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Resumo
Este trabalho tem  como objetivo aplicar Maquinas de Vetores de Suporte (SVM) 

para a deteccao de câncer de mama, utilizando o conjunto de dados Breast Cancer Wis- 
consin (Original). A pesquisa integra conceitos matematicos da tecnica de SVM com a 
implementaçao computacional em R, explorando duas diferentes configuracoes de kernel. 
As analises foram realizadas considerando criterios tecnicos para a escolha do modelo 
mais adequado. Alem da avaliacão do desempenho dos classificadores, foram aplicadas 
tecnicas de reducao de dimensionalidade e analise de im portância das variaveis, a fim de 
compreender a separabilidade dos dados e os fatores mais relevantes para a classificação. 
Os resultados obtidos demonstram o potencial da abordagem proposta como ferramenta 
de apoio ao diagnostico medico.

P a lav ras-ch av e : Analise de Dados, Cancer de Mama, Classificacao, Diagnostico 
Medico Assistido, Maquinas de Vetores de Suporte.
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Abstract
This work aims to apply Support Vector Machines (SVM) for breast cancer de- 

tection using the Breast Cancer Wisconsin (Original) dataset. The research integrates 
m athem atical concepts of the SVM technique with computational implementation in R, 
exploring two different kernel configurations. The analyses were conducted considering 
both technical criteria to select the most appropriate model. In addition to evaluating 
the classifiers’ performance, dimensionality reduction techniques and variable importance 
analyses were applied to understand data separability and identify the most relevant fac- 
tors for classification. The results dem onstrate the potential of the proposed approach as 
a tool to support medical diagnosis.

K eyw ords: Breast Cancer, Classification, Computer-Aided Medical Diagnosis, 
D ata Analysis, Support Vector Machines.
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1 Introducao  j»

O cancer de mama e um a das principais causas de morte entre mulheres em todo 
o mundo, sendo o segundo cancer mais comum e o quinto que mais m ata pessoas no 
mundo de acordo com os dados da Organizacao Pan-Americana da Saude, escritório re­
gional da Organização Mundial da Saude, (OPAS-OMS) em 20181, configurando-se como 
um problema de saude publica que exige atençao contínua. Segundo o Institu to  Nacional 
de Cancer (INCA), apenas no Brasil, em 2024, foram estimados mais de 73600 novos 
casos, tornando-se o tipo de cancer mais frequente entre as mulheres. A deteccão precoce 
desempenha um papel essencial na reduçcaão da mortalidade associada a essa doençca, per­
mitindo tratam entos menos invasivos e maior probabilidade de remissão (TOMAZELLI 
et a l., 2017).

Apesar da disponibilidade de metodos tradicionais como o autoexame e a mamo- 
grafia, ha limitacoes significativas no diagnóstico, incluindo altas taxas de falsos-positivos 
que levam a biopsias desnecessórias, sobrecarregando o sistema de saude e causando im­
pacto emocional nos pacientes (OLIVEIRA, 2021). Nesse contexto, tecnologias emergen­
tes, como os Sistemas de Diagnostico Auxiliado por Computador (CAD), vem sendo de­
senvolvidas para apoiar os especialistas no diagnoóstico de nóodulos mamaórios (AZEVEDO- 
MARQUES, 2001).

Os metodos de aprendizado de maquina vem sendo estudados desde meados do 
seculo XX, onde foram impulsionados pelo avanco da m atem ótica aliado ao avanco com­
putacional. Entre os metodos mais estudados estao as órvores de decisao, redes neurais 
artificiais (RNA), maquinas de vetor de suporte (SVM), K-Nearest Neighbors (KNN) e 
algoritmos baseados em ensemble, como Random Forests e Gradient Boosting. Intrinse- 
camente existe a necessidade de falar sobre vantagens e desvantagens da utilizaçcãao dos 
metodos. Condiçães como interpretabilidade das tecnicas, nível de informacão e grandes 
volumes de dados podem ser um problema. Por outro lado, a capacidade de previsibi­
lidade, independemente do contexto, e a capacidade de lidar com grandes volumes de 
dados, sao pontos muito vólidos para a utilizaçao desse tipo de metodo. Para um es­
tudo mais aprofundado, contendo a abordagem teoórica detalhada, assim como móetodos 
mais complexos, recomenda-se o livro (BISHOP; NASRABADI, 2006) que possui desde 
conceitos bósicos ate os mais avancados em sua obra.

