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Resumo
Este trabalho tem como objetivo analisar, no contexto da Relatividade Geral, a forma-
ção da sombra de buracos negros a partir do estudo de geodésicas nulas na métrica de
Schwarzschild. A motivação central surge do artigo Black Hole Shadows, Photon Rings,
and Lensing Rings (2019), de Gralla, Holz e Wald, que propõe uma revisão conceitual
da interpretação da região escura observada em imagens como as produzidas pelo projeto
Event Horizon Telescope (EHT). O estudo indica que a sombra observada por um observa-
dor distante pode não coincidir exatamente com a curva crítica de fótons, principalmente
em contextos físicos mais realistas onde há a presença de um disco de acreção.

Para alcançar os objetivos propostos, o trabalho é estruturado em duas etapas. A pri-
meira consiste na fundamentação teórica dos principais conceitos da Relatividade Geral,
incluindo a solução de Schwarzschild e os aspectos geométricos associados a espaços-tempo
curvos. A segunda etapa é dedicada à análise detalhada das trajetórias de fótons em torno
de buracos negros clássicos, relacionando seus parâmetros de impacto às diferentes estru-
turas observadas. A análise visa contribuir para aumentar a capacidade de interpretar
a imagem de buracos negros, destacando a importância das fontes de luz no contorno
observado e da métrica utilizada na modelagem.

Palavras-chave: Buracos negros; Relatividade Geral; Sombra de buraco negro; Métrica
de Schwarzschild; Métrica de Kerr; Geodésicas nulas; Parâmetro de impacto; Anel de
fótons; Disco de acreção.
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Introdução

Previstos teoricamente como soluções das equações de campo de Einstein, os bura-
cos negros são regiões do espaço-tempo marcadas por campos gravitacionais tão intensos
que nada, nem mesmo a luz, consegue escapar de sua atração a partir de uma certa dis-
tância. Essa fronteira é popularmente conhecida como o horizonte de eventos. Buracos
negros descritos pelas soluções de vácuo da Relatividade Geral (RG) podem ser descritos
como “singularidades físicas”, pontos onde a densidade tende ao infinito, resultantes da
concentração de grandes quantidades de massa em volumes extremamente reduzidos.

Inicialmente tratados como soluções matemáticas exóticas, esses objetos surgem a
partir da métrica proposta por Karl Schwarzschild em 1916, que descreve o espaço-tempo
ao redor de corpos esfericamente simétricos e não rotativos:

𝑑𝑠2 = −
(︂

1 − 2𝐺𝑀
𝑟

)︂
𝑑𝑡2 +

(︂
1 − 2𝐺𝑀

𝑟

)︂−1
𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2 𝜃 𝑑𝜑2 (1)

Onde {𝑟, 𝜃, 𝜑} representam, respectivamente, as coordenadas radial, polar e azi-
mutal; 𝐺 é a constante gravitacional; e 𝑀 denota a massa do corpo central.

Nesta métrica, existe uma indefinição em 𝑟 = 2𝐺𝑀 , inicialmente acompanhada
de termos da época, como “corpo invisível” ou “gravidade infinita”. O próprio Einstein,
acompanhado de outros físicos de renome como Arthur Eddington, interpretou a solução
proposta como um artefato matemático, algo separado da realidade física, onde 𝑟 = 2𝐺𝑀
seria apenas uma singularidade de coordenadas (EINSTEIN, 1939; EDDINGTON, 1923).

Estudos posteriores de físicos como Georges Lemaître mostraram ser possível con-
tornar a singularidade da métrica de Schwarzschild por meio de uma mudança de coorde-
nadas, indicando que a região do problema inicial correspondia a uma fronteira geométrica
e não a uma divergência física (LEMAîTRE, 1931). Outro resultado importante foi ob-
tido em 1931 por Subrahmanyan Chandrasekhar, que, no artigo The Maximum Mass of
Ideal White Dwarfs, demonstrou que uma anã branca possui uma massa limite, depen-
dente da composição estelar. Acima dessa massa crítica, o colapso gravitacional torna-se
inevitável, levando à formação de estrelas de nêutrons ou de objetos ainda mais densos
(CHANDRASEKHAR, 1931).

Poucos anos depois, em 1939, o artigo On Continued Gravitational Contraction,
publicado por J. Robert Oppenheimer e Hartland Snyder, corroborou a descoberta de
Chandrasekhar ao demonstrar que, ao esgotar seu combustível nuclear, uma estrela sufi-
cientemente massiva pode colapsar sob seu próprio campo gravitacional, dando origem a
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uma região do espaço-tempo com velocidade de escape superior à luminar (OPPENHEI-
MER; SNYDER, 1939).

Contudo, somente a partir da década de 1960 que o conceito de “buraco negro”
passou a ser aceito como uma entidade física real, popularizando-se rapidamente na co-
munidade científica. Esse período contou com os trabalhos de Stephen Hawking e Roger
Penrose, que apresentaram os teoremas da singularidade, argumentando que a formação
de certas entidades físicas não era apenas possível, mas inevitável. Mais precisamente, a
primeira formulação destes teoremas foi dada por Penrose (PENROSE, 1965), sendo Haw-
king responsável por complementá-la ao fim da década (HAWKING, 1967). Oficialmente,
a formalização do conceito foi dada no artigo Introducing the Black Hole, publicado por
Remo Ruffini e John Archibald Wheeler na Physics Today em janeiro de 1971 (RUFFINI;
WHEELER, 1971).

Apesar dos sólidos fundamentos teóricos sobre a formação e a inevitabilidade dos
buracos negros, apenas recentemente foram obtidas confirmações observacionais diretas.
Entre essas evidências, destaca-se o estudo do movimento das estrelas na região central
da Via Láctea, com ênfase especial nas observações das órbitas das estrelas próximas a
Sagittarius A*, uma intensa fonte de emissão em rádio. Os astrônomos Reinhard Genzel
e Andrea Ghez, cujos trabalhos se desenvolveram de forma independente, receberam o
Prêmio Nobel de Física de 2020 pelas contribuições fundamentais a esse campo (GHEZ
et al., 2008; GENZEL; EISENHAUER; GILLESSEN, 2010).

O estudo empregou técnicas avançadas de óptica adaptativa, que permitiram a
observação detalhada dos movimentos dessas estrelas. Os resultados indicaram que elas
orbitam em torno de uma grande quantidade de massa invisível e extremamente concen-
trada, levando à conclusão inevitável da existência de um buraco negro supermassivo no
núcleo da galáxia.

Além disso, à medida que os avanços nas observações astronômicas se consolida-
vam, outros projetos estavam em desenvolvimento para detectar outro fenômeno previsto
pela teoria da Relatividade Geral: as ondas gravitacionais. Essas ondas podem ser gera-
das por diversos eventos cósmicos, como fusões de estrelas de nêutrons ou buracos negros
(sistemas binários, em geral), supernovas, entre outros.

Em 14 de Setembro de 2015, o projeto LIGO (Laser Interferometer Gravitational-
Wave Observatory), ativo desde 2002, registrou seu primeiro sinal após 13 anos de fun-
cionamento. Utilizando o observatório LIGO, a colaboração científica conseguiu detectar
pela primeira vez as ondas gravitacionais, um fenômeno previsto por Einstein há um
século. O sinal histórico foi denominado GW150914, e a ausência de contrapartida ele-
tromagnética sugeriu que o sinal foi gerado pela fusão de um sistema binário de buracos
negros de massa estelar, ocorrida a cerca de 1.3 bilhão de anos-luz da Terra. Essa detecção,
premiada com o Nobel de Física em 2017, não apenas confirmou a existência das ondas
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gravitacionais, mas também forneceu a primeira prova direta da existência dos buracos
negros como predito pela relatividade geral (ABBOTT; COLLABORATION; COLLA-
BORATION), 2016).

Enquanto os resultados do LIGO representavam um marco na detecção de buracos
negros por meio de ondas gravitacionais, outro avanço histórico, desta vez diretamente ob-
servacional, foi alcançado: a obtenção da primeira imagem da sombra de um buraco negro.
Esse feito foi alcançado pelo projeto EHT (Event Horizon Telescope), uma colaboração
global que conecta diversos radiotelescópios ao redor do planeta, formando, por meio da
técnica de interferometria, um telescópio virtual com resolução angular equivalente à de
um telescópio do tamanho da Terra.

Com o objetivo de captar a radiação emitida por buracos negros supermassivos
relativamente próximos à Terra, como o buraco negro Sgr A* localizado no centro da Via
Láctea, o projeto obteve êxito ao observar o centro da galáxia Messier 87 (M87), onde se
localiza um buraco negro com aproximadamente 6,5 bilhões de massas solares. Assim,
em 10 de abril de 2019, o projeto EHT revelou ao mundo a primeira imagem já obtida
da sombra de um buraco negro, fornecendo uma observação direta e sem precedentes da
região próxima ao horizonte de eventos, consolidando uma previsão teórica feita mais de
um século antes, em 1916.(AKIYAMA et al., 2019)

É possível afirmar com segurança que este tema mantém um alto nível de relevância
acadêmica há mais de um século e continuará a ser um campo de intensa investigação
nos próximos anos. As imagens obtidas em 2019, acompanhadas da expectativa por novas
observações em um futuro próximo, destacam o uso das métricas de Schwarzschild e Kerr
para a interpretação da geometria do espaço-tempo ao redor dos buracos negros. Nesse
contexto, a exploração desses dados oferece um vasto campo de pesquisa em aberto, com
potenciais descobertas a serem realizadas.
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1 Objetivos

No ano de 2019, pouco após a divulgação da primeira imagem da sombra de um
buraco negro obtida pelo Event Horizon Telescope (EHT), foi publicado por Samuel E.
Gralla, Daniel E. Holz e Robert M. Wald o artigo Black Hole Shadows, Photon Rings,
and Lensing Rings. O trabalho apresenta uma análise detalhada dos conceitos de shadow,
photon ring e lensing ring, classificando os fótons que compõem essas estruturas com base
em seus parâmetros de impacto, principalmente no contexto da métrica de Schwarzschild.
(GRALLA; HOLZ; WALD, 2019)

Tal publicação teve um impacto significativo ao chamar a atenção da comuni-
dade científica para possíveis interpretações equivocadas sombra observada na imagem
do EHT. Na métrica de Schwarzschild, fótons observados com parâmetro de impacto
𝑏𝑐 ≈ 5,2𝑀 (onde 𝑀 representa a massa do buraco negro) são aqueles que escaparam de
órbitas próximas à curva crítica, região onde os fótons executam órbitas circulares ins-
táveis. Por esse motivo, é comum, em um modelo simplificado, associar o raio da curva
crítica ao raio da região escura (sombra) de um buraco negro.

O artigo, no entanto, analisa cenários físicos mais realistas e aponta que a região
escura observada nem sempre coincide exatamente com a curva crítica. Isso se deve à
natureza da fonte de luz: na prática, a radiação detectada é proveniente de um disco de
acreção que envolve o buraco negro. Nesse contexto, o raio da região efetivamente escura
em geral discorda com o determinado pela curva crítica, o que pode levar a erros na
estimativa da massa de buracos negros com base na observação da sombra.

Tendo em vista esse contexto, a proposta do presente projeto consiste em explorar,
com base no artigo citado, esta visualização mais realista de um buraco negro para um
observador distante. O espaço considerado será o formulado pela métrica de Schwarzschild,
com o objetivo de entender como diferentes classes de fótons contribuem para a imagem
observada. O trabalho apresentará toda formulação matemática e teórica necessária para
entender e realizar simulações semelhantes as apresentadas no artigo, explorando todas
as trajetórias possíveis para fótons nos arredores de buracos negros descarregados e não
girantes.
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2 Fundamentação Teórica

Para fins deste documento, esta seção aborda resumidamente apenas os requisitos
teóricos indispensáveis para a análise de geodésicas do tipo nulo no espaço-tempo de
Schwarzschild.

2.1 Convenções e comentários preliminares.
Adota-se a convenção de assinatura da métrica espacialmente positiva, isto é,

(−,+,+,+). Utiliza-se a notação de somação de Einstein, segundo a qual se assume
a soma implícita sobre índices repetidos em posições inferior e superior. Os índices la-
tinos 𝑖, 𝑗, 𝑘, . . . referem-se exclusivamente às componentes espaciais (variando de 1 a 3),
enquanto os índices gregos 𝜇, 𝜈, 𝜎, . . . percorrem todas as coordenadas do espaço-tempo
(de 0 a 3). Derivadas parciais são eventualmente representadas de forma compacta como
𝜕𝜇 ou 𝜕𝜇, conforme a posição do índice e a métrica utilizada.

Ao longo do texto, trabalha-se predominantemente com unidades naturais, nas
quais a velocidade da luz 𝑐 é igual a 1. Essa escolha simplifica diversas expressões e
evidência a estrutura geométrica da teoria. No entanto, a constante gravitacional 𝐺 será
mantida explícita sempre que sua presença for relevante, a fim de preservar a clareza física
de determinadas relações.

Este trabalho não tem como objetivo desenvolver em profundidade os aspectos
formais do cálculo tensorial, tampouco os métodos completos de manipulação de tenso-
res. As operações algébricas e diferenciais envolvendo tensores serão utilizadas quando
necessárias para o desenvolvimento lógico dos argumentos, sendo apresentadas de forma
direta e sem demonstrações detalhadas, exceto nos casos em que tal exposição se mostrar
essencial para a compreensão do problema tratado. Assume-se familiaridade prévia com
a notação e as operações básicas da álgebra tensorial e da relatividade geral.

2.2 Equações de Maxwell na relatividade especial.
Esta seção se baseia no desenvolvimento feito em Wald (WALD, 2010) e também

em Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

No contexto da Relatividade Especial, em que o espaço-tempo é tratado como
uma entidade quadridimensional dotada de métrica pseudo-euclidiana, torna-se necessário
reformular diversas leis da física clássica para que sejam manifestamente covariantes sob
transformações de Lorentz. Entre essas leis, destacam-se as equações de Maxwell, tanto
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por descreverem os fenômenos eletromagnéticos quanto por incorporarem, de maneira
natural, a estrutura relativística do espaço-tempo.

Na forma clássica tridimensional, essas equações são:

∇ · 𝐸⃗ = 𝜌 (2.1)
∇ · 𝐵⃗ = 0 (2.2)

∇ × 𝐸⃗ = −𝜕𝐵⃗

𝜕𝑡
(2.3)

∇ × 𝐵⃗ = 𝜕𝐸⃗

𝜕𝑡
+ 𝐽 (2.4)

Para expressar essas equações de forma compatível com a estrutura da relatividade,
introduz-se o tensor de campo eletromagnético 𝐹𝜇𝜈 , um tensor antissimétrico de
segunda ordem, definido por:

𝐹𝜇𝜈 ≡

⎛⎜⎜⎜⎜⎜⎜⎝
0 −𝐸1 −𝐸2 −𝐸3

𝐸1 0 𝐵3 −𝐵2

𝐸2 −𝐵3 0 𝐵1

𝐸3 𝐵2 −𝐵1 0

⎞⎟⎟⎟⎟⎟⎟⎠ , com 𝐹𝜇𝜈 = −𝐹𝜈𝜇.

Esse tensor reúne, em uma única entidade, os campos elétrico e magnético. A
densidade de carga 𝜌 e a densidade de corrente 𝐽 também são reunidas em um quadrivetor
corrente:

𝐽𝜇 = (𝜌, 𝐽𝑥, 𝐽𝑦, 𝐽𝑧).

