Angelo Giordano Silveira Alves

Fundamentos da Teoria Quantica de
Campos: Do Campo Escalar a
Eletrodinamica Quantica

Brasilia

3 de dezembro de 2025



Angelo Giordano Silveira Alves

Fundamentos da Teoria Quantica de Campos: Do
Campo Escalar a Eletrodinamica Quantica

Trabalho de conclusao de curso apresentado
ao curso de Fisica da Universidade de Brasi-
lia como requisito parcial para obtencao do
titulo de Bacharel em Fisica.

Universidade de Brasilia - UnB
Instituto de Fisica
Curso de Fisica

Orientador: Carolina Matte Gregory

Brasilia
3 de dezembro de 2025



Resumo

Este trabalho apresenta uma introducao sistematica aos fundamentos da Teoria Quéantica
de Campos (TQC), desde a quantizagdo candnica do campo escalar até a Eletrodindmica
Quantica (QED). Iniciamos com a teoria classica de campos e sua quantizagao, estabele-
cendo o formalismo de Heisenberg e a interpretacao de particulas como excita¢oes do vacuo
através do espacgo de Fock. A extensao para o campo escalar complexo introduz nimeros
quanticos conservados via teorema de Noether. Desenvolvemos a teoria de propagadores
e fungdes de Green, conectando-os a amplitudes fisicas através da férmula de Lehmann-
Symanzik-Zimmermann. O formalismo de teoria de perturbagao é construido através do
quadro de interacdo e do teorema de Wick, culminando nos diagramas de Feynman. A
construcao do campo de Dirac parte das representacoes espinoriais do grupo de Lorentz,
abordando quiralidade, helicidade e quantizacao fermidnica. A teoria de Yukawa serve
como aplicagdo das regras de Feynman para férmions. Concluimos com a formulagao da
QED: simetria de gauge U(1) local, quantizagdo do campo eletromagnético, acoplamento
minimal com a matéria e processos de espalhamento.

Palavras-chave: teoria quantica de campos; propagadores; causalidade; quantizacao ca-
nonica; QED.



Abstract

This work presents a systematic introduction to the fundamentals of Quantum Field
Theory (QFT), from the canonical quantization of the scalar field to Quantum Elec-
trodynamics (QED). We begin with classical field theory and its quantization, estab-
lishing the Heisenberg formalism and the interpretation of particles as vacuum excita-
tions through the Fock space. The extension to the complex scalar field introduces con-
served quantum numbers via Noether’s theorem. We develop the theory of propagators
and Green’s functions, connecting them to physical amplitudes through the Lehmann-
Symanzik-Zimmermann formula. The perturbation theory formalism is constructed through
the interaction picture and Wick’s theorem, culminating in Feynman diagrams. The con-
struction of the Dirac field starts from the spinorial representations of the Lorentz group,
addressing chirality, helicity and fermionic quantization. Yukawa theory serves as an ap-
plication of Feynman rules for fermions. We conclude with the formulation of QED: local
U(1) gauge symmetry, quantization of the electromagnetic field, minimal coupling with
matter and scattering processes.

Keywords: quantum field theory; propagators; causality; canonical quantization; QED.
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1 Introducao

A Teoria Quantica de Campos (TQC) constitui a base fundamental para a descri-
¢ao das interacoes elementares da natureza, unificando os principios da mecanica quantica
com a relatividade especial. Sua formulacdo permite tratar sistemas onde o nimero de
particulas nao é conservado, incorporando naturalmente processos de criagao e aniquilacao
através da promocao de campos classicos a operadores quanticos.

O desenvolvimento histérico da TQC foi impulsionado pela necessidade de quan-
tizar o campo eletromagnético e descrever consistentemente a interacao entre luz e ma-
téria. A Eletrodindmica Quéantica (QED), primeira teoria quantica de campos completa,
emergiu dos trabalhos de Dirac, Heisenberg, Pauli, Feynman, Schwinger e Tomonaga,
estabelecendo o paradigma para as teorias de gauge modernas.

Este trabalho apresenta uma introducao sistematica aos fundamentos da TQC,
seguindo uma progressao conceitual que parte dos elementos mais simples e constréi gra-
dualmente a complexidade necessaria para formular a QED. Iniciamos com a quantizagao
canonica do campo escalar real, estabelecendo a estrutura do espaco de Fock e a interpre-
tacdo de particulas como excitagoes quantizadas do vacuo. O formalismo de Heisenberg
fornece a descricao dinamica onde os operadores de campo evoluem no tempo. A exten-
sao para o campo escalar complexo introduz ntimeros quanticos conservados através do
teorema de Noether, ilustrando como simetrias globais geram cargas conservadas.

Desenvolvemos a estrutura dos comutadores de campos e a func¢ao de Pauli-Jordan,
mostrando como a causalidade relativistica emerge na teoria. Os propagadores e fungoes
de Green aparecem naturalmente, conectando-se a observaveis fisicos através da formula
de Lehmann-Symanzik-Zimmermann (LSZ). A teoria de perturbagao é construida através
do quadro de interacao e do teorema de Wick, culminando nos diagramas de Feynman e
suas aplicagoes ao calculo de secoes de choque e taxas de decaimento.

A introducao do campo de Dirac amplia o formalismo para férmions relativisti-
cos, partindo das representagoes espinoriais do grupo de Lorentz. Discutimos quiralidade,
helicidade e a quantizagao fermionica através de anticomutadores, ilustrando o teorema
spin-estatistica. A teoria de Yukawa serve como primeira aplicacao das regras de Feynman
para férmions.

O trabalho culmina com a constru¢ao da Eletrodindmica Quéantica. A simetria
de gauge U(1) local determina a forma da interacdo entre matéria e radiagdo através
do acoplamento minimal. Desenvolvemos a quantizacao do campo eletromagnético em
diferentes gauges, derivamos as regras de Feynman completas da QED e as aplicamos a
processos de espalhamento elementares.



2 Fundamentos e Quantizacao do Campo Escalar

2.1 Introducao e Unidades

A teoria quantica de campos, ou TQC, é uma generalizacao natural da meca-
nica quantica construida para ser compativel com os principios da relatividade especial.
Essa formulagdo tornou-se indispensavel diante das limitagoes que surgem ao tentar des-
crever sistemas relativisticos com base apenas nos conceitos da mecanica quantica nao-
relativistica.

Um dos principais problemas dessa abordagem tradicional é a suposicao de que o
numero de particulas em um sistema permanece constante ao longo do tempo. Embora
essa hipotese funcione bem em regimes de baixa energia, ela se torna inadequada quando
lidamos com escalas energéticas comparaveis a massa de repouso das particulas. Con-
forme demonstraremos, a combinagao dos principios quanticos com a relatividade torna
inevitaveis os fendomenos de criagdo e aniquilagao de particulas.

Para evidenciar essa limitagao, consideremos uma particula de massa m confinada a
uma regiao espacial de tamanho Axz. Pelo principio da incerteza de Heisenberg, a incerteza
em seu momento sera da ordem de

A h
P~
Ax
Em um contexto relativistico, isso implica uma incerteza na energia aproximadamente

igual a

N

Ax

Quando Az se aproxima do comprimento de Compton, \¢ = h/(mc), a incerteza na
energia atinge valores da ordem de mc?. Isso indica que o sistema possui energia suficiente
para a produgao de pares particula-antiparticula, tornando inadequada qualquer descricao
baseada em um ntumero fixo de particulas.

A teoria quantica de campos resolve esse impasse ao reformular a prépria ontologia
da teoria: em vez de particulas como entidades fundamentais, sdo os campos quanticos
que constituem os objetos basicos. As particulas emergem como excitagdoes quantizadas
desses campos, o que explica naturalmente os fendmenos de criacao e aniquilagao, além
de justificar por que particulas de um mesmo tipo sao indistinguiveis.

Neste trabalho, seguimos a abordagem da quantizacao candnica, partindo da for-
mulagao classica dos campos e avancando até a construcao dos operadores quanticos e
do espaco de Fock. O texto comeca com o estudo do campo escalar, incluindo a versao
complexa e o formalismo no quadro de Heisenberg. Depois, analisamos causalidade, fun-
¢oes de Green e propagadores, destacando como essas ferramentas permitem relacionar
a dinamica dos campos com amplitudes fisicas. Na sequéncia, apresentamos a teoria de
perturbagao, o quadro de interacao, o teorema de Wick e os diagramas de Feynman, que
organizam o calculo de processos de espalhamento. Em seguida, estendemos o formalismo
para o campo de Dirac, discutindo solugoes, quantizacao fermonica, simetrias e a teoria
de Yukawa. Por fim, aplicamos esses resultados a QED, tratando da simetria de gauge,
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da quantizacao do campo eletromagnético e do cédlculo de amplitudes, incluindo a deriva-
¢ao do potencial de Coulomb, de modo a mostrar como os principais elementos da teoria
quantica de campos se conectam na descri¢ao das particulas e interagdes fundamentais.

2.1.1 Unidades Naturais e Escalas

Em teoria quantica de campos (TQC), é comum adotar um sistema de unidades
que torne as expressoes matematicas mais simples e revele com clareza as estruturas
fundamentais da teoria. O sistema de unidades naturais é definido pelas condi¢oes h =
c =1, em que h é a constante de Planck reduzida e ¢ ¢é a velocidade da luz no vacuo. Com
essa escolha, expressamos todas as grandezas fisicas em termos de uma tnica unidade,
geralmente a de energia.

No Sistema Internacional de Unidades (SI), as dimensoes fisicas das constantes
fundamentais sao:

[ = LT, (2.1)
[A] = ML*T~.

Ao fixarmos h = ¢ = 1, as unidades de tempo e comprimento deixam de ser independentes

) Y
podendo ser expressas em termos de energia ou massa. Utilizando £ = hw ¢ E = mc?,
obtemos as relagoes:

Energia ~ Massa ~ Momento, (2.3)

Tempo ~ Comprimento ~ (2.4)

Energia’

Como unidade prética de energia, utiliza-se o elétron-volt (eV). Em fisica de par-
ticulas, é comum trabalhar com miiltiplos como MeV (106 eV) ou GeV (10° V), pois
refletem melhor as escalas envolvidas em experimentos de altas energias.

Um exemplo importante de escala natural é o comprimento de Compton, definido
para uma particula de massa m por:

Ao = N = A= 1 (em unidades naturais).
me m
Esse comprimento representa a menor escala espacial em que uma particula pode ser
localizada sem que efeitos relativisticos, como a criacao de pares, se tornem significativos.
Para Ax < A¢, a energia necessdria para confinar a particula ultrapassa sua energia de
repouso, permitindo a producao de particulas adicionais. Alguns exemplos ilustrativos
sdo:

o Elétron: m, = 0,511 MeV = A\, ~39x 107t cm,
o Mion: m, =1057MeV = ), ~ 1,9 x 10" cm,

o Préoton: m, =9383MeV = ), ~2,1x 10 " cm.



Capitulo 2. Fundamentos e Quantizagio do Campo Escalar 10

Analise Dimensional da Lagrangiana

Na TQC, a analise dimensional baseia-se na exigéncia de que a agdao S seja adi-
mensional (isto é, um nimero puro). Como a agao é dada por

S:/d4x£,

segue-se que a densidade lagrangiana £ deve ter dimensao de massa a quarta poténcia,
ou seja,

(L] = 4.
Para um campo escalar real ¢(x), a lagrangiana livre é:

1 1
L= 5(8u¢)2 — §m2¢2.

Queremos determinar a dimensdo de ¢. Note que o operador derivada 0, tem
dimensao de massa, pois [z#] = —1. Assim:

[(0,0)7] = 2+ 2[¢].

e como L ~ (9,0)? ~ ¢*m?, e [L] = 4, obtemos:

[¢] = 1.

Ou seja, o campo escalar tem dimensao de energia (ou massa) na unidade natural. Essa
informagao sera fundamental para classificar os termos de interacdo em uma teoria, por
exemplo, se uma interacao é renormalizavel ou ndo. Sendo assim, a analise dimensional
permite, portanto, estimar como diferentes termos da lagrangiana contribuem em distintas
escalas de energia. Ela é uma ferramenta crucial para entender o comportamento de teorias
em regimes de altas energias, e serd essencial para a discussao da renormalizagdo e da
consisténcia tedrica de modelos fisicos realistas.

2.2 Teoria Classica de Campos

Para descrever sistemas com infinitos graus de liberdade distribuidos no espaco-
tempo, como ocorre em ondas eletromagnéticas ou em particulas relativisticas, é necessario
utilizar uma teoria de campos. Diferentemente da mecanica de particulas, na qual as
variaveis dindmicas sao posi¢oes e momentos de um nuimero finito de particulas, a teoria
de campos trata de fun¢oes que dependem de todas as coordenadas espaciais e do tempo,
isto é, campos ¢(Z,t).

Cada ponto do espaco carrega sua propria copia dessas variaveis dinamicas. Assim,
0s campos sao fungoes

¢a(), = (t,7),

onde o indice a distingue diferentes componentes do campo, como sabores, cargas ou graus
de liberdade internos.

A dindmica de um campo classico é especificada por uma densidade lagrangiana

L= L(¢a7 aﬂ¢0)7
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funcao dos campos e de suas derivadas em relacao ao espago-tempo. A acao é definida por

_ / d'w L(¢a, 0pda). (2.5)

O principio variacional de Hamilton estabelece que a acao deve ser estacionaria sob vari-
acoes arbitrarias d¢, que desaparecam na fronteira,

05 =0.

A variagao explicita da acao é

5S = / dz ( %+ (gfd)a)w“%)) . (2.6)

O segundo termo pode ser integrado por partes:

/d4 ma (thba)—/d‘lx(?“( o ) /d%@( “%))5%. (2.7)

O primeiro termo se anula pelas condi¢oes de fronteira, de modo que

. o
5= [ d'a [am “(8@%))15%

Como d¢, é arbitrario, obtemos as equagoes de Euler-Lagrange para campos:

@<ngﬁ>_§i:0' (2.8)

Como exemplo, considere o campo escalar real com densidade lagrangiana

—*N¢W¢— m*¢”. (2.9)
Calculamos os termos necessarios:
oL oL
= 0", — =—m?
00,0 0 ag O

Substituindo na equacao de Euler-Lagrange,
9,0"¢ +m?*¢ = 0, (2.10)

ou, definindo o operador d’Alembert,

0? 9
O=0"0, = i \VA
obtemos a equacao de Klein—Gordon:
(O +m?)p(z) = 0. (2.11)

Suas soluc¢oes podem ser escritas como superposicao de ondas planas:

o) = [ s (e 4 2307, 212
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com p° = wy = /p?2 +m?. O termo com e~ P? representa modos de energia positiva e o
termo com e””*, modos de energia negativa.

Um aspecto fundamental no formalismo lagrangiano é o papel das simetrias. O
Teorema de Noether estabelece que, se uma transformacao infinitesimal dos campos

Ga(T) — Ga(@) + da()
faz a lagrangiana variar apenas por um divergente total,
0L = 0, F",

entdo a agdo permanece invariante e ha uma corrente conservada. A variagao explicita da
lagrangiana ¢é

oL oL
96, 0pa + 7 0(0u¢a), (2.13)

9(0u¢a)
e, integrando por partes o tultimo termo,
oL oL oL
L= |——0u| == ]||00a+ 0, | =004 | .
L%a g (3(3#%))] #u O (3@%) i )

O termo entre colchetes se anula pelas equacgoes de Euler—Lagrange e, comparando com
a hipétese inicial, identificamos a corrente conservada

oL

oL =

I = a5 0¢a — F*, 2.14
50,7 240
que satisfaz
oyt = 0. (2.15)
A carga associada é
3,. 0 dQ
Q= /d zj(x), pre 0. (2.16)

Como casos importantes, a invariancia por translacao temporal leva a conservacgao
da energia,

E = / & T
enquanto translagoes espaciais implicam conserva¢ado do momento linear,
P = [dar

Para uma simetria interna de fase, como no campo escalar complexo com lagrangiana
2

L= 0,47 06— m*6"6,

a transformacao
¢ — e

gera a corrente conservada

. . * *

=i (¢°0"p — 90",
com carga

Q=i [dz (69— 0d").
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De forma mais geral, a invariancia sob translagoes no espago-tempo leva ao tensor

energia—momento candnico:

oL
T/uz — ay . — [AVE’
8 P
que obedece
0, " =0,

e cuja carga associada é o quadrimomento total,

2 / BT,

2.2.1 Formalismo Hamiltoniano

(2.17)

Para preparar a quantizacao, reescrevemos a teoria no formalismo hamiltoniano.
Nele, o campo ¢(Z,t) e seu momento conjugado 7(Z,t) sdo tratados como varidveis inde-

pendentes. O momento conjugado é definido por

(1) = —=
YT S

No caso do campo escalar,

temos

H=nd—L
a2 _ (%7?2— %(ng)Q— %m2¢>2)
= 1n? + 1(V9)? + Lm?¢?.

Assim, o Hamiltoniano total é

H = /d3x (%71’2 +1(Vo)* + %m2¢2) :

As equacgdes de Hamilton para campos sao

0H

(T 1) = — oH
N )
Calculando a variacao funcional,
0H
= V4o,

(2.18)

(2.19)
(2.20)
(2.21)

(2.22)

(2.23)

(2.24)
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obtemos

7= Vi — m?¢.
Derivando a equacio ¢ = T,
¢ =1 =V —m?o,
chegamos novamente a equacao de Klein—-Gordon:

b — V2 +m?p=0.

O formalismo Hamiltoniano é, portanto, consistente com o formalismo lagrangi-
ano e fornece as variaveis candnicas que serao promovidas a operadores no processo de
quantizacgao, estabelecendo a ponte para a proxima sec¢ao.

2.3 Quantizacao Candnica do Campo Escalar

Nesta secao realizamos a quantizacao canonica do campo escalar real. O procedi-
mento consiste em promover os campos classicos ¢(Z,t) e w(Z,t) a operadores atuando
em um espaco de Hilbert, dotados de relagoes de comutacao adequadas.

No formalismo hamiltoniano, as variaveis dinamicas tornam-se operadores:

) — 1),
) — 7(Zt). (2.26)

Impondo o andlogo quantico das relagoes de Poisson, temos os comutadores canonicos

[O(Z,1), 0(5,1)] =0, (2.27)
[# (2, 1), #(5,1)] = 0, (2.28)
[O(Z, 1), 7(F, )] = 1697 — §), (2.29)

que expressam o principio de incerteza aplicado a sistemas com infinitos graus de liber-
dade. Para garantir a consisténcia dessas relacoes, o campo deve ser expandido em modos
normais associados a operadores de criagao e aniquilacdo, como mostrado a seguir.

2.3.1 Expansao em Modos Normais

A solucao classica da equagao de Klein—Gordon motiva a expansao do campo em
ondas planas. No contexto quantico, escrevemos:

~ d3p 1 N L
- o A~ ip-E—iwpt AT —ip-T+iwgt
o(Z,t) = / 2r) Voo (ape + aze ) : (2.30)

com wy = v/p? + m?. A derivada temporal fornece o operador momento candénico:

#(Z,t) = 0,0(Z, 1) (2.31)

d3p . W A ipF—iws . WP At ipd iwpi
:/(27r)3 <_Z\/2p“ﬁ€p ity ;a7 ) (2:32)
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.I.

Os operadores a; e a;, analogos aos dosciladores harmonicos, satisfazem

[, af) = (2m)*6®) (7 - @), (2.33)
4, [af, al] = 0. (2.34)

S
j=)

q

[
=

S
>

Substituindo essas relagoes na expressao dos campos, obtemos:

A d? N
B0, 75 = [ (5™ =009~ ), (2.35)

confirmando a compatibilidade da expansao com os comutadores canonicos.

O estado de vacuo é definido por
050y =0 Vp,
e estados excitados sao obtidos pela agao de operadores de criacao:
) = ak10), B, ) = afaf,|0),

de forma geral,

— — . /\T AT

‘pl, .o 7pTL> — a/ﬁl A 'aﬁn|0>
Esses estados sao automaticamente simétricos sob trocas, refletindo que o campo escalar
real descreve bosons, e sua normalizacao é

(@p) = (2m)*6@ (7~ ).
Nesta interpretacao, cada modo de momento comporta-se como um oscilador harménico

quantico.

2.3.2 Hamiltoniano e Energia de Ponto Zero

Com a estrutura de criacao e aniquilagao estabelecida, podemos reescrever o Ha-
miltoniano. No formalismo quéntico ele é dado por

i= / ' [37% + L(V)* + tm?d?]. (2.36)

Inserindo as expansoes em modos, obtemos

a= [ g;;g wy (s + 15900)), (2.37)

em que o termo proporcional a §®(0) representa a energia de ponto zero de cada modo.
A ordenacao normal remove essa divergéncia:

3
_/d 1

de modo que o vacuo possui energia nula:

Q>

'31
T

:]f[:|0>:().

Essa forma explicita que as excitagoes do campo escalar correspondem as particulas
livres de momento p’ e energia wy.
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2.4 Particulas

Na secao anterior construimos o espaco de Fock a partir dos operadores de criagao
e aniquilacao &;, 4y € assumimos a normalizacao

[ag, af] = (2m)*6@ (5~ ).

A seguir desenvolvemos a interpretagdo desses operadores como criadores/aniquiladores
de particulas e fazemos os calculos que a justificam.

2.4.1 Estados de uma particula, energia e momento

Definimos o vacuo |0) por az0) = 0 Vp. O estado de uma particula com momento

7 = aflo),
com produto interno

(@lp) = (Olagatjo) = (2m)*6® (7 — ).
Para calculos covariantes costuma-se usar a normalizagao relativistica
[Phrer = \/2w5050),  (@1P)ra = 205(27)%6P) (5 - ),

onde wy = /p? + m?. Ap6s normal-ordenar, os operadores Hamiltoniano e momento total
podem ser escritos como

. 5
H= / 2n) Wi a]%a,g, (2.38)
2, 3k o b
P = / Gk atae (2.39)

Aqui assumimos a subtragao (ou ordenagao normal) que zera a energia do vacuo: : H:
|0) = 0. Mostramos explicitamente que H é o gerador da energia dos estados de uma
particula, i.e. H|p) = wg|p).

Usamos a identidade de comutadores
[A,BC] = [A, B|C + B[A, (]

para calcular [H, d;]. Comegando de (2.38):

.08 = [ e faag.al
[ o (allagal) + )
Com [&;, d;;] =0e [dﬁ,&;;] = (27)%6®)(k — p), obtemos
[H,a}) = (Z:; wi al (2m)*6@) (& — p)
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Logo, agindo sobre o vacuo:

H afjoy = ([A, 4l + af;

T

pois H|0) = 0. Assim R
HIp) = wglp)-

Analogamente para o operador momento total P em (2.39):

5 Ekosh
[P, a;] = / 2n)? k [a%aﬁ,a;]
dk -
_ s At
_/(27-()3 ka/E[aE, ﬁ]
&Pk
-/ e COREI G
— ﬁ&;
Portanto R
Plp) = plp),

confirmando que |p) tem momento p.

2.4.2 Espaco de Fock

O espaco de Fock permite a construcao de estados com nimero arbitrario de par-
ticulas. Por exemplo, um estado de duas particulas é definido como

|p1,p2> = Clpla/p2|0>.
Como os operadores de criacdo comutam,
AT At AT At
U, O, = A5, A,

vemos que

[p1, P2) = |2, P1),
isto é, os estados sao simétricos sob troca de particulas, refletindo a estatistica bosonica
do campo escalar. O produto interno pode ser calculado de forma explicita:

= 2m)°[6@ (@ — 51)0P (@ — ) + 0D (G — )09 (G — )]
[P)ret = 1/ 20510),
um estado de duas particulas é

‘ﬁl>ﬁ2>rel = M@&Iﬁ A;fﬁ‘2|0>

Com a convencao relativistica
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O produto interno satisfaz
<§17 qé|ﬁl7ﬁ2>rel - (27T)6 2(*}171 2(4}13'2 5(3) (q_'l - ﬁ1)5(3) (@72 - ﬁQ)
+ 2wp, 2wp, 5(3)@1 - ]72)5(3)(52 — )|

0 que garante a covariancia da normalizacao.

Generalizando, os estados de n particulas formam uma base ortogonal e simétrica:

71, v = TT /205 0 0),

i=1
com produtos internos que contém todas as permutacoes possiveis das particulas. Assim,
o espago de Fock ¢é a soma direta dos subespacos de n particulas:

F = @ Hy,
n=0

onde H,, é o espaco das fungdes de onda simétricas de n particulas. Essa estrutura serd
fundamental para descrever estados fisicos e processos de espalhamento em teoria quantica
de campos.

