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Resumo

Este trabalho apresenta uma introdução sistemática aos fundamentos da Teoria Quântica
de Campos (TQC), desde a quantização canônica do campo escalar até a Eletrodinâmica
Quântica (QED). Iniciamos com a teoria clássica de campos e sua quantização, estabele-
cendo o formalismo de Heisenberg e a interpretação de partículas como excitações do vácuo
através do espaço de Fock. A extensão para o campo escalar complexo introduz números
quânticos conservados via teorema de Noether. Desenvolvemos a teoria de propagadores
e funções de Green, conectando-os a amplitudes físicas através da fórmula de Lehmann-
Symanzik-Zimmermann. O formalismo de teoria de perturbação é construído através do
quadro de interação e do teorema de Wick, culminando nos diagramas de Feynman. A
construção do campo de Dirac parte das representações espinoriais do grupo de Lorentz,
abordando quiralidade, helicidade e quantização fermiônica. A teoria de Yukawa serve
como aplicação das regras de Feynman para férmions. Concluímos com a formulação da
QED: simetria de gauge U(1) local, quantização do campo eletromagnético, acoplamento
minimal com a matéria e processos de espalhamento.

Palavras-chave: teoria quântica de campos; propagadores; causalidade; quantização ca-
nônica; QED.



Abstract

This work presents a systematic introduction to the fundamentals of Quantum Field
Theory (QFT), from the canonical quantization of the scalar field to Quantum Elec-
trodynamics (QED). We begin with classical field theory and its quantization, estab-
lishing the Heisenberg formalism and the interpretation of particles as vacuum excita-
tions through the Fock space. The extension to the complex scalar field introduces con-
served quantum numbers via Noether’s theorem. We develop the theory of propagators
and Green’s functions, connecting them to physical amplitudes through the Lehmann-
Symanzik-Zimmermann formula. The perturbation theory formalism is constructed through
the interaction picture and Wick’s theorem, culminating in Feynman diagrams. The con-
struction of the Dirac field starts from the spinorial representations of the Lorentz group,
addressing chirality, helicity and fermionic quantization. Yukawa theory serves as an ap-
plication of Feynman rules for fermions. We conclude with the formulation of QED: local
U(1) gauge symmetry, quantization of the electromagnetic field, minimal coupling with
matter and scattering processes.

Keywords: quantum field theory; propagators; causality; canonical quantization; QED.
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1 Introdução

A Teoria Quântica de Campos (TQC) constitui a base fundamental para a descri-
ção das interações elementares da natureza, unificando os princípios da mecânica quântica
com a relatividade especial. Sua formulação permite tratar sistemas onde o número de
partículas não é conservado, incorporando naturalmente processos de criação e aniquilação
através da promoção de campos clássicos a operadores quânticos.

O desenvolvimento histórico da TQC foi impulsionado pela necessidade de quan-
tizar o campo eletromagnético e descrever consistentemente a interação entre luz e ma-
téria. A Eletrodinâmica Quântica (QED), primeira teoria quântica de campos completa,
emergiu dos trabalhos de Dirac, Heisenberg, Pauli, Feynman, Schwinger e Tomonaga,
estabelecendo o paradigma para as teorias de gauge modernas.

Este trabalho apresenta uma introdução sistemática aos fundamentos da TQC,
seguindo uma progressão conceitual que parte dos elementos mais simples e constrói gra-
dualmente a complexidade necessária para formular a QED. Iniciamos com a quantização
canônica do campo escalar real, estabelecendo a estrutura do espaço de Fock e a interpre-
tação de partículas como excitações quantizadas do vácuo. O formalismo de Heisenberg
fornece a descrição dinâmica onde os operadores de campo evoluem no tempo. A exten-
são para o campo escalar complexo introduz números quânticos conservados através do
teorema de Noether, ilustrando como simetrias globais geram cargas conservadas.

Desenvolvemos a estrutura dos comutadores de campos e a função de Pauli-Jordan,
mostrando como a causalidade relativística emerge na teoria. Os propagadores e funções
de Green aparecem naturalmente, conectando-se a observáveis físicos através da fórmula
de Lehmann-Symanzik-Zimmermann (LSZ). A teoria de perturbação é construída através
do quadro de interação e do teorema de Wick, culminando nos diagramas de Feynman e
suas aplicações ao cálculo de seções de choque e taxas de decaimento.

A introdução do campo de Dirac amplia o formalismo para férmions relativísti-
cos, partindo das representações espinoriais do grupo de Lorentz. Discutimos quiralidade,
helicidade e a quantização fermiônica através de anticomutadores, ilustrando o teorema
spin-estatística. A teoria de Yukawa serve como primeira aplicação das regras de Feynman
para férmions.

O trabalho culmina com a construção da Eletrodinâmica Quântica. A simetria
de gauge U(1) local determina a forma da interação entre matéria e radiação através
do acoplamento minimal. Desenvolvemos a quantização do campo eletromagnético em
diferentes gauges, derivamos as regras de Feynman completas da QED e as aplicamos a
processos de espalhamento elementares.
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2 Fundamentos e Quantização do Campo Escalar

2.1 Introdução e Unidades
A teoria quântica de campos, ou TQC, é uma generalização natural da mecâ-

nica quântica construída para ser compatível com os princípios da relatividade especial.
Essa formulação tornou-se indispensável diante das limitações que surgem ao tentar des-
crever sistemas relativísticos com base apenas nos conceitos da mecânica quântica não-
relativística.

Um dos principais problemas dessa abordagem tradicional é a suposição de que o
número de partículas em um sistema permanece constante ao longo do tempo. Embora
essa hipótese funcione bem em regimes de baixa energia, ela se torna inadequada quando
lidamos com escalas energéticas comparáveis à massa de repouso das partículas. Con-
forme demonstraremos, a combinação dos princípios quânticos com a relatividade torna
inevitáveis os fenômenos de criação e aniquilação de partículas.

Para evidenciar essa limitação, consideremos uma partícula de massam confinada a
uma região espacial de tamanho ∆x. Pelo princípio da incerteza de Heisenberg, a incerteza
em seu momento será da ordem de

∆p ∼ ~
∆x.

Em um contexto relativístico, isso implica uma incerteza na energia aproximadamente
igual a

∆E ∼ ~c
∆x.

Quando ∆x se aproxima do comprimento de Compton, λC = ~/(mc), a incerteza na
energia atinge valores da ordem de mc2. Isso indica que o sistema possui energia suficiente
para a produção de pares partícula-antipartícula, tornando inadequada qualquer descrição
baseada em um número fixo de partículas.

A teoria quântica de campos resolve esse impasse ao reformular a própria ontologia
da teoria: em vez de partículas como entidades fundamentais, são os campos quânticos
que constituem os objetos básicos. As partículas emergem como excitações quantizadas
desses campos, o que explica naturalmente os fenômenos de criação e aniquilação, além
de justificar por que partículas de um mesmo tipo são indistinguíveis.

Neste trabalho, seguimos a abordagem da quantização canônica, partindo da for-
mulação clássica dos campos e avançando até a construção dos operadores quânticos e
do espaço de Fock. O texto começa com o estudo do campo escalar, incluindo a versão
complexa e o formalismo no quadro de Heisenberg. Depois, analisamos causalidade, fun-
ções de Green e propagadores, destacando como essas ferramentas permitem relacionar
a dinâmica dos campos com amplitudes físicas. Na sequência, apresentamos a teoria de
perturbação, o quadro de interação, o teorema de Wick e os diagramas de Feynman, que
organizam o cálculo de processos de espalhamento. Em seguida, estendemos o formalismo
para o campo de Dirac, discutindo soluções, quantização fermônica, simetrias e a teoria
de Yukawa. Por fim, aplicamos esses resultados à QED, tratando da simetria de gauge,
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da quantização do campo eletromagnético e do cálculo de amplitudes, incluindo a deriva-
ção do potencial de Coulomb, de modo a mostrar como os principais elementos da teoria
quântica de campos se conectam na descrição das partículas e interações fundamentais.

2.1.1 Unidades Naturais e Escalas
Em teoria quântica de campos (TQC), é comum adotar um sistema de unidades

que torne as expressões matemáticas mais simples e revele com clareza as estruturas
fundamentais da teoria. O sistema de unidades naturais é definido pelas condições ~ =
c = 1, em que ~ é a constante de Planck reduzida e c é a velocidade da luz no vácuo. Com
essa escolha, expressamos todas as grandezas físicas em termos de uma única unidade,
geralmente a de energia.

No Sistema Internacional de Unidades (SI), as dimensões físicas das constantes
fundamentais são:

[c] = LT−1, (2.1)
[~] = ML2T−1. (2.2)

Ao fixarmos ~ = c = 1, as unidades de tempo e comprimento deixam de ser independentes,
podendo ser expressas em termos de energia ou massa. Utilizando E = ~ω e E = mc2,
obtemos as relações:

Energia ∼ Massa ∼ Momento, (2.3)

Tempo ∼ Comprimento ∼ 1
Energia

. (2.4)

Como unidade prática de energia, utiliza-se o elétron-volt (eV). Em física de par-
tículas, é comum trabalhar com múltiplos como MeV (106 eV) ou GeV (109 eV), pois
refletem melhor as escalas envolvidas em experimentos de altas energias.

Um exemplo importante de escala natural é o comprimento de Compton, definido
para uma partícula de massa m por:

λC = ~
mc

⇒ λC = 1
m

(em unidades naturais).

Esse comprimento representa a menor escala espacial em que uma partícula pode ser
localizada sem que efeitos relativísticos, como a criação de pares, se tornem significativos.
Para ∆x . λC , a energia necessária para confinar a partícula ultrapassa sua energia de
repouso, permitindo a produção de partículas adicionais. Alguns exemplos ilustrativos
são:

• Elétron: me = 0,511 MeV ⇒ λe ≈ 3,9× 10−11 cm,

• Múon: mµ = 105,7 MeV ⇒ λµ ≈ 1,9× 10−13 cm,

• Próton: mp = 938,3 MeV ⇒ λp ≈ 2,1× 10−14 cm.
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Análise Dimensional da Lagrangiana

Na TQC, a análise dimensional baseia-se na exigência de que a ação S seja adi-
mensional (isto é, um número puro). Como a ação é dada por

S =
∫
d4xL,

segue-se que a densidade lagrangiana L deve ter dimensão de massa à quarta potência,
ou seja,

[L] = 4.
Para um campo escalar real φ(x), a lagrangiana livre é:

L = 1
2(∂µφ)2 − 1

2m
2φ2.

Queremos determinar a dimensão de φ. Note que o operador derivada ∂µ tem
dimensão de massa, pois [xµ] = −1. Assim:

[(∂µφ)2] = 2 + 2[φ],

e como L ∼ (∂µφ)2 ∼ φ2m2, e [L] = 4, obtemos:

[φ] = 1.

Ou seja, o campo escalar tem dimensão de energia (ou massa) na unidade natural. Essa
informação será fundamental para classificar os termos de interação em uma teoria, por
exemplo, se uma interação é renormalizável ou não. Sendo assim, a análise dimensional
permite, portanto, estimar como diferentes termos da lagrangiana contribuem em distintas
escalas de energia. Ela é uma ferramenta crucial para entender o comportamento de teorias
em regimes de altas energias, e será essencial para a discussão da renormalização e da
consistência teórica de modelos físicos realistas.

2.2 Teoria Clássica de Campos
Para descrever sistemas com infinitos graus de liberdade distribuídos no espaço-

tempo, como ocorre em ondas eletromagnéticas ou em partículas relativísticas, é necessário
utilizar uma teoria de campos. Diferentemente da mecânica de partículas, na qual as
variáveis dinâmicas são posições e momentos de um número finito de partículas, a teoria
de campos trata de funções que dependem de todas as coordenadas espaciais e do tempo,
isto é, campos φ(~x, t).

Cada ponto do espaço carrega sua própria cópia dessas variáveis dinâmicas. Assim,
os campos são funções

φa(x), xµ = (t, ~x),
onde o índice a distingue diferentes componentes do campo, como sabores, cargas ou graus
de liberdade internos.

A dinâmica de um campo clássico é especificada por uma densidade lagrangiana

L = L(φa, ∂µφa),
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função dos campos e de suas derivadas em relação ao espaço-tempo. A ação é definida por

S[φ] =
∫
d4xL(φa, ∂µφa). (2.5)

O princípio variacional de Hamilton estabelece que a ação deve ser estacionária sob vari-
ações arbitrárias δφa que desapareçam na fronteira,

δS = 0.

A variação explícita da ação é

δS =
∫
d4x

(
∂L
∂φa

δφa + ∂L
∂(∂µφa)

δ(∂µφa)
)
. (2.6)

O segundo termo pode ser integrado por partes:∫
d4x

∂L
∂(∂µφa)

δ(∂µφa) =
∫
d4x ∂µ

(
∂L

∂(∂µφa)
δφa

)
−
∫
d4x ∂µ

(
∂L

∂(∂µφa)

)
δφa. (2.7)

O primeiro termo se anula pelas condições de fronteira, de modo que

δS =
∫
d4x

[
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa.

Como δφa é arbitrário, obtemos as equações de Euler–Lagrange para campos:

∂µ

(
∂L

∂(∂µφa)

)
− ∂L
∂φa

= 0. (2.8)

Como exemplo, considere o campo escalar real com densidade lagrangiana

L = 1
2∂µφ ∂

µφ− 1
2m

2φ2. (2.9)

Calculamos os termos necessários:
∂L

∂(∂µφ) = ∂µφ,
∂L
∂φ

= −m2φ.

Substituindo na equação de Euler–Lagrange,

∂µ∂
µφ+m2φ = 0, (2.10)

ou, definindo o operador d’Alembert,

� = ∂µ∂µ = ∂2

∂t2
−∇2,

obtemos a equação de Klein–Gordon:

(� +m2)φ(x) = 0. (2.11)

Suas soluções podem ser escritas como superposição de ondas planas:

φ(x) =
∫ d3p

(2π)3

(
A~pe

−ip·x + A∗
~pe
ip·x
)
, (2.12)
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com p0 = ω~p =
√
~p 2 +m2. O termo com e−ip·x representa modos de energia positiva e o

termo com eip·x, modos de energia negativa.
Um aspecto fundamental no formalismo lagrangiano é o papel das simetrias. O

Teorema de Noether estabelece que, se uma transformação infinitesimal dos campos

φa(x) −→ φa(x) + δφa(x)

faz a lagrangiana variar apenas por um divergente total,

δL = ∂µF
µ,

então a ação permanece invariante e há uma corrente conservada. A variação explícita da
lagrangiana é

δL = ∂L
∂φa

δφa + ∂L
∂(∂µφa)

δ(∂µφa), (2.13)

e, integrando por partes o último termo,

δL =
[
∂L
∂φa
− ∂µ

(
∂L

∂(∂µφa)

)]
δφa + ∂µ

(
∂L

∂(∂µφa)
δφa

)
.

O termo entre colchetes se anula pelas equações de Euler–Lagrange e, comparando com
a hipótese inicial, identificamos a corrente conservada

jµ = ∂L
∂(∂µφa)

δφa − F µ, (2.14)

que satisfaz
∂µj

µ = 0. (2.15)

A carga associada é
Q =

∫
d3x j0(x), dQ

dt
= 0. (2.16)

Como casos importantes, a invariância por translação temporal leva à conservação
da energia,

E =
∫
d3xT 00,

enquanto translações espaciais implicam conservação do momento linear,

P i =
∫
d3xT 0i.

Para uma simetria interna de fase, como no campo escalar complexo com lagrangiana

L = ∂µφ
∗ ∂µφ−m2φ∗φ,

a transformação
φ→ eiαφ

gera a corrente conservada
jµ = i (φ∗∂µφ− φ ∂µφ∗) ,

com carga
Q = i

∫
d3x

(
φ∗φ̇− φφ̇∗

)
.
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De forma mais geral, a invariância sob translações no espaço-tempo leva ao tensor
energia–momento canônico:

T µν = ∂L
∂(∂µφa)

∂νφa − gµνL, (2.17)

que obedece
∂µT

µν = 0,

e cuja carga associada é o quadrimomento total,

P ν =
∫
d3xT 0ν .

2.2.1 Formalismo Hamiltoniano
Para preparar a quantização, reescrevemos a teoria no formalismo hamiltoniano.

Nele, o campo φ(~x, t) e seu momento conjugado π(~x, t) são tratados como variáveis inde-
pendentes. O momento conjugado é definido por

π(~x, t) = ∂L
∂φ̇(~x, t)

. (2.18)

No caso do campo escalar,

L = 1
2 φ̇

2 − 1
2(∇φ)2 − 1

2m
2φ2,

temos
π(~x, t) = φ̇(~x, t).

A densidade hamiltoniana é

H = πφ̇− L (2.19)
= π2 −

(
1
2π

2 − 1
2(∇φ)2 − 1

2m
2φ2

)
(2.20)

= 1
2π

2 + 1
2(∇φ)2 + 1

2m
2φ2. (2.21)

Assim, o Hamiltoniano total é

H =
∫
d3x

(
1
2π

2 + 1
2(∇φ)2 + 1

2m
2φ2

)
. (2.22)

As equações de Hamilton para campos são

φ̇(~x, t) = δH

δπ(~x, t) = π(~x, t), (2.23)

π̇(~x, t) = − δH

δφ(~x, t) . (2.24)

Calculando a variação funcional,

δH

δφ
= −∇2φ+m2φ,
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obtemos
π̇ = ∇2φ−m2φ.

Derivando a equação φ̇ = π,

φ̈ = π̇ = ∇2φ−m2φ,

chegamos novamente à equação de Klein–Gordon:

φ̈−∇2φ+m2φ = 0.

O formalismo Hamiltoniano é, portanto, consistente com o formalismo lagrangi-
ano e fornece as variáveis canônicas que serão promovidas a operadores no processo de
quantização, estabelecendo a ponte para a próxima seção.

2.3 Quantização Canônica do Campo Escalar
Nesta seção realizamos a quantização canônica do campo escalar real. O procedi-

mento consiste em promover os campos clássicos φ(~x, t) e π(~x, t) a operadores atuando
em um espaço de Hilbert, dotados de relações de comutação adequadas.

No formalismo hamiltoniano, as variáveis dinâmicas tornam-se operadores:

φ(~x, t) −→ φ̂(~x, t), (2.25)
π(~x, t) −→ π̂(~x, t). (2.26)

Impondo o análogo quântico das relações de Poisson, temos os comutadores canônicos

[φ̂(~x, t), φ̂(~y, t)] = 0, (2.27)
[π̂(~x, t), π̂(~y, t)] = 0, (2.28)
[φ̂(~x, t), π̂(~y, t)] = i δ(3)(~x− ~y), (2.29)

que expressam o princípio de incerteza aplicado a sistemas com infinitos graus de liber-
dade. Para garantir a consistência dessas relações, o campo deve ser expandido em modos
normais associados a operadores de criação e aniquilação, como mostrado a seguir.

2.3.1 Expansão em Modos Normais
A solução clássica da equação de Klein–Gordon motiva a expansão do campo em

ondas planas. No contexto quântico, escrevemos:

φ̂(~x, t) =
∫ d3p

(2π)3
1
√2ω~p

(
â~pe

i~p·~x−iω~pt + â†
~pe

−i~p·~x+iω~pt
)
, (2.30)

com ω~p =
√
~p 2 +m2. A derivada temporal fornece o operador momento canônico:

π̂(~x, t) = ∂tφ̂(~x, t) (2.31)

=
∫ d3p

(2π)3

(
−i
√
ω~p
2 â~pe

i~p·~x−iω~pt + i

√
ω~p
2 â†

~pe
−i~p·~x+iω~pt

)
. (2.32)



Capítulo 2. Fundamentos e Quantização do Campo Escalar 15

Os operadores â~p e â†
~p, análogos aos dosciladores harmônicos, satisfazem

[â~p, â†
~q] = (2π)3δ(3)(~p− ~q), (2.33)

[â~p, â~q] = [â†
~p, â

†
~q] = 0. (2.34)

Substituindo essas relações na expressão dos campos, obtemos:

[φ̂(~x, t), π̂(~y, t)] = i
∫ d3p

(2π)3 e
i~p·(~x−~y) = i δ(3)(~x− ~y), (2.35)

confirmando a compatibilidade da expansão com os comutadores canônicos.
O estado de vácuo é definido por

â~p|0〉 = 0 ∀~p,

e estados excitados são obtidos pela ação de operadores de criação:

|~p1〉 = â†
~p1
|0〉, |~p1, ~p2〉 = â†

~p1
â†
~p2
|0〉,

de forma geral,
|~p1, . . . , ~pn〉 = â†

~p1
· · · â†

~pn
|0〉.

Esses estados são automaticamente simétricos sob trocas, refletindo que o campo escalar
real descreve bósons, e sua normalização é

〈~q|~p〉 = (2π)3δ(3)(~p− ~q).

Nesta interpretação, cada modo de momento comporta-se como um oscilador harmônico
quântico.

2.3.2 Hamiltoniano e Energia de Ponto Zero
Com a estrutura de criação e aniquilação estabelecida, podemos reescrever o Ha-

miltoniano. No formalismo quântico ele é dado por

Ĥ =
∫
d3x

[
1
2 π̂

2 + 1
2(∇φ̂)2 + 1

2m
2φ̂2

]
. (2.36)

Inserindo as expansões em modos, obtemos

Ĥ =
∫ d3p

(2π)3 ω~p
(
â†
~pâ~p + 1

2 δ
(3)(0)

)
, (2.37)

em que o termo proporcional a δ(3)(0) representa a energia de ponto zero de cada modo.
A ordenação normal remove essa divergência:

: Ĥ :=
∫ d3p

(2π)3 ω~p â
†
~pâ~p,

de modo que o vácuo possui energia nula:

: Ĥ : |0〉 = 0.

Essa forma explicita que as excitações do campo escalar correspondem às partículas
livres de momento ~p e energia ω~p.
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2.4 Partículas
Na seção anterior construímos o espaço de Fock a partir dos operadores de criação

e aniquilação â†
~p, â~p e assumimos a normalização

[â~p, â†
~q] = (2π)3δ(3)(~p− ~q).

A seguir desenvolvemos a interpretação desses operadores como criadores/aniquiladores
de partículas e fazemos os cálculos que a justificam.

2.4.1 Estados de uma partícula, energia e momento
Definimos o vácuo |0〉 por â~p|0〉 = 0 ∀~p. O estado de uma partícula com momento

~p é
|~p〉 ≡ â†

~p|0〉,
com produto interno

〈~q|~p〉 = 〈0|â~qâ†
~p|0〉 = (2π)3δ(3)(~p− ~q).

Para cálculos covariantes costuma-se usar a normalização relativística

|~p〉rel ≡
√

2ω~p â†
~p|0〉, 〈~q|~p〉rel = 2ω~p(2π)3δ(3)(~p− ~q),

onde ω~p =
√
~p 2 +m2. Após normal-ordenar, os operadores Hamiltoniano e momento total

podem ser escritos como

Ĥ =
∫ d3k

(2π)3 ω~k â
†
~k
â~k, (2.38)

~̂P =
∫ d3k

(2π)3
~k â†

~k
â~k. (2.39)

Aqui assumimos a subtração (ou ordenação normal) que zera a energia do vácuo: : Ĥ :
|0〉 = 0. Mostramos explicitamente que Ĥ é o gerador da energia dos estados de uma
partícula, i.e. Ĥ|~p〉 = ω~p|~p〉.

Usamos a identidade de comutadores

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂[Â, Ĉ]

para calcular [Ĥ, â†
~p]. Começando de (2.38):

[Ĥ, â†
~p] =

∫ d3k

(2π)3 ω~k [â†
~k
â~k, â

†
~p]

=
∫ d3k

(2π)3 ω~k

(
â†
~k
[â~k, â

†
~p] + [â†

~k
, â†

~p]â~k
)
.

Como [â†
~k
, â†

~p] = 0 e [â~k, â
†
~p] = (2π)3δ(3)(~k − ~p), obtemos

[Ĥ, â†
~p] =

∫ d3k

(2π)3 ω~k â
†
~k

(2π)3δ(3)(~k − ~p)

= ω~p â
†
~p.
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Logo, agindo sobre o vácuo:

Ĥ â†
~p|0〉 =

(
[Ĥ, â†

~p] + â†
~pĤ
)
|0〉 = [Ĥ, â†

~p]|0〉 = ω~p â
†
~p|0〉,

pois Ĥ|0〉 = 0. Assim
Ĥ|~p〉 = ω~p|~p〉.

Analogamente para o operador momento total ~̂P em (2.39):

[ ~̂P, â†
~p] =

∫ d3k

(2π)3
~k [â†

~k
â~k, â

†
~p]

=
∫ d3k

(2π)3
~k â†

~k
[â~k, â

†
~p]

=
∫ d3k

(2π)3
~k â†

~k
(2π)3δ(3)(~k − ~p)

= ~p â†
~p.

Portanto
~̂P |~p〉 = ~p |~p〉,

confirmando que |~p〉 tem momento ~p.

2.4.2 Espaço de Fock
O espaço de Fock permite a construção de estados com número arbitrário de par-

tículas. Por exemplo, um estado de duas partículas é definido como

|~p1, ~p2〉 ≡ â†
~p1
â†
~p2
|0〉.

Como os operadores de criação comutam,

â†
~p1
â†
~p2

= â†
~p2
â†
~p1
,

vemos que
|~p1, ~p2〉 = |~p2, ~p1〉,

isto é, os estados são simétricos sob troca de partículas, refletindo a estatística bosônica
do campo escalar. O produto interno pode ser calculado de forma explícita:

〈~q1, ~q2|~p1, ~p2〉 = 〈0|â~q2 â~q1 â
†
~p1
â†
~p2
|0〉

= (2π)6
[
δ(3)(~q1 − ~p1)δ(3)(~q2 − ~p2) + δ(3)(~q1 − ~p2)δ(3)(~q2 − ~p1)

]
.

Com a convenção relativística
|~p〉rel =

√
2ω~p â†

~p|0〉,

um estado de duas partículas é

|~p1, ~p2〉rel =
√

2ω~p1

√
2ω~p2 â

†
~p1
â†
~p2
|0〉.
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O produto interno satisfaz

〈~q1, ~q2|~p1, ~p2〉rel = (2π)6
[
2ω~p1 2ω~p2 δ

(3)(~q1 − ~p1)δ(3)(~q2 − ~p2)

+ 2ω~p1 2ω~p2 δ
(3)(~q1 − ~p2)δ(3)(~q2 − ~p1)

]
,

o que garante a covariância da normalização.
Generalizando, os estados de n partículas formam uma base ortogonal e simétrica:

|~p1, . . . , ~pn〉rel =
n∏
i=1

√
2ω~pi

â†
~pi
|0〉,

com produtos internos que contêm todas as permutações possíveis das partículas. Assim,
o espaço de Fock é a soma direta dos subespaços de n partículas:

F =
∞⊕
n=0
Hn,

onde Hn é o espaço das funções de onda simétricas de n partículas. Essa estrutura será
fundamental para descrever estados físicos e processos de espalhamento em teoria quântica
de campos.