Com essas definições, duas das equações de Maxwell, aquelas que envolvem fontes,
podem ser condensadas na forma tensorial:

𝜕𝜈𝐹
𝜇𝜈 = 𝐽𝜇. (2.5)

As equações restantes, que não dependem diretamente da presença de fontes (isto
é, as equações homogêneas), decorrem da antissimetria de 𝐹𝜇𝜈 e podem ser expressas por
meio da identidade:

𝜕[𝜇𝐹𝜈𝜎] = 0, (2.6)

onde os colchetes indicam antissimetrização sobre os índices.
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É importante destacar que a antissimetria do tensor 𝐹𝜇𝜈 implica diretamente na
equação de continuidade:

𝜕𝜇𝜕𝜈𝐹
𝜇𝜈 = 𝜕𝜇𝐽

𝜇 = 0, (2.7)

garantindo, assim, a conservação da carga elétrica. Além disso, a equação da força
de Lorentz pode ser reformulada utilizando o tensor 𝐹 𝜇𝜈 :

𝑑2𝑥𝜇

𝑑𝜏 2 = 𝜂𝜈𝜎
𝑞

𝑚
𝐹 𝜇𝜈 𝑑𝑥

𝜎

𝑑𝜏
. (2.8)

De forma análoga ao quadrivetor corrente 𝐽𝜇, define-se o quadripotencial 𝐴𝜇 como:

𝐴𝜇 = (𝜑,𝐴𝑥, 𝐴𝑦, 𝐴𝑧), (2.9)

em que 𝜑 representa o potencial escalar, e 𝐴𝑖 as componentes do potencial vetor.
Em termos do quadripotencial, o tensor 𝐹𝜇𝜈 pode ser escrito como:

𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇 =⇒ 𝜂𝜎𝜈𝜕𝜎(𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇) = 𝐽𝜇. (2.10)

Esta equação é manifestamente invariante sob a transformação de gauge:

𝐴′
𝜇 = 𝐴𝜇 + 𝜕𝜇𝜓, (2.11)

onde 𝜓 é um campo escalar arbitrário. Portanto, é possível impor a condição de
gauge de Lorenz, definida por:

𝜕𝜇𝜕𝜇𝜓 = −𝜕𝜇𝐴𝜇 =⇒ 𝜕𝜇𝐴′
𝜇 = 0. (2.12)

Substituindo essa condição na equação 2.10, obtém-se:

𝜕𝜈𝜕𝜈𝐴𝜇 = −𝐽𝜇. (2.13)

Considerando o caso sem fontes, 𝐽𝜇 = 0, busca-se uma solução na forma de onda
plana:

𝐴𝜇 = 𝐶𝜇𝑒
𝑖𝑆, (2.14)

onde 𝐶𝜇 é uma amplitude constante e 𝑆 é a chamada fase. Sob o gauge de Lorenz,

𝜕𝜇𝐴
𝜇 = 0 =⇒ 𝐶𝜇𝜕𝜇𝑆 = 0. (2.15)
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Além disso, ao substituir essa solução na equação 2.13, obtém-se:

𝐶𝜇𝑒𝑖𝑆(𝑖𝜕𝜈𝜕𝜈𝑆 − 𝜕𝜈𝑆𝜕𝜈𝑆) = 0, (2.16)

o que implica, por fim, nas seguintes condições:

𝜕𝜈𝜕𝜈𝑆 = 0 , (2.17)
𝜕𝜈𝑆𝜕𝜈𝑆 = 0 . (2.18)

Essas condições serão essenciais posteriormente, para discutir geodésicas do tipo
nulo, pois o termo 𝜕𝜈𝑆 é identificado como o vetor de onda, indicando a direção de
propagação do sinal.

2.3 Equações de Maxwell na relatividade geral.
Esta seção se baseia no desenvolvimento feito em Wald (WALD, 2010) e também

em Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

A abordagem mais direta e funcional, para generalizar leis da física formuladas na
relatividade especial, consiste em reescrever uma lei válida em espaços planos numa forma
tensorial, e atestar sua validade em espaços curvos.

Para aplicar isto nas equações de Maxwell, substitui-se a derivada parcial, respon-
sável por termos não tensoriais em transformações, pela derivada covariante:

∇𝜈𝐹
𝜇𝜈 = 𝐽𝜇 (2.19)

∇[𝜎𝐹𝜇𝜈] = 0 (2.20)

O mesmo é feito na equação 2.10, que define o tensor de força do campo em termos
do quadripotencial:

𝐹𝜇𝜈 = ∇𝜇𝐴𝜈 − ∇𝜈𝐴𝜇, (2.21)

Novamente, esta permanece invariante sob a transformação 𝐴′
𝜇 = 𝐴𝜇 + ∇𝜇𝜓, com

𝜓 sendo um escalar arbitrário. Substituindo essa definição na equação 2.19, obtém-se:

∇𝜈𝐹𝜇𝜈 = ∇𝜈∇𝜇𝐴𝜈 − ∇𝜈∇𝜈𝐴𝜇. (2.22)

Escolher 𝜓 tal que:

∇𝜈∇𝜈𝜓 = −∇𝜈𝐴𝜈 =⇒ ∇𝜈𝐴′
𝜈 = 0, (2.23)
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resulta em:

𝑅𝜌
𝜇𝐴𝜌 − ∇𝜈∇𝜈𝐴𝜇 = 𝐽𝜇, (2.24)

Ao comparar esse resultado com aquele obtido na geometria de Minkowski, a
presença do tensor de Ricci torna evidente a curvatura do espaço-tempo. Caso fossem
apenas substituídas as derivadas parciais por covariantes em 2.13, o termo envolvendo o
tensor de Ricci não surgiria, o que ressalta a necessidade de cautela na aplicação desse
procedimento.

Uma forma eficaz de verificar a validade da generalização (além da confrontação
com dados experimentais) é assegurar que a equação obtida se reduza ao caso plano na
ausência de curvatura. No caso da equação 2.24, além de possuir esse limite, ela implica
a conservação da corrente: ∇𝜇𝐽𝜇 = 0, o que reforça sua consistência.

Considerando que de forma geral, a escala de variação do campo eletromagnético
é muito menor que a da curvatura do espaço, é razoável esperar uma solução próxima
àquela obtida em espaço plano, visto que localmente (na escala de variação do campo) o
espaço-tempo se assemelha ao de Minkowski. Nessas condições, a solução tem o mesmo
formato da equação 2.14:

𝐴𝜇 = 𝐶𝜇𝑒
𝑖𝑆, (2.25)

Porém a amplitude 𝐶𝜇 não é constante, e varia lentamente em comparação à
frequência da onda. Substituindo essa forma na equação 2.24, obtém-se:

𝑅𝜈
𝜇𝐶𝜈𝑒

𝑖𝑆 + 2𝑖𝑒𝑖𝑆∇𝜈𝐶𝜇𝑒
𝑖𝑆 + 𝐶𝜇𝑒

𝑖𝑆(𝑖∇𝜈∇𝜈𝑆 − ∇𝜈𝑆∇𝜈𝑆) = 0 (2.26)

Desprezando as derivadas de 𝐶𝜇 e o termo com o tensor de Ricci por serem pe-
quenos em relação à ∇𝜇𝑆, segue-se:

∇𝜈∇𝜈𝑆 = 0 (2.27)
∇𝜈𝑆∇𝜈𝑆 = 0 (2.28)

A partir dos resultados desta aproximação, conhecida como geometrical optics
approximation, é possível retomar a discussão sobre a equação da geodésica para curvas do
tipo nulo. Dado o comportamento da derivada covariante sobre escalares, tal aproximação
sugere que:

𝜕𝜈𝑆 𝜕𝜈𝑆 = 0, (2.29)
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é equação válida inclusive em espaços curvos. Nessa expressão, identifica-se 𝜕𝜈𝑆 ≡
𝑘𝜈 como o vetor de onda, indicando a direção de propagação de sinais eletromagnéticos.

Considerando a compatibilidade da derivada covariante com a métrica, tem-se:

∇𝜇(𝑔𝜎𝜈𝑘𝜎𝑘𝜈) = 0 =⇒ 𝑔𝜎𝜈𝑘𝜎∇𝜇𝑘𝜈 = 0. (2.30)

Além disso, como a derivada covariante comuta quando aplicada a escalares,

∇𝜇∇𝜈𝑆 = ∇𝜈∇𝜇𝑆, (2.31)

segue-se diretamente que:

𝑘𝜈∇𝜈𝑘
𝜇 = 0, (2.32)

Logo, esta aproximação sugere que a luz percorre geodésicas do tipo nulo.

2.4 Linearização da gravidade
Esta seção se baseia no desenvolvimento feito em Carroll (CARROLL, 2019), e

também em Das (DAS, 2011), consultar essas fontes para mais detalhes.

Como a descrição newtoniana da gravidade apresenta bons resultados no limite não
relativístico, é essencial que uma nova formulação da gravitação, baseada na geometria
do espaço-tempo, recupere tal comportamento em condições apropriadas. Esse regime de
validade é denominado limite newtoniano, definido pelas seguintes condições:

• Os corpos envolvidos movem-se com velocidades baixas (𝑣 ≪ 𝑐);

• O campo gravitacional é fraco;

• O campo gravitacional é estático.

Considerando o parâmetro afim como o tempo próprio 𝜏 , a condição de baixas
velocidades implica:

𝑑𝑥𝑖 ≪ 𝑑𝑡 =⇒ 𝑑𝑥𝑖

𝑑𝜏
≪ 𝑑𝑡

𝑑𝜏
. (2.33)

Aplicando esse limite à equação geodésica, obtém-se:

𝑑2𝑥𝜇

𝑑𝜏 2 + Γ𝜇𝜌𝜎
𝑑𝑥𝜌

𝑑𝜏

𝑑𝑥𝜎

𝑑𝜏
= 0 −→ 𝑑2𝑥𝜇

𝑑𝜏 2 + Γ𝜇00

(︃
𝑑𝑡

𝑑𝜏

)︃2

= 0. (2.34)
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Adicionalmente, considerando a definição do símbolo de Christoffel e a condição
de campo estático, tem-se:

Γ𝜇00 = 1
2𝑔

𝜇𝜎(𝜕0𝑔𝜎0 + 𝜕0𝑔0𝜎 − 𝜕𝜎𝑔00)

= −1
2𝑔

𝜇𝜎𝜕𝜎𝑔00. (2.35)

A condição de campo gravitacional fraco permite representar a métrica como uma
pequena perturbação da métrica de Minkowski (em sua forma canônica):

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 , (2.36)

com |ℎ𝜇𝜈 | ≪ 1. Define-se, então, sua inversa como:

𝑔𝜇𝜈 = 𝜂𝜇𝜈 − ℎ𝜇𝜈 =⇒ 𝑔𝜇𝜈𝑔𝜈𝜎 = 𝛿𝜇𝜎 + 𝒪(ℎ2), (2.37)

onde ℎ𝜇𝜈 = 𝜂𝜈𝜎𝜂𝜇𝜌ℎ𝜎𝜌, e os termos de segunda ordem em ℎ são desprezados.
Substituindo esses resultados na equação (2.34), obtém-se:

𝑑2𝑥𝜇

𝑑𝜏 2 = 1
2𝜂

𝜇𝜎𝜕𝜎ℎ00

(︃
𝑑𝑡

𝑑𝜏

)︃2

. (2.38)

Para 𝜇 = 0, a equação se reduz a:

𝑑2𝑡

𝑑𝜏 2 = 0 =⇒ 𝑑𝑡

𝑑𝜏
= constante. (2.39)

Já para as componentes espaciais (𝜇 = 𝑖), como 𝜂𝑖𝜎 = 𝛿𝑖𝜎, a equação resulta:

𝑑2𝑥𝑖

𝑑𝜏 2 = 1
2𝜕𝑖ℎ00

(︃
𝑑𝑡

𝑑𝜏

)︃2

. (2.40)

Essa equação revela uma correspondência interessante ao se compará-la com a
equação do potencial gravitacional Φ da teoria clássica:

𝑎⃗ = −∇Φ =⇒ ℎ00 = −2Φ. (2.41)

Portanto, a nova teoria da gravitação reproduz corretamente o limite newtoniano
quando consideradas as condições apropriadas. Este resultado implica, por fim, que:

𝑔00 = −1 − 2Φ. (2.42)
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2.5 Equação de Einstein
Esta seção se baseia no desenvolvimento feito em Das (DAS, 2011), e também em

Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

É necessário formular uma equação que relacione a geometria do espaço-tempo
com a distribuição de matéria. Para isso, considera-se o caso clássico da gravitação: a
equação de Poisson para o potencial gravitacional Newtoniano,

∇2Φ = 4𝜋𝐺𝜌, (2.43)

onde 𝜌 representa a densidade de massa. Para aplicar o método discutido ante-
riormente, é preciso reescrever essa equação de forma covariante e verificar sua validade
nesse novo contexto. O lado direito da equação envolve a densidade de massa, indicando
que uma versão covariante deve conter o tensor energia-momento 𝑇 𝜇𝜈 . Além disso, a
linearização da gravidade permite escrever:

∇2Φ = 4𝜋𝜌 −→ ∇2𝑔00 = 4𝜋𝑇00, (2.44)

com 𝑇00 = 𝜌 interpretado como densidade de energia.

Esse resultado sugere que a equação tensorial procurada deve conter derivadas da
métrica (até segunda ordem), sendo proporcional ao tensor energia-momento. Um tensor
construído a partir da métrica e de suas derivadas de primeira e segunda ordem é o tensor
de curvatura de Riemann:

𝑅𝜎
𝜌𝜇𝜈 = 𝜕𝜇Γ𝜎𝜈𝜌 − 𝜕𝜈Γ𝜎𝜇𝜌 + Γ𝜎𝜇𝜆Γ𝜆𝜈𝜌 − Γ𝜎𝜈𝜆Γ𝜆𝜇𝜌. (2.45)

Para compatibilidade entre os índices, contrai-se esse tensor obtendo o tensor de
Ricci. A simetria dos tensores 𝑅𝜇𝜈 e 𝑇 𝜇𝜈 motiva a seguinte proposta inicial:

𝑅𝜇𝜈 = 𝛼𝑇 𝜇𝜈 . (2.46)

De fato, essa foi a primeira equação sugerida por Einstein. No entanto, a conser-
vação da energia e do momento exige que ∇𝜈𝑅

𝜇𝜈 = 0, o que, em geral, não se sustenta.
Um tensor, simétrico, construído com o tensor de Ricci e cuja divergência covariante é
nula é o tensor de Einstein:

𝐺𝜇𝜈 = 𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 com ∇𝜇𝐺𝜇𝜈 = 0. (2.47)
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Dessa forma, propõe-se uma nova equação para relacionar geometria com a maté-
ria:

𝐺𝜇𝜈 = 𝛼𝑇𝜇𝜈 , (2.48)

restando determinar o fator de proporcionalidade 𝛼 e verificar se essa equação
reproduz a gravitação Newtoniana no limite apropriado.

A partir da equação 2.48, tem-se:

𝑅 = −𝛼𝑇 𝜇𝜇 = −𝛼𝑇, (2.49)

o que permite reescrever 2.48 como:

𝑅𝜇𝜈 = 𝛼
(︂
𝑇 𝜇𝜈 − 1

2𝑔
𝜇𝜈𝑇

)︂
, (2.50)

uma forma mais conveniente para realizar a comparação com a equação de Poisson.