As equacgoes acima mostram de forma explicita que as excitagdes do campo, cons-
truidas com &;, sao autovetores dos operadores de energia e momento com os espectros
corretos da equacao de Klein—Gordon. Essa interpretacdo como particulas livres é a base
para introduzir interacoes e estudar processos de espalhamento nas segoes seguintes, onde
voltaremos a normalizacao relativistica e a construcao das amplitudes de S-matrix.

2.5 Campo Escalar Complexo

Apébs termos quantizado o campo escalar real, que descreve apenas uma parti-
cula neutra, passamos agora ao caso do campo escalar complexo, denotado por ¢(z). Ele
carrega naturalmente uma nocao de carga, pois ao lado de ¢(x) surge o seu conjugado
hermitiano ¢'(x). A lagrangiana apropriada é

L=0,0" 0" —m?¢le, (2.40)

que ¢é simplesmente o dobro da lagrangiana do campo real, no sentido de que contém os
dois graus de liberdade independentes correspondentes a Re ¢ e Im ¢.

Essa teoria descreve, como veremos, uma particula e a sua antiparticula, associadas
ao mesmo campo. A razdo estd na invariancia global da lagrangiana sob transformacoes
de fase

o) — € o(x),  of(x) — e ol(a),
que gera, pelo teorema de Noether, uma corrente conservada
i(x) = i(¢f0"e — (0"¢1)g). (2.41)

A componente temporal dessa corrente é a densidade de carga

@) = i(¢'6 — o), (2.42)
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e a carga total é

Q= /d%jo(as).

Quantizacao e derivadas temporais. Para quantizar, expandimos o campo em ondas
planas normalizadas:

d*p 1 —iwgt+ipd | 1t tiwst—ipd
¢(35):/(27T)3 m(aﬁe P + by e r >, (2.43)
d3p 1 iwst—ip-E —iwst+ip- T
¢T0ﬁ>::J/<2wr3\nz;:(“%€+ g e ), (2.44)

onde wy = v/p? + m?. Aqui os operadores az e by sao independentes, e satisfazem

laz, al] = (27)%6®) (5 — @), (2.45)
[bg, b = (2m)*6) (5 — ), (2.46)

_I.

com todos os outros comutadores nulos. Naturalmente, aj; cria particulas de momento p,

enquanto b; cria antiparticulas.

Para construir a densidade de carga, precisamos também das derivadas temporais:

. dgq 1 . . . .
(b(x) — /(2 )3 ( - iwiaqefzwqt+1q-x 4 iwqbge+lw§tzq-x)7 (247)
™

¢T(£E> - /(;Zﬂ'(;?’

}_‘ E
2y

. t tiwgt—iqE —iwat+iq-T
(zw@aqe 7 — iwgbge "™ : (2.48)

E
<y

Calculo da densidade de carga. Substituimos em
ix) =i(¢'6 - '9).

Primeiro,

$ )0l = [ e (2.19)

[a;( —iwq) ag iwp—wq)t o —i(P—7)-%
+ aliwg)bl el Crtente T
—i(wptwg)t i(P+q)-F

+ by(—iwgz)age

+ bpliwg) bg e~ W wt iP=0-E|
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Analogamente,

01000 = [ s o v

(iwp)alag eir et iF-0)2

(2.50)

b (ol et iz
+ (—iwp)byag e Wrteateibrd-
_|_

(—iw )bﬁb:; e~ Uwp—wq)t i(F—q)-&

N

Formando a combinacao j° = i(¢fd — ¢f@), vemos que os termos mistos afbf, ab,
etc., desaparecem apés a integracdo espacial por produzirem (27)26®) (5 + ), que impdoe
wy — wz = 0. Restam apenas os termos com a'a e bb, cujos coeficientes sdo

wp + Wg o wp + Wg

Y
2\ /wpwg 2/ /wpwg

respectivamente.

Operador de carga. Integrando j°(z) sobre o espago, obtemos

Q= /d3xj0 x (2.51)

dp &3
/ s 20 (9)%6®) (5 — @) abag
3 (2m)3 2, fopg P

_/ d3p d*q wy+ wg
(2m)3 (2m)3 2, fwpwg

(27)*6@ (5 — q) blby.

A integracdo em ¢ usa a delta de Dirac, que impde ¢ = p e simplifica o fator
numeérico a 1. Obtemos finalmente
3
P (i ]
3 <aﬁaﬁ — bﬁbﬁ) .

Este resultado mostra que o operador de carga () conta o nimero de particulas
criadas por a' menos o niimero de antiparticulas criadas por b'. No caso livre, particulas
e antiparticulas sao independentes e seus numeros se conservam separadamente, sendo
assim a carga é a diferenca entre eles.

2.6 O Formalismo de Heisenberg

Tendo estabelecido a quantizagao canonica dos campos escalares, passamos agora
ao formalismo de Heisenberg, no qual toda a dependéncia temporal esta nos operadores,
enquanto os estados permanecem fixos. Esse formalismo é particularmente natural em
teoria quantica de campos, pois trata espaco e tempo em pé de igualdade, de modo
compativel com a relatividade.
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2.6.1 Equacao de Heisenberg

Dado um operador O(t), sua evolugao temporal é regida por

do(t) 00
— =il 0] + (m) : (2.52)

onde o segundo termo aparece caso O tenha dependéncia temporal explicita.

No caso do campo escalar real, os operadores relevantes sao o campo ¢(Z,t) e
seu momento conjugado 7(Z,t), definidos em cada ponto do espago. O Hamiltoniano
correspondente é

H= / P [Sn3(T,0) + L(V(E,1)* + mP¢ (@, 1))

2.6.2 Dinamica dos operadores em Heisenberg

As relacoes de comutacao fundamentais estabelecidas na Secao 2.3 serao agora
aplicadas para extrair as equagoes de movimento no formalismo de Heisenberg.

O comutador [H, ¢(¥)]
Substituindo a densidade hamiltoniana:

[H, 6] = [ d*x [§5(), 6@) + S(To(@)2 ()] + 3m?6*(@), 0()]

Os termos (V¢)? e ¢* comutam com ¢(7), pois [¢(Z), ¢(%)] = 0. Resta apenas o
termo envolvendo 72.

Usando
(7 (%), 6(7)] = —is™(F - 1),
temos
[7*(2), ¢(9)] = 7(D)[7(Z), o)) + [7(Z), 6(7)]7(Z) 2.53
= —2i7(Z) 6O (Z — 7)) 2.54)

A integral sobre ¥ fixa ¥ = ¢/, resultando em

[H, ¢(9)] = —im(y).

Pela equacao de Heisenberg:

O comutador [H, 7 (¥)]
Agora,
[H,7(4)] = /dgx[é[WQ(f)aﬂ(ﬁ)] +3[(Vo(@)%, m()] + 3m?[6*(2), 7(7)] |-

2 — —

O termo 7* é nulo, pois [7(Z), 7(¥)] = 0.
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Para o termo com derivadas espaciais:
[0:0(2), (7)) = i0:6®) (& — 7)),

o que fornece

[(Vo)?, 7] = 2i 0;6(F) 0,0 (% — 7).

A integracdo por partes resulta em
[ @20:6(2) 0597 — 7) = ~V26(7).

Para o termo de massa:
[6°(Z), 7(§)] = 2ip(£)0P (T - §),
o que leva a
[ & k62 (@), ()] = imo()
Somando:
[H,7(§)] = i( = V() + m?*6(§))
Logo,
(7, t) = =V26(y,t) +m*e(7,t).

Recuperacao da equacao de Klein—Gordon

Reunindo agora os dois comutadores obtidos:

b=, 7= -V +m?o.

Derivando a primeira equagao no tempo:

b =—V2¢p+m?p.

Assim,
(0F = V2 +m?) ¢(y,t) = 0,

ou, em notagao covariante,

(O+m?) ¢(z) = 0.

Esse resultado mostra que o formalismo de Heisenberg reproduz exatamente as
equagoes de movimento classicas, agora no nivel de operadores. Essa formulacao serd
essencial ao introduzirmos ordenamento temporal, fung¢oes de Green e propagadores, que
dependem diretamente da evolugao dos operadores no tempo.
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3 Causalidade e Propagadores

3.1 Historico e Fundamentos Fisicos da Causalidade

Na secao anterior vimos que, no formalismo de Heisenberg, os campos quanticos
¢(x) sao operadores definidos em cada ponto do espago-tempo, com sua evolugao temporal
regida pela equagdao de Heisenberg. Surge assim a pergunta central desta secdao: como
esses operadores se relacionam quando avaliados em pontos distintos do espago-tempo?
A resposta leva diretamente ao conceito de causalidade relativistica.

Na mecénica classica, causalidade significava que a evolucao futura de um sistema
era completamente determinada pelas condi¢oes iniciais. Com a relatividade restrita, a
estrutura causal foi reorganizada em termos do intervalo de Minkowski

st = (2" —y°)? = (T - 9"
Apenas eventos separados por intervalos do tipo tempo ou luz podem influenciar-se mu-
tuamente e nenhum sinal fisico pode propagar-se fora do cone de luz.

A mecanica quantica nao relativistica, embora determinista na evolugao via equa-
¢do de Schrodinger, nao impoe restrigoes fundamentais a velocidade das influéncias. As-
sim, ao combinar quantizagao e relatividade, torna-se essencial que a estrutura causal de
Minkowski seja preservada.

Em teoria quantica de campos, a exigéncia de causalidade se traduz no comporta-
mento dos comutadores de operadores localizados em pontos distintos:

[P(x),0(y)] =0,  se(z—y)*<0.

Essa condigao, chamada causalidade microfisica, assegura que medigoes feitas em regioes
separadas por intervalos tipo-espaco nao interferem entre si. Ela é a contrapartida quantica
da proibicao relativistica de propagacao supraluminal.

3.1.1 Comutador do campo e funcao de Pauli-Jordan

Para verificar essa propriedade, retomamos a expansao em modos do campo escalar
real discutida na Secao 2.3:

d3p 1 —ip-x ip-T o
o) = [ sy (™7 ) == R @
p

Como apenas os comutadores cruzados [az, al] = (27)20®)(F — §) sdo ndo nulos,

q
obtemos

6001000 = [ (670 = evten). (32)

Definimos a funcao de Pauli-Jordan:

dp 1 , ,
Alr — ) = /7 —ip-(z=y) _ pir-(z—y) _
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de modo que

[0(2), (y)] = iA(x —y).

A fungao 3.3 satisfaz a equacgao de Klein—-Gordon homogénea e pode ser avaliada
de forma fechada. O resultado fundamental é o seu suporte causal:

Al —y)=0 se(zr—1y)*<O0.

Assim,
[p(x),0(y)] =0 para separacoes tipo-espaco,

garantindo que operadores localizados fora do cone de luz sao compativeis. Essa proprie-
dade é a expressao matematica da causalidade relativistica no contexto quantico.

A condic¢ao de causalidade microfisica impoe restrigdbes importantes a estrutura das
fungoes de Green e, em particular, aos propagadores. A prescrigdo i€ nos propagadores de
Feynman ¢ justamente o mecanismo matematico que implementa a compatibilidade entre
ordenamento temporal e causalidade. Esse ponto serda aprofundado na préxima secao,
onde exploraremos a construcao dos propagadores e sua interpretagao fisica.

3.2 Funcoes de Green e Amplitudes

Na secao anterior vimos que a causalidade em teoria quantica de campos se ex-
pressa na estrutura dos comutadores dos campos. Agora, introduzimos as fungoes de
Green, que sao os objetos matematicos centrais capazes de implementar simultaneamente
a estrutura causal e a descricdo quéntica da propagacao de particulas.

3.2.1 Funcgoes de Green e Solucoes com Fonte
Consideremos um campo escalar sujeito a equagao de Klein—Gordon,
(O +m?)g(x) = J(x),

com J(x) uma fonte externa. A solugao formal é obtida pela convolu¢ao da fonte com
uma funcao G(z — y) que satisfaga

(O, +m?) Gl —y) = 6D (z —y). (3.4)

Usando a representagao de Fourier,

obtemos a condicao algébrica
~ 1
G(p) =

p2—m2

A escolha da forma como os polos sdo contornados no plano complexo de p° deter-
mina se (G é a fungao retardada, avancada ou a de Feynman. Essa tltima, relevantissima
para teoria de perturbacoes, respeita o ordenamento temporal quantico via a prescri¢ao
te discutida anteriormente na Secao 3.1.1.
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3.2.2 Estrutura das Funcoes de Green

No formalismo de Heisenberg, define-se a fungao de Green de n pontos como

G, wa) = (0| T{g(21) - &(xa)} |0), (3.5)

onde o ordenamento temporal foi introduzido na Segao 2.6.

Para n = 2,
G®(x,y) = (0|T{d(x)d(y)}0),

que coincide com o propagador de Feynman. A expansao em modos usada para sua deri-
vagao é a mesma empregada na andlise do comutador [¢(x), ¢(y)] na Secao 3.1.1.

Entre as funcées de Green, distinguem-se as conectadas, G, que nio se fatori-
zam em blocos independentes. Diagramaticamente, elas correspondem aos diagramas de
Feynman conectados.

Além disso, a funcao de Green de dois pontos G (z, y) é exatamente o propagador
de Feynman, cuja estrutura analitica codifica a massa do campo, a prescricdo i€ e a
definicdo do ordenamento temporal. Nas proximas se¢oes analisaremos esse objeto em
detalhe, especialmente sua construgao via integrais de Fourier.

3.2.3 Formula de LSZ

As amplitudes de espalhamento obtidas experimentalmente estao diretamente rela-
cionadas as fungoes de Green via o procedimento LSZ. Cada linha externa de uma fungao
de Green representa um propagador livre; para obter a amplitude fisica, é necessario
amputar esses propagadores:

(Prs - olSlpr, - ) (3.6)
= / (ﬁl dtwy e (O, +m2)) (ﬁ d'y; e (0, +m2)) OIT{(y1) - - - ¢(2n) }|0).

Os operadores diferenciais (CJ + m?) projetam as contribuicdes externas sobre a
camada de massa, isolando as particulas reais envolvidas no processo.

3.3 Propagadores e Causalidade
Nesta secao analisamos a funcao de Green de dois pontos,
G (@, y) = (0T {6(2)d(y)}0),
que no caso do campo escalar real ¢ denominada propagador de Feynman:
Ap(z —y) = (0[T{p(x)¢(y) }|0). (3.7)

Ele ¢é a solugao fundamental da equacao de Green associada ao operador de Klein—Gordon
e concentra a estrutura causal e espectral da teoria.
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3.3.1 Construgao via Transformada de Fourier
O propagador satisfaz
(O, +m?) Ap(z —y) = =idW(z —y).

Escrevendo g
P x —ip-(x—
Arlr—y) = [ G Brlp)e 0,

obtemos a equacao algébrica

Os polos em p° = 4wy devem ser especificados por meio de um deslocamento
infinitesimal. A prescricao de Feynman fixa
~ i

A = —=— >0
F(p) pz_m2+i€a € )

resultando em
d*p 1
2m)* p? — m? + e

Ap(z—y) = / ( e~ @y, (3.8)

O termo ¢~ #°(#"~%") determina o fechamento do contorno de integracao no plano

complexo de p°. De acordo com o lema de Jordan, o contorno deve ser tomado como
. 1 . f . 0 0
semiplano inferior, z° > y",
semiplano superior, 2% < ¢/°,

de modo que apenas o polo correspondente seja incluido. Para 2 > y° captura-se o polo
em p’ = 4wy — i€, enquanto para 2% < y° seleciona-se o polo em p’ = —w; + ie. Esse
procedimento implementa automaticamente o ordenamento temporal no operador T'{-} e
fornece a forma correta do propagador de Feynman.

3.3.2 Polos, Contornos e Comutador
A diferenca entre as partes avancada e retardada do campo leva ao comutador
[0(2), ¢(y)] = iA(x —y),

onde a funcao de Pauli-Jordan é

dp 1 . ,
Alr — ) = /7 —ip(z—y) _ pip(z—y))
(z=y) (27m)3 2wy (e ‘ )

O suporte causal é determinado pela analise integral:
Alx—y)=0 se (r —1y)? < 0.
Consequentemente,

[¢(x),0(y)] =0  quando (z —y)* <0,
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garantindo que a microcausalidade seja satisfeita.

Os polos de A r(p) localizam-se em p = +w;Fie e obedecem a condi¢do de massa
p?> = m?. Eles identificam as excitacoes elementares associadas ao campo livre. Em teorias
interativas, esses polos podem deslocar-se ou adquirir parte imaginaria, caracterizando
modificagdes do espectro e efeitos de largura finita.

O fator global ¢ na definicao de A r(p) é uma convencao que torna as regras de
Feynman consistentes. A unitariedade do operador S resulta da estrutura completa da
teoria, incluindo o ordenamento temporal e a representagao utilizada no espaco de Fock.

3.4 Campos Nao Relativisticos

Nas secoes anteriores vimos que, na teoria relativistica, a quantizacao do campo
escalar leva a presenca simultanea de particulas e antiparticulas, refletida na existéncia
de modos de energia positiva e negativa. A estrutura de Fock correspondente permite um
numero arbitrario dessas excitacoes, e a causalidade microfisica é garantida pelo compor-
tamento do comutador e pela estrutura dos propagadores.

Ao passarmos para o regime nao relativistico, o cenario se simplifica de maneira
significativa. Nesse limite, o campo relevante satisfaz a equacao de Schrédinger, de modo
que a descrigao torna-se efetivamente monocomponente. Um campo escalar complexo 1)(x)
é governado pela lagrangiana

L=ivlou — Vol -V, (3.9)

da qual segue imediatamente a equagao de movimento
O ! V2 (3.10)
1 = —— .
! 2m ’

isto é, a forma usual da equacao de Schrodinger.

A estrutura de Fock nao relativistica é caracterizada pela densidade de particulas
p(Z) = V1 (@)p(D),

cujas excitacgoes sao contabilizadas pelo nimero total
N = / &’z p(7T),

que é exatamente conservado. Isso contrasta com o caso relativistico, onde a energia su-
ficiente pode gerar pares de particulas e antiparticulas. No regime nao relativistico, tais
processos sao energeticamente proibidos: todas as excitagoes sao particulas, e nao ha ne-
cessidade de operadores independentes para descrever antiparticulas. O espago de Fock
correspondente é construido pela acdo de ¥' sobre o vicuo, e as relacdes de (anti)comu-
tacdo determinam a estatistica do campo:

(@), 0" D) =D ~g),  {v@,4'@)} =@ -9,

para bésons e férmions, respectivamente.
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A conexao com a teoria relativistica aparece de forma transparente ao decompor
o campo relativistico como

(x) ~ = (e7™() + €™x (), (3.11)

5
g

em que 1) descreve particulas e y descreve antiparticulas. O fator oscilatério e™ remove a
energia de repouso da particula, fazendo com que 1 varie lentamente quando £ —m < m.
J4& o termo e™*yT oscila rapidamente e torna-se suprimido no limite ndo relativistico.
Assim, ao restringir-se a energias muito menores que a massa de repouso, a contribui-
¢ao de antiparticulas desaparece naturalmente, recuperando-se uma teoria efetivamente
monocomponente, exatamente a dindmica descrita por ¥ (z) na mecinica quantica nao

relativistica.

Essa diferenca estrutural reflete-se também na propagacao. O propagador associ-

ado ao campo 1,
2

(3.12)

. m \3/2 mzT
Gnr(t,Z) = 0(t) (2mt) exp| i o )

nao se anula fora do cone de luz. Isso expressa a auséncia da restricdo relativistica: a
equacao de Schrodinger é de primeira ordem no tempo e nao impoe uma estrutura causal
baseada no cone de luz. Essa propriedade nao implica a possibilidade de transmissao
instantanea de informacao, mas apenas a natureza distinta da dindmica nao relativistica.

Assim, a comparagao entre os dois regimes deixa claro o papel fundamental da
relatividade: no caso relativistico, a presenca de particulas e antiparticulas e a necessidade
de preservar a causalidade microfisica levam a uma estrutura matematica mais rica. No
limite nao relativistico, reencontramos a mecanica quantica tradicional, com niimero de
particulas conservado e propagadores que refletem a auséncia de vinculos relativisticos.
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4 Teoria de Perturbacao e Diagramas

4.1 O Quadro de Interacao e a Formula de Dyson

Ao introduzir interagoes em teoria quantica de campos, torna-se conveniente adotar
o quadro de interacao (ou representagao de Dirac). Nesse formalismo, o Hamiltoniano total

¢ decomposto como
H = Hy + Hiy, (4.1)

onde Hj governa a dinamica livre e Hj,; contém os termos de interagao tratados pertur-
bativamente.

4.1.1 Operadores, Estados e o Operador de Evolucao
No quadro de interacao, um operador é definido por
Or(t) = et Og e~ ot (4.2)

isto é, evolui apenas com o Hamiltoniano livre. Ja os estados evoluem segundo
d i —i
i @) = Hi@®) [0(t))r,  Hit)=e Ho! e~ 00", (4.3)

A solucao formal é escrita em termos do operador de evolucao,

[W(t))r = Ult, to) [¥(to)) 1, (4.4)

com

z'th(t,to) — Hi(OU(t,to),  Ulto,ty) =L (4.5)

A equacao integral correspondente é

t
Ult,to) =L —i [ dt, Hy(t) Ulty, o), (4.6)

to

e a substituicao recursiva gera a expansao perturbativa

Ut to) =T [ Cdt Hy(t) + (—i)? / dt, / "ty Hy(42) Hy (1) (A7)
()P it / " ity / % dty Hy (02) Hy () Hy (ts) + - - (4.8)

Essas integrais aninhadas codificam automaticamente a ordem temporal dos opera-
dores. Para escrever a série de forma compacta, introduzimos o operador de ordenamento
temporal T, que rearranja produtos de operadores conforme seus tempos:

Hi(t1)Hy(t2), t1 > to,

H](fg)H[(lfl), to > ty. (49)

T{H (1) Hi(t2)} = {

O mesmo se aplica a produtos com mais fatores.
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4.1.2 Férmula de Dyson e a Matriz de Espalhamento

A presenca de T permite reescrever a expansao perturbativa em sua forma com-
pacta,
t
Ut ty) = ’Texp(—i a' Hl(t’)> , (4.10)
to
conhecida como férmula de Dyson. A exponencial acima ndo é uma exponencial comum,
mas a soma ordenada dos termos da expansao perturbativa, refletindo o fato de que, em
geral, Hy(t) e H;(t') ndo comutam para tempos distintos.

O limite assintético desse operador define a matriz S, que conecta estados livres
no passado e no futuro:

“+o0o
S =U(oo,—0) = Texp(—i/ dt Hj(t)) : (4.11)
—00

Essa matriz incorpora todos os efeitos da interacao e é o ponto de partida para
a teoria de espalhamento. Sua expansao perturbativa gera, de maneira sistematica, os
diagramas de Feynman, que representam graficamente os termos correspondentes da série
em poténcias de Hiy.

Assim, o quadro de interagao organiza a evolugao temporal de sistemas interagentes
separando claramente a dinamica livre daquela gerada pela interagao, enquanto a formula
de Dyson fornece a estrutura matematica que fundamenta a teoria de perturbagoes em

QFT.

4.2 Uma Primeira Olhada no Espalhamento

O estudo de processos de espalhamento constitui a aplicacdo mais direta e fisica da
teoria quantica de campos. A ideia central é calcular a probabilidade de transi¢do entre
estados assintoticamente livres, isto é, estados de particulas que se comportam como nao
interagentes no passado remoto (t — —o0) e no futuro distante (¢ — +00). Nesses regimes,
a dindmica é dominada pelo Hamiltoniano livre Hy, e os estados sao construidos no espago
de Fock por operadores de criagdo e aniquilacao.

4.2.1 A Matriz S e sua Expansao Perturbativa

A amplitude de transicao entre um estado inicial |i) e um estado final |f) ¢ dada
pelo operador de evolugao no quadro de interacao:

(F1U (+00, —c0)li), (4.12)

onde U(t,ty) satisfaz

i;iU(t,to) = H;(t)U(t, t), Ulto, to) =L

Define-se a matriz S como

S = U(+o0, —00), (4.13)
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de modo que (f|S|i) representa a amplitude de espalhamento entre estados assintdticos.
A férmula de Dyson fornece sua expressao formal:

+o0
S = Texp {—i [ Hf(t)} , (4.14)
onde 7 implementa o ordenamento temporal. A expansao perturbativa resulta em

+o0
S:]I—@'/ dty Hi(t)

1 +o00 +oo
-5/ dtl/_ dts T{H (1) Hy(t2)} + - | (4.15)

e cada termo envolve integrais sobre produtos de Hamiltonianos de interacao. O ntimero
de integrais corresponde ao nimero de vértices, antecipando a interpretagao diagramatica
que levara as regras de Feynman.