Entre as abordagens de inteligencia artificial, destaca-se o uso de algoritmos de 
Aprendizado de Maquina, que tem  mostrado resultados promissores na classificacao de 
nodulos em malignos e benignos. Dentre as tecnicas disponíveis, o SVM tem  se destacado 
por sua eficóacia na anóalise de dados multidimensionais, sendo amplamente aplicadas em

1disponível em: (https://w w w .paho.org/pt/topicos/cancer), acesso em 07/05/2025.

https://www.paho.org/pt/topicos/cancer
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problemas de classificacao medica (CRUZ; CRUZ; SANTOS, 2018). A versatilidade do 
SVM se expande por outros trabalhos como o de (MALATHI et al., 2022), que explo­
raram  identificar emocões a partir de eletroencefalograma. Alem disso, outro trabalho 
muito interessante sobre o uso de SVM e o de (DONG et al., 2015), em que utilizam a 
metodologia para detectar drogas no corpo humano a partir de compostos presentes na 
urina.

O SVM e uma tecnica poderosa de aprendizado supervisionado, originalmente 
desenvolvida para resolver problemas de classificaçcõao binaria. A ideia central do SVM e 
encontrar um hiperplano de separação ótima, que maximize a margem entre os exemplos 
de duas classes. Isso significa que o modelo busca a melhor divisõo possível no espaco 
de características, minimizando o risco de erro de classificaçao em novos dados (MELLO; 
P O N T I, 2018).

Diferentemente de outros estudos que combinam diferentes metodos, este trabalho 
se concentra exclusivamente na aplicacao de SVM para a deteccõo de cancer de mama.
O objetivo e avaliar o desempenho dessa tecnica na analise de um conjunto de dados 
clánicos, verificando sua precisõao e potencial para auxiliar no diagnáostico precoce. O 
estudo se fundam enta em um banco de dados amplamente utilizado na literatura. Dessa 
forma, espera-se contribuir para o desenvolvimento de ferramentas computacionais que 
possam ser integradas a prática medica, reduzindo os custos e melhorando a assertividade 
no diagnostico do cancer de mama.

Por fim, o trabalho sera dividido em 4 Secoes. Na Secao 2, a metodologia do 
SVM e descrita em detalhes. Na Secao 3, os dados sao descritos e analisados. Por fim, 
na Seçõo 4 temos a conclusõo dos resultados obtidos.
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2 M etodologia

2.1 Introdução ao Princípio do SVM

Nessa subseçao e nas seguintes, vamos descrever os elementos matematicos ne- 
cessarios para o metodo dos algoritmos SVM para classificacão. As referencias principais 
que foram utilizadas sao (MELLO; PO N TI, 2018) e (SHALEV-SHWARTZ; BEN-DAVID, 
2014).

Fixaremos os seguintes conceitos/termos:

• D o m a in  s e t : Um conjunto arbitrário X .

• Label s e t : conjunto de possíveis rotulos Y =  { -1 ,1 } .

• T ra in in g  d a ta : on =  { (x i,y i) , ■ ■ ■ , (x n ,yn)} e um a sequencia finita de pares em

O =  X x Y .

• T h e  le a r n e ’s o u t p u t : Precisamos gerar uma regra de previsão h : X — Y capaz 
de prever o rotulo futuro do processo y e  Y  baseado nos dados de entrada x  e X .

— Esta funcao tam bem  e chamada predictor, hypothesis ou um classifier;

•  C lasse  dos p re d ito re s  ad im issíveis:

H  =  {h : X —— Y ; h e Borel mensuravel 2 }.

No contexto de aprendizado estatístico, e necessario que a funcao de perda seja 
borel mensuravel para garantir a compatibilidade com a estru tura de medida.

Em problemas de aprendizado estatístico, utilizamos algoritmos de Machine Le- 
arning para, com base numa am ostra de treinam ento não vazia, determ inar “o melhor” 
preditor h : X — Y.