No limite Newtoniano, considerando um fluido composto por corpos massivos, em
baixa velocidade e com interação interna desprezível, utiliza-se o tensor energia-momento
da “poeira”:

𝑇 𝜇𝜈 = 𝜌
𝑑𝑥𝜇

𝑑𝜏

𝑑𝑥𝜈

𝑑𝜏
. (2.51)

No referencial de repouso do fluido:

𝑇 00 = 𝜌,

𝑇 𝑖𝜇 = 0,
𝑇 = 𝑔𝜇𝜈𝑇

𝜇𝜈 = −(1 + 2Φ)𝜌 ≈ 𝜌. (2.52)

Na última linha, assume-se o regime de perturbações fracas, |ℎ00| ≪ 1. No mesmo
limite, o tensor de Riemann se reduz a:

𝑅𝜎
𝜌𝜇𝜈 ≃ 𝜕𝜇Γ𝜎𝜈𝜌 − 𝜕𝜈Γ𝜎𝜇𝜌, (2.53)

visto que os termos quadráticos em Γ são de ordem 𝑂2(ℎ). A contração fornece o
tensor de Ricci:

𝑅𝜌𝜈 = 𝜕𝜎Γ𝜎𝜈𝜌 − 𝜕𝜈Γ𝜎𝜎𝜌. (2.54)

Como apenas 𝑇00 ̸= 0, considera-se:

𝑅00 = 𝜕𝜎Γ𝜎00 − 𝜕0Γ𝜎𝜎0. (2.55)
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O segundo termo se anula devido à hipótese de campo estático. Desenvolvendo o
primeiro termo:

𝑅00 = 𝜕𝑖

[︂1
2𝑔

𝑖𝜇(𝜕0𝑔0𝜇 + 𝜕0𝑔𝜇0 − 𝜕𝜇𝑔00)
]︂

= −𝜕𝑖
(︂1

2𝑔
𝑖𝑗𝜕𝑗𝑔00

)︂
= −1

2𝜕
𝑖𝜕𝑖𝑔00. (2.56)

Substituindo 𝑔00 = −(1 + 2Φ), obtém-se:

𝑅00 = 𝜕𝑖𝜕𝑖Φ = ∇2Φ. (2.57)

Considerando:

𝑅00 = 𝑔0𝜎𝑔0𝜌𝑅𝜎𝜌

= [𝜂0𝜎𝜂0𝜌 − 2𝜂0𝜎ℎ0𝜌 +𝑂2(ℎ)]𝑅𝜎𝜌

≃ 𝑅00, (2.58)

pode-se substituir o resultado 2.57 em 2.50, obtendo:

∇2Φ = 𝛼
(︂
𝜌− 1

2(1 − 2Φ)𝜌
)︂

≃ 𝛼

2 𝜌. (2.59)

Comparando com a equação de Poisson 2.43, conclui-se que 𝛼 = 8𝜋𝐺, e a equação
2.48 torna-se:

𝐺𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 , (2.60)

ou, equivalentemente,

𝑅𝜇𝜈 = 8𝜋𝐺
(︂
𝑇𝜇𝜈 − 1

2𝑔𝜇𝜈𝑇
)︂
. (2.61)

Ambas conhecidas como equação de Einstein. Na ausência de matéria (𝑇𝜇𝜈 = 0),
essa equação reduz-se a:

𝑅𝜇𝜈 = 0, (2.62)

denominada equação de Einstein no vácuo, que será base para discussões
posteriores.
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2.5.1 Constante cosmológica

O tensor de Einstein não é o único construído a partir da métrica e de suas de-
rivadas que possui divergência covariante nula. É existente a liberdade de se realizar a
seguinte substituição:

𝐺𝜇𝜈 −→ 𝑅𝜇𝜈 − 1
2𝑔

𝜇𝜈(𝑅 + Λ), (2.63)

em que Λ é uma constante. Essa modificação mantém a conservação associada a
∇𝜇, assim como as demais propriedades desejadas.

A constante Λ, chamada de constante cosmológica, tem relevância histórica e
pode ser interpretada como uma forma de energia do vácuo, ou uma força gravitacional
constante que atua uniformemente sobre a matéria. Foi introduzida originalmente por
Einstein, com o objetivo de descrever um universo estático, em concordância com as
observações astronômicas disponíveis à época.

2.6 Solução de Schwarzschild.
Esta seção se baseia no desenvolvimento feito em Das (DAS, 2011), e também em

Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

Uma das aplicações mais diretas, e certamente mais influentes, da equação de
Einstein está na determinação da geometria do espaço-tempo ao redor de uma fonte
de massa esfericamente simétrica e estática. Esta solução, obtida inicialmente por Karl
Schwarzschild, é fundamental para o estudo de buracos negros.

Ao considerar a equação e a definição do tensor de curvatura, torna-se evidente que
se trata de uma equação diferencial altamente complexa, cuja resolução requer encontrar a
métrica 𝑔𝜇𝜈 satisfazendo uma série de condições não lineares. Essa não linearidade implica
que, em geral, não se pode obter novas soluções pela simples combinação de soluções
conhecidas, dificultando substancialmente o processo de resolução.

No entanto, a imposição de simetrias deste caso, permite uma considerável simpli-
ficação do problema. Tais simetrias restringem significativamente a forma geral da métrica
admissível, viabilizando a obtenção de uma solução analítica. É esse o caminho trilhado
na derivação da solução de Schwarzschild, a qual será explorada a seguir.

A forma mais direta de explorar as simetrias do problema considerado é por meio
do elemento de linha 𝑑𝑠2. Dado que a fonte gravitacional é estática, os componentes da
métrica não podem depender da coordenada temporal. Além disso, a simetria esférica
impõe que a única dependência admissível seja na coordenada radial 𝑟.
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Na geometria de Minkowski, expressa em coordenadas esféricas, o elemento de
linha é dado por:

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑒𝑛2𝜃 𝑑𝜑2) (2.64)

No presente caso, observa-se uma estrutura semelhante. Termos lineares em 𝑑𝑡

(como 𝑑𝑡𝑑𝑥𝑖) não devem aparecer, pois uma métrica estática deve ser invariante sob
reversão temporal (𝑡 → −𝑡). Da mesma forma, a simetria esférica exclui a presença de
termos lineares em 𝑑𝜃 e 𝑑𝜑, uma vez que o espaço-tempo não pode depender da direção
angular. Assim, espera-se que a métrica assuma a forma:

𝑑𝑠2 = −𝐴(𝑟)𝑑𝑡2 +𝐵(𝑟)𝑑𝑟2 + 𝑟2
[︁
𝐶(𝑟)𝑑𝜃2 +𝐷(𝑟)𝑠𝑒𝑛2𝜃 𝑑𝜑2

]︁
(2.65)

Considerando 𝑑𝑠 como um comprimento infinitesimal, pode-se impor restrições
adicionais sobre os componentes angulares da métrica. Em um instante de tempo fixo
(𝑑𝑡 = 0), no polo norte de uma casca esférica de raio 𝑟 (𝑑𝑟 = 0), tem-se que o arco
𝑟𝑑𝜃 = 𝜖 leva a:

𝑑𝑠2 = 𝐶(𝑟)𝜖2. (2.66)

Por outro lado, sobre a linha equatorial, onde 𝜃 = 𝜋/2 e 𝑑𝜃 = 0, mantendo-se
também 𝑑𝑡 = 𝑑𝑟 = 0, um arco 𝑟𝑑𝜑 = 𝜖 leva a:

𝑑𝑠2 = 𝐷(𝑟)𝜖2. (2.67)

Contudo, devido à simetria esférica, ambos os comprimentos devem ser iguais, o
que implica 𝐶(𝑟) = 𝐷(𝑟), resultando na forma reduzida:

𝑑𝑠2 = −𝐴(𝑟)𝑑𝑡2 +𝐵(𝑟)𝑑𝑟2 + 𝐶(𝑟)𝑟2(𝑑𝜃2 +2 𝜃 𝑑𝜑2),
= −𝐴(𝑟)𝑑𝑡2 +𝐵(𝑟)𝑑𝑟2 + 𝐶(𝑟)𝑟2 𝑑Ω2. (2.68)

É possível realizar uma última simplificação: a função 𝐶(𝑟) pode ser absorvida
por uma redefinição da coordenada radial, por meio da transformação 𝑟 → 𝑟′ =

√︁
𝐶(𝑟) 𝑟.

Com isso, tem-se:

𝑑𝑟′ = 2𝐶(𝑟) + 𝐶 ′(𝑟)𝑟
2
√︁
𝐶(𝑟)

𝑑𝑟 , com 𝐶 ′(𝑟) = 𝑑𝐶

𝑑𝑟
(2.69)
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e a métrica assume a forma:

𝑑𝑠2 = −𝐴(𝑟′)𝑑𝑡2 +𝐵(𝑟′)(𝑑𝑟′)2 + (𝑟′)2𝑑Ω2 (2.70)

Essa é a chamada forma geral do elemento de linha de Schwarzschild, caracterizada
por duas funções desconhecidas 𝐴(𝑟) e 𝐵(𝑟). Redefinindo 𝑟′ → 𝑟, os componentes da
métrica podem ser identificados como:

𝑔00 = 𝑔𝑡𝑡 = −𝐴(𝑟)
𝑔11 = 𝑔𝑟𝑟 = 𝐵(𝑟)
𝑔22 = 𝑔𝜃𝜃 = 𝑟2

𝑔33 = 𝑔𝜑𝜑 = 𝑟2𝑠𝑒𝑛2(𝜃) (2.71)

Na região do espaço-tempo onde não há matéria, ou seja, no vácuo, é possível
determinar as funções 𝐴(𝑟) e 𝐵(𝑟) a partir da equação de Einstein no vácuo:

𝑅𝜇𝜈 = 0 (2.72)

com a condição de contorno de que, no infinito, a métrica (2.70) deve tender
à métrica de Minkowski. Para isso, é necessário calcular os símbolos de Christoffel. A
seguir, apresentam-se apenas os componentes não nulos:

Γ0
01 = Γ0

10 = 𝐴′(𝑟)
2𝐴(𝑟) , Γ1

00 = 𝐴′(𝑟)
2𝐵(𝑟) ,

Γ1
22 = − 𝑟

𝐵(𝑟) , Γ2
12 = Γ2

21 = 1
𝑟
,

Γ1
11 = 𝐵′(𝑟)

2𝐵(𝑟) , Γ3
13 = Γ3

31 = 1
𝑟
,

Γ1
33 = −𝑟𝑠𝑒𝑛2𝜃

𝐵(𝑟) , Γ2
33 = −𝑠𝑒𝑛𝜃 cos 𝜃,

Γ3
23 = Γ3

32 = cot 𝜃 (2.73)

Com os símbolos acima, é possível calcular as componentes do tensor de Ricci 𝑅𝜇𝜈 .
Considerando as equações 𝑅00, 𝑅11 e 𝑅22:

𝐴′′(𝑟)
2𝐵(𝑟) − 𝐴′(𝑟)

4𝐵(𝑟)

(︃
𝐴′(𝑟)
𝐴(𝑟) + 𝐵′(𝑟)

𝐵(𝑟)

)︃
+ 𝐴′(𝑟)
𝑟𝐵(𝑟) = 0 (2.74)

𝐴′′(𝑟)
2𝐴(𝑟) − 𝐴′(𝑟)

4𝐴(𝑟)

(︃
𝐴′(𝑟)
𝐴(𝑟) + 𝐵′(𝑟)

𝐵(𝑟)

)︃
+ 𝐵′(𝑟)
𝑟𝐵(𝑟) = 0 (2.75)
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1
𝐵(𝑟) + 𝑟

2𝐵(𝑟)

(︃
𝐴′(𝑟)
𝐴(𝑟) − 𝐵′(𝑟)

𝐵(𝑟)

)︃
− 1 = 0 (2.76)

A combinação das duas primeiras equações, conforme abaixo,

𝐵(𝑟)
𝐴(𝑟)𝑅00 −𝑅11 = 0 =⇒ 1

𝑟

(︃
𝐵′(𝑟)
𝐵(𝑟) + 𝐴′(𝑟)

𝐴(𝑟)

)︃
= 0, (2.77)

leva à relação:

𝐴′(𝑟)𝐵(𝑟) + 𝐴(𝑟)𝐵′(𝑟) = 0 =⇒ 𝐴(𝑟)𝐵(𝑟) = constante (2.78)

Aplicando a condição assintótica,

lim
𝑟→∞

𝐴(𝑟) = lim
𝑟→∞

𝐵(𝑟) = 1 =⇒ 𝐴(𝑟)𝐵(𝑟) = 1, (2.79)

tem-se:
𝐴(𝑟) = 1

𝐵(𝑟) . (2.80)

Substituindo esse resultado na equação de 𝑅22, obtém-se:

𝐴(𝑟) + 𝑟𝐴′(𝑟) = 1 =⇒ 𝑑

𝑑𝑟
(𝑟𝐴(𝑟)) = 1, (2.81)

cuja solução é:
𝐴(𝑟) = 1 + 𝑐

𝑟
, (2.82)

para alguma constante 𝑐. Como apenas três das dez equações de (2.72) foram utili-
zadas, é necessário verificar que a solução obtida satisfaz também as demais componentes
do tensor de Ricci.

Abaixo seguem as sete equações restantes, começando pelo último elemento da
diagonal:

𝑅33 = 𝑠𝑒𝑛2𝜃 − 𝑠𝑒𝑛2𝜃

𝐵(𝑟) + 𝑟𝑠𝑒𝑛2𝜃
𝐵′(𝑟)
𝐵(𝑟) = 𝑠𝑒𝑛2𝜃 ·𝑅22 = 0 ,

𝑅12 = 𝜕

𝜕𝜃

(︃
1
𝑟

)︃
− 𝜕

𝜕𝑟
(cot 𝜃) = 0 ,

𝑅13 = 𝜕𝜎Γ𝜎13 − 𝜕1Γ𝜎𝜎3 + Γ𝜎𝜎𝜆Γ𝜆13 − Γ𝜎1𝜆Γ𝜆𝜎3 = 0 ,

𝑅10 = 𝜕𝜎Γ𝜎10 − 𝜕1Γ𝜎𝜎0 + Γ𝜎𝜎𝜆Γ𝜆10 − Γ𝜎1𝜆Γ𝜆𝜎0 = 0 ,

𝑅23 = 𝜕𝜎Γ𝜎23 − 𝜕2Γ𝜎𝜎3 + Γ𝜎𝜎𝜆Γ𝜆23 − Γ𝜎2𝜆Γ𝜆𝜎3 = 0 ,

𝑅20 = 𝜕𝜎Γ𝜎20 − 𝜕2Γ𝜎𝜎0 + Γ𝜎𝜎𝜆Γ𝜆20 − Γ𝜎2𝜆Γ𝜆𝜎0 = 0 ,

𝑅30 = 𝜕𝜎Γ𝜎30 − 𝜕3Γ𝜎𝜎0 + Γ𝜎𝜎𝜆Γ𝜆30 − Γ𝜎3𝜆Γ𝜆𝜎0 = 0 .

(2.83)
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Conclui-se que a solução é compatível com todas as dez equações, e portanto a
métrica é expressa na forma:

𝑑𝑠2 = −
(︃

1 + 𝑐

𝑟

)︃
𝑑𝑡2 +

(︃
1 + 𝑐

𝑟

)︃−1

𝑑𝑟2 + 𝑟2𝑑Ω2 (2.84)

A processo de linearização da gravidade permite definir:

𝑔00 = −(1 + 2Φ) =⇒ 𝑐 = 2𝑟Φ. (2.85)

A solução da teoria newtoniana para um único corpo orbitante dita Φ = −𝐺𝑀/𝑟,
logo a métrica, conhecida como solução de Schwarzschild tem a forma final:

𝑑𝑠2 = −
(︃

1 − 2𝐺𝑀
𝑟

)︃
𝑑𝑡2 +

(︃
1 − 2𝐺𝑀

𝑟

)︃−1

𝑑𝑟2 + 𝑟2𝑑Ω2, (2.86)

onde M é a massa do corpo “fonte” do campo gravitacional. Nota-se que esta
solução respeita perfeitamente a condição de contorno em 𝑟 → ∞.

2.6.1 Singularidades.

A métrica de Schwarzschild apresenta divergências aparentes nas posições 𝑟 =
2𝐺𝑀 e 𝑟 = 0. O questionamento que isto levanta é se estas singularidades são consequên-
cias do sistema de coordenadas escolhido, ou se realmente se traduzem como pontos
singulares no espaço-tempo.

Para ilustrar esse tipo de questionamento, é útil considerar a métrica de Minkowski
escrita em coordenadas esféricas. Nessa representação, a componente 𝑔𝜃𝜃 = 𝑟−2 da métrica
inversa diverge em 𝑟 = 0, embora seja um fato que esse ponto do espaço é regular. Assim,
torna-se evidente que a simples divergência de componentes métricos não é, por si só, um
indicativo suficiente da presença de uma singularidade física.

