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Resumo

Este trabalho tem como objetivo aplicar Maquinas de Vetores de Suporte (SVM)
para a deteccao de cancer de mama, utilizando o conjunto de dados Breast Cancer Wis-
consin (Original). A pesquisa integra conceitos matematicos da tecnica de SVM com a
implementacao computacional em R, explorando duas diferentes configuracoes de kernel.
As analises foram realizadas considerando criterios tecnicos para a escolha do modelo
mais adequado. Alem da avaliacdo do desempenho dos classificadores, foram aplicadas
tecnicas de reducao de dimensionalidade e analise de importancia das variaveis, a fim de
compreender a separabilidade dos dados e os fatores mais relevantes para a classificagéo.
Os resultados obtidos demonstram o potencial da abordagem proposta como ferramenta
de apoio ao diagnostico medico.

Palavras-chave: Analise de Dados, Cancer de Mama, Classificacao, Diagnostico
Medico Assistido, Maquinas de Vetores de Suporte.
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Abstract

This work aims to apply Support Vector Machines (SVM) for breast cancer de-
tection using the Breast Cancer Wisconsin (Original) dataset. The research integrates
mathematical concepts of the SVM technique with computational implementation in R,
exploring two different kernel configurations. The analyses were conducted considering
both technical criteria to select the most appropriate model. In addition to evaluating
the classifiers’ performance, dimensionality reduction techniques and variable importance
analyses were applied to understand data separability and identify the most relevant fac-
tors for classification. The results demonstrate the potential of the proposed approach as
a tool to support medical diagnosis.

Keywords: Breast Cancer, Classification, Computer-Aided Medical Diagnosis,
Data Analysis, Support Vector Machines.
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1 Introdugao

O cancer de mama e uma das principais causas de morte entre mulheres em todo
0 mundo, sendo o segundo cancer mais comum e 0 quinto que mais mata pessoas no
mundo de acordo com os dados da Organizacao Pan-Americana da Saude, escritorio re-
gional da Organizacdo Mundial da Saude, (OPAS-OMS) em 20181, configurando-se como
um problema de saude publica que exige atencao continua. Segundo o Instituto Nacional
de Cancer (INCA), apenas no Brasil, em 2024, foram estimados mais de 73600 novos
casos, tornando-se o tipo de cancer mais frequente entre as mulheres. A deteccdo precoce
desempenha um papel essencial na reduccado da mortalidade associada a essa doengca, per-
mitindo tratamentos menos invasivos e maior probabilidade de remissdo (TOMAZELLI
et al., 2017).

Apesar da disponibilidade de metodos tradicionais como o0 autoexame € a mamo-
grafia, ha limitacoes significativas no diagnéstico, incluindo altas taxas de falsos-positivos
que levam a biopsias desnecessérias, sobrecarregando o sistema de saude e causando im-
pacto emocional nos pacientes (OLIVEIRA, 2021). Nesse contexto, tecnologias emergen-
tes, como os Sistemas de Diagnostico Auxiliado por Computador (CAD), vem sendo de-
senvolvidas para apoiar os especialistas no diagnoostico de ndodulos mamadrios (AZEVEDO-
MARQUES, 2001).

Os metodos de aprendizado de maquina vem sendo estudados desde meados do
seculo XX, onde foram impulsionados pelo avanco da matem@dtica aliado ao avanco com-
putacional. Entre os metodos mais estudados estao as Orvores de decisao, redes neurais
artificiais (RNA), maquinas de vetor de suporte (SVM), K-Nearest Neighbors (KNN) e
algoritmos baseados em ensemble, como Random Forests e Gradient Boosting. Intrinse-
camente existe a necessidade de falar sobre vantagens e desvantagens da utilizagcdao dos
metodos. Condicdes como interpretabilidade das tecnicas, nivel de informacdo e grandes
volumes de dados podem ser um problema. Por outro lado, a capacidade de previsibi-
lidade, independemente do contexto, e a capacidade de lidar com grandes volumes de
dados, sao pontos muito volidos para a utilizacao desse tipo de metodo. Para um es-
tudo mais aprofundado, contendo a abordagem teodrica detalhada, assim como mdetodos
mais complexos, recomenda-se o livro (BISHOP; NASRABADI, 2006) que possui desde
conceitos bdésicos ate os mais avancados em sua obra.

Entre as abordagens de inteligencia artificial, destaca-se o uso de algoritmos de
Aprendizado de Maquina, que tem mostrado resultados promissores na classificacao de
nodulos em malignos e benignos. Dentre as tecnicas disponiveis, o0 SVM tem se destacado
por sua eficdacia na andalise de dados multidimensionais, sendo amplamente aplicadas em

ldisponivel em: (https://www.paho.org/pt/topicos/cancer), acesso em 07/05/2025.


https://www.paho.org/pt/topicos/cancer

Introducéo 1

problemas de classificacao medica (CRUZ; CRUZ; SANTOS, 2018). A versatilidade do
SVM se expande por outros trabalhos como o de (MALATHI et al., 2022), que explo-
raram identificar emocdes a partir de eletroencefalograma. Alem disso, outro trabalho
muito interessante sobre o uso de SVM e o de (DONG et al., 2015), em que utilizam a
metodologia para detectar drogas no corpo humano a partir de compostos presentes na
urina.

O SVM e uma tecnica poderosa de aprendizado supervisionado, originalmente
desenvolvida para resolver problemas de classificaccfao binaria. A ideia central do SVM e
encontrar um hiperplano de separagdo 6tima, que maximize a margem entre os exemplos
de duas classes. Isso significa que o modelo busca a melhor diviséo possivel no espaco
de caracteristicas, minimizando o risco de erro de classificagao em novos dados (MELLO;
PONTI, 2018).

Diferentemente de outros estudos que combinam diferentes metodos, este trabalho
se concentra exclusivamente na aplicacao de SVM para a deteccdo de cancer de mama.
O objetivo e avaliar o desempenho dessa tecnica na analise de um conjunto de dados
clanicos, verificando sua precisdao e potencial para auxiliar no diagndostico precoce. O
estudo se fundamenta em um banco de dados amplamente utilizado na literatura. Dessa
forma, espera-se contribuir para o desenvolvimento de ferramentas computacionais que
possam ser integradas a pratica medica, reduzindo os custos e melhorando a assertividade
no diagnostico do cancer de mama.