Para explicar melhor esse conceito do melhor preditor possível, na Teoria do 
Aprendizado Estatístico, considera-se que existe um a distribuicão desconhecida P ( X , Y ) 
sobre o espaco de entrada X  e saída Y . O objetivo e encontrar um a funcão h : X  — Y 
que minimize o risco esperado:

R (h ) =  E (x,y)~p [L(h(x),y)]

2Uma função f  : X  — R é dita Borel mensurável se, para todo conjunto de Borel B  Ç R, a pré-imagem 
f - 1 (B) pertence a -aigebra de Borel de X . Definicao de (BILLINGSLEY, 1995)
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onde L e uma função de perda que quantifica o erro entre a predição h (X ) e o 
valor real Y .

Como a distribuiçao P  e desconhecida, utiliza-se uma am ostra de treinamento 
{(xi ,v i)}™= i para estim ar o risco esperado por meio do risco empírico:

1 n
R emp(h) ^  ' L (h (x i),y i)

i=1

O algoritmo de aprendizado busca então o preditor h que minimiza esse risco 
empírico dentro de um espaco de hipóteses H:

h* =  argm in R emp (h) 
heu

Esse processo e conhecido como Minimizacão do Risco Empírico (Empirical Risk 
Minimization - ERM )3 e e fundamental para o desenvolvimento de algoritmos de apren­
dizado de maquina.

A construcao do hiperplano de separacao no algoritmo SVM necessita definir 
determinados vetores que desempenham papel fundamental na delimitacao da fronteira 
de decisãao.

Considere x+ e a media das amostras cuja categoria e y  =  +1:

x+ =  —  Xi
m+ r “i€{1,...,n> ; yi=+1

em que m+ e o nómero to tal de amostras com y  =  +1. Note que o somatório 
considera apenas os vetores x i cuja classe e + 1.

De maneira anóloga, x -  e definido como a media das amostras cuja classe e
Vi =  -  1:

1
X -  =  ----

- m ie{1,...,n} ; yi= - 1

em que m -  e o nómero to tal de amostras com y  =  - 1 .  Nesse caso, o somatorio 
considera apenas os vetores x i cuja classe e - 1.

O vetor w  define a orientacao do hiperplano no SVM, sendo calculado como a 
diferenca entre os dois ‘centros de m assa’ das características.

w  =  x+ — x -

3O processo deve ser consultado em (VAPNIK, 1995)
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O vetor w  representa a direção que maximiza a separação geométrica entre as 
categorias +1 e - 1. O hiperplano separa de forma ortogonal ao vetor w  e e posicionado 
para maximizar a margem, ou seja, a distancia entre as duas categorias, a partir dos 
vetores de suporte de acordo com a Figura 1.

2.2 Maximização da Margem (Hard-Margin  SVM)

O SVM busca maximizar a margem geometrica M  =  1 /||w || visto que isso con­
figura a maior area possível de separacão entre os dados. Isso equivale a minimizar ||w ||. 
Contudo, para simplificar o problema, o SVM utiliza a funcão objetivo 2 ||w ||2, pois ela e 
diferenciável e convexa. Aqui, || ■ || representa a norm a (Euclidiana) do vetor.

Dessa forma, considere um conjunto de dados:

X 2 \

Figura 1: Construção do Hiperplano SVM.

{(x ..» i)}n= i , x . e  Rd, y, e  {- 1 , + l } (2.2.1)

em que:

• x , e o vetor de características do i-esimo exemplo.

• y, e o rotulo da categoria de x , (+1 ou — 1).

O objetivo do SVM áe encontrar um hiperplano definido por:

(w, x) +  b =  0 , (2.2.2)

em que:

• w  e o vetor que determ ina a orientacao do hiperplano de divisao.
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• b G R e o termo que ajusta  a posicao do hiperplano.

• (w, x) representa o produto interno entre os vetores w  e x.