É, portanto, necessário dispor de uma ferramenta que permita identificar singulari-
dades que sejam independentes do sistema de coordenadas. Espera-se que uma verdadeira
singularidade do espaço-tempo esteja associada à presença de curvatura infinita, o que
remete ao estudo do tensor de curvatura de Riemann 𝑅𝜌

𝜎𝜇𝜈 , cujo papel é justamente
caracterizar a geometria local do espaço-tempo.

Entretanto, avaliar diretamente os componentes de um tensor não garante in-
variância sob transformações de coordenadas. A solução está em considerar invariantes
escalares construídos a partir do tensor de Riemann, tais como:

𝑅, 𝑅𝜇𝜈𝑅𝜇𝜈 , 𝑅𝜌𝜎𝜇𝜈𝑅𝜌𝜎𝜇𝜈 , · · · (2.87)
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Se algum desses escalares divergir em certo ponto do espaço-tempo, tal divergência
será válida em qualquer sistema de coordenadas, caracterizando, portanto, uma singula-
ridade física (ou real).

No caso da métrica de Schwarzschild, o escalar dado por

𝑅𝜌𝜎𝜇𝜈𝑅𝜌𝜎𝜇𝜈 = 48𝐺2𝑀2

𝑟6 , (2.88)

diverge claramente em 𝑟 = 0, evidenciando que esse ponto corresponde a uma verdadeira
singularidade do espaço-tempo. Por outro lado, não há nenhum escalar que denuncie uma
singularidade presente em 𝑟 = 2𝐺𝑀 , indicando que a divergência observada nesta posição
não possui caráter físico, mas sim coordenado.

Essa interpretação é reforçada pela existência de sistemas de coordenadas alterna-
tivos, nos quais a métrica é regular em 𝑟 = 2𝐺𝑀 , demonstrando que esse ponto é uma
seção bem definida do espaço-tempo.

Ainda assim, é importante destacar que a métrica de Schwarzschild é uma solução
da equação de Einstein no vácuo e, portanto, sua validade se restringe à região exterior
à fonte gravitacional. A análise de 𝑟 = 0, nesse contexto, é apenas formal, uma vez que a
solução não descreve adequadamente o interior do corpo que gera o campo gravitacional.

De maneira análoga, em muitos casos físicos, o raio 𝑟 = 2𝐺𝑀 encontra-se no
interior do corpo material, tornando sua interpretação inaplicável. Contudo, existem casos
particulares, como os buracos negros, em que esse raio representa uma superfície com
significado geométrico e causal bem definido.

2.7 Geodésicas do tipo nulo no espaço-tempo de Schwarzschild.
Esta seção se baseia no desenvolvimento feito em Das (DAS, 2011), e também em

Carroll (CARROLL, 2019), consultar essas fontes para mais detalhes.

As geodésicas do tipo nulo descrevem o movimento de partículas sem massa, como
fótons, em um dado espaço-tempo. No caso da métrica de Schwarzschild, essas trajetó-
rias são fundamentais para a compreensão de fenômenos ópticos associados a estrelas e
buracos negros, como lentes gravitacionais e sombras. Nesta seção, analisam-se algumas
propriedades dessas geodésicas.

2.7.1 Vetores de Killing

Considere uma métrica arbitrária, expressa como:

𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 . (2.89)
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Se, em uma determinada direção coordenada 𝑥𝜎* , a métrica for tal que:

𝜕𝜎*𝑔𝜇𝜈 = 0, (2.90)

então o espaço-tempo é invariante sob transformações do tipo:

𝑥𝜎
* → 𝑥𝜎

* + 𝑎𝜎
*
. (2.91)

Tal transformação caracteriza uma isometria, ou seja, uma transformação que
preserva a métrica (e, portanto, os intervalos), resultando em consequências imediatas
para as equações de movimento. Para entender esse ponto, é útil considerar a equação da
geodésica para uma partícula massiva, escrita na forma:

𝑑𝑥𝜎

𝑑𝜏
∇𝜎

𝑑𝑥𝜌

𝑑𝜏
= 0. (2.92)

Essa equação pode ser reescrita de maneira mais compacta utilizando o quadrimo-
mento:

𝑝𝜎∇𝜎𝑝𝜇 = 0, (2.93)

No caso de fótons, uma forma equivalente é obtida ao se adotar um parâmetro
afim 𝜆, tal que:

𝑝𝜇 = 𝑑𝑥𝜇

𝑑𝜆
, (2.94)

conforme já discutido anteriormente. Ao reescrever a equação (2.93) de forma
explícita, tem-se:

𝑝𝜎𝜕𝜎𝑝𝜇 − 𝑝𝜎Γ𝜆𝜎𝜇𝑝𝜆 = 0. (2.95)

O primeiro termo desta equação representa a variação de 𝑝𝜇 ao longo da curva
𝑥𝜇(𝜆):

𝑝𝜎𝜕𝜎𝑝𝜇 = 𝑑𝑥𝜎

𝑑𝜆

𝜕

𝜕𝑥𝜎
(𝑝𝜇) = 𝑑𝑝𝜇

𝑑𝜆
. (2.96)

Já o segundo termo resulta em:

𝑝𝜎Γ𝜆𝜎𝜇𝑝𝜆 = 𝑝𝜎
[︂1
2𝑔

𝜆𝜌(𝜕𝜎𝑔𝜇𝜌 + 𝜕𝜇𝑔𝜎𝜌 − 𝜕𝜌𝑔𝜇𝜎)
]︂
𝑝𝜆,

= 1
2𝑝

𝜎𝑝𝜌(𝜕𝜎𝑔𝜇𝜌 + 𝜕𝜇𝑔𝜎𝜌 − 𝜕𝜌𝑔𝜇𝜎),

= 1
2𝑝

𝜎𝑝𝜌𝜕𝜇𝑔𝜎𝜌. (2.97)

Substituindo ambos os resultados na equação (2.93), obtém-se:

1
2𝑝

𝜎𝑝𝜌𝜕𝜇𝑔𝜎𝜌 = 𝑑𝑝𝜇
𝑑𝜆

. (2.98)
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Portanto, se a métrica não depende explicitamente de 𝑥𝜎
* , há conservação do

quadrimomento na direção correspondente, ou seja:

𝜕𝜎*𝑔𝜇𝜈 = 0 =⇒ 𝑑

𝑑𝜆
𝑝𝜎* = 0. (2.99)

Sempre que a métrica for independente de uma coordenada, haverá uma isometria
associada. No entanto, o recíproco não é garantido pois podem existir mais isometrias do
que coordenadas. Além disso, certas representações coordenadas podem ocultar simetrias,
como no caso da métrica plana em coordenadas esféricas:

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2 sin2(𝜃) 𝑑𝜑2. (2.100)

Assim, torna-se útil uma formulação covariante para identificar isometrias. Com
esta finalidade, para cada 𝑥𝜎* tal que 𝜕𝜎*𝑔𝜇𝜈 = 0, define-se o vetor:

𝐾 = 𝜕𝜎* ⇒ 𝐾𝜇 = 𝛿𝜇𝜎* . (2.101)

Esse vetor é o gerador infinitesimal da isometria associada. Nesse caso, a quanti-
dade:

𝑝𝜎* = 𝐾𝜇𝑝𝜇 = 𝐾𝜇𝑝
𝜇 (2.102)

é conservada, pois se trata de um escalar ao longo da curva. De fato:

𝑝𝜈∇𝜈(𝐾𝜇𝑝
𝜇) = 𝑝𝜈𝜕𝜈(𝐾𝜇𝑝

𝜇)

= 𝑑𝑥𝜈

𝑑𝜆

𝜕

𝜕𝑥𝜈
(𝑝𝜎*)

= 𝑑

𝑑𝜆
𝑝𝜎* , (2.103)

de modo que:
𝑝𝜈∇𝜈(𝐾𝜇𝑝

𝜇) = 0 ⇐⇒ 𝑑

𝑑𝜆
𝑝𝜎* = 0. (2.104)

É possível expandir o lado esquerdo dessa condição:

𝑝𝜈∇𝜈(𝐾𝜇𝑝
𝜇) = 𝑝𝜈𝑝𝜇∇𝜈𝐾𝜇 + 𝑝𝜈𝐾𝜇∇𝜈𝑝

𝜇

= 𝑝𝜈𝑝𝜇∇(𝜈𝐾𝜇), (2.105)

onde foi usada a simetria de 𝑝𝜈𝑝𝜇, e o fato de que 𝑝𝜈∇𝜈𝑝
𝜇 = 0 para uma geodésica.

Esse resultado leva à formulação da equação de Killing:

∇(𝜈𝐾𝜇) = 0 ⇒ 𝑝𝜈∇𝜈(𝐾𝜇𝑝
𝜇) = 0. (2.106)

Tal equação define os chamados vetores de Killing — campos vetoriais que
geram isometrias do espaço-tempo e asseguram a conservação da quantidade 𝐾𝜇𝑝

𝜇 ao
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longo da trajetória da partícula. No caso em que 𝜕𝜎* seja um vetor de Killing, a equação
reduz-se a:

∇(𝜈𝐾𝜇) = 0 ⇒ 𝑑

𝑑𝜆
𝑝𝜎* = 0. (2.107)

Por fim, dado que vetores de Killing geram isometrias e cada isometria contínua
corresponde a um vetor de Killing, há um mapeamento bijetivo entre vetores de
Killing e isometrias do espaço-tempo.

2.7.2 Aplicação na métrica de Schwarzschild

Com base nas simetrias conhecidas da geometria de Schwarzschild, é possível apli-
car o formalismo dos vetores de Killing para identificar, de forma explícita, grandezas
conservadas associadas ao movimento de partículas nesse espaço-tempo. A construção
dessa métrica fundamenta-se em dois aspectos principais: a independência temporal
e a simetria esférica.

A métrica de Schwarzschild é dada por:

𝑑𝑠2 = −
(︂

1 − 2𝐺𝑀
𝑟

)︂
𝑑𝑡2 +

(︂
1 − 2𝐺𝑀

𝑟

)︂−1
𝑑𝑟2 + 𝑟2(𝑑𝜃2 + sin2 𝜃 𝑑𝜑2). (2.108)

A independência da métrica em relação à coordenada temporal é evidente e garante
que 𝜕0 seja um vetor de Killing, o qual denotado por 𝑇𝜇. Esta simetria está associada à
invariância sob translações no tempo.

Outro vetor de Killing evidente é 𝜕3, denotado 𝐾𝜈 e associado à simetria rotacional
em torno do eixo 𝑧. Essa simetria traduz a invariância sob rotações no plano azimutal.
Assim, tem-se:

· 𝜕0𝑔𝜇𝜈 = 0,
· 𝜕3𝑔𝜇𝜈 = 0. (2.109)

Contudo, a simetria esférica implica que o espaço é invariante sob rotações em
qualquer direção. Portanto, todas as componentes do momento angular, {𝐿𝑥, 𝐿𝑦, 𝐿𝑧}, são
conservadas. Essa propriedade garante que partículas em movimento nesse espaço seguem
trajetórias em um plano fixo. Por conveniência, pode-se tomar esse plano como sendo o
equatorial:

𝜃(𝜆) = 𝜋

2 ⇒ 𝑑𝜃

𝑑𝜆
≡ 𝜃 = 0. (2.110)

Por fim, as quantidades conservadas associadas aos vetores de Killing podem ser
extraídas a partir da relação:

𝑝𝜈∇𝜈(𝐾𝜇𝑝
𝜇) = 0 ⇒ 𝐾𝜇

𝑑𝑥𝜇

𝑑𝜆
= constante. (2.111)
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Adotando a convenção (0 = 𝑡, 1 = 𝑟, 2 = 𝜃, 3 = 𝜑), os vetores de Killing nas
componentes da métrica de Schwarzschild são:

𝐾𝜈 = 𝑔𝜇𝜈(𝜕𝜑)𝜇 ⇒ 𝐾𝜈 = (0, 0, 0, 𝑟2 sin2 𝜃), (2.112)

𝑇𝜇 = 𝑔𝜇𝜈(𝜕𝑡)𝜈 ⇒ 𝑇𝜇 =
(︂

−1 + 2𝐺𝑀
𝑟

, 0, 0, 0
)︂
. (2.113)

Dessa forma, obtêm-se duas quantidades conservadas ao longo das trajetórias das
partículas nesse espaço-tempo:

· 𝑟2𝜑̇ ≡ 𝑙, (2.114)

·
(︂

1 − 2𝐺𝑀
𝑟

)︂
𝑡 ≡ 𝑘. (2.115)

Cabe observar que, embora a notação utilizada seja mais apropriada para partícu-
las sem massa (como os fótons), todo o desenvolvimento permanece válido para partículas
massivas, bastando ajustar a parametrização (𝜆 → 𝜏 , por exemplo).

2.7.3 Órbitas de fótons

Uma vez determinadas as quantidades conservadas, é possível analisar diretamente
as trajetórias percorridas por fótons no entorno de uma dada fonte gravitacional. Consi-
derando que fótons obedecem à equação da geodésica para um parâmetro afim 𝜆, tem-se:

𝑑𝑥𝜇

𝑑𝜆
+ Γ𝜇𝜎𝜌

𝑑𝑥𝜎

𝑑𝜆

𝑑𝑥𝜌

𝑑𝜆
= 0, (2.116)

o que, aliado às constantes conservadas 𝑘 e 𝑙, fornece a equação para a componente
𝜇 = 𝑟:

(︂
1 − 2𝐺𝑀

𝑟

)︂−1
𝑟 −

(︂
1 − 2𝐺𝑀

𝑟

)︂−2 𝐺𝑀

𝑟2 𝑟̇2 + 𝐺𝑀

𝑟2 𝑡2 − 𝑟𝜑̇2 = 0. (2.117)

Vale lembrar que, para fótons, impõe-se a condição 𝑑𝑠2 = 0, a qual, na métrica de
Schwarzschild, assume a forma:

(︂
1 − 2𝐺𝑀

𝑟

)︂
𝑡2 −

(︂
1 − 2𝐺𝑀

𝑟

)︂−1
𝑟̇2 − 𝑟2 sin2 𝜃𝜑̇2 = 0. (2.118)

Adotando a condição 𝜃 = 𝜋/2, já discutida anteriormente, essa equação pode ser
reescrita como:
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(︂
1 − 2𝐺𝑀

𝑟

)︂
𝑡2 −

(︂
1 − 2𝐺𝑀

𝑟

)︂−1
𝑟̇2 − 𝑟2𝜑̇2 = 0

⇒
(︂

1 − 2𝐺𝑀
𝑟

)︂
𝑡2

𝜑̇2
−
(︂

1 − 2𝐺𝑀
𝑟

)︂−1 𝑟̇2

𝜑̇2
− 𝑟2 = 0

⇒ 𝑘2(︁
1 − 2𝐺𝑀

𝑟

)︁ 𝑟4

𝑙2
−
(︂

1 − 2𝐺𝑀
𝑟

)︂−1 (︃ 𝑑𝑟
𝑑𝜑

)︃2

− 𝑟2 = 0

⇒ 1
𝑟4

(︃
𝑑𝑟

𝑑𝜑

)︃2

+ 1
𝑟2

(︂
1 − 2𝐺𝑀

𝑟

)︂
−
(︃
𝑘

𝑙

)︃2

= 0. (2.119)

Observa-se que, nesse desenvolvimento, são descartadas soluções de queda radial,
uma vez que estas correspondem a 𝜑̇ = 0, representando fótons que se dirigem diretamente
à singularidade. Tais trajetórias não serão consideradas nesta análise.