Uma decomposicao util consiste em separar a parte trivial (nenhuma interagao)
da parte genuinamente fisica:
S =1+:T, (4.16)

onde T é o operador de transicdo. Para estados iniciais e finais distintos,
(FIS]i) = i(fIT2),

e (i|S]i) quantifica corregoes a probabilidade de nao haver espalhamento.

4.2.2 Estados de Particulas e Normalizacao Relativistica

Um estado de uma particula é construido por
) = ajj0),
e as relacoes de comutacao,
lag, af] = 2m)*6P (7 - @),
levam a

(719 = (2m)*6 (7 — 7). (4.17)

Para compatibilidade com a relatividade restrita, adota-se a normalizacao covari-
ante

(0p) = 2w(2m)*8 (5~ F), (4.18)

Fisicamente, essa normalizacao assegura que as regras de conservacao de momento
e energia sejam compativeis com transformagcoes de Lorentz, condigdo indispensavel para
interpretar corretamente as amplitudes de espalhamento.
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Na pratica experimental, particulas colidem numa regiao espacial restrita e tornam-
se livres novamente em tempos assintéticos. Cada termo da expansao perturbativa da
matriz S descreve processos em que operadores de campo criam e aniquilam particulas
em vértices de interacao, propagadores conectam esses vértices e a conservagao de energia
e momento ¢ satisfeita localmente. Essa estrutura prepara o terreno para o teorema LSZ,
que estabelecera como extrair amplitudes fisicas a partir das fung¢oes de Green, e para a
interpretacao diagramatica dada pelos diagramas de Feynman.

4.3 O Teorema de Wick

Na expansao perturbativa da matriz S, surgem produtos cada vez mais compli-
cados de operadores de campo ordenados temporalmente. O Teorema de Wick fornece
o método sistematico que permite reescrever esses produtos em termos de objetos sim-
ples: produtos ordenados normalmente e contragoes, que correspondem diretamente aos
propagadores de Feynman.

4.3.1 Ordenamento Normal, Ordenamento Temporal e Contra-
coes

O ordenamento normal, denotado por : O :, coloca todos os operadores de criacao
a esquerda dos de aniquilagdo. Por exemplo,

caat = ata.

O ordenamento temporal, denotado por T{: - - }, organiza operadores segundo seus
tempos:

o(@)p(y), 2>y’

T{o(w)6(y)} = { e

A contracao entre dois campos ¢é definida como

H(0)By) = T{H)d(W)}— : d@)d(y) - (4.19)

e coincide com o propagador de Feynman quando tomamos o valor esperado no vacuo:

O T{6(x)6(n)} 10) = $(x)(w).
Exemplos.

Para dois campos,

T{o(z)p(y)} =: ¢(x)p(y) : +d(x)d(y).

Para trés,

— — —
T{ 10203} =: P102d3 : +P1b2 : P31 +P103: P2 = +had3 = Py - .
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Para quatro campos, surgem contragoes simples e duplas:

I
T{¢1p2¢304} =: P12¢30s: + > ¢y - [[ on: (4.20)
pares k?él,_]
— [
+ > D9 mPn- (4.21)

pares independentes

As contragoes simples correspondem a uma unica linha interna nos diagramas,
enquanto as duplas ja representam duas linhas internas conectando dois pares de opera-
dores.

4.3.2 Enunciado Geral e Aplicacao a Teoria de Espalhamento

O Teorema de Wick afirma que

T{p1¢2- - bn} =: P12 P : + > [[(propagadores). (4.22)

todas as contracoes possiveis

Assim, todo produto ordenado temporalmente pode ser decomposto em uma soma
de termos normal-ordenados multiplicados por contracoes.

Essa identidade é essencial na expansao perturbativa da matriz .S,
S = Texp(—z’/d‘l:c ’Hint(:v)> ,

pois todos os operadores aparecem ordenados temporalmente. Aplicando Wick, cada
termo da série é convertido em uma soma de produtos normal-ordenados (cujos valo-
res esperados no vacuo sao nulos) e contragoes, que sdo exatamente os propagadores de
Feynman.

Desse modo, o Teorema de Wick transforma calculos operatoriais em combinagoes
puramente algébricas de propagadores, estabelecendo a ponte direta para o formalismo
dos diagramas de Feynman, onde cada contragao é representada por uma linha entre dois
pontos de interacgao.

4.4 Diagramas de Feynman

A expansao perturbativa da matriz S, organizada pelo Teorema de Wick, leva
naturalmente a representacao grafica dos termos de interacdo por meio dos chamados
diagramas de Feynman. Cada termo da série de Dyson corresponde a um conjunto de
contragoes entre operadores de campo, que por sua vez sao traduzidas em elementos
graficos com regras bem definidas.

4.4.1 Da Série de Dyson aos Diagramas

Recordemos que a matriz S no quadro de interagao é dada por

S = Texp(—i/d% Hint(x)> . (4.23)
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Expandindo a exponencial em série de poténcias, temos:
1
S—T—i / d's Hins(2) — 5 / A dby T Mo () Hone (1)} + . .. (4.24)

Cada termo dessa expansao contém produtos de operadores de campo ordenados
temporalmente. O Teorema de Wick permite reescrever esses produtos como combina-
¢oes de ordenamentos normais e contragoes. Como vimos, cada contracao equivale a um

propagador de Feynman:
—

o(r)p(y) «— Ar(z—y).

Assim, a aplicacao repetida do Teorema de Wick converte a expansao de .S em uma
soma de integrais de produtos de propagadores e vértices de interagao. Essa é precisamente
a estrutura representada graficamente pelos diagramas de Feynman.

4.4.2 Elementos Basicos dos Diagramas e Regras

Um diagrama de Feynman é construido a partir de trés ingredientes fundamentais:

o Linhas externas: correspondem aos estados de particulas iniciais e finais (opera-
dores de criagao e aniquilagao nao contraidos).

e Linhas internas: representam propagadores de particulas virtuais, resultantes das
contragoes entre operadores de campo.

e Vértices: correspondem aos pontos de interacao no espago-tempo, introduzidos por
fatores do Hamiltoniano de interacao.

Por exemplo, no caso de uma interacdo escalar do tipo ¢*, o Hamiltoniano de
interacao é

A
Hint(w) = 5 ¢4(Q3>,

e cada vértice no diagrama possui quatro linhas conectadas, associado ao fator

—iX / d'z.

A traducao para o espaco de momentos simplifica os calculos e fornece as chamadas
regras de Feynman:

1. Linhas externas: cada particula inicial/final é representada por um fator de onda
de plano e™P?* que na pratica se associa a um estado normalizado no espaco de
Fock.

2. Vértice: associe um fator de —i)\ (no caso de ¢*) e imponha conservacao de mo-
mento: Zpentrando = 0.

3. Linha interna: associe a cada propagador de momento p o fator
i
p2 —m? +ie
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4. Integracao: para cada linha interna, integre sobre o momento nao fixado:

gt
/ (2%1))4 '

5. Fator de simetria: divida por um fator que leva em conta o niimero de permutacoes
equivalentes de linhas ou vértices que nao alteram o diagrama.

Para ilustrar a aplicacao das regras desenvolvidas, consideremos o processo mais
simples de espalhamento 2 — 2 em uma teoria escalar com interacio do tipo ¢*. O
Hamiltoniano de interacao é dado por

Hine () = i' (), (4.25)

onde A é a constante de acoplamento.

No quadro de interagao, o termo de primeira ordem na expansao da matriz S é
A
SV = / d'v Hy(2) = =i / d'z T{¢" (). (4.26)

O elemento de matriz que descreve a transi¢do entre um estado inicial de duas
particulas |p;, p2) e um estado final |ps, py) é

Sﬁ) = (p3, 4| SV [p1, p2). (4.27)
Escrevendo explicitamente,
A
S = =i [ d'@ (s, palT{6(2)0(x)6(@) ()} p1, p2). (4:28)

Contracgoes e fator combinatério.

Cada uma das quatro cépias de ¢(x) deve ser contraida com uma das quatro
linhas externas do processo (p1, pa, p3, p4). Ha 4! maneiras de realizar esse emparelhamento,
cancelando exatamente o fator 1/4! presente em (4.28). Assim, o resultado conectado é

Sﬁ) = —z')\/d4x U () Uy, () U, () Uy, (), (4.29)

p

onde cada fator de onda é dado por

e—ip~ac . e—l—ipm 0
up(e) = () = , P =Ep

Integracao no espacgo-tempo.

Substituindo os modos explicitos,

i(p3+pa—p1—p2)-T

V1T 2B,

S =—ix [d'a ©
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A integral gera a delta de conservagao de 4-momento:
/d4x e Prtpimpa ) = (2m) 46 (1 + po — ps — pa).

Logo,
Sﬁ) = —1A (27T}45(4) (p1 +p2 —p3 — p4)47. (4.30)
i=1 2Epz‘

Normalizagao covariante.

Trabalhando com estados covariantemente normalizados, |p)cov = /2E, a;|0>, 08

fatores de 1/,/2E, das ondas externas sdo exatamente cancelados. Assim, o resultado
simplifica para
(ps, a|Slp1, p2) = (2m)*6Y (D1 + p2 — ps — pa) iM,

com a amplitude invariante

M=) (4.31)
ao nivel de drvore na teoria ¢*.

Este é o diagrama de contato tipico da interacao ¢*. Nao ha propagadores internos
em primeira ordem, e o célculo reduz-se a um tunico vértice. Diagramas mais ricos, com
canais s, t e u, surgem em ordens superiores ou em teorias com interagoes cubicas.

p2 \p4

Figura 1 — Diagrama de contato da teoria ¢* para o processo 2 — 2 ao nivel de arvore.

4.4.3 Os invariantes de Mandelstam s.t,u

Em processos de espalhamento 2 — 2, é usual introduzir as varidveis invariantes
de Lorentz conhecidas como invariantes de Mandelstam. Para quatro-momentos iniciais
p1, p2 € finais ps3, py, define-se:

s = (p1 +p2)?, (4.32)
t = (p1—ps)*, (4.33)
u=(p —ps)*. (4.34)

Essas quantidades resumem toda a informacao cinematica do processo em escalares
invariantes de Lorentz. O invariante s mede a energia total ao quadrado no centro de massa
e corresponde ao chamado canal s, em que as particulas iniciais se fundem em um estado
intermediario. Ja t e u descrevem transferéncias de momento, associados a processos de
troca de particulas virtuais entre linhas externas, os canais t e u.
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Além disso, os trés invariantes nao sao independentes, satisfazendo a relagao
4
2
s+t+u=> m;
i=1
o que reduz o numero de graus de liberdade cinematicos.

Canal t

Canal s Canal u

N\

Figura 2 — Os canais s, t e u no espalhamento 2 — 2, representando diferentes combina-
¢oes de momentos externos nos diagramas de Feynman.

qt qQu

A introdugao desses invariantes mostra como a analise de espalhamento ganha
clareza com os diagramas de Feynman: cada canal corresponde a uma topologia distinta de
propagacao virtual, revelando diferentes formas pelas quais as particulas podem interagir.

4.5 Secoes de Choque e Taxas de Decaimento

A matriz S contém toda a informacao dindmica proveniente das amplitudes de
Feynman; para extrair quantidades observaveis, como seg¢oes de choque em colisdes e
taxas de decaimento para particulas instaveis, é necessario relaciona-la a probabilidades
fisicas. Essa conexao é estabelecida a partir da decomposi¢ao

S =1+1T,
na qual os elementos nao triviais residem em 7'. Define-se a amplitude invariante M por
(fITli) = (2m)'6W (P — B)iM, (4.35)
com P; e Py os quatro-momentos totais inicial e final. A delta de Dirac garante a conser-

vacao global de momento, enquanto M carrega a dinamica do processo.

Ao elevar o médulo ao quadrado surgem termos do tipo
sW(P)? = sW(P)s™(0).

O fator 6(¥(0) ¢ interpretado, no limite de normalizacio em volume finito, como o volume
espaco-temporal:
VT
sW(0) = —.
Assim,
[(FISIDP — @)W (Pr — P) VT IMP,

quantidade que permite definir taxas e probabilidades.
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4.5.1 Secoes de Choque

Dividindo por 7', obtém-se uma taxa de transicao por unidade de tempo. A soma

sobre estados finais é substituida pela medida de fase relativistica
_&p
(2m)3 2FE"

Para o processo geral 1 +2 — 3+ --- + n, a se¢do de choque diferencial é

n

1

dgp' n
= 2 R 4¢(4) B _
do — M| (H (2@32&)(2@5 <p1+p2 §p> (4.36)

=3

4\/(191 “p2)® —

Exemplo: espalhamento 2 — 2 em \¢*.

Para
d(p1) + ¢(p2) — d(p3) + d(pa),

a amplitude ao nivel de arvore é simplesmente

M = —i).

A secao de choque diferencial é entao

do = ! MP I,

4\/(191 +p2)? —m?
onde . .
At = (2m)32E3 (2m)32E, (2m)* 6™ (p1 + p2 — p3 — pa).-
Usando a delta espacial para integrar em pj, e no centro de massa

Pr=—P>=pi,  P3=—Pa =Py,

obtém-se .
dlly, = 672 |3f_| ds.

Com o fluxo F = 4|p;|/s,

do 1 gl e X

dQ  64n2s || 64m2s |pi|”

4.5.2 Taxas de Decaimento

Para uma particula instavel de quatro-momento p, a taxa total é

2E/< (2n 32E> (2m)"a™ (P Zm) M2,

No referencial de repouso, ' = M, simplificando a expressao.

(4.37)

(4.38)

(4.39)
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Exemplo: decaimento 1 — 2.

Para
(M) — ¢(p1) + &(p2),
com particulas idénticas de massa m, a formula geral reduz-se a

d’py d’py
2M 27'(' 32E1 27T)32E2

(277)45(4) (p—p1 —p2) ’M‘Z
Usando a delta espacial e
1
\ﬂzi M? — 4m?, E=M/2,

chega-se ao resultado conhecido:

1P >
I' = M > 2m.
87TM2|M| , > 2m

As expressoes obtidas estabelecem a ponte entre amplitudes calculadas diagrama-
ticamente e observaveis fisicos. Se¢oes de choque e taxas de decaimento fornecem previsoes
quantitativas comparaveis com experimentos, enquanto corre¢ées de ordem superior in-
troduzem dependéncias energéticas mais refinadas e larguras de ressonancia, essenciais
para testes de alta precisao e para a estrutura de renormalizacao da teoria.
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5 O Campo de Dirac

5.1 A Equacao de Dirac

5.1.1 O Grupo de Lorentz e sua Algebra

O ponto de partida para a descricao relativistica de particulas com spin é a es-
trutura de simetria do espacgo-tempo de Minkowski. Chamamos de grupo de Lorentz o
conjunto de transformacoes lineares que preservam o intervalo invariante

2 v
5% = N otz

Uma transformacao de Lorentz atua sobre as coordenadas como
't = A, b,
e a invariancia do intervalo exige que
AN o7 =t (5.1)

Essa é a condicao definidora do grupo SO(1, 3), formado por todas as matrizes reais 4 x 4
que preservam a métrica de Minkowski. Ela garante que o produto escalar x,z* ¢ o mesmo
em todos os referenciais inerciais relacionados por A.

Para explorar a estrutura interna desse grupo, consideramos uma transformacao
infinitesimal préxima da identidade,

AHV - 5#1/ + Wul/;

em que wt, é um pequeno parametro, linear nas coordenadas de transformagao. Substi-
tuindo essa forma em (5.1) e retendo apenas os termos de primeira ordem em w, obtemos

(0" + W) (6”0 + w"s) 0™ = ™.
Expandindo e desprezando os termos quadraticos, resulta
W, + W’ ' = 0.
A introducao de indices mistos é conveniente aqui: definindo
W = nPut,

a condicao acima torna-se

wt = — W,

O parametro infinitesimal w*” é, portanto, antissimétrico, e a algebra de Lie do grupo de
Lorentz ¢é caracterizada por seis geradores independentes: trés correspondem as rotacoes
espaciais, e trés aos boosts (transformagoes que misturam tempo e espago).

Essa decomposicao ja antecipa a estrutura fundamental das representacoes de Lo-
rentz. As rotagoes formam um subgrupo compacto SO(3), associado & conservagdo do
momento angular, enquanto os boosts formam um conjunto nao compacto, refletindo o
carater hiperbdlico do espago-tempo relativistico. Na formulacao quéantica, esses gerado-
res serao promovidos a operadores hermitianos que atuam sobre os estados de particulas,
definindo a forma como cada tipo de campo, escalar, vetorial ou espinorial, responde a
transformacoes de Lorentz.
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5.1.2 Geradores e Algebra de Lorentz

As transformagoes de Lorentz podem ser expressas em termos dos geradores infi-
nitesimais da algebra associada. Assim como em qualquer grupo continuo, uma transfor-
macao finita é obtida pela exponencia¢ao de uma combinagao linear dos geradores:

A= exp(é Woo M’”) . (5.2)

O fator % evita dupla contagem dos indices antissimétricos de w,, e assegura que a ex-

pansao linear de A reproduza corretamente a transformacao infinitesimal.

A representacao vetorial dos geradores é obtida diretamente da acao de A sobre
um vetor v*. Da condicao de preservacao da métrica, segue que

(MPOY, =l 57, — 71 67,

Essas matrizes formam uma base da algebra de Lorentz no espago vetorial de quatro
dimensoes e satisfazem o comutador caracteristico

{Mﬂ’f, Mpa] = P MHT — P MYT — P MPP 4 o VPP, (5.3)

Essa relagao define a estrutura de Lie do grupo SO(1,3) e mostra explicitamente como
os diferentes geradores se misturam sob sucessivas transformagoes.

As componentes puramente espaciais M% correspondem as rotacoes usuais no
espaco tridimensional, enquanto as componentes mistas M% descrevem as transformacoes
de boost que conectam referenciais inerciais em movimento relativo. E 1til introduzir os
operadores vetoriais

1 . .
Ji = 5 €ijk Mjk, K; = Moz,

que isolam os graus de liberdade associados, respectivamente, as rotagoes e aos boosts.
As relagoes de comutacao seguem diretamente de (5.3):

[‘]'ia Jj] = €ijk Jk7 [Ji, Kj] = €ijk Kk, [Kz‘, Kj] = —€ik J.

Os operadores J; satisfazem a élgebra familiar de SO(3), refletindo o cardter compacto
das rotacoes espaciais. Ja os K; obedecem a relagoes de comutacao com sinal oposto,
indicando que o conjunto dos boosts forma um subespaco nao compacto, responsavel pela
estrutura hiperbodlica do espago-tempo relativistico.

Essa distingao entre as partes compacta e nao compacta da algebra é central para
a construcao das representagoes de Lorentz: ela antecipara a decomposicao em duas copias
independentes de SU(2), que constitui o ponto de partida para introduzir os espinores de
Weyl e, posteriormente, a equacgao de Dirac.

5.1.3 Decomposicao em Duas Cépias de SU(2)

A estrutura da algebra de Lorentz torna-se mais clara quando introduzimos com-
binacoes lineares complexas dos operadores de rotacao e de boost. Definimos
1
2

—_

T2
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Essas combinagoes tém a virtude de diagonalizar a a¢do mutua entre os conjuntos {J;} e
{K,}, separando a dlgebra em duas partes independentes. Usando as relagdes de comuta-
¢cao anteriores,

[‘]'ia Jj] = €ijk Jk7 [Jz‘, Kj] = €ijk Kk, [Kz‘, Kj] = —€ik Jlm
obtém-se diretamente
[A;, Aj] = €1 Ay, |B;, B;] = €iji B, [As, Bj] = 0.

Os operadores A; e B; satisfazem, portanto, duas copias independentes da algebra de
SU(2) e comutam entre si. Em outras palavras, a algebra complexificada de Lorentz pode
ser escrita como

50(1,3)c ~ su(2), ® su(2)x.

Cada copia corresponde a um setor independente de graus de liberdade, frequentemente
interpretados como “esquerdo” e “direito”, ou equivalentes as representacoes de quirali-
dade.

As representacoes irredutiveis da algebra de Lorentz sao entao rotuladas por dois
nimeros quanticos de spin,
(Jr,Jr),
onde j;, e jgr identificam, respectivamente, as dimensoes das representacoes de cada co-
pia de SU(2). A representacao vetorial usual, associada a quatro-vetores de Minkowski,
corresponde a (%, 1), enquanto as representacoes fundamentais

202
(20) © (o)

descreverao os espinores de Weyl, que constituem o bloco béasico para a formulagao re-
lativistica de férmions. Essa decomposicao revela que o comportamento espinorial das
particulas relativisticas é uma consequéncia direta da estrutura da algebra de Lorentz.

5.1.4 O Espaco de Representacoes Espinoriais

A decomposicao da édlgebra de Lorentz em duas copias independentes de SU(2)
revela que é possivel definir objetos que transformam separadamente sob cada um desses
grupos. Chamamos de espinor de Weyl esquerdo um campo que pertence a representacao
fundamental de SU(2), e é invariante sob SU(2)g, ou seja, uma representacao do tipo
(%, 0). Analogamente, o espinor de Weyl direito pertence a representagao (0, %)

Para um espinor esquerdo vy, as transformacoes de Lorentz agem de forma linear
segundo

0. .
Vv, — Spr, SLZGXP<Z'20-+”20>,

onde @ parametriza rotagoes espaciais e 1) parametriza boosts. A presenca de 7 no termo
de rotacao e a auséncia dele no termo de boost reflete o fato de que rotagoes sao operacoes
unitarias (compactas), enquanto boosts correspondem a transformagoes hiperbolicas (nao
compactas).

De maneira analoga, um espinor direito 1)g transforma segundo

0. .
Yr — Sk YR, SRZQXP<iJ—M>-
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As transformacoes S;, e S pertencem a grupos independentes: cada uma delas é cons-
truida a partir das combinagoes A; e B; da secdo anterior, e satisfaz a algebra de SU(2).
Esses dois tipos de espinores, portanto, representam graus de liberdade distintos sob o
grupo de Lorentz, uma manifestacao da estrutura quiral do espago-tempo relativistico.

Podemos, contudo, combinar os dois em um tnico objeto de quatro componentes,

(Ve
b= (1/)12) 7

que constitui o espinor de Dirac. Essa unificacdo permite construir expressoes covariantes
sob transformacoes de Lorentz e define o campo fundamental de férmions relativisticos.
O espinor de Dirac comporta tanto componentes de quiralidade esquerda quanto direita,
o que o torna adequado para descrever particulas com massa, ja que um termo de massa
necessariamente mistura os dois setores de quiralidade. A formulacao dindmica que incor-
pora essas propriedades emerge naturalmente da equagao de Dirac, que construiremos a
seguir.

5.1.5 Construcao da Acao e Equagao de Movimento

O objetivo agora é construir uma teoria de campo para férmions relativisticos que
seja covariante sob transformacoes de Lorentz e que leve a uma equacao de movimento
linear em derivadas do tempo. Essa linearidade é crucial, pois garante que o campo v tenha
interpretacao probabilistica consistente no limite nao relativistico, evitando o problema
das derivadas de segunda ordem na equagao de Klein—Gordon, que dificultam a defini¢cao
de uma densidade de probabilidade positiva.

Como o campo 1) pertence a uma representacao espinorial, ele nao se transforma
como um vetor ou tensor comum. A invaridncia de Lorentz requer, portanto, que o termo
cinético seja construido a partir de uma combinacéo bilinear de ¢ e de seu adjunto 1,
envolvendo uma derivada covariante que atue sobre ¢/ e um conjunto de matrizes y* que
conectem os indices de Lorentz com os indices de spin. A forma mais geral compativel
com essas exigéncias é

7y A
Py 8u¢~
Para que essa expressao se comporte como um escalar sob transformacoes de Lorentz,

as matrizes v* devem transformar como vetores contravariantes, satisfazendo a relacao
fundamental

{2 =29 (5.4)
Essas relagoes de anticomutagao definem a algebra de Clifford associada ao espago-tempo
de Minkowski e determinam que as matrizes v* formam uma representacao matricial dessa
algebra. Existem diversas representacoes equivalentes, todas relacionadas por transforma-
¢oes de similaridade, sendo as mais comuns a representacao de Dirac e a representacao de
Weyl. A escolha de representacao nao afeta a fisica, apenas a forma explicita das matrizes.