A margem geometrica M  e definida como a distância entre o hiperplano e os 
vetores de suporte mais proximos de cada classe. Formalmente:

M  =  M . <2-2'3)

Os vetores de suporte sao os exemplos de treinam ento que estao mais proximos 
do hiperplano, ou seja, aqueles que satisfazem a condiçao de igualdade:

Vi<(w, Xi) +  b) =  1. <2.2.4)

2.2.1 A  F o rm u lação  do  P ro b le m a  de  O tim ização

A formulaçcãao do problema de otimizacçãao consiste na minimizaçcãao de

mm 2 ||w ||2, <2.2.5)w,b 2

sujeito a:
Vi<(w, x i) +  b) >  1, Vi =  1 , . . . , n ,  <2.2.6)

em que:

• x i e um vetor de características de treinamento,

• yi G { —1, +1} e o rótulo da classe do vetor x i .

A restriçcãao garante que os pontos de cada classe estejam corretamente posicionados em 
relacçãao ao hiperplano.

2.2 .2  M u ltip lic a d o re s  de  L ag ran g e

Os multiplicadores de Lagrange sao um a ferramenta m atem ítica  para achar os 
maximos e mínimos no problema multivariavel. Em d=3, podemos resumir o metodo dos 
multiplicadores de Lagrange a:

Suponha que existem funçães f  <x,y,z) e g< x,y ,z ) diferenciíveis e Vg =  0, em 
que V e o gradiente, quando g<x,y,z)  =  0. Para encontrar os valores maximo e mínimo 
locais de f  sujeitos a restricao g<x, y, z) =  0, basta  encontrar os valores de x, y, z e À que
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satisfazem simultaneamente as equações:

V / {x, y , z ) =  A V g (x , y , z ) , 
g (x ,y ,z) =  0.

Chamamos õ escalar A de multiplicador de Lagrange. O escalar e essencial para
transform ar problemas com restrições em um problema sem restrições, conforme detalhado 
no Capitulo 14.8 do livro (THOMAS; WEIR; HASS, 2012) .

Dentro dessa equalizaçao m atem atica do SVM, as restricoes sobre os valores de 
entrada sao utilizadas no problema primal, que define a funcão de Lagrange como:

em que a i > 0 sao os multiplicadores de Lagrange, que controlam o impacto das restricães.

So lução  d a  L a g ra n g ia n a  e F o rm u lação  D u a l

A solucão da Lagrangiana e encontrada ao derivar L (w ,b ,a )  em relacao às 
variáveis livres w  e b:

1. Derivada em relacçãao a w:

Isso m ostra que w  e um a combinacão linear dos vetores x i , ponderados pelos mul­
tiplicadores a i.

2. Derivada em relaçcãao a b:

Essa equaçao garante que o hiperplano e equilibrado em relacao as classes.

Após a formulacão dual do problema de otimizaçao, podemos concluir que a 
abordagem m atem atica do SVM se baseia em um a solucao que equilibra o conceito de 
separacao maxima entre classes e a tolerância a erros. O objetivo principal e encontrar os 
multiplicadores de Lagrange (a i) que determinam os vetores de suporte, ou seja, os pontos 
dos dados mais relevantes para a definiçao do hiperplano de separaçao. Esses vetores de 
suporte sãao fundamentais porque, mesmo em grandes conjuntos de dados, apenas uma 
fraçao dos exemplos contribui para a soluçao final, o que torna o SVM eficiente. Alem

1 n
L (w ,b ,a )  =  ^  ||w ||2 -  ^2 a  [yi((w, Xi) +  b) -  1],

i=1

i=1 i=1

i=1
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da eficiencia, o SVM e um modelo muito consistente pela capacidade dele nao precisar de 
grandes volumes de dados para entender certos tipos de padroes. Dado isso, a c o n d ã o

garante o equilíbrio entre as classes, assegurando que a contribuicõo ponderada dos rótulos 
seja nula. Isso reflete a natureza do problema de classificacao, em que o hiperplano precisa 
ser neutro em relacao as classes. Ja  a restricao

introduzida pelo parâm etro C , permite a justar o trade-off entre a margem maxima e os 
erros de classificaçcaõo permitidos, conferindo flexibilidade ao modelo para lidar com dados 
ruidosos.