A equação (2.119) é não linear e de resolução complexa. Para facilitar sua análise,
aplica-se a substituição 𝑢 = 𝑟−1, obtendo:

(︃
𝑑𝑢

𝑑𝜑

)︃2

+ 𝑢2(1 − 2𝐺𝑀𝑢) −
(︃
𝑘

𝑙

)︃2

= 0. (2.120)

Ao diferenciar essa equação em relação a 𝜑, obtém-se:

𝑑𝑢

𝑑𝜑

(︃
𝑑2𝑢

𝑑𝜑2 + 𝑢− 3𝐺𝑀𝑢2
)︃

= 0. (2.121)

Logo, 𝑢(𝜑) satisfaz uma das seguintes equações:

𝑑𝑢

𝑑𝜑
= 0, ou 𝑑2𝑢

𝑑𝜑2 + 𝑢 = 3𝐺𝑀𝑢2. (2.122)

A primeira condição implica uma trajetória com raio constante. Isso pode ser visto
ao observar:

𝑑𝑢

𝑑𝜑
= 𝑑𝑢

𝑑𝜆

𝑑𝜆

𝑑𝜑
= −𝑟̇

𝑙
= 0. (2.123)

Para uma órbita circular, impõem-se as condições 𝑟̇ = 𝑟 = 0. Substituindo tais
condições na equação da geodésica para a componente radial, obtém-se:

𝐺𝑀𝑡2

𝑟2 = 𝑟𝜑̇2. (2.124)
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Por outro lado, inserindo essas mesmas condições na equação do vínculo 𝑑𝑠2 = 0,
chega-se a:

(︂
1 − 2𝐺𝑀

𝑟

)︂
𝑡2 = 𝑟2𝜑̇2. (2.125)

Combinando essas duas expressões, deduz-se:

(︂
1 − 3𝐺𝑀

𝑟

)︂
𝑡2 = 0. (2.126)

Como 𝑡 = 0 não possui significado físico (a partícula não evoluiria temporalmente),
a única solução válida é 𝑟 = 3𝐺𝑀 . Esse resultado indica que, na métrica de Schwarzs-
child, órbitas circulares de fótons só são possíveis nesse raio. Embora esse valor não seja
fisicamente relevante para a maioria das estrelas (por estar em seu interior), ele se torna
crucial na descrição de buracos negros.

Retomando, a outra possibilidade para 𝑢(𝜑) é satisfazer a equação:

𝑑2𝑢

𝑑𝜑2 + 𝑢 = 3𝐺𝑀𝑢2. (2.127)

Dado que 3𝐺𝑀 ≪ 1 em muitas situações práticas, é conveniente tratar essa equa-
ção perturbativamente. Considera-se, portanto, a solução homogênea:

𝑑2𝑢

𝑑𝜑2 + 𝑢 = 0 ⇒ 𝑢(𝜑) = 𝐴 sin(𝜑+ 𝛿), (2.128)

com 𝛿 uma fase arbitrária, a qual pode ser desconsiderada por simplicidade. Assume-
se então a forma:

𝑢(𝜑) = 𝐴 sin(𝜑) + 𝜖𝑢1(𝜑), (2.129)

com 𝜖 ≡ 3𝐺𝑀 e 𝑢1(𝜑) representando a correção de primeira ordem. Substituindo
na equação original e mantendo apenas os termos de primeira ordem em 𝜖, obtém-se:

𝜖
𝑑2𝑢1

𝑑𝜑2 + 𝜖𝑢1 = 𝐴𝜖 sin2(𝜑). (2.130)

A solução para essa equação é:

𝑢1(𝜑) = 𝐴2

2

(︂
1 + 1

3 cos(2𝜑)
)︂
, (2.131)
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e, portanto, a solução aproximada para 𝑟 é:

1
𝑟

≃ 𝐴
(︂

sin(𝜑) + 𝐴𝜖

2 + 𝐴𝜖

6 cos(2𝜑)
)︂
. (2.132)

Para interpretar a constante 𝐴, basta considerar a solução homogênea:

𝑟 sin(𝜑) = 1
𝐴
. (2.133)

No plano equatorial (𝜃 = 𝜋/2), a quantidade 𝑟 sin(𝜑) representa a coordenada 𝑦 da
trajetória em coordenadas esféricas. Assim, essa equação descreve uma linha reta paralela
ao eixo 𝑥, a uma altura fixa 𝑦 = 1/𝐴:

Figura 1 – Representação da solução homogênea. Fonte: Das (DAS, 2011).

Com essa figura, torna-se evidente que a solução homogênea descreve a trajetória
de fótons não influenciados pela curvatura gravitacional. A partir dessa interpretação, a
constante 𝐴 é convenientemente reescrita como 𝐴 = 1/𝑟0, e a solução assume a forma:

1
𝑟

≃ 1
𝑟0

(︂
sin(𝜑) + 𝜖

2𝑟0
+ 𝜖

6𝑟0
cos(2𝜑)

)︂
. (2.134)

Para fins de comparação, apresenta-se a seguir uma figura gerada com base nessa
função. A curva em azul corresponde à solução completa, enquanto a linha traçada repre-
senta a solução homogênea, tangente à curva. Os valores de 𝜖, 𝑟0 e 𝛿 foram ajustados com
fins didáticos:

Figura 2 – Curva resultante da solução aproximada para a trajetória do fóton.
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3 Soluções exatas para trajetórias de fótons
no espaço de Schwarzschild

O capítulo anterior encerrou-se com uma primeira análise das geodésicas do tipo
nulo na métrica de Schwarzschild. O desenvolvimento foi conduzido de forma mais simples,
primeiramente descartando soluções sem momento angular e, ao final, utilizando métodos
perturbativos.

Este capítulo tem como objetivo a obtenção, de forma mais rigorosa, das soluções
possíveis para a equação diferencial (3.1). O desenvolvimento das soluções apresentadas
a seguir é inspirado em S. Chandrasekhar (CHANDRASEKHAR; THORNE, 1985).

(︃
1 − 2𝑀

𝑟

)︃(︃
𝑑𝑡

𝑑𝜆

)︃2

−
(︃

1 − 2𝑀
𝑟

)︃−1(︃
𝑑𝑟

𝑑𝜆

)︃2

− 𝑟2
(︃
𝑑𝜑

𝑑𝜆

)︃2

= 0. (3.1)

Anteriormente, as seguintes grandezas conservadas foram obtidas:

· 𝑟2𝜑̇ ≡ 𝑙, (3.2)

·
(︂

1 − 2𝐺𝑀
𝑟

)︂
𝑡 ≡ 𝑘, (3.3)

Com elas, é possível reescrever a equação (3.1) na forma:

(︃
𝑑𝑢

𝑑𝜑

)︃2

+ 𝑢2(1 − 2𝑀𝑢) −
(︃
𝑘

𝑙

)︃2

= 0. (3.4)

onde foi realizada a substituição 𝑢 = 1
𝑟
, e 𝐺 = 1 foi aplicado.

3.1 Solução radial
A fim de cumprir a lacuna deixada no capítulo anterior, será aqui considerado o

caso em que 𝜑̇ = 0. A equação (3.1) neste caso se torna:

𝑑𝑟

𝑑𝜆
= ±𝑘, (3.5)

Dado que:

𝑡 = 𝑘
(︂

1 − 2𝐺𝑀
𝑟

)︂−1
, (3.6)

é possível encontrar a seguinte solução para o tempo do observador:
𝑑𝑟

𝑑𝑡
= ±

(︂
1 − 2𝑀

𝑟

)︂
=⇒ 𝑡 = ±

∫︁ 𝑟

𝑟 − 2𝑀𝑑𝑟. (3.7)
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Por fim,

𝑡 = ±{𝑟 + 2𝑀 [log(𝑟 − 2𝑀) − 1] + 𝐶} (3.8)

= ±
[︂
𝑟 + 2𝑀 log

(︂
𝑟

2𝑀 − 1
)︂]︂

+ 𝐶±, (3.9)

Aqui se torna evidente que o tempo para o observador tende ao infinito conforme 𝑟 → 2𝑀 .
Neste ponto, é proveitoso definir a variável 𝑟*, tal que:

𝑟* = 𝑟 + 2𝑀 log
(︂
𝑟

2𝑀 − 1
)︂

=⇒ 𝑡 = ±𝑟* + 𝐶±. (3.10)

Esta variável possui os limites:

lim
𝑟→2𝑀

𝑟* = −∞, lim
𝑟→∞

𝑟* = ∞, (3.11)

e representa o espaço “acessível” 𝑟 = (2𝑀,+∞) para a partícula no referencial do
observador distante.

Por completude, a solução 𝑟(𝜆) é dada por:

𝑟(𝜆) = ±𝑘𝜆+ . (3.12)

Note que, de acordo com o tempo próprio, não há impedimento algum para a
partícula cruzar 𝑟 = 2𝑀 .

3.2 Órbitas críticas
Retornando a atenção para casos mais gerais, a equação (3.4) é reescrita na forma:

(︃
𝑑𝑢

𝑑𝜑

)︃2

= 2𝑀𝑢3 − 𝑢2 + 1
𝑏2 = 𝑓(𝑢), 𝑏 = 𝑘

𝑙
. (3.13)

Nota-se a definição de b, chamado parâmetro de impacto. Definitivamente as
possíveis soluções desta equação estão relacionadas às raízes da função 𝑓(𝑢), pois indicam
pontos de retorno para 𝑢(𝜑). Tomando uso das fórmulas de Vieta, as raízes deste polinômio
são tais que:

𝑢1 + 𝑢2 + 𝑢3 = 1
2𝑀 , (3.14)

𝑢1 · 𝑢2 · 𝑢3 = −1
2𝑀𝑏2 , (3.15)

Isto indica necessariamente a presença de uma raiz negativa, onde as outras 2
podem ser reais positivas ou complexo conjugadas. A primeira alternativa ainda pode ser
dividida em dois casos, onde as duas raízes positivas são iguais ou distintas.
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Para um melhor entendimento, verifica-se a disposição das raízes graficamente:

(a) Caso 1 (b) Caso 2 (c) Caso 3

Figura 3 – Gráficos da função 𝑓(𝑢) para diferentes parâmetros de impacto.

Os casos 2 e 3 possuem uma análise mais direta, pois são os casos onde as raízes
não negativas são reais. O caso 2 retrata o caso onde as raízes coincidem, e o caso 3 retrata
o caso onde as raízes são distintas.

Tratando as raízes positivas como pontos de inflexão na trajetória, já é possível
concluir que no caso 3, duas órbitas são matematicamente possíveis. A primeira permanece
no intervalo 0 ≤ 𝑢 ≤ 𝑢2, e a segunda no intervalo 𝑢3 ≤ 𝑢, dado que 𝑓(𝑢) não pode ser
negativo.

A solução para o caso 2 resulta numa trajetória circular instável, a mesma obtida
no capítulo anterior, e portanto é considerada especial entre as demais. O caso 1 é menos
trivial e discuti-lo sem antes desenvolver a equação diferencial não é de grande proveito,
mas o que se pode dizer é que o intervalo de 𝑢 para possíveis soluções de interesse abrange
toda a reta R+.

3.2.1 Caso 2

Dada a solução especial que surge deste caso, é proveitoso começar a análise bus-
cando duas raízes positivas coincidentes. Em termos de suas raízes, tem-se 𝑓(𝑢) na forma:

𝑓(𝑢) = 2𝑀(𝑢− 𝑢1)(𝑢− 𝑢2)(𝑢− 𝑢3). (3.16)

Dado que 𝑢2 = 𝑢3,

𝑓(𝑢) = (𝑢− 𝑢2)2𝑞(𝑢) =⇒ 𝑓 ′(𝑢) = 2(𝑢− 𝑢2)𝑞(𝑢) + (𝑢− 𝑢2)2𝑞′(𝑢), (3.17)

conclui-se que no caso de raiz dupla, de forma geral, 𝑓(𝑢2) = 𝑓 ′(𝑢2) = 0. Neste
caso específico:

𝑓 ′(𝑢) = 6𝑀𝑢2 − 2𝑢 = 0 =⇒ 𝑢 = (3𝑀)−1. (3.18)
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Substituindo este valor em 𝑓(𝑢), obtém-se:

𝑓(1/3𝑀) = 2
27𝑀2 − 1

9𝑀2 + 1
𝑏2 = 0 =⇒ 𝑏𝑐 = 3

√
3𝑀. (3.19)

O parâmetro de impacto 𝑏𝑐 para esta solução é destacado como parâmetro de
impacto crítico. Ao substituir 𝑏 = 𝑏𝑐 nas fórmulas de Vieta, tem-se:

𝑢1 = −1
6𝑀 ; 𝑢2 = 𝑢3 = 1

3𝑀 , (3.20)

E a equação diferencial se torna:(︃
𝑑𝑢

𝑑𝜑

)︃2

= 2𝑀𝑢3 − 𝑢2 + 1
27𝑀2 . (3.21)

É possível integrar esta equação diferencial,

𝜑 = 1√
2𝑀

∫︁ 𝑑𝑢

(𝑢− 1/3𝑀)
√︁

(𝑢+ 1/6𝑀)
(3.22)

= 𝜑0 − 2 tanh−1
(︂√

2𝑀
√︁
𝑢+ 1/6𝑀

)︂
. (3.23)

Assim é obtida a solução para 𝑢(𝜑), na forma:

𝑢(𝜑) = 1
2𝑀 tanh2 1

2(𝜑− 𝜑0) − 1
6𝑀 . (3.24)

Para que 𝑢(0) = 0, têm-se os seguintes valores de 𝜑0:

𝜑0± = ±2𝑡𝑎𝑛ℎ−1
(︃

1√
3

)︃
. (3.25)

(a) para 𝜑0+ (b) para 𝜑0−

Figura 4 – Solução para 𝜑0±, com 𝑀 = 1
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É evidente que a escolha com significado físico corresponde a 𝜑0 = 𝜑0−. Os gráficos
para 𝑢(𝜑) e 𝑟(𝜑) seguem abaixo:

Figura 5 – Gráfico em coordenadas polares para 𝑢(𝜑) e 𝑟(𝜑)

Logo, a solução exata mostra como fótons com parâmetro de impacto crítico 𝑏 = 𝑏𝑐

são capturados na órbita circular em 𝑟 = 3𝑀 (nos gráficos acima, 𝑀 = 1), assim como
demonstrado no capítulo anterior.

3.2.1.1 Sobre 𝑢2 ≤ 𝑢

A solução encontrada por meio da integração da equação diferencial relata a histó-
ria de uma partícula confinada no intervalo 𝑟2 ≤ 𝑟 ≤ ∞. Porém, o gráfico 3b não impede
a existência de uma solução no intervalo 𝑢2 ≤ 𝑢 (0 ≤ 𝑟 ≤ 𝑟2).

Uma substituição que expressa esse domínio para 𝑢 é dada por:

𝑢 = 1
3𝑀 + 1

2𝑀 tan2 𝛾

2 , (0 ≤ 𝛾 < 𝜋) (3.26)

Ao aplicar esta substituição na equação diferencial, obtém-se:

(︃
𝑑𝑢

𝑑𝜑

)︃2

=
(︂ 1

2𝑀

)︂2
tan2 𝛾

2 sec4 𝛾

2

(︃
𝑑𝛾

𝑑𝜑

)︃2

=
(︂

1 + tan2 𝛾

2

)︂ 1
4𝑀2 tan4 𝛾

2 . (3.27)

Simplificar e integrar esta equação, resulta em 𝜑(𝛾):

(︃
𝑑𝛾

𝑑𝜑

)︃2

= sin2 𝛾

2 =⇒ 𝜑(𝛾) = 2 log
[︃

tan
(︃
𝛾

4

)︃]︃
+ 𝐶. (3.28)

Ao aplicar esta relação na substituição (3.26), obtém-se finalmente a solução 𝑢(𝜑):

𝑒
1
2 (𝜑−𝐶) = tan 𝛾4 =⇒ 𝑢 = 1

3𝑀 + 2
𝑀

𝑒𝜑−𝐶

(1 − 𝑒𝜑−𝐶)2 . (3.29)
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Para 𝐶 = 0, esta solução é tal que:

lim
𝜑→0

(︃
1

3𝑀 + 2𝑒𝜑
𝑀(𝑒𝜑 − 1)2

)︃
= ∞ =⇒ lim

𝜑→0
𝑟 = 0, (3.30)

assim como,

lim
𝜑→∞

(︃
1

3𝑀 + 2𝑒𝜑
𝑀(𝑒𝜑 − 1)2

)︃
= 1

3𝑀 =⇒ lim
𝜑→∞

𝑟 = 3𝑀. (3.31)

Conclui-se que esta solução é o “par” previsto pelo gráfico 3b, descrevendo um
fóton com origem na singularidade, capturado na órbita circular em 𝑟 = 3𝑀 .