As equações acima mostram de forma explícita que as excitações do campo, cons-
truídas com â†

~p, são autovetores dos operadores de energia e momento com os espectros
corretos da equação de Klein–Gordon. Essa interpretação como partículas livres é a base
para introduzir interações e estudar processos de espalhamento nas seções seguintes, onde
voltaremos à normalização relativística e à construção das amplitudes de S-matrix.

2.5 Campo Escalar Complexo
Após termos quantizado o campo escalar real, que descreve apenas uma partí-

cula neutra, passamos agora ao caso do campo escalar complexo, denotado por φ(x). Ele
carrega naturalmente uma noção de carga, pois ao lado de φ(x) surge o seu conjugado
hermitiano φ†(x). A lagrangiana apropriada é

L = ∂µφ
† ∂µφ−m2φ†φ, (2.40)

que é simplesmente o dobro da lagrangiana do campo real, no sentido de que contém os
dois graus de liberdade independentes correspondentes a Reφ e Imφ.

Essa teoria descreve, como veremos, uma partícula e a sua antipartícula, associadas
ao mesmo campo. A razão está na invariância global da lagrangiana sob transformações
de fase

φ(x) −→ eiα φ(x), φ†(x) −→ e−iα φ†(x),
que gera, pelo teorema de Noether, uma corrente conservada

jµ(x) = i
(
φ†∂µφ− (∂µφ†)φ

)
. (2.41)

A componente temporal dessa corrente é a densidade de carga

j0(x) = i
(
φ†φ̇− φ̇†φ

)
, (2.42)
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e a carga total é
Q =

∫
d3x j0(x).

Quantização e derivadas temporais. Para quantizar, expandimos o campo em ondas
planas normalizadas:

φ(x) =
∫ d3p

(2π)3
1
√2ω~p

(
a~p e

−iω~pt+i~p·~x + b†
~p e

+iω~pt−i~p·~x
)
, (2.43)

φ†(x) =
∫ d3p

(2π)3
1
√2ω~p

(
a†
~p e

+iω~pt−i~p·~x + b~p e
−iω~pt+i~p·~x

)
, (2.44)

onde ω~p =
√
~p 2 +m2. Aqui os operadores a~p e b~p são independentes, e satisfazem

[a~p, a†
~q] = (2π)3δ(3)(~p− ~q), (2.45)

[b~p, b†
~q] = (2π)3δ(3)(~p− ~q), (2.46)

com todos os outros comutadores nulos. Naturalmente, a†
~p cria partículas de momento ~p,

enquanto b†
~p cria antipartículas.

Para construir a densidade de carga, precisamos também das derivadas temporais:

φ̇(x) =
∫ d3q

(2π)3
1
√2ω~q

(
− iω~qa~q e−iω~qt+i~q·~x + iω~qb

†
~q e

+iω~qt−i~q·~x
)
, (2.47)

φ̇†(x) =
∫ d3q

(2π)3
1
√2ω~q

(
iω~qa

†
~q e

+iω~qt−i~q·~x − iω~qb~q e−iω~qt+i~q·~x
)
. (2.48)

Cálculo da densidade de carga. Substituímos em

j0(x) = i
(
φ†φ̇− φ̇†φ

)
.

Primeiro,

φ†(x)φ̇(x) =
∫ d3p

(2π)3
d3q

(2π)3
1

√4ω~pω~q
× (2.49)[

a†
~p(−iω~q)a~q ei(ω~p−ω~q)te−i(~p−~q)·~x

+ a†
~p(iω~q)b

†
~q e

i(ω~p+ω~q)te−i(~p+~q)·~x

+ b~p(−iω~q)a~q e−i(ω~p+ω~q)tei(~p+~q)·~x

+ b~p(iω~q)b†
~q e

−i(ω~p−ω~q)tei(~p−~q)·~x
]
.
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Analogamente,

φ̇†(x)φ(x) =
∫ d3p

(2π)3
d3q

(2π)3
1

√4ω~pω~q
× (2.50)[

(iω~p)a†
~pa~q e

i(ω~p−ω~q)te−i(~p−~q)·~x

+ (iω~p)a†
~pb

†
~q e

i(ω~p+ω~q)te−i(~p+~q)·~x

+ (−iω~p)b~pa~q e−i(ω~p+ω~q)tei(~p+~q)·~x

+ (−iω~p)b~pb†
~q e

−i(ω~p−ω~q)tei(~p−~q)·~x
]
.

Formando a combinação j0 = i(φ†φ̇ − φ̇†φ), vemos que os termos mistos a†b†, ab,
etc., desaparecem após a integração espacial por produzirem (2π)3δ(3)(~p+ ~q), que impõe
ω~p − ω~q = 0. Restam apenas os termos com a†a e b†b, cujos coeficientes são

ω~p + ω~q
2√ω~pω~q

e − ω~p + ω~q
2√ω~pω~q

,

respectivamente.

Operador de carga. Integrando j0(x) sobre o espaço, obtemos

Q =
∫
d3x j0(x) (2.51)

=
∫ d3p

(2π)3
d3q

(2π)3
ω~p + ω~q
2√ω~pω~q

(2π)3δ(3)(~p− ~q) a†
~pa~q

−
∫ d3p

(2π)3
d3q

(2π)3
ω~p + ω~q
2√ω~pω~q

(2π)3δ(3)(~p− ~q) b†
~qb~p.

A integração em ~q usa a delta de Dirac, que impõe ~q = ~p e simplifica o fator
numérico a 1. Obtemos finalmente

Q =
∫ d3p

(2π)3

(
a†
~pa~p − b

†
~pb~p

)
.

Este resultado mostra que o operador de carga Q conta o número de partículas
criadas por a† menos o número de antipartículas criadas por b†. No caso livre, partículas
e antipartículas são independentes e seus números se conservam separadamente, sendo
assim a carga é a diferença entre eles.

2.6 O Formalismo de Heisenberg
Tendo estabelecido a quantização canônica dos campos escalares, passamos agora

ao formalismo de Heisenberg, no qual toda a dependência temporal está nos operadores,
enquanto os estados permanecem fixos. Esse formalismo é particularmente natural em
teoria quântica de campos, pois trata espaço e tempo em pé de igualdade, de modo
compatível com a relatividade.
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2.6.1 Equação de Heisenberg
Dado um operador O(t), sua evolução temporal é regida por

dO(t)
dt

= i[H,O(t)] +
(
∂O
∂t

)
, (2.52)

onde o segundo termo aparece caso O tenha dependência temporal explícita.
No caso do campo escalar real, os operadores relevantes são o campo φ(~x, t) e

seu momento conjugado π(~x, t), definidos em cada ponto do espaço. O Hamiltoniano
correspondente é

H =
∫
d3x

[
1
2π

2(~x, t) + 1
2(∇φ(~x, t))2 + 1

2m
2φ2(~x, t)

]
.

2.6.2 Dinâmica dos operadores em Heisenberg
As relações de comutação fundamentais estabelecidas na Seção 2.3 serão agora

aplicadas para extrair as equações de movimento no formalismo de Heisenberg.

O comutador [H,φ(~y)]

Substituindo a densidade hamiltoniana:

[H,φ(~y)] =
∫
d3x

[
1
2 [π2(~x), φ(~y)] + 1

2 [(∇φ(~x))2, φ(~y)] + 1
2m

2[φ2(~x), φ(~y)]
]
.

Os termos (∇φ)2 e φ2 comutam com φ(~y), pois [φ(~x), φ(~y)] = 0. Resta apenas o
termo envolvendo π2.

Usando
[π(~x), φ(~y)] = −iδ(3)(~x− ~y),

temos

[π2(~x), φ(~y)] = π(~x)[π(~x), φ(~y)] + [π(~x), φ(~y)]π(~x) (2.53)
= −2i π(~x) δ(3)(~x− ~y). (2.54)

A integral sobre ~x fixa ~x = ~y, resultando em

[H,φ(~y)] = −iπ(~y).

Pela equação de Heisenberg:
φ̇(~y, t) = π(~y, t).

O comutador [H, π(~y)]

Agora,

[H, π(~y)] =
∫
d3x

[
1
2 [π2(~x), π(~y)] + 1

2 [(∇φ(~x))2, π(~y)] + 1
2m

2[φ2(~x), π(~y)]
]
.

O termo π2 é nulo, pois [π(~x), π(~y)] = 0.
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Para o termo com derivadas espaciais:

[∂iφ(~x), π(~y)] = i∂iδ
(3)(~x− ~y),

o que fornece
[(∇φ)2, π] = 2i ∂iφ(~x) ∂iδ(3)(~x− ~y).

A integração por partes resulta em∫
d3x ∂iφ(~x) ∂iδ(3)(~x− ~y) = −∇2φ(~y).

Para o termo de massa:

[φ2(~x), π(~y)] = 2iφ(~x)δ(3)(~x− ~y),

o que leva a ∫
d3x 1

2m
2[φ2(~x), π(~y)] = im2φ(~y).

Somando:
[H, π(~y)] = i

(
−∇2φ(~y) +m2φ(~y)

)
.

Logo,
π̇(~y, t) = −∇2φ(~y, t) +m2φ(~y, t).

Recuperação da equação de Klein–Gordon

Reunindo agora os dois comutadores obtidos:

φ̇ = π, π̇ = −∇2φ+m2φ.

Derivando a primeira equação no tempo:

φ̈ = −∇2φ+m2φ.

Assim,
(∂2
t −∇2 +m2)φ(~y, t) = 0,

ou, em notação covariante,
(� +m2)φ(x) = 0.

Esse resultado mostra que o formalismo de Heisenberg reproduz exatamente as
equações de movimento clássicas, agora no nível de operadores. Essa formulação será
essencial ao introduzirmos ordenamento temporal, funções de Green e propagadores, que
dependem diretamente da evolução dos operadores no tempo.
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3 Causalidade e Propagadores

3.1 Histórico e Fundamentos Físicos da Causalidade
Na seção anterior vimos que, no formalismo de Heisenberg, os campos quânticos

φ(x) são operadores definidos em cada ponto do espaço-tempo, com sua evolução temporal
regida pela equação de Heisenberg. Surge assim a pergunta central desta seção: como
esses operadores se relacionam quando avaliados em pontos distintos do espaço-tempo?
A resposta leva diretamente ao conceito de causalidade relativística.

Na mecânica clássica, causalidade significava que a evolução futura de um sistema
era completamente determinada pelas condições iniciais. Com a relatividade restrita, a
estrutura causal foi reorganizada em termos do intervalo de Minkowski

s2 = (x0 − y0)2 − (~x− ~y)2.

Apenas eventos separados por intervalos do tipo tempo ou luz podem influenciar-se mu-
tuamente e nenhum sinal físico pode propagar-se fora do cone de luz.

A mecânica quântica não relativística, embora determinista na evolução via equa-
ção de Schrödinger, não impõe restrições fundamentais à velocidade das influências. As-
sim, ao combinar quantização e relatividade, torna-se essencial que a estrutura causal de
Minkowski seja preservada.

Em teoria quântica de campos, a exigência de causalidade se traduz no comporta-
mento dos comutadores de operadores localizados em pontos distintos:

[φ(x), φ(y)] = 0, se (x− y)2 < 0.

Essa condição, chamada causalidade microfísica, assegura que medições feitas em regiões
separadas por intervalos tipo-espaço não interferem entre si. Ela é a contrapartida quântica
da proibição relativística de propagação supraluminal.

3.1.1 Comutador do campo e função de Pauli–Jordan
Para verificar essa propriedade, retomamos a expansão em modos do campo escalar

real discutida na Seção 2.3:

φ(x) =
∫ d3p

(2π)3
1
√2ω~p

(
a~pe

−ip·x + a†
~pe
ip·x
)
, p0 = ω~p =

√
~p 2 +m2. (3.1)

Como apenas os comutadores cruzados [a~p, a†
~q] = (2π)3δ(3)(~p − ~q) são não nulos,

obtemos

[φ(x), φ(y)] =
∫ d3p

(2π)3
1

2ω~p

(
e−ip·(x−y) − eip·(x−y)

)
. (3.2)

Definimos a função de Pauli–Jordan:

∆(x− y) =
∫ d3p

(2π)3
1

2ω~p

(
e−ip·(x−y) − eip·(x−y)

)
, (3.3)
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de modo que
[φ(x), φ(y)] = i∆(x− y).

A função 3.3 satisfaz a equação de Klein–Gordon homogênea e pode ser avaliada
de forma fechada. O resultado fundamental é o seu suporte causal:

∆(x− y) = 0 se (x− y)2 < 0.

Assim,
[φ(x), φ(y)] = 0 para separações tipo-espaço,

garantindo que operadores localizados fora do cone de luz são compatíveis. Essa proprie-
dade é a expressão matemática da causalidade relativística no contexto quântico.

A condição de causalidade microfísica impõe restrições importantes à estrutura das
funções de Green e, em particular, aos propagadores. A prescrição iε nos propagadores de
Feynman é justamente o mecanismo matemático que implementa a compatibilidade entre
ordenamento temporal e causalidade. Esse ponto será aprofundado na próxima seção,
onde exploraremos a construção dos propagadores e sua interpretação física.

3.2 Funções de Green e Amplitudes
Na seção anterior vimos que a causalidade em teoria quântica de campos se ex-

pressa na estrutura dos comutadores dos campos. Agora, introduzimos as funções de
Green, que são os objetos matemáticos centrais capazes de implementar simultaneamente
a estrutura causal e a descrição quântica da propagação de partículas.

3.2.1 Funções de Green e Soluções com Fonte
Consideremos um campo escalar sujeito à equação de Klein–Gordon,

(� +m2)φ(x) = J(x),

com J(x) uma fonte externa. A solução formal é obtida pela convolução da fonte com
uma função G(x− y) que satisfaça

(�x +m2)G(x− y) = δ(4)(x− y). (3.4)

Usando a representação de Fourier,

G(x− y) =
∫ d4p

(2π)4 G̃(p) e−ip·(x−y),

obtemos a condição algébrica
G̃(p) = 1

p2 −m2 .

A escolha da forma como os polos são contornados no plano complexo de p0 deter-
mina se G é a função retardada, avançada ou a de Feynman. Essa última, relevantíssima
para teoria de perturbações, respeita o ordenamento temporal quântico via a prescrição
iε discutida anteriormente na Seção 3.1.1.
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3.2.2 Estrutura das Funções de Green
No formalismo de Heisenberg, define-se a função de Green de n pontos como

G(n)(x1, . . . , xn) = 〈0|T{φ(x1) · · ·φ(xn)} |0〉, (3.5)

onde o ordenamento temporal foi introduzido na Seção 2.6.
Para n = 2,

G(2)(x, y) = 〈0|T{φ(x)φ(y)}|0〉,

que coincide com o propagador de Feynman. A expansão em modos usada para sua deri-
vação é a mesma empregada na análise do comutador [φ(x), φ(y)] na Seção 3.1.1.

Entre as funções de Green, distinguem-se as conectadas, G(n)
c , que não se fatori-

zam em blocos independentes. Diagramaticamente, elas correspondem aos diagramas de
Feynman conectados.

Além disso, a função de Green de dois pontos G(2)(x, y) é exatamente o propagador
de Feynman, cuja estrutura analítica codifica a massa do campo, a prescrição iε e a
definição do ordenamento temporal. Nas próximas seções analisaremos esse objeto em
detalhe, especialmente sua construção via integrais de Fourier.

3.2.3 Fórmula de LSZ
As amplitudes de espalhamento obtidas experimentalmente estão diretamente rela-

cionadas às funções de Green via o procedimento LSZ. Cada linha externa de uma função
de Green representa um propagador livre; para obter a amplitude física, é necessário
amputar esses propagadores:

〈p′
1, . . . , p

′
m|S|p1, . . . , pn〉 (3.6)

=
∫ (

n∏
i=1

d4xi e
−ipi·xi(�xi

+m2)
) m∏

j=1
d4yj e

ip′
j ·yj (�yj

+m2)
 〈0|T{φ(y1) · · ·φ(xn)}|0〉.

Os operadores diferenciais (� + m2) projetam as contribuições externas sobre a
camada de massa, isolando as partículas reais envolvidas no processo.

3.3 Propagadores e Causalidade
Nesta seção analisamos a função de Green de dois pontos,

G(2)(x, y) = 〈0|T{φ(x)φ(y)}|0〉,

que no caso do campo escalar real é denominada propagador de Feynman:

∆F (x− y) = 〈0|T{φ(x)φ(y)}|0〉. (3.7)

Ele é a solução fundamental da equação de Green associada ao operador de Klein–Gordon
e concentra a estrutura causal e espectral da teoria.
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3.3.1 Construção via Transformada de Fourier
O propagador satisfaz

(�x +m2) ∆F (x− y) = −iδ(4)(x− y).

Escrevendo
∆F (x− y) =

∫ d4p

(2π)4 ∆̃F (p) e−ip·(x−y),

obtemos a equação algébrica

(−p2 +m2)∆̃F (p) = −i, ⇒ ∆̃F (p) = i

p2 −m2 .

Os polos em p0 = ±ω~p devem ser especificados por meio de um deslocamento
infinitesimal. A prescrição de Feynman fixa

∆̃F (p) = i

p2 −m2 + iε
, ε > 0,

resultando em
∆F (x− y) =

∫ d4p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y). (3.8)

O termo e−ip0(x0−y0) determina o fechamento do contorno de integração no plano
complexo de p0. De acordo com o lema de Jordan, o contorno deve ser tomado como

C =

semiplano inferior, x0 > y0,

semiplano superior, x0 < y0,

de modo que apenas o polo correspondente seja incluído. Para x0 > y0 captura-se o polo
em p0 = +ω~p − iε, enquanto para x0 < y0 seleciona-se o polo em p0 = −ω~p + iε. Esse
procedimento implementa automaticamente o ordenamento temporal no operador T{·} e
fornece a forma correta do propagador de Feynman.

3.3.2 Polos, Contornos e Comutador
A diferença entre as partes avançada e retardada do campo leva ao comutador

[φ(x), φ(y)] = i∆(x− y),

onde a função de Pauli–Jordan é

∆(x− y) =
∫ d3p

(2π)3
1

2ω~p

(
e−ip·(x−y) − eip·(x−y)

)
.

O suporte causal é determinado pela análise integral:

∆(x− y) = 0 se (x− y)2 < 0.

Consequentemente,

[φ(x), φ(y)] = 0 quando (x− y)2 < 0,
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garantindo que a microcausalidade seja satisfeita.
Os polos de ∆̃F (p) localizam-se em p0 = ±ω~p∓ iε e obedecem à condição de massa

p2 = m2. Eles identificam as excitações elementares associadas ao campo livre. Em teorias
interativas, esses polos podem deslocar-se ou adquirir parte imaginária, caracterizando
modificações do espectro e efeitos de largura finita.

O fator global i na definição de ∆̃F (p) é uma convenção que torna as regras de
Feynman consistentes. A unitariedade do operador S resulta da estrutura completa da
teoria, incluindo o ordenamento temporal e a representação utilizada no espaço de Fock.

3.4 Campos Não Relativísticos
Nas seções anteriores vimos que, na teoria relativística, a quantização do campo

escalar leva à presença simultânea de partículas e antipartículas, refletida na existência
de modos de energia positiva e negativa. A estrutura de Fock correspondente permite um
número arbitrário dessas excitações, e a causalidade microfísica é garantida pelo compor-
tamento do comutador e pela estrutura dos propagadores.

Ao passarmos para o regime não relativístico, o cenário se simplifica de maneira
significativa. Nesse limite, o campo relevante satisfaz a equação de Schrödinger, de modo
que a descrição torna-se efetivamente monocomponente. Um campo escalar complexo ψ(x)
é governado pela lagrangiana

L = i ψ†∂tψ −
1

2m ∇ψ
† · ∇ψ, (3.9)

da qual segue imediatamente a equação de movimento

i ∂tψ = − 1
2m∇

2ψ, (3.10)

isto é, a forma usual da equação de Schrödinger.
A estrutura de Fock não relativística é caracterizada pela densidade de partículas

ρ(~x) = ψ†(~x)ψ(~x),

cujas excitações são contabilizadas pelo número total

N =
∫
d3x ρ(~x),

que é exatamente conservado. Isso contrasta com o caso relativístico, onde a energia su-
ficiente pode gerar pares de partículas e antipartículas. No regime não relativístico, tais
processos são energeticamente proibidos: todas as excitações são partículas, e não há ne-
cessidade de operadores independentes para descrever antipartículas. O espaço de Fock
correspondente é construído pela ação de ψ† sobre o vácuo, e as relações de (anti)comu-
tação determinam a estatística do campo:

[ψ(~x), ψ†(~y)] = δ(3)(~x− ~y), {ψ(~x), ψ†(~y)} = δ(3)(~x− ~y),

para bósons e férmions, respectivamente.
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A conexão com a teoria relativística aparece de forma transparente ao decompor
o campo relativístico como

φ(x) ≈ 1√
2m

(
e−imtψ(x) + eimtχ†(x)

)
, (3.11)

em que ψ descreve partículas e χ descreve antipartículas. O fator oscilatório e−imt remove a
energia de repouso da partícula, fazendo com que ψ varie lentamente quando E−m� m.
Já o termo eimtχ† oscila rapidamente e torna-se suprimido no limite não relativístico.
Assim, ao restringir-se a energias muito menores que a massa de repouso, a contribui-
ção de antipartículas desaparece naturalmente, recuperando-se uma teoria efetivamente
monocomponente, exatamente a dinâmica descrita por ψ(x) na mecânica quântica não
relativística.

Essa diferença estrutural reflete-se também na propagação. O propagador associ-
ado ao campo ψ,

GNR(t, ~x) = θ(t)
(
m

2πit

)3/2
exp

(
i
m~x 2

2t

)
, (3.12)

não se anula fora do cone de luz. Isso expressa a ausência da restrição relativística: a
equação de Schrödinger é de primeira ordem no tempo e não impõe uma estrutura causal
baseada no cone de luz. Essa propriedade não implica a possibilidade de transmissão
instantânea de informação, mas apenas a natureza distinta da dinâmica não relativística.

Assim, a comparação entre os dois regimes deixa claro o papel fundamental da
relatividade: no caso relativístico, a presença de partículas e antipartículas e a necessidade
de preservar a causalidade microfísica levam a uma estrutura matemática mais rica. No
limite não relativístico, reencontramos a mecânica quântica tradicional, com número de
partículas conservado e propagadores que refletem a ausência de vínculos relativísticos.
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4 Teoria de Perturbação e Diagramas

4.1 O Quadro de Interação e a Fórmula de Dyson
Ao introduzir interações em teoria quântica de campos, torna-se conveniente adotar

o quadro de interação (ou representação de Dirac). Nesse formalismo, o Hamiltoniano total
é decomposto como

H = H0 +Hint, (4.1)
onde H0 governa a dinâmica livre e Hint contém os termos de interação tratados pertur-
bativamente.

4.1.1 Operadores, Estados e o Operador de Evolução
No quadro de interação, um operador é definido por

OI(t) = eiH0tOS e−iH0t, (4.2)

isto é, evolui apenas com o Hamiltoniano livre. Já os estados evoluem segundo

i
d

dt
|ψ(t)〉I = HI(t) |ψ(t)〉I , HI(t) = eiH0tHinte

−iH0t. (4.3)

A solução formal é escrita em termos do operador de evolução,

|ψ(t)〉I = U(t, t0) |ψ(t0)〉I , (4.4)

com
i
d

dt
U(t, t0) = HI(t)U(t, t0), U(t0, t0) = I. (4.5)

A equação integral correspondente é

U(t, t0) = I− i
∫ t

t0
dt1 HI(t1)U(t1, t0), (4.6)

e a substituição recursiva gera a expansão perturbativa

U(t, t0) = I− i
∫ t

t0
dt1 HI(t1) + (−i)2

∫ t

t0
dt1

∫ t1

t0
dt2 HI(t1)HI(t2) (4.7)

+ (−i)3
∫ t

t0
dt1

∫ t1

t0
dt2

∫ t2

t0
dt3 HI(t1)HI(t2)HI(t3) + · · · . (4.8)

Essas integrais aninhadas codificam automaticamente a ordem temporal dos opera-
dores. Para escrever a série de forma compacta, introduzimos o operador de ordenamento
temporal T , que rearranja produtos de operadores conforme seus tempos:

T {HI(t1)HI(t2)} =

HI(t1)HI(t2), t1 > t2,

HI(t2)HI(t1), t2 > t1.
(4.9)

O mesmo se aplica a produtos com mais fatores.
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4.1.2 Fórmula de Dyson e a Matriz de Espalhamento
A presença de T permite reescrever a expansão perturbativa em sua forma com-

pacta,
U(t, t0) = T exp

(
−i
∫ t

t0
dt′ HI(t′)

)
, (4.10)

conhecida como fórmula de Dyson. A exponencial acima não é uma exponencial comum,
mas a soma ordenada dos termos da expansão perturbativa, refletindo o fato de que, em
geral, HI(t) e HI(t′) não comutam para tempos distintos.

O limite assintótico desse operador define a matriz S, que conecta estados livres
no passado e no futuro:

S = U(∞,−∞) = T exp
(
−i
∫ +∞

−∞
dtHI(t)

)
. (4.11)

Essa matriz incorpora todos os efeitos da interação e é o ponto de partida para
a teoria de espalhamento. Sua expansão perturbativa gera, de maneira sistemática, os
diagramas de Feynman, que representam graficamente os termos correspondentes da série
em potências de Hint.

Assim, o quadro de interação organiza a evolução temporal de sistemas interagentes
separando claramente a dinâmica livre daquela gerada pela interação, enquanto a fórmula
de Dyson fornece a estrutura matemática que fundamenta a teoria de perturbações em
QFT.

4.2 Uma Primeira Olhada no Espalhamento
O estudo de processos de espalhamento constitui a aplicação mais direta e física da

teoria quântica de campos. A ideia central é calcular a probabilidade de transição entre
estados assintoticamente livres, isto é, estados de partículas que se comportam como não
interagentes no passado remoto (t→ −∞) e no futuro distante (t→ +∞). Nesses regimes,
a dinâmica é dominada pelo Hamiltoniano livre H0, e os estados são construídos no espaço
de Fock por operadores de criação e aniquilação.