Por fim, o trabalho sera dividido em 4 Secoes. Na Secao 2, a metodologia do
SVM e descrita em detalhes. Na Secao 3, os dados sao descritos e analisados. Por fim,
na Se¢bo 4 temos a conclusdo dos resultados obtidos.
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2 Metodologia

2.1 Introducdo ao Principio do SVM

Nessa subsecao e nas seguintes, vamos descrever os elementos matematicos ne-
cessarios para o metodo dos algoritmos SVM para classificacdo. As referencias principais
que foram utilizadas sao (MELLO; PONTI, 2018) e (SHALEV-SHWARTZ; BEN-DAVID,
2014).

Fixaremos o0s seguintes conceitos/termos:

« Domain set: Um conjunto arbitrario X.
e Label set: conjunto de possiveis rotulos Y = {-1,1}.

e Training data: on = {(xi,yi), s, (xn,yn)} e uma sequencia finita de pares em
O=XxY.

e The learne’s output: Precisamos gerar uma regra de previsdo h : X — Y capaz
de prever o rotulo futuro do processo y e Y baseado nos dados de entrada x e X .

— Esta funcao tambem e chamada predictor, hypothesis ou um classifier;

» Classe dos preditores adimissiveis:

H = {h: X —Y; h e Borel mensuravel 2 }.

No contexto de aprendizado estatistico, e necessario que a funcao de perda seja
borel mensuravel para garantir a compatibilidade com a estrutura de medida.

Em problemas de aprendizado estatistico, utilizamos algoritmos de Machine Le-
arning para, com base numa amostra de treinamento ndo vazia, determinar “o melhor”
preditor h : X — Y.

Para explicar melhor esse conceito do melhor preditor possivel, na Teoria do
Aprendizado Estatistico, considera-se que existe uma distribuicdo desconhecida P (X,Y)
sobre o espaco de entrada X e saida Y. O objetivo e encontrar uma funcdo h : X — Y

que minimize o risco esperado:

R(h) = EXY)~p [L(h(x),y)]

2Uma funcdo f : X — R é dita Borel mensuravel se, para todo conjunto de Borel B C R, a pré-imagem
f-1(B) pertence a -aigebra de Borel de X . Definicao de (BILLINGSLEY, 1995)
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onde L e uma funcdo de perda que quantifica o erro entre a predicdo h(X) e o
valor real Y .

Como a distribuicao P e desconhecida, utiliza-se uma amostra de treinamento
{(xi,vi)}™=i para estimar o risco esperado por meio do risco empirico:

1 n
R emp(h) " "L(h(xi),yi)

O algoritmo de aprendizado busca entdo o preditor h que minimiza esse risco
empirico dentro de um espaco de hipoteses H:

h* = argrﬂein R emp(h)

Esse processo e conhecido como Minimizacdo do Risco Empirico (Empirical Risk
Minimization - ERM)3 e e fundamental para o desenvolvimento de algoritmos de apren-
dizado de maquina.

A construcao do hiperplano de separacao no algoritmo SVM necessita definir
determinados vetores que desempenham papel fundamental na delimitacao da fronteira
de decis&ao.

Considere x+ e a media das amostras cuja categoria ey = +1:

X+ = — . Xi
M+ ief1,...m>yi=+1

em que m+ e 0 ndmero total de amostras com y = +1. Note que o somatdrio

considera apenas 0s vetores xi cuja classe e + 1.

De maneira anéloga, x- e definido como a media das amostras cuja classe e

1
X- = —-

ie{L..n};yi=-1
em que m- e o ndbmero total de amostras comy = -1. Nesse caso, 0 somatorio

considera apenas os vetores xi cuja classe e - 1.

O vetor w define a orientacao do hiperplano no SVM, sendo calculado como a
diferenca entre os dois ‘centros de massa’ das caracteristicas.

W = X+ —X-

30 processo deve ser consultado em (VAPNIK, 1995)
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O vetor w representa a direcdo que maximiza a separacdo geométrica entre as
categorias +1 e - 1. O hiperplano separa de forma ortogonal ao vetor w e e posicionado
para maximizar a margem, ou seja, a distancia entre as duas categorias, a partir dos
vetores de suporte de acordo com a Figura 1.

X2\

Figura 1: Construcdo do Hiperplano SVM.

2.2 Maximizagdo da Margem (Hard-Margin SVM)

O SVM busca maximizar a margem geometrica M = 1/||w|| visto que isso con-
figura a maior area possivel de separacdo entre os dados. Isso equivale a minimizar ||w]||.
Contudo, para simplificar o problema, o SVM utiliza a funcdo objetivo 2||w||2, pois ela e
diferencidvel e convexa. Aqui, || m|| representa a norma (Euclidiana) do vetor.

Dessa forma, considere um conjunto de dados:
{(x.»D)=i, x.e Rd, vy, e {-1,+1} (2.2.2)

em que:

* X, € 0 vetor de caracteristicas do i-esimo exemplo.

* y, eorotulo da categoria de x, (+1 ou —1).
O objetivo do SVM &encontrar um hiperplano definido por:
(w,x) + b= 0, (2.2.2)
em que:

W e 0 vetor que determina a orientacao do hiperplano de divisao.
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* bGR e otermo que ajusta a posicao do hiperplano.

* (w, X) representa o produto interno entre os vetores w e X.

A margem geometrica M e definida como a distancia entre o hiperplano e os
vetores de suporte mais proximos de cada classe. Formalmente:

M=M . <2-2'3)

Os vetores de suporte sao os exemplos de treinamento que estao mais proximos
do hiperplano, ou seja, aqueles que satisfazem a condicao de igualdade:

Vi<(w, Xi) + b) = 1. <2.2.4)
2.2.1 A Formulacdo do Problema de Otimizacdao

A formulagcdao do problema de otimizaccdao consiste na minimizagcdao de
n\;lvrg %||w 12, .2.5)

sujeito a:
Vis(w, xi)+ b) > 1, Vi=1,...,n, <2.2.6)

em que:

* Xieum vetor de caracteristicas de treinamento,

e yi G{—1, +1} e o rotulo da classe do vetor xi.

A restriccdao garante que os pontos de cada classe estejam corretamente posicionados em
relaccdao ao hiperplano.

2.2.2 Multiplicadores de Lagrange

Os multiplicadores de Lagrange sao uma ferramenta matemitica para achar os
maximos e minimos no problema multivariavel. Em d=3, podemos resumir o metodo dos
multiplicadores de Lagrange a:

Suponha que existem funcgédes f <x,y,z) e g<Xx,y,z) diferenciiveis e Vg = 0, em
que V e o gradiente, quando g<x,y,z) = 0. Para encontrar os valores maximo e minimo
locais de f sujeitos a restricao g<x,y, z) = 0, basta encontrar os valores de x, y, z e Aque



16 Metodologia

satisfazem simultaneamente as equagdes:

V I{x,y,z) = AVg(x,y,z),
g(x,y,z) = 0.