De fato, graficamente, esta solução tem esse comportamento:

Figura 6 – Gráfico em coordenadas polares para 𝑢(𝜑) e 𝑟(𝜑).

3.2.2 Caso 3

Busca-se agora a solução correspondente ao gráfico 3c, com duas raízes positivas e
distintas. Ao relembrar as relações 3.15, é possível escrever as 3 raízes de 𝑓(𝑢) na seguinte
forma:

𝑢1 = 𝑃 − 2𝑀 −𝑄

4𝑀𝑃
; 𝑢2 = 1

𝑃
; 𝑢3 = 𝑃 − 2𝑀 +𝑄

4𝑀𝑃
. (3.32)

Ela imediatamente satisfaz a relação de soma, com 𝑄 sendo uma constante a
determinar. Além disso, a relação 𝑢1 < 𝑢2 < 𝑢3 permanece, resultando em:

𝑢3 > 𝑢2 =⇒ 1
𝑃
<
𝑃 − 2𝑀 +𝑄

4𝑀𝑃
(3.33)

=⇒ 𝑃 − 6𝑀 +𝑄 > 0, (3.34)
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e,

𝑢2 > 𝑢1 =⇒ 1
𝑃
>
𝑃 − 2𝑀 −𝑄

4𝑀𝑃
(3.35)

=⇒ 𝑃 − 6𝑀 −𝑄 < 0 (3.36)
=⇒ |𝑄| > |𝑃 − 6𝑀 |, (3.37)

Nota-se que esta configuração é especialmente intuitiva para a órbita confinada
em 0 ≤ 𝑢 ≤ 𝑢2, na qual 𝑟2 = 𝑃 seria o “periélio”. Ao escrever 𝑓(𝑢) na forma:

𝑓(𝑢) = 2𝑀
(︃
𝑢− 𝑃 − 2𝑀 −𝑄

4𝑀𝑃

)︃(︃
𝑢− 1

𝑃

)︃(︃
𝑢− 𝑃 − 2𝑀 +𝑄

4𝑀𝑃

)︃
(3.38)

= 2𝑀𝑢3 − 𝑢2 + 𝑢

[︃
𝑃 2 − (2𝑀 −𝑄)2

8𝑀𝑃 2 + 𝑃 − 2𝑀 −𝑄

2𝑃 2

]︃
− (𝑃 − 2𝑀)2 −𝑄2

8𝑀𝑃 3 , (3.39)

e comparar com a expressão (3.13), obtém-se a seguinte relação para 𝑄:[︃
𝑃 2 − (2𝑀 −𝑄)2

8𝑀𝑃 2 + 𝑃 − 2𝑀 −𝑄

2𝑃 2

]︃
= 0 =⇒ 𝑄2 = (𝑃 − 2𝑀)(𝑃 + 6𝑀). (3.40)

E para 𝑏,

1
𝑏2 = 𝑄2 − (𝑃 − 2𝑀)2

8𝑀𝑃 3 = (𝑃 − 2𝑀)(𝑃 + 6𝑀) − (𝑃 − 2𝑀)2

8𝑀𝑃 3 (3.41)

=⇒ 𝑏 =
√︃

𝑃 3

𝑃 − 2𝑀 . (3.42)

Dada a inequação (3.37), a definição de 𝑄 tem uma importante consequência:

𝑄2 > (𝑃 − 6𝑀)2 (3.43)
=⇒ (𝑃 − 2𝑀)(𝑃 + 6𝑀) > (𝑃 − 6𝑀)2 (3.44)
=⇒ 𝑃 > 3𝑀. (3.45)

Pensando na órbita respectiva ao intervalo 0 ≤ 𝑢 ≤ 𝑢2, o ponto mais próximo
da singularidade está além do raio definido para trajetória circular.

A dependência entre 𝑏 e 𝑃 , vista graficamente, torna evidente que o ponto para
𝑃 = 3𝑀 é tal que 𝑏 = 𝑏𝑐. Logo, o caso de duas raízes positivas distintas é o caso para
𝑏 > 𝑏𝑐.
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Figura 7 – Dependência entre 𝑏 e o parâmetro 𝑃 .

3.2.2.1 Sobre 0 ≤ 𝑢 ≤ 𝑢2

É possível reparametrizar 𝑢 neste intervalo por meio da substituição:

𝑢− 1
𝑃

= −(𝑄− 𝑃 + 6𝑀)
8𝑀𝑃

(1 + cos𝜒). (3.46)

Com esta escolha de variável, verifica-se diretamente que 𝑢(𝜒 = 𝜋) = 1/𝑃 . Já no
limite inferior, correspondente a 𝑢 = 0, a condição sobre 𝜒 = 𝜒∞ resulta em

cos𝜒∞ = −2 𝑄− 𝑃 + 2𝑀
𝑄− 𝑃 + 6𝑀 + 1, (3.47)

=⇒ sin2 𝜒∞

2 = 𝑄− 𝑃 + 2𝑀
𝑄− 𝑃 + 6𝑀 . (3.48)

Para determinar de forma mais precisa o intervalo de variação de 𝜒, é útil analisar
o comportamento gráfico de 𝑢(𝜒):

Figura 8 – 𝑢(𝜒) para 𝑃 = 4𝑀 e 𝑀 = 1.
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Observa-se, conforme discutido anteriormente, que 𝑢(𝜒 = 𝜋) = 1/𝑃 . Mais im-
portante ainda, nota-se que 𝑢 permanece confinado no intervalo 0 ≤ 𝑢 ≤ 𝑢2 para
𝜒∞ ≤ 𝜒 ≤ 2𝜋 − 𝜒∞.

Substituindo em (3.13), após simplificações algébricas sequenciais, obtém-se:(︃
𝑑𝜒

𝑑𝜑

)︃2

= 𝑄

𝑃

(︃
1 − 𝑄− 𝑃 + 6𝑀

2𝑄 sin2 𝜒

2

)︃
(3.49)

= 𝑄

𝑃

(︂
1 − 𝑘2 sin2 𝜒

2

)︂
, (3.50)

Foi então introduzido o parâmetro

𝑘2 = 𝑄− 𝑃 + 6𝑀
2𝑄 . (3.51)

A solução desta equação diferencial é dada por

𝜑 = 2
√︃
𝑃

𝑄

[︃
𝐾(𝑘) − 𝐹

(︂
𝜒

2 , 𝑘
)︂ ]︃
, (3.52)

em que 𝐹 (𝜑, 𝑘) denota a integral elíptica incompleta de primeira espécie e

𝐾(𝑘) = 𝐹
(︂
𝜋

2 , 𝑘
)︂

(3.53)

é a integral elíptica completa de primeira espécie (GRADSHTEYN; RYZHIK, 2014). Os
limites foram escolhidos de modo que 𝜑 = 0 a 𝑢 = 1/𝑃 .

No limite 𝑢 → 0 (isto é, 𝑟 → ∞), tem-se:

𝜑∞ = 2
√︃
𝑃

𝑄

[︃
𝐾(𝑘) − 𝐹

(︁
𝜒∞
2 , 𝑘

)︁ ]︃
, (3.54)

𝜒∞ = 2 arcsin
(︃
𝑄− 𝑃 + 2𝑀
𝑄− 𝑃 + 6𝑀

)︃1/2

. (3.55)

Em posse desta solução, é instrutivo investigar o comportamento de 𝜑∞ no li-
mite 𝑃 → 3𝑀 , o qual corresponde a 𝑏 → 𝑏𝑐. Observa-se que, nas integrais elípticas, a
dependência em 𝑃 aparece apenas no parâmetro 𝑘, para o qual:

lim
𝑃→3𝑀

𝑘 = lim
𝑃→3𝑀

√︃
𝑄− 𝑃 + 6𝑀

2𝑄 = 1. (3.56)

Para 𝐹 (𝜒∞, 𝑘), 𝑘 = 1 é definido e tal que:

𝐹
(︂𝜒∞

2 , 1
)︂

=
∫︁ 𝜒∞

2

0

𝑑𝜒′
√

1 − sin2 𝜒′ = 1
2 log

(︃√
3 + 1√
3 − 1

)︃
. (3.57)
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Para a integral 𝐾(𝑘) sabe-se que ocorre uma divergência no limite 𝑘 → 1. Assim,
considera-se uma pequena variação em torno do raio crítico, escrevendo

𝑃 = (3 + 𝛿)𝑀, (3.58)

com 𝛿 ≪ 1, de modo a buscar uma aproximação assintótica.

Partindo da definição

𝑄 =
√︁

(𝑃 − 2𝑀)(𝑃 + 6𝑀), (3.59)

expande-se em série para 𝛿 pequeno:

𝑄 = 3𝑀 + 5
3 𝛿𝑀 +𝑂(𝛿2). (3.60)

Dessa forma, o parâmetro elíptico satisfaz

𝑘2 = 𝑄− 𝑃 + 6𝑀
2𝑄 =⇒ 𝑘2 ≈ 1 − 4

9 𝛿. (3.61)

É conveniente então introduzir

𝑘′2 ≡ 1 − 𝑘2 = 4
9 𝛿, (3.62)

onde 𝑘′ é chamado de complemento do módulo elíptico.

No regime 𝑘′ → 0, utiliza-se a aproximação assintótica bem conhecida para a
integral elíptica completa de primeira espécie:

𝐾(𝑘) ≈ log 4
𝑘′ = log 6 − 1

2 log 𝛿. (3.63)

Juntando todos os resultados anteriores, obtém-se:

lim
𝑃→3𝑀

𝜑∞ ≈ 1
2 log

[︃
64

√
3(

√
3 − 1)2

2(
√

3 + 1)2

]︃
− 1

2 log
√

3 𝛿2

2 . (3.64)

É possível associar este resultado à variação do parâmetro de impacto:

𝑏 =
√︃

𝑃 3

𝑃 − 2𝑀 =

⎯⎸⎸⎷𝑀3(3 + 𝛿)3

𝑀(1 + 𝛿) ≈ 𝑏𝑐 +
√

3
2 𝑀 𝛿2. (3.65)

Nota-se que a correção de primeira ordem em 𝛿 para 𝑏 é nula. Definindo

𝛿𝑏 ≡
√

3
2 𝑀 𝛿2, (3.66)

tem-se finalmente

lim
𝑃→3𝑀

𝜑∞ ≈ 1
2 log

[︃
64

√
3(

√
3 − 1)2

2(
√

3 + 1)2

]︃
− 1

2 log 𝛿𝑏
𝑀
. (3.67)
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A seguir apresenta-se a comparação gráfica entre a aproximação obtida e a expres-
são exata de 𝜑∞:

Figura 9 – Deflexão da luz em função do parâmetro de impacto.

Este gráfico, com 𝜑 = 0 no periélio, indica, para cada 𝑏, a deflexão total da luz
até o ponto de retorno em u = u2.

Observa-se uma forte concordância na vizinhança de 𝑏 ≈ 𝑏𝑐 (𝑃 ≈ 3𝑀). Além disso,
mesmo afastando-se deste regime, a discrepância entre as duas expressões permanece
pequena. Por fim, ambas as expressões concordam no aspecto fundamental: a deflexão
torna-se infinita no parâmetro de impacto crítico, correspondente à órbita circular.

Pode-se, portanto, a partir da solução de 𝜑, obter 𝑟(𝜑) de forma a visualizar mais
intuitivamente a trajetória do fóton e confirmar a deflexão até o periélio em 𝑟 = 𝑃 .

Figura 10 – Trajetória do fóton para 𝑃 = 3𝑀 + 10−4, 𝑀 = 1 .
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Observando a trajetória para além do ponto de retorno (lembrando que 𝜒∞ ≤ 𝜒 ≤
2𝜋 − 𝜒∞), tem-se:

(a) 𝑃 = 10𝑀 , 𝑀 = 1

(b) 𝑃 = (3 + 10−4)𝑀 , 𝑀 = 1

Figura 11 – Trajetória do fóton além de 𝑟 = 𝑃 .
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3.2.2.2 Sobre 𝑢 ≥ 𝑢3

Resta agora considerar uma solução confinada no intervalo [𝑢3,+∞), a qual cor-
responde a trajetórias que permanecem entre a singularidade 𝑟 = 0 e um ponto máximo
𝑟3. Com isto em mente, propõe-se a seguinte substituição:

𝑢 = 1
𝑃

+ 𝑄+ 𝑃 − 6𝑀
4𝑀𝑃

sec2 𝜒

2 . (3.68)

Esta substituição apresenta os seguintes limites:

lim
𝜒→0

𝑢 = 𝑄+ 𝑃 − 2𝑀
4𝑀𝑃

= 𝑢3, (3.69)

lim
𝜒→𝜋

𝑢 = ∞. (3.70)

Neste caso, o intervalo de variação para 𝜒 é definido trivialmente como 0 ≤ 𝜒 ≤ 𝜋.

É aplicada a substituição acima à equação (3.13), após simplificações obtém-se:

(︃
𝑑𝜒

𝑑𝜑

)︃2

= 𝑄

𝑃

(︃
1 − 𝑄− 𝑃 + 6𝑀

2𝑄 sin2 𝜒

2

)︃
, (3.71)

= 𝑄

𝑃

(︂
1 − 𝑘2 sin2 𝜒

2

)︂
. (3.72)

Neste formato, fica evidente que a solução é novamente expressa em termos de
integrais elípticas. Escolhendo 𝜑(0) = 0, tem-se:

𝜑 = 2
√︃
𝑃

𝑄
𝐹
(︂𝜒

2 , 𝑘
)︂
. (3.73)

Desta solução obtém-se a relação 𝑟(𝜑), que descreve trajetórias iniciadas em 𝑢3

e direcionadas para a singularidade. Tais trajetórias estão representadas, em dois casos
distintos, na figura 12.