Com isso, a acao de Dirac é escrita como

S = [ d'wi (i"9, — m)v, (5.5)
onde o adjunto de Dirac é definido por

P =Ty,
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de modo que a quantidade bilinear 1) seja invariante sob transformacgoes de Lorentz.
Essa construcao assegura que tanto o termo cinético quanto o termo de massa da acao
possuam a estrutura covariante apropriada.

A equagao de movimento segue da condigao de extremalizacdo da agao em relacao
a0 campo :

59 = / d*z 69 (i7", — m)y = 0,

o que implica
(iv*0, —m)y = 0. (5.6)

Essa ¢é a equagao de Dirac, a forma relativisticamente covariante da dinamica para parti-
culas de spin % Ela é linear em derivadas e garante uma evolugao temporal bem definida,
com um operador de Hamiltoniano hermitiano no espaco de Hilbert.

A consisténcia com a relatividade pode ser verificada aplicando o operador conju-
gado (170, + m) sobre (5.6):

(iv"0y +m)(iy" 0, — m)y = 0.
Usando a relagao de anticomutagao (5.4), obtemos
(0,0" + m*) = 0,

ou seja,
(@+m*)y =0,

que ¢ justamente a equagao de Klein—-Gordon. Logo, cada componente do espinor de Dirac
descreve uma particula relativistica de massa m, mostrando que a equagao de Dirac nao
substitui a de Klein-Gordon, mas a generaliza, incorporando o grau de liberdade de spin
de forma natural.

Fisicamente, a introducao das matrizes v* permite representar o acoplamento entre
o momento e o spin de uma particula de maneira covariante, traduzindo geometricamente
como o spin é afetado por rotacoes e boosts. O termo de massa m 1) tem papel essencial:
ele acopla as componentes de quiralidade esquerda e direita, ¥;, e ¥, que, em auséncia
de massa, transformariam de maneira independente sob as duas copias de SU(2). Assim,
a presenca de massa rompe a separacao quiral e conecta os dois setores da representagao
espinorial, refletindo o fato de que particulas massivas nao possuem quiralidade bem
definida.

A agao (5.5) condensa de forma elegante os principios da relatividade e da mecanica
quantica: é local, covariante, linear e compativel com a estrutura de spin—% do campo. Ela
constitui o ponto de partida para a quantizacao fermionica e para a formulacao de teorias
interativas, como a Eletrodindmica Quantica, onde o campo de Dirac interage com o
campo eletromagnético por meio do principio de gauge.

5.2 Espinores Quirais e a Matriz ~°

A equacao de Dirac introduz um campo de quatro componentes

(iv"0, — m)y =0,
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onde as matrizes v* obedecem a édlgebra de Clifford
{7 =29

Esse formalismo unifica as duas representacoes fundamentais do grupo de Lorentz, (%, 0)
e (0, %), em um uUnico objeto que descreve férmions relativisticos. Entretanto, para com-
preender a estrutura interna do espinor de Dirac, é conveniente separar essas duas com-
ponentes, o que conduz naturalmente ao conceito de quiralidade.

5.2.1 Decomposicao quiral do espinor de Dirac

A matriz

75 = 70yl

¢ introduzida para distinguir entre as duas representagoes fundamentais. Ela satisfaz
*)?=1 {1} =0
Essas propriedades permitem definir os operadores de projecao

1—~° 14 +°
= Pp = 5.7
2 ) R 2 ) ( )

que satisfazem
P} =Py, P2 = Py, P Pr =0, Pp+ Pr=1.
Aplicando-os ao espinor de Dirac, obtemos as componentes
Y = Py, Yr = Pry,
de modo que o campo completo pode ser escrito como
Y =L+ Vg

A anticomutacdo entre 7% e y* garante que cada projecdo se transforma de maneira
independente sob o grupo de Lorentz:

Y Pr.r = Pr "

Consequentemente, a equagao de Dirac pode ser reescrita como duas equagoes acopladas:

iv' 0, — mapr =0,
ify“&uz/;R — ml/JL =0.

No limite m = 0, as duas quiralidades se desacoplam completamente:
i0uLr =0,

e cada componente descreve um espinor de Weyl. Assim, um férmion sem massa é repre-
sentado por apenas uma das duas quiralidades.
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5.2.2 Propriedades do Operador +° e dos Projetores Quirais

A matriz 7°, definida na subsecdo anterior, desempenha papel central na estru-
tura quiral da teoria de férmions relativisticos. Ela depende apenas da orientacao do
espaco-tempo e nao de uma direcao especifica, sendo portanto invariante sob rotacoes e
transformacoes de Lorentz proprias.

A hermiticidade de v° segue diretamente das propriedades usuais das matrizes de

Dirac:

() = (7" = =i () ()T ()TN =iy =17,

onde utilizamos que (71°)" = ~% e (4/)T = —~%. Assim, 7° é hermitiana e possui autovalores
+1, o que justifica a sua utilizagdo como operador de projecao de quiralidade.

Os projetores quirais definidos anteriormente satisfazem
P} =Py, P2 = Py, P, Pr =0, P+ Pr=1,

e decompoem o espaco espinorial em duas sub-representagoes ortogonais. Aplicando-os ao
espinor de Dirac,

VYp=Prp,  Yr=Prip, Y =vUp+ g

A anticomutacdo entre y° e v* implica que v troca quiralidades:
VP = Pry", Y Pr = Py

Esse fato mostra que o termo cinético 1*9,1 mistura as duas componentes quirais.

Um ponto sutil, frequentemente omitido, ¢ a relacao entre os projetores quirais e
o adjunto de Dirac. Definindo 1 = +°, verifica-se que

77EL:QL-F)Ra ILR:@EPL-
Essa inversao dos projetores decorre da anticomutagao

NN SN N )

Assim, bilineares quirais puros se anulam:
Yripp =0, YRR =0,
enquanto termos cruzados nao:
VR = YPRPRrY = po.

Isso evidencia que o termo de massa miyn) = m(z/_JLwR + YRt 1) acopla necessariamente as
duas quiralidades.

No limite m = 0, a agdo separa-se e surge simetria axial com corrente
o AD
Js = VvV,

classicamente conservada:
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5.2.3 Quiralidade e Transformagoes de Paridade
A operagao de paridade inverte as coordenadas espaciais,
P:  (t,x)+— (t,—x),

e exige que
P e
Como ~° contém trés fatores espaciais, ela transforma como
P: 4 -4
Assim,
P, <+— P R,
e portanto
Y — Yg, Yr —> YL

O espinor de Dirac é construido para transformar como

(t,x) — P (t,x) = 9" P(t, —x),

0 que preserva a estrutura da agao
S = /d4x P ("0, — m)y.

Espinores de Weyl isolados nao possuem essa propriedade, evidenciando a violacao de
paridade em teorias puramente quirais.

5.2.4 Estrutura da Acao em Termos de Quiralidades

A decomposicao do espinor de Dirac em 1y, e 1r permite reescrever a acao como
S = /d49€ (7/_JL 0y + YR iV O — m (VLR + &RT#L))- (5.10)

O termo cinético é diagonal em quiralidade, enquanto o de massa ¢é off-diagonal.
No limite m = 0, as duas quiralidades se desacoplam completamente:

S = /d4$ (TEL iV Onbr, + YR i’y“@upr),

e a teoria exibe simetria U(1);, x U(1)g, com correntes vetorial e axial.

A introducao de massa reduz essa invariancia ao subgrupo diagonal, refletindo que
a massa mistura as representagoes (%, 0) e (0, %) Fisicamente, essa estrutura mostra que
férmions leves se comportam aproximadamente como férmions de Weyl, enquanto férmions
massivos apresentam mistura intensa entre as duas componentes de quiralidade.

5.3 Solucgoes de Onda Plana da Equacao de Dirac

Tendo estabelecido a estrutura da equacao de Dirac e a natureza de suas compo-
nentes quirais, podemos agora buscar suas solugoes explicitas. O objetivo é compreender
como o campo (z) descreve particulas relativisticas de spin—%, com massa m, e como
surgem as interpretagoes de particula e antiparticula no formalismo.
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5.3.1 A equacao no espaco de momento

Busquemos solugoes de onda plana da equagao de Dirac, da forma
U(x) = u(p) e P, (5.11)

onde p* = (E,p) é o quatro-momento da particula. Essa forma é natural, pois traduz
a invariancia por translagoes em espago e tempo na linguagem de modos de Fourier, tal
como ocorre na equacgao de Schrodinger livre.

Substituindo (5.11) na equacao de Dirac
(i7" 8y —m)¢ = 0,
e observando que 0,9 = —ip,1, obtemos
(Y'pu — m)u(p) = 0. (5.12)

Essa é a equacgao de Dirac no espaco de momento. Ela nao é mais uma equacao diferencial,
mas sim uma equacao algébrica matricial de dimensao 4 x 4, que impoe restri¢des sobre
as componentes do espinor u(p).

Condicao de existéncia de solugoes nao triviais.

Solucdes nao nulas u(p) # 0 existem apenas se o determinante do operador #p,, —
m for nulo. Para verificar essa condi¢ao, multiplicamos a equagao (5.12) a esquerda por

(’yypz/ + m):
(v'py + m)(V'py — m) u(p) = 0.
Expandindo o produto,
V' Py VP — My py + My p, —m? = 0.

Os termos lineares em v se cancelam, e o termo quadratico pode ser simplificado usando
a anticomutacao das matrizes de Dirac:

{7 =2
Assim,
Voo Y ou = 5 (VA YY) b = 0 o 1= PP 1L
de modo que
(V'Py +m)(y'pu —m) = (p* = m*) L.
Portanto, a equagao (5.12) implica
(p* —m?*) u(p) = 0.
Para que existam soluc¢oes nao triviais, é necessario que o fator escalar se anule:
2 =m? (5.13)

ou seja,

E? = p* +m?. (5.14)
Esta é a relacao de dispersao relativistica padrao, garantindo que a equagao de Dirac des-
creve particulas de massa m propagando-se com quatro-momento sobre a hipersuperficie
de massa de Minkowski.
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Energia positiva e negativa.

A relacao (5.14) admite duas solugoes:

E =+/p?>+m?. 5.15
p

As solugoes com E > 0 correspondem a estados de energia positiva, que serdo interpre-
tados como particulas, as solugdes com E < 0 representam estados de energia negativa.
O problema das energias negativas foi um ponto central na formulagao original de Dirac,
levando a interpretacao de que esses estados representam antiparticulas, entidades com
carga oposta mas mesma massa que as particulas correspondentes.

Exemplo: momento unidimensional.

Para fixar ideias, consideremos p = (0,0, p,), com p, > 0. A relagao (5.15) da

E = +£,/p? +m?2.

Em unidades naturais (c = h = 1), se m = 1 e p, = 2, temos E = £/5. Logo, as solugoes

et e eTP descrevem ondas que se propagam com a mesma velocidade de grupo, mas

associadas a fluxos de energia oposta.

Equacao para as solugoes de energia negativa.

De maneira analoga, podemos considerar solugoes com dependéncia de fase oposta:
Y(x) = v(p) e,
Substituindo em (i7*0, — m)1 = 0, obtemos
(Y*pu +m)v(p) = 0.

As fungoes u(p) e v(p) satisfazem, portanto, equagdes complementares:

(p —m)u(p) =0, (p +m)u(p) =0,

onde usamos a notacdo compacta p = y¥p,. Essas duas familias de solugdes, u(p) para
energia positiva e v(p) para energia negativa, formam um conjunto completo de espinores,
descrevendo, respectivamente, particulas e antiparticulas. Elas constituirao a base para a
quantizacao do campo de Dirac e para a construgao do propagador de férmions.

5.3.2 Solucgoes explicitas no repouso

Para determinar explicitamente u(p) e v(p), é conveniente comegar pelo sistema de
repouso da particula, onde p = 0 e, portanto, p* = (m,0). Nesse caso, a equagao (5.12)
se reduz a

(Y'm —m)u(0)=0 = (7°=T)u(0) =0. (5.16)

Escolhendo a representacao de Dirac,

0_]10 z._00"
7_0—]17 7_—U’AO7
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onde ¢’ sdao as matrizes de Pauli, podemos escrever o espinor de quatro componentes u(0)

u(0) = <¢) |
X

com ¢ e Y espinores de duas componentes.

Substituindo essa forma em (5.16), obtemos
I 0\ (6| (¢
0o -1)\x/ \\/'

=0, -X =X

Portanto, y = 0, e o espinor assume a forma

o) = (7). (517

O vetor ¢ é um espinor arbitrario de duas componentes, que contém a informacao sobre
o estado de spin da particula. Como o spin—% possui dois autoestados, podemos escolher
uma base conveniente em que ¢ seja autoestado de o3:

) o)

Assim, no repouso, as duas solucoes independentes de energia positiva sao

uM(0) = (f;), u®(0) = <¢0‘> . (5.18)

o que implica

Esses dois estados representam, respectivamente, spin para cima e para baixo em relagao
ao eixo z.

De modo completamente analogo, as solugoes de energia negativa sao obtidas a
partir da equagao
(v"pp +m)v(p) = 0. (5.19)

No repouso, p* = (m,0), de modo que
(* + ) v(0) = 0.

Escrevendo v(0) também em blocos de duas componentes,

0= (7).
o 3G ()

(0) = (0> . (5.20)

obtemos

o que leva a ¢’ = 0. Logo,
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As solugdes independentes correspondem a escolher x’ como ¢, ou ¢_:

vM(0) = <¢O+> . v?(0) = <¢O_> . (5.21)

Esses quatro espinores, dois u(*)(0) e dois v*)(0), formam uma base completa de
solugoes no repouso. Eles satisfazem, respectivamente,

(Y’ -Du0)=0,  (*+I)v“(0) =0,

verificando-se diretamente que sao solucoes da equagao de Dirac nas condi¢oes F = +m e
p = 0. Cada espinor de quatro componentes carrega, portanto, a estrutura de um par de
espinores de Pauli: o setor superior descreve as particulas de energia positiva, enquanto
o inferior descreve as de energia negativa. No repouso, essa separa¢ao é completa: os
setores nao se misturam, e os dois graus de liberdade remanescentes correspondem aos
autoestados do spin—%. Sob transformacgoes de Lorentz, esses setores se acoplarao, como
veremos a seguir, gerando as solugoes gerais u(p, s) e v(p, s) para momento arbitrario.

5.3.3 Solucgoes gerais e transformacao de Lorentz

Tendo obtido as solugdes no repouso, consideremos agora o caso de momento
arbitrario p # 0. A partir do vetor de quatro-momento no repouso p’{o) = (m, 0), podemos
construir p* = (F,p) aplicando um boost de Lorentz ao longo da diregao de p, com
velocidade B = p/FE e fator de Lorentz v = E/m.

Sob essa transformacao, o campo de Dirac transforma-se como
P(a') = S(A) ¥(),
onde S(A) é a representagao espinorial do grupo de Lorentz, satisfazendo
STHA)Y A" S(A) = A, +".
No caso de um boost puro na dire¢ao p, o operador S(A) assume a forma
W0 ina
S(A) = exp 5 VP ) (5.22)
onde o parametro w é definido por

E P
coshw = —, sinhw = u
m m
Aplicando essa transformacao ao espinor de repouso u(0, s), obtemos a solu¢ao correspon-

dente com momento p:

u(p,s) = S(A)u(0,s).

. 0 o
Para calcular S(A) de modo explicito, observemos que %% = ( : 0), e que
o

(197ps)? = 1. Assim, ) )
S(A) = coshE — (v"9'%;) Sinhg.
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Usando cosh(w/2) = /5™ e sinh(w/2) = /£, obtemos

. E+m ’YO’Yipi
S(A)_\/ o2m []I E+m|’

Aplicando esse operador a solu¢ao de repouso (5.17), temos

E+m /[ 2"pi] (¢
= S(A)u(0,s) = I . 5.23
ulps) = S ul0.5) = T e 2T (4 (5.29
Multiplicando as matrizes, obtemos
E Os
u(p, s) = 2;m 7P, (5.24)
E4+m"™

Essa expressdao mostra que o boost mistura as componentes superior e inferior
do espinor: para p = 0, o termo inferior se anula e recuperamos o resultado anterior,
enquanto para p # 0 ele adquire uma contribui¢ao proporcional ao momento.

De forma completamente andloga, para as solugoes de energia negativa temos

o-p
E+m s
Xs

onde Y, representa o estado de spin da antiparticula.

Essas expressoes podem ser escritas de forma covariante usando a notacao de
Feynman:

PE™ 00s), o) = —L—" 0. ). (5.25)

ulp:s) = 2m(E +m) 2m(E +m)

Com essa forma, ¢ imediato verificar que as solugoes satisfazem as equagoes de Dirac
correspondentes:

(p—m)u(p,s) :07 (p+m)v(p>5) :()7
pois (p—m)(p+m) = p*—m? = 0 para quatro-momento sobre a hipersuperficie de massa.

Por fim, é 1til relacionar essas expressoes covariantes a notacao mais compacta em
termos de matrizes de Pauli. Recordando que

p-o=po"=FE—-p-o, p-c=E+p-o,

pode-se mostrar que

p-o \2
o =\VE I—
V=V (1)

o que leva as formas equivalentes

u(p, s) = <W§S> . olps) = ( VP o ) ,

VDo &s —\/D - T (5.26)
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como citado anteriormente.

Essas solucoes explicitam a estrutura relativistica do espinor de Dirac: as com-
ponentes superiores e inferiores, originalmente independentes no repouso, tornam-se aco-
pladas pelo movimento, refletindo a natureza quiral e o cardter misto de particula e
antiparticula intrinseco a descri¢ao relativistica de férmions. A relagdo (5.25) evidencia
ainda a simetria entre as solugoes u e v, que diferem apenas pelo sinal da massa, um
aspecto fundamental na interpretacao do campo de Dirac como descrevendo simultanea-
mente particulas e antiparticulas.

5.3.4 Relagoes de normalizacao

As solugoes u(p, s) e v(p, s) obtidas anteriormente contém uma constante de nor-
malizacao global que pode ser fixada de modo covariante. O objetivo é que os produtos
de Dirac uu e vv assumam valores simples e invariantes sob transformacoes de Lorentz.

Recordemos que o conjugado de Dirac é definido como

u(p,s) = u'(p, s)7".

Usando a forma explicita de u(p, s) obtida em (5.24),

(p, 5) E+m Os
u(p, s) = .
p7 2m o p QSS Y
E+m

temos

E+m o-p )

T — S
u'(p, s) o (¢5 ¢8E+m )

e, portanto,

E .
ilp,s) =\ o (0 el ).

Normalizagao de u(p, s).

Multiplicando u(p, s) por u(p, s’), obtemos

— n_ Etm (o-p)(o-p)
ulp, s)ulp, s') = — ¢! []I - (Eer)Q] o (5.27)

Usando a identidade das matrizes de Pauli,
(c-a)(oc-b)=a-bl+ioc-(axb),
e observando que a = b = p implica a x b = 0, temos
(0-p)*=p°L

Substituindo em (5.27),

2
ﬂ(p7 S) U(p, S/) = EQ—;Lm Qi [1 - p‘| ¢S"
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Usando E? — p? = m?, obtemos

) P> 2m
(E+m)2 E+m’
Logo,
u(p, s)u(p, ') = 2m ¢loy = 2m by, (5.28)

assumindo a normalizacio usual ¢ldy = 0,y

Normalizagao de v(p, s).

De forma analoga, usando

o-p
E+m s
v(p,s) = 5 (E—l—mx),

Xs
obtemos
v(p)8>_ 2m ( XSE+m7 S °
Entao,
. E+m (o -p)(o-p)
/ — 'I‘ _ ]I ,
u(p,s)vlp,s') = — Xsl (B + m)? + 1] x5
E+m p?
= e ————— 4+ 1|y = —2m b,y
2m Xs[ (E+m)2+]xs M Oss
Assim, as normalizagdes convencionais sao
u(p, s) u(p, ') = 2m by, (5.29)
v(p,s)v(p,s') = —2m by, (5.30)

enquanto os produtos mistos u(p, s) v(p, s’) e v(p, s) u(p, s') se anulam devido & ortogona-
lidade dos setores de energia positiva e negativa.

Identidades de completude.

Asrelagoes de normalizagao permitem construir projecoes completas sobre o espaco
de solugoes. Como {u(p, s)} e {v(p, s)} formam uma base ortogonal de solugoes da equagao
de Dirac, deve valer

dulp.s)ulp,s) = A(p+m), > v(ps)v(p,s)=B(p—m),

S S

para alguns escalares A e B. Multiplicando a esquerda por u(p, s') e usando (5.29),

i(p. ) [Z u(p. $)i(p, s>] u(p. ) = 2m = A(p, )(p + m)ulp, ).

S
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Mas (p —m)u(p, s") = 0 implica pu(p, s') = mu(p, s'), e portanto o lado direito vale 2mA.
Logo, A = 1. O mesmo raciocinio vale para B = 1. Temos, portanto,

> ulp,s)ulp,s) = p+m, (5.31)

s

> v(p,s)v(p,s) =p—m. (5.32)

s

Essas identidades sao de extrema importancia pratica: elas permitem reescrever
expressoes envolvendo somas sobre estados de spin de forma covariante. Por exemplo, nos
calculos de espalhamento, a soma sobre spins iniciais e finais pode ser substituida pelas
combinagoes p + m, o que simplifica enormemente a manipulagao algébrica. Além disso,
as relagoes (5.31)—(5.32) estao na base da defini¢ao do propagador de férmions, que surge
justamente como a inversa do operador (p —m) no espaco de momento.

5.3.5 Helicidade e quiralidade

A equacao de Dirac, ao descrever férmions relativisticos, admite naturalmente
uma decomposicao em componentes de quiralidade definida. Introduzimos os operadores
de projecao quirais

(5.33)

onde

0TI
7P =iy = (]I 0) (na representagiao de Dirac).

Esses projetores satisfazem P? = Pp, P4 = Pg, e P,Pp = 0. Aplicando-os ao espinor de
Dirac, obtemos as componentes de quiralidade esquerda e direita:

Y = P, Yr = Pri.

Como P;, + Pr =1, o campo total se decompde em
Y =1L + Vg
Substituindo essa decomposicao na equacao de Dirac

(i~ m)w =0,

e lembrando que 7° anticommuta com todas as v*, ou seja, {7°,7*} = 0, obtemos o
sistema acoplado

iYL = mig, (5.34)
i@vr =may. (5.35)

Essas equacoes mostram que a massa do férmion acopla as duas componentes de quira-
lidade: 17, e ¥ nao evoluem de forma independente. No entanto, no limite m — 0, as
equagoes (5.34)—(5.35) se desacoplam, resultando em duas equagoes de Weyl independen-
tes:

i@ =0, i@ =0. (5.36)
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Nesse caso, as solugoes podem ser escolhidas de forma que

Yur,r(p) = Furr(p), (5.37)

ou seja, uy, é autoestado de v° com autovalor —1, e ug com autovalor +1. O mesmo vale
para os espinores v, g(p), associados a antiparticulas. Essas relacoes estabelecem que,
para campos sem massa, as componentes quirais correspondem exatamente aos espinores
de Weyl discutidos anteriormente: a equagao de Dirac sem massa se decompoe em duas
equacgoes de Weyl independentes, uma para 1y, e outra para ¢g.

Para relacionar quiralidade e propriedades observaveis, introduzimos o operador
de helicidade,
S.
h=2"P (5.38)
p|

o 0
ondeS:é<
0

o
spin na dire¢ao do movimento e, portanto, indica se o spin esta alinhado ou anti-alinhado
com o momento linear. Aplicando h sobre uma solucao u(p, s) com p orientado ao longo
do eixo z, obtemos

) é o operador de spin relativistico. A helicidade mede a projecao do

1

de modo que u(p, +) representa helicidade “para cima” e u(p, —) helicidade “para baixo”.

Para particulas massivas, helicidade e quiralidade sdo conceitos distintos: a helici-
dade depende do referencial inercial, j4 que um observador suficientemente rapido pode
ultrapassar a particula e inverter o sentido de seu momento, trocando o sinal de h. A
quiralidade, por outro lado, é uma propriedade intrinseca da representacao, ela nao muda
sob transformacoes de Lorentz. Entretanto, quando m = 0, a quiralidade e a helicidade
tornam-se equivalentes: como as componentes ¥y, e g nao se acoplam, o operador de
helicidade comuta com o Hamiltoniano, e cada particula pode ser caracterizada simulta-
neamente por um valor fixo de helicidade e de quiralidade.

Essa coincidéncia entre quiralidade e helicidade no regime sem massa possui conse-
quéncias profundas. No Modelo Padrao, apenas as componentes de quiralidade esquerda
dos férmions (e as direitas dos antiférmions) participam das interagoes fracas, o que leva
a violagdo observada de paridade. A decomposi¢ao quiral do campo de Dirac e o com-
portamento das solugoes de onda plana analisadas até aqui constituem, portanto, a base
conceitual da formulacao moderna das interacoes fundamentais: a estrutura bilinear da
equacao de Dirac permite descrever simultaneamente particulas e antiparticulas, enquanto
sua decomposicao em quiralidades revela como a simetria de Lorentz acomoda, de forma
natural, a assimetria das interacoes de gauge na natureza.

5.4 Quantizacao do Campo de Dirac

A equagao de Dirac, embora formulada inicialmente como uma equacao de onda
relativistica para particulas de spin—%, nao constitui por si s6 uma teoria quantica con-
sistente. Assim como no caso escalar, a interpretacdo probabilistica da funcao de onda
entra em conflito com a existéncia de solugdes de energia negativa. A resolucao desse
problema requer reinterpretar ¢)(z) ndo como uma fungao de onda, mas como um campo
quantico, cujos coeficientes de Fourier se tornam operadores obedecendo a relagoes de

anticomutacao.
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5.4.1 O Lagrangiano de Dirac

O ponto de partida para a formulacao quantica do campo de férmions é o lagran-
giano covariante

£ = §(iv"8, — m), (5.39)
onde ¢ = 1170 é o espinor adjunto de Dirac. Esse lagrangiano ¢é linear nas derivadas
temporais de v e invariante sob transformagoes de Lorentz, como serd verificado adiante.

Equacoes de movimento

Aplicando o principio de minima acao,
5526/d4x[,:0,

as variacoes independentes de ¢ e 1 produzem equagoes distintas, pois tratamos 1 e
como campos independentes durante a variagao. A variacao em relacao a v fornece:

oL oL
Fi 8”(8(%)) -

Como L depende apenas de 0,1 e nao de 6#1;, o segundo termo ¢ nulo, e obtemos dire-
tamente

("0, —m)yY =0,
que ¢é precisamente a equacao de Dirac.

De modo analogo, variando agora em relacao a 1:

oL oL
o a“(@(@m)) =0

temos

oL - oL -
— = —my, =1 M?
o0 =" B
de onde segue _ _
au<“/)”}/'u> —+ mw = 07
ou, equivalentemente, B _
10,0 " + mip =0, (5-40)

que é a equagao adjunta de Dirac. Essas duas expressoes, (5.12) e (5.40), formam o par
de equagoes fundamentais que governam a dindmica do campo espinorial.
Corrente conservada e simetria global de fase

O lagrangiano (5.39) é invariavel sob uma transformagao global de fase:

Y(z) — e"*Y(x), 1;(37) — @(x)e’ia,

com « constante. Segundo o teorema de Noether, a invariancia sob tal simetria continua
implica a existéncia de uma corrente conservada j*, obtida pela regra geral
oL - oL

= _——_9 1) —.
7= 000" T 90,0)
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Como L depende apenas de 9,1, o segundo termo ¢ nulo, e com 09 = i) temos

oL -
I =1« ¢> = ia(ipy"Y).
(o807 ) = i
Eliminando o fator arbitrario a;, obtemos a corrente conservada
3" =Py, (5.41)

que satisfaz 0, j* = 0 como consequéncia direta das equagoes de movimento.

O componente temporal dessa corrente,
3 =7 = 9T,

é positivo definido, permitindo interpretar j° como uma densidade de probabilidade ou,
mais precisamente, como uma densidade de carga positiva. Isso contrasta com o caso do
campo escalar relativistico, onde a densidade j° = z(gb*qb — gzﬁ*gb) pode assumir valores
negativos, impossibilitando uma interpretacao probabilistica direta.

A carga total associada a simetria global de fase é, portanto,
Q= [duj = [davly, (5.42)

a qual é conservada no tempo, Q = 0, e permanecera como o gerador da transformacao
de fase global. Esse mesmo mecanismo servira, posteriormente, de base para introduzir o
acoplamento local com o campo eletromagnético A, quando a simetria for promovida de
global a local.

5.4.2 Momento candnico e hamiltoniano

A partir do lagrangiano (5.39), identificamos o momento canonicamente conjugado
a0 campo 1 como

oL
™) = S

Escrevendo explicitamente a derivada temporal no lagrangiano,

L =iy + iy opp — mapp,

(5.43)

e lembrando que ¢ = ¥, temos
L =i "% + i 9T ) — m Ty .
Como (7°)? = I, o primeiro termo simplifica para i1)T¢). Portanto,
oL
o(v)

e obtemos 0 momento canodnico

m(z) =iyi(z). (5.44)
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Construgao do hamiltoniano

A densidade hamiltoniana é definida, como de costume, por
H=ri— L. (5.45)

Substituindo (5.44) e o lagrangiano explicito, temos

H =il — (i1 + i 0 — mplyy)

= =i " 0 + m Ty, (5.46)
Definindo as matrizes ' '
a' = 4%, B =", (5.47)
a densidade hamiltoniana assume a forma compacta
H =yl (—ioV+mp)y. (5.48)

Essa ¢é precisamente a densidade hamiltoniana associada a equacao de Dirac.

Equacgao de movimento e consisténcia

O campo 1 deve evoluir no tempo segundo a equacao de Heisenberg classica

s 0H
)= [@Dy H]cl = rw]m
onde H = [d3xH ¢é o hamiltoniano total e [-,-]q denota o colchete de Poisson classico

(ou anticomutador na versdo quantica). Usando (5.48), obtemos
i = (—ia-V +mpB)y.
Multiplicando ambos os lados por 8 = 4" e usando 7’a = ~, temos
i7" = (~in'0;+m) .
ou, de forma covariante,
(Z"y“@u - m)w = 07
que ¢é precisamente a equacao de Dirac original.

Essa verificagdo demonstra a consisténcia entre as formulagoes lagrangiana e ha-
miltoniana do campo espinorial. O papel das matrizes a e 3 é, portanto, o de fornecer uma
representacao explicita do operador hamiltoniano relativistico para férmions, conectando
a estrutura matricial de Dirac com a evolugao temporal gerada por H.

5.4.3 Expansao em modos e operadores de criacao e destruicao

Para quantizar o campo de Dirac, partimos de sua solucao cléssica geral. Como a
equacao ¢é linear, qualquer solucao pode ser expressa como uma superposicao de solugoes
elementares de onda plana, correspondentes a particulas de momento definido p e spin s.
Assim, escrevemos

0 = [ LS (apeup ) 4 o)), (549)

RN
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Consequentemente, o campo adjunto é dado por:

3
?ﬂ(aj) = / dp ! Z (aLS uT(p, s)ePT + bp.s UT(p, s) e’ip‘x) ) (5.50)

Cr)? 2B, %

onde u(p, s) e v(p, s) satisfazem, respectivamente,

(p —mulp,s) =0,  (p+m)v(p,s)=0.
O primeiro termo representa a superposigdo de modos de energia positiva (£ > 0), en-
quanto o segundo termo, com e™??  corresponde a solucoes de energia negativa. A in-
troducao explicita de b;s antecipa sua futura interpretacao como operador de criacao de
antiparticulas.

Normalizacao relativistica

O fator (2E,)~Y/2 é escolhido de modo que a expansio (5.49) satisfaca as relagoes
canonicas de quantizagao relativisticas. No caso do campo de Dirac, o momento canénico
é ™ =1’ de modo que a relacdo fundamental é

{Va(x,1), Yy, )} = 0ap 6 (x — y), (5.51)

com todos os demais anticomutadores nulos. A presenga do fator 1/,/2E,, garante que,

ao substituir a expansao (5.49) e sua adjunta, a integral em p reproduza exatamente a
delta tridimensional em (5.51). De fato, usando a ortonormalidade dos espinores,

uT(p, s)u(p,s’) = UT(p, s)v(p, s') = 2Ep0ss,

a normalizacao escolhida assegura que cada modo de momento contribua corretamente
para a decomposi¢ao unitaria do campo.

Promocao a operadores

Na teoria classica, os coeficientes ap, s € by s sao amplitudes complexas associadas
a cada modo de Fourier. A passagem para a teoria quantica consiste em promover esses
coeficientes a operadores sobre o espaco de Fock, satisfazendo as rela¢oes de anticomutacao
fundamentais

{a’p757 ai)’,s’} = (27?)3 5(3) (p - p/) 553’7 (552)
{bp.s by o} = (27)* 6P (p — P') b, (5.53)
enquanto todos os demais anticomutadores se anulam.

Com essa promogao, a expansao (5.49) transforma o campo ¢ (x) em um operador
de criacao e destrui¢do de quanta de energia e momento bem definidos:

a;S — cria uma particula com (p, s), 5;5 — cria uma antiparticula com (p, s).

A consisténcia entre (5.49) e a relagdo canonica (5.51) pode ser verificada explici-
tamente substituindo as expansoes do campo e de seu adjunto:

d3 d3 / 1 ' y
[a(x), vl(y)} = [ 250 5 [talp )0 sl 7=

6
(2m)S |\ JAE,Ey 7

+ Ua(p7 S)UZ (p/> 5/){bL,s7 bp/,s’} eip-xip/-y:| .
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Usando (5.52)—(5.53) e as relagoes de completude dos espinores,

Y ulp,s)ulp,s) =p+m, > v(p,s)o(p,s)=p—m,

S S

a integral resulta exatamente em ,,0® (x —y), confirmando a consisténcia da normali-
Zagao.

Natureza fermionica do campo

As relagoes de anticomutacao (5.52)—(5.53) asseguram duas propriedades cruciais.
Primeiro, a positividade da energia: os modos de energia negativa sao reinterpretados
como estados de antiparticulas de energia positiva, evitando o colapso do vacuo. Segundo,
a antissimetria sob troca de particulas, que implica o principio de exclusao de Pauli. Dessa
forma, a quantizagdo do campo de Dirac fornece uma realizagdo concreta do teorema
spin—estatistica para particulas de spln—%.

5.4.4 O teorema spin—estatistica

O uso de anticomutadores na quantizagao do campo de Dirac nao é uma simples
convenc¢ao, mas uma exigéncia de consisténcia fisica. Para compreender isso, consideremos
0 que ocorreria se, em vez de impor anticomutadores, utilizassemos comutadores entre os
operadores ap s € bp :

laps, aby o] = (27)36F (p = ') sy, [bps, by o] = (27)%6%) (p — P') 0.

Energia negativa com comutadores

Substituindo as expansoes (5.49)—(5.50) no hamiltoniano classico (5.48), obtemos,
ap6s normal ordenacdo, o operador de energia

d3p
H = [ 2 By Y (ahatns = bty 554

onde o sinal negativo no segundo termo resulta da contribuicao das solugoes de energia
negativa associadas aos espinores v(p, s).

Com comutadores, o operador bstp75 tem autovalores nao negativos, e portanto
o segundo termo em (5.54) torna a energia total ilimitada inferiormente. Nesse cendrio, o
vacuo tenderia a decair espontaneamente para estados de energia cada vez mais negativa, o
mesmo problema que ja havia motivado a reinterpretacao das solucoes de energia negativa
na equacao de Dirac original.

Ao substituir comutadores por anticomutadores, o sinal do termo correspondente
se inverte:

d3p
H= /(27T)3 Ep Z (a;r)vsapvs + b;r),sbpyu?)? (5.55)

restabelecendo a positividade do espectro de energia. As excitagoes criadas por b;s sao,
portanto, reinterpretadas como antiparticulas de energia positiva.
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Positividade da carga
Um problema anélogo aparece na definicao da densidade de carga
P =t Q= [dag

Usando comutadores, o operador () nao seria positivo definido, pois o termo associado
aos modos by, ¢ surgiria com o sinal incorreto:

p ¢ i
Q= zs:/ (2n)? (apysaw — bp,sbp,s)-

Com anticomutadores, o operador () permanece hermitiano e a densidade ;j° positiva
definida, preservando a interpretacdo fisica de 1Ty como densidade de probabilidade (ou
de carga).

O contetido do teorema spin—estatistica

Esses resultados refletem de forma concreta o contetiddo do teorema spin—estatistica:
particulas de spin semi-inteiro devem obedecer a relagoes de anticomutagao (estatistica de
Fermi-Dirac), enquanto particulas de spin inteiro devem obedecer a relagdes de comutagao
(estatistica de Bose-Einstein).

O teorema nao ¢ apenas um postulado empirico, mas decorre de principios funda-
mentais da teoria quantica de campos relativistica, em particular, da exigéncia de causali-
dade local e da positividade da energia. O uso de anticomutadores garante que observaveis
construidos em pontos do espaco-tempo separados por intervalos espaciais comutem entre
si, preservando a causalidade, e assegura simultaneamente que o espectro de energia do
hamiltoniano seja limitado inferiormente.

No caso do campo de Dirac, essa estrutura implica que a troca de dois férmions
idénticos muda o sinal do estado quantico total:

[P1) ® |hg) = — |h2) ® 1),

o que estabelece o principio de exclusao de Pauli como uma consequéncia direta da quan-
tizagdo fermionica do campo.

5.4.5 Operadores de energia e carga

A estrutura dos operadores fisicos do campo de Dirac é obtida substituindo as
expansoes (5.49)—(5.50) na densidade hamiltoniana (5.48). Partindo de

H =l (—ia-V +mB)p,
temos o hamiltoniano total
H= /d% W (=i -V + mB)p.

Substituindo as expansoes dos campos em modos de momento:

dp 1 . .
60 = [ 2L (gt )7+ 80l
@ o, o\ b

3./ 1 y .
wT($) — / dipi Z (an/ v UT(p'7 S/) T 4 bp’,s’ UT(p/, S,) 0P .x>7

2m)* 2B, G\
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e observando que '
(—ia-V+mple P? = (a-p+ mpB)e P*

obtemos
d3p d3p’ 1
H = / ) Z/d%e p'—p)x
VAE By o7
x |al, yapsul (1, 8') (@ p +mB)u(p, s) + by bl 0 (', s) (a-p +mB)u(p, 5)|.

A integral espacial fornece (27)30®) (p’ — p), o que simplifica a expressio para

H:/(jggﬁg[af Jtp< ! (p, ) (0 + mB)u(p, )
+bp,sbh s v (p, 5) (@-p + mB)o(p, s)|.

As identidades espinoriais

(a-p +mBul(p, s) = Epu(p, s), (a-p +mpB)u(p,s) = —Epv(p, s),

dp t i
H = / WEP ; (apvsa/pﬁ — bp,sbpﬁ)'

A relagao de anticomutagao

levam a

bp,sbL, , = — bl by + (2)36@)(0)

mostra que hd um termo de energia infinita associado ao vacuo, proporcional a §*(0).
Como apenas diferencas de energia sao fisicamente observaveis, essa contribuicao é remo-
vida pelo procedimento de normal ordenagao, em que todos os operadores de criacao sao
colocados a esquerda dos de destruicao. O hamiltoniano normal ordenado assume entao
a forma

H= / 5y B S (al ips + b bps). (5.56)

S

cujo espectro é manifestamente positivo.

O operador de niimero total de quanta é

(b, sap,s + b, bp.s ) (5.57)
e a carga elétrica total, assumindo ¢ = —e para o elétron, é
= fops = B bp.s). (5.58)

A simetria entre particulas e antiparticulas é evidente: as particulas criadas por aI) s POs-
suem carga —e, enquanto as antiparticulas criadas por b;s possuem carga +e, preservando
a conservacao de (). Essa construgao fornece uma formulagdo completa e consistente da
energia e da carga no campo de Dirac, eliminando o problema das energias negativas e
incorporando naturalmente o carater fermiénico do campo.
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5.5 Interpretacao de Dirac e Propagadores Fermioni-
cos

A quantizagao canonica do campo de Dirac resolve o problema das energias nega-
tivas reinterpretando as solugoes da equacao como operadores de criacao e aniquilacao de
particulas e antiparticulas. A partir dessa estrutura, torna-se possivel definir as fungoes
de Green fermionicas e, em particular, o propagador de Feynman, elemento central da
formulagdo covariante da teoria perturbativa.

5.5.1 Interpretacao de Dirac e estrutura do vacuo

Com a quantizagdo, o campo ¥ (x) deixa de ser uma fungao de onda de uma tunica
particula e passa a ser um operador capaz de criar ou destruir excitagoes quanticas. A
expansao em modos mostra que os coeficientes associados as solugoes de energia positiva
e negativa tornam-se operadores independentes:

Y(x) = /(ng*\/zlfp > (ap7su(p, s)e” P 4 b;sv(p, S)Gip.x).

s

A presenca simultanea de ap s € b;s expressa a reinterpretacao das solugoes de energia

negativa como criacao de antiparticulas com energia positiva. O vacuo ¢ definido por
ap,s|0) = by 5|0) =0,

garantindo que nao existam estados de energia inferior.

A densidade de carga, discutida no capitulo anterior, toma aqui a forma normal-

ordenada: 8
b
Q= —e/d% = —e Z/ 2n)? (agsap,s - bLpr,s>,

tornando explicita a simetria entre particulas e antiparticulas como excitagoes do mesmo
campo. Esse formalismo estabelece o ponto de partida para estudar a propagacao causal
de férmions.

5.5.2 Funcgoes de Green e propagador fundamental

A dindmica livre é caracterizada pela funcdo de Green S(x — y), definida pela
equacao

(i9"0, — m)S(x —y) = W (x —y), (5.59)
analoga a equagao para o caso escalar,
(O4+m?)D(z —y) = —6W(z —y), (5.60)

introduzida anteriormente. Assim como no caso escalar, buscamos expressar S(r —y) em
termos de D(z — y).

Aplicando o operador conjugado (iv*0,+m) e usando a identidade j& demonstrada,

(id — m)(id + m) = —(O +m?),
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obtemos imediatamente
(Zax - m) (Zax + m)D(x - y) = 5(4) (1‘ - y)a
o que implica a solucao
S(x —y) = (i@, + m)D(z — y). (5.61)

Esse resultado mostra que a estrutura de spin aparece por meio do operador (i@ -+
m) aplicado & fungdo escalar de Green, como esperado para campos que satisfazem a
equacao de Dirac.

5.5.3 Propagador de Feynman

A generalizacao natural para férmions do propagador de Feynman escalar é o valor
esperado do ordenamento temporal fermionico:

Se(r —y) = (0T {¥(x)y(y)}]0), (5.62)
T{a(@)s(y)} = 0(z° = y*)Pa(@)1s(y) — O(y° — 2°)05(y)tba(2).
Substituindo as expansoes modais,

3
v@) = [ 0L (ap aulp, ) 1 b u(p, ),

CRNCTR

e usando os anticomutadores canonicos,
3¢(3
{ap.s, a:;,r} = {bp,s; bil,r} = (2m) 8 )(p — q)0sr,
os termos que sobrevivem ao valor esperado no vacuo sao aqueles envolvendo aa! e bbf.

0 0
Para z” > ¢,

O @)ooy = | (;3;2; > u(p, s)u(p, s)e” ", (5.63)
Para y° > 20,
00 = [ 55 )il )6, (5.64)

Usando as relagoes de completude,
Zu(pﬂS)/a(pﬂS):p—i_m? Zv(pvs)@(p7s):p_m7
obtemos
dp 1
Sr(e—v) =] (2x) 28,

Introduzindo p° como varidvel independente e aplicando a prescricao de contorno
de Feynman no plano complexo, chegamos a forma covariante final:

_rdip i(p +m)
Srlr—y) = / (2m)4 p? — m? + ie

0(x” —y°)(p+m)e P —0(y° — %) (p —m)e V| (5.65)

e~ @y (5.66)

Ou, equivalentemente,
Sr(z —y) = (id, + m)Dr(z — y),
onde Dp(x — y) é o propagador escalar de Feynman.
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5.5.4 Causalidade e anticomutadores

A consisténcia relativistica da teoria exige que campos localizados em regides es-
pacialmente separadas nao influenciem um ao outro. Para férmions, isso se expressa pela
anulagao do anticomutador:

{$al2),vs(y)} =0, (z-y)?*<0. (5.67)

O propagador de Feynman nao coincide com esse anticomutador, mas ambos estao
relacionados pela identidade:

Se(r —y) — Sr(y — ) = (01{y(z), ¥ (y)}|0). (5.68)
Assim, a anulacao para separacgoes espaciais implica

Sr(x—y) =Sr(y—2),  (r—y)*<0.

Como Sy = (i@+m)Dp e o propagador escalar Dy possui suporte causal no sentido
do comutador de Pauli-Jordan discutido antes, segue que Sr herda a mesma propriedade
de causalidade.

Fisicamente, isso significa que a teoria preserva a localidade: nenhum sinal pode se
propagar fora do cone de luz, e observaveis construidos com campos fermidnicos respeitam
a estrutura causal da relatividade especial. Diagramaticamente, cada linha fermionica
interna,

Sr(p) = o 5
pe— m* + 1€

transporta informagao causal entre dois vértices, obedecendo a prescri¢ao de contorno que

torna toda a expansao perturbativa consistente.

5.6 Férmions de Majorana e Simetrias Conservadas

A decomposicao quiral da acao de Dirac mostrou que, em geral, as componentes
Y1, e Yg sao independentes e se acoplam apenas por meio do termo de massa. Entretanto,
existe uma construgao alternativa na qual essas duas partes nao sao independentes, mas
relacionadas por conjugacao de carga. Essa possibilidade conduz a um tipo especial de
férmion, cuja particula ¢ indistinguivel de sua antiparticula: o férmion de Majorana.

5.6.1 Conjugacao de Carga e Férmions de Majorana

A equacao de Dirac é invariante sob a operacao de conjugacao de carga, que trans-
forma um campo de particula em seu correspondente de antiparticula. Essa transformacao
é definida por

e =CyT, (5.69)

onde C é a matriz de conjugacao de carga, cuja acao sobre as matrizes de Dirac é deter-

minada pela relacao
CyrC™t = —(v")T. (5.70)

Essa propriedade assegura que, se 1 satisfaz a equagao de Dirac

(iry‘ua/i - m)¢ = 07
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entao ¢° também a satisfaz:

(iv"0,, — m)y° = 0.
O campo ¢ descreve, portanto, uma antiparticula com a mesma massa e 0 mesmo spin,
mas com carga oposta. Na linguagem das transformagoes de simetria interna, a conjugacao
de carga inverte o sinal de todos os niimeros quanticos associados a grupos abelianos, como
a carga elétrica ou o nimero leptonico.

Um férmion de Majorana é definido pela condi¢ao de auto-conjugacao

Y =y~ (5.71)

Essa restricao implica que o campo ¢ idéntico ao seu conjugado de carga, de modo que
particula e antiparticula correspondem ao mesmo grau de liberdade fisico. Diferentemente
do férmion de Dirac, que carrega uma carga conservada, o férmion de Majorana é neces-
sariamente neutro sob quaisquer simetrias globais abelianas, pois tal simetria exigiria a
existéncia de um parceiro de carga oposta.

Na base de Weyl, em que o espinor de Dirac é escrito como ¢ = (¢, vg)7, a
condigao (5.71) relaciona as duas quiralidades:

a2 %
Portanto, um férmion de Majorana pode ser completamente descrito por um tinico espinor
de Weyl, reduzindo pela metade o niimero de graus de liberdade em comparagao com um
férmion de Dirac. Essa relagao também mostra que o campo de Majorana nao admite

uma fase global arbitraria, ja que a conjugacao complexa fixa o médulo e o argumento do
campo.

O termo de massa correspondente assume a forma

Lar = =5 m (WECUL + 9100, (572

que é manifestamente invariante sob Lorentz, uma vez que as contracoes de indices es-
pinoriais sdo realizadas com o tensor antissimétrico C. O fator % evita dupla contagem
dos termos, ja que a condicao de Majorana reduz o nimero de graus de liberdade inde-
pendentes. Contudo, o lagrangiano (5.72) nao é invariante sob rotagoes de fase do tipo
Y1, — ey, o que reflete a auséncia de uma simetria global de conservaciao de niimero

de férmions.

Fisicamente, isso significa que, para campos de Majorana, ndo ha distingao entre
criacao e aniquilagado de particulas e antiparticulas, ambos os processos correspondem a
mesma excitacao do campo. Essa caracteristica é central em extensoes do Modelo Padrao,
onde a massa dos neutrinos pode ser explicada pela existéncia de termos de Majorana que
violam o nimero leptonico em duas unidades.

Essa perda da simetria global associada & corrente vetorial 1y#?) nos conduz na-
turalmente a andlise das correntes e simetrias conservadas da teoria, que discutiremos a
seguir.

5.6.2 Correntes Conservadas e Simetria Global

A equacao de Dirac admite uma simetria global de fase continua,

o e T,
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sob a qual a a¢do (5.5) permanece invariante. Essa simetria é global porque o pardmetro
«a € constante no espago-tempo. Se fosse local, seria necessario introduzir um campo
de calibre acoplado a v para restaurar a invariancia. Aplicando o teorema de Noether,
obtemos a corrente associada

=Pty 95" =0. (5.73)

A conservagao dessa corrente decorre diretamente das equacoes de movimento. De fato,
Ot = (8;4[)) Y + QZV“ W = WNW - Zmi”ﬂ =0.

O componente temporal, j° = 9T, é positivo definido e pode ser interpretado como
densidade de probabilidade ou densidade de carga. A quantidade

Q= [d

é o nimero quantico associado a essa simetria global, representando o nimero de particulas
menos o nimero de antiparticulas. No contexto quantico, () corresponde ao operador de
nimero de férmions, que comuta com o Hamiltoniano e gera as rotagoes de fase U(1) no
espaco de estados.

Para o campo de Majorana, entretanto, a condicao de auto-conjugagao v = ¢
impoe uma restrigdo mais forte. Usando a definigao (5.69) e a propriedade (5.70), obtemos

YAy =Py = —gp e,

o que implica

-

vy*Y =0.
Logo, a corrente de Noether associada a simetria global de fase se anula identicamente,
indicando a auséncia de qualquer ntimero conservado. Essa caracteristica distingue de
forma fundamental os férmions de Majorana dos férmions de Dirac: enquanto estes pre-

servam uma carga global U(1), aqueles nao a possuem, refletindo o fato de que particula
e antiparticula sao o mesmo objeto fisico.

A perda dessa simetria global estd intimamente ligada a estrutura quiral da teoria.
Como discutido na secdo anterior, a corrente vetorial j# e a corrente axial j& = ¢yHy51)
representam as combinagoes simétrica e antissimétrica das fases independentes de ¢y, e ¥R.
No caso de Majorana, ambas se tornam dependentes e nao podem ser associadas a rotacoes
de fase independentes, restando apenas as simetrias relacionadas a transformacoes de
Lorentz e a dinamica do campo. Essas propriedades tornam o férmion de Majorana uma
entidade conceitualmente distinta, fundamental em teorias onde a conservagao de niimero

leptonico pode ser violada.

5.6.3 Simetrias Discretas e Propriedades de Conjugacao

Além das simetrias continuas associadas as fases globais e as transformacoes de
Lorentz, a teoria de férmions relativisticos admite trés operagoes discretas fundamentais:
conjugacao de carga (C), paridade (P) e reversao temporal (T'). Essas transformagoes
desempenham papel essencial na caracterizacao das propriedades de particula e antipar-
ticula, e sua combinacao revela aspectos profundos da estrutura da teoria de campos.
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A acao dessas operagoes sobre o campo de Dirac pode ser representada por:
P w(tax) — 70¢(t7 _X)7 C: ¢ — OZET’ T: ’QD(t,X) — Z.Fylﬂygw*(_tax)‘

A matriz C satisfaz a condigao (5.70), garantindo que a equagao de Dirac seja invariante
sob conjugacao de carga. A transformacao de paridade inverte a orientacao espacial e troca
as quiralidades, conforme discutido anteriormente, enquanto a reversao temporal troca a
direcao do fluxo temporal e complexifica o campo, alterando o sentido das correntes e
spins.

Essas trés operagoes modificam de forma distinta as quantidades bilineares cons-
truidas a partir de 1 e . Por exemplo:

pPCT

Escalar: P = + P,
Pseudoscalar: Py 5 vy,

Vetor: Py 5 (%Z’Yo@/), —12')”»0)7
Axial: VY'Y S (0778, ).

Essas propriedades mostram que o termo de massa 11 é invariante sob todas as trés
operacoes, ao passo que o termo pseudoscalar ¥7°1) muda de sinal sob paridade e tempo.
Isso explica, por exemplo, por que uma massa de Dirac preserva P, C' e T, enquanto
interagoes do tipo pseudoscalar (como o acoplamento de Yukawa a um campo escalar
impar por paridade) podem viola-las separadamente.

Cada uma dessas simetrias pode ser violada de forma independente em teorias in-
terativas, a interacgao fraca, por exemplo, preserva C'PT mas quebra P e C isoladamente.
No entanto, a combinacao das trés é sempre uma simetria exata de qualquer teoria de cam-
pos quanticos local, relativisticamente invariante e unitaria. Esse resultado é formalizado
no teorema CPT, que garante

(CPT)L(CPT) ™ =L,

independentemente dos detalhes do conteido de campos ou interagoes. A origem dessa
invariancia estd na estrutura analitica dos propagadores de Feynman e na causalidade
microscopica: operadores de campo devem comutar ou anticomutar a separacao espacial
tipo-espaco, o que impoe restrigdes profundas a forma das amplitudes de espalhamento e
a simetria fundamental do espago-tempo.

Assim, as transformacoes C, P e T nao apenas classificam as propriedades de
) b
férmions e antiférmions, mas também expressam os pilares de localidade e causalidade
)
que sustentam toda a formulacao quantica relativistica.

5.6.4 Corrente Axial e Simetria Quiral

Além da corrente vetorial j# = 1y*1), associada a simetria global de fase, a teoria
de Dirac admite uma segunda corrente de grande relevancia fisica, a corrente axial,

&=y, (5.74)

que mede a diferenca entre as contribui¢oes das duas quiralidades. Essa corrente surge ao
considerar a transformacao global

b — €Y — el
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sob a qual o termo cinético da agao de Dirac é invariante, enquanto o termo de massa nao
o é. De fato, variando a acdo (5.5) sob essa transformagao, obtemos

58 = /d4x @L(ozjg‘) - 2iozm/d4x Yy,
de onde se identifica a divergéncia da corrente axial:
Dugt = 2impy°ep. (5.75)

A equacao acima pode também ser obtida diretamente a partir das equagoes de
movimento. Usando

(V"0 —m)yp =0,  Y(ir"0, +m) =0,
temos
0k = (0u) V'Y + " Oyt
= (=im ) + im ¢y
= 2im "1,
confirmando (5.75).

A corrente axial é, portanto, conservada apenas no limite de férmions sem massa.
Nesse caso, 9,75 = 0, e a transformagdo acima define uma simetria global continua, a
simetria quiral.

Podemos entender essa simetria de forma mais clara decompondo o espinor de
Dirac em suas componentes quirais,

Y =1 + Y, Yi.r = PrrY,

onde os projetores Pr g foram definidos em (5.7). Usando ¢y, p = Fi1 g, vemos que a
transformacao quiral age separadamente sobre cada componente:

Y — ey, Yr — €.

A simetria quiral corresponde, portanto, a rotagoes opostas de fase entre as duas repre-
sentacoes fundamentais do grupo de Lorentz. O termo de massa miy = m(?ZLYﬁR—i—@Z_JRibL)
mistura essas componentes e quebra explicitamente essa simetria, pois conecta estados de
quiralidade oposta.

Fisicamente, a conservacao de j£' no regime sem massa implica que a quiralidade
¢ um numero quantico preservado na evolucao temporal. Particulas e antiparticulas sem
massa mantém quiralidade fixa e se comportam como espinores de Weyl independentes.
Quando m # 0, essa conservacao se perde: a interacao de massa permite transigdes entre
Yy, e Pg, e a quiralidade deixa de ser uma boa quantum number.

Essa distingao entre o caso massivo e o caso sem massa tera papel central na analise
das solugoes de onda plana da equacao de Dirac. Como veremos a seguir, para férmions
sem massa a quiralidade coincide com a helicidade, a projecao do spin na direcao do
momento linear, enquanto para férmions massivos as duas nogoes se separam, refletindo
a quebra explicita da simetria quiral.
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5.7 Interacoes de Yukawa e Regras de Feynman para
Férmions

A formulacdo completa da teoria quantica de campos requer a inclusao de intera-
¢oes entre diferentes espécies de campos. O caso mais simples e historicamente relevante
é o0 acoplamento entre um campo escalar ¢(z) e um campo fermionico ¢ (x), conhecido
como interacao de Yukawa. Essa estrutura fornece o protétipo das interagoes que apare-
cem tanto na fisica nuclear quanto no Modelo Padrao, sendo o mecanismo responsavel,
por exemplo, pela geracdo de massa de férmions no acoplamento com o campo de Higgs.

5.7.1 O lagrangiano de Yukawa

Consideremos o lagrangiano

1 1 -
£ = U7 0 = m + (0,6)(0"0) — 5 M6 — g by o, (5.76)

onde g é a constante de acoplamento e M a massa do campo escalar. O ultimo termo
representa a interacio linear entre o campo escalar e a densidade ¥, que é um escalar de
Lorentz. O lagrangiano é, portanto, covariante e compativel com as simetrias relativisticas
fundamentais.

A variacdo da acao em relagao a v fornece a equagao de movimento para o campo
fermidnico:

(iv"0, —m — gp) =0, (5.77)

mostrando que o campo escalar atua como um potencial local que modifica a propagagao
do férmion. De modo andlogo, a variacdo em relagao a ¢ leva a equacao

(O + M?)¢ = —g 90, (5.78)

em que o termo a direita atua como uma fonte escalar gerada pela densidade fermionica.

As equagoes (5.77) e (5.78) formam um sistema acoplado que descreve a emissao
e absorcao de quanta do campo escalar por férmions. Essa estrutura constitui o prototipo
de interagao local entre campos com spins distintos, servindo como modelo para processos
de espalhamento e decaimento, e como base conceitual para o acoplamento entre férmions
e o campo de Higgs no Modelo Padrao.

5.7.2 Expansao perturbativa e vértices de interacao

Na formulagao perturbativa, o termo de interacao

Ling = —g @Z”»D )

determina a estrutura dos vértices nos diagramas de Feynman. Cada vértice conecta duas
linhas fermidnicas e uma linha escalar, refletindo a natureza do acoplamento ¢1)¢. A cada
ocorréncia desse vértice associa-se um fator —ig, que representa a contribui¢ao elementar
da interagao a amplitude do processo.
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As linhas internas do diagrama correspondem aos propagadores dos campos que
se propagam virtualmente entre vértices:

) 1
Linha escalar:

p2 — M? + i€’
p+m
Linha fermidnica: #
pe—m* + 1€

Esses fatores sao acompanhados pelas integrais sobre os momentos internos e pelas deltas
de conservagao de momento em cada vértice, assegurando a coeréncia global do diagrama.

A amplitude total de um processo é obtida pela soma de todas as topologias de
diagramas possiveis, ordenadas segundo o nuimero de vértices de interacao. Essa soma
define uma expansao em poténcias do acoplamento g, andloga a série de Dyson. Além
disso, cada diagrama fechado de férmions introduz um fator adicional de —1, consequéncia
direta da natureza anticomutativa dos operadores fermionicos na construgdao do campo.

5.7.3 Linhas externas e espinores

As linhas externas dos diagramas de Feynman representam estados fisicos assinto-
ticos, as particulas presentes antes e depois da interagdo. No caso fermionico, cada linha
externa esta associada a um espinor de Dirac que carrega a informacao de momento, spin
e orientagao de fluxo de niimero fermidnico.

Para uma linha externa de entrada de férmion com quatro-momento p e projecao
de spin s, associa-se o espinor u(p, s), que satisfaz a equacdo de Dirac (p —m)u(p,s) = 0.
Por outro lado, uma linha externa de saida de férmion é representada pelo espinor adjunto
u(p, s) = ul(p, s)7".

De modo andalogo, para antiparticulas, as convengoes sao invertidas: uma linha de
entrada de antiparticula ¢ associada a v(p, s), que satisfaz (p + m)v(p,s) = 0; enquanto
uma linha de saida de antiparticula corresponde a v(p, s).

Tipo de linha Fluxo de niimero fermiénico Fator associado
Entrada de férmion para frente no tempo u(p, s)
Saida de férmion para trds no tempo u(p, s)
Entrada de antiparticula para tras no tempo v(p, s)
Saida de antiparticula para frente no tempo v(p, s)

Essas convengoes garantem que o fluxo de niimero fermionico, representado por
uma seta orientada ao longo da linha fermionica, seja preservado em cada vértice de inte-
racao. O resultado é uma prescri¢cao covariante e consistente para o calculo de amplitudes
envolvendo férmions e antiparticulas.
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= e
v(p, s) Y o(p',s')

Figura 3 — Convencgoes de fluxo de ntimero fermionico e fatores associados as linhas ex-
ternas. As setas indicam o sentido do fluxo: para férmions, a seta aponta do
estado inicial para o final; para antiparticulas, no sentido oposto.

Em particular, apdés a contragao dos indices de spin, cada amplitude se reduz a
uma sequéncia de fatores do tipo ul'u ou vI'v, onde I' é um produto de matrizes *
e outros operadores provenientes da interacdo. A estrutura espinorial completa do pro-
cesso €, assim, explicitamente controlada e diretamente associada a orientacao das linhas
fermidnicas nos diagramas.

u(p, )

Figura 4 — Vértice de interacao Yukawa, conectando duas linhas fermionicas e uma linha
escalar. O sentido das setas indica o fluxo de niimero fermionico, preservado
no vértice.

5.7.4 Regras de Feynman para férmions

De modo resumido, as regras de Feynman para férmions na interacao de Yukawa
sao:

Propagador fermionico: m,

Propagador escalar: pz—]\lﬂ—i—ie7
Vértice Yukawa: — g,

Linha externa de entrada (férmion): wu

Linha externa de saida (férmion):

Linha externa de entrada (antiparticula): o

)

Linha externa de saida (antiparticula):

Em cada diagrama, deve-se conservar o fluxo de nimero fermioénico em todos os
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vértices e integrar sobre os momentos internos com medida

[ 6
(2m)*
Cada diagrama fechado de férmions contribui com um fator adicional de (—1), proveniente

da anticomutacao dos operadores fermionicos. Esse fator de sinal é indispensavel para
manter a consisténcia estatistica da teoria e reflete diretamente o teorema spin—estatistica.

A construcao das amplitudes segue, portanto, os mesmos principios da teoria esca-
lar, mas com a presenca adicional das matrizes de Dirac e do fluxo de setas, que controlam
a estrutura de spin de cada processo.

u(p', s') ,

u(p, s)

Figura 5 — Vértice Yukawa com conservacao de momento p’ = p — k e fator associado
—1g. As linhas fermidnicas mantém o fluxo de niimero fermionico orientado,
enquanto a linha escalar representa o béson trocado.

Exemplo: emissao escalar por um férmion

Como ilustragao, consideremos o processo em que um férmion inicial de momento
p emite um quanta escalar de momento k, resultando em um férmion final de momento
p’ = p — k. O diagrama correspondente contém um unico vértice Yukawa, e pode ser
representado por

U(p, S) Hp?—pk ﬂ(p/v Sl)

o (k)
No vértice, a conservagao de momento impoe
p=1+k,

garantindo que a energia e o momento sejam preservados localmente na interagao.

De acordo com as regras de Feynman, a amplitude de primeira ordem associada

ao diagrama é
iM = (—ig)u(p’,s) u(p, s), (5.79)

onde o fator —ig provém do vértice de interagao e os espinores u(p, s) e u(p’, s’) descrevem,
respectivamente, o estado inicial e o estado final do férmion.

A dependéncia espinorial esté inteiramente contida na combinagao bilinear u(p")u(p),
que mede a sobreposicao entre os estados de spin antes e depois da emissao. Para férmions
nao relativisticos, essa quantidade se reduz aproximadamente a 'y, correspondendo &
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conservacao quase total da orientacao de spin, o que justifica a interpretacao de que o
campo escalar acopla apenas a densidade 11, sem alterar o momento angular intrinseco.

O carater escalar da interacao também é refletido na auséncia de matrizes v* no
vértice, em contraste com o caso da interacao eletromagnética, em que o acoplamento é
vetorial e depende explicitamente de 7*A,,. Essa distin¢ao torna o modelo de Yukawa uma
excelente introdugao para compreender como o tipo de campo mediador (escalar, vetorial
ou tensorial) determina a estrutura de Lorentz da interacao.

O céalculo da amplitude total para processos mais complexos, como o espalhamento
ff — ¢¢ ou o decaimento ¢ — f f, segue o mesmo principio, envolvendo a combinagao de
multiplos vértices, propagadores intermediarios e integrais sobre os momentos internos.

5.7.5 Conservacao de corrente e simetrias

O lagrangiano de Yukawa (5.76) é invariante sob transformacgoes globais de fase
do campo fermionico, dadas por

i n 7, —ia
o= e, Y = e,
onde a é um parametro constante. Essa invariancia define uma simetria global do tipo
U(1), associada a conservacao da carga fermidnica.

Para verificar a corrente de Noether correspondente, consideremos uma transfor-
macao infinitesimal,
0 = i, 0 = —ia 1.

A variacao da densidade lagrangiana é entao

oL oL - 0L oL -
0L =———6(0 — (0 —9 — 0.

Usando as equagoes de movimento (5.77) e seu adjunto, e lembrando que £ é invariante
sob a transformacao, obtemos a identidade de conservagao

oyt =0, com g = zﬁfy“w.

A densidade de carga associada é p = j° = 9T, que é positiva definida, refletindo a,
interpretacao probabilistica consistente do campo fermidnico.

Essa corrente permanece conservada mesmo na presenca do termo de interagao
—g Y1), pois este é um escalar de Lorentz e invariante sob a mesma transformacao glo-
bal. Logo, a interacdo de Yukawa preserva a simetria de fase e, consequentemente, a
conservacao de nimero fermidnico.

Uma consequéncia notavel surge se o campo escalar ¢ adquirir um valor de expec-
tativa no vacuo,

(9) = v.

Nesse caso, o termo de interagao induz um termo efetivo de massa para o férmion:
—gp e — —guy,
de modo que a massa fisica do férmion se torna

Mefetivo = M + guv.
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Esse mecanismo, a geracao de massa por acoplamento a um campo escalar com valor
de expectativa nao nulo, constitui a base do mecanismo de Higgs no Modelo Padrao, no
qual os férmions adquirem massa de maneira espontaneamente simétrica, preservando a
coeréncia relativistica e a estrutura quantica da teoria.



(s

6 Eletrodinamica Quantica

6.1 O Campo de Maxwell e a Simetria de (Gauge

A unificagao entre o campo eletromagnético e a teoria de Dirac surge naturalmente
a partir da exigéncia de que a invariancia de fase global do campo fermionico se estenda
a uma simetria local. Essa exigéncia leva a introducao de um novo campo dinamico,
o campo de gauge, cuja presenca garante a consisténcia da teoria sob transformacoes
de fase dependentes do espaco-tempo. Esse principio simples é o alicerce das interacoes
fundamentais do Modelo Padrao.

6.1.1 Da simetria global a construcao completa da teoria de
gauge

A acao do campo de Dirac livre,
S = /d4x @(iv“@u —m)y, (6.1)
é invariante sob a transformacao global de fase
U(w) = e P(x),  Pla) = Pa)e ™, (6.2)
onde a é uma constante real. Essa transformacao corresponde a uma rotacdo no espaco

interno de fases do campo, deixando inalterados todos os observaveis fisicos.

De acordo com o teorema de Noether, a existéncia dessa simetria continua implica
a conservagao de uma corrente associada:

j =gy, 9t =0. (6.3)
A componente temporal dessa corrente define a densidade de carga,
7° =9,
de modo que a carga total
Q= [dwyl (6.4)
é conservada no tempo.

Fisicamente, () representa a diferenga entre o nimero de particulas e antiparticulas
do campo, evidenciando que a invariancia de fase global estd diretamente associada a
conservacao da carga elétrica.

Uma vez estabelecida a simetria global, promové-la a uma simetria local exige uma
modificagao estrutural da teoria.

Consideremos agora uma transformagao em que a fase do campo depende do ponto
do espago-tempo:

(z) = eOY(z),  P(x) = P(z)e ), (6.5)
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Essa generalizacao, de uma simetria global para uma simetria local, exige que a Lagran-
Y Y
giana permaneca invariante sob transformagoes com pardmetro «(z) arbitrario.

A derivada ordinaria do campo transforma segundo
Oub(z) — (0, +iduo(x))v(x),
de modo que o termo cinético da Lagrangiana de Dirac,
Y i O,
nao é mais invariante: surge o termo adicional @fy“((?ua)w.

Para restaurar a invariancia, introduzimos um novo campo vetorial A4,(x), cuja
transformacao compensa exatamente o termo espurio. Define-se entao a derivada covari-
ante

D, =0, +ieA,, (6.6)
e exige-se que ela se transforme da mesma forma que o campo de Dirac:
D,p(x) — ¢ Dab(x).

Essa condicao determina a transformacao de gauge de A,,:
1
Ay(z) = Ay(x) — - Oua(z). (6.7)

Com essa modifica¢ao, o termo cinético

P iy Dy

passa a ser invariante sob transformacoes locais de fase.

A introducao do campo A, cria novos graus de liberdade, cuja dinamica precisa
ser descrita.

Para caracterizar o conteudo fisico desse campo, definimos o tensor de campo de
forca como o comutador das derivadas covariantes:

D,,D,| =ieF,,, F,=0,A,-0,A,.
Esse tensor mede a nao comutatividade das derivagoes locais e é o analogo geométrico da
curvatura associada a conexao de gauge.

Por construgao, F),, é invariante sob transformacoes de gauge (6.7), sendo, por-
tanto, o objeto fisico que contém as componentes observaveis do campo eletromagnético:

1
E; = Fy;, B; = 5 €ijk ij-

Para dotar o campo A, de dindmica, introduzimos o termo cinético mais simples
que preserva a invariancia de gauge:

1
£EM - _ZF,U,Z/F“V'
Combinando esse termo com o lagrangiano de Dirac acoplado por derivada covariante:

L =P(iy" D, —m)h — leFWF‘“’. (6.8)
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6.1.2 Equacoes de movimento e conservacao de corrente

A variagdo da Lagrangiana (6.8) em relacao a ¢ conduz & equacio de Dirac aco-
plada ao campo de gauge:
(iv"D,, —m)y = 0.

De modo analogo, a variacao em relagao a A, fornece as equagoes de Maxwell com fonte
fermidnica:

0, F"" = eapy'p. (6.9)

O termo do lado direito é precisamente a corrente de Noether associada a simetria global
de fase do campo fermionico.

A teoria de Maxwell e a equagao de Dirac unem-se assim em uma unica estrutura
abeliana localmente invariante, cuja consisténcia covariante serve de paradigma para as
teorias nao abelianas do Modelo Padrao.

6.2 Quantizacao do Campo Eletromagnético

O campo de Maxwell, descrito pela Lagrangiana £ = —iFWF HY o é um campo
vetorial com uma simetria de gauge abeliana. Essa simetria reflete o fato de que as com-
ponentes do potencial A, nao sao todas fisicamente independentes. A quantizacao do
campo eletromagnético requer, portanto, o tratamento cuidadoso dessas redundancias, de
modo que apenas os graus de liberdade fisicos, os dois modos transversos do fé6ton, sejam
promovidos a operadores quanticos.

6.2.1 Estrutura classica e redundancia de gauge
A acdo do campo eletromagnético livre é dada por
1
S[A,] = 1 /d4:c F,, F*, F. =0,A, —0,A,. (6.10)

Essa forma é covariante e contém implicitamente as componentes espaciais e temporais
do campo elétrico e magnético.

A variagdo da agdo em relacdo ao potencial vetorial A, fornece as equagoes de
movimento. Explicitamente, temos

1 1
08 = —Z/d“xé(FuyF“”) = —§/d4w FYOF,,.

Como
OF,, = 0,0A, —0,0A

vO0Ay,

segue que
1
05 = =3 / 'z F™ (9,04, — 0,0A,)
= — /d4:v F"9,6A, (pois F'" = —F"").
Integrando por partes e desprezando termos de fronteira:

58 = / d'z (9, F") 5 A,
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A condicao de extremalizacao 05 = 0 para variacoes arbitrarias 0 A, conduz a equacao de
movimento

B F™ =0, (6.11)

que corresponde as equagoes de Maxwell no vacuo, nas quais nao ha fontes de corrente
nem de carga.

O lagrangiano (6.10) é invariante sob a transformagao de gauge
A, (z) = Au(x) + 0,A(x), (6.12)
onde A(z) é uma fungao arbitraria e suave. De fato, substituindo em F),,:
., =0u(A, +0,N) = 0,(Ay + 0uA) = 0, A, — 0, A, = Flu,

vemos que o tensor de campo ¢ invariante, e portanto a agao também o é.