4.2.1 A Matriz S e sua Expansão Perturbativa
A amplitude de transição entre um estado inicial |i〉 e um estado final |f〉 é dada

pelo operador de evolução no quadro de interação:

〈f |U(+∞,−∞)|i〉, (4.12)

onde U(t, t0) satisfaz

i
d

dt
U(t, t0) = HI(t)U(t, t0), U(t0, t0) = I.

Define-se a matriz S como

S ≡ U(+∞,−∞), (4.13)



Capítulo 4. Teoria de Perturbação e Diagramas 31

de modo que 〈f |S|i〉 representa a amplitude de espalhamento entre estados assintóticos.
A fórmula de Dyson fornece sua expressão formal:

S = T exp
[
−i
∫ +∞

−∞
dtHI(t)

]
, (4.14)

onde T implementa o ordenamento temporal. A expansão perturbativa resulta em

S = I− i
∫ +∞

−∞
dt1 HI(t1)

− 1
2

∫ +∞

−∞
dt1

∫ +∞

−∞
dt2 T {HI(t1)HI(t2)}+ · · · , (4.15)

e cada termo envolve integrais sobre produtos de Hamiltonianos de interação. O número
de integrais corresponde ao número de vértices, antecipando a interpretação diagramática
que levará às regras de Feynman.

Uma decomposição útil consiste em separar a parte trivial (nenhuma interação)
da parte genuinamente física:

S = I + iT, (4.16)

onde T é o operador de transição. Para estados iniciais e finais distintos,

〈f |S|i〉 = i〈f |T |i〉,

e 〈i|S|i〉 quantifica correções à probabilidade de não haver espalhamento.

4.2.2 Estados de Partículas e Normalização Relativística
Um estado de uma partícula é construído por

|~p〉 = a†
~p|0〉,

e as relações de comutação,

[a~p, a†
~q] = (2π)3δ(3)(~p− ~q),

levam a

〈~p′|~p〉 = (2π)3δ(3)(~p− ~p′). (4.17)

Para compatibilidade com a relatividade restrita, adota-se a normalização covari-
ante

〈~p′|~p〉 = 2ω~p(2π)3δ(3)(~p− ~p′), (4.18)

que garante a invariância da medida
∫ d3p

(2π)32ω~p
.

Fisicamente, essa normalização assegura que as regras de conservação de momento
e energia sejam compatíveis com transformações de Lorentz, condição indispensável para
interpretar corretamente as amplitudes de espalhamento.
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Na prática experimental, partículas colidem numa região espacial restrita e tornam-
se livres novamente em tempos assintóticos. Cada termo da expansão perturbativa da
matriz S descreve processos em que operadores de campo criam e aniquilam partículas
em vértices de interação, propagadores conectam esses vértices e a conservação de energia
e momento é satisfeita localmente. Essa estrutura prepara o terreno para o teorema LSZ,
que estabelecerá como extrair amplitudes físicas a partir das funções de Green, e para a
interpretação diagramática dada pelos diagramas de Feynman.

4.3 O Teorema de Wick
Na expansão perturbativa da matriz S, surgem produtos cada vez mais compli-

cados de operadores de campo ordenados temporalmente. O Teorema de Wick fornece
o método sistemático que permite reescrever esses produtos em termos de objetos sim-
ples: produtos ordenados normalmente e contrações, que correspondem diretamente aos
propagadores de Feynman.

4.3.1 Ordenamento Normal, Ordenamento Temporal e Contra-
ções

O ordenamento normal, denotado por : O :, coloca todos os operadores de criação
à esquerda dos de aniquilação. Por exemplo,

: ââ† := â†â.

O ordenamento temporal, denotado por T{· · · }, organiza operadores segundo seus
tempos:

T{φ(x)φ(y)} =

φ(x)φ(y), x0 > y0,

φ(y)φ(x), y0 > x0.

A contração entre dois campos é definida como

φ(x)φ(y) ≡ T{φ(x)φ(y)}− : φ(x)φ(y) :, (4.19)

e coincide com o propagador de Feynman quando tomamos o valor esperado no vácuo:

〈0|T{φ(x)φ(y)} |0〉 = φ(x)φ(y).

Exemplos.

Para dois campos,

T{φ(x)φ(y)} =: φ(x)φ(y) : +φ(x)φ(y).

Para três,

T{φ1φ2φ3} =: φ1φ2φ3 : +φ1φ2 : φ3 : +φ1φ3 : φ2 : +φ2φ3 : φ1 : .
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Para quatro campos, surgem contrações simples e duplas:

T{φ1φ2φ3φ4} =: φ1φ2φ3φ4 : +
∑

pares
φiφj :

∏
k 6=i,j

φk : (4.20)

+
∑

pares independentes
φiφjφmφn. (4.21)

As contrações simples correspondem a uma única linha interna nos diagramas,
enquanto as duplas já representam duas linhas internas conectando dois pares de opera-
dores.

4.3.2 Enunciado Geral e Aplicação à Teoria de Espalhamento
O Teorema de Wick afirma que

T{φ1φ2 · · ·φn} =: φ1φ2 · · ·φn : +
∑

todas as contrações possíveis

∏
(propagadores). (4.22)

Assim, todo produto ordenado temporalmente pode ser decomposto em uma soma
de termos normal-ordenados multiplicados por contrações.

Essa identidade é essencial na expansão perturbativa da matriz S,

S = T exp
(
−i
∫
d4xHint(x)

)
,

pois todos os operadores aparecem ordenados temporalmente. Aplicando Wick, cada
termo da série é convertido em uma soma de produtos normal-ordenados (cujos valo-
res esperados no vácuo são nulos) e contrações, que são exatamente os propagadores de
Feynman.

Desse modo, o Teorema de Wick transforma cálculos operatoriais em combinações
puramente algébricas de propagadores, estabelecendo a ponte direta para o formalismo
dos diagramas de Feynman, onde cada contração é representada por uma linha entre dois
pontos de interação.

4.4 Diagramas de Feynman
A expansão perturbativa da matriz S, organizada pelo Teorema de Wick, leva

naturalmente à representação gráfica dos termos de interação por meio dos chamados
diagramas de Feynman. Cada termo da série de Dyson corresponde a um conjunto de
contrações entre operadores de campo, que por sua vez são traduzidas em elementos
gráficos com regras bem definidas.

4.4.1 Da Série de Dyson aos Diagramas
Recordemos que a matriz S no quadro de interação é dada por

S = T exp
(
−i
∫
d4xHint(x)

)
. (4.23)
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Expandindo a exponencial em série de potências, temos:

S = I− i
∫
d4xHint(x)− 1

2

∫
d4x d4y T {Hint(x)Hint(y)}+ . . . (4.24)

Cada termo dessa expansão contém produtos de operadores de campo ordenados
temporalmente. O Teorema de Wick permite reescrever esses produtos como combina-
ções de ordenamentos normais e contrações. Como vimos, cada contração equivale a um
propagador de Feynman:

φ(x)φ(y) ←→ ∆F (x− y).

Assim, a aplicação repetida do Teorema de Wick converte a expansão de S em uma
soma de integrais de produtos de propagadores e vértices de interação. Essa é precisamente
a estrutura representada graficamente pelos diagramas de Feynman.

4.4.2 Elementos Básicos dos Diagramas e Regras
Um diagrama de Feynman é construído a partir de três ingredientes fundamentais:

• Linhas externas: correspondem aos estados de partículas iniciais e finais (opera-
dores de criação e aniquilação não contraídos).

• Linhas internas: representam propagadores de partículas virtuais, resultantes das
contrações entre operadores de campo.

• Vértices: correspondem aos pontos de interação no espaço-tempo, introduzidos por
fatores do Hamiltoniano de interação.

Por exemplo, no caso de uma interação escalar do tipo φ4, o Hamiltoniano de
interação é

Hint(x) = λ

4! φ
4(x),

e cada vértice no diagrama possui quatro linhas conectadas, associado ao fator

−iλ
∫
d4x.

A tradução para o espaço de momentos simplifica os cálculos e fornece as chamadas
regras de Feynman:

1. Linhas externas: cada partícula inicial/final é representada por um fator de onda
de plano e∓ip·x, que na prática se associa a um estado normalizado no espaço de
Fock.

2. Vértice: associe um fator de −iλ (no caso de φ4) e imponha conservação de mo-
mento: ∑ pentrando = 0.

3. Linha interna: associe a cada propagador de momento p o fator

i

p2 −m2 + iε
.
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4. Integração: para cada linha interna, integre sobre o momento não fixado:∫ d4p

(2π)4 .

5. Fator de simetria: divida por um fator que leva em conta o número de permutações
equivalentes de linhas ou vértices que não alteram o diagrama.

Para ilustrar a aplicação das regras desenvolvidas, consideremos o processo mais
simples de espalhamento 2 → 2 em uma teoria escalar com interação do tipo φ4. O
Hamiltoniano de interação é dado por

Hint(x) = λ

4! φ
4(x), (4.25)

onde λ é a constante de acoplamento.
No quadro de interação, o termo de primeira ordem na expansão da matriz S é

S(1) = −i
∫
d4xHI(x) = −i λ4!

∫
d4xT{φ4(x)}. (4.26)

O elemento de matriz que descreve a transição entre um estado inicial de duas
partículas |p1, p2〉 e um estado final |p3, p4〉 é

S(1)
fi = 〈p3, p4|S(1)|p1, p2〉. (4.27)

Escrevendo explicitamente,

S(1)
fi = −i λ4!

∫
d4x 〈p3, p4|T{φ(x)φ(x)φ(x)φ(x)}|p1, p2〉. (4.28)

Contrações e fator combinatório.

Cada uma das quatro cópias de φ(x) deve ser contraída com uma das quatro
linhas externas do processo (p1, p2, p3, p4). Há 4! maneiras de realizar esse emparelhamento,
cancelando exatamente o fator 1/4! presente em (4.28). Assim, o resultado conectado é

S(1)
fi = −iλ

∫
d4x u∗

p3(x)u∗
p4(x)up1(x)up2(x), (4.29)

onde cada fator de onda é dado por

u~p(x) = e−ip·x√
2E~p

, u∗
~p(x) = e+ip·x√

2E~p
, p0 = E~p.

Integração no espaço-tempo.

Substituindo os modos explícitos,

S(1)
fi = −iλ

∫
d4x

ei(p3+p4−p1−p2)·x√∏4
i=1 2Epi

.
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A integral gera a delta de conservação de 4-momento:∫
d4x ei(p3+p4−p1−p2)·x = (2π)4δ(4)(p1 + p2 − p3 − p4).

Logo,
S(1)
fi = −iλ (2π)4δ(4)(p1 + p2 − p3 − p4)

1√∏4
i=1 2Epi

. (4.30)

Normalização covariante.

Trabalhando com estados covariantemente normalizados, |p〉cov =
√

2Ep a†
~p|0〉, os

fatores de 1/
√

2Ep das ondas externas são exatamente cancelados. Assim, o resultado
simplifica para

〈p3, p4|S|p1, p2〉 = (2π)4δ(4)(p1 + p2 − p3 − p4) iM,

com a amplitude invariante
M = −λ (4.31)

ao nível de árvore na teoria φ4.
Este é o diagrama de contato típico da interação φ4. Não há propagadores internos

em primeira ordem, e o cálculo reduz-se a um único vértice. Diagramas mais ricos, com
canais s, t e u, surgem em ordens superiores ou em teorias com interações cúbicas.

p1

p2

p3

p4

Figura 1 – Diagrama de contato da teoria φ4 para o processo 2→ 2 ao nível de árvore.

4.4.3 Os invariantes de Mandelstam s, t, u

Em processos de espalhamento 2 → 2, é usual introduzir as variáveis invariantes
de Lorentz conhecidas como invariantes de Mandelstam. Para quatro-momentos iniciais
p1, p2 e finais p3, p4, define-se:

s = (p1 + p2)2, (4.32)
t = (p1 − p3)2, (4.33)
u = (p1 − p4)2. (4.34)

Essas quantidades resumem toda a informação cinemática do processo em escalares
invariantes de Lorentz. O invariante smede a energia total ao quadrado no centro de massa
e corresponde ao chamado canal s, em que as partículas iniciais se fundem em um estado
intermediário. Já t e u descrevem transferências de momento, associados a processos de
troca de partículas virtuais entre linhas externas, os canais t e u.
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Além disso, os três invariantes não são independentes, satisfazendo a relação

s+ t+ u =
4∑
i=1

m2
i ,

o que reduz o número de graus de liberdade cinemáticos.

Canal s

qs

Canal t

qt

Canal u

qu

Figura 2 – Os canais s, t e u no espalhamento 2→ 2, representando diferentes combina-
ções de momentos externos nos diagramas de Feynman.

A introdução desses invariantes mostra como a análise de espalhamento ganha
clareza com os diagramas de Feynman: cada canal corresponde a uma topologia distinta de
propagação virtual, revelando diferentes formas pelas quais as partículas podem interagir.

4.5 Seções de Choque e Taxas de Decaimento
A matriz S contém toda a informação dinâmica proveniente das amplitudes de

Feynman; para extrair quantidades observáveis, como seções de choque em colisões e
taxas de decaimento para partículas instáveis, é necessário relacioná-la a probabilidades
físicas. Essa conexão é estabelecida a partir da decomposição

S = I + iT,

na qual os elementos não triviais residem em T . Define-se a amplitude invariante M por

〈f |T |i〉 = (2π)4δ(4)(Pf − Pi) iM, (4.35)

com Pi e Pf os quatro-momentos totais inicial e final. A delta de Dirac garante a conser-
vação global de momento, enquanto M carrega a dinâmica do processo.

Ao elevar o módulo ao quadrado surgem termos do tipo

δ(4)(P )2 = δ(4)(P ) δ(4)(0).

O fator δ(4)(0) é interpretado, no limite de normalização em volume finito, como o volume
espaço-temporal:

δ(4)(0) = V T

(2π)4 .

Assim,
|〈f |S|i〉|2 −→ (2π)4δ(4)(Pf − Pi) V T |M|2,

quantidade que permite definir taxas e probabilidades.
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4.5.1 Seções de Choque
Dividindo por T , obtém-se uma taxa de transição por unidade de tempo. A soma

sobre estados finais é substituída pela medida de fase relativística

d3p

(2π)3 2E .

Para o processo geral 1 + 2→ 3 + · · ·+ n, a seção de choque diferencial é

dσ = 1
4
√

(p1 · p2)2 −m2
1m

2
2

|M|2
(

n∏
i=3

d3pi
(2π)3 2Ei

)
(2π)4δ(4)

(
p1 + p2 −

n∑
i=3

pi

)
. (4.36)

Exemplo: espalhamento 2→ 2 em λφ4.

Para
φ(p1) + φ(p2) −→ φ(p3) + φ(p4),

a amplitude ao nível de árvore é simplesmente

M = −iλ.

A seção de choque diferencial é então

dσ = 1
4
√

(p1 · p2)2 −m4
|M|2 dΠ2, (4.37)

onde
dΠ2 = d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ(4)(p1 + p2 − p3 − p4). (4.38)

Usando a delta espacial para integrar em ~p4, e no centro de massa

~p1 = −~p2 ≡ ~pi, ~p3 = −~p4 ≡ ~pf ,

obtém-se
dΠ2 = 1

16π2
|~pf |√
s
dΩ.

Com o fluxo F = 4|~pi|
√
s,

dσ

dΩ = 1
64π2s

|~pf |
|~pi|
|M|2 = λ2

64π2s

|~pf |
|~pi|

.

4.5.2 Taxas de Decaimento
Para uma partícula instável de quatro-momento p, a taxa total é

Γ = 1
2E

∫ (
n∏
i=1

d3pi
(2π)32Ei

)
(2π)4δ(4)

(
p−

∑
i

pi

)
|M|2. (4.39)

No referencial de repouso, E = M , simplificando a expressão.



Capítulo 4. Teoria de Perturbação e Diagramas 39

Exemplo: decaimento 1→ 2.

Para
Φ(M) −→ φ(p1) + φ(p2),

com partículas idênticas de massa m, a fórmula geral reduz-se a

Γ = 1
2M

∫ d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ(4)(p− p1 − p2) |M|2.

Usando a delta espacial e

|~p| = 1
2
√
M2 − 4m2, E = M/2,

chega-se ao resultado conhecido:

Γ = |~p|
8πM2 |M|

2, M > 2m.

As expressões obtidas estabelecem a ponte entre amplitudes calculadas diagrama-
ticamente e observáveis físicos. Seções de choque e taxas de decaimento fornecem previsões
quantitativas comparáveis com experimentos, enquanto correções de ordem superior in-
troduzem dependências energéticas mais refinadas e larguras de ressonância, essenciais
para testes de alta precisão e para a estrutura de renormalização da teoria.
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5 O Campo de Dirac

5.1 A Equação de Dirac

5.1.1 O Grupo de Lorentz e sua Álgebra
O ponto de partida para a descrição relativística de partículas com spin é a es-

trutura de simetria do espaço-tempo de Minkowski. Chamamos de grupo de Lorentz o
conjunto de transformações lineares que preservam o intervalo invariante

s2 = ηµν x
µxν ,

Uma transformação de Lorentz atua sobre as coordenadas como

x′µ = Λµ
ν x

ν ,

e a invariância do intervalo exige que

Λµ
ρ Λν

σ η
ρσ = ηµν . (5.1)

Essa é a condição definidora do grupo SO(1, 3), formado por todas as matrizes reais 4×4
que preservam a métrica de Minkowski. Ela garante que o produto escalar xµxµ é o mesmo
em todos os referenciais inerciais relacionados por Λ.

Para explorar a estrutura interna desse grupo, consideramos uma transformação
infinitesimal próxima da identidade,

Λµ
ν = δµν + ωµν ,

em que ωµν é um pequeno parâmetro, linear nas coordenadas de transformação. Substi-
tuindo essa forma em (5.1) e retendo apenas os termos de primeira ordem em ω, obtemos

(δµρ + ωµρ)(δνσ + ωνσ) ηρσ = ηµν .

Expandindo e desprezando os termos quadráticos, resulta

ωµρ η
ρν + ωνσ η

µσ = 0.

A introdução de índices mistos é conveniente aqui: definindo

ωµν ≡ ηνρωµρ,

a condição acima torna-se
ωµν = −ωνµ.

O parâmetro infinitesimal ωµν é, portanto, antissimétrico, e a álgebra de Lie do grupo de
Lorentz é caracterizada por seis geradores independentes: três correspondem às rotações
espaciais, e três aos boosts (transformações que misturam tempo e espaço).

Essa decomposição já antecipa a estrutura fundamental das representações de Lo-
rentz. As rotações formam um subgrupo compacto SO(3), associado à conservação do
momento angular, enquanto os boosts formam um conjunto não compacto, refletindo o
caráter hiperbólico do espaço-tempo relativístico. Na formulação quântica, esses gerado-
res serão promovidos a operadores hermitianos que atuam sobre os estados de partículas,
definindo a forma como cada tipo de campo, escalar, vetorial ou espinorial, responde a
transformações de Lorentz.
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5.1.2 Geradores e Álgebra de Lorentz
As transformações de Lorentz podem ser expressas em termos dos geradores infi-

nitesimais da álgebra associada. Assim como em qualquer grupo contínuo, uma transfor-
mação finita é obtida pela exponenciação de uma combinação linear dos geradores:

Λ = exp
(1

2 ωρσM
ρσ
)
. (5.2)

O fator 1
2 evita dupla contagem dos índices antissimétricos de ωρσ e assegura que a ex-

pansão linear de Λ reproduza corretamente a transformação infinitesimal.
A representação vetorial dos geradores é obtida diretamente da ação de Λ sobre

um vetor vµ. Da condição de preservação da métrica, segue que

(Mρσ)µν = ηµρ δσν − ηµσ δρν .

Essas matrizes formam uma base da álgebra de Lorentz no espaço vetorial de quatro
dimensões e satisfazem o comutador característico[

Mµν ,Mρσ
]

= ηνρMµσ − ηµρM νσ − ηνσMµρ + ηµσMνρ. (5.3)

Essa relação define a estrutura de Lie do grupo SO(1, 3) e mostra explicitamente como
os diferentes geradores se misturam sob sucessivas transformações.

As componentes puramente espaciais M ij correspondem às rotações usuais no
espaço tridimensional, enquanto as componentes mistas M0i descrevem as transformações
de boost que conectam referenciais inerciais em movimento relativo. É útil introduzir os
operadores vetoriais

Ji = 1
2 εijkM

jk, Ki = M0i,

que isolam os graus de liberdade associados, respectivamente, às rotações e aos boosts.
As relações de comutação seguem diretamente de (5.3):

[Ji, Jj] = εijk Jk, [Ji, Kj] = εijkKk, [Ki, Kj] = −εijk Jk.

Os operadores Ji satisfazem a álgebra familiar de SO(3), refletindo o caráter compacto
das rotações espaciais. Já os Ki obedecem a relações de comutação com sinal oposto,
indicando que o conjunto dos boosts forma um subespaço não compacto, responsável pela
estrutura hiperbólica do espaço-tempo relativístico.

Essa distinção entre as partes compacta e não compacta da álgebra é central para
a construção das representações de Lorentz: ela antecipará a decomposição em duas cópias
independentes de SU(2), que constitui o ponto de partida para introduzir os espinores de
Weyl e, posteriormente, a equação de Dirac.

5.1.3 Decomposição em Duas Cópias de SU(2)
A estrutura da álgebra de Lorentz torna-se mais clara quando introduzimos com-

binações lineares complexas dos operadores de rotação e de boost. Definimos

Ai = 1
2 (Ji + iKi), Bi = 1

2 (Ji − iKi).
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Essas combinações têm a virtude de diagonalizar a ação mútua entre os conjuntos {Ji} e
{Ki}, separando a álgebra em duas partes independentes. Usando as relações de comuta-
ção anteriores,

[Ji, Jj] = εijk Jk, [Ji, Kj] = εijkKk, [Ki, Kj] = −εijk Jk,

obtém-se diretamente

[Ai, Aj] = εijk Ak, [Bi, Bj] = εijk Bk, [Ai, Bj] = 0.

Os operadores Ai e Bi satisfazem, portanto, duas cópias independentes da álgebra de
SU(2) e comutam entre si. Em outras palavras, a álgebra complexificada de Lorentz pode
ser escrita como

so(1, 3)C ' su(2)L ⊕ su(2)R.
Cada cópia corresponde a um setor independente de graus de liberdade, frequentemente
interpretados como “esquerdo” e “direito”, ou equivalentes às representações de quirali-
dade.

As representações irredutíveis da álgebra de Lorentz são então rotuladas por dois
números quânticos de spin,

(jL, jR),
onde jL e jR identificam, respectivamente, as dimensões das representações de cada có-
pia de SU(2). A representação vetorial usual, associada a quatro-vetores de Minkowski,
corresponde a (1

2 ,
1
2), enquanto as representações fundamentais(

1
2 , 0

)
e

(
0, 1

2

)
descreverão os espinores de Weyl, que constituem o bloco básico para a formulação re-
lativística de férmions. Essa decomposição revela que o comportamento espinorial das
partículas relativísticas é uma consequência direta da estrutura da álgebra de Lorentz.

5.1.4 O Espaço de Representações Espinoriais
A decomposição da álgebra de Lorentz em duas cópias independentes de SU(2)

revela que é possível definir objetos que transformam separadamente sob cada um desses
grupos. Chamamos de espinor de Weyl esquerdo um campo que pertence à representação
fundamental de SU(2)L e é invariante sob SU(2)R, ou seja, uma representação do tipo
(1

2 , 0). Analogamente, o espinor de Weyl direito pertence à representação (0, 1
2).

Para um espinor esquerdo ψL, as transformações de Lorentz agem de forma linear
segundo

ψL −→ SL ψL, SL = exp
(
i

θ ·σ
2 + η ·σ

2

)
,

onde θ parametriza rotações espaciais e η parametriza boosts. A presença de i no termo
de rotação e a ausência dele no termo de boost reflete o fato de que rotações são operações
unitárias (compactas), enquanto boosts correspondem a transformações hiperbólicas (não
compactas).

De maneira análoga, um espinor direito ψR transforma segundo

ψR −→ SR ψR, SR = exp
(
i

θ ·σ
2 − η ·σ

2

)
.
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As transformações SL e SR pertencem a grupos independentes: cada uma delas é cons-
truída a partir das combinações Ai e Bi da seção anterior, e satisfaz a álgebra de SU(2).
Esses dois tipos de espinores, portanto, representam graus de liberdade distintos sob o
grupo de Lorentz, uma manifestação da estrutura quiral do espaço-tempo relativístico.

Podemos, contudo, combinar os dois em um único objeto de quatro componentes,

ψ =
(
ψL

ψR

)
,

que constitui o espinor de Dirac. Essa unificação permite construir expressões covariantes
sob transformações de Lorentz e define o campo fundamental de férmions relativísticos.
O espinor de Dirac comporta tanto componentes de quiralidade esquerda quanto direita,
o que o torna adequado para descrever partículas com massa, já que um termo de massa
necessariamente mistura os dois setores de quiralidade. A formulação dinâmica que incor-
pora essas propriedades emerge naturalmente da equação de Dirac, que construiremos a
seguir.

5.1.5 Construção da Ação e Equação de Movimento
O objetivo agora é construir uma teoria de campo para férmions relativísticos que

seja covariante sob transformações de Lorentz e que leve a uma equação de movimento
linear em derivadas do tempo. Essa linearidade é crucial, pois garante que o campo ψ tenha
interpretação probabilística consistente no limite não relativístico, evitando o problema
das derivadas de segunda ordem na equação de Klein–Gordon, que dificultam a definição
de uma densidade de probabilidade positiva.

Como o campo ψ pertence a uma representação espinorial, ele não se transforma
como um vetor ou tensor comum. A invariância de Lorentz requer, portanto, que o termo
cinético seja construído a partir de uma combinação bilinear de ψ e de seu adjunto ψ̄,
envolvendo uma derivada covariante que atue sobre ψ e um conjunto de matrizes γµ que
conectem os índices de Lorentz com os índices de spin. A forma mais geral compatível
com essas exigências é

ψ̄ γµ ∂µψ.

Para que essa expressão se comporte como um escalar sob transformações de Lorentz,
as matrizes γµ devem transformar como vetores contravariantes, satisfazendo a relação
fundamental

{γµ, γν} = 2 ηµν . (5.4)
Essas relações de anticomutação definem a álgebra de Clifford associada ao espaço-tempo
de Minkowski e determinam que as matrizes γµ formam uma representação matricial dessa
álgebra. Existem diversas representações equivalentes, todas relacionadas por transforma-
ções de similaridade, sendo as mais comuns a representação de Dirac e a representação de
Weyl. A escolha de representação não afeta a física, apenas a forma explícita das matrizes.