3.2.3 Caso 1

Antes de qualquer análise mais detalhada, recorda-se que o Caso 1 é caracteri-
zado pela presença de uma raiz negativa (𝑢1 < 0) e de duas raízes complexo-conjugadas
(𝑢2, 𝑢3 ∈ C). Recorda-se também que elas devem satisfazer as relações:

𝑢1 + 𝑢2 + 𝑢3 = 1
2𝑀 (3.74)

𝑢1 · 𝑢2 · 𝑢3 = −1
2𝑀𝑏2 (3.75)
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(a) 𝑃 = (3 + 10−4)𝑀 , 𝑀 = 1

(b) 𝑃 = 5𝑀 , 𝑀 = 1

Figura 12 – Trajetórias no intervalo [𝑢3,+∞).
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Definindo de forma geral 𝑢2/3 = 𝑎± 𝑖𝑐, tem-se:

𝑢1 + 𝑢2 + 𝑢3 = 1
2𝑀 =⇒ 𝑢1 = 1

2𝑀 − 2𝑎. (3.76)

Deste resultado surge a restrição 𝑎 ≥ 1/4𝑀 , dado que 𝑢1 deve ser negativo. Com
essas expressões para as raízes, é possível escrever o polinômio 𝑓(𝑢) na forma:

𝑓(𝑢) = 2𝑀
(︃
𝑢− 1

2𝑀 + 2𝑎
)︃

(𝑢− 𝑎− 𝑖𝑐)(𝑢− 𝑎+ 𝑖𝑐), (3.77)

= 2𝑀
(︃
𝑢− 1

2𝑀 + 2𝑎
)︃

[(𝑢− 𝑎)2 + 𝑐2]. (3.78)

Comparar esta expressão com a equação (3.13) leva às seguintes equações:

𝑀𝑐2 + 𝑎− 3𝑀𝑎2 = 0, (3.79)

𝑎2 + 𝑐2 − 4𝑀𝑎3 − 4𝑀𝑎𝑐2 = − 1
𝑏2 . (3.80)

Da primeira equação é obtido um novo limite sobre a:

𝑐2 = 3𝑎2 − 𝑎

𝑀
=⇒ 𝑎 >

1
3𝑀 . (3.81)

Ao substituir a expressão de 𝑐2 na segunda equação, tem-se:

8𝑎3 − 4𝑎2

𝑀
+ 𝑎

2𝑀2 = 1
2𝑀𝑏2 , (3.82)

dado que 𝑎 > 1
3𝑀 ,

𝑏 < 3
√

3𝑀. (3.83)

Conclui-se que o caso 1 abrange fótons com parâmetro de impacto inferior ao
crítico 𝑏𝑐. Para confinar a variável na reta R+, como indicado no gráfico 3a, propõe-se a
substituição:

𝑢 = 𝑎+ 𝑐 tan 𝛾2 . (3.84)

onde o limite inferior (𝑢 = 0) é dado por:

𝑎+ 𝑐 tan 𝛾∞

2 = 0 =⇒ 𝛾∞ = −2 arctan 𝑎
𝑐
, (3.85)

e o intervalo para 𝛾 neste caso também é trivialmente definido como 𝛾∞ ≤ 𝛾 ≤ 𝜋.
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Esta substituição leva a equação (3.13) à:

(︃
𝑑𝛾

𝑑𝜑

)︃2

= 2 [(6𝑀𝑎− 1) + (6𝑀𝑎− 1) cos 𝛾 + 2𝑀𝑐 sin 𝛾] . (3.86)

Neste ponto, propõe-se uma segunda substituição:

sin2 𝜓 = 1
Δ + 6𝑀𝑎− 1{Δ − 2𝑀𝑐 sin 𝛾 − (6𝑀𝑎− 1) cos 𝛾}, Δ =

√︁
(6𝑀𝑎− 1)2 + 4𝑀2𝑐2

(3.87)

Para 𝛾 = 𝜋 obtém-se sin2 𝜓 = 1. Já para 𝛾 = 𝛾∞, tem-se:

sin2 𝜓∞ = 1
Δ + 6𝑀𝑎− 1

[︃
Δ + 6𝑀𝑎3 − 2𝑀𝑐2𝑎+ 𝑐2 − 𝑎2

𝑐2 + 𝑎2

]︃
. (3.88)

Considerando que 𝑐2 = 3𝑎2 − 𝑎/𝑀 , essa expressão se reduz a

sin2 𝜓∞ = Δ + 1
Δ + 6𝑀𝑎− 1 . (3.89)

É instrutivo analisar graficamente o comportamento desta substituição no intervalo
𝛾∞ ≤ 𝛾 ≤ 𝜋:

Figura 13 – sin2 𝜓 em função de 𝛾.

Observa-se que o zero de sin2 𝜓 ocorre dentro do intervalo considerado, entre 𝛾∞

e 𝛾 = 𝜋. Conclui-se, portanto, que 𝜓 deve satisfazer

𝜓∞ ≤ 𝜓 ≤ 𝜋
2 , 𝜓∞ < 0 (3.90)
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De forma mais exata, o zero de sin2 𝜓 é:

𝛾0 = arctan
[︂ 2𝑀𝑐

6𝑀𝑎− 1

]︂
. (3.91)

Com esta substituição, a equação (3.86) se torna:

(︃
𝑑𝜓

𝑑𝜑

)︃2

= Δ[1 − 𝑘2 sin2 𝜓], 𝑘2 = Δ + 6𝑀𝑎− 1
2Δ (3.92)

Para 𝜑(𝜋/2) = 0, a solução é dada na forma:

𝜑(𝜓) = 1
Δ1/2 [𝐾(𝑘) − 𝐹 (𝜓, 𝑘)], 𝜓∞ ≤ 𝜓 ≤ 𝜋

2 (3.93)

Antes de visualizar graficamente a solução 𝑟(𝜑), é didático fazer algumas observa-
ções sobre a equação (3.89). Foi constatado o limite 𝑎 > 1/3𝑀 , e este é tal que,

lim
𝑎→1/3𝑀

sin2 𝜓 = 1. (3.94)

Graficamente,

Figura 14 – sin2 𝜓 para 𝑎 = (1/3 + 10−4)𝑀, 𝑀 = 1.

Isto implica que o limite inferior do intervalo para 𝜓 é tal que:

lim
𝑎→1/3𝑀

𝜓∞ = −𝜋

2 . (3.95)

Além disso, é fato que 𝜓∞ < 0 para todo 𝑎 ∈ (1/3𝑀,∞), pois 𝛾∞ < 0 neste
intervalo. Este limite para 𝑎 também se traduz de forma importante na equação (3.80)
para 𝑏:
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Figura 15 – parâmetro de impacto em função de 𝑎, 𝑀 = 1.

Com o gráfico, se torna evidente que,

lim
𝑎→1/3𝑀

𝑏 = 𝑏𝑐. (3.96)

Na trajetória 𝑟(𝜑) portanto, espera-se que estes casos se traduzam em maiores
deflexões. De fato:

Figura 16 – 𝑟(𝜑) para 𝑎 = (1/3 + 10−6)𝑀 , 𝑀 = 1
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A figura 17 evidencia por outro lado, que a deflexão cai rapidamente em compa-
ração com o crescimento de 𝑎:

Figura 17 – 𝑟(𝜑) para 𝑎 = 𝑀 , 𝑀 = 1

É válido portanto fazer, analogamente ao caso 3, a análise da deflexão total 𝜑∞,
do infinito à singularidade, onde:

𝜑∞ = 1
Δ1/2 [𝐾(𝑘) − 𝐹 (𝜓∞, 𝑘)] , (3.97)

= 1
[48𝑀2𝑎2 − 16𝑀𝑎+ 1]1/4

[︃∫︁ 𝜋/2

0

𝑑𝜃

(1 − 𝑘2 sin2(𝜃)) −
∫︁ 𝜓∞

0

𝑑𝜃

(1 − 𝑘2 sin2(𝜃))

]︃
, (3.98)

onde 𝑐2 = 3𝑎2 − 𝑎/𝑀 foi utilizado. Tem-se que 𝑘 e Δ são tais que:

lim
𝑎→1/3𝑀

𝑘2 = 1, lim
𝑎→1/3𝑀

Δ1/2 = 1 (3.99)

Aliando isto à equação (3.96), é possível obter novamente uma aproximação para
a deflexão total na região 𝑏 ≈ 𝑏𝑐:

lim
𝑎→1/3𝑀

𝜑∞ = lim
𝑎→1/3𝑀

[︃
𝐾(𝑘) − 𝐹 (𝜓∞, 𝑘)

Δ1/2

]︃
(3.100)

=⇒ lim
𝑏→𝑏𝑐

𝜑∞ = lim
𝑘→1

𝐾(𝑘) − lim
𝑎→1/3𝑀

𝐹 (𝜓∞, 𝑘) (3.101)

Novamente, dada a singularidade presente em 𝐾(𝑘) para 𝑘 = 1, busca-se a resposta
por meio de uma pequena variação:

𝑎 = 1
3𝑀 + 𝛿, 𝛿 << 1. (3.102)
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Para 𝑘2, tem-se:

𝑘2 = 1
2 + 6𝑀𝑎− 1

2 [48𝑀2𝑎2 − 16𝑀𝑎+ 1]1/2 (3.103)

=⇒ 𝑘2|𝑎=(3𝑀)−1+𝛿 = 1 − 𝛿𝑀 +𝑂2(𝛿). (3.104)

Para 𝑏,

𝑏 =
(︂

16𝑀𝑎3 − 8𝑎2 + 𝑎

𝑀

)︂−1/2
(3.105)

=⇒ 𝑏|𝑎=(3𝑀)−1+𝛿 = 𝑏𝑐 − (27)3/2

2 𝛿𝑀2. (3.106)

Deste resultado tem-se a relação:

𝛿 = 2𝛿𝑏
(27)3/2𝑀2 , 𝛿𝑏 = 𝑏𝑐 − 𝑏. (3.107)

Novamente definindo a variável 𝑘′2 = 1 − 𝑘2, ressurge a aproximação:

𝐾(𝑘) ≈ log 4
𝑘′ , (𝑘′ → 0). (3.108)

Logo,

𝐾(𝑘)|𝑎=(3𝑀)−1+𝛿 ≈ 1
2 log

(︂
8(27)3/2𝑀

𝛿𝑏

)︂
(3.109)

Antes de considerar o limite para 𝐹 (𝜓∞, 𝑘), é necessário relembrar 3.95. Com isto
em mente, concluí-se que:

lim
𝑎→1/3𝑀

𝐹 (𝜓∞, 𝑘) = lim
𝑘→1

𝐹
(︂

−𝜋

2 , 𝑘
)︂

= − lim
𝑘→1

𝐾(𝑘), (3.110)

logo,

lim
𝑏→𝑏𝑐

𝜑∞ = lim
𝑘→1

𝐾(𝑘) − lim
𝑎→1/3𝑀

𝐹 (𝜓∞, 𝑘) (3.111)

= log
(︂

8(27)3/2𝑀

𝛿𝑏

)︂
. (3.112)

O gráfico 18 apresenta a comparação gráfica entre a aproximação obtida e o resul-
tado exato 3.98:
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Figura 18 – Comparação entre solução exata e aproximação para 𝜑∞

Em oposição à análise do caso onde 𝑏 > 𝑏𝑐, a presente aproximação diverge rapi-
damente. Para uma aproximação de 𝑘 em segunda ordem de 𝛿, onde

𝑘′2 = 1 − 𝑘2 = 𝛿𝑀 − 12𝑀2𝛿2, 𝛿 = 2𝛿𝑏
(27)3/2𝑀2 (3.113)

tem-se:

Figura 19 – Segunda comparação entre solução exata e aproximação para 𝜑∞

Tal aproximação apresenta uma concordância mais significativa nas proximidades
de 𝑏𝑐.
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4 Simulações de Buracos Negros

De posse das soluções para todas as situações possíveis, o último passo relevante
é simular cenários didáticos e simplificados, a fim de obter uma intuição maior sobre a
aparência de buracos negros.

No contexto deste capítulo, todas as soluções foram ajustadas para que o ângulo
inicial da trajetória (𝜑 = 0) ocorra no observador distante (infinito). Como exemplo
prático, a solução do caso 3 para esse ponto inicial assume a forma:

𝜑 = 2
√︃
𝑃

𝑄

(︂
𝐹 − 𝐹

(︂𝜒∞

2 , 𝑘
)︂)︂

. (4.1)

Figura 20 – Caso 3 para 𝜑 = 0 no infinito.

A visualização ampliada deixa clara a coincidência entre o raio aparente e o parâ-
metro de impacto, que, neste caso, é 𝑏 ≈ 5.196𝑀 .
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4.1 Casos Didáticos
As primeiras e mais simples simulações possíveis retratam casos irreais, porém

importantes do ponto de vista didático. São situações em que a singularidade possui uma
iluminação de fundo: uma fonte luminosa de intensidade homogênea, posicionada no
infinito.

4.1.1 Casca Esférica

Esta situação possui uma descrição simples: considera-se um observador distante
da singularidade, e uma tela luminosa, de emissão homogênea e formato de casca esférica,
envolvendo ambos.

Para simular a visão que o observador distante tem da singularidade, utiliza-se
um “rastreamento reverso” do fóton, em que a trajetória do fóton começa no olho do
observador e termina na tela esférica, ou então cai na singularidade. Fótons que encontram
a tela no infinito (isto é, escapam da singularidade) são plotados com seu respectivo
raio aparente (𝑏) e a intensidade de emissão da tela (isotrópica). Fótons capturados pela
singularidade não são plotados.

Figura 21 – Visualização para fonte isotrópica de luz.

Como esperado, a região negra da imagem corresponde a todos os fótons cujo
parâmetro de impacto é inferior a 𝑏𝑐. Esses percorrem trajetórias que vão de encontro à
singularidade.
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4.1.2 Tela Infinita

Neste caso, o observador distante encara diretamente a singularidade, e atrás dela,
no infinito, encontra-se uma tela de proporções infinitas e emissão homogênea. Em todas
as simulações deste capítulo, aplica-se a metodologia do “rastreamento reverso”, e neste
caso, para que o fóton seja plotado, não é suficiente apenas que ele escape da singularidade,
mas também que, ao escapar para o infinito, o faça na direção da tela.

Figura 22 – Visualização para tela infinita de fundo.

Um resultado importante emerge desta simulação: a região negra se estende até
𝑟 ≈ 6.17𝑀 . Entretanto, dentro dessa área, um pequeno anel luminoso se destaca, formado
por fótons com 𝑏 ≈ 5.20𝑀 . A interpretação é direta: entre 𝑏𝑐 e 𝑏 = 6.17𝑀 , apenas esses
fótons escapam da singularidade e seguem na direção da tela de fundo.

4.2 Toy Model com Disco de Acreção
Os casos relatados anteriormente são importantes para a construção intuitiva, mas

são extremamente simplificados e irreais. De forma mais realista, as fontes de luminosidade
que determinam a sombra do buraco negro são os chamados discos de acreção, aglomerados
de matéria que orbitam a singularidade.

Tudo o que será discutido nesta seção baseia-se no contexto representado na Fi-
gura 23. O observador distante encara a singularidade diretamente pelo “polo norte”,
enquanto o disco de acreção está situado no plano equatorial. Apesar dessas considera-
ções mais realistas, este ainda é um toy model, pois tanto o buraco negro quanto o disco
de acreção são não girantes e eletricamente neutros.
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Figura 23 – Configuração das simulações: “Face-On View”.

No presente contexto, o disco é também opticamente fino, no sentido de que os
fótons atravessam-no livremente, sem absorção (como no caso em que a matéria do disco é
gasosa). A intensidade de emissão do disco é angularmente simétrica, dependendo apenas
da distância até a singularidade.

4.2.1 Intensidade de emissão - 𝐼(𝑟)

O desenvolvimento apresentado nesta seção é inspirado em Thorne (THORNE;
MISNER; WHEELER, 2000).

Considera-se uma nuvem de partículas idênticas, seguindo suas respectivas traje-
tórias geodésicas no espaço tempo, esta nuvem é tal que não há colisões internas. Em
um certo ponto 𝑃0 desta trajetória, é considerado um observador local lorentziano.

Este observador, determina um volume 𝑉𝑥 em torno de si mesmo (da origem) e um
intervalo de momento linear 𝑉𝑝 também centrado nele mesmo (referencial de repouso),

𝑉𝑝 = Δ𝑝𝑥Δ𝑝𝑦Δ𝑝𝑧, 𝑉𝑥 = Δ𝑥Δ𝑦Δ𝑧 (4.2)

Por fim, o observador contabiliza quantas (N) partículas da nuvem estão presentes
dentro de 𝑉𝑥 e 𝑉𝑝. Nota-se que as partículas possuem mesma massa, e portanto a energia
está fixada pelo intervalo 𝑉𝑝, pois:

𝑝0 =
√︁
𝑚2 + 𝑝𝑖𝑝𝑖 (4.3)

Por fim, define-se o volume no espaço de fase na seguinte forma:

𝑉 = 𝑉𝑥𝑉𝑝 = Δ𝑝𝑥Δ𝑝𝑦Δ𝑝𝑧Δ𝑥Δ𝑦Δ𝑧 (4.4)
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Definitivamente dois observadores com velocidades relativas em geral não concor-
dam sobre 𝑉𝑥 ou 𝑉𝑝, porém o volume no espaço de fase é especial por ser invariante por
transformações de Lorentz.