Essa liberdade de gauge significa que diferentes potenciais A, podem gerar o
mesmo campo fisico F),,. Consequentemente, o espaco de solugoes de (6.11) contém redun-
dancias, muitas configuracoes matematicamente distintas de A, representam o mesmo es-
tado fisico. A remocao sisteméatica dessas redundéncias, conhecida como fixacao de gauge,
é essencial para a quantizacdo consistente do campo eletromagnético.

6.2.2 Fixacao de gauge: calibre de Lorentz

Uma escolha particularmente conveniente para eliminar parte da redundancia de
gauge € o calibre de Lorentz, definido pela condig¢ao

9, A" = 0. (6.13)

Essa condi¢ao preserva a covariancia relativistica, pois é expressa como um escalar de
Lorentz.

Para verificar o efeito dessa escolha sobre as equac¢oes de movimento, retomemos
a forma geral das equagodes de Maxwell no vacuo,

o, F"™" =0, F = 9" A — oM A", (6.14)
Substituindo a definicao de F**, obtemos:
0, F"" = 0,(0"A* — oM AY)
= 0,0"A* — 0"(9,A").

A primeira parcela é o operador d’Alembertiano aplicado a A*, ou seja, JA* = 0,0V A*.
Logo, as equacoes de movimento podem ser reescritas como

A" — 9(9,A%) = 0. (6.15)

Ao impor a condi¢ao de calibre (6.13), o segundo termo anula-se identicamente,
resultando em

A" = 0. (6.16)

Portanto, cada componente de A* obedece individualmente a uma equacao de onda livre,
o que torna o formalismo simples e covariante.
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No entanto, mesmo apés a imposigao de (6.13), ainda existe uma liberdade residual
de gauge. De fato, sob a transformacao

Ap(w) = AL (x) = Au() + uA(2),
a condicao de Lorentz se transforma em
9, A" = 0,A* + OA.
Assim, se a fungao de gauge A(x) satisfaz
OA =0, (6.17)

entdo a condigdo (6.13) continua valida. Essas transformagoes residuais mostram que o
calibre de Lorentz nao fixa completamente a liberdade de gauge: ha ainda um conjunto
de transformagoes que preservam a condicao de divergéncia nula de A*.

Consequentemente, mesmo no calibre de Lorentz, as quatro componentes de A,
nao correspondem a quatro graus de liberdade fisicos independentes. O campo vetorial
massless possui apenas dois graus de liberdade reais, correspondentes as polarizacoes
transversas do féton, como serd demonstrado explicitamente ao quantizarmos o campo.

6.2.3 Quantizagao candnica no gauge de Coulomb

Para explicitar de forma mais transparente os graus de liberdade fisicos do campo
eletromagnético, é conveniente trabalhar no calibre de Coulomb, definido por

V-A=0, Ay=0. (6.18)

A primeira condicao elimina o componente longitudinal do vetor potencial, enquanto a
segunda suprime a componente temporal, que nao é dindmica. Assim, as tinicas variaveis
independentes sao as componentes transversas A |, satisfazendo

V-A =0

No espaco-tempo, a densidade lagrangiana do campo de Maxwell livre é

1 v
L = _ZFMVF“ .

No calibre de Coulomb, Ay = 0 implica Fy; = A e F;; = 0;A; — 0;A;. Substituindo esses
termos na expressao acima, obtemos:
L 2\ _ Lrao 2
£—§(E —B)_i(A —(VxA)?).
Como A é transversal no calibre escolhido, podemos escrever diretamente

L= ;(Ai —(VxAL)?). (6.19)

O momento candnico conjugado ao campo A | é obtido pela derivada funcional da
Lagrangiana em relagao a velocidade do campo:
oL

=—=A,.
™ OA, 1
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Portanto, o campo elétrico transversal é identificado como o momento conjugado do vetor

potencial: '
EJ_:_T‘-J_:_AJ_. (620)

A Hamiltoniana é entao obtida via a transformacgao de Legendre:
_ U T 2
H=m A — L= 2(7u+(V><AL) );
de modo que a Hamiltoniana total é
5. 1 o 2
H:/czx5 7+ (VxAL?).

A estrutura de Poisson classica é dada por

{Ai(x), mi(y)} = 05 6P (x — y).

No entanto, como o campo satisfaz V- A =0e V-7 = 0, devemos restringir as variaveis
a subespagos transversos. Para isso, introduz-se o projetor transversal

0:0;

1 _
Py =05 = <o

(6.21)
que satisfaz P;;0; = 0 e (P+)? = P*. Aplicando-o & estrutura de Poisson, obtemos

0:0;
V2

{&@xmwnlzaw@@—yw=65— )wa—w.

Ao promovermos as variaveis a operadores quanticos, a prescricao de quantizagao
candnica substitui {, } — —i[, ], resultando em

La@xmwnzi@f—%%>&%x—w. (622

O operador de projegdo assegura que apenas as componentes transversas de A e 7 parti-
cipem das relagoes de comutacgao, eliminando explicitamente as variaveis redundantes.

Em suma, o calibre de Coulomb fornece uma formulag¢ao nao covariante, porém
fisicamente transparente: apenas as duas polariza¢oes transversas do campo sdo quanti-
zadas, enquanto os componentes longitudinais e escalares sao completamente eliminados.
Essa sera a base para a construcao da expansao em modos e a introdugao dos operadores
de criacao e destruicdo na subsecao seguinte.

6.2.4 Expansao em modos e operadores de criacao e destruicao

A equacao de movimento para o campo vetorial livre no calibre de Coulomb, obtida
de (6.19), é )
A, —V?A, =0, (6.23)

com a condicao de transversidade
V-A, =0.
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Cada componente do campo satisfaz uma equagao de onda, de modo que é natural
expandi-lo em modos de Fourier. Escrevemos

AJ_ (X, t) = )\gl / (;iﬂ_l;:g [fk)\(t) €ik'x + fli)\(t> €7ik'x s (624)

onde o indice A denota as polarizacoes transversas. A condicao k- A | = 0 impde que fi \

seja ortogonal a k:
k- fk’)\ = 0.

Substituindo (6.24) em (6.23), obtemos a equagao diferencial temporal para cada
modo:

'f'.k,)\(t> + |k‘2 fk’)\(t) = 0,
cuja solucao geral é
1

fn(t) = —— (M(k) arex e M 1 eV (k) al eilklt>, (6.25)
v/ 2[K|

onde €M (k) sdo vetores de polarizacio que formam uma base ortonormal no subespaco

transversal:

k-eMNk) =0,  eMV(k) e?*(k) = b
Substituindo (6.25) em (6.24), obtemos a forma final da expansao:

ek 1 , _
(x,1) Z / [e(’\) (k) ay y e KR e () aL,\ ez(‘k“_k’x)} . (6.26)

P2kl

O momento canonico conjugado, w, = A, é entao

d3k 3 —k-x * 7 —k-x
- Z/ 1/ €<A>(k) g eI _ (D) (1) gf | illklt—k >]_

(6.27)

A imposicao das relagoes de comutagao (6.22) leva as condigoes sobre os operadores

de modo:
{ak)\, CLL/’A/} = (27’(’)3 (5(3)(1{ — kl> 5)\)\/, [aky,\, (lk/)\/] = 0.

Essas relacoes sao idénticas as dos operadores de criagao e destruicao de um conjunto de
osciladores harmonicos independentes.

Substituindo as expansoes (6.26) e (6.27) na Hamiltoniana

_ ;/d% (72 +(V x ALY,

e utilizando a ortogonalidade das fungoes de onda e das polariza¢oes, obtém-se

2 d3k 1
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O termo % >k |k| corresponde a energia do ponto zero, que é divergente mas fisicamente
irrelevante, podendo ser removida por redefinicao do nivel de energia. Desprezando esse
termo, a Hamiltoniana fisica assume a forma

2 Pk
H= / I af \agn, (6.28)
/\zzzl (27T)3 kA

que descreve um conjunto de osciladores harmonicos independentes, cada um represen-
tando um modo de f6ton com energia Ey = |k| e polarizacao A.

Cada operador aL » cria um féton com momento k e polarizacao A, enquanto ax x

o aniquila. O vacuo |0) é definido pela condicdo ax |0) = 0 para todo k, A, e os estados
de n fotons sao construidos por sucessivas aplicagoes dos operadores de criacao:

ki, A1; ..k, Ap) = GL,M . ~aLW\n|O>.

Essa quantizacao mostra explicitamente que o campo de Maxwell livre equivale a um gas
de bosons sem massa, cada qual com duas polarizagoes transversas.

6.2.5 Graus de liberdade fisicos

O potencial vetorial A, possui, em principio, quatro componentes independentes.
No entanto, nem todas correspondem a graus de liberdade fisicos, pois a teoria apresenta
uma simetria de gauge que permite eliminar componentes redundantes.

Para entender isso, consideremos o espacgo das solugoes das equagoes de Maxwell
livres,

0, F" = 0, (6.29)
com F,, = 0,A, — 0,A,. Tomando a derivada de (6.29), obtemos

0,0, F"" =0,
que é automaticamente satisfeita devido a antissimetria de F**. A simetria de gauge
A, — A, + 0N (6.30)

permite modificar A, sem alterar F},,, o que mostra que A, nao é observavel diretamente.

Contagem de graus de liberdade
No espacgo de Fourier, as equagoes de movimento se tornam
k,F" (k) =0, Fi(k) =i(k"A* — kHAY). (6.31)

Substituindo, temos
E*A* — k(K- A) = 0.
Para campos de féton, k2 = 0, de modo que a equacao se reduz a
k-A=0. (6.32)
Isso mostra que apenas as componentes de A, ortogonais ao vetor de momento k* sao
fisicamente relevantes.

Podemos, portanto, contar os graus de liberdade:
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« A, possui inicialmente 4 componentes reais.
+ a condigao de gauge (por exemplo, 0, A" = 0) elimina 1 delas.

« a liberdade de realizar uma transformacao residual A, — A, + 9,A (com OA = 0)
elimina mais 1.

restando apenas 4 — 2 = 2 graus de liberdade fisicos. Esses dois modos correspondem
exatamente as duas polarizacoes transversas do foton.

Representacao explicita das polarizagoes

Escolhendo o eixo z na diregao de propagacao, k* = (|k|,0,0, |k|), a condi¢ao de
transversidade (6.32) impoe A° = A%, Usando uma transformacao de gauge, podemos
anular ambos, restando apenas as componentes transversas:

eV =(1,0,0), e? =(0,1,0),

que representam as polariza¢oes linearmente independentes do féton. Em geral, podemos
definir polarizacoes lineares ou circulares por combinagoes complexas dessas bases.

Implementacao covariante: formalismo de Gupta—Bleuler

Embora o calibre de Coulomb torne a contagem de graus de liberdade intuitiva,

ele ndo é manifestamente covariante. Para preservar a covariancia de Lorentz, utiliza-se o

calibre de Lorentz (6.13), com o formalismo de Gupta—Bleuler. Nesse esquema, quantiza-

se o campo A, com quatro componentes, mas impoe-se a condigao de restricao sobre os
estados fisicos:

9, A" D|fisico) = 0, (6.33)

onde AM*) ¢ a parte positiva do campo (com operadores de aniquilacio). Essa condicao
elimina os modos longitudinais e temporais do espaco de Hilbert, deixando apenas os dois
modos transversos como estados fisicos observaveis.

O resultado final é que o campo eletromagnético quantico possui apenas dois graus
de liberdade reais: as duas polariza¢oes transversas do féton. Os modos longitudinais e
escalares nao sao observaveis, sendo eliminados pela invariancia de gauge. Cada modo
de oscilacao transversal do potencial vetorial corresponde a um féton com momento k e
polarizacao A =1, 2.

A auséncia de polarizagoes longitudinais observaveis é, portanto, uma consequéncia
direta da simetria de gauge. Essa estrutura é o arquétipo de todas as teorias de gauge: ao
promover uma simetria global a local, introduz-se um campo de conexao A, cujo contetido
fisico é reduzido apenas aos modos transversos. No caso abeliano, isso leva a descri¢ao do
foton como um bdson de gauge sem massa propagando-se com duas polarizagoes trans-
versas, a base conceitual sobre a qual repousa a Eletrodinamica Quantica.

6.3 Acoplamento entre o Campo Eletromagnético e
a Matéria

A estrutura de gauge introduzida anteriormente permite acoplar de modo natural
o campo eletromagnético a diferentes tipos de campos de matéria. A exigéncia de invarian-
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cia local sob transformacoes de fase determina de forma tnica a forma desse acoplamento,
tanto para férmions quanto para escalares complexos. Essa unificacdo conceitual é o fun-
damento da Eletrodindmica Quantica (QED), a mais precisa e bem verificada teoria fisica
j& construida.

6.3.1 Acoplamento minimal com férmions

O ponto de partida é o lagrangiano do campo de Dirac livre,

Ly = ("0, — m), (6.34)
que, como ja discutido, ¢ invariante sob transformacoes de fase globais
U(a) = eY(x),  d(a) = Plr)e ™

No entanto, essa invaridncia é quebrada quando o parametro « passa a depender de z.
De fato, sob a transformacao local 1(z) — '@ (z), a derivada ordinéria transforma-se
como

0, (x) = 9, (e ()
= lol@ ((9# + i@uoz(x))zﬁ(x), (6.35)
e, portanto, o termo cinético na Lagrangiana,
@Zi’yua}ﬂ/jv
gera uma contribuicao adicional
0L = Py"(Bu),

quebrando a invariancia local.

Para restaura-la, introduzimos um novo campo vetorial A,(x) e substituimos a
derivada comum pela derivada covariante,

D, = 0, + ieA,, (6.36)
de modo que D, se transforme da mesma maneira que ¢:
D,b(z) — @D, ().
Essa condicao fixa a transformacao de gauge do campo A,:
1
A(x) = A(2) - = ua(a), (6.37)
e

assegurando a invariancia local da teoria.

O lagrangiano invariante de gauge para o campo fermionico acoplado a A,, é, entéao,

. 1 v
LQED = ¢(Z’7#Du - m)¢ - ZF,UJ/F“ 5 (638)

onde o termo F),,, F'*” fornece a dindmica do campo eletromagnético livre.
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Expandindo a derivada covariante (6.36), obtemos explicitamente:
iv"D,, = iy"(0, +ieA,) = "0, — ey"A,, (6.39)
de modo que a Lagrangiana assume a forma

_ — 1
EQED = ¢(W“au - m)lb - “/W”A;ﬂp - ZFWFW~ (640)

O segundo termo,
£int = —61?7“14;@;
representa o acoplamento minimal entre o campo fermidnico e o campo eletromagnético.
Esse termo é o mais simples (linear em A,) que preserva simultaneamente a covariancia
de Lorentz e a invariancia de gauge local. Qualquer outra forma de acoplamento violaria
uma dessas propriedades fundamentais.

O parametro e ¢é identificado com a carga elétrica do campo fermiénico. Assim, o
termo —e @E’WAM@/J expressa, de forma covariante, a interacao entre o elétron e o féton.
Toda a fenomenologia da Eletrodindmica Quantica, desde os processos de espalhamento e
emissao até as correcoes radiativas de alta precisao, emerge desse inico termo de interacao.

6.3.2 Corrente e equacoes de movimento

A Lagrangiana da Eletrodindmica Quéntica, dada em (6.40), é

- - 1 Y
Loep = Y(iy"0, —m)yp — ey Ap — EF“"F“ : (6.41)
As equagdes de movimento dos campos seguem da aplicagao direta do principio da ac¢ao

estacionéria.

Equacao de Dirac acoplada.

A variagao de Lqggp em relacao ao campo conjugado Y da:

oL a“< oc. ) Y
o 9(0u¥)

Observando que apenas o primeiro termo de (6.41) depende de Qﬂ, temos:
oL oL

— =0, = iyt
0(0,9) oo, 7

Assim, a equacéo de Euler-Lagrange para 1 resulta:

=2 g (2 )

o 0¥)
= (V"0 —m) — ey Ayt (6.42)
Portanto,
(i7" Dy —m)yp = 0, (6.43)

que ¢ a equagao de Dirac com acoplamento minimal. Nela, o campo A, atua como um
potencial eletromagnético que modifica a derivada comum, incorporando os efeitos de
interagao.
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Equacoes de Maxwell com corrente fermionica.

A variacao da Lagrangiana (6.41) em relacao a A, produz:
oL oL
— =0 ==+ ] =0.
94, (3@%fh)>

Calculando os termos explicitamente:

o O termo de interagao fornece

oL

o ahAH
A, ey .

« O termo cinético do campo 4,, —iFmFW, depende de 9,4, via

F,, =0,A, — 0, A,.

Logo,
OF o
T = e — §uh
0(0,4,)  rT T
e portanto,
oL 1
o = — PP (8484 — §Uok) = —F".
00,4, ~ 2t Gbe =00

Substituindo na equacao de FEuler-Lagrange, obtemos:
0= —eyy™) + 0,F"", (6.44)
ou, equivalentemente, B
0, F"F = eyt. (6.45)

Esta é a equacao de Maxwell com corrente fermionica como fonte.

Corrente e conservagao.

O termo de acoplamento —e QZ’)/MAPLQ/J identifica diretamente a corrente elétrica
como

" =Py
A conservagao dessa corrente segue imediatamente da invariancia de gauge. De fato, to-
mando a derivada e usando a equagao de Dirac (6.43):

auju = au(&’yuqﬂ) = (%@’YW + @Z’V“@W
— B(m + et A — i+ eyt A = 0, (6.46)

Assim,
9,5" = 0. (6.47)

A invariancia local de fase garante automaticamente a conservacao da carga elé-
trica. O termo —eyy* A, pode, portanto, ser interpretado como o produto entre o po-
tencial eletromagnético e a corrente j#, descrevendo o acoplamento fisico entre o campo
e sua fonte.
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6.3.3 Acoplamento a campos escalares complexos

O mesmo principio de invaridncia de gauge aplica-se a campos escalares complexos
o(x). O lagrangiano livre é

Ly = (0,0)"(0"9) — m?|o], (6.48)
o qual é invariante apenas sob transformagoes de fase globais
¢(x) — eé(x).
Para promover a simetria a local, @« — a(z), introduzimos a derivada covariante
D, ¢ = (0, +ieA,)o, (6.49)
que se transforma da mesma forma que ¢:
Db — @ D,o.

O lagrangiano invariante de gauge é entao
: 1
Ly = (Dug)"(D"¢) = m*|6|" = S Fu ™. (6.50)

Expansao do termo cinético.

Explicitemos o primeiro termo:
(D) (D"¢) = (0u¢" — ieAyu9*) (9" ¢ + ie A" 9)
= (0,0")(0"¢) + ie A" ("0 — ¢ 0,07) + eQAHA”]gﬁ\Q. (6.51)

O primeiro termo descreve a dinamica livre do campo escalar, o segundo termo linear
em A, corresponde a interagao com um tnico f6ton, e o termo quadrético A, A*|¢|*
representa a interacao simultanea de dois fétons com a particula escalar.

Equacoes de movimento.

As equagbes dinamicas seguem novamente do principio da agdo estacionaria.

(a) Variagao em relagdo a ¢*. A equagdo de Euler-Lagrange para ¢* é

oL oL
9o 8“(8(6@*)) -0

Calculando termo a termo a partir de (6.50):

oL oL

— — —_m2
6(8%5*) - (DM¢)7 a¢* - ZGAM(DM¢) m ¢

Logo,

0 = —ieA,(D"¢) — m*¢ — 0,(D"¢)
= (D, D" +m?)¢, (6.52)
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ou seja,
D,D"¢ +m?¢p = 0. (6.53)
Essa é a equacao de Klein—Gordon modificada pela presenca do campo eletromagnético.

(b) Variagao em relacao a A,. Do termo (D,¢)*(D"¢), a dependéncia em A, é

L _ ie (0% — 6 00") + 22 AV,
0A,
O termo de Maxwell fornece, como antes,
oL
_ 7= _pve
0(0,Ay)
Substituindo na equacao de Euler—Lagrange,
oL oL
o= 55~ aa)
= —ie(¢* " p — 0" ") + 22 AM|¢|? + 0, F*. (6.54)
Assim, obtemos
o, F"F = e gt (6.55)

onde a corrente conservada é
J=i(¢70"0 — 0 0"¢") — 2eA"|g]. (6.56)
Os dois termos em (6.56) representam, respectivamente, a corrente de probabilidade livre

e a contribuicao devida a presenga do campo A,,.

Conservagao da corrente.
A invariancia local da Lagrangiana (6.50) sob
io(x 1
p(z) — e ( )gzﬁ(x), Au(z) = Ay(z) — g@ua(x),
implica diretamente na conservacao de j*:

9,.5" = 0. (6.57)

Essa propriedade decorre da identidade de Noether aplicada a uma simetria local e garante
a consisténcia entre as equagoes de Maxwell e de Klein—Gordon acopladas.

O termo linear eA,j* descreve os processos de emissao e absor¢ao de fétons, en-
quanto o termo quadratico e? A, A*|¢|* introduz corre¢des de ordem superior, como a cria-
¢ao ou aniquilagao de dois fétons simultdneos. Portanto, o lagrangiano (6.50) reproduz de
forma completa os efeitos eletromagnéticos classicos e quanticos associados a particulas
carregadas sem spin.

6.3.4 Invariancia de gauge e conservacao da carga

Tanto no caso fermioénico quanto no escalar, o acoplamento minimal garante a
invariancia local sob transformagoes de fase dependentes do espago-tempo:

Y(x) — @ (), d(x) = @ (), A(z) = Ay(x) — i@ua(:c). (6.58)
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Verificagao explicita da invariancia.

Para o caso fermibnico, substituindo (6.58) em

Ly =iy Dy —m)y,
temos
Dy = (0, +ieA)y — @9, +icA, —id,afe-e)p = @D .
Logo, - o . -
Yy Dy = ape” " Yin!e' Dyip = iy Db,
mostrando que L, é exatamente invariante. O mesmo raciocinio vale para o termo escalar
(D,¢)*(D"¢), uma vez que ambos os fatores se transformam com a mesma fase.

Corrente conservada.

A invariancia de gauge implica uma corrente conservada por meio do teorema de
Noether. Para o caso fermionico, considerando uma transformacao infinitesimal

Y= (L+ia)y, 9 =91l —ia),

a variagdo da Lagrangiana ¢é

_ % % 5 — 4 Sy
Ly = 90 o + 0 0 = 1o 0, (YyH").
Como 0L, = 0 para simetrias, segue que
0u" =0, "=y, (6.59)

Essa é precisamente a corrente que aparece como fonte nas equagoes de Maxwell acopladas
(6.45).

No caso escalar, o mesmo procedimento aplicado a (6.50) leva & corrente
=i — $0'¢") — 20 A6, (6.60)

cuja conservacao, d,j" = 0, decorre da invariancia de gauge local.

Interpretacao geométrica.

O acoplamento minimal, expresso pela substituicao
0y — D, = 0, + ieA,,

revela o cardter geométrico da interagao eletromagnética. O campo A, atua como uma
conexao que define o transporte paralelo das fases do campo de matéria em um fibrado
principal com grupo estrutural U(1). A curvatura associada a essa conexao é precisamente

F,=0,A, —-0,A,,
e corresponde fisicamente ao tensor de campo eletromagnético.

O transporte paralelo de ¥ (x) ou ¢(z) ao longo de uma trajetéria infinitesimal dz*
é dado por .
Ul + da) = A (),

o que mostra que A, mede a variagao relativa de fase entre pontos vizinhos, a esséncia do
potencial eletromagnético.
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Unificacao entre simetria e interagao.
O quadro de gauge unifica, portanto, simetria e dindmica:

e a simetria local define como os campos se transformam.
 a conexao de gauge A, surge para restaurar a invariancia.

« a curvatura £, codifica a forca eletromagnética.

Qualquer termo que quebre a simetria (6.58) violaria a conservagdo da corrente (6.59),
tornando a teoria inconsistente. Assim, a exigéncia de invaridncia de gauge nao é apenas
uma convencao estética, mas uma condicao de consisténcia interna da estrutura quantica.

Significado fisico.

A invariancia de gauge local traduz o fato de que apenas as quantidades associadas
a curvatura F),, sao observaveis, enquanto o potencial A, é definido apenas até uma deri-
vada de A(x). Essa redundéncia é o prego a pagar pela descrigao covariante das interagoes
mediadas por bdsons vetoriais sem massa.

A geometria de conexdes, introduzida aqui no contexto abeliano U(1), servird como
base para generalizagoes nao abelianas, nas quais o campo de gauge possui autointeracoes
e multiplos geradores, dando origem as teorias de Yang—Mills e ao proprio Modelo Padrao
das interacoes fundamentais.

6.4 Regras de Feynman da Eletrodinamica Quantica

A lagrangiana da QED,

| 1
EQED - ¢(W”Du - TTL)Q/} - ZF;U/F'LL s (661)

contém todos os ingredientes necessarios para descrever o espalhamento e as interacoes
entre elétrons, positrons e fétons.  Nesta secao, derivamos sistematicamente as regras de
Feynman associadas a essa teoria, que constituem o formalismo operacional para o calculo
de amplitudes em ordem perturbativa.

6.4.1 Propagadores livres

O ponto de partida da quantizacao candnica é a separacao entre a parte livre e a
parte de interagao da Lagrangiana. Expandindo (6.61):

o _ 1 )
Lqep = w(wuﬁu —m)yY — ey Aup — EFWF“ .
Identificamos:

| 1 ]
‘CO = ¢(17“8u - m>w - ZF;WFN y & Eint = —¢€ w’YMAMw

A partir de Ly, obtemos os propagadores das particulas livres.
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Propagador fermionico.

A equacao de movimento correspondente ao campo de Dirac livre é

(i —m)i =0,

de modo que o propagador de Feynman Sg(z — y) é definido como a fungao de Green do
operador (i) — m):

(i, —m)Sp(x —y) = 6W(x — ). (6.62)
Passando para o espaco de momento, escrevemos
dp ,
S — ) = / S —ip-(z—y)
r(z—y) o) r(p)e

Substituindo em (6.62):
(p —m)Sr(p) =1,
ou seja, Sp(p) é o inverso do operador (p —m), o que fornece
1
Sr(p) = PR—

Multiplicando numerador e denominador por (p + m), obtemos a forma racionalizada:

Sr(p) = D —m? tic (6.63)

Voltando ao espaco-tempo:

d'p i(p+m)

e~ (@=y)
(2m)* p? — m? + ie

Sp(x —vy) :/

Esse propagador descreve a propagacio causal de uma particula de spin-3 (elétron ou

2
pésitron) entre dois pontos no espago-tempo.

Propagador do féton.

O termo —iF w " na Lagrangiana contém uma redundancia associada a invari-
ancia de gauge

A, — A, + 0.\
Para definir o propagador do campo vetorial, adicionamos um termo de fixacao de gauge:
1
£gauge = _?g(auA#)27 (664)

onde ¢ é um parametro real que especifica o calibre. A Lagrangiana total para o campo

A, torna-se
1 1
La=—-F,F" —
A m 26

: (9, A2,

Expandindo F),, = 0,4, — 0, A:

o, o (- 1) o] .
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O operador cinético no espago de momento é, portanto,

§

O propagador D%’ (p) é definido como o inverso de K" (p):

1
K" (p) = —p*n™ + <1 - ) pp”.

K" (p) Dr p(p) = i 0",
A inversao desse operador fornece

— KoV
Dy (p) = - :Z.E [77’” — (1 - §)ppf ] . (6.65)

Para o gauge de Feynman (¢ = 1), o propagador simplifica para

R
Dy (p) =

= . 6.66
p? + i€ (6.66)

Outras escolhas, como o gauge de Lorentz (£ = 0) ou o gauge de Coulomb, sdao
matematicamente distintas mas fisicamente equivalentes: todas conduzem aos mesmos
observaveis mensuraveis, refletindo a invariancia de gauge da teoria.

6.4.2 Vértice de interacao

O termo de interacao na Lagrangiana é
Ling = —e Py A (6.67)

Ele descreve o acoplamento entre o campo fermiénico v (elétron/pésitron) e o campo
vetorial A, (féton). Na expansdo perturbativa da amplitude de espalhamento, cada
insercao desse termo na série de Dyson corresponde a um ponto de interagdao no diagrama
de Feynman.

Transformacao para o espago de momento.

Escrevendo os campos como expansoes em ondas planas:

o= [, G- [ e ao- | 2 agee

Substituindo em (6.67):

d'p’ d'p dq¢ -, 4 c(4)
Lin = —e/ @)1 )i @) ()b (p) Aulg) 2m) 6D (' —p —q),

onde a integral sobre x gera o delta de Dirac que assegura a conservacao de momento em
cada vértice:

2m) 89 (' —p—q).



Capitulo 6. FEletrodinamica Quantica 95

Fator de vértice.

Cada ponto de interacdo, portanto, esta associado a um fator
(—ie) ", (6.68)

que conecta duas linhas fermionicas (com momentos p e p’) e uma linha de féton (com
momento ¢ = p' —p). O sinal de —i provém da convengao da série de Dyson no espago
de interacao:

S =Texp [z’/d% Eint(x)} ,
de modo que cada insercao de Ly contribui com um fator ¢ multiplicando o termo
(-WV“AW)-

Assim, o vértice fundamental da QED corresponde graficamente a:

entrada de férmion:  p, u(p),

saida de férmion: P, u(p),
vértice:

foton associado: qg=7p —p,

fator: (—ie)y™.

Esse fator é universal: todas as interacoes elétron-féton, independentemente da ordem
perturbativa, utilizam o mesmo vértice elementar.

Observacgao sobre o fluxo de particulas.

Quando a linha fermidnica é percorrida no sentido oposto ao fluxo de carga (ou seja,
representa um poésitron), o mesmo fator de vértice (—iey*) é mantido, mas as convengoes
de momento e orientacao de linha sao ajustadas para preservar a conservagao de momento
global.  Essas regras garantem a coeréncia entre o formalismo algébrico e a interpretacao
fisica dos diagramas de Feynman.

6.4.3 Regras de Feynman completas para QED
A partir da Lagrangiana interativa da QED,

Eint = _G@Z’YMA/LQ%
a evolugao temporal no espacgo de interagao ¢ dada pela série de Dyson,
S = Texp [z [t Eim(x)} , (6.69)

onde T denota a ordenagao temporal. Expandindo (6.69) em poténcias do acoplamento
e, obtém-se:

S=1 +i/d4$ Lin(z) + (;)'2 /d4w d*y T[Line(7) Line (y)] + -+ - . (6.70)

Cada insercao de L, corresponde a um vértice de interagdo no diagrama de Feynman, e
as contragoes entre campos nas médias de vacuo geram as linhas internas associadas aos
propagadores.  As integrais sobre os pontos z e y originam os fatores de conservacao de
momento (27)*6™ (Y p;) em cada vértice.
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Construgao das amplitudes.

De forma geral, uma amplitude M em QED é obtida segundo as seguintes etapas:

. Expande-se o operador S na ordem desejada de e;

. Contraem-se todos os pares de campos utilizando os propagadores apropriados (de

férmions e fotons);

Associam-se os fatores correspondentes a cada vértice e linha propagadora;

. Integra-se sobre todos os momenta internos;

Multiplica-se pelos espinores externos adequados (u, u, v, v) e pelos deltas de con-
servacao de momento globais.

Regras em espago de momento.

O resultado dessas operacoes pode ser organizado em um conjunto de regras algé-

bricas universais, validas para qualquer diagrama conectado. No espaco de momento,
as regras de Feynman para a QED sao:

Linha fermionica (elétron): fator

i(p +m)
p2—m? +ie
Linha fermidnica (pésitron): mesma expressao, porém com orientagao de fluxo

oposta ao da carga elétrica.

Linha de fé6ton: fator

_/L . pﬂpy

onde & é o parametro do gauge introduzido no termo de fixagao —i(auA“)?

Vértice de interagao: fator (—iey"), conectando duas linhas fermionicas e uma
linha de féton.

Conservacao de momento: em cada vértice, o momento total é conservado:

(2m)46@ (Z pi> .
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Integracao sobre linhas internas.

Cada linha interna (de férmion ou f6ton) introduz uma integragao sobre o quadri-

momento:
/ d*p
(27‘ )4.

Dessa forma, um diagrama de n vértices e L linhas internas contribui com um termo de
ordem e" e com L integrais sobre momenta virtuais, que devem ser avaliadas segundo as
regras de contorno de Feynman (ie).

Essas regras permitem construir a amplitude de qualquer processo perturbativo
em QED de forma sistematica e covariante.  Os propagadores codificam a propagacgao
de particulas livres entre interagoes; os vértices representam os pontos de acoplamento
elétron—foton; e as integrais sobre momenta internos refletem a soma quantica sobre todos
os caminhos possiveis. A invaridncia de gauge assegura que, apesar das dependéncias
aparentes em &, todos os observaveis fisicos, como se¢oes de choque e taxas de decaimento,
sao independentes da escolha de gauge.

6.4.4 Gauge fixing e independéncia fisica

O termo de gauge (6.64) é introduzido apenas para definir corretamente o propa-
gador do foton, mas nao altera as previsoes fisicas da teoria.  Observaveis mensuraveis,
como segoes de choque ou taxas de decaimento, sao independentes do parametro &.
Essa propriedade é consequéncia direta da invariancia de gauge, que garante que diferen-
tes escolhas de gauge correspondem apenas a diferentes representagoes matematicas de
uma mesma fisica subjacente.

De fato, o propagador do féton no gauge covariante geral é

v —1 pip”
DF = (1 —

O termo proporcional a p*p”/p? depende explicitamente de £, mas ele nunca contribui a
grandezas fisicas. Em uma amplitude genérica, cada linha de féton conecta-se a uma
corrente conservada .J, proveniente das linhas fermionicas, de modo que o fator relevante
é sempre da forma

JuD ¥ (p) ),
Usando a conservagao da corrente p,J* = 0, o termo dependente de { desaparece:

p'p
p2

J, = =0.

Assim, a parte longitudinal do propagador nao tem efeito sobre amplitudes fisicas, somente
as polarizacoes transversas do féton participam nos processos observaveis.

Essa propriedade é expressa de maneira mais geral pela identidade de Ward—Ta-
kahashi, que relaciona a estrutura do vértice e do propagador fermionico:

qu TP, p) = Sp' () — S (p), (6.71)

onde I'* é o vértice completo e Sr o propagador fermidnico renormalizado.  Essa relagao
assegura que qualquer variagdo na escolha de gauge (ou no pardmetro £) é compensada
automaticamente pela conservagao de corrente elétrica em todos os niveis de perturbacao.
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Em abordagens covariantes, o gauge de Feynman (§ = 1) é preferido pela sim-
plicidade algébrica, enquanto o gauge de Coulomb é mais intuitivo para problemas nao
relativisticos. Independentemente da escolha, o formalismo das regras de Feynman pre-
serva a coeréncia e a unidade da descricdo quantica das interagoes eletromagnéticas.

A construcao das regras de Feynman evidencia a forca preditiva da formulagao
de gauge: toda a estrutura interativa da QED, propagadores, vértices e simetrias, é de-
terminada a partir de um tnico principio de invariancia local. A teoria resultante é
renormalizdvel, unitaria e experimentalmente confirmada com precisao sem precedentes,
consolidando-se como o modelo paradigmatico de uma teoria de gauge quantica.

6.5 Processos de Espalhamento em Eletrodinamica
Quantica

A Eletrodinamica Quéntica (QED) fornece o arcabougo teérico mais preciso para

descrever interacoes entre particulas carregadas e fétons. Com as regras de Feynman esta-

belecidas, podemos agora aplica-las ao calculo de amplitudes de espalhamento, analisando

como os principios de simetria e a estrutura de gauge da teoria determinam os resultados
observaveis.

6.5.1 Amplitude de transicao e secao de choque

A probabilidade de transigao entre um estado inicial |i) e um estado final |f) é
descrita pela amplitude de espalhamento

onde o operador de espalhamento S é construido a partir da série de Dyson:

S = Texp{—i/d%?—lm(w) )

Expansoes perturbativas em poténcias de e produzem diagramas de Feynman com ntimero
crescente de vértices. Cada termo da expansao corresponde a uma ordem de corregao
quantica a amplitude classica.

A quantidade fisicamente mensuravel é a secao de choque diferencial, que mede a
probabilidade de espalhamento por unidade de angulo sélido. Para um processo a + b —

c+d, ela é dada por

do 1 |py|

= = M|?, 6.72

dQ  6473s |pi M (6:72)
onde s = (p, + pp)? é o invariante de Mandelstam, p; e p; sdo os médulos dos momentos
no centro de massa, e M é a amplitude invariante associada ao processo.

Os processos de espalhamento em QED podem ser classificados em termos dos
canais de Mandelstam, que refletem as diferentes maneiras pelas quais o momento é trans-
mitido entre as particulas. Definem-se os invariantes:

s = (p1 + p2)?, t = (p1 —p3)°, u = (p1 — ps)?,

os quais satisfazem s+t +u = Y. m?. Cada um desses canais corresponde a uma topologia
distinta de diagrama: o canal-s a uma aniquilagao e recriacao intermediaria de particulas,
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e os canais-t e-u a troca de féton entre as linhas externas. Essa decomposicao sera ttil
para identificar a estrutura de cada processo de espalhamento.

6.5.2 Espalhamento elétron—f6ton (Compton)

O espalhamento Compton é o processo no qual um elétron interage com um foton,
emitindo um novo féton e sendo defletido:

e (p) + (k) — e () + (k).

O termo de interagdo —eyy* A, permite dois diagramas de Feynman na menor ordem
(ordem €?), correspondendo as duas possiveis ordens de absorc¢ao e emissao do féton pelo
elétron.

As amplitudes correspondentes sao:

m i D)

&7 u(p),

_ i(p— K +m)

M, = (—ie)? u(p) e, N e*~Hu(p).
(—ie) @)ry@—kﬁ—wﬂ+k“7 (»)

O sinal de mais no numerador dos propagadores é consequéncia da convengao (4, —, —, —)

adotada. O fator total da amplitude é entao

M= M, + M,.

A soma M = M, + M, é essencial para garantir a invariancia de gauge. De fato,
substituindo uma polarizacao longitudinal €, — k, em qualquer um dos termos indivi-
duais, obtém-se uma contribuicao nao nula; no entanto, a soma total satisfaz k, M*" = 0,
conforme exige a conservagao de corrente do elétron. Essa propriedade, consequéncia di-
reta da identidade de Ward—Takahashi, assegura que apenas as polarizacoes fisicas do
foton contribuem para o resultado observavel.

O calculo explicito de |M|?, apds a soma sobre polarizagoes do féton e spins do
elétron, conduz a famosa férmula de Klein—Nishina, que descreve a variagdo angular da
energia do féton espalhado e é uma das primeiras confirmagoes experimentais diretas da
quantizagao do campo eletromagnético.

6.5.3 Espalhamento elétron—pésitron (Bhabha)

Outro processo fundamental é o espalhamento elétron—poésitron:

e (p1) + e (p2) — € (p3) + et (pa).

Nesse caso, hé dois diagramas distintos em ordem e?: o canal-s, mediado pela aniquilacao

do par e"e™ em um f6ton virtual, e o canal-t, correspondente a troca de féton entre as
particulas incidentes.

A amplitude total é

M = (=i )1 u(n) ) “olr) = )y ) ) o)

P1— D3
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A estrutura de sinais reflete a estatistica fermionica e a orientagao das linhas de particulas e
antiparticulas. O primeiro termo representa o canal-s (aniquilagao), e o segundo, o canal-t
(espalhamento direto).

Apds somar sobre spins e integrar sobre o espaco de fase, obtém-se a secao de
choque diferencial de Bhabha, que depende dos invariantes de Mandelstam s, t e u, com
a simetria caracteristica

S+t +u=4m>

No limite de altas energias (m < 4/s), os resultados se aproximam dos obtidos para
espalhamento de particulas de massa nula, revelando a consisténcia ultrarrelativistica da
teoria.

6.5.4 Espalhamento elétron—elétron (Mgller)

Para o espalhamento entre dois elétrons,

e (p1) +e (p2) — e (p3) +e (pa),

existem novamente dois diagramas na menor ordem, correspondendo aos canais-t e-u de
troca de féton. A amplitude total é

. _ _inuu _ v — _inuu — v
M = (=ie)* [u(ps)y"u(pr) "5 u(pa)y u(p2) — ulpa)y"u(pr) 5 u(ps)y" u(p2)
(p1 — ps)? (p1 — pa)?
A diferenga de sinal entre os dois termos decorre da antissimetria da fungao de onda fermi-

Onica sob troca de particulas idénticas, garantindo a obediéncia ao principio de exclusao
de Pauli.

A dependéncia angular da se¢ao de choque, obtida apds soma sobre spins, reproduz
o resultado experimental de Mgller, validando a estrutura estatistica e relativistica da
QED.

A andlise desses processos de espalhamento mostra que todas as interacoes entre
particulas carregadas podem ser expressas em termos de trocas de fétons virtuais, cuja
propagagcao é mediada pelo propagador (6.66). Essa estrutura garante que a QED preserve
simultaneamente unitariedade, invariancia de gauge e causalidade, independentemente da
escolha de gauge covariante.

Além disso, a correspondéncia entre amplitudes e observaveis experimentais evi-
dencia como a teoria de campos fornece nao apenas uma descricdo matematica consis-
tente, mas também previsoes quantitativas de altissima precisao, como no caso da razao
giromagnética do elétron e da dispersao Compton, medidas com exatidao de partes por

bilhao.

As regras de Feynman e os exemplos de espalhamento tratados nesta secao com-
pletam a formulacao perturbativa da QED. O formalismo ¢é suficientemente geral para
descrever processos envolvendo multiplos fétons, pares elétron—pdésitron e corregoes ra-
diativas de ordem superior, que serao tratadas posteriormente dentro da estrutura da
renormalizacao. A clareza estrutural da QED faz dela o prototipo conceitual de todas as
teorias de gauge do Modelo Padrao.
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6.6 O Potencial de Coulomb em QED

O formalismo da Eletrodindmica Quantica permite interpretar as forcas eletrosta-
ticas classicas como o resultado da troca de fétons virtuais entre particulas carregadas.
Nesta se¢ao, mostramos como o potencial de Coulomb emerge naturalmente do limite nao
relativistico do espalhamento elétron—elétron.

6.6.1 Troca de fo6ton virtual

Considere o processo

e (p1) +e (p2) — e (p3) +e (pa),

cuja amplitude em menor ordem (ordem e?) é dominada pelo diagrama de troca de féton
no canal-t: _
. _ _Zn v _
M = (—ie)* u(ps)y" u(pr) "5 ulpa)y u(ps).
(p1 — p3)?
Nesse contexto, o féton interno é virtual, ele nao satisfaz p*> = 0, e é o mediador da
interacao eletromagnética entre os elétrons.

No regime nao relativistico, as componentes temporais das correntes dominam,
pois a velocidade das particulas é muito menor que c. Assim,

ﬁ(p?,)’YOU(pl) ~ 2m, Z_4(174)70“(292) A 2m,

e as componentes espaciais 4 sio suprimidas por fatores da ordem de |p|/m. A amplitude

reduz-se entao a
(2m)?
q? ’

M = (—ie)?

onde q = p3 — p1 € 0 momento transferido entre os elétrons.

6.6.2 Transformada para o espaco real

A interacao potencial correspondente é obtida tomando a transformada de Fourier
da amplitude no espaco de momento:

v = [ gﬁgg M(q) e,

Substituindo o resultado acima e normalizando por 4m? (para remover os fatores de spinor

externo), obtemos
d3q 6iq-r
Vi =et [ S
)= (27)° @’

A integral é conhecida e resulta em
/ d3q e'ar 1
(2m)3 2  4dmr

V)= . (6.73)

Ay

Portanto,
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Esse é exatamente o potencial de Coulomb obtido na eletrostatica classica.

O resultado (6.73) mostra que o campo elétrico classico é uma manifestagdo do
intercambio de fétons virtuais entre particulas carregadas. A propagacao desses fotons é
descrita pelo propagador .

i
D%O(p) = ?
no limite nao relativistico, cuja transformada de Fourier gera o comportamento 1/r ca-
racteristico do potencial.

Essa correspondéncia demonstra a consisténcia entre a QED e o eletromagnetismo
de Maxwell: no limite de baixas energias, as amplitudes de espalhamento reproduzem
precisamente as forcas de Coulomb. A diferenca fundamental é conceitual, o campo ele-
tromagnético deixa de ser um meio continuo e passa a ser entendido como o portador de
quanta de interacao, os fotons.

A derivacao do potencial de Coulomb a partir da QED encerra o ciclo iniciado
com a exigéncia de invariancia de gauge local. O préprio principio de simetria conduz de
maneira continua ao surgimento do campo de gauge A,, ao acoplamento minimal entre
carga e campo e, por fim, a forga de longo alcance que se manifesta entre particulas
carregadas. Dessa forma, o eletromagnetismo classico aparece como o limite natural da
dindmica quantica mediada por fétons virtuais.

A eletrodindmica quantica, portanto, ndo apenas explica quantitativamente o feno-
meno eletromagnético, como o reconstroi a partir de um principio de simetria fundamental.

Encerramos, assim, o desenvolvimento iniciado com a estrutura hamiltoniana dos
campos e a quantizagdo canonica, que levou naturalmente a introducao de propagadores,
regras de Feynman e ao calculo de amplitudes de espalhamento em teorias de gauge.
A derivacao do potencial de Coulomb a partir da QED evidencia a consisténcia entre
a formulagdo quantica e o limite classico, mostrando como interagdes de longo alcance
emergem da troca de fétons virtuais.

O tratamento apresentado estabelece a base conceitual necessaria para estudos
mais avangados, como corregoes radiativas, renormalizacao e extensoes nao abelianas, que
constituem os elementos fundamentais do Modelo Padrao das particulas elementares.
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7 Conclusao

Neste trabalho, percorremos uma jornada sistematica através dos fundamentos
da Teoria Quantica de Campos, desde a quantizacdo candnica do campo escalar até a
formulacao da Eletrodinamica Quéantica. Esta progressao revelou como a uniao entre
mecanica quantica e relatividade especial leva naturalmente a uma estrutura matematica
rica e fisicamente profunda.

A quantizacao do campo escalar estabeleceu os conceitos fundamentais: o espaco
de Fock como estrutura para estados de miiltiplas particulas, os operadores de criacao
e aniquilagdo para manipular excita¢oes quantizadas, e o vacuo quantico como estado
fundamental nao trivial. A extensdo para o campo complexo demonstrou como simetrias
globais, através do teorema de Noether, geram ntimeros quanticos conservados.

O desenvolvimento dos propagadores e fungdes de Green forneceu as ferramentas
para conectar o formalismo abstrato a quantidades mensuraveis. A férmula de Lehmann-
Symanzik-Zimmermann estabeleceu esta conexao rigorosamente, mostrando como fungoes
de correlagao se relacionam a amplitudes de espalhamento. A discussao de causalidade
relativistica revelou que, embora campos nao comutem em pontos tipo-espago, os obser-
vaveis fisicos respeitam a estrutura causal do espago-tempo.

A teoria de perturbacao, desenvolvida através do quadro de interacao e da série de
Dyson, forneceu o método sistemético para calcular corre¢oes perturbativas. O teorema de
Wick organizou a estrutura combinatdria necessaria, enquanto os diagramas de Feynman
emergiram como representacao visual elegante destes calculos. As aplicagdes ao calculo
de se¢oes de choque e taxas de decaimento ilustraram como a teoria produz previsoes
quantitativas testaveis.

A introducao do campo de Dirac ampliou o escopo da teoria para férmions relati-
visticos. A construgao a partir das representacoes espinoriais do grupo de Lorentz garantiu
covariancia relativistica, enquanto a necessidade de anticomutadores na quantizacao re-
velou a conexao profunda entre spin e estatistica. A teoria de Yukawa forneceu a primeira
aplicacao completa das regras de Feynman para processos fermionicos.

A formulacao da Eletrodindmica Quantica representou a culminagao desta progres-
sdo. A simetria de gauge U(1) local emergiu da exigéncia de invaridncia sob transformagoes
de fase locais, determinando univocamente a forma da interagdo entre matéria e radia-
¢ao. As aplicagoes a processos de espalhamento e a recuperacao do potencial de Coulomb
demonstraram o poder preditivo e a consisténcia da teoria.

Os conceitos desenvolvidos neste trabalho constituem a base para desenvolvimen-
tos mais avancgados: renormalizacao, teorias de gauge nao-abelianas que descrevem as
interacoes fracas e fortes, e o mecanismo de Higgs. A confrontacdo das previsoes tedricas
com experimentos continua a testar e validar a estrutura da teoria quantica de campos
em niveis de precisao extraordinarios.

Este trabalho apresentou os fundamentos da Teoria Quantica de Campos de forma
matematicamente rigorosa, estabelecendo as bases conceituais e técnicas necessarias. A
estrutura aqui desenvolvida ilustra como, partindo de principios simples, emerge uma
descricao poderosa das interacoes fundamentais da natureza.
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