindémio f(u) na forma:

f(u)—2M<u—2]1\4+2a>(u—a—ic)(u—a+ic), (3.77)
=2M (u — 2]1\4 + 2a> [(u—a)® + . (3.78)

Comparar esta expressao com a equacao (3.13) leva as seguintes equagoes:

Mc* 4 a—3Ma*> =0, (3.79)
a? 4+ c* —4Ma® — 4Mac® = 75 (3.80)
Da primeira equagao é obtido um novo limite sobre a:
L N (3.81)
B M 3M° ‘
Ao substituir a expressao de ¢? na segunda equacao, tem-se:
4a? a 1
8a® — — = 3.82
CTM T oE T e (3.82)
dado que a > ?%M,
b < 3vV3M. (3.83)

Conclui-se que o caso 1 abrange fotons com parametro de impacto inferior ao
critico b.. Para confinar a varidvel na reta R, , como indicado no grafico 3a, propoe-se a

substituicao:

u:a—l—ctan%. (3.84)

onde o limite inferior (v = 0) é dado por:

a+ ctan %o =0 = 7, = —2arctan g, (3.85)
c

e o intervalo para ~ neste caso também é trivialmente definido como v, < v < 7.
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Esta substituigao leva a equagao (3.13) a:

de

Neste ponto, propoe-se uma segunda substituicao:

(‘h) =2[(6Ma — 1)+ (6Ma — 1) cosy + 2Mecsin~] . (3.86)

1
Sinzw = m{A — 2MCSin’}/ — (6Ma — 1) COS’}/}, A = \/(6]\/[& — 1)2 + 4M2C2
(3.87)
Para v = m obtém-se sin?¢ = 1. J4 para v = 7, tem-se:
1 6Ma® — 2Mc%a + ¢ — a?
.2
w=—1A ) 3.88
sin”y A+6Ma—1 + 2+ a? (3.:88)
Considerando que ¢ = 3a? — a/M, essa expressio se reduz a
A+1
.92
=——. 3.89
S e = A 60— 1 (3.89)
E instrutivo analisar graficamente o comportamento desta substitui¢ao no intervalo
Yoo SV ST

1.0+

0.8

0.6

sin?(y)

0.4

0.2

0.0

B e ————————— e T

T T T T T
-1.00 0.00 1.00 2.00 3.00 4.00
Y

-2.00

Figura 13 — sin?¢ em funcdo de 7.

Observa-se que o zero de sin? ocorre dentro do intervalo considerado, entre 7.

e v = m. Conclui-se, portanto, que v deve satisfazer

Yoo SU ST, e <0 (3.90)
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De forma mais exata, o zero de sin®1) é:

2Mc
Yo = arctan [6]\4@—1} . (3.91)
Com esta substitui¢ao, a equagao (3.86) se torna:
dp\* 2 2 , A+6Ma-—1
<dq§> =A[l — k*sin*¢)|, k*= oA (3.92)
Para ¢(m/2) = 0, a solucao ¢ dada na forma:
1
o) = LK) = FW, k)], Yo < <3 (3.93)

Antes de visualizar graficamente a solugao r(¢), é didatico fazer algumas observa-

¢oes sobre a equacao (3.89). Foi constatado o limite a > 1/3M, e este é tal que,

lim sin®¢ = 1. (3.94)

a—1/3M

Graficamente,

T
1041
0.8 1

0.6 4

sin?(y)

I
0.4 1

]
0.2 1

0.01

Figura 14 — sin®¢ para a = (1/3+107Y)M, M =1.

Isto implica que o limite inferior do intervalo para 1 é tal que:

. T
Sl Ve = T (3.95)

Além disso, é fato que ¥, < 0 para todo a € (1/3M,00), pois Vs < 0 neste
intervalo. Este limite para a também se traduz de forma importante na equagao (3.80)

para b:
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Figura 15 — pardmetro de impacto em funcao de a, M = 1.
Com o grafico, se torna evidente que,

lim b = b,. (3.96)

a—1/3M

Na trajetéria r(¢) portanto, espera-se que estes casos se traduzam em maiores

deflexdes. De fato:

r(¢)

180°

270"

Figura 16 — r(¢) para a = (1/3+107%)M, M =1
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A figura 17 evidencia por outro lado, que a deflexdo cai rapidamente em compa-

ragdo com o crescimento de a:

r(¢)

180°

270°
Figura 17 — r(¢) paraa = M, M =1

E vélido portanto fazer, analogamente ao caso 3, a analise da deflexdo total ¢o,
do infinito a singularidade, onde:

Boo = —

= < K () = P, )], (397)

B | /w/z do ) /woo do 3.98)
- [48M2a2 — 16Ma +1]V/4 |Jo (1 —k2sin?(9)) Jo (1 —k2sin?(9))]"
onde ¢ = 3a? — a/M foi utilizado. Tem-se que k e A sdo tais que:

lim k*=1, lim AY?=1 (3.99)
a—1/3M a—1/3M

Aliando isto a equagao (3.96), é possivel obter novamente uma aproximagao para
a deflexao total na regiao b ~ b.:
K (k) — F(¢s, k)

TR ] (3100
— Jim 6o = Jim K (k) = lim P, k) (3.101)

Novamente, dada a singularidade presente em K (k) para k = 1, busca-se a resposta

por meio de uma pequena variagao:

1
= — 1. 102
a 3M+5’ 0 << (3.102)
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Para k2, tem-se:

1 6Ma —1
K= 4 ¢ o (3.103)
2 2[48M2a2 —16Ma + 1]
—> K?|a—@ary-146 = 1 — 0M + O*(6). (3.104)
Para b,
b= (16Ma* — a2+ L) 3.105
- (1oMa* —sa*+ ) (3.105)
27 3/2
= bla=@an-146 = be — ( 2> SM?. (3.106)
Deste resultado tem-se a relacao:
260
0=———>, O0b=0b.—0. 3.107
(27)3/2M2’ ( )
Novamente definindo a varidvel k2 = 1 — k2, ressurge a aproximacao:
4 /
K(k) =~ log o (k" — 0). (3.108)
Logo,
1 M
K(k)|a=@3m)-145 ~ 5 log (8(27)3/266> (3.109)

Antes de considerar o limite para F(¢, k), é necessario relembrar 3.95. Com isto

em mente, conclui-se que:

. . m .
im P k) =l F (=2 k) = = lim K (b), (3.110)
logo,
Lim doo = lim K (k) — alﬁl}%M F(¢oo, k) (3.111)
M
= log (8(27)3/25()> : (3.112)

O grafico 18 apresenta a comparacao grafica entre a aproximagao obtida e o resul-
tado exato 3.98:
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Deflexdo da luz: ¢(b) Vs ¢aprox(b)

— ¢.(b)
254 === Paprox(b)

05

0.0

Figura 18 — Comparacao entre solucao exata e aproximacao para ¢..

Em oposicao a analise do caso onde b > b,, a presente aproximagcao diverge rapi-

damente. Para uma aproximacao de k em segunda ordem de §, onde

25b
E?=1—-Kk>=0M —12M?*, 6= ——— 11

tem-se:

Deflexdo da luz: ¢(b) vs daprox(b)

— ¢.(b)
=== Gaprox(b)

05

0.0

Figura 19 — Segunda comparacao entre solugao exata e aproximacgao para ¢,

Tal aproximagao apresenta uma concordancia mais significativa nas proximidades

de b..
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4 Simulacoes de Buracos Negros

De posse das solucoes para todas as situagoes possiveis, o ultimo passo relevante
é simular cenarios didaticos e simplificados, a fim de obter uma intuicdo maior sobre a

aparéncia de buracos negros.

No contexto deste capitulo, todas as solugoes foram ajustadas para que o angulo
inicial da trajetéria (¢ = 0) ocorra no observador distante (infinito). Como exemplo

pratico, a solu¢ao do caso 3 para esse ponto inicial assume a forma:

¢ =2 S(F—F<X°°k>> (4.1)

2

()
90°

Figura 20 — Caso 3 para ¢ = 0 no infinito.

A visualizagdo ampliada deixa clara a coincidéncia entre o raio aparente e o para-

metro de impacto, que, neste caso, é b~ 5.196 M.
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4.1 Casos Didaticos

As primeiras e mais simples simulacoes possiveis retratam casos irreais, porém
importantes do ponto de vista didatico. Sao situagoes em que a singularidade possui uma
iluminacao de fundo: uma fonte luminosa de intensidade homogénea, posicionada no

infinito.

4.1.1 Casca Esférica

Esta situagao possui uma descri¢ao simples: considera-se um observador distante
da singularidade, e uma tela luminosa, de emissao homogénea e formato de casca esférica,

envolvendo ambos.

Para simular a visdo que o observador distante tem da singularidade, utiliza-se
um “rastreamento reverso” do féton, em que a trajetéria do féton comeca no olho do
observador e termina na tela esférica, ou entao cai na singularidade. Fétons que encontram
a tela no infinito (isto é, escapam da singularidade) sao plotados com seu respectivo
raio aparente (b) e a intensidade de emissdo da tela (isotrépica). Fétons capturados pela

singularidade nao sao plotados.

10.0

7.5 4

5.0

2.5

0.0 4§

—2.5

—5.0

—-75

-10

.0 T T T
-100 -75 -5.0 =25 0.0 25 5.0 7.5 10.0

Figura 21 — Visualizagao para fonte isotropica de luz.

Como esperado, a regiao negra da imagem corresponde a todos os fétons cujo
parametro de impacto € inferior a b.. Esses percorrem trajetérias que vao de encontro a

singularidade.
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4.1.2 Tela Infinita

Neste caso, o observador distante encara diretamente a singularidade, e atras dela,
no infinito, encontra-se uma tela de proporcoes infinitas e emissao homogénea. Em todas
as simulacoes deste capitulo, aplica-se a metodologia do “rastreamento reverso”, e neste
caso, para que o féton seja plotado, nao é suficiente apenas que ele escape da singularidade,

mas também que, ao escapar para o infinito, o faca na direcao da tela.

44

Figura 22 — Visualizacao para tela infinita de fundo.

Um resultado importante emerge desta simulacdo: a regiao negra se estende até
r ~ 6.17M. Entretanto, dentro dessa area, um pequeno anel luminoso se destaca, formado
por fétons com b ~ 5.20M. A interpretacao é direta: entre b. e b = 6.17M, apenas esses

foétons escapam da singularidade e seguem na direcao da tela de fundo.

4.2 Toy Model com Disco de Acrecao

Os casos relatados anteriormente sao importantes para a construgao intuitiva, mas
sao extremamente simplificados e irreais. De forma mais realista, as fontes de luminosidade
que determinam a sombra do buraco negro sao os chamados discos de acrecao, aglomerados
de matéria que orbitam a singularidade.

Tudo o que sera discutido nesta secao baseia-se no contexto representado na Fi-

44 2
polo norte”,

gura 23. O observador distante encara a singularidade diretamente pelo
enquanto o disco de acrecao esta situado no plano equatorial. Apesar dessas considera-
¢Oes mais realistas, este ainda é um toy model, pois tanto o buraco negro quanto o disco

de acrecao sao nao girantes e eletricamente neutros.
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OBSERVER

ACCRETION DISK

FACE-ON VIEW

Figura 23 — Configuracao das simulacoes: “Face-On View”.

No presente contexto, o disco é também opticamente fino, no sentido de que os
fétons atravessam-no livremente, sem absorc¢ao (como no caso em que a matéria do disco é
gasosa). A intensidade de emissao do disco é angularmente simétrica, dependendo apenas

da distancia até a singularidade.

4.2.1 Intensidade de emissdo - I(r)

O desenvolvimento apresentado nesta segdo é inspirado em Thorne (THORNE;
MISNER; WHEELER, 2000).

Considera-se uma nuvem de particulas idénticas, seguindo suas respectivas traje-
torias geodésicas no espago tempo, esta nuvem é tal que nao ha colis6es internas. Em

um certo ponto Py desta trajetoria, é considerado um observador local lorentziano.

Este observador, determina um volume V,, em torno de si mesmo (da origem) e um

intervalo de momento linear V,, também centrado nele mesmo (referencial de repouso),

V, = Ap"Ap?Ap*,  V, = AzAyAz (4.2)

Por fim, o observador contabiliza quantas (N) particulas da nuvem estao presentes
dentro de V, e V,. Nota-se que as particulas possuem mesma massa, e portanto a energia

estd fixada pelo intervalo V},, pois:

P’ =\/m? + ppi (4.3)

Por fim, define-se o volume no espaco de fase na seguinte forma:

V =V, V, = Ap"Ap’ Ap* AxAyAz (4.4)
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Definitivamente dois observadores com velocidades relativas em geral nao concor-
dam sobre V, ou V), porém o volume no espaco de fase ¢ especial por ser invariante por

transformacoes de Lorentz.

Para provar esta afirmacdo, considera-se um segundo observador O, tal que os

volumes ocupados por essas N particulas idénticas sao:

Ve = ATAGAZ, (4.5)
Vs = Ap"Ap? Ap?, (4.6)

Por simplicidade, a velocidade relativa [ entre os dois esta na direcao Z, e portanto,

pela contragao de Lorentz:

Vi = (1 - BHY2V,. (4.7)

Para encontrar a relagao entre Vj e V), é necessario contabilizar o jacobiano:

op'
= J= | 4.8
o (18)
Dada a direcao do movimento relativo,
0
p
V%? ) V;H (49)
p
e dado que p° = m,
Vo= (1= 57", (4.10)
logo,
V =V,V,=VzV5 (4.11)

é provada assim a invariancia por transformagoes de Lorentz do volume no espaco
de fase ocupado por N particulas. Sendo N e V' quantidades invariantes, a seguinte funcao

de distribuicao também é:

f==. (4.12)

Essa funcao representa a densidade de particulas por unidade de volume no espaco
de fase. No contexto da relatividade geral, é desejavel atestar o comportamento desta

funcao ao longo da trajetoria geodésica.

Para isto, em um determinado ponto desta geodésica (parametrizada pelo para-
metro afim \) define-se um sistema de coordenadas normal, e no seu entorno a fungao de

distribuicdo f. Todo observador local concorda sobre f, como provado.
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Neste ponto:

av dv
— x —, V=Ap"ApAp*AxAyAz. (4.13)
d\ dr

Nota-se que para este observador, nao ha forcas pelo principio de equivaléncia de

Einstein:

a" _

=0. 4.14
dr ( )

Com isto, é considerada a determinada configuracao no espaco de fase:

AP,
1 2
D ~
AP, i >
3 4
1 |
Ax

Figura 24 — Configuracao inicial no espago de fase.

nesta configuracgao, sao escolhidos dois pontos tais que:

= (—Ax/?,p;) ) (Ax/va;:)> (415>

de mesmo momento p!, > 0. Se v, = pl. /m, apds certo o7, tem-se:

/ /
— (—Az/2+ 2670y, (Aw/2 + Bor ), (4.16)
m m
Nota-se portanto que a distancia espacial entre os pontos se mantém:
P, P,
Ax/2 — (—Ax/2) = Az /2 + =201 — (—Az/Q + x57> = Ax. (4.17)
m m
Dada a condigao (4.14), a evolucao da figura 24 ¢ ilustrada na figura 25. Logo,

conclui-se que a area se deforma ao longo do tempo, mas sua magnitude permanece

Sempre a mesima.:

A = AzAp,, (4.18)
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conclui-se que:

dA  d(AzAp,)

e S V) 4.19
dr dr ( )
Este argumento ¢ valido sobre todos os pontos da geodésica, e vale da mesma

forma para AyAp, e AzAp,

1=0 [ =8¢

Figura 25 — Configuracao no espago de fase apos 67. Fonte: Thorne (THORNE; MISNER;
WHEELER, 2000).

Como consequéncia, para todos os pontos da geodésica:

av.dv
= n*ar (4.20)
d
x d—(AprpyApZAxAyAz) = 0. (4.21)
T

Diretamente disto, conclui-se para a funcao de distribuicao:

O

isto é vélido para todos os pontos da geodésica. O resultado exposto em (4.22)
¢ uma prova simplificada da conhecida equacao de Boltzmann para sistemas sem
colisao. Todo o argumento construido pode ser considerado para particulas com veloci-
dades tao proximas de ¢ = 1 quanto se queira. No escopo deste documento, isto é dado

como prova suficiente sobre sua validade para fétons.

Tratando de fotons, é de pouca utilidade falar diretamente de f, e portanto é
construida a nogao de intensidade especifica (/,). Considera-se um observador, com

um telescopio que capta fétons num determinado angulo sélido €2 ilustrado na figura 26.
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Todos os que cruzam a area num intervalo 6t ocupam o volume Adt, e este é definido como
V,. Para simplificar a visualizacao de V), a ser definido, os fétons sao ilustrados “saindo

do olho” (ou seja, direcdo do momento linear invertido) na figura 27.

e

Observador

Figura 26 — Observador captando fétons no angulo sélido 2

Pela ilustragdo é evidente que dV, = |p|*dpdS, logo o volume de momento linear é

definido como V}, = |p|*?ApAQ.

li(p

lp4]p| 42l

= (pUYR Ap® AR ‘ﬁl-.'a.'alﬂ;'.i!‘”

J-space volume ¥,

Figura 27 — Volume do momento linear, com direcao invertida. Fonte: Thorne (THORNE;
MISNER; WHEELER, 2000).

Definindo como 0 N o numero de fétons que cruzam a area A em dt, a funcao de

distribuicao f toma a forma:

ON
=i (4.23)
zVp
ON
= A0iPApAQ (4.24)
ON
= i AP A (p° = hv) (4.25)
N
0 (4.26)

T BStARAVAQ
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Define-se portanto I,, como o fluxo de energia por unidade de area, por unidade
de tempo, por unidade de frequéncia, por unidade de dngulo sélido que cruza a area A

do telescépio, desta formas:

hAvoN I

_ _ p3lv
L’_AétAyAQ = f hy3. (4.27)

Uma conclusdo imediata desta defini¢do ¢ que a quantidade I, /v® é conservada
ao longo da trajetoria. A integragdo de I, sobre a faixa de frequéncia emitida d&

portanto a intensidade de emissao,

I(r) = / Ldv. (4.28)

4.2.2 Redshift gravitacional

Definida a intensidade de emissdo, é importante discutir rapidamente o fator de
redshift gravitacional (g), antes de qualquer avango. Relembra-se que, no presente con-
texto, é utilizada a métrica de Schwarzschild. Neste espago sao definidos dois eventos: um
deles como observador no infinito e o segundo como o emissor de fétons em um determi-

nado r.

Sendo ambos estaticos, suas quadrivelocidades sao:

Tem

2M
Uobs = (1707070)7 Uemn = ( 1— 707070> . (429)

Dado que a variagdo do tempo préprio é inversamente proporcional a frequéncia

da luz, no referencial do observador:

dTobs X 3 (430)

obs
logo,
ATem Vobs 2M

d = - Vobs = 9 Vem, G = 11— :
Tobs Vem Tem

(4.31)

Portanto, a frequéncia observada é sempre menor do que a emitida. Neste caso, a
conservagao da quantidade I, /v permite afirmar que a intensidade especifica observada

I & igual a g®Ie™.

A intensidade de emissdo observada I°% ¢é obtida ao integrar sobre dv,s, logo:

o = / 1% dug, = g I(r). (4.32)
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4.2.3 Simulacdo do toy model

Bem estabelecido o conceito de intensidade de emissao, é possivel discutir a logica
e os pontos fundamentais que permeiam o contexto da simulagao do modelo com disco de

acrecao.

Assim como nos primeiros dois modelos, a trajetéria dos fétons é acompanhada de
modo que a marca ¢ = 0 se encontra no observador distante. A deflexdo total, portanto,
¢ determinada quando o féton escapa para o infinito ou é capturado pela singularidade.

No caso de trajetoria circular, a deflexao torna-se infinita.

O agente principal da andlise nesse novo contexto é o que se define como funcao de
transferéncia r,,(b). Ao acompanhar a trajetoria de um féton capturado pelo observador
com raio aparente b, e determinar a deflexao total deste utilizando as solu¢oes apresentadas
no capitulo anterior, obtém-se o nimero m de vezes em que esse féton cruza o plano do

disco de acrecao.

Por construgao, a funcao r,,(b) representa o raio da m-ésima intersecgao do féton
com o plano do disco de acrecao, fora do horizonte de eventos. Esta funcdo determina
a aparéncia de cada féton para o respectivo parametro de impacto b, pois, para cada raio

aparente b, o observador enxerga a seguinte intensidade:

— I”0b)=>g"1(r)] . (4.33)
m 7m (b)

O motivo da soma ¢ simples: para este raio aparente, a intensidade observada é

dada pelos fétons emitidos diretamente (m = 1), pelos fétons que tém origem na face

oposta do disco (m = 2), pelos que completam uma volta completa (m = 3) e assim

sucessivamente, até que o féton escape para o infinito ou r,, < 2M.

Fungao de transferéncia r m(b)

20.0 — m=1

17.5 4

15.0 4

12.5

r_m/M

10.0

7.5 4
5.0

Figura 28 — r,,(b) para m = 1,2, 3.
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Embora a construcao seja valida para valores arbitrarios de m, o niimero de fétons
com parametros de impacto correspondentes a m > 4 é desprezivel. A Figura 28 mostra
a distribuicao no espectro de b das ordens m = 1,2,3 das fungoes de transferéncia. A
primeira ordem (emissao direta) apresenta distribuigao ampla ao longo dos raios aparentes,
enquanto a terceira ordem ¢é fortemente concentrada em b ~ 5.19M. Observa-se também

que a emissao observada possui um limite inferior em b ~ 2.8 M.

Com todas as ferramentas necessarias estabelecidas, torna-se possivel compreender
e implementar a simulagdo do toy model proposto. A seguir, diversos discos de acrecao

sao modelados pelas intensidades de emissao 1°™(r) representadas nos graficos.

As intensidades observadas sao plotadas de acordo com sua dependéncia no raio
aparente, produzindo 7°*(b). Em seguida, a intensidade observada é convertida em um
gradiente de cores (adaptado para cada caso) variando de branco, amarelo, laranja e
vermelho até preto absoluto. Tanto as intensidades emitidas quanto as observadas sao

normalizadas pelos respectivos valores maximos, 17, e 1%

max max*

10 —\ —— Intensidade emitida normalizada - J«(r)

Intensidade observada normalizada - Io(b)

10 — emitida normalizada - le(r)
Intensidade observada normalizada - Io(b)

Figura 29 — Resultados da simulagio de intensidade observada (1°%(b)/I%% ) e as respec-

tivas imagens da sombra do buraco negro para diferentes configuragoes de

discos de acregao, determinados por (I¢"(r)/I",).
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1.0 4 —— Intensidade emitida - /<(r)
Intensidade observada - /5(b)
0.8 1
0.6 1
0.4 1
0.2 q
0.0
4 6 8 10 12 14
oM
1.0 4 —— Intensidade emitida - /(r)
Intensidade observada - /,(b)
0.8 4
0.6
0.4 1
0.2
\\
0.0 4
4 6 8 10 12 14
M
1.0 —— Intensidade emitida - /(1)
Intensidade observada - /,(b)
0.8 4
0.6
0.4 1
0.2
0.0 q —
4 6 8 10 12 14
M

Figura 30 — Resultados da simulagdo de intensidade observada (1°°°(b)/1%% ) e as respec-

tivas imagens da sombra do buraco negro para diferentes configuracoes de

discos de acrecao, determinados por (I¢™(r)/ISm ).
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10 —— Intensidade emitida normalizada - le(r)
Intensidade observada normalizada - I5(b)

I

10 —— Intensidade emitida normalizada - le(r)
Intensidade observada normalizada - I5(b)

i)

Figura 31 — Resultados da simulacio de intensidade observada (I°%(b)/I%% ) e as respec-

tivas imagens da sombra do buraco negro para diferentes configuracoes de
discos de acrecao, determinados por (I¢"(r)/I¢" ).

max

Em todas as simulagoes, observa-se um pico pronunciado em b =~ 5.19M. Este
pico corresponde a fétons que executam miiltiplas érbitas ao redor da singularidade, na
vizinhanga da érbita circular critica em b, e caracteriza o anel de fé6tons. A regiao central
escura, prevista no grafico 28, é reproduzida de forma consistente em todas as imagens,
com limite aproximadamente em b ~ 2.8 M. Por fim, nota-se que o aspecto observacional

¢ significantemente alterado mesmo para leves modificagoes na configuracao do disco.
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Conclusao

Os resultados obtidos a partir da formulagao matemética das geodésicas nulas
no espago-tempo de Schwarzschild tornam clara a divisao visual dos fétons com base em
seus parametros de impacto (b). Essa classificagdo é essencial para a interpretagio

correta das imagens de buracos negros, como as produzidas pelo projeto EHT.

As simulagoes do toy model com disco de acre¢ao evidenciam que assumir a regiao
negra central da sombra de um buraco negro como delimitada pelo raio aparente critico
(b, = 5.2M) é um erro categoérico e deve ser evitado (GRALLA; HOLZ; WALD, 2019).
Embora a orbita circular critica em r = 3M (que corresponde ao raio aparente b.) seja
fundamental, as simulacdes mostram que o limite da regiao efetivamente escura, na pre-
senca do disco, se estende até um raio aparente menor, aproximadamente b ~ 2.8M. A
intensidade observada apresenta um pico pronunciado nessa vizinhanca do raio critico,
caracterizando o anel de fétons, o que reforca a complexidade do contorno da sombra
e a necessidade de se considerar a fonte de luz, mais diretamente a configuracao do disco

de acregao, para a estimativa precisa dos parametros do buraco negro.
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