Para provar esta afirmação, considera-se um segundo observador 𝑂, tal que os
volumes ocupados por essas N partículas idênticas são:

𝑉𝑥 = Δ𝑥Δ𝑦Δ𝑧, (4.5)
𝑉𝑝 = Δ𝑝𝑥Δ𝑝𝑦Δ𝑝𝑧, (4.6)

Por simplicidade, a velocidade relativa 𝛽 entre os dois está na direção 𝑥̂, e portanto,
pela contração de Lorentz:

𝑉𝑥 = (1 − 𝛽2)1/2𝑉𝑥. (4.7)

Para encontrar a relação entre 𝑉𝑝 e 𝑉𝑝 é necessário contabilizar o jacobiano:

=⇒ 𝐽 =
⃒⃒⃒⃒
⃒⃒𝜕𝑝𝑖𝜕𝑝𝑗

⃒⃒⃒⃒
⃒⃒ . (4.8)

Dada a direção do movimento relativo,

𝑉𝑝 =
⃒⃒⃒⃒
⃒𝑝0

𝑝0

⃒⃒⃒⃒
⃒𝑉𝑝, (4.9)

e dado que 𝑝0 = 𝑚,
𝑉𝑝 = (1 − 𝛽2)−1/2𝑉𝑝, (4.10)

logo,
𝑉 = 𝑉𝑥𝑉𝑝 = 𝑉𝑥𝑉𝑝. (4.11)

é provada assim a invariância por transformações de Lorentz do volume no espaço
de fase ocupado por N partículas. Sendo 𝑁 e 𝑉 quantidades invariantes, a seguinte função
de distribuição também é:

𝑓 = 𝑁

𝑉
. (4.12)

Essa função representa a densidade de partículas por unidade de volume no espaço
de fase. No contexto da relatividade geral, é desejável atestar o comportamento desta
função ao longo da trajetória geodésica.

Para isto, em um determinado ponto desta geodésica (parametrizada pelo parâ-
metro afim 𝜆) define-se um sistema de coordenadas normal, e no seu entorno a função de
distribuição 𝑓 . Todo observador local concorda sobre 𝑓 , como provado.
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Neste ponto:

𝑑𝑉

𝑑𝜆
∝ 𝑑𝑉

𝑑𝜏
, 𝑉 = Δ𝑝𝑥Δ𝑝𝑦Δ𝑝𝑧Δ𝑥Δ𝑦Δ𝑧. (4.13)

Nota-se que para este observador, não há forças pelo princípio de equivalência de
Einstein:

𝑑𝑝𝜇

𝑑𝜏
= 0. (4.14)

Com isto, é considerada a determinada configuração no espaço de fase:

Figura 24 – Configuração inicial no espaço de fase.

nesta configuração, são escolhidos dois pontos tais que:

=⇒ (−Δ𝑥/2, 𝑝′
𝑥) , (Δ𝑥/2, 𝑝′

𝑥), (4.15)

de mesmo momento 𝑝′
𝑥 > 0. Se 𝑣𝑥 = 𝑝′

𝑥/𝑚, após certo 𝛿𝜏 , tem-se:

=⇒ (−Δ𝑥/2 + 𝑝′
𝑥

𝑚
𝛿𝜏, 𝑝′

𝑥) , (Δ𝑥/2 + 𝑝′
𝑥

𝑚
𝛿𝜏, 𝑝′

𝑥), (4.16)

Nota-se portanto que a distância espacial entre os pontos se mantém:

Δ𝑥/2 − (−Δ𝑥/2) = Δ𝑥/2 + 𝑝′
𝑥

𝑚
𝛿𝜏 −

(︃
−Δ𝑥/2 + 𝑝′

𝑥

𝑚
𝛿𝜏

)︃
= Δ𝑥. (4.17)

Dada a condição (4.14), a evolução da figura 24 é ilustrada na figura 25. Logo,
conclui-se que a área se deforma ao longo do tempo, mas sua magnitude permanece
sempre a mesma:

𝐴 = Δ𝑥Δ𝑝𝑥, (4.18)
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conclui-se que:

=⇒ 𝑑𝐴

𝑑𝜏
= 𝑑(Δ𝑥Δ𝑝𝑥)

𝑑𝜏
= 0. (4.19)

Este argumento é válido sobre todos os pontos da geodésica, e vale da mesma
forma para Δ𝑦Δ𝑝𝑦 e Δ𝑧Δ𝑝𝑧

Figura 25 – Configuração no espaço de fase após 𝛿𝜏 . Fonte: Thorne (THORNE; MISNER;
WHEELER, 2000).

Como consequência, para todos os pontos da geodésica:

=⇒ 𝑑𝑉

𝑑𝜆
∝ 𝑑𝑉

𝑑𝜏
(4.20)

∝ 𝑑

𝑑𝜏
(Δ𝑝𝑥Δ𝑝𝑦Δ𝑝𝑧Δ𝑥Δ𝑦Δ𝑧) = 0. (4.21)

Diretamente disto, conclui-se para a função de distribuição:

𝑑𝑓

𝑑𝜆
= 𝑁

𝑑

𝑑𝜆

(︂ 1
𝑉

)︂
= 0, (4.22)

isto é válido para todos os pontos da geodésica. O resultado exposto em (4.22)
é uma prova simplificada da conhecida equação de Boltzmann para sistemas sem
colisão. Todo o argumento construído pode ser considerado para partículas com veloci-
dades tão próximas de 𝑐 = 1 quanto se queira. No escopo deste documento, isto é dado
como prova suficiente sobre sua validade para fótons.

Tratando de fótons, é de pouca utilidade falar diretamente de 𝑓 , e portanto é
construída a noção de intensidade específica (𝐼𝜈). Considera-se um observador, com
um telescópio que capta fótons num determinado ângulo sólido Ω ilustrado na figura 26.
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Todos os que cruzam a área num intervalo 𝛿𝑡 ocupam o volume 𝐴𝛿𝑡, e este é definido como
𝑉𝑥. Para simplificar a visualização de 𝑉𝑝 à ser definido, os fótons são ilustrados “saindo
do olho” (ou seja, direção do momento linear invertido) na figura 27.

Figura 26 – Observador captando fótons no ângulo sólido Ω

Pela ilustração é evidente que 𝑑𝑉𝑝 = |𝑝|2𝑑𝑝𝑑Ω, logo o volume de momento linear é
definido como 𝑉𝑝 = |𝑝|2Δ𝑝ΔΩ.

Figura 27 – Volume do momento linear, com direção invertida. Fonte: Thorne (THORNE;
MISNER; WHEELER, 2000).

Definindo como 𝛿𝑁 o numero de fótons que cruzam a área 𝐴 em 𝛿𝑡, a função de
distribuição 𝑓 toma a forma:

𝑓 = 𝛿𝑁

𝑉𝑥𝑉𝑝
, (4.23)

= 𝛿𝑁

𝐴𝛿𝑡𝑝2Δ𝑝ΔΩ , (4.24)

= 𝛿𝑁

𝐴𝛿𝑡(𝑝0)2Δ𝑝0ΔΩ , (𝑝0 = ~𝜈) (4.25)

= 𝛿𝑁

~3𝛿𝑡𝐴𝜈2Δ𝜈ΔΩ . (4.26)
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Define-se portanto 𝐼𝜈 como o fluxo de energia por unidade de área, por unidade
de tempo, por unidade de frequência, por unidade de ângulo sólido que cruza a área 𝐴

do telescópio, desta forma:

𝐼𝜈 = ~𝜈𝛿𝑁
𝐴𝛿𝑡Δ𝜈ΔΩ =⇒ 𝑓 = ~3 𝐼𝜈

𝜈3 . (4.27)

Uma conclusão imediata desta definição é que a quantidade 𝐼𝜈/𝜈3 é conservada
ao longo da trajetória. A integração de 𝐼𝜈 sobre a faixa de frequência emitida dá
portanto a intensidade de emissão,

𝐼(𝑟) =
∫︁
𝐼𝜈𝑑𝜈. (4.28)

4.2.2 Redshift gravitacional

Definida a intensidade de emissão, é importante discutir rapidamente o fator de
redshift gravitacional (𝑔), antes de qualquer avanço. Relembra-se que, no presente con-
texto, é utilizada a métrica de Schwarzschild. Neste espaço são definidos dois eventos: um
deles como observador no infinito e o segundo como o emissor de fótons em um determi-
nado 𝑟.

Sendo ambos estáticos, suas quadrivelocidades são:

𝑢𝑜𝑏𝑠 = (1, 0, 0, 0), 𝑢𝑒𝑚 =
(︃√︃

1 − 2𝑀
𝑟𝑒𝑚

, 0, 0, 0
)︃
. (4.29)

Dado que a variação do tempo próprio é inversamente proporcional à frequência
da luz, no referencial do observador:

𝑑𝜏𝑜𝑏𝑠 ∝ 1
𝜈𝑜𝑏𝑠

, (4.30)

logo,

𝑑𝜏𝑒𝑚
𝑑𝜏𝑜𝑏𝑠

= 𝜈𝑜𝑏𝑠
𝜈𝑒𝑚

=⇒ 𝜈𝑜𝑏𝑠 = 𝑔 𝜈𝑒𝑚, 𝑔 =
√︃

1 − 2𝑀
𝑟𝑒𝑚

. (4.31)

Portanto, a frequência observada é sempre menor do que a emitida. Neste caso, a
conservação da quantidade 𝐼𝜈/𝜈3 permite afirmar que a intensidade específica observada
𝐼𝑜𝑏𝑠𝜈 é igual a 𝑔3𝐼𝑒𝑚𝜈 .

A intensidade de emissão observada 𝐼𝑜𝑏𝑠 é obtida ao integrar sobre 𝑑𝜈𝑜𝑏𝑠, logo:

𝐼𝑜𝑏𝑠 =
∫︁
𝐼𝑜𝑏𝑠𝜈 𝑑𝜈𝑜𝑏𝑠 = 𝑔4𝐼(𝑟). (4.32)
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4.2.3 Simulação do toy model

Bem estabelecido o conceito de intensidade de emissão, é possível discutir a lógica
e os pontos fundamentais que permeiam o contexto da simulação do modelo com disco de
acreção.

Assim como nos primeiros dois modelos, a trajetória dos fótons é acompanhada de
modo que a marca 𝜑 = 0 se encontra no observador distante. A deflexão total, portanto,
é determinada quando o fóton escapa para o infinito ou é capturado pela singularidade.
No caso de trajetória circular, a deflexão torna-se infinita.

O agente principal da análise nesse novo contexto é o que se define como função de
transferência 𝑟𝑚(𝑏). Ao acompanhar a trajetória de um fóton capturado pelo observador
com raio aparente 𝑏, e determinar a deflexão total deste utilizando as soluções apresentadas
no capítulo anterior, obtém-se o número 𝑚 de vezes em que esse fóton cruza o plano do
disco de acreção.

Por construção, a função 𝑟𝑚(𝑏) representa o raio da m-ésima intersecção do fóton
com o plano do disco de acreção, fora do horizonte de eventos. Esta função determina
a aparência de cada fóton para o respectivo parâmetro de impacto 𝑏, pois, para cada raio
aparente 𝑏, o observador enxerga a seguinte intensidade:

=⇒ 𝐼𝑜𝑏𝑠(𝑏) =
∑︁
𝑚

𝑔4𝐼(𝑟)
⃒⃒⃒⃒
⃒
𝑟𝑚(𝑏)

. (4.33)

O motivo da soma é simples: para este raio aparente, a intensidade observada é
dada pelos fótons emitidos diretamente (𝑚 = 1), pelos fótons que têm origem na face
oposta do disco (𝑚 = 2), pelos que completam uma volta completa (𝑚 = 3) e assim
sucessivamente, até que o fóton escape para o infinito ou 𝑟𝑚 < 2𝑀 .

Figura 28 – 𝑟𝑚(𝑏) para 𝑚 = 1, 2, 3.
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Embora a construção seja válida para valores arbitrários de 𝑚, o número de fótons
com parâmetros de impacto correspondentes a 𝑚 ≥ 4 é desprezível. A Figura 28 mostra
a distribuição no espectro de 𝑏 das ordens 𝑚 = 1, 2, 3 das funções de transferência. A
primeira ordem (emissão direta) apresenta distribuição ampla ao longo dos raios aparentes,
enquanto a terceira ordem é fortemente concentrada em 𝑏 ≈ 5.19𝑀 . Observa-se também
que a emissão observada possui um limite inferior em 𝑏 ≈ 2.8𝑀 .

Com todas as ferramentas necessárias estabelecidas, torna-se possível compreender
e implementar a simulação do toy model proposto. A seguir, diversos discos de acreção
são modelados pelas intensidades de emissão 𝐼𝑒𝑚(𝑟) representadas nos gráficos.

As intensidades observadas são plotadas de acordo com sua dependência no raio
aparente, produzindo 𝐼𝑜𝑏𝑠(𝑏). Em seguida, a intensidade observada é convertida em um
gradiente de cores (adaptado para cada caso) variando de branco, amarelo, laranja e
vermelho até preto absoluto. Tanto as intensidades emitidas quanto as observadas são
normalizadas pelos respectivos valores máximos, 𝐼𝑒𝑚max e 𝐼𝑜𝑏𝑠max.

Figura 29 – Resultados da simulação de intensidade observada (𝐼𝑜𝑏𝑠(𝑏)/𝐼𝑜𝑏𝑠𝑚𝑎𝑥) e as respec-
tivas imagens da sombra do buraco negro para diferentes configurações de
discos de acreção, determinados por (𝐼𝑒𝑚(𝑟)/𝐼𝑒𝑚𝑚𝑎𝑥).
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Figura 30 – Resultados da simulação de intensidade observada (𝐼𝑜𝑏𝑠(𝑏)/𝐼𝑜𝑏𝑠𝑚𝑎𝑥) e as respec-
tivas imagens da sombra do buraco negro para diferentes configurações de
discos de acreção, determinados por (𝐼𝑒𝑚(𝑟)/𝐼𝑒𝑚𝑚𝑎𝑥).
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Figura 31 – Resultados da simulação de intensidade observada (𝐼𝑜𝑏𝑠(𝑏)/𝐼𝑜𝑏𝑠𝑚𝑎𝑥) e as respec-
tivas imagens da sombra do buraco negro para diferentes configurações de
discos de acreção, determinados por (𝐼𝑒𝑚(𝑟)/𝐼𝑒𝑚𝑚𝑎𝑥).

Em todas as simulações, observa-se um pico pronunciado em 𝑏 ≈ 5.19𝑀 . Este
pico corresponde a fótons que executam múltiplas órbitas ao redor da singularidade, na
vizinhança da órbita circular crítica em 𝑏𝑐, e caracteriza o anel de fótons. A região central
escura, prevista no gráfico 28, é reproduzida de forma consistente em todas as imagens,
com limite aproximadamente em 𝑏 ≈ 2.8𝑀 . Por fim, nota-se que o aspecto observacional
é significantemente alterado mesmo para leves modificações na configuração do disco.
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Conclusão

Os resultados obtidos a partir da formulação matemática das geodésicas nulas
no espaço-tempo de Schwarzschild tornam clara a divisão visual dos fótons com base em
seus parâmetros de impacto (𝑏). Essa classificação é essencial para a interpretação
correta das imagens de buracos negros, como as produzidas pelo projeto EHT.

As simulações do toy model com disco de acreção evidenciam que assumir a região
negra central da sombra de um buraco negro como delimitada pelo raio aparente crítico
(𝑏𝑐 ≈ 5.2𝑀) é um erro categórico e deve ser evitado (GRALLA; HOLZ; WALD, 2019).
Embora a órbita circular crítica em 𝑟 = 3𝑀 (que corresponde ao raio aparente 𝑏𝑐) seja
fundamental, as simulações mostram que o limite da região efetivamente escura, na pre-
sença do disco, se estende até um raio aparente menor, aproximadamente 𝑏 ≈ 2.8𝑀 . A
intensidade observada apresenta um pico pronunciado nessa vizinhança do raio crítico,
caracterizando o anel de fótons, o que reforça a complexidade do contorno da sombra
e a necessidade de se considerar a fonte de luz, mais diretamente a configuração do disco
de acreção, para a estimativa precisa dos parâmetros do buraco negro.
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