Chamamos 0 escalar A de multiplicador de Lagrange. O escalar e essencial para
transformar problemas com restricdes em um problema sem restri¢cdes, conforme detalhado
no Capitulo 14.8 do livro (THOMAS; WEIR; HASS, 2012).

Dentro dessa equalizacao matematica do SVM, as restricoes sobre os valores de
entrada sao utilizadas no problema primal, que define a funcdo de Lagrange como:

1 n
L(w,b,a) = ~w|2- "2a [yi((w, Xi) + b) - 1],
i=1

em que ai > 0sao os multiplicadores de Lagrange, que controlam o impacto das restricées.
Solugdo da Lagrangiana e Formulacdo Dual

A solucdo da Lagrangiana e encontrada ao derivar L(w,b,a) em relacao as
variaveis livres w e b

1 Derivada em relaccdao a w:

i=1 i=1

Isso mostra que w e uma combinacdo linear dos vetores x i, ponderados pelos mul-
tiplicadores ai.

2. Derivada em relagcdao a b:

i=1

Essa equacao garante que o hiperplano e equilibrado em relacao as classes.

Apo6s a formulacdo dual do problema de otimizagao, podemos concluir que a
abordagem matematica do SVM se baseia em uma solucao que equilibra o conceito de
separacao maxima entre classes e a toleréncia a erros. O objetivo principal e encontrar os
multiplicadores de Lagrange (ai) que determinam os vetores de suporte, ou seja, 0s pontos
dos dados mais relevantes para a definicao do hiperplano de separacao. Esses vetores de
suporte sdao fundamentais porque, mesmo em grandes conjuntos de dados, apenas uma
fracao dos exemplos contribui para a solucao final, o que torna o SVM eficiente. Alem
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da eficiencia, 0 SVM e um modelo muito consistente pela capacidade dele nao precisar de
grandes volumes de dados para entender certos tipos de padroes. Dado isso, a conddo

n
=1

garante o equilibrio entre as classes, assegurando que a contribuicdo ponderada dos rétulos
seja nula. Isso reflete a natureza do problema de classificacao, em que o hiperplano precisa
ser neutro em relacao as classes. Ja a restricao

0< ai <C,

introduzida pelo pardmetro C, permite ajustar o trade-off entre a margem maxima e os
erros de classificagcado permitidos, conferindo flexibilidade ao modelo para lidar com dados
ruidosos.

2.3 Relativizando as Margens (Soft-Margin SVM)

Quando os dados nao sao perfeitamente (linearmente) separaveis, adicionamos
variaveis slack ~ para lidar com violagbes nas restricdes.

2.3.1 Introducdo das Variaveis de Relaxacgao (")

No problema de Hard Margin, considera-se todos os pontos como linearmente
separaveis, o que nem sempre e realista ou possivel. Para resolver isso, sao adicionadas
variaveis de relaxag¢do/slack ~ > 0, que permitem que 0s pontos violem os limites da

margem linear.

A nova restricao torna-se:

yi((w, Xi)y + b)>1- & Vi=1,...,n,
em que
« A~ = 0: O ponto estd corretamente classificado e dentro da margem.
e 0 <" < 1: O ponto esta dentro da margem, mas classificado corretamente.

e« A > 1: O ponto estd mal classificado.
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2.3.2 Funcdo Objetivo Ajustada

A funcao objetivo, que inclui um termo de penalizagao para os C, controlado por
um hiperparametro C, de custo, gera como formulacao primal:

SVM. Assim, ajusta o trade-off entre margem e classificacoes incorretas. Basicamente,
cria um balanceamento dentro das condicdes da classificacao.

2.3.3 Condicoes de Otimalidade KKT

As condi¢Bes de Karush-Kuhn-Tucker (KKT) garantem que a solucdo do pro-
blema primal e dual seja otima. As condicoes sao:

1. Estacionaridade:

(2.3.1)
i=
(2.3.2)
i=

oC Vi=1,..,n. (2.3.3)

2. Complementaridade:
ai [yi((w, Xi) + b) - 1+ Q] = 0, (2.3.4)
PiCi=0 Vi=1,... .,n. (2.3.5)

3. Dualidade:

yi((w,xi) +b)>1-C, G>0 Vi=1,...,n. (2.3.6)

4. Ndo negatividade:

ai>0, A, >0 Vi=1,.,n (2.3.7)
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Interpretacao M ateméatica

o Estacionaridade: O primeiro ponto mostra que o vetor de pesos w e uma com-
binacao linear dos vetores de entrada x i, balanceados pelos multiplicadores ai e pelos
rotulos das categorias yi. Isso significa que apenas os vetores de suporte (aqueles
com ai > 0) contribuem para a definicdo de w. Basicamente, o algoritmo avalia o
que ele quer considerar.

e Complementaridade: A condicdo ai [yi((w, xi) + b) —1+ &] = 0 garante que, se
ai > 0, entao o vetor xi esta exatamente sobre a margem ou no lado errado da
margem permitido pela variavel slack ii. Caso contrario, ai = 0, € 0 ponto nao
contribui para a solugcdao. Ou seja, o ponto saiu dos limites permitidos para que
fosse considerado.

e Dualidade: A soma dos multiplicadores ai ponderada pelos ratulos yi deve ser
zero, garantindo que a solucao respeite o balango entre as classes.

« Ndo negatividade: As condicoes ai > 0 e Pi > 0 garantem que as penalidades
aplicadas as restricoes sejam consistentes com o problema de otimizacao do SVM
nas condicoes do Soft Margin.

2.3.4 Resolvendo a Lagrangiana para Obtencdo da Forma Dual

Conforme os resultados obtidos pela propriedade de estacionariedade, foi aplicado
os multiplicadores de Lagrange ai e Pi para incorporar as restricdes no problema de
otimizacao. A funcao Lagrangiana e

n n n

L(w,b,$,a,p) = AIMI2+ C~ i —~ ai Ji((w, xi) + b) —1+ & —*
i=1 i=1 i=1

em que:

* ai > 0: Multiplicadores de Lagrange associados as restricoes yi(w mxi+ b) > 1—ii.

* A, > 0: Multiplicadores de Lagrange associados as restricoes ii > 0.

A funccdao de Lagrange incorpora as restriccdoes do problema primal na forma de
penalidades. Com isso, obtemos as condiccodes de otimalidade que permitem construir a

forma dual: 1 n

n n

max£ » —2E E aiajyiyj (xi,xj),
i=1 i=1j=1
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sujeito a:
O<ai<C,Vi=1,.,n,
¢ n
N Maiyi 0.
i=1

2.3.5 Significado das Condi¢cdes de Otimalidade

As condicoes de otimalidade indicam que os multiplicadores de Lagrange ai con-
trolam a influencia de cada ponto de dado na solucgao final. Especificamente:

e ai = 0: O ponto ndo contribui para o hiperplano final (nao e um vetor de suporte).
* 0 < ai<C: Oponto esta na margem e e um vetor de suporte.

« ai = C: O ponto esta mal classificado ou exatamente na margem com a maxima
penalizacdo permitida.

A restricdo Y'n=laiyi = 0 garante o equilibrio entre as classes, enquanto 0 < ai <
C define o limite superior para a infludencia de cada ponto, dado que ele avalia 0 maximo
que o ponto pode avangcar. Essas condiccdoes asseguram que o problema esteja bem definido
e que a solucao final maximize a margem enquanto permite uma certa flexibilidade para
lidar com os possiveis erros de classificacao. Pode-se dizer que as margens ficam mais
frouxas e suscetiveis as formas das amostras dos dados.

Esse formalismo fornece a base matematica para entender como o SVM cria
essa ponderaccdao entre a margem e os erros de classificaccdao que poderiam ser evitados,
permitindo generalizacdes solidas em dados reais.

Um modelo de SVM bem treinado apresenta as seguintes vantagens:

1 Consistencia a generalizagdo: Ao maximizar a margem, o SVM reduz a chance
de overfitting (sobreajuste dos dados de treinamento).

2. Eficiencia computacional: O SVM utiliza uma formulacao dual que simplifica a
solugcdao do problema em espaccos de alta dimensionalidade.

3. Flexibilidade: A introducdo de kernels permite lidar com dados nao linearmente
separaiveis e com padrdoes que podem ser dificeis de detectar de maneira simplista.
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2.4 Funcoes Kernel para SVM

O kernel e uma funcao que transforma os dados de entrada para um espaco de
caracterasticas de maior dimensionalidade, permitindo que o SVM encontre um hiperplano
de separacgBao adequado, mesmo em casos onde os dados nado sado linearmente separdaveis
no espagco original.

Matematicamente, o kernel substitui o produto escalar (xi,Xj) por K(xi,Xj),
onde K e a fungao kernel.

Deflnicao 1 Considere um subespaco X C Rd. Dizemos que uma funcédo K : R
e um kernel se, para todon EN ex1,..., xn E X, temos que

(2.4.1)
para todo cl,mm cn E R. A igualdade em (2.4.1) ocorre quando c1 = .. = ¢cn = 0.

Dizemos que a matriz (K (xi,xj))ij. e positiva semidefinida.

241 Tipos de Kernels

1. Kernel Linear

E o mais simples e indicado para dados que ja sao aproximadamente linearmente
separaveis, sendo escrito dessa forma:

K (xi, xj) = (xi, xj).

Neste caso, o0 SVM trabalha diretamente no espaco original e ‘puro’ dos dados.

2. Kernel N&o-Lineares

Indicado para dados que nao sbo linearmente separdveis. Exemplos comuns:

(a) RBF (Radial Basis Function):
K(xi, xj) = exp (—7||xi - xj||2) .

Um exemplo de aplicacao do kernel RBF pode ser encontrado em (ESKAN-
DAR, 2023).
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(b) P6linomial:
K(Xi, Xj) = ((xi,Xj) + c)d,
onde ¢ e uma constante e d e o grau do polindbmi6é. Uma aplicacao pratica do
kernel polinomial e apresentada em (CHANG et al., 2010).
(c) Sigmoidal:
K(xi, Xj) = tanh(«(xi, Xj) + c).
O comportamento e a aplicabilidade do kernel sigmoidal safo discutidos em
(LIN; LIN, 2003).

(d) Spline Kernel: Utilizado para dados com dependencias ndd lineares suaves.
Uma aplicagcdao do spline kernel em simulagcdao computacional & mostrada em
(SZYMANSKI et al., 2006).

(e) Gaussian Kernel: Variante d6 RBF, com foco em proximidade. Um exemplo
de generalizacdd e uso do kernel Gaussiano esta em (CHAKRABORTY et al.,
2023).

(f) Laplacian Kernel:

Abordagens de mapeamento de caracterdisticas com esse kernel sdao discutidas
em (AHIR; PANDIT, 2024).

() ANOVA Kernel:

k=1

Um uso praatico do ANOVA kernel em andalise de sensibilidade &detalhado em
(DURRANDE et al., 2013).

(h) Chi-Square Kernel: Utilizado principalmente em aplicacdes de visao computa-
cional:

A aplicaccdao do chi-square kernel em andalise de sentimentos & explorada em
(HOKIJULIANDY; NAPITUPULU; FIRDANIZA, 2023).

Esses kernels fornecem flexibilidade para ajustar 6 SVM a diferentes tipos de
dados e distribui¢céoes.
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3 Resultados

3.1 Conjunto de Dados

O conjunto de dados Breast Cancer Wisconsin (Diagnostic) foi criado em 1992
por pesquisadores da Universidade de Wisconsin, incluindo o Dr. William H. Wolberg, W.
Nick Street e Olvi L. Mangasarian. Ele contem informacoes de 699 pacientes, dos quais
458 apresentam tumores benignos e 241 malignos. A base ja foi utilizada em centenas
(se nao milhares) de estudos academicos para andlises comparativas de algoritmos de
aprendizado de maquina. Veja por exemplo, a aplicacdo de SVM em deteccao de cancer
de mama por (BENNETT; MANGASARIAN, 1992) ou em (ABRAHAM; JAIN; YANG,
2005), que utilizou de algoritmos hibridos, com base em SVM, para melhorar o diagnostico
de cancer. Alem destes exemplo, temos tambem (SAHAN et al., 2007), que tambem
propoe um modelo hibrido, utilizando-se de redes neurais artificiais e K-NN (K-nearest
neighbors) para analisar a referida base de dados.

Esse historico estabelece um precedente sobre sua credibilidade e relevancia, visto
que e uma base de dados amplamente utilizada na comunidade academica e cientifica.
Pode-se citar trabalhos como o de (COWSIK; CLARK, 2019) sobre RNA’s (Redes Neu-
rais Artificiais) de duas camadas que usa de correlacdes entre variaveis de entrada para
classificar tumores de mama como malignos ou benignos, utilizando a base de dados Breast
Cancer Wisconsin. Um outro trabalho muito interessante e o de (AGARAP, 2018), que
compara 6 diferentes tipos de algoritmos que foram aplicados a base de dados, para medir
sua acurdcia na classificagao de cancer de mama. Estes sao apenas exemplos pontuais do
diversos trabalho que existem com a utilizacao da base de dados.

Os dados da base foram obtidos pela UCI Machine Learning Repository, Breast
Cancer Wisconsin (Diagnostic) Data Set4.

3.1.1 Composicdo dos Dados

Os dados foram obtidos a partir de imagens digitalizadas de exames de puncao
aspirativa por agulha fina (FNA) das massas mamarias. As amostras celulares coletadas
foram analisadas microscopicamente para extrair caracteristicas morfologicas dos no6cleos,
sendo classificadas em valores discretos de 1a 10 por especialistas. Cada amostra e descrita
por 10 variaveis numericas discretas que representam aspectos visuais como espessura dos
aglomerados celulares, uniformidade de tamanho e forma celular, presenca de micleos

4disponivel em: (https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original), acesso
em 07/05/2025.


https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
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desprotegidos, entre outros (WOLBERG, 1990).

Essa abordagem estatistica permite representar de forma compacta e compre-
ensivel um conjunto de dados que, de outra forma, seria massivo e redundante. O uso
de estatisticas como miedia, desvio padrdao e 0 maiximo séao amplamente adotadas em con-
textos clinicos para facilitar a interpretacao dos dados pelos medicos. Por exemplo, os
trabalho recentes de (YECILBAC et al., 2024) e (DONG et al., 2024), que utilizam de
estatisticas descritivas como media e desvio padrao para analisar resultados clinicos.

3.1.2 Variaveis Presentes

O conjunto de dados inclui as seguintes varidveis:

1. ID: Numero de identificacao da amostra.
2. Classe: Diagniostico do tumor:

(@) Benign: Benigno

(b) Malignant: Maligno
3. Caracteristicas celulares (10 variaveis):

(a) Cl.thickness - Espessura dos aglomerados celulares (Clump Thickness)
(b) Cell.size - Uniformidade do tamanho celular (Uniformity of Cell Size)
(c) Cell.shape - Uniformidade da forma celular (Uniformity of Cell Shape)
(d) Marg.adhesion - Aderéncia marginal entre as celulas (Marginal Adhesion)

(e) Epith.c.size - Tamanho das celulas epiteliais isoladas (Single Epithelial Cell
Size)

(f) Bare.nuclei - Presenca de nacleos desprotegidos (Bare Nuclei)
() Bl.cromatin - Aparéncia da cromatina (Bland Chromatin)

(h) Normal.nucleoli - Presenca de nucleolos normais (Normal Nucleoli)

Rt

) Mitoses - Numero de mitoses (Mitoses)

Essas variaveis fornecem uma descrigao detalhada das caracteristicas dos micleos
celulares, auxiliando na distincao entre tumores benignos e malignos. Este conjunto de
dados tem sido amplamente utilizado em pesquisas de aprendizado de maquina para
desenvolver e avaliar modelos de classificacao na deteccao de cancer de mama como o
trabalho de (AGARAP, 2018), que aplicou alguns algoritmos na base de dados.
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3.2 Preparacao dos Dados

O conjunto de dados utilizado e composto por informacées clinicas relacionadas
a caracteristicas celulares obtidas a partir de imagens digitalizadas de massas mamarias,
com a respectiva classificacdo entre tumores benignos e malignos.

Inicialmente, o conjunto de dados passou por um processo de pré-processamento.
Primeiramente, a coluna de identificagao dos pacientes foi removida, por nao conter in-
formacao preditiva relevante. Em seguida, todos os registros que apresentavam valores
ausentes foram eliminados, a fim de garantir a integridade e a consistencia das analises
subsequentes.

As variaveis preditoras, originalmente do tipo categorica, foram convertidas para
o formato numerico, permitindo a aplicacdo dos algoritmos de classificagao. A variavel res-
posta foi transformada em um fator bindario, distinguindo as duas categorias de interesse:
benigno e maligno (0 e 1).

Para a divisao dos dados, optou-se por reservar aproximadamente 35% das ob-
servacoes para o conjunto de treino, utilizando a funcao de particionamento estratificado
para manter a proporcgado entre as classes. Este procedimento assegura que tanto os con-
juntos de treino quanto de teste possuam distribuicdes semelhantes, minimizando o vies
na avaliacao dos modelos.

A distribuicao das classes nos conjuntos de treino e teste foi visualizada atraves
de graéficos de barras e de proporcgdao, evidenciando o equildbrio relativo mantido apéos o
particionamento.

3.3 Construcao e Avaliacdo Inicial dos Modelos SVM

3.3.1 Treinamento e Avaliacdo dos Modelos

Com os dados devidamente preparados, procedeu-se a construcao dos primeiros
modelos de classificacao utilizando a tecnica do SVM. Quatro tipos de kernels foram
empregados, sendo o kernels linear uma base para comparacao. Os outros trés kernels
utilizados foram: Sigmoidal, Radial e Polinomial. Todos os modelos foram aplicados a
uma malha de valores avaliados sob a laogica de qual &0 modelo que gera menor nuamero
de falsos positivos.
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Figura 2. Malha de Valores - Modelo SVM com Kernel Linear
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Figura 3: Malha de Valores - Modelo SVM com Kernel Radial
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Figura 4. Malha de Valores - Modelo SVM com Kernel Sigmoidal
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Figura 5: Malha de Valores - Modelo SVM com Kernel Polinomial

Cost

Os melhores resultados foram obtidos com kernel polinomial, onde foi possivel
identificar uma diferenca relevante do numero de falsos positivos entre os modelos como
mostram as Figuras 2, 3,4 e 5. Por sua vez, o modelo linear foi ajustado para otimizagao
de desempenho assim como foi feito com os outros modelos.

A avaliacdo dos modelos foi realizada com base em metricas tradicionais de clas-
sificacao, incluindo a acurécia, a sensibilidade (recall), a especificidade, a curva ROC
(Receiver Operating Characteristic) e a estatistica KS (Kolmogorov-Smirnov).

As Tabelas a seguir comparam os resultados de teste dos dois modelos:

Tabela 1. Matriz de confusdo SVM com Kernel Linear

Predicdo Benigno Maligno Total

Benigno 198 8 206
Maligno 3 100 103
Total 201 108 309

Tabela 2: Matriz de confusao SVM com Kernel Polinomial

Predicdo Benigno Maligno Total
Benigno 200 14 214
Maligno 1 94 138
Total 201 108 309
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Tabela 3: Indicadores de Desempenho dos Modelos

M etrica Modelo Linear Modelo Polinomial
Acuraacia 0,9644 0,9514
Sensibilidade 0,9850 0,9950
Especificidade 0,9259 0,8703
Acurdacia Balanciada 0,9555 0,9326
F1 Score 0,9729 0,9638
Kappa 0,9208 0,8901

Os resultados indicaram que ambos os modelos alcancaram valores elevados de
acuracia, situando-se praximo de 95%, demonstrando boa capacidade de generalizacao
para o conjunto de teste. De maneira geral, os resultados das maéetricas de avaliagcdao se
mostraram muito prdximos, com uma diferenca mais acentuada nas especificidades dos
modelos.

A avaliagao de modelos preditivos, especialmente em contextos medicos, exige
metricas que capturem nao apenas a acuracia global, mas tambem a capacidade do modelo
em distinguir entre classes de interesse (por exemplo, maligno e benigno).

Duas metricas fundamentais para essa avaliagao s6o a Area sob a Curva ROC
(AUC) e a estatistica de KS.

A AUC e uma medida que resume o desempenho de um classificador em todos
0s possaveis limiares de decisao. Ela representa a probabilidade de que o modelo atribua
uma pontuagao mais alta a uma observacdo positiva do que a uma negativa. Em termos
praticos, uma AUC proxima de 1 indica excelente capacidade discriminativa, enquanto
valores pradoximos de 0,5 sugerem desempenho equivalente ao acaso. Essa avaliagcfao &
crucial por contemplar tanto a sensibilidade (verdadeiros positivos) quanto a especificidade
(verdadeiros negativos), permitindo uma visdo abrangente da capacidade de generalizacao
do modelo, independentemente do ponto de corte utilizado.

Ja a estatistica de KS mede a maior diferenca entre as funcoes de distribuicao
acumulada das pontuagBes previstas para as classes positiva e negativa. Em outras pala-
vras, o KS quantifica o quao bem separadas estao as distribui¢cdes de previsao para cada
classe. Um valor de KS proximo a 1 indica que as classes sao altamente separaveis.

Portanto, a analise conjunta de AUC e KS fornece uma avaliacao consistente do
desempenho do modelo, assegurando tanto a capacidade discriminativa quanto a separabi-
lidade das classes, sendo aspectos essenciais para garantir confiangcca em cenaérios sensaveis
como diagnosticos medicos.
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Conforme as Figuras 6 e 7 abaixo, podemos avaliar os resultados obtidos por cada

um dos modelos.

Figura 6: Curva ROC para o Modelo SVM com Kernel Linear.

15 1.0 0.5 0.0 -0.5
Specificity

Figura 7: Curva ROC para o Modelo SVM com Kernel Polinomial.

15 1.0 0.5 0.0 -0.5
Specificity

O modelo SVM com kernel polinomial apresentou uma AUC de 0,997, conforme

a Figura 7 assim como o modelo SVM com kernel linear, que tambem obteve uma AUC

de 0,997, de acordo com a Figura 6, ambos indicando excelente capacidade discriminativa.
Na pratica, a AUC quantifica a habilidade do modelo em distinguir corretamente entre as

classes positivas (malignas) e negativas (benignas). Um valor de AUC préximo a 1 sugere

gue o modelo atribui probabilidades mais altas a exemplos positivos do que a exemplos

negativos na grande maioria dos casos, 0 que e crucial em contextos como o diagnostico

medico, onde erros de classificagdo podem ter consequencias severas.
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A estatistica de Kolmogorov-Smirnov (KS) quantifica a distancia maxima en-
tre as funcoes de distribuicdo acumulada empirica e tedrica, ou entre duas distribui¢des
empiricas. Essa distancia corresponde ao maior desvio vertical observado entre as duas
curvas, sendo formalmente definida como:

Dn = SL;P [Fn(x) - F(X)|

no caso do teste de uma amostra, em que Fn(x) e a fungcdo de distribuicao acu-
mulada empirica e F(x) e a funcao de distribuicao acumulada teorica.

Para o teste de duas amostras, a estatistica e dada por:

Dn,m = s% [Fn(x) - Gm(x)|

em que Fn(x) e Gm(x) sdo as funcoes de distribuicao acumulada empirica das
duas amostras. O valor de D e utilizado como estatistica de teste para avaliar a aderéncia
entre as distribuiccdoes consideradas.

Nas Figuras 8 e 9 e possivel conferir o desempenho das curvas de distribuicao
empirica, utilizada na avaliacao da estatistica KS.

Figura 8: Curvas de Distribuicdo Acumulada Empirica para Cdlculo do KS - Linear.
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Figura 9: Curvas de Distribuicdo Acumulada Empirica para Calculo do KS - Polinomial.
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Alem disso, a estatistica KS foi calculada para ambos os modelos, resultando em
0,966 para 0 SVM polinomial e 0,971 para o SVM linear, de acordo com as Figuras 8 e 9.
A estatistica KS mede a maior diferenca entre as distribui¢des acumuladas das classes
positiva e negativa. Em outras palavras, ela avalia o quao separaveis sao as distribuicfes
das pontuacoes previstas para cada classe. Um valor de KS préximo de 1indica excelente
separabilidade, o que confirma que o modelo consegue distinguir com grande eficacia entre
amostras benignas e malignas.

A avaliacao do KS e critica porque permite detectar, de maneira intuitiva, se
ha sobreposicao significativa entre as pontuacoes das classes — um problema que pode
comprometer a interpretacao clinica dos resultados. Em aplicacoes na area medica, valores
de KS superiores a 0,6 ja sao considerados otimos; portanto, os valores obtidos reforcam
a eficacia dos modelos desenvolvidos, mesmo em um espaco de alta dimensionalidade.

Por fim, as visualizacoes a seguir da curva ROC e as curvas acumuladas por classe,
usadas no calculo do KS, reforgam visualmente o bom desempenho do modelo, mostrando
uma separacao clara e forte entre as classes. Essas analises complementam a avaliacao
numerica e sustentam a decisao pela adocao do modelo polinomial como principal solucao
deste trabalho pela sua alta capacidade de diferenciagao entre as classes, alta acertividade
e a baixissima quantidade de falsos-positivos detectada pelo modelo.



32 Resultados

3.3.2 Avaliacdo da Importancia das Variaveis

A interpretacdo dos modelos de SVM nao e tao direta quanto em modelos lineares
ou baseados em arvores de decisao. No entanto, e possivel estimar a importancia rela-
tiva das variaveis por meio de abordagens empiricas, como ao criar modelos retirando
uma variavel afim de avaliar o impacto de cada das variaeis na performance preditiva do
modelo, baseando-se na acuracia.

A Figura 10 apresenta os valores estimados de importancia das variaveis no mo-
delo SVM com kernel polinomial. Os valores foram padronizados para facilitar a inter-
pretacdo. Nota-se que algumas varidveis se destacam significativamente em relacdo as
demais, indicando maior influencia na definicao da fronteira de decisao do classificador.

Entre os atributos com maior relevancia, destacam-se:

Uniformidade da forma celular (Cell.shape);

Grau de adesao da margem celular das celulas tumorais (Marg.adhesion);

Presenca de micleos desprotegidos (Bare.nuclei);

Cromatina suave (Bl.cromatin).

Estes atributos estao diretamente relacionados a caracteristicas das celulas, fre-
guentemente utilizadas por profissionais da saude para avaliar suspeitas de malignidade.
O fato de 0 modelo estatistico reconhecer essas variaveis como relevantes valida a coeréncia
da analise computacional a favor da integracao entre estatistica e medicina.

Figura 10: Importancia Relativa das Varidveis no Modelo SVM com Kernel Polinomial.
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A presenca de outras variaveis com relevancia moderada tambem evidencia que
0 modelo leva em consideracao uma combinacao de maéltiplas caracteristicas para
realizar a classificagcao — caracteristica desejavel em situacfes de alta complexidade, como
o diagnostico de cancer de mama. NO6o somente as variaveis ajudam a explicar como a
entender toda a situagcbao, que no caso deste estudo, foi observada a significativa diferengca
de naveis de importancia dos tamanhos celulares para diagnosticar corretamente e explicar
0 problema.

3.3.3 Visualizacdo do SVM - Variaveis Selecionadas

Para explorar a capacidade de separaccGao proporcionada pelas varidaveis mais im-
portantes, foram construidas visualizacoes de fronteiras de decisao considerando a com-
binacao dos pares dessas variaveis.

Figura 11: Fronteiras de Decisao Geradas pelo SVM com Duas das Combinacos de Pares das 4
Variaveis Mais Explicativas. - Parte 1

Bare.nuclei vs Cell.shape Bare.nuclei vs Bl.cromatin

Class - Class
+ benign § + benign

+ malignant 5.0 +  malignant

25 5.0 75 25 5.0 75 100
Bare.nuclei Bare.nuclei

Figura 12: Fronteiras de Decisdo Geradas pelo SVM com Duas das Combinacos de Pares das 4
Variaveis Mais Explicativas. - Parte 2

Bare.nuclei vs Marg.adhesion Cell.shape vs Bl.cromatin

25 5.0 75 10.0 25 5.0 75 100
Bare.nuclei Cell.shape
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Figura 13: Fronteiras de Decisdo Geradas pelo SVM com Duas das Combinacds de Pares das 4
Variaveis Mais Explicativas. - Parte 3

Cell.shape vs Marg.adhesion Bl.cromatin vs Marg.adhesion

2.5 5.0 75 10.0 25 5.0 75 100
Cell.shape Bl.cromatin

Ao observar as Figuras 11, 12 e 13, notou-se que, apesar de alguma separacéo
entre as classes, as fronteiras nao eram bem definidas, havendo consideravel sobreposicdo
entre as observacdes benignas e malignas. Essa dificuldade visual reforgcou o diagnostico
de que as relacoes entre as variaveis sdo nao lineares e de dificil separagdo apenas por
meio de combinacoes simples.

Dessa forma, tornou-se necesséria a adogao de uma abordagem que pudesse cap-
turar de maneira mais eficaz as estruturas latentes dos dados, justificando a utilizacdo da
Anélise de Componentes Principais (PCA), que e abordada na praxima Secdo. Para mais
informacdes sobre a PCA, consulte (JOHNSON; WICHERN et al., 2002).

3.4 Aplicacdo do PCA e Avaliacdo dos Modelos

3.4.1 Visualizagéo dos Dados sob 6tica do PCA

Para melhor compreender a separabilidade das classes no conjunto de dados, foi
aplicada uma PCA. O objetivo foi reduzir a dimensionalidade das varidaveis explicativas
e observar visualmente se ha uma tendencia de agrupamento entre a classe das amostras,
benignas e malignas.

Tabela 4: Resumo da Analise de Componentes Principais (PCA) - Parte 1

Componente PC1 PC2 PC3 PC4 PC5

Desvio padrédao 2,4382 0,8799 0,7540 0,6564 0,5794
Proporcao da variancia 66,05% 8,60% 6,31% 4,78%  3,73%
Proporcgado acumulada 66,05% 74,65% 80,97% 85,76% 89,49%
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Tabela 5: Resumo da Analise de Componentes Principais (PCA) - Parte 2

Componente PC6 PC7 PC8 PC9

Desvio padrdao 0,5750 0,5335 0,4723 0,3280
Proporcdo da variancia 3,67%  3,16% 247% 1,19%
Proporgcfao acumulada 93,16% 96,32% 98,80% 100%

A PCA foi calculada com todas as variaveis numéricas do conjunto original e os
dados foram projetados nas duas primeiras componentes principais (PC1 e PC2). Dentro
dos resultados obtidos, nota-se, de acordo com as Tabelas 4 e 5, as duas primeiras com-
ponentes comportam aproximadamente 75% das informagBes dos dados. Isso nos ajuda a
resumir, explicar e visualizar os dados do trabalho, como nas Figura 14:

Figura 14: Distribuicao dos Dados no Espaco das Duas Primeiras Componentes Principais (PC1 e
PC2).
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O grafico resultante, apresentado na Figura 14, revela uma boa separacao entre
as classes, embora com certo grau de sobreposicdo em algumas regides. Essa sobreposto
acontece bastante em dados reais onde o comportamento pode apresentar areas nao muito
definidas dada uma certa projec6o. A PCA foi utilizada nessa situacao a fim de facilitar
a aprensentac6o visual dos dados e tentar minimizar a possivel sobreposi¢ao dos dados.
Em sua grande maioria, 0s dados apresentam centros/centroides, uma concentracao de
observacdes em certas areas, criando assim uma possavel tendencia que pode facilitar a
deteccao das classes pelo SVM.

3.4.2 Aplicacdo de Modelo PCA e Andlise dos Resultados

Com base nas duas componentes principais, foram treinados dois modelos, um
com kernel linear e um modelo de kernel polinomial, com os mesmo parametros inci-
almente utilizados pas analise nas possibilidades de parametros. Tais parametros sao:
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a proporcao das amostras de treino e teste, as entradas do modelo SVM, avaliacao das
metricas. Essa abordagem permitiu a geracao da fronteira de decisdo em duas di-
mensdes nas duas abordagens.