Com isso, a ação de Dirac é escrita como

S =
∫
d4x ψ̄ (iγµ∂µ −m)ψ, (5.5)

onde o adjunto de Dirac é definido por

ψ̄ = ψ†γ0,
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de modo que a quantidade bilinear ψ̄ψ seja invariante sob transformações de Lorentz.
Essa construção assegura que tanto o termo cinético quanto o termo de massa da ação
possuam a estrutura covariante apropriada.

A equação de movimento segue da condição de extremalização da ação em relação
ao campo ψ̄:

δS =
∫
d4x δψ̄ (iγµ∂µ −m)ψ = 0,

o que implica
(iγµ∂µ −m)ψ = 0. (5.6)

Essa é a equação de Dirac, a forma relativisticamente covariante da dinâmica para partí-
culas de spin 1

2 . Ela é linear em derivadas e garante uma evolução temporal bem definida,
com um operador de Hamiltoniano hermitiano no espaço de Hilbert.

A consistência com a relatividade pode ser verificada aplicando o operador conju-
gado (iγν∂ν +m) sobre (5.6):

(iγν∂ν +m)(iγµ∂µ −m)ψ = 0.

Usando a relação de anticomutação (5.4), obtemos

(∂µ∂µ +m2)ψ = 0,

ou seja,
(� +m2)ψ = 0,

que é justamente a equação de Klein–Gordon. Logo, cada componente do espinor de Dirac
descreve uma partícula relativística de massa m, mostrando que a equação de Dirac não
substitui a de Klein–Gordon, mas a generaliza, incorporando o grau de liberdade de spin
de forma natural.

Fisicamente, a introdução das matrizes γµ permite representar o acoplamento entre
o momento e o spin de uma partícula de maneira covariante, traduzindo geometricamente
como o spin é afetado por rotações e boosts. O termo de massa mψ̄ψ tem papel essencial:
ele acopla as componentes de quiralidade esquerda e direita, ψL e ψR, que, em ausência
de massa, transformariam de maneira independente sob as duas cópias de SU(2). Assim,
a presença de massa rompe a separação quiral e conecta os dois setores da representação
espinorial, refletindo o fato de que partículas massivas não possuem quiralidade bem
definida.

A ação (5.5) condensa de forma elegante os princípios da relatividade e da mecânica
quântica: é local, covariante, linear e compatível com a estrutura de spin-1

2 do campo. Ela
constitui o ponto de partida para a quantização fermiônica e para a formulação de teorias
interativas, como a Eletrodinâmica Quântica, onde o campo de Dirac interage com o
campo eletromagnético por meio do princípio de gauge.

5.2 Espinores Quirais e a Matriz γ5

A equação de Dirac introduz um campo de quatro componentes

(iγµ∂µ −m)ψ = 0,
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onde as matrizes γµ obedecem à álgebra de Clifford

{γµ, γν} = 2 ηµν .

Esse formalismo unifica as duas representações fundamentais do grupo de Lorentz, (1
2 , 0)

e (0, 1
2), em um único objeto que descreve férmions relativísticos. Entretanto, para com-

preender a estrutura interna do espinor de Dirac, é conveniente separar essas duas com-
ponentes, o que conduz naturalmente ao conceito de quiralidade.

5.2.1 Decomposição quiral do espinor de Dirac
A matriz

γ5 = i γ0γ1γ2γ3

é introduzida para distinguir entre as duas representações fundamentais. Ela satisfaz

(γ5)2 = 1, {γ5, γµ} = 0.

Essas propriedades permitem definir os operadores de projeção

PL = 1− γ5

2 , PR = 1 + γ5

2 , (5.7)

que satisfazem

P 2
L = PL, P 2

R = PR, PLPR = 0, PL + PR = 1.

Aplicando-os ao espinor de Dirac, obtemos as componentes

ψL = PLψ, ψR = PRψ,

de modo que o campo completo pode ser escrito como

ψ = ψL + ψR.

A anticomutação entre γ5 e γµ garante que cada projeção se transforma de maneira
independente sob o grupo de Lorentz:

γµPL,R = PR,Lγ
µ.

Consequentemente, a equação de Dirac pode ser reescrita como duas equações acopladas:

iγµ∂µψL −mψR = 0, (5.8)
iγµ∂µψR −mψL = 0. (5.9)

No limite m = 0, as duas quiralidades se desacoplam completamente:

iγµ∂µψL,R = 0,

e cada componente descreve um espinor de Weyl. Assim, um férmion sem massa é repre-
sentado por apenas uma das duas quiralidades.
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5.2.2 Propriedades do Operador γ5 e dos Projetores Quirais
A matriz γ5, definida na subseção anterior, desempenha papel central na estru-

tura quiral da teoria de férmions relativísticos. Ela depende apenas da orientação do
espaço-tempo e não de uma direção específica, sendo portanto invariante sob rotações e
transformações de Lorentz próprias.

A hermiticidade de γ5 segue diretamente das propriedades usuais das matrizes de
Dirac:

(γ5)† = (i γ0γ1γ2γ3)† = −i (γ3)†(γ2)†(γ1)†(γ0)† = i γ0γ1γ2γ3 = γ5,

onde utilizamos que (γ0)† = γ0 e (γi)† = −γi. Assim, γ5 é hermitiana e possui autovalores
±1, o que justifica a sua utilização como operador de projeção de quiralidade.

Os projetores quirais definidos anteriormente satisfazem

P 2
L = PL, P 2

R = PR, PLPR = 0, PL + PR = 1,

e decompõem o espaço espinorial em duas sub-representações ortogonais. Aplicando-os ao
espinor de Dirac,

ψL = PLψ, ψR = PRψ, ψ = ψL + ψR.

A anticomutação entre γ5 e γµ implica que γµ troca quiralidades:

γµPL = PRγ
µ, γµPR = PLγ

µ.

Esse fato mostra que o termo cinético ψ̄γµ∂µψ mistura as duas componentes quirais.
Um ponto sutil, frequentemente omitido, é a relação entre os projetores quirais e

o adjunto de Dirac. Definindo ψ̄ = ψ†γ0, verifica-se que

ψ̄L = ψ̄PR, ψ̄R = ψ̄PL.

Essa inversão dos projetores decorre da anticomutação

γ0γ5 = −γ5γ0.

Assim, bilineares quirais puros se anulam:

ψ̄LψL = 0, ψ̄RψR = 0,

enquanto termos cruzados não:

ψ̄LψR = ψ̄PRPRψ = ψ̄Lψ.

Isso evidencia que o termo de massa mψ̄ψ = m(ψ̄LψR + ψ̄RψL) acopla necessariamente as
duas quiralidades.

No limite m = 0, a ação separa-se e surge simetria axial com corrente

jµ5 = ψ̄γµγ5ψ,

classicamente conservada:
∂µj

µ
5 = 0.
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5.2.3 Quiralidade e Transformações de Paridade
A operação de paridade inverte as coordenadas espaciais,

P : (t,x) 7−→ (t,−x),

e exige que
γ0 7→ γ0, γi 7→ −γi.

Como γ5 contém três fatores espaciais, ela transforma como

P : γ5 7−→ −γ5.

Assim,
PL ←→ PR,

e portanto
ψL −→ ψR, ψR −→ ψL.

O espinor de Dirac é construído para transformar como

ψ(t,x) 7−→ ψ′(t,x) = γ0 ψ(t,−x),

o que preserva a estrutura da ação

S =
∫
d4x ψ̄(iγµ∂µ −m)ψ.

Espinores de Weyl isolados não possuem essa propriedade, evidenciando a violação de
paridade em teorias puramente quirais.

5.2.4 Estrutura da Ação em Termos de Quiralidades
A decomposição do espinor de Dirac em ψL e ψR permite reescrever a ação como

S =
∫
d4x

(
ψ̄L iγ

µ∂µψL + ψ̄R iγ
µ∂µψR −m (ψ̄LψR + ψ̄RψL)

)
. (5.10)

O termo cinético é diagonal em quiralidade, enquanto o de massa é off-diagonal.
No limite m = 0, as duas quiralidades se desacoplam completamente:

S =
∫
d4x

(
ψ̄L iγ

µ∂µψL + ψ̄R iγ
µ∂µψR

)
,

e a teoria exibe simetria U(1)L × U(1)R, com correntes vetorial e axial.
A introdução de massa reduz essa invariância ao subgrupo diagonal, refletindo que

a massa mistura as representações (1
2 , 0) e (0, 1

2). Fisicamente, essa estrutura mostra que
férmions leves se comportam aproximadamente como férmions de Weyl, enquanto férmions
massivos apresentam mistura intensa entre as duas componentes de quiralidade.

5.3 Soluções de Onda Plana da Equação de Dirac
Tendo estabelecido a estrutura da equação de Dirac e a natureza de suas compo-

nentes quirais, podemos agora buscar suas soluções explícitas. O objetivo é compreender
como o campo ψ(x) descreve partículas relativísticas de spin-1

2 , com massa m, e como
surgem as interpretações de partícula e antipartícula no formalismo.
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5.3.1 A equação no espaço de momento
Busquemos soluções de onda plana da equação de Dirac, da forma

ψ(x) = u(p) e−ip·x, (5.11)

onde pµ = (E,p) é o quatro-momento da partícula. Essa forma é natural, pois traduz
a invariância por translações em espaço e tempo na linguagem de modos de Fourier, tal
como ocorre na equação de Schrödinger livre.

Substituindo (5.11) na equação de Dirac

(iγµ∂µ −m)ψ = 0,

e observando que ∂µψ = −ipµψ, obtemos

(γµpµ −m)u(p) = 0. (5.12)

Essa é a equação de Dirac no espaço de momento. Ela não é mais uma equação diferencial,
mas sim uma equação algébrica matricial de dimensão 4× 4, que impõe restrições sobre
as componentes do espinor u(p).

Condição de existência de soluções não triviais.

Soluções não nulas u(p) 6= 0 existem apenas se o determinante do operador γµpµ−
m for nulo. Para verificar essa condição, multiplicamos a equação (5.12) à esquerda por
(γνpν +m):

(γνpν +m)(γµpµ −m)u(p) = 0.
Expandindo o produto,

γνpν γ
µpµ −mγνpν +mγµpµ −m2 = 0.

Os termos lineares em γ se cancelam, e o termo quadrático pode ser simplificado usando
a anticomutação das matrizes de Dirac:

{γµ, γν} = 2ηµν .

Assim,

γνpν γ
µpµ = 1

2 (γνγµ + γµγν) pνpµ = ηµνpµpν I = p2 I,

de modo que
(γνpν +m)(γµpµ −m) = (p2 −m2) I.

Portanto, a equação (5.12) implica

(p2 −m2)u(p) = 0.

Para que existam soluções não triviais, é necessário que o fator escalar se anule:

p2 = m2, (5.13)

ou seja,
E2 = p2 +m2. (5.14)

Esta é a relação de dispersão relativística padrão, garantindo que a equação de Dirac des-
creve partículas de massa m propagando-se com quatro-momento sobre a hipersuperfície
de massa de Minkowski.
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Energia positiva e negativa.

A relação (5.14) admite duas soluções:

E = ±
√

p2 +m2. (5.15)

As soluções com E > 0 correspondem a estados de energia positiva, que serão interpre-
tados como partículas, as soluções com E < 0 representam estados de energia negativa.
O problema das energias negativas foi um ponto central na formulação original de Dirac,
levando à interpretação de que esses estados representam antipartículas, entidades com
carga oposta mas mesma massa que as partículas correspondentes.

Exemplo: momento unidimensional.

Para fixar ideias, consideremos p = (0, 0, pz), com pz > 0. A relação (5.15) dá

E = ±
√
p2
z +m2.

Em unidades naturais (c = ~ = 1), se m = 1 e pz = 2, temos E = ±
√

5. Logo, as soluções
e−iEt e e+iEt descrevem ondas que se propagam com a mesma velocidade de grupo, mas
associadas a fluxos de energia oposta.

Equação para as soluções de energia negativa.

De maneira análoga, podemos considerar soluções com dependência de fase oposta:

ψ(x) = v(p) e+ip·x.

Substituindo em (iγµ∂µ −m)ψ = 0, obtemos

(γµpµ +m) v(p) = 0.

As funções u(p) e v(p) satisfazem, portanto, equações complementares:

(/p−m)u(p) = 0, (/p+m) v(p) = 0,

onde usamos a notação compacta /p = γµpµ. Essas duas famílias de soluções, u(p) para
energia positiva e v(p) para energia negativa, formam um conjunto completo de espinores,
descrevendo, respectivamente, partículas e antipartículas. Elas constituirão a base para a
quantização do campo de Dirac e para a construção do propagador de férmions.

5.3.2 Soluções explícitas no repouso
Para determinar explicitamente u(p) e v(p), é conveniente começar pelo sistema de

repouso da partícula, onde p = 0 e, portanto, pµ = (m,0). Nesse caso, a equação (5.12)
se reduz a

(γ0m−m)u(0) = 0 ⇒ (γ0 − I)u(0) = 0. (5.16)

Escolhendo a representação de Dirac,

γ0 =
(
I 0
0 −I

)
, γi =

( 0 σi

−σi 0

)
,
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onde σi são as matrizes de Pauli, podemos escrever o espinor de quatro componentes u(0)
como

u(0) =
(
φ

χ

)
,

com φ e χ espinores de duas componentes.
Substituindo essa forma em (5.16), obtemos(

I 0
0 −I

)(
φ

χ

)
=
(
φ

χ

)
,

o que implica
φ = φ, −χ = χ.

Portanto, χ = 0, e o espinor assume a forma

u(0) =
(
φ

0

)
. (5.17)

O vetor φ é um espinor arbitrário de duas componentes, que contém a informação sobre
o estado de spin da partícula. Como o spin-1

2 possui dois autoestados, podemos escolher
uma base conveniente em que φ seja autoestado de σ3:

φ+ =
(

1
0

)
, φ− =

(
0
1

)
.

Assim, no repouso, as duas soluções independentes de energia positiva são

u(1)(0) =
(
φ+

0

)
, u(2)(0) =

(
φ−

0

)
. (5.18)

Esses dois estados representam, respectivamente, spin para cima e para baixo em relação
ao eixo z.

De modo completamente análogo, as soluções de energia negativa são obtidas a
partir da equação

(γµpµ +m) v(p) = 0. (5.19)
No repouso, pµ = (m,0), de modo que

(γ0 + I) v(0) = 0.

Escrevendo v(0) também em blocos de duas componentes,

v(0) =
(
φ′

χ′

)
,

obtemos (
I 0
0 −I

)(
φ′

χ′

)
= −

(
φ′

χ′

)
,

o que leva a φ′ = 0. Logo,

v(0) =
( 0
χ′

)
. (5.20)
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As soluções independentes correspondem a escolher χ′ como φ+ ou φ−:

v(1)(0) =
( 0
φ+

)
, v(2)(0) =

( 0
φ−

)
. (5.21)

Esses quatro espinores, dois u(s)(0) e dois v(s)(0), formam uma base completa de
soluções no repouso. Eles satisfazem, respectivamente,

(γ0 − I)u(s)(0) = 0, (γ0 + I) v(s)(0) = 0,

verificando-se diretamente que são soluções da equação de Dirac nas condições E = ±m e
p = 0. Cada espinor de quatro componentes carrega, portanto, a estrutura de um par de
espinores de Pauli: o setor superior descreve as partículas de energia positiva, enquanto
o inferior descreve as de energia negativa. No repouso, essa separação é completa: os
setores não se misturam, e os dois graus de liberdade remanescentes correspondem aos
autoestados do spin-1

2 . Sob transformações de Lorentz, esses setores se acoplarão, como
veremos a seguir, gerando as soluções gerais u(p, s) e v(p, s) para momento arbitrário.

5.3.3 Soluções gerais e transformação de Lorentz
Tendo obtido as soluções no repouso, consideremos agora o caso de momento

arbitrário p 6= 0. A partir do vetor de quatro-momento no repouso pµ(0) = (m,0), podemos
construir pµ = (E,p) aplicando um boost de Lorentz ao longo da direção de p, com
velocidade β = p/E e fator de Lorentz γ = E/m.

Sob essa transformação, o campo de Dirac transforma-se como

ψ′(x′) = S(Λ)ψ(x),

onde S(Λ) é a representação espinorial do grupo de Lorentz, satisfazendo

S−1(Λ) γµ S(Λ) = Λµ
ν γ

ν .

No caso de um boost puro na direção p̂, o operador S(Λ) assume a forma

S(Λ) = exp
(
−ω2 γ

0γip̂i

)
, (5.22)

onde o parâmetro ω é definido por

coshω = E

m
, sinhω = |p|

m
.

Aplicando essa transformação ao espinor de repouso u(0, s), obtemos a solução correspon-
dente com momento p:

u(p, s) = S(Λ)u(0, s).

Para calcular S(Λ) de modo explícito, observemos que γ0γi =
(

0 σi

σi 0

)
, e que

(γ0γip̂i)2 = I. Assim,
S(Λ) = coshω2 − (γ0γip̂i) sinhω2 .
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Usando cosh(ω/2) =
√

E+m
2m e sinh(ω/2) =

√
E−m

2m , obtemos

S(Λ) =
√
E +m

2m

[
I− γ0γipi

E +m

]
.

Aplicando esse operador à solução de repouso (5.17), temos

u(p, s) = S(Λ)u(0, s) =
√
E +m

2m

[
I + γ0γipi

E +m

](
φs

0

)
. (5.23)

Multiplicando as matrizes, obtemos

u(p, s) =
√
E +m

2m

 φs
σ · p
E +m

φs

 . (5.24)

Essa expressão mostra que o boost mistura as componentes superior e inferior
do espinor: para p = 0, o termo inferior se anula e recuperamos o resultado anterior,
enquanto para p 6= 0 ele adquire uma contribuição proporcional ao momento.

De forma completamente análoga, para as soluções de energia negativa temos

v(p, s) =
√
E +m

2m

 σ · p
E +m

χs

χs

 ,
onde χs representa o estado de spin da antipartícula.

Essas expressões podem ser escritas de forma covariante usando a notação de
Feynman:

u(p, s) = /p+m√
2m(E +m)

u(0, s), v(p, s) = /p−m√
2m(E +m)

v(0, s). (5.25)

Com essa forma, é imediato verificar que as soluções satisfazem as equações de Dirac
correspondentes:

(/p−m)u(p, s) = 0, (/p+m) v(p, s) = 0,

pois (/p−m)(/p+m) = p2−m2 = 0 para quatro-momento sobre a hipersuperfície de massa.
Por fim, é útil relacionar essas expressões covariantes à notação mais compacta em

termos de matrizes de Pauli. Recordando que

p · σ = pµσ
µ = E − p · σ, p · σ̄ = E + p · σ,

pode-se mostrar que
√
p · σ =

√
E +m

(
I− p · σ

E +m

)1
2
,

o que leva às formas equivalentes

u(p, s) =
(√

p · σ ξs√
p · σ̄ ξs

)
, v(p, s) =

( √
p · σ ηs

−
√
p · σ̄ ηs

)
, (5.26)
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como citado anteriormente.
Essas soluções explicitam a estrutura relativística do espinor de Dirac: as com-

ponentes superiores e inferiores, originalmente independentes no repouso, tornam-se aco-
pladas pelo movimento, refletindo a natureza quiral e o caráter misto de partícula e
antipartícula intrínseco à descrição relativística de férmions. A relação (5.25) evidencia
ainda a simetria entre as soluções u e v, que diferem apenas pelo sinal da massa, um
aspecto fundamental na interpretação do campo de Dirac como descrevendo simultanea-
mente partículas e antipartículas.

5.3.4 Relações de normalização
As soluções u(p, s) e v(p, s) obtidas anteriormente contêm uma constante de nor-

malização global que pode ser fixada de modo covariante. O objetivo é que os produtos
de Dirac ūu e v̄v assumam valores simples e invariantes sob transformações de Lorentz.

Recordemos que o conjugado de Dirac é definido como

ū(p, s) = u†(p, s) γ0.

Usando a forma explícita de u(p, s) obtida em (5.24),

u(p, s) =
√
E +m

2m

 φs
σ · p
E +m

φs

 ,
temos

u†(p, s) =
√
E +m

2m

(
φ†
s φ†

s

σ · p
E +m

)
,

e, portanto,

ū(p, s) =
√
E +m

2m

(
φ†
s, −φ†

s

σ · p
E +m

)
.

Normalização de u(p, s).

Multiplicando ū(p, s) por u(p, s′), obtemos

ū(p, s)u(p, s′) = E +m

2m φ†
s

[
I− (σ · p)(σ · p)

(E +m)2

]
φs′ . (5.27)

Usando a identidade das matrizes de Pauli,

(σ · a)(σ · b) = a · b I + iσ · (a × b),

e observando que a = b = p implica a × b = 0, temos

(σ · p)2 = p2 I.

Substituindo em (5.27),

ū(p, s)u(p, s′) = E +m

2m φ†
s

[
1− p2

(E +m)2

]
φs′ .
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Usando E2 − p2 = m2, obtemos

1− p2

(E +m)2 = 2m
E +m

.

Logo,
ū(p, s)u(p, s′) = 2mφ†

sφs′ = 2mδss′ , (5.28)

assumindo a normalização usual φ†
sφs′ = δss′ .

Normalização de v(p, s).

De forma análoga, usando

v(p, s) =
√
E +m

2m

 σ · p
E +m

χs

χs

 ,
obtemos

v̄(p, s) =
√
E +m

2m

(
−χ†

s

σ · p
E +m

, χ†
s

)
.

Então,

v̄(p, s) v(p, s′) = E +m

2m χ†
s

[
−(σ · p)(σ · p)

(E +m)2 + I
]
χs′

= E +m

2m χ†
s

[
− p2

(E +m)2 + 1
]
χs′ = −2mδss′ .

Assim, as normalizações convencionais são

ū(p, s)u(p, s′) = 2mδss′ , (5.29)
v̄(p, s) v(p, s′) = −2mδss′ , (5.30)

enquanto os produtos mistos ū(p, s) v(p, s′) e v̄(p, s)u(p, s′) se anulam devido à ortogona-
lidade dos setores de energia positiva e negativa.

Identidades de completude.

As relações de normalização permitem construir projeções completas sobre o espaço
de soluções. Como {u(p, s)} e {v(p, s)} formam uma base ortogonal de soluções da equação
de Dirac, deve valer∑

s

u(p, s) ū(p, s) = A(/p+m),
∑
s

v(p, s) v̄(p, s) = B(/p−m),

para alguns escalares A e B. Multiplicando à esquerda por ū(p, s′) e usando (5.29),

ū(p, s′)
[∑
s

u(p, s)ū(p, s)
]
u(p, s′) = 2m = A ū(p, s′)(/p+m)u(p, s′).
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Mas (/p−m)u(p, s′) = 0 implica /pu(p, s′) = mu(p, s′), e portanto o lado direito vale 2mA.
Logo, A = 1. O mesmo raciocínio vale para B = 1. Temos, portanto,∑

s

u(p, s) ū(p, s) = /p+m, (5.31)∑
s

v(p, s) v̄(p, s) = /p−m. (5.32)

Essas identidades são de extrema importância prática: elas permitem reescrever
expressões envolvendo somas sobre estados de spin de forma covariante. Por exemplo, nos
cálculos de espalhamento, a soma sobre spins iniciais e finais pode ser substituída pelas
combinações /p ±m, o que simplifica enormemente a manipulação algébrica. Além disso,
as relações (5.31)–(5.32) estão na base da definição do propagador de férmions, que surge
justamente como a inversa do operador (/p−m) no espaço de momento.

5.3.5 Helicidade e quiralidade
A equação de Dirac, ao descrever férmions relativísticos, admite naturalmente

uma decomposição em componentes de quiralidade definida. Introduzimos os operadores
de projeção quirais

PL = 1− γ5

2 , PR = 1 + γ5

2 , (5.33)

onde

γ5 = i γ0γ1γ2γ3 =
(0 I
I 0

)
(na representação de Dirac).

Esses projetores satisfazem P 2
L = PL, P 2

R = PR, e PLPR = 0. Aplicando-os ao espinor de
Dirac, obtemos as componentes de quiralidade esquerda e direita:

ψL = PLψ, ψR = PRψ.

Como PL + PR = I, o campo total se decompõe em

ψ = ψL + ψR.

Substituindo essa decomposição na equação de Dirac

(i/∂ −m)ψ = 0,

e lembrando que γ5 anticommuta com todas as γµ, ou seja, {γ5, γµ} = 0, obtemos o
sistema acoplado

i/∂ ψL = mψR, (5.34)
i/∂ ψR = mψL. (5.35)

Essas equações mostram que a massa do férmion acopla as duas componentes de quira-
lidade: ψL e ψR não evoluem de forma independente. No entanto, no limite m → 0, as
equações (5.34)–(5.35) se desacoplam, resultando em duas equações de Weyl independen-
tes:

i/∂ ψL = 0, i/∂ ψR = 0. (5.36)
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Nesse caso, as soluções podem ser escolhidas de forma que
γ5uL,R(p) = ∓uL,R(p), (5.37)

ou seja, uL é autoestado de γ5 com autovalor −1, e uR com autovalor +1. O mesmo vale
para os espinores vL,R(p), associados a antipartículas. Essas relações estabelecem que,
para campos sem massa, as componentes quirais correspondem exatamente aos espinores
de Weyl discutidos anteriormente: a equação de Dirac sem massa se decompõe em duas
equações de Weyl independentes, uma para ψL e outra para ψR.

Para relacionar quiralidade e propriedades observáveis, introduzimos o operador
de helicidade,

h = S · p
|p|

, (5.38)

onde S = 1
2

(
σ 0
0 σ

)
é o operador de spin relativístico. A helicidade mede a projeção do

spin na direção do movimento e, portanto, indica se o spin está alinhado ou anti-alinhado
com o momento linear. Aplicando h sobre uma solução u(p, s) com p orientado ao longo
do eixo z, obtemos

hu(p,±) = ± 1
2 u(p,±),

de modo que u(p,+) representa helicidade “para cima” e u(p,−) helicidade “para baixo”.
Para partículas massivas, helicidade e quiralidade são conceitos distintos: a helici-

dade depende do referencial inercial, já que um observador suficientemente rápido pode
ultrapassar a partícula e inverter o sentido de seu momento, trocando o sinal de h. A
quiralidade, por outro lado, é uma propriedade intrínseca da representação, ela não muda
sob transformações de Lorentz. Entretanto, quando m = 0, a quiralidade e a helicidade
tornam-se equivalentes: como as componentes ψL e ψR não se acoplam, o operador de
helicidade comuta com o Hamiltoniano, e cada partícula pode ser caracterizada simulta-
neamente por um valor fixo de helicidade e de quiralidade.

Essa coincidência entre quiralidade e helicidade no regime sem massa possui conse-
quências profundas. No Modelo Padrão, apenas as componentes de quiralidade esquerda
dos férmions (e as direitas dos antiférmions) participam das interações fracas, o que leva
à violação observada de paridade. A decomposição quiral do campo de Dirac e o com-
portamento das soluções de onda plana analisadas até aqui constituem, portanto, a base
conceitual da formulação moderna das interações fundamentais: a estrutura bilinear da
equação de Dirac permite descrever simultaneamente partículas e antipartículas, enquanto
sua decomposição em quiralidades revela como a simetria de Lorentz acomoda, de forma
natural, a assimetria das interações de gauge na natureza.

5.4 Quantização do Campo de Dirac
A equação de Dirac, embora formulada inicialmente como uma equação de onda

relativística para partículas de spin-1
2 , não constitui por si só uma teoria quântica con-

sistente. Assim como no caso escalar, a interpretação probabilística da função de onda
entra em conflito com a existência de soluções de energia negativa. A resolução desse
problema requer reinterpretar ψ(x) não como uma função de onda, mas como um campo
quântico, cujos coeficientes de Fourier se tornam operadores obedecendo a relações de
anticomutação.



Capítulo 5. O Campo de Dirac 57

5.4.1 O Lagrangiano de Dirac
O ponto de partida para a formulação quântica do campo de férmions é o lagran-

giano covariante
L = ψ̄(iγµ∂µ −m)ψ, (5.39)

onde ψ̄ = ψ†γ0 é o espinor adjunto de Dirac. Esse lagrangiano é linear nas derivadas
temporais de ψ e invariante sob transformações de Lorentz, como será verificado adiante.

Equações de movimento

Aplicando o princípio de mínima ação,

δS = δ
∫
d4xL = 0,

as variações independentes de ψ e ψ̄ produzem equações distintas, pois tratamos ψ e ψ̄
como campos independentes durante a variação. A variação em relação a ψ̄ fornece:

∂L
∂ψ̄
− ∂µ

(
∂L

∂(∂µψ̄)

)
= 0.

Como L depende apenas de ∂µψ e não de ∂µψ̄, o segundo termo é nulo, e obtemos dire-
tamente

(iγµ∂µ −m)ψ = 0,
que é precisamente a equação de Dirac.

De modo análogo, variando agora em relação a ψ:

∂L
∂ψ
− ∂µ

(
∂L

∂(∂µψ)

)
= 0,

temos
∂L
∂ψ

= −mψ̄, ∂L
∂(∂µψ) = iψ̄γµ,

de onde segue
∂µ(iψ̄γµ) +mψ̄ = 0,

ou, equivalentemente,
i∂µψ̄ γ

µ +mψ̄ = 0, (5.40)
que é a equação adjunta de Dirac. Essas duas expressões, (5.12) e (5.40), formam o par
de equações fundamentais que governam a dinâmica do campo espinorial.

Corrente conservada e simetria global de fase

O lagrangiano (5.39) é invariável sob uma transformação global de fase:

ψ(x) −→ eiαψ(x), ψ̄(x) −→ ψ̄(x)e−iα,

com α constante. Segundo o teorema de Noether, a invariância sob tal simetria contínua
implica a existência de uma corrente conservada jµ, obtida pela regra geral

jµ = ∂L
∂(∂µψ) δψ + δψ̄

∂L
∂(∂µψ̄)

.
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Como L depende apenas de ∂µψ, o segundo termo é nulo, e com δψ = iαψ temos

jµ = iα

(
∂L

∂(∂µψ) ψ
)

= iα(iψ̄γµψ).

Eliminando o fator arbitrário α, obtemos a corrente conservada

jµ = ψ̄γµψ, (5.41)

que satisfaz ∂µjµ = 0 como consequência direta das equações de movimento.
O componente temporal dessa corrente,

j0 = ψ̄γ0ψ = ψ†ψ,

é positivo definido, permitindo interpretar j0 como uma densidade de probabilidade ou,
mais precisamente, como uma densidade de carga positiva. Isso contrasta com o caso do
campo escalar relativístico, onde a densidade j0 = i(φ∗φ̇ − φ̇∗φ) pode assumir valores
negativos, impossibilitando uma interpretação probabilística direta.

A carga total associada à simetria global de fase é, portanto,

Q =
∫
d3x j0 =

∫
d3xψ†ψ, (5.42)

a qual é conservada no tempo, Q̇ = 0, e permanecerá como o gerador da transformação
de fase global. Esse mesmo mecanismo servirá, posteriormente, de base para introduzir o
acoplamento local com o campo eletromagnético Aµ, quando a simetria for promovida de
global a local.

5.4.2 Momento canônico e hamiltoniano
A partir do lagrangiano (5.39), identificamos o momento canonicamente conjugado

ao campo ψ como
π(x) = ∂L

∂(∂0ψ) . (5.43)

Escrevendo explicitamente a derivada temporal no lagrangiano,

L = i ψ̄γ0ψ̇ + i ψ̄γi∂iψ −mψ̄ψ,

e lembrando que ψ̄ = ψ†γ0, temos

L = i ψ†γ0γ0ψ̇ + i ψ†γ0γi∂iψ −mψ†γ0ψ.

Como (γ0)2 = I, o primeiro termo simplifica para iψ†ψ̇. Portanto,

∂L
∂(ψ̇)

= i ψ†,

e obtemos o momento canônico
π(x) = i ψ†(x). (5.44)
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Construção do hamiltoniano

A densidade hamiltoniana é definida, como de costume, por

H = π ψ̇ − L. (5.45)

Substituindo (5.44) e o lagrangiano explícito, temos

H = i ψ†ψ̇ −
(
i ψ†ψ̇ + i ψ†γ0γi∂iψ −mψ†γ0ψ

)
= −i ψ†γ0γi∂iψ +mψ†γ0ψ. (5.46)

Definindo as matrizes
αi = γ0γi, β = γ0, (5.47)

a densidade hamiltoniana assume a forma compacta

H = ψ†
(
− iα·∇+mβ

)
ψ. (5.48)

Essa é precisamente a densidade hamiltoniana associada à equação de Dirac.

Equação de movimento e consistência

O campo ψ deve evoluir no tempo segundo a equação de Heisenberg clássica

i ψ̇ = [ψ, H]cl = δH

δψ† ,

onde H =
∫
d3xH é o hamiltoniano total e [·, ·]cl denota o colchete de Poisson clássico

(ou anticomutador na versão quântica). Usando (5.48), obtemos

i ψ̇ = (−iα·∇+mβ)ψ.

Multiplicando ambos os lados por β = γ0 e usando γ0α = γ, temos

i γ0ψ̇ =
(
−i γi∂i +m

)
ψ,

ou, de forma covariante,
(iγµ∂µ −m)ψ = 0,

que é precisamente a equação de Dirac original.
Essa verificação demonstra a consistência entre as formulações lagrangiana e ha-

miltoniana do campo espinorial. O papel das matrizes α e β é, portanto, o de fornecer uma
representação explícita do operador hamiltoniano relativístico para férmions, conectando
a estrutura matricial de Dirac com a evolução temporal gerada por H.

5.4.3 Expansão em modos e operadores de criação e destruição
Para quantizar o campo de Dirac, partimos de sua solução clássica geral. Como a

equação é linear, qualquer solução pode ser expressa como uma superposição de soluções
elementares de onda plana, correspondentes a partículas de momento definido p e spin s.
Assim, escrevemos

ψ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

(
ap,s u(p, s) e−ip·x + b†

p,s v(p, s) eip·x
)
, (5.49)
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Consequentemente, o campo adjunto é dado por:

ψ†(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

(
a†

p,s u
†(p, s) eip·x + bp,s v

†(p, s) e−ip·x
)
. (5.50)

onde u(p, s) e v(p, s) satisfazem, respectivamente,

(/p−m)u(p, s) = 0, (/p+m)v(p, s) = 0.
O primeiro termo representa a superposição de modos de energia positiva (E > 0), en-
quanto o segundo termo, com e+ip·x, corresponde a soluções de energia negativa. A in-
trodução explícita de b†

p,s antecipa sua futura interpretação como operador de criação de
antipartículas.

Normalização relativística

O fator (2Ep)−1/2 é escolhido de modo que a expansão (5.49) satisfaça as relações
canônicas de quantização relativísticas. No caso do campo de Dirac, o momento canônico
é π = iψ†, de modo que a relação fundamental é

{ψa(x, t), ψ†
b(y, t)} = δab δ

(3)(x− y), (5.51)

com todos os demais anticomutadores nulos. A presença do fator 1/
√

2Ep garante que,
ao substituir a expansão (5.49) e sua adjunta, a integral em p reproduza exatamente a
delta tridimensional em (5.51). De fato, usando a ortonormalidade dos espinores,

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) = 2Epδss′ ,

a normalização escolhida assegura que cada modo de momento contribua corretamente
para a decomposição unitária do campo.

Promoção a operadores

Na teoria clássica, os coeficientes ap,s e bp,s são amplitudes complexas associadas
a cada modo de Fourier. A passagem para a teoria quântica consiste em promover esses
coeficientes a operadores sobre o espaço de Fock, satisfazendo as relações de anticomutação
fundamentais

{ap,s, a
†
p′,s′} = (2π)3 δ(3)(p− p′) δss′ , (5.52)

{bp,s, b
†
p′,s′} = (2π)3 δ(3)(p− p′) δss′ , (5.53)

enquanto todos os demais anticomutadores se anulam.
Com essa promoção, a expansão (5.49) transforma o campo ψ(x) em um operador

de criação e destruição de quanta de energia e momento bem definidos:

a†
p,s −→ cria uma partícula com (p, s), b†

p,s −→ cria uma antipartícula com (p, s).

A consistência entre (5.49) e a relação canônica (5.51) pode ser verificada explici-
tamente substituindo as expansões do campo e de seu adjunto:

{ψa(x), ψ†
b(y)} =

∫ d3p d3p′

(2π)6
1√

4EpEp′

∑
s,s′

[
ua(p, s)u†

b(p′, s′){ap,s, a
†
p′,s′} e−ip·x+ip′·y

+ va(p, s)v†
b(p′, s′){b†

p,s, bp′,s′} eip·x−ip′·y
]
.
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Usando (5.52)–(5.53) e as relações de completude dos espinores,∑
s

u(p, s)ū(p, s) = /p+m,
∑
s

v(p, s)v̄(p, s) = /p−m,

a integral resulta exatamente em δabδ
(3)(x − y), confirmando a consistência da normali-

zação.

Natureza fermiônica do campo

As relações de anticomutação (5.52)–(5.53) asseguram duas propriedades cruciais.
Primeiro, a positividade da energia: os modos de energia negativa são reinterpretados
como estados de antipartículas de energia positiva, evitando o colapso do vácuo. Segundo,
a antissimetria sob troca de partículas, que implica o princípio de exclusão de Pauli. Dessa
forma, a quantização do campo de Dirac fornece uma realização concreta do teorema
spin–estatística para partículas de spin-1

2 .

5.4.4 O teorema spin–estatística
O uso de anticomutadores na quantização do campo de Dirac não é uma simples

convenção, mas uma exigência de consistência física. Para compreender isso, consideremos
o que ocorreria se, em vez de impor anticomutadores, utilizássemos comutadores entre os
operadores ap,s e bp,s:

[ap,s, a
†
p′,s′ ] = (2π)3δ(3)(p− p′) δss′ , [bp,s, b

†
p′,s′ ] = (2π)3δ(3)(p− p′) δss′ .

Energia negativa com comutadores

Substituindo as expansões (5.49)–(5.50) no hamiltoniano clássico (5.48), obtemos,
após normal ordenação, o operador de energia

H =
∫ d3p

(2π)3 Ep
∑
s

(
a†

p,sap,s − b†
p,sbp,s

)
, (5.54)

onde o sinal negativo no segundo termo resulta da contribuição das soluções de energia
negativa associadas aos espinores v(p, s).

Com comutadores, o operador b†
p,sbp,s tem autovalores não negativos, e portanto

o segundo termo em (5.54) torna a energia total ilimitada inferiormente. Nesse cenário, o
vácuo tenderia a decair espontaneamente para estados de energia cada vez mais negativa, o
mesmo problema que já havia motivado a reinterpretação das soluções de energia negativa
na equação de Dirac original.

Ao substituir comutadores por anticomutadores, o sinal do termo correspondente
se inverte:

H =
∫ d3p

(2π)3 Ep
∑
s

(
a†

p,sap,s + b†
p,sbp,s

)
, (5.55)

restabelecendo a positividade do espectro de energia. As excitações criadas por b†
p,s são,

portanto, reinterpretadas como antipartículas de energia positiva.
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Positividade da carga

Um problema análogo aparece na definição da densidade de carga

j0 = ψ†ψ, Q =
∫
d3x j0.

Usando comutadores, o operador Q não seria positivo definido, pois o termo associado
aos modos bp,s surgiria com o sinal incorreto:

Q =
∑
s

∫ d3p

(2π)3

(
a†

p,sap,s − b†
p,sbp,s

)
.

Com anticomutadores, o operador Q permanece hermitiano e a densidade j0 positiva
definida, preservando a interpretação física de ψ†ψ como densidade de probabilidade (ou
de carga).

O conteúdo do teorema spin–estatística

Esses resultados refletem de forma concreta o conteúdo do teorema spin–estatística:
partículas de spin semi-inteiro devem obedecer a relações de anticomutação (estatística de
Fermi–Dirac), enquanto partículas de spin inteiro devem obedecer a relações de comutação
(estatística de Bose–Einstein).

O teorema não é apenas um postulado empírico, mas decorre de princípios funda-
mentais da teoria quântica de campos relativística, em particular, da exigência de causali-
dade local e da positividade da energia. O uso de anticomutadores garante que observáveis
construídos em pontos do espaço-tempo separados por intervalos espaciais comutem entre
si, preservando a causalidade, e assegura simultaneamente que o espectro de energia do
hamiltoniano seja limitado inferiormente.

No caso do campo de Dirac, essa estrutura implica que a troca de dois férmions
idênticos muda o sinal do estado quântico total:

|ψ1〉 ⊗ |ψ2〉 = − |ψ2〉 ⊗ |ψ1〉,

o que estabelece o princípio de exclusão de Pauli como uma consequência direta da quan-
tização fermiônica do campo.

5.4.5 Operadores de energia e carga
A estrutura dos operadores físicos do campo de Dirac é obtida substituindo as

expansões (5.49)–(5.50) na densidade hamiltoniana (5.48). Partindo de

H = ψ†(−iα·∇+mβ)ψ,
temos o hamiltoniano total

H =
∫
d3xψ†(−iα·∇+mβ)ψ.

Substituindo as expansões dos campos em modos de momento:

ψ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

(
ap,s u(p, s) e−ip·x + b†

p,s v(p, s) eip·x
)
,

ψ†(x) =
∫ d3p′

(2π)3
1√

2Ep′

∑
s′

(
a†

p′,s′ u†(p′, s′) eip′·x + bp′,s′ v†(p′, s′) e−ip′·x
)
,



Capítulo 5. O Campo de Dirac 63

e observando que
(−iα·∇+mβ)e−ip·x = (α·p +mβ)e−ip·x,

obtemos

H =
∫ d3p d3p′

(2π)6
1√

4EpEp′

∑
s,s′

∫
d3x ei(p

′−p)·x

×
[
a†

p′,s′ap,s u
†(p′, s′)(α·p +mβ)u(p, s) + bp′,s′b†

p,s v
†(p′, s′)(α·p +mβ)v(p, s)

]
.

A integral espacial fornece (2π)3δ(3)(p′ − p), o que simplifica a expressão para

H =
∫ d3p

(2π)3
1

2Ep

∑
s

[
a†

p,sap,s u
†(p, s)(α·p +mβ)u(p, s)

+ bp,sb
†
p,s v

†(p, s)(α·p +mβ)v(p, s)
]
.

As identidades espinoriais

(α·p +mβ)u(p, s) = Epu(p, s), (α·p +mβ)v(p, s) = −Epv(p, s),

levam a
H =

∫ d3p

(2π)3Ep
∑
s

(
a†

p,sap,s − bp,sb
†
p,s

)
.

A relação de anticomutação

bp,sb
†
p,s = − b†

p,sbp,s + (2π)3δ(3)(0)

mostra que há um termo de energia infinita associado ao vácuo, proporcional a δ(3)(0).
Como apenas diferenças de energia são fisicamente observáveis, essa contribuição é remo-
vida pelo procedimento de normal ordenação, em que todos os operadores de criação são
colocados à esquerda dos de destruição. O hamiltoniano normal ordenado assume então
a forma

H =
∫ d3p

(2π)3 Ep
∑
s

(
a†

p,sap,s + b†
p,sbp,s

)
, (5.56)

cujo espectro é manifestamente positivo.
O operador de número total de quanta é

N =
∑
s

∫ d3p

(2π)3

(
a†

p,sap,s + b†
p,sbp,s

)
, (5.57)

e a carga elétrica total, assumindo q = −e para o elétron, é

Q = −e
∑
s

∫ d3p

(2π)3

(
a†

p,sap,s − b†
p,sbp,s

)
. (5.58)

A simetria entre partículas e antipartículas é evidente: as partículas criadas por a†
p,s pos-

suem carga −e, enquanto as antipartículas criadas por b†
p,s possuem carga +e, preservando

a conservação de Q. Essa construção fornece uma formulação completa e consistente da
energia e da carga no campo de Dirac, eliminando o problema das energias negativas e
incorporando naturalmente o caráter fermiônico do campo.
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5.5 Interpretação de Dirac e Propagadores Fermiôni-
cos

A quantização canônica do campo de Dirac resolve o problema das energias nega-
tivas reinterpretando as soluções da equação como operadores de criação e aniquilação de
partículas e antipartículas. A partir dessa estrutura, torna-se possível definir as funções
de Green fermiônicas e, em particular, o propagador de Feynman, elemento central da
formulação covariante da teoria perturbativa.

5.5.1 Interpretação de Dirac e estrutura do vácuo
Com a quantização, o campo ψ(x) deixa de ser uma função de onda de uma única

partícula e passa a ser um operador capaz de criar ou destruir excitações quânticas. A
expansão em modos mostra que os coeficientes associados às soluções de energia positiva
e negativa tornam-se operadores independentes:

ψ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

(
ap,su(p, s)e−ip·x + b†

p,sv(p, s)eip·x
)
.

A presença simultânea de ap,s e b†
p,s expressa a reinterpretação das soluções de energia

negativa como criação de antipartículas com energia positiva. O vácuo é definido por

ap,s|0〉 = bp,s|0〉 = 0,

garantindo que não existam estados de energia inferior.
A densidade de carga, discutida no capítulo anterior, toma aqui a forma normal-

ordenada:
Q = −e

∫
d3x :ψ†ψ : = −e

∑
s

∫ d3p

(2π)3

(
a†

p,sap,s − b†
p,sbp,s

)
,

tornando explícita a simetria entre partículas e antipartículas como excitações do mesmo
campo. Esse formalismo estabelece o ponto de partida para estudar a propagação causal
de férmions.

5.5.2 Funções de Green e propagador fundamental
A dinâmica livre é caracterizada pela função de Green S(x − y), definida pela

equação
(iγµ∂µ −m)S(x− y) = δ(4)(x− y), (5.59)

análoga à equação para o caso escalar,

(� +m2)D(x− y) = −δ(4)(x− y), (5.60)

introduzida anteriormente. Assim como no caso escalar, buscamos expressar S(x− y) em
termos de D(x− y).

Aplicando o operador conjugado (iγµ∂µ+m) e usando a identidade já demonstrada,

(i/∂ −m)(i/∂ +m) = −(� +m2),
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obtemos imediatamente
(i/∂x −m)(i/∂x +m)D(x− y) = δ(4)(x− y),

o que implica a solução
S(x− y) = (i/∂x +m)D(x− y). (5.61)

Esse resultado mostra que a estrutura de spin aparece por meio do operador (i/∂+
m) aplicado à função escalar de Green, como esperado para campos que satisfazem a
equação de Dirac.

5.5.3 Propagador de Feynman
A generalização natural para férmions do propagador de Feynman escalar é o valor

esperado do ordenamento temporal fermiônico:
SF (x− y) = 〈0|T{ψ(x)ψ̄(y)}|0〉, (5.62)

com
T{ψα(x)ψ̄β(y)} = θ(x0 − y0)ψα(x)ψ̄β(y)− θ(y0 − x0)ψ̄β(y)ψα(x).

Substituindo as expansões modais,

ψ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
s

(
ap,su(p, s)e−ip·x + b†

p,sv(p, s)eip·x
)
,

e usando os anticomutadores canônicos,
{ap,s, a

†
q,r} = {bp,s, b

†
q,r} = (2π)3δ(3)(p− q)δsr,

os termos que sobrevivem ao valor esperado no vácuo são aqueles envolvendo a a† e b b†.
Para x0 > y0,

〈0|ψ(x)ψ̄(y)|0〉 =
∫ d3p

(2π)3
1

2Ep

∑
s

u(p, s)ū(p, s)e−ip·(x−y). (5.63)

Para y0 > x0,

〈0|ψ̄(y)ψ(x)|0〉 =
∫ d3p

(2π)3
1

2Ep

∑
s

v(p, s)v̄(p, s)eip·(x−y). (5.64)

Usando as relações de completude,∑
s

u(p, s)ū(p, s) = /p+m,
∑
s

v(p, s)v̄(p, s) = /p−m,

obtemos

SF (x− y) =
∫ d3p

(2π)3
1

2Ep

[
θ(x0− y0)(/p+m)e−ip·(x−y)− θ(y0− x0)(/p−m)eip·(x−y)

]
. (5.65)

Introduzindo p0 como variável independente e aplicando a prescrição de contorno
de Feynman no plano complexo, chegamos à forma covariante final:

SF (x− y) =
∫ d4p

(2π)4
i(/p+m)

p2 −m2 + iε
e−ip·(x−y). (5.66)

Ou, equivalentemente,
SF (x− y) = (i/∂x +m)DF (x− y),

onde DF (x− y) é o propagador escalar de Feynman.
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5.5.4 Causalidade e anticomutadores
A consistência relativística da teoria exige que campos localizados em regiões es-

pacialmente separadas não influenciem um ao outro. Para férmions, isso se expressa pela
anulação do anticomutador:

{ψα(x), ψ̄β(y)} = 0, (x− y)2 < 0. (5.67)

O propagador de Feynman não coincide com esse anticomutador, mas ambos estão
relacionados pela identidade:

SF (x− y)− SF (y − x) = 〈0|{ψ(x), ψ̄(y)}|0〉. (5.68)

Assim, a anulação para separações espaciais implica

SF (x− y) = SF (y − x), (x− y)2 < 0.

Como SF = (i/∂+m)DF e o propagador escalar DF possui suporte causal no sentido
do comutador de Pauli–Jordan discutido antes, segue que SF herda a mesma propriedade
de causalidade.

Fisicamente, isso significa que a teoria preserva a localidade: nenhum sinal pode se
propagar fora do cone de luz, e observáveis construídos com campos fermiônicos respeitam
a estrutura causal da relatividade especial. Diagramaticamente, cada linha fermiônica
interna,

SF (p) =
i(/p+m)

p2 −m2 + iε
,

transporta informação causal entre dois vértices, obedecendo à prescrição de contorno que
torna toda a expansão perturbativa consistente.

5.6 Férmions de Majorana e Simetrias Conservadas
A decomposição quiral da ação de Dirac mostrou que, em geral, as componentes

ψL e ψR são independentes e se acoplam apenas por meio do termo de massa. Entretanto,
existe uma construção alternativa na qual essas duas partes não são independentes, mas
relacionadas por conjugação de carga. Essa possibilidade conduz a um tipo especial de
férmion, cuja partícula é indistinguível de sua antipartícula: o férmion de Majorana.

5.6.1 Conjugação de Carga e Férmions de Majorana
A equação de Dirac é invariante sob a operação de conjugação de carga, que trans-

forma um campo de partícula em seu correspondente de antipartícula. Essa transformação
é definida por

ψc = C ψ̄ T , (5.69)
onde C é a matriz de conjugação de carga, cuja ação sobre as matrizes de Dirac é deter-
minada pela relação

C γµC−1 = −(γµ)T . (5.70)
Essa propriedade assegura que, se ψ satisfaz a equação de Dirac

(iγµ∂µ −m)ψ = 0,
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então ψc também a satisfaz:
(iγµ∂µ −m)ψc = 0.

O campo ψc descreve, portanto, uma antipartícula com a mesma massa e o mesmo spin,
mas com carga oposta. Na linguagem das transformações de simetria interna, a conjugação
de carga inverte o sinal de todos os números quânticos associados a grupos abelianos, como
a carga elétrica ou o número leptônico.

Um férmion de Majorana é definido pela condição de auto-conjugação

ψ = ψc. (5.71)

Essa restrição implica que o campo é idêntico ao seu conjugado de carga, de modo que
partícula e antipartícula correspondem ao mesmo grau de liberdade físico. Diferentemente
do férmion de Dirac, que carrega uma carga conservada, o férmion de Majorana é neces-
sariamente neutro sob quaisquer simetrias globais abelianas, pois tal simetria exigiria a
existência de um parceiro de carga oposta.

Na base de Weyl, em que o espinor de Dirac é escrito como ψ = (ψL, ψR)T , a
condição (5.71) relaciona as duas quiralidades:

ψR = iσ2 ψ∗
L.

Portanto, um férmion de Majorana pode ser completamente descrito por um único espinor
de Weyl, reduzindo pela metade o número de graus de liberdade em comparação com um
férmion de Dirac. Essa relação também mostra que o campo de Majorana não admite
uma fase global arbitrária, já que a conjugação complexa fixa o módulo e o argumento do
campo.

O termo de massa correspondente assume a forma

LM = −1
2 m

(
ψTLCψL + ψ̄LCψ̄

T
L

)
, (5.72)

que é manifestamente invariante sob Lorentz, uma vez que as contrações de índices es-
pinoriais são realizadas com o tensor antissimétrico C. O fator 1

2 evita dupla contagem
dos termos, já que a condição de Majorana reduz o número de graus de liberdade inde-
pendentes. Contudo, o lagrangiano (5.72) não é invariante sob rotações de fase do tipo
ψL → eiαψL, o que reflete a ausência de uma simetria global de conservação de número
de férmions.