2.3 Relativizando as Margens (Soft-Mãrgin  SVM)

Quando os dados nao sao perfeitamente (linearmente) separáveis, adicionamos 
variáveis slack ^  para lidar com violações nas restrições.

2 .3 .1  In tro d u ç ã o  d as  V ariáveis  de  R e lax a ça o  (^i)

No problema de Hard Margin, considera-se todos os pontos como linearmente 
separâveis, o que nem sempre e realista ou possível. Para resolver isso, sao adicionadas 
variaveis de relaxaçõo/slack ^  >  0, que perm item  que os pontos violem os limites da 
margem linear.

A nova restriçao torna-se:

n

i=1

0 <  ai < C,

yi ((w, Xi) +  b) > 1 -  &, Vi =  1 , . . .  , n ,

em que

• ^  =  0: O ponto está corretamente classificado e dentro da margem.

• 0 <  ^  <  1: O ponto está dentro da margem, mas classificado corretamente.

• ^  >  1: O ponto está mal classificado.
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2.3.2 F u n cão  O b je tiv o  A ju s ta d a

A funçao objetivo, que inclui um termo de penalizaçao para os C , controlado por 
um hiperparam etro C , de custo, gera como formulacao primal:

SVM. Assim, ajusta  o trade-off entre margem e classificacoes incorretas. Basicamente, 
cria um balanceamento dentro das condicães da classificacao.

2.3 .3  C o n d ico es  de  O tim a lid a d e  K K T

As condições de Karush-Kuhn-Tucker (KKT) garantem  que a solucão do pro­
blema primal e dual seja otima. As condicoes sao:

1. E s ta c io n a rid ad e :

(2.3.1)
i=1

(2.3.2)
i=1

6C
Vi =  1 , . . . ,  n . (2.3.3)

2. C o m p le m e n ta rid a d e :

ai [yi((w, Xi) +  b) -  1 +  Ci] =  0, (2.3.4)

PiCi =  0, Vi =  1, . . .  , n  . (2.3.5)

3. D u a lid ad e :

yi((w, xi)  +  b) >  1 -  Ci, Ci > 0, Vi =  1 , . . . ,  n . (2.3.6)

4. N ão  n eg a tiv id ad e :

a i >  0, Pi, > 0, Vi =  1 , . . . ,  n (2.3.7)
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In te rp re ta ç a o  M a te m á tic a

• E s ta c io n a rid a d e : O primeiro ponto m ostra que o vetor de pesos w  e um a com- 
binaçao linear dos vetores de entrada x i , balanceados pelos multiplicadores a i e pelos 
rotulos das categorias yi . Isso significa que apenas os vetores de suporte (aqueles 
com a i > 0) contribuem para a definição de w. Basicamente, o algoritmo avalia o 
que ele quer considerar.

•  C o m p le m e n ta r id a d e : A condição a i [yi ((w, x i) +  b) — 1 +  &] =  0 garante que, se 
a i > 0, entao o vetor x i esta exatamente sobre a margem ou no lado errado da 
margem permitido pela variavel slack i i . Caso contrário, a i =  0, e o ponto nao 
contribui para a soluçcãao. Ou seja, o ponto saiu dos limites permitidos para que 
fosse considerado.

• D u a lid ad e : A soma dos multiplicadores a i ponderada pelos rátulos yi deve ser 
zero, garantindo que a soluçao respeite o balanço entre as classes.

•  N ão  n e g a tiv id ad e : As condicoes a i > 0 e Pi > 0 garantem  que as penalidades 
aplicadas as restricoes sejam consistentes com o problema de otimizaçao do SVM 
nas condicoes do Soft Margin.

2 .3 .4  R eso lv en d o  a  L a g ra n g ia n a  p a ra  O b te n c ã o  d a  F o rm a  D u a l

Conforme os resultados obtidos pela propriedade de estacionariedade, foi aplicado 
os multiplicadores de Lagrange a i e Pi para incorporar as restricães no problema de 
otimizaçao. A funcao Lagrangiana e:

n n n
L (w ,b , $ , a ,p ) =  ^  IM I2 +  C  ^  ii — ^  ai [y i((w, x i) +  b) — 1 +  &] — ^

i=1 i=1 i=1

em que:

• a i > 0: Multiplicadores de Lagrange associados às restricoes yi (w  ■ x i +  b) >  1 — i i .