A Figura 15 mostra a fronteira gerada pelo classificador sobre o espaco das duas
primeiras componentes principais no modelo linear.

Figura 15: Fronteira de Decisao do Modelo SVM com Kernel Linear no Espago Bidimensional (PC1 e
PC2).
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A Figura 16 mostra as possibilidades de adequacao do modelo aos dados com o
kernel polinomial.

Figura 16: Fronteira de Decisao do Modelo SVM com Kernel Polinomial no Espaco Bidimensional
(PC1 e PC2).
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Cabe destacar que o modelo SVM treinado com as duas componentes principais
(PC1 e PC2) foi utilizado apenas para fins de visualizagcado da fronteira de decisdao em duas
dimensdoes, e nado substitui o modelo final treinado com todas as varidaveis originais. Essa
simplificagcado visa apenas ilustrar a capacidade do kernel polinomial de construir limites
de decisdo nao lineares mesmo em projecdes bidimensionais, como pode ser comparado
com a Figura 17.

Figura 17: Fronteira de Decisao do Modelo SVM com Kernel Polinomial e Linear no Espaco
Bidimensional (PC1 e PC2).
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Cada um dos modelos de PCA geram suas respectivas matrizes de confusao, que

podem ser conferidas com as Tabelas 6 e 7:

Tabela 6: Matriz de Confusdo - Modelo Linear SVM com PC1 e PC2

Predicdo Benigno Maligno Total

Benigno 281 4 285
Maligno 7 151 158
Total 288 155 443

Tabela 7: Matriz de Confusado - Modelo Polinomial SVM com PC1 e PC2

Predicao Benigno Maligno Total
Benigno 288 31 319
Maligno 0 124 124
Total 288 155 443
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Nao s6 as contagens foram realizadas mas tambem foram coletados as metricas

de avaliacao, que podem ser conferidas na Tabela 8 abaixo:

Tabela 8: Indicadores de Desempenho dos Modelos de CPA

M etrica Modelo Linear CPA Modelo Polinomial CPA
Acuréacia 0,9751 0,9300
Sensibilidade 0,9756 1
Especificidade 0,9741 0,8000

Acuracia Balanciada 0,9749 0,9000

F1 Score 0,9808 0,9489

Kappa 0,9456 0,8387

Ao aplicar o modelo gerado pelo PCA, na prediccdao das classes na amostra inteira,

observamos resultados parecidos, de maneira geral, com o modelo polinomial sem PCA.

Ha de se ponderar que foi um modelo mais “radical”, visto que nao obteve nenhum falso-

positivo, sua taxa de acurada foi menor, mas os resultados ainda sdo bastante parecidos

dado que foi utilizado apenas duas componentes principais em ambos os modelos.
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4 Conclusao

Neste trabalho, foi investigada a aplicacao de SVM na deteccdo de cancer de
mama a partir de atributos morfolagicos celulares, utilizando o conjunto de dados Breast
Cancer Wisconsin (Original). A pesquisa integrou fundamentos matematicos da tecnica
com a implementacao computacional em R, evidenciando o potencial de modelos baseados
em SVM como suporte a area medica.

Do ponto de vista metodolagico, foram testadas duas configuracoes de kernel:
linear e polinomial. Ambas apresentaram acuracia acima dos 90%, mas uma analise
mais aprofundada da matriz de confusao revelou que o modelo com kernel polinomial
apresentou menor incidencia de falsos positivos — fator decisivo na escolha final, dada a
sensibilidade do contexto clinico. O modelo polinomial demonstrou ainda um excelente
desempenho nas metricas quantitativas, com AUC de 0,997 e estatistica KS de 0,966,
indicando elevada capacidade discriminativa.

Adicionalmente, foi possivel observar, por meio da PCA, uma separacdo visual
satisfatoria entre as classes no espago projetado em duas dimensdes. O modelo SVM com
kernel polinomial mostrou-se adaptavel aos dados, sendo capaz de construir fronteiras de
decisado nafo lineares coerentes com o0s agrupamentos observados.

A analise da importancia das variiveis revelou que atributos como a Uniformidade
da forma celular, a Uniformidade do tamanho celular, a Presenca de nudcleos desprotegidos
e a Cromatina suave foram os mais relevantes para a classificacdo, reforcando a aderéncia
do modelo ao conhecimento biomedico ja consolidado sobre alteracoes celulares associadas
a malignidade.

Os resultados obtidos indicam que o uso de SVM, especialmente com kernel po-
linomial, e uma alternativa viavel e precisa para auxiliar no diagnostico do cancer de
mama, desde que associado a ferramentas de apoio medico. Ressalta-se, no entanto, que
o modelo desenvolvido neste estudo tem carater experimental e foi aplicado a um con-
junto de dados limitado, pela tipologia dos dados discretos e com apenas nove atributos.
Isso abre margem para algoritmos ainda melhores caso os dados disponibilizados possuam
qgualidade e quantidade maiores.

Conclui-se, portanto, que a integracao entre modelagem matematica e analise
computacional, quando orientada por critérios técnicos e sensiveis ao contexto da area da
salde, pode contribuir significativamente para o avan¢o do diagnostico clinico. Ressalta-
se, entretanto, que tais aplicacoes devem ser desenvolvidas em colaboracao com pesquisa-
dores da area, cujas expertises acumuladas ao longo de anos de trabalho sao fundamentais
para garantir a relevdancia e a aplicabilidade dos resultados.
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5 Apéndice

5.1 Banco de Dados

Cl.thickness Cell.size Cell.shape Marg.adh Epith.size

5 1 1 1 2
5 4 4 5 7
3 1 1 1 2
6 8 8 1 3
4 1 1 3 2
8 10 10 8 7
3 2 1 1 1
1 1 1 1 2
1 1 1 1 2
8 9 9 5 10
10 10 10 10 10
4 8 6 4 3

5.2 Codigos R

Bare.nuc

Bl.chrom

© W W www

N NN NN

Norm.nuc

N RN RN e

® ke

M itoses

B R R R e

B R R R R e
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Class

benign
benign
benign
malignant
benign
malignant

benign

benign

benign
malignant
malignant
malignant

O codigo-fonte desenvolvido em linguagem R (formatado em RMarkdown) e uti-

lizado neste trabalho pode ser acessado diretamente no seguinte link:

Aplicacao de SVM na Deteccao de Cancer de Mama - TCC - Lucas Menezes.Rmd


https://raw.githubusercontent.com/lucasmnzs/tcc-R-code/refs/heads/main/SVM_CancerDeMama_TCC_LucasMenezes%20-%20Final.Rmd