Fisicamente, isso significa que, para campos de Majorana, não há distinção entre
criação e aniquilação de partículas e antipartículas, ambos os processos correspondem à
mesma excitação do campo. Essa característica é central em extensões do Modelo Padrão,
onde a massa dos neutrinos pode ser explicada pela existência de termos de Majorana que
violam o número leptônico em duas unidades.

Essa perda da simetria global associada à corrente vetorial ψ̄γµψ nos conduz na-
turalmente à análise das correntes e simetrias conservadas da teoria, que discutiremos a
seguir.

5.6.2 Correntes Conservadas e Simetria Global
A equação de Dirac admite uma simetria global de fase contínua,

ψ −→ eiαψ, ψ̄ −→ e−iαψ̄,
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sob a qual a ação (5.5) permanece invariante. Essa simetria é global porque o parâmetro
α é constante no espaço-tempo. Se fosse local, seria necessário introduzir um campo
de calibre acoplado a ψ para restaurar a invariância. Aplicando o teorema de Noether,
obtemos a corrente associada

jµ = ψ̄ γµ ψ, ∂µj
µ = 0. (5.73)

A conservação dessa corrente decorre diretamente das equações de movimento. De fato,

∂µj
µ = (∂µψ̄) γµψ + ψ̄ γµ∂µψ = im ψ̄ψ − im ψ̄ψ = 0.

O componente temporal, j0 = ψ†ψ, é positivo definido e pode ser interpretado como
densidade de probabilidade ou densidade de carga. A quantidade

Q =
∫
d3x j0

é o número quântico associado a essa simetria global, representando o número de partículas
menos o número de antipartículas. No contexto quântico, Q corresponde ao operador de
número de férmions, que comuta com o Hamiltoniano e gera as rotações de fase U(1) no
espaço de estados.

Para o campo de Majorana, entretanto, a condição de auto-conjugação ψ = ψc

impõe uma restrição mais forte. Usando a definição (5.69) e a propriedade (5.70), obtemos

ψ̄ γµ ψ = ψ̄ c γµ ψ c = −ψ̄ γµ ψ,

o que implica
ψ̄ γµ ψ = 0.

Logo, a corrente de Noether associada à simetria global de fase se anula identicamente,
indicando a ausência de qualquer número conservado. Essa característica distingue de
forma fundamental os férmions de Majorana dos férmions de Dirac: enquanto estes pre-
servam uma carga global U(1), aqueles não a possuem, refletindo o fato de que partícula
e antipartícula são o mesmo objeto físico.

A perda dessa simetria global está intimamente ligada à estrutura quiral da teoria.
Como discutido na seção anterior, a corrente vetorial jµ e a corrente axial jµ5 = ψ̄γµγ5ψ
representam as combinações simétrica e antissimétrica das fases independentes de ψL e ψR.
No caso de Majorana, ambas se tornam dependentes e não podem ser associadas a rotações
de fase independentes, restando apenas as simetrias relacionadas a transformações de
Lorentz e à dinâmica do campo. Essas propriedades tornam o férmion de Majorana uma
entidade conceitualmente distinta, fundamental em teorias onde a conservação de número
leptônico pode ser violada.

5.6.3 Simetrias Discretas e Propriedades de Conjugação
Além das simetrias contínuas associadas às fases globais e às transformações de

Lorentz, a teoria de férmions relativísticos admite três operações discretas fundamentais:
conjugação de carga (C), paridade (P ) e reversão temporal (T ). Essas transformações
desempenham papel essencial na caracterização das propriedades de partícula e antipar-
tícula, e sua combinação revela aspectos profundos da estrutura da teoria de campos.
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A ação dessas operações sobre o campo de Dirac pode ser representada por:

P : ψ(t,x) −→ γ0 ψ(t,−x), C : ψ −→ C ψ̄ T , T : ψ(t,x) −→ iγ1γ3 ψ∗(−t,x).

A matriz C satisfaz a condição (5.70), garantindo que a equação de Dirac seja invariante
sob conjugação de carga. A transformação de paridade inverte a orientação espacial e troca
as quiralidades, conforme discutido anteriormente, enquanto a reversão temporal troca a
direção do fluxo temporal e complexifica o campo, alterando o sentido das correntes e
spins.

Essas três operações modificam de forma distinta as quantidades bilineares cons-
truídas a partir de ψ e ψ̄. Por exemplo:

Escalar: ψ̄ψ
P,C,T−−−→ + ψ̄ψ,

Pseudoscalar: ψ̄γ5ψ
P−→ − ψ̄γ5ψ,

Vetor: ψ̄γµψ
P−→ (ψ̄γ0ψ, −ψ̄γψ),

Axial: ψ̄γµγ5ψ
P−→ (−ψ̄γ0γ

5ψ, ψ̄γγ5ψ).

Essas propriedades mostram que o termo de massa ψ̄ψ é invariante sob todas as três
operações, ao passo que o termo pseudoscalar ψ̄γ5ψ muda de sinal sob paridade e tempo.
Isso explica, por exemplo, por que uma massa de Dirac preserva P , C e T , enquanto
interações do tipo pseudoscalar (como o acoplamento de Yukawa a um campo escalar
ímpar por paridade) podem violá-las separadamente.

Cada uma dessas simetrias pode ser violada de forma independente em teorias in-
terativas, a interação fraca, por exemplo, preserva CPT mas quebra P e C isoladamente.
No entanto, a combinação das três é sempre uma simetria exata de qualquer teoria de cam-
pos quânticos local, relativisticamente invariante e unitária. Esse resultado é formalizado
no teorema CPT, que garante

(CPT )L (CPT )−1 = L,

independentemente dos detalhes do conteúdo de campos ou interações. A origem dessa
invariância está na estrutura analítica dos propagadores de Feynman e na causalidade
microscópica: operadores de campo devem comutar ou anticomutar a separação espacial
tipo-espaço, o que impõe restrições profundas à forma das amplitudes de espalhamento e
à simetria fundamental do espaço-tempo.

Assim, as transformações C, P e T não apenas classificam as propriedades de
férmions e antiférmions, mas também expressam os pilares de localidade e causalidade
que sustentam toda a formulação quântica relativística.

5.6.4 Corrente Axial e Simetria Quiral
Além da corrente vetorial jµ = ψ̄γµψ, associada à simetria global de fase, a teoria

de Dirac admite uma segunda corrente de grande relevância física, a corrente axial,

jµ5 = ψ̄ γµγ5 ψ, (5.74)

que mede a diferença entre as contribuições das duas quiralidades. Essa corrente surge ao
considerar a transformação global

ψ −→ eiαγ
5
ψ, ψ̄ −→ ψ̄ eiαγ

5
,
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sob a qual o termo cinético da ação de Dirac é invariante, enquanto o termo de massa não
o é. De fato, variando a ação (5.5) sob essa transformação, obtemos

δS =
∫
d4x ∂µ

(
α jµ5

)
− 2iαm

∫
d4x ψ̄γ5ψ,

de onde se identifica a divergência da corrente axial:

∂µj
µ
5 = 2im ψ̄γ5ψ. (5.75)

A equação acima pode também ser obtida diretamente a partir das equações de
movimento. Usando

(iγµ∂µ −m)ψ = 0, ψ̄(iγµ∂µ +m) = 0,

temos

∂µj
µ
5 = (∂µψ̄) γµγ5ψ + ψ̄ γµγ5 ∂µψ

= (−im ψ̄γ5)ψ + im ψ̄γ5ψ

= 2im ψ̄γ5ψ,

confirmando (5.75).
A corrente axial é, portanto, conservada apenas no limite de férmions sem massa.

Nesse caso, ∂µjµ5 = 0, e a transformação acima define uma simetria global contínua, a
simetria quiral.

Podemos entender essa simetria de forma mais clara decompondo o espinor de
Dirac em suas componentes quirais,

ψ = ψL + ψR, ψL,R = PL,Rψ,

onde os projetores PL,R foram definidos em (5.7). Usando γ5ψL,R = ∓ψL,R, vemos que a
transformação quiral age separadamente sobre cada componente:

ψL −→ e−iαψL, ψR −→ eiαψR.

A simetria quiral corresponde, portanto, a rotações opostas de fase entre as duas repre-
sentações fundamentais do grupo de Lorentz. O termo de massa mψ̄ψ = m(ψ̄LψR+ψ̄RψL)
mistura essas componentes e quebra explicitamente essa simetria, pois conecta estados de
quiralidade oposta.

Fisicamente, a conservação de jµ5 no regime sem massa implica que a quiralidade
é um número quântico preservado na evolução temporal. Partículas e antipartículas sem
massa mantêm quiralidade fixa e se comportam como espinores de Weyl independentes.
Quando m 6= 0, essa conservação se perde: a interação de massa permite transições entre
ψL e ψR, e a quiralidade deixa de ser uma boa quantum number.

Essa distinção entre o caso massivo e o caso sem massa terá papel central na análise
das soluções de onda plana da equação de Dirac. Como veremos a seguir, para férmions
sem massa a quiralidade coincide com a helicidade, a projeção do spin na direção do
momento linear, enquanto para férmions massivos as duas noções se separam, refletindo
a quebra explícita da simetria quiral.
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5.7 Interações de Yukawa e Regras de Feynman para
Férmions

A formulação completa da teoria quântica de campos requer a inclusão de intera-
ções entre diferentes espécies de campos. O caso mais simples e historicamente relevante
é o acoplamento entre um campo escalar φ(x) e um campo fermiônico ψ(x), conhecido
como interação de Yukawa. Essa estrutura fornece o protótipo das interações que apare-
cem tanto na física nuclear quanto no Modelo Padrão, sendo o mecanismo responsável,
por exemplo, pela geração de massa de férmions no acoplamento com o campo de Higgs.

5.7.1 O lagrangiano de Yukawa
Consideremos o lagrangiano

L = ψ̄(iγµ∂µ −m)ψ + 1
2(∂µφ)(∂µφ)− 1

2M
2φ2 − g ψ̄ψ φ, (5.76)

onde g é a constante de acoplamento e M a massa do campo escalar. O último termo
representa a interação linear entre o campo escalar e a densidade ψ̄ψ, que é um escalar de
Lorentz. O lagrangiano é, portanto, covariante e compatível com as simetrias relativísticas
fundamentais.

A variação da ação em relação a ψ̄ fornece a equação de movimento para o campo
fermiônico:

(iγµ∂µ −m− gφ)ψ = 0, (5.77)

mostrando que o campo escalar atua como um potencial local que modifica a propagação
do férmion. De modo análogo, a variação em relação a φ leva à equação

(� +M2)φ = −g ψ̄ψ, (5.78)

em que o termo à direita atua como uma fonte escalar gerada pela densidade fermiônica.
As equações (5.77) e (5.78) formam um sistema acoplado que descreve a emissão

e absorção de quanta do campo escalar por férmions. Essa estrutura constitui o protótipo
de interação local entre campos com spins distintos, servindo como modelo para processos
de espalhamento e decaimento, e como base conceitual para o acoplamento entre férmions
e o campo de Higgs no Modelo Padrão.

5.7.2 Expansão perturbativa e vértices de interação
Na formulação perturbativa, o termo de interação

Lint = −g ψ̄ψ φ

determina a estrutura dos vértices nos diagramas de Feynman. Cada vértice conecta duas
linhas fermiônicas e uma linha escalar, refletindo a natureza do acoplamento ψ̄ψφ. A cada
ocorrência desse vértice associa-se um fator −ig, que representa a contribuição elementar
da interação à amplitude do processo.
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As linhas internas do diagrama correspondem aos propagadores dos campos que
se propagam virtualmente entre vértices:

Linha escalar: i

p2 −M2 + iε
,

Linha fermiônica:
i(/p+m)

p2 −m2 + iε
.

Esses fatores são acompanhados pelas integrais sobre os momentos internos e pelas deltas
de conservação de momento em cada vértice, assegurando a coerência global do diagrama.

A amplitude total de um processo é obtida pela soma de todas as topologias de
diagramas possíveis, ordenadas segundo o número de vértices de interação. Essa soma
define uma expansão em potências do acoplamento g, análoga à série de Dyson. Além
disso, cada diagrama fechado de férmions introduz um fator adicional de −1, consequência
direta da natureza anticomutativa dos operadores fermiônicos na construção do campo.

5.7.3 Linhas externas e espinores
As linhas externas dos diagramas de Feynman representam estados físicos assintó-

ticos, as partículas presentes antes e depois da interação. No caso fermiônico, cada linha
externa está associada a um espinor de Dirac que carrega a informação de momento, spin
e orientação de fluxo de número fermiônico.

Para uma linha externa de entrada de férmion com quatro-momento p e projeção
de spin s, associa-se o espinor u(p, s), que satisfaz a equação de Dirac (/p−m)u(p, s) = 0.
Por outro lado, uma linha externa de saída de férmion é representada pelo espinor adjunto
ū(p, s) = u†(p, s)γ0.

De modo análogo, para antipartículas, as convenções são invertidas: uma linha de
entrada de antipartícula é associada a v(p, s), que satisfaz (/p + m)v(p, s) = 0; enquanto
uma linha de saída de antipartícula corresponde a v̄(p, s).

Tipo de linha Fluxo de número fermiônico Fator associado

Entrada de férmion para frente no tempo u(p, s)
Saída de férmion para trás no tempo ū(p, s)

Entrada de antipartícula para trás no tempo v̄(p, s)
Saída de antipartícula para frente no tempo v(p, s)

Essas convenções garantem que o fluxo de número fermiônico, representado por
uma seta orientada ao longo da linha fermiônica, seja preservado em cada vértice de inte-
ração. O resultado é uma prescrição covariante e consistente para o cálculo de amplitudes
envolvendo férmions e antipartículas.
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u(p, s) ū(p′, s′)
p p′

v̄(p, s) v(p′, s′)
p′p

Figura 3 – Convenções de fluxo de número fermiônico e fatores associados às linhas ex-
ternas. As setas indicam o sentido do fluxo: para férmions, a seta aponta do
estado inicial para o final; para antipartículas, no sentido oposto.

Em particular, após a contração dos índices de spin, cada amplitude se reduz a
uma sequência de fatores do tipo ūΓu ou v̄Γv, onde Γ é um produto de matrizes γµ
e outros operadores provenientes da interação. A estrutura espinorial completa do pro-
cesso é, assim, explicitamente controlada e diretamente associada à orientação das linhas
fermiônicas nos diagramas.

ū(p′, s′)

u(p, s)

φ(k)
p

p′

k

Figura 4 – Vértice de interação Yukawa, conectando duas linhas fermiônicas e uma linha
escalar. O sentido das setas indica o fluxo de número fermiônico, preservado
no vértice.

5.7.4 Regras de Feynman para férmions
De modo resumido, as regras de Feynman para férmions na interação de Yukawa

são:

Propagador fermiônico:
i(/p+m)

p2 −m2 + iε
,

Propagador escalar: i

p2 −M2 + iε
,

Vértice Yukawa: − ig,

Linha externa de entrada (férmion): u(p, s),

Linha externa de saída (férmion): ū(p, s),

Linha externa de entrada (antipartícula): v̄(p, s),

Linha externa de saída (antipartícula): v(p, s).

Em cada diagrama, deve-se conservar o fluxo de número fermiônico em todos os
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vértices e integrar sobre os momentos internos com medida
∫ d4p

(2π)4 .

Cada diagrama fechado de férmions contribui com um fator adicional de (−1), proveniente
da anticomutação dos operadores fermiônicos. Esse fator de sinal é indispensável para
manter a consistência estatística da teoria e reflete diretamente o teorema spin–estatística.

A construção das amplitudes segue, portanto, os mesmos princípios da teoria esca-
lar, mas com a presença adicional das matrizes de Dirac e do fluxo de setas, que controlam
a estrutura de spin de cada processo.

ū(p′, s′)

u(p, s)

φ(k)
p

p′

k

Figura 5 – Vértice Yukawa com conservação de momento p′ = p − k e fator associado
−ig. As linhas fermiônicas mantêm o fluxo de número fermiônico orientado,
enquanto a linha escalar representa o bóson trocado.

Exemplo: emissão escalar por um férmion

Como ilustração, consideremos o processo em que um férmion inicial de momento
p emite um quanta escalar de momento k, resultando em um férmion final de momento
p′ = p − k. O diagrama correspondente contém um único vértice Yukawa, e pode ser
representado por

u(p, s) ū(p′, s′)

φ(k)

p p′

k

No vértice, a conservação de momento impõe

p = p′ + k,

garantindo que a energia e o momento sejam preservados localmente na interação.
De acordo com as regras de Feynman, a amplitude de primeira ordem associada

ao diagrama é
iM = (−ig) ū(p′, s′)u(p, s), (5.79)

onde o fator −ig provém do vértice de interação e os espinores u(p, s) e ū(p′, s′) descrevem,
respectivamente, o estado inicial e o estado final do férmion.

A dependência espinorial está inteiramente contida na combinação bilinear ū(p′)u(p),
que mede a sobreposição entre os estados de spin antes e depois da emissão. Para férmions
não relativísticos, essa quantidade se reduz aproximadamente a χ′†χ, correspondendo à
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conservação quase total da orientação de spin, o que justifica a interpretação de que o
campo escalar acopla apenas à densidade ψ̄ψ, sem alterar o momento angular intrínseco.

O caráter escalar da interação também é refletido na ausência de matrizes γµ no
vértice, em contraste com o caso da interação eletromagnética, em que o acoplamento é
vetorial e depende explicitamente de γµAµ. Essa distinção torna o modelo de Yukawa uma
excelente introdução para compreender como o tipo de campo mediador (escalar, vetorial
ou tensorial) determina a estrutura de Lorentz da interação.

O cálculo da amplitude total para processos mais complexos, como o espalhamento
ff̄ → φφ ou o decaimento φ→ ff̄ , segue o mesmo princípio, envolvendo a combinação de
múltiplos vértices, propagadores intermediários e integrais sobre os momentos internos.

5.7.5 Conservação de corrente e simetrias
O lagrangiano de Yukawa (5.76) é invariante sob transformações globais de fase

do campo fermiônico, dadas por

ψ → eiαψ, ψ̄ → ψ̄ e−iα,

onde α é um parâmetro constante. Essa invariância define uma simetria global do tipo
U(1), associada à conservação da carga fermiônica.

Para verificar a corrente de Noether correspondente, consideremos uma transfor-
mação infinitesimal,

δψ = iα ψ, δψ̄ = −iα ψ̄.
A variação da densidade lagrangiana é então

δL = ∂L
∂(∂µψ) δ(∂µψ) + ∂L

∂(∂µψ̄)
δ(∂µψ̄) + ∂L

∂ψ
δψ + ∂L

∂ψ̄
δψ̄.

Usando as equações de movimento (5.77) e seu adjunto, e lembrando que L é invariante
sob a transformação, obtemos a identidade de conservação

∂µj
µ = 0, com jµ = ψ̄γµψ.

A densidade de carga associada é ρ = j0 = ψ†ψ, que é positiva definida, refletindo a
interpretação probabilística consistente do campo fermiônico.

Essa corrente permanece conservada mesmo na presença do termo de interação
−g ψ̄ψφ, pois este é um escalar de Lorentz e invariante sob a mesma transformação glo-
bal. Logo, a interação de Yukawa preserva a simetria de fase e, consequentemente, a
conservação de número fermiônico.

Uma consequência notável surge se o campo escalar φ adquirir um valor de expec-
tativa no vácuo,

〈φ〉 = v.

Nesse caso, o termo de interação induz um termo efetivo de massa para o férmion:

−g ψ̄ψ φ −→ −g v ψ̄ψ,

de modo que a massa física do férmion se torna

mefetivo = m+ g v.
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Esse mecanismo, a geração de massa por acoplamento a um campo escalar com valor
de expectativa não nulo, constitui a base do mecanismo de Higgs no Modelo Padrão, no
qual os férmions adquirem massa de maneira espontaneamente simétrica, preservando a
coerência relativística e a estrutura quântica da teoria.
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6 Eletrodinâmica Quântica

6.1 O Campo de Maxwell e a Simetria de Gauge
A unificação entre o campo eletromagnético e a teoria de Dirac surge naturalmente

a partir da exigência de que a invariância de fase global do campo fermiônico se estenda
a uma simetria local. Essa exigência leva à introdução de um novo campo dinâmico,
o campo de gauge, cuja presença garante a consistência da teoria sob transformações
de fase dependentes do espaço-tempo. Esse princípio simples é o alicerce das interações
fundamentais do Modelo Padrão.

6.1.1 Da simetria global à construção completa da teoria de
gauge

A ação do campo de Dirac livre,

S =
∫
d4x ψ̄(iγµ∂µ −m)ψ, (6.1)

é invariante sob a transformação global de fase

ψ(x)→ eiαψ(x), ψ̄(x)→ ψ̄(x)e−iα, (6.2)

onde α é uma constante real. Essa transformação corresponde a uma rotação no espaço
interno de fases do campo, deixando inalterados todos os observáveis físicos.

De acordo com o teorema de Noether, a existência dessa simetria contínua implica
a conservação de uma corrente associada:

jµ = ψ̄γµψ, ∂µj
µ = 0. (6.3)

A componente temporal dessa corrente define a densidade de carga,

j0 = ψ†ψ,

de modo que a carga total
Q =

∫
d3xψ†ψ (6.4)

é conservada no tempo.
Fisicamente, Q representa a diferença entre o número de partículas e antipartículas

do campo, evidenciando que a invariância de fase global está diretamente associada à
conservação da carga elétrica.

Uma vez estabelecida a simetria global, promovê-la a uma simetria local exige uma
modificação estrutural da teoria.

Consideremos agora uma transformação em que a fase do campo depende do ponto
do espaço-tempo:

ψ(x)→ eiα(x)ψ(x), ψ̄(x)→ ψ̄(x)e−iα(x). (6.5)
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Essa generalização, de uma simetria global para uma simetria local, exige que a Lagran-
giana permaneça invariante sob transformações com parâmetro α(x) arbitrário.

A derivada ordinária do campo transforma segundo

∂µψ(x) → eiα(x)
(
∂µ + i ∂µα(x)

)
ψ(x),

de modo que o termo cinético da Lagrangiana de Dirac,

ψ̄ iγµ∂µψ,

não é mais invariante: surge o termo adicional ψ̄γµ(∂µα)ψ.
Para restaurar a invariância, introduzimos um novo campo vetorial Aµ(x), cuja

transformação compensa exatamente o termo espúrio. Define-se então a derivada covari-
ante

Dµ = ∂µ + ieAµ, (6.6)
e exige-se que ela se transforme da mesma forma que o campo de Dirac:

Dµψ(x)→ eiα(x) Dµψ(x).

Essa condição determina a transformação de gauge de Aµ:

Aµ(x)→ Aµ(x)− 1
e
∂µα(x). (6.7)

Com essa modificação, o termo cinético

ψ̄ iγµDµψ

passa a ser invariante sob transformações locais de fase.

A introdução do campo Aµ cria novos graus de liberdade, cuja dinâmica precisa
ser descrita.

Para caracterizar o conteúdo físico desse campo, definimos o tensor de campo de
força como o comutador das derivadas covariantes:

[Dµ, Dν ] = ieFµν , Fµν = ∂µAν − ∂νAµ.

Esse tensor mede a não comutatividade das derivações locais e é o análogo geométrico da
curvatura associada à conexão de gauge.

Por construção, Fµν é invariante sob transformações de gauge (6.7), sendo, por-
tanto, o objeto físico que contém as componentes observáveis do campo eletromagnético:

Ei = F0i, Bi = 1
2 εijk Fjk.

Para dotar o campo Aµ de dinâmica, introduzimos o termo cinético mais simples
que preserva a invariância de gauge:

LEM = −1
4FµνF

µν .

Combinando esse termo com o lagrangiano de Dirac acoplado por derivada covariante:

L = ψ̄(iγµDµ −m)ψ − 1
4FµνF

µν . (6.8)
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6.1.2 Equações de movimento e conservação de corrente
A variação da Lagrangiana (6.8) em relação a ψ̄ conduz à equação de Dirac aco-

plada ao campo de gauge:
(iγµDµ −m)ψ = 0.

De modo análogo, a variação em relação a Aµ fornece as equações de Maxwell com fonte
fermiônica:

∂νF
νµ = e ψ̄γµψ. (6.9)

O termo do lado direito é precisamente a corrente de Noether associada à simetria global
de fase do campo fermiônico.

A teoria de Maxwell e a equação de Dirac unem-se assim em uma única estrutura
abeliana localmente invariante, cuja consistência covariante serve de paradigma para as
teorias não abelianas do Modelo Padrão.

6.2 Quantização do Campo Eletromagnético
O campo de Maxwell, descrito pela Lagrangiana L = −1

4FµνF
µν , é um campo

vetorial com uma simetria de gauge abeliana. Essa simetria reflete o fato de que as com-
ponentes do potencial Aµ não são todas fisicamente independentes. A quantização do
campo eletromagnético requer, portanto, o tratamento cuidadoso dessas redundâncias, de
modo que apenas os graus de liberdade físicos, os dois modos transversos do fóton, sejam
promovidos a operadores quânticos.

6.2.1 Estrutura clássica e redundância de gauge
A ação do campo eletromagnético livre é dada por

S[Aµ] = −1
4

∫
d4xFµνF

µν , Fµν = ∂µAν − ∂νAµ. (6.10)

Essa forma é covariante e contém implicitamente as componentes espaciais e temporais
do campo elétrico e magnético.

A variação da ação em relação ao potencial vetorial Aµ fornece as equações de
movimento. Explicitamente, temos

δS = −1
4

∫
d4x δ(FµνF µν) = −1

2

∫
d4xF µν δFµν .

Como
δFµν = ∂µδAν − ∂νδAµ,

segue que

δS = −1
2

∫
d4xF µν(∂µδAν − ∂νδAµ)

= −
∫
d4xF µν∂µδAν (pois F µν = −F νµ).

Integrando por partes e desprezando termos de fronteira:

δS =
∫
d4x (∂µF µν) δAν .
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A condição de extremalização δS = 0 para variações arbitrárias δAν conduz à equação de
movimento

∂µF
µν = 0, (6.11)

que corresponde às equações de Maxwell no vácuo, nas quais não há fontes de corrente
nem de carga.

O lagrangiano (6.10) é invariante sob a transformação de gauge

Aµ(x)→ Aµ(x) + ∂µΛ(x), (6.12)

onde Λ(x) é uma função arbitrária e suave. De fato, substituindo em Fµν :

F ′
µν = ∂µ(Aν + ∂νΛ)− ∂ν(Aµ + ∂µΛ) = ∂µAν − ∂νAµ = Fµν ,

vemos que o tensor de campo é invariante, e portanto a ação também o é.
Essa liberdade de gauge significa que diferentes potenciais Aµ podem gerar o

mesmo campo físico Fµν . Consequentemente, o espaço de soluções de (6.11) contém redun-
dâncias, muitas configurações matematicamente distintas de Aµ representam o mesmo es-
tado físico. A remoção sistemática dessas redundâncias, conhecida como fixação de gauge,
é essencial para a quantização consistente do campo eletromagnético.

6.2.2 Fixação de gauge: calibre de Lorentz
Uma escolha particularmente conveniente para eliminar parte da redundância de

gauge é o calibre de Lorentz, definido pela condição

∂µA
µ = 0. (6.13)

Essa condição preserva a covariância relativística, pois é expressa como um escalar de
Lorentz.

Para verificar o efeito dessa escolha sobre as equações de movimento, retomemos
a forma geral das equações de Maxwell no vácuo,

∂νF
νµ = 0, F νµ = ∂νAµ − ∂µAν . (6.14)

Substituindo a definição de F νµ, obtemos:

∂νF
νµ = ∂ν(∂νAµ − ∂µAν)

= ∂ν∂
νAµ − ∂µ(∂νAν).

A primeira parcela é o operador d’Alembertiano aplicado a Aµ, ou seja, �Aµ = ∂ν∂
νAµ.

Logo, as equações de movimento podem ser reescritas como

�Aµ − ∂µ(∂νAν) = 0. (6.15)

Ao impor a condição de calibre (6.13), o segundo termo anula-se identicamente,
resultando em

�Aµ = 0. (6.16)

Portanto, cada componente de Aµ obedece individualmente a uma equação de onda livre,
o que torna o formalismo simples e covariante.
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No entanto, mesmo após a imposição de (6.13), ainda existe uma liberdade residual
de gauge. De fato, sob a transformação

Aµ(x)→ A′
µ(x) = Aµ(x) + ∂µΛ(x),

a condição de Lorentz se transforma em

∂µA
′µ = ∂µA

µ + �Λ.

Assim, se a função de gauge Λ(x) satisfaz

�Λ = 0, (6.17)

então a condição (6.13) continua válida. Essas transformações residuais mostram que o
calibre de Lorentz não fixa completamente a liberdade de gauge: há ainda um conjunto
de transformações que preservam a condição de divergência nula de Aµ.

Consequentemente, mesmo no calibre de Lorentz, as quatro componentes de Aµ
não correspondem a quatro graus de liberdade físicos independentes. O campo vetorial
massless possui apenas dois graus de liberdade reais, correspondentes às polarizações
transversas do fóton, como será demonstrado explicitamente ao quantizarmos o campo.

6.2.3 Quantização canônica no gauge de Coulomb
Para explicitar de forma mais transparente os graus de liberdade físicos do campo

eletromagnético, é conveniente trabalhar no calibre de Coulomb, definido por

∇ ·A = 0, A0 = 0. (6.18)

A primeira condição elimina o componente longitudinal do vetor potencial, enquanto a
segunda suprime a componente temporal, que não é dinâmica. Assim, as únicas variáveis
independentes são as componentes transversas A⊥, satisfazendo

∇ ·A⊥ = 0.

No espaço-tempo, a densidade lagrangiana do campo de Maxwell livre é

L = −1
4FµνF

µν .

No calibre de Coulomb, A0 = 0 implica F0i = Ȧi e Fij = ∂iAj − ∂jAi. Substituindo esses
termos na expressão acima, obtemos:

L = 1
2
(
E2 −B2

)
= 1

2
(
Ȧ2 − (∇×A)2

)
.

Como A é transversal no calibre escolhido, podemos escrever diretamente

L = 1
2
(
Ȧ2

⊥ − (∇×A⊥)2
)
. (6.19)

O momento canônico conjugado ao campo A⊥ é obtido pela derivada funcional da
Lagrangiana em relação à velocidade do campo:

π⊥ = ∂L
∂Ȧ⊥

= Ȧ⊥.
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Portanto, o campo elétrico transversal é identificado como o momento conjugado do vetor
potencial:

E⊥ = −π⊥ = − Ȧ⊥. (6.20)

A Hamiltoniana é então obtida via a transformação de Legendre:

H = π⊥ · Ȧ⊥ − L = 1
2
(
π2

⊥ + (∇×A⊥)2
)
,

de modo que a Hamiltoniana total é

H =
∫
d3x

1
2

(
π2

⊥ + (∇×A⊥)2
)
.

A estrutura de Poisson clássica é dada por

{Ai(x), πj(y)} = δij δ
(3)(x− y).

No entanto, como o campo satisfaz ∇ ·A = 0 e ∇ ·π = 0, devemos restringir as variáveis
a subespaços transversos. Para isso, introduz-se o projetor transversal

P⊥
ij = δij −

∂i∂j
∇2 , (6.21)

que satisfaz P⊥
ij ∂j = 0 e (P⊥)2 = P⊥. Aplicando-o à estrutura de Poisson, obtemos

{Ai(x), πj(y)}⊥ = P⊥
ij δ

(3)(x− y) =
(
δij −

∂i∂j
∇2

)
δ(3)(x− y).

Ao promovermos as variáveis a operadores quânticos, a prescrição de quantização
canônica substitui {, } → −i[, ], resultando em

[Ai(x), πj(y)] = i

(
δij −

∂i∂j
∇2

)
δ(3)(x− y). (6.22)

O operador de projeção assegura que apenas as componentes transversas de A e π parti-
cipem das relações de comutação, eliminando explicitamente as variáveis redundantes.

Em suma, o calibre de Coulomb fornece uma formulação não covariante, porém
fisicamente transparente: apenas as duas polarizações transversas do campo são quanti-
zadas, enquanto os componentes longitudinais e escalares são completamente eliminados.
Essa será a base para a construção da expansão em modos e a introdução dos operadores
de criação e destruição na subseção seguinte.

6.2.4 Expansão em modos e operadores de criação e destruição
A equação de movimento para o campo vetorial livre no calibre de Coulomb, obtida

de (6.19), é
Ä⊥ −∇2A⊥ = 0, (6.23)

com a condição de transversidade
∇ ·A⊥ = 0.
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Cada componente do campo satisfaz uma equação de onda, de modo que é natural
expandi-lo em modos de Fourier. Escrevemos

A⊥(x, t) =
2∑

λ=1

∫ d3k

(2π)3

[
fk,λ(t) eik·x + f∗

k,λ(t) e−ik·x
]
, (6.24)

onde o índice λ denota as polarizações transversas. A condição k ·A⊥ = 0 impõe que fk,λ
seja ortogonal a k:

k · fk,λ = 0.

Substituindo (6.24) em (6.23), obtemos a equação diferencial temporal para cada
modo:

f̈k,λ(t) + |k|2 fk,λ(t) = 0,

cuja solução geral é

fk,λ(t) = 1√
2|k|

(
ε(λ)(k) ak,λ e

−i|k|t + ε(λ)(k)∗ a†
−k,λ e

i|k|t
)
, (6.25)

onde ε(λ)(k) são vetores de polarização que formam uma base ortonormal no subespaço
transversal:

k · ε(λ)(k) = 0, ε(λ)(k) · ε(λ′)∗(k) = δλλ′ .

Substituindo (6.25) em (6.24), obtemos a forma final da expansão:

A⊥(x, t) =
2∑

λ=1

∫ d3k

(2π)3
1√
2|k|

[
ε(λ)(k) ak,λ e

−i(|k|t−k·x) + ε(λ)(k)∗ a†
k,λ e

i(|k|t−k·x)
]
. (6.26)

O momento canônico conjugado, π⊥ = Ȧ⊥, é então

π⊥(x, t) = − i
2∑

λ=1

∫ d3k

(2π)3

√
|k|
2
[
ε(λ)(k) ak,λ e

−i(|k|t−k·x) − ε(λ)(k)∗ a†
k,λ e

i(|k|t−k·x)
]
.

(6.27)

A imposição das relações de comutação (6.22) leva às condições sobre os operadores
de modo:

[ak,λ, a
†
k′,λ′ ] = (2π)3 δ(3)(k− k′) δλλ′ , [ak,λ, ak′,λ′ ] = 0.

Essas relações são idênticas às dos operadores de criação e destruição de um conjunto de
osciladores harmônicos independentes.

Substituindo as expansões (6.26) e (6.27) na Hamiltoniana

H = 1
2

∫
d3x

(
π2

⊥ + (∇×A⊥)2
)
,

e utilizando a ortogonalidade das funções de onda e das polarizações, obtém-se

H =
2∑

λ=1

∫ d3k

(2π)3 |k|
(
a†

k,λak,λ + 1
2

)
.
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O termo 1
2
∑

k,λ |k| corresponde à energia do ponto zero, que é divergente mas fisicamente
irrelevante, podendo ser removida por redefinição do nível de energia. Desprezando esse
termo, a Hamiltoniana física assume a forma

H =
2∑

λ=1

∫ d3k

(2π)3 |k| a
†
k,λak,λ, (6.28)

que descreve um conjunto de osciladores harmônicos independentes, cada um represen-
tando um modo de fóton com energia Ek = |k| e polarização λ.

Cada operador a†
k,λ cria um fóton com momento k e polarização λ, enquanto ak,λ

o aniquila. O vácuo |0〉 é definido pela condição ak,λ|0〉 = 0 para todo k, λ, e os estados
de n fótons são construídos por sucessivas aplicações dos operadores de criação:

|k1, λ1; . . . ; kn, λn〉 = a†
k1,λ1
· · · a†

kn,λn
|0〉.

Essa quantização mostra explicitamente que o campo de Maxwell livre equivale a um gás
de bósons sem massa, cada qual com duas polarizações transversas.

6.2.5 Graus de liberdade físicos
O potencial vetorial Aµ possui, em princípio, quatro componentes independentes.

No entanto, nem todas correspondem a graus de liberdade físicos, pois a teoria apresenta
uma simetria de gauge que permite eliminar componentes redundantes.

Para entender isso, consideremos o espaço das soluções das equações de Maxwell
livres,

∂νF
νµ = 0, (6.29)

com Fµν = ∂µAν − ∂νAµ. Tomando a derivada de (6.29), obtemos

∂µ∂νF
νµ = 0,

que é automaticamente satisfeita devido à antissimetria de F νµ. A simetria de gauge

Aµ → Aµ + ∂µΛ (6.30)

permite modificar Aµ sem alterar Fµν , o que mostra que Aµ não é observável diretamente.

Contagem de graus de liberdade

No espaço de Fourier, as equações de movimento se tornam

kνF
νµ(k) = 0, F νµ(k) = i(kνAµ − kµAν). (6.31)

Substituindo, temos
k2Aµ − kµ(k · A) = 0.

Para campos de fóton, k2 = 0, de modo que a equação se reduz a

k · A = 0. (6.32)

Isso mostra que apenas as componentes de Aµ ortogonais ao vetor de momento kµ são
fisicamente relevantes.

Podemos, portanto, contar os graus de liberdade:
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• Aµ possui inicialmente 4 componentes reais.

• a condição de gauge (por exemplo, ∂µAµ = 0) elimina 1 delas.

• a liberdade de realizar uma transformação residual Aµ → Aµ + ∂µΛ (com �Λ = 0)
elimina mais 1.

restando apenas 4 − 2 = 2 graus de liberdade físicos. Esses dois modos correspondem
exatamente às duas polarizações transversas do fóton.

Representação explícita das polarizações

Escolhendo o eixo z na direção de propagação, kµ = (|k|, 0, 0, |k|), a condição de
transversidade (6.32) impõe A0 = A3. Usando uma transformação de gauge, podemos
anular ambos, restando apenas as componentes transversas:

ε(1) = (1, 0, 0), ε(2) = (0, 1, 0),

que representam as polarizações linearmente independentes do fóton. Em geral, podemos
definir polarizações lineares ou circulares por combinações complexas dessas bases.

Implementação covariante: formalismo de Gupta–Bleuler

Embora o calibre de Coulomb torne a contagem de graus de liberdade intuitiva,
ele não é manifestamente covariante. Para preservar a covariância de Lorentz, utiliza-se o
calibre de Lorentz (6.13), com o formalismo de Gupta–Bleuler. Nesse esquema, quantiza-
se o campo Aµ com quatro componentes, mas impõe-se a condição de restrição sobre os
estados físicos:

∂µA
µ(+)|físico〉 = 0, (6.33)

onde Aµ(+) é a parte positiva do campo (com operadores de aniquilação). Essa condição
elimina os modos longitudinais e temporais do espaço de Hilbert, deixando apenas os dois
modos transversos como estados físicos observáveis.

O resultado final é que o campo eletromagnético quântico possui apenas dois graus
de liberdade reais: as duas polarizações transversas do fóton. Os modos longitudinais e
escalares não são observáveis, sendo eliminados pela invariância de gauge. Cada modo
de oscilação transversal do potencial vetorial corresponde a um fóton com momento k e
polarização λ = 1, 2.

A ausência de polarizações longitudinais observáveis é, portanto, uma consequência
direta da simetria de gauge. Essa estrutura é o arquétipo de todas as teorias de gauge: ao
promover uma simetria global a local, introduz-se um campo de conexão Aµ cujo conteúdo
físico é reduzido apenas aos modos transversos. No caso abeliano, isso leva à descrição do
fóton como um bóson de gauge sem massa propagando-se com duas polarizações trans-
versas, a base conceitual sobre a qual repousa a Eletrodinâmica Quântica.

6.3 Acoplamento entre o Campo Eletromagnético e
a Matéria

A estrutura de gauge introduzida anteriormente permite acoplar de modo natural
o campo eletromagnético a diferentes tipos de campos de matéria. A exigência de invariân-
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cia local sob transformações de fase determina de forma única a forma desse acoplamento,
tanto para férmions quanto para escalares complexos. Essa unificação conceitual é o fun-
damento da Eletrodinâmica Quântica (QED), a mais precisa e bem verificada teoria física
já construída.

6.3.1 Acoplamento minimal com férmions
O ponto de partida é o lagrangiano do campo de Dirac livre,

Lψ = ψ̄(iγµ∂µ −m)ψ, (6.34)

que, como já discutido, é invariante sob transformações de fase globais

ψ(x)→ eiαψ(x), ψ̄(x)→ ψ̄(x)e−iα.

No entanto, essa invariância é quebrada quando o parâmetro α passa a depender de x.
De fato, sob a transformação local ψ(x)→ eiα(x)ψ(x), a derivada ordinária transforma-se
como

∂µψ(x)→ ∂µ
(
eiα(x)ψ(x)

)
= eiα(x)

(
∂µ + i ∂µα(x)

)
ψ(x), (6.35)

e, portanto, o termo cinético na Lagrangiana,

ψ̄iγµ∂µψ,

gera uma contribuição adicional

δL = ψ̄γµ(∂µα)ψ,

quebrando a invariância local.
Para restaurá-la, introduzimos um novo campo vetorial Aµ(x) e substituímos a

derivada comum pela derivada covariante,

Dµ = ∂µ + ieAµ, (6.36)

de modo que Dµψ se transforme da mesma maneira que ψ:

Dµψ(x)→ eiα(x)Dµψ(x).

Essa condição fixa a transformação de gauge do campo Aµ:

Aµ(x)→ Aµ(x)− 1
e
∂µα(x), (6.37)

assegurando a invariância local da teoria.
O lagrangiano invariante de gauge para o campo fermiônico acoplado a Aµ é, então,

LQED = ψ̄(iγµDµ −m)ψ − 1
4FµνF

µν , (6.38)

onde o termo FµνF µν fornece a dinâmica do campo eletromagnético livre.
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Expandindo a derivada covariante (6.36), obtemos explicitamente:

iγµDµ = iγµ(∂µ + ieAµ) = iγµ∂µ − eγµAµ, (6.39)

de modo que a Lagrangiana assume a forma

LQED = ψ̄(iγµ∂µ −m)ψ − e ψ̄γµAµψ −
1
4FµνF

µν . (6.40)

O segundo termo,
Lint = −e ψ̄γµAµψ,

representa o acoplamento minimal entre o campo fermiônico e o campo eletromagnético.
Esse termo é o mais simples (linear em Aµ) que preserva simultaneamente a covariância
de Lorentz e a invariância de gauge local. Qualquer outra forma de acoplamento violaria
uma dessas propriedades fundamentais.

O parâmetro e é identificado com a carga elétrica do campo fermiônico. Assim, o
termo −e ψ̄γµAµψ expressa, de forma covariante, a interação entre o elétron e o fóton.
Toda a fenomenologia da Eletrodinâmica Quântica, desde os processos de espalhamento e
emissão até as correções radiativas de alta precisão, emerge desse único termo de interação.

6.3.2 Corrente e equações de movimento
A Lagrangiana da Eletrodinâmica Quântica, dada em (6.40), é

LQED = ψ̄(iγµ∂µ −m)ψ − e ψ̄γµAµψ −
1
4FµνF

µν . (6.41)

As equações de movimento dos campos seguem da aplicação direta do princípio da ação
estacionária.

Equação de Dirac acoplada.

A variação de LQED em relação ao campo conjugado ψ̄ dá:

∂L
∂ψ̄
− ∂µ

(
∂L

∂(∂µψ̄)

)
= 0.

Observando que apenas o primeiro termo de (6.41) depende de ∂µψ̄, temos:

∂L
∂(∂µψ̄)

= 0, ∂L
∂(∂µψ) = i ψ̄γµ.

Assim, a equação de Euler–Lagrange para ψ̄ resulta:

0 = ∂L
∂ψ̄
− ∂µ

(
∂L

∂(∂µψ̄)

)
= (iγµ∂µ −m)ψ − e γµAµψ. (6.42)

Portanto,
(iγµDµ −m)ψ = 0, (6.43)

que é a equação de Dirac com acoplamento minimal. Nela, o campo Aµ atua como um
potencial eletromagnético que modifica a derivada comum, incorporando os efeitos de
interação.
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Equações de Maxwell com corrente fermiônica.

A variação da Lagrangiana (6.41) em relação a Aµ produz:

∂L
∂Aµ

− ∂ν
(

∂L
∂(∂νAµ)

)
= 0.

Calculando os termos explicitamente:

• O termo de interação fornece

∂L
∂Aµ

= −e ψ̄γµψ.

• O termo cinético do campo Aµ, −1
4FρσF

ρσ, depende de ∂νAµ via

Fρσ = ∂ρAσ − ∂σAρ.

Logo,
∂Fρσ

∂(∂νAµ) = δνρδ
µ
σ − δνσδµρ ,

e portanto,
∂L

∂(∂νAµ) = −1
2F

ρσ(δνρδµσ − δνσδµρ ) = −F νµ.

Substituindo na equação de Euler–Lagrange, obtemos:

0 = −e ψ̄γµψ + ∂νF
νµ, (6.44)

ou, equivalentemente,
∂νF

νµ = e ψ̄γµψ. (6.45)
Esta é a equação de Maxwell com corrente fermiônica como fonte.

Corrente e conservação.

O termo de acoplamento −e ψ̄γµAµψ identifica diretamente a corrente elétrica
como

jµ = ψ̄γµψ.

A conservação dessa corrente segue imediatamente da invariância de gauge. De fato, to-
mando a derivada e usando a equação de Dirac (6.43):

∂µj
µ = ∂µ(ψ̄γµψ) = (∂µψ̄)γµψ + ψ̄γµ∂µψ

= iψ̄(m+ eγµAµ)ψ − iψ̄(m+ eγµAµ)ψ = 0. (6.46)

Assim,
∂µj

µ = 0. (6.47)

A invariância local de fase garante automaticamente a conservação da carga elé-
trica. O termo −e ψ̄γµAµψ pode, portanto, ser interpretado como o produto entre o po-
tencial eletromagnético e a corrente jµ, descrevendo o acoplamento físico entre o campo
e sua fonte.
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6.3.3 Acoplamento a campos escalares complexos
O mesmo princípio de invariância de gauge aplica-se a campos escalares complexos

φ(x). O lagrangiano livre é

Lφ = (∂µφ)∗(∂µφ)−m2|φ|2, (6.48)

o qual é invariante apenas sob transformações de fase globais

φ(x)→ eiαφ(x).

Para promover a simetria a local, α→ α(x), introduzimos a derivada covariante

Dµφ = (∂µ + ieAµ)φ, (6.49)

que se transforma da mesma forma que φ:

Dµφ→ eiα(x)Dµφ.

O lagrangiano invariante de gauge é então

Lφ = (Dµφ)∗(Dµφ)−m2|φ|2 − 1
4FµνF

µν . (6.50)

Expansão do termo cinético.

Explicitemos o primeiro termo:

(Dµφ)∗(Dµφ) = (∂µφ∗ − ieAµφ∗)(∂µφ+ ieAµφ)
= (∂µφ∗)(∂µφ) + ieAµ(φ∗∂µφ− φ ∂µφ∗) + e2AµA

µ|φ|2. (6.51)

O primeiro termo descreve a dinâmica livre do campo escalar, o segundo termo linear
em Aµ corresponde à interação com um único fóton, e o termo quadrático e2AµA

µ|φ|2
representa a interação simultânea de dois fótons com a partícula escalar.

Equações de movimento.

As equações dinâmicas seguem novamente do princípio da ação estacionária.

(a) Variação em relação a φ∗. A equação de Euler–Lagrange para φ∗ é

∂L
∂φ∗ − ∂µ

(
∂L

∂(∂µφ∗)

)
= 0.

Calculando termo a termo a partir de (6.50):

∂L
∂(∂µφ∗) = (Dµφ), ∂L

∂φ∗ = −ieAµ(Dµφ)−m2φ.

Logo,

0 = −ieAµ(Dµφ)−m2φ− ∂µ(Dµφ)
= (DµD

µ +m2)φ, (6.52)
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ou seja,
DµD

µφ+m2φ = 0. (6.53)
Essa é a equação de Klein–Gordon modificada pela presença do campo eletromagnético.

(b) Variação em relação a Aµ. Do termo (Dµφ)∗(Dµφ), a dependência em Aµ é

∂L
∂Aµ

= −ie (φ∗∂µφ− φ ∂µφ∗) + 2e2Aµ|φ|2.

O termo de Maxwell fornece, como antes,
∂L

∂(∂νAµ) = −F νµ.

Substituindo na equação de Euler–Lagrange,

0 = ∂L
∂Aµ

− ∂ν
(

∂L
∂(∂νAµ)

)
= −ie(φ∗∂µφ− φ∂µφ∗) + 2e2Aµ|φ|2 + ∂νF

νµ. (6.54)

Assim, obtemos
∂νF

νµ = e jµ, (6.55)
onde a corrente conservada é

jµ = i
(
φ∗∂µφ− φ ∂µφ∗

)
− 2eAµ|φ|2. (6.56)

Os dois termos em (6.56) representam, respectivamente, a corrente de probabilidade livre
e a contribuição devida à presença do campo Aµ.

Conservação da corrente.

A invariância local da Lagrangiana (6.50) sob

φ(x)→ eiα(x)φ(x), Aµ(x)→ Aµ(x)− 1
e
∂µα(x),

implica diretamente na conservação de jµ:

∂µj
µ = 0. (6.57)

Essa propriedade decorre da identidade de Noether aplicada a uma simetria local e garante
a consistência entre as equações de Maxwell e de Klein–Gordon acopladas.

O termo linear eAµjµ descreve os processos de emissão e absorção de fótons, en-
quanto o termo quadrático e2AµA

µ|φ|2 introduz correções de ordem superior, como a cria-
ção ou aniquilação de dois fótons simultâneos. Portanto, o lagrangiano (6.50) reproduz de
forma completa os efeitos eletromagnéticos clássicos e quânticos associados a partículas
carregadas sem spin.

6.3.4 Invariância de gauge e conservação da carga
Tanto no caso fermiônico quanto no escalar, o acoplamento minimal garante a

invariância local sob transformações de fase dependentes do espaço-tempo:

ψ(x)→ eiα(x)ψ(x), φ(x)→ eiα(x)φ(x), Aµ(x)→ Aµ(x)− 1
e
∂µα(x). (6.58)
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Verificação explícita da invariância.

Para o caso fermiônico, substituindo (6.58) em

Lψ = ψ̄(iγµDµ −m)ψ,
temos

Dµψ = (∂µ + ieAµ)ψ −→ eiα(x)(∂µ + ieAµ − i∂µα/e · e)ψ = eiα(x)Dµψ.

Logo,
ψ̄′iγµD′

µψ
′ = ψ̄e−iαiγµeiαDµψ = ψ̄iγµDµψ,

mostrando que Lψ é exatamente invariante. O mesmo raciocínio vale para o termo escalar
(Dµφ)∗(Dµφ), uma vez que ambos os fatores se transformam com a mesma fase.

Corrente conservada.

A invariância de gauge implica uma corrente conservada por meio do teorema de
Noether. Para o caso fermiônico, considerando uma transformação infinitesimal

ψ → (1 + iα)ψ, ψ̄ → ψ̄(1− iα),
a variação da Lagrangiana é

δLψ = ∂Lψ
∂ψ

δψ + ∂Lψ
∂ψ̄

δψ̄ = iα ∂µ(ψ̄γµψ).

Como δLψ = 0 para simetrias, segue que

∂µj
µ = 0, jµ = ψ̄γµψ. (6.59)

Essa é precisamente a corrente que aparece como fonte nas equações de Maxwell acopladas
(6.45).

No caso escalar, o mesmo procedimento aplicado a (6.50) leva à corrente

jµ = i(φ∗∂µφ− φ∂µφ∗)− 2eAµ|φ|2, (6.60)

cuja conservação, ∂µjµ = 0, decorre da invariância de gauge local.

Interpretação geométrica.

O acoplamento minimal, expresso pela substituição

∂µ −→ Dµ = ∂µ + ieAµ,

revela o caráter geométrico da interação eletromagnética. O campo Aµ atua como uma
conexão que define o transporte paralelo das fases do campo de matéria em um fibrado
principal com grupo estrutural U(1). A curvatura associada a essa conexão é precisamente

Fµν = ∂µAν − ∂νAµ,

e corresponde fisicamente ao tensor de campo eletromagnético.
O transporte paralelo de ψ(x) ou φ(x) ao longo de uma trajetória infinitesimal dxµ

é dado por
ψ(x+ dx) = e−ieAµdxµ

ψ(x),
o que mostra que Aµ mede a variação relativa de fase entre pontos vizinhos, a essência do
potencial eletromagnético.
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Unificação entre simetria e interação.

O quadro de gauge unifica, portanto, simetria e dinâmica:

• a simetria local define como os campos se transformam.

• a conexão de gauge Aµ surge para restaurar a invariância.

• a curvatura Fµν codifica a força eletromagnética.

Qualquer termo que quebre a simetria (6.58) violaria a conservação da corrente (6.59),
tornando a teoria inconsistente. Assim, a exigência de invariância de gauge não é apenas
uma convenção estética, mas uma condição de consistência interna da estrutura quântica.

Significado físico.

A invariância de gauge local traduz o fato de que apenas as quantidades associadas
à curvatura Fµν são observáveis, enquanto o potencial Aµ é definido apenas até uma deri-
vada de Λ(x). Essa redundância é o preço a pagar pela descrição covariante das interações
mediadas por bósons vetoriais sem massa.

A geometria de conexões, introduzida aqui no contexto abeliano U(1), servirá como
base para generalizações não abelianas, nas quais o campo de gauge possui autointerações
e múltiplos geradores, dando origem às teorias de Yang–Mills e ao próprio Modelo Padrão
das interações fundamentais.

6.4 Regras de Feynman da Eletrodinâmica Quântica
A lagrangiana da QED,

LQED = ψ̄(iγµDµ −m)ψ − 1
4FµνF

µν , (6.61)

contém todos os ingredientes necessários para descrever o espalhamento e as interações
entre elétrons, pósitrons e fótons.   Nesta seção, derivamos sistematicamente as regras de
Feynman associadas a essa teoria, que constituem o formalismo operacional para o cálculo
de amplitudes em ordem perturbativa.

6.4.1 Propagadores livres
O ponto de partida da quantização canônica é a separação entre a parte livre e a

parte de interação da Lagrangiana.   Expandindo (6.61):

LQED = ψ̄(iγµ∂µ −m)ψ − e ψ̄γµAµψ −
1
4FµνF

µν .

Identificamos:

L0 = ψ̄(iγµ∂µ −m)ψ − 1
4FµνF

µν , ă Lint = −e ψ̄γµAµψ.

A partir de L0, obtemos os propagadores das partículas livres.
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Propagador fermiônico.

A equação de movimento correspondente ao campo de Dirac livre é

(i/∂ −m)ψ = 0,

de modo que o propagador de Feynman SF (x− y) é definido como a função de Green do
operador (i/∂ −m):

(i/∂x −m)SF (x− y) = δ(4)(x− y). (6.62)
Passando para o espaço de momento, escrevemos

SF (x− y) =
∫ d4p

(2π)4 SF (p) e−ip·(x−y).

Substituindo em (6.62):
(/p−m)SF (p) = i,

ou seja, SF (p) é o inverso do operador (/p−m), o que fornece

SF (p) = i

/p−m+ iε
.

Multiplicando numerador e denominador por (/p+m), obtemos a forma racionalizada:

SF (p) =
i(/p+m)

p2 −m2 + iε
. (6.63)

Voltando ao espaço-tempo:

SF (x− y) =
∫ d4p

(2π)4
i(/p+m)

p2 −m2 + iε
e−ip·(x−y).

Esse propagador descreve a propagação causal de uma partícula de spin-1
2 (elétron ou

pósitron) entre dois pontos no espaço-tempo.

Propagador do fóton.

O termo −1
4FµνF

µν na Lagrangiana contém uma redundância associada à invari-
ância de gauge

Aµ → Aµ + ∂µΛ.
Para definir o propagador do campo vetorial, adicionamos um termo de fixação de gauge:

Lgauge = − 1
2ξ (∂µAµ)2, (6.64)

onde ξ é um parâmetro real que especifica o calibre. A Lagrangiana total para o campo
Aµ torna-se

LA = −1
4FµνF

µν − 1
2ξ (∂µAµ)2.

Expandindo Fµν = ∂µAν − ∂νAµ:

LA = 1
2Aµ

[
ηµν�−

(
1− 1

ξ

)
∂µ∂ν

]
Aν .
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O operador cinético no espaço de momento é, portanto,

Kµν(p) = −p2ηµν +
(

1− 1
ξ

)
pµpν .

O propagador Dµν
F (p) é definido como o inverso de Kµν(p):

Kµρ(p)DF ρν(p) = i δµν .

A inversão desse operador fornece

Dµν
F (p) = −i

p2 + iε

[
ηµν − (1− ξ)p

µpν

p2

]
. (6.65)

Para o gauge de Feynman (ξ = 1), o propagador simplifica para

Dµν
F (p) = −iη

µν

p2 + iε
. (6.66)

Outras escolhas, como o gauge de Lorentz (ξ = 0) ou o gauge de Coulomb, são
matematicamente distintas mas fisicamente equivalentes:   todas conduzem aos mesmos
observáveis mensuráveis, refletindo a invariância de gauge da teoria.

6.4.2 Vértice de interação
O termo de interação na Lagrangiana é

Lint = −e ψ̄γµAµψ. (6.67)

Ele descreve o acoplamento entre o campo fermiônico ψ (elétron/pósitron) e o campo
vetorial Aµ (fóton).   Na expansão perturbativa da amplitude de espalhamento, cada
inserção desse termo na série de Dyson corresponde a um ponto de interação no diagrama
de Feynman.

Transformação para o espaço de momento.

Escrevendo os campos como expansões em ondas planas:

ψ(x) =
∫ d4p

(2π)4 ψ(p) e−ip·x, ψ̄(x) =
∫ d4p′

(2π)4 ψ̄(p′) eip′·x, Aµ(x) =
∫ d4q

(2π)4 Aµ(q) e−iq·x.

Substituindo em (6.67):

Lint = −e
∫ d4p′

(2π)4
d4p

(2π)4
d4q

(2π)4 ψ̄(p′)γµψ(p)Aµ(q) (2π)4 δ(4)(p′ − p− q),

onde a integral sobre x gera o delta de Dirac que assegura a conservação de momento em
cada vértice:

(2π)4δ(4)(p′ − p− q).
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Fator de vértice.

Cada ponto de interação, portanto, está associado a um fator

(−ie) γµ, (6.68)

que conecta duas linhas fermiônicas (com momentos p e p′) e uma linha de fóton (com
momento q = p′ − p).   O sinal de −i provém da convenção da série de Dyson no espaço
de interação:

S = T exp
[
i
∫
d4xLint(x)

]
,

de modo que cada inserção de Lint contribui com um fator i multiplicando o termo
(−eψ̄γµAµψ).

Assim, o vértice fundamental da QED corresponde graficamente a:

vértice:



entrada de férmion: p, u(p),

saída de férmion: p′, ū(p′),

fóton associado: q = p′ − p,

fator: (−ie)γµ.

Esse fator é universal: todas as interações elétron-fóton, independentemente da ordem
perturbativa, utilizam o mesmo vértice elementar.

Observação sobre o fluxo de partículas.

Quando a linha fermiônica é percorrida no sentido oposto ao fluxo de carga (ou seja,
representa um pósitron), o mesmo fator de vértice (−ieγµ) é mantido, mas as convenções
de momento e orientação de linha são ajustadas para preservar a conservação de momento
global.   Essas regras garantem a coerência entre o formalismo algébrico e a interpretação
física dos diagramas de Feynman.

6.4.3 Regras de Feynman completas para QED
A partir da Lagrangiana interativa da QED,

Lint = −e ψ̄γµAµψ,

a evolução temporal no espaço de interação é dada pela série de Dyson,

S = T exp
[
i
∫
d4xLint(x)

]
, (6.69)

onde T denota a ordenação temporal. Expandindo (6.69) em potências do acoplamento
e, obtém-se:

S = 1 + i
∫
d4xLint(x) + (i)2

2!

∫
d4x d4y T [Lint(x)Lint(y)] + · · · . (6.70)

Cada inserção de Lint corresponde a um vértice de interação no diagrama de Feynman, e
as contrações entre campos nas médias de vácuo geram as linhas internas associadas aos
propagadores.   As integrais sobre os pontos x e y originam os fatores de conservação de
momento (2π)4δ(4)(∑ pi) em cada vértice.
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Construção das amplitudes.

De forma geral, uma amplitudeM em QED é obtida segundo as seguintes etapas:

1. Expande-se o operador S na ordem desejada de e;

2. Contraem-se todos os pares de campos utilizando os propagadores apropriados (de
férmions e fótons);

3. Associam-se os fatores correspondentes a cada vértice e linha propagadora;

4. Integra-se sobre todos os momenta internos;

5. Multiplica-se pelos espinores externos adequados (u, ū, v, v̄) e pelos deltas de con-
servação de momento globais.

Regras em espaço de momento.

O resultado dessas operações pode ser organizado em um conjunto de regras algé-
bricas universais, válidas para qualquer diagrama conectado.   No espaço de momento,
as regras de Feynman para a QED são:

• Linha fermiônica (elétron): fator

i(/p+m)
p2 −m2 + iε

.

• Linha fermiônica (pósitron): mesma expressão, porém com orientação de fluxo
oposta ao da carga elétrica.

• Linha de fóton: fator

−i
p2 + iε

[
ηµν − (1− ξ)p

µpν

p2

]
,

onde ξ é o parâmetro do gauge introduzido no termo de fixação − 1
2ξ (∂µA

µ)2.

• Vértice de interação: fator (−ieγµ), conectando duas linhas fermiônicas e uma
linha de fóton.

• Conservação de momento: em cada vértice, o momento total é conservado:

(2π)4δ(4)
(∑

i

pi

)
.
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Integração sobre linhas internas.

Cada linha interna (de férmion ou fóton) introduz uma integração sobre o quadri-
momento: ∫ d4p

(2π)4 .

Dessa forma, um diagrama de n vértices e L linhas internas contribui com um termo de
ordem en e com L integrais sobre momenta virtuais, que devem ser avaliadas segundo as
regras de contorno de Feynman (iε).

Essas regras permitem construir a amplitude de qualquer processo perturbativo
em QED de forma sistemática e covariante.   Os propagadores codificam a propagação
de partículas livres entre interações; os vértices representam os pontos de acoplamento
elétron–fóton; e as integrais sobre momenta internos refletem a soma quântica sobre todos
os caminhos possíveis.   A invariância de gauge assegura que, apesar das dependências
aparentes em ξ, todos os observáveis físicos, como seções de choque e taxas de decaimento,
são independentes da escolha de gauge.

6.4.4 Gauge fixing e independência física
O termo de gauge (6.64) é introduzido apenas para definir corretamente o propa-

gador do fóton, mas não altera as previsões físicas da teoria.   Observáveis mensuráveis,
como seções de choque ou taxas de decaimento, são independentes do parâmetro ξ.  
Essa propriedade é consequência direta da invariância de gauge, que garante que diferen-
tes escolhas de gauge correspondem apenas a diferentes representações matemáticas de
uma mesma física subjacente.

De fato, o propagador do fóton no gauge covariante geral é

Dµν
F (p) = −i

p2 + iε

[
ηµν − (1− ξ)p

µpν

p2

]
.

O termo proporcional a pµpν/p2 depende explicitamente de ξ, mas ele nunca contribui a
grandezas físicas.   Em uma amplitude genérica, cada linha de fóton conecta-se a uma
corrente conservada Jµ proveniente das linhas fermiônicas, de modo que o fator relevante
é sempre da forma

JµD
µν
F (p)J ′

ν .

Usando a conservação da corrente pµJµ = 0, o termo dependente de ξ desaparece:

Jµ
pµpν

p2 J ′
ν = 0.

Assim, a parte longitudinal do propagador não tem efeito sobre amplitudes físicas, somente
as polarizações transversas do fóton participam nos processos observáveis.

Essa propriedade é expressa de maneira mais geral pela identidade de Ward–Ta-
kahashi, que relaciona a estrutura do vértice e do propagador fermiônico:

qµ Γµ(p′, p) = S−1
F (p′)− S−1

F (p), (6.71)

onde Γµ é o vértice completo e SF o propagador fermiônico renormalizado.   Essa relação
assegura que qualquer variação na escolha de gauge (ou no parâmetro ξ) é compensada
automaticamente pela conservação de corrente elétrica em todos os níveis de perturbação.
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Em abordagens covariantes, o gauge de Feynman (ξ = 1) é preferido pela sim-
plicidade algébrica, enquanto o gauge de Coulomb é mais intuitivo para problemas não
relativísticos.   Independentemente da escolha, o formalismo das regras de Feynman pre-
serva a coerência e a unidade da descrição quântica das interações eletromagnéticas.

A construção das regras de Feynman evidencia a força preditiva da formulação
de gauge: toda a estrutura interativa da QED, propagadores, vértices e simetrias, é de-
terminada a partir de um único princípio de invariância local.   A teoria resultante é
renormalizável, unitária e experimentalmente confirmada com precisão sem precedentes,
consolidando-se como o modelo paradigmático de uma teoria de gauge quântica.

6.5 Processos de Espalhamento em Eletrodinâmica
Quântica

A Eletrodinâmica Quântica (QED) fornece o arcabouço teórico mais preciso para
descrever interações entre partículas carregadas e fótons. Com as regras de Feynman esta-
belecidas, podemos agora aplicá-las ao cálculo de amplitudes de espalhamento, analisando
como os princípios de simetria e a estrutura de gauge da teoria determinam os resultados
observáveis.

6.5.1 Amplitude de transição e seção de choque
A probabilidade de transição entre um estado inicial |i〉 e um estado final |f〉 é

descrita pela amplitude de espalhamento

Sfi = 〈f |S |i〉,

onde o operador de espalhamento S é construído a partir da série de Dyson:

S = T exp
[
−i
∫
d4xHint(x)

]
.

Expansões perturbativas em potências de e produzem diagramas de Feynman com número
crescente de vértices. Cada termo da expansão corresponde a uma ordem de correção
quântica à amplitude clássica.

A quantidade fisicamente mensurável é a seção de choque diferencial, que mede a
probabilidade de espalhamento por unidade de ângulo sólido. Para um processo a+ b→
c+ d, ela é dada por

dσ

dΩ = 1
64π2s

|pf |
|pi|
|M|2, (6.72)

onde s = (pa + pb)2 é o invariante de Mandelstam, pi e pf são os módulos dos momentos
no centro de massa, e M é a amplitude invariante associada ao processo.

Os processos de espalhamento em QED podem ser classificados em termos dos
canais de Mandelstam, que refletem as diferentes maneiras pelas quais o momento é trans-
mitido entre as partículas. Definem-se os invariantes:

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2,

os quais satisfazem s+ t+u = ∑
m2
i . Cada um desses canais corresponde a uma topologia

distinta de diagrama: o canal-s a uma aniquilação e recriação intermediária de partículas,
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e os canais-t e-u à troca de fóton entre as linhas externas. Essa decomposição será útil
para identificar a estrutura de cada processo de espalhamento.

6.5.2 Espalhamento elétron–fóton (Compton)
O espalhamento Compton é o processo no qual um elétron interage com um fóton,

emitindo um novo fóton e sendo defletido:

e−(p) + γ(k) → e−(p′) + γ(k′).

O termo de interação −eψ̄γµAµψ permite dois diagramas de Feynman na menor ordem
(ordem e2), correspondendo às duas possíveis ordens de absorção e emissão do fóton pelo
elétron.

As amplitudes correspondentes são:

Ms = (−ie)2 ū(p′) ε′∗
µ γ

µ
i(/p+ /k +m)

(p+ k)2 −m2 + iε
ενγ

ν u(p),

Mu = (−ie)2 ū(p′) ενγν
i(/p− /k′ +m)

(p− k′)2 −m2 + iε
ε′∗
µ γ

µ u(p).

O sinal de mais no numerador dos propagadores é consequência da convenção (+,−,−,−)
adotada. O fator total da amplitude é então

M =Ms +Mu.

A somaM =Ms +Mu é essencial para garantir a invariância de gauge. De fato,
substituindo uma polarização longitudinal εµ → kµ em qualquer um dos termos indivi-
duais, obtém-se uma contribuição não nula; no entanto, a soma total satisfaz kµMµ = 0,
conforme exige a conservação de corrente do elétron. Essa propriedade, consequência di-
reta da identidade de Ward–Takahashi, assegura que apenas as polarizações físicas do
fóton contribuem para o resultado observável.

O cálculo explícito de |M|2, após a soma sobre polarizações do fóton e spins do
elétron, conduz à famosa fórmula de Klein–Nishina, que descreve a variação angular da
energia do fóton espalhado e é uma das primeiras confirmações experimentais diretas da
quantização do campo eletromagnético.

6.5.3 Espalhamento elétron–pósitron (Bhabha)
Outro processo fundamental é o espalhamento elétron–pósitron:

e−(p1) + e+(p2) → e−(p3) + e+(p4).

Nesse caso, há dois diagramas distintos em ordem e2: o canal-s, mediado pela aniquilação
do par e−e+ em um fóton virtual, e o canal-t, correspondente à troca de fóton entre as
partículas incidentes.

A amplitude total é

M = (−ie)2
[
v̄(p2)γµu(p1)

−iηµν
(p1 + p2)2 ū(p3)γνv(p4)− ū(p3)γµu(p1)

−iηµν
(p1 − p3)2 v̄(p2)γνv(p4)

]
.
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A estrutura de sinais reflete a estatística fermiônica e a orientação das linhas de partículas e
antipartículas. O primeiro termo representa o canal-s (aniquilação), e o segundo, o canal-t
(espalhamento direto).

Após somar sobre spins e integrar sobre o espaço de fase, obtém-se a seção de
choque diferencial de Bhabha, que depende dos invariantes de Mandelstam s, t e u, com
a simetria característica

s+ t+ u = 4m2.

No limite de altas energias (m �
√
s), os resultados se aproximam dos obtidos para

espalhamento de partículas de massa nula, revelando a consistência ultrarrelativística da
teoria.

6.5.4 Espalhamento elétron–elétron (Møller)
Para o espalhamento entre dois elétrons,

e−(p1) + e−(p2) → e−(p3) + e−(p4),

existem novamente dois diagramas na menor ordem, correspondendo aos canais-t e-u de
troca de fóton. A amplitude total é

M = (−ie)2
[
ū(p3)γµu(p1)

−iηµν
(p1 − p3)2 ū(p4)γνu(p2)− ū(p4)γµu(p1)

−iηµν
(p1 − p4)2 ū(p3)γνu(p2)

]
.

A diferença de sinal entre os dois termos decorre da antissimetria da função de onda fermi-
ônica sob troca de partículas idênticas, garantindo a obediência ao princípio de exclusão
de Pauli.

A dependência angular da seção de choque, obtida após soma sobre spins, reproduz
o resultado experimental de Møller, validando a estrutura estatística e relativística da
QED.

A análise desses processos de espalhamento mostra que todas as interações entre
partículas carregadas podem ser expressas em termos de trocas de fótons virtuais, cuja
propagação é mediada pelo propagador (6.66). Essa estrutura garante que a QED preserve
simultaneamente unitariedade, invariância de gauge e causalidade, independentemente da
escolha de gauge covariante.

Além disso, a correspondência entre amplitudes e observáveis experimentais evi-
dencia como a teoria de campos fornece não apenas uma descrição matemática consis-
tente, mas também previsões quantitativas de altíssima precisão, como no caso da razão
giromagnética do elétron e da dispersão Compton, medidas com exatidão de partes por
bilhão.

As regras de Feynman e os exemplos de espalhamento tratados nesta seção com-
pletam a formulação perturbativa da QED. O formalismo é suficientemente geral para
descrever processos envolvendo múltiplos fótons, pares elétron–pósitron e correções ra-
diativas de ordem superior, que serão tratadas posteriormente dentro da estrutura da
renormalização. A clareza estrutural da QED faz dela o protótipo conceitual de todas as
teorias de gauge do Modelo Padrão.
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6.6 O Potencial de Coulomb em QED
O formalismo da Eletrodinâmica Quântica permite interpretar as forças eletrostá-

ticas clássicas como o resultado da troca de fótons virtuais entre partículas carregadas.
Nesta seção, mostramos como o potencial de Coulomb emerge naturalmente do limite não
relativístico do espalhamento elétron–elétron.

6.6.1 Troca de fóton virtual
Considere o processo

e−(p1) + e−(p2) → e−(p3) + e−(p4),

cuja amplitude em menor ordem (ordem e2) é dominada pelo diagrama de troca de fóton
no canal-t:

M = (−ie)2 ū(p3)γµu(p1)
−iηµν

(p1 − p3)2 ū(p4)γνu(p2).

Nesse contexto, o fóton interno é virtual, ele não satisfaz p2 = 0, e é o mediador da
interação eletromagnética entre os elétrons.

No regime não relativístico, as componentes temporais das correntes dominam,
pois a velocidade das partículas é muito menor que c. Assim,

ū(p3)γ0u(p1) ≈ 2m, ū(p4)γ0u(p2) ≈ 2m,

e as componentes espaciais γi são suprimidas por fatores da ordem de |p|/m. A amplitude
reduz-se então a

M≈ (−ie)2 (2m)2

q2 ,

onde q = p3 − p1 é o momento transferido entre os elétrons.

6.6.2 Transformada para o espaço real
A interação potencial correspondente é obtida tomando a transformada de Fourier

da amplitude no espaço de momento:

V (r) =
∫ d3q

(2π)3 M(q) eiq·r.

Substituindo o resultado acima e normalizando por 4m2 (para remover os fatores de spinor
externo), obtemos

V (r) = e2
∫ d3q

(2π)3
eiq·r

q2 .

A integral é conhecida e resulta em
∫ d3q

(2π)3
eiq·r

q2 = 1
4πr .

Portanto,

V (r) = e2

4πr . (6.73)
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Esse é exatamente o potencial de Coulomb obtido na eletrostática clássica.
O resultado (6.73) mostra que o campo elétrico clássico é uma manifestação do

intercâmbio de fótons virtuais entre partículas carregadas. A propagação desses fótons é
descrita pelo propagador

D00
F (p) = i

p2

no limite não relativístico, cuja transformada de Fourier gera o comportamento 1/r ca-
racterístico do potencial.

Essa correspondência demonstra a consistência entre a QED e o eletromagnetismo
de Maxwell: no limite de baixas energias, as amplitudes de espalhamento reproduzem
precisamente as forças de Coulomb. A diferença fundamental é conceitual, o campo ele-
tromagnético deixa de ser um meio contínuo e passa a ser entendido como o portador de
quanta de interação, os fótons.

A derivação do potencial de Coulomb a partir da QED encerra o ciclo iniciado
com a exigência de invariância de gauge local. O próprio princípio de simetria conduz de
maneira contínua ao surgimento do campo de gauge Aµ, ao acoplamento minimal entre
carga e campo e, por fim, à força de longo alcance que se manifesta entre partículas
carregadas. Dessa forma, o eletromagnetismo clássico aparece como o limite natural da
dinâmica quântica mediada por fótons virtuais.

A eletrodinâmica quântica, portanto, não apenas explica quantitativamente o fenô-
meno eletromagnético, como o reconstrói a partir de um princípio de simetria fundamental.

Encerramos, assim, o desenvolvimento iniciado com a estrutura hamiltoniana dos
campos e a quantização canônica, que levou naturalmente à introdução de propagadores,
regras de Feynman e ao cálculo de amplitudes de espalhamento em teorias de gauge.
A derivação do potencial de Coulomb a partir da QED evidencia a consistência entre
a formulação quântica e o limite clássico, mostrando como interações de longo alcance
emergem da troca de fótons virtuais.

O tratamento apresentado estabelece a base conceitual necessária para estudos
mais avançados, como correções radiativas, renormalização e extensões não abelianas, que
constituem os elementos fundamentais do Modelo Padrão das partículas elementares.
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7 Conclusão

Neste trabalho, percorremos uma jornada sistemática através dos fundamentos
da Teoria Quântica de Campos, desde a quantização canônica do campo escalar até a
formulação da Eletrodinâmica Quântica. Esta progressão revelou como a união entre
mecânica quântica e relatividade especial leva naturalmente a uma estrutura matemática
rica e fisicamente profunda.

A quantização do campo escalar estabeleceu os conceitos fundamentais: o espaço
de Fock como estrutura para estados de múltiplas partículas, os operadores de criação
e aniquilação para manipular excitações quantizadas, e o vácuo quântico como estado
fundamental não trivial. A extensão para o campo complexo demonstrou como simetrias
globais, através do teorema de Noether, geram números quânticos conservados.

O desenvolvimento dos propagadores e funções de Green forneceu as ferramentas
para conectar o formalismo abstrato a quantidades mensuráveis. A fórmula de Lehmann-
Symanzik-Zimmermann estabeleceu esta conexão rigorosamente, mostrando como funções
de correlação se relacionam a amplitudes de espalhamento. A discussão de causalidade
relativística revelou que, embora campos não comutem em pontos tipo-espaço, os obser-
váveis físicos respeitam a estrutura causal do espaço-tempo.

A teoria de perturbação, desenvolvida através do quadro de interação e da série de
Dyson, forneceu o método sistemático para calcular correções perturbativas. O teorema de
Wick organizou a estrutura combinatória necessária, enquanto os diagramas de Feynman
emergiram como representação visual elegante destes cálculos. As aplicações ao cálculo
de seções de choque e taxas de decaimento ilustraram como a teoria produz previsões
quantitativas testáveis.

A introdução do campo de Dirac ampliou o escopo da teoria para férmions relati-
vísticos. A construção a partir das representações espinoriais do grupo de Lorentz garantiu
covariância relativística, enquanto a necessidade de anticomutadores na quantização re-
velou a conexão profunda entre spin e estatística. A teoria de Yukawa forneceu a primeira
aplicação completa das regras de Feynman para processos fermiônicos.

A formulação da Eletrodinâmica Quântica representou a culminação desta progres-
são. A simetria de gauge U(1) local emergiu da exigência de invariância sob transformações
de fase locais, determinando univocamente a forma da interação entre matéria e radia-
ção. As aplicações a processos de espalhamento e a recuperação do potencial de Coulomb
demonstraram o poder preditivo e a consistência da teoria.

Os conceitos desenvolvidos neste trabalho constituem a base para desenvolvimen-
tos mais avançados: renormalização, teorias de gauge não-abelianas que descrevem as
interações fracas e fortes, e o mecanismo de Higgs. A confrontação das previsões teóricas
com experimentos continua a testar e validar a estrutura da teoria quântica de campos
em níveis de precisão extraordinários.

Este trabalho apresentou os fundamentos da Teoria Quântica de Campos de forma
matematicamente rigorosa, estabelecendo as bases conceituais e técnicas necessárias. A
estrutura aqui desenvolvida ilustra como, partindo de princípios simples, emerge uma
descrição poderosa das interações fundamentais da natureza.
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