• Pi, >  0: Multiplicadores de Lagrange associados às restricoes i i >  0.

A funcçãao de Lagrange incorpora as restriçcãoes do problema primal na forma de 
penalidades. Com isso, obtemos as condiçcoães de otimalidade que permitem construir a 
forma dual: n 1 n n

max £ »  — 2 E E  a ia j yiyj (x i , x j ), 
i= 1 i= 1 j= 1
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sujeito a:
0 <  a i < C, Vi =  1,..., n,

e n
^   ̂a iyi 0.
i= 1

2.3.5 S ign ificado  d as  C o n d içõ es  de  O tim a lid a d e

As condicoes de otimalidade indicam que os multiplicadores de Lagrange a i con­
trolam  a influencia de cada ponto de dado na soluçao final. Especificamente:

• a i =  0: O ponto não contribui para o hiperplano final (nao e um  vetor de suporte).

• 0 <  a i < C : O ponto esta na margem e e um vetor de suporte.

• a i =  C : O ponto esta mal classificado ou exatamente na margem com a maxima 
penalizacão permitida.

A restricão 'Y n̂=1 a iyi =  0 garante o equilíbrio entre as classes, enquanto 0 <  a i < 
C  define o limite superior para a influâencia de cada ponto, dado que ele avalia o maximo 
que o ponto pode avançcar. Essas condiçcãoes asseguram que o problema esteja bem definido 
e que a solucao final maximize a margem enquanto perm ite um a certa flexibilidade para 
lidar com os possíveis erros de classificacao. Pode-se dizer que as margens ficam mais 
frouxas e suscetíveis as formas das amostras dos dados.

Esse formalismo fornece a base m atem atica para entender como o SVM cria 
essa ponderaçcãao entre a margem e os erros de classificacçãao que poderiam ser evitados, 
permitindo generalizacães solidas em dados reais.

Um modelo de SVM bem treinado apresenta as seguintes vantagens:

1. C o n s is te n c ia  a  gen era lização : Ao maximizar a margem, o SVM reduz a chance 
de overfitting (sobreajuste dos dados de treinamento).

2. E fic ienc ia  co m p u tac io n a l: O SVM utiliza um a formulacao dual que simplifica a 
soluçcãao do problema em espacços de alta dimensionalidade.

3. F lex ib ilid ad e : A introdução de kernels permite lidar com dados nao linearmente 
separaíveis e com padrãoes que podem ser difíceis de detectar de maneira simplista.
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2.4 Funçoes Kernel  para SVM

O kernel e um a funçao que transform a os dados de entrada para um  espaco de 
caracterásticas de maior dimensionalidade, permitindo que o SVM encontre um hiperplano 
de separacçõao adequado, mesmo em casos onde os dados naõo saõo linearmente separáaveis 
no espaçco original.

M atematicamente, o kernel substitui o produto escalar (x i , X j) por K ( x i , X j ), 
onde K  e a funçao kernel.

D efln içao  1 Considere um subespaço X  C Rd. Dizemos que uma função K  : R
e um kernel se, para todo n E N e x 1, . . . ,  x n E X , temos que

para todo c1, ■■■ ,cn E R. A igualdade em (2.4.1) ocorre quando c1 =  ... =  cn =  0. 
Dizemos que a matriz ( K (x i , x j) ) ij. e positiva semidefinida.

2.4.1 T ip o s  de  K e r n e ls

1. K e r n e l  L in ea r

separáveis, sendo escrito dessa forma:

K  (xi, x j ) =  (xi, x j ).

Neste caso, o SVM trabalha diretamente no espaco original e ‘puro’ dos dados.

2. K e r n e l  N ão -L in ea res

Indicado para dados que nao sõo linearmente separáveis. Exemplos comuns:

(a) RBF (Radial Basis Function):

K(xi ,  x j ) =  exp (—7 ||xí -  x j ||2) .

(2.4.1)

E o mais simples e indicado para dados que ja  sao aproximadamente linearmente

Um exemplo de aplicacao do kernel RBF pode ser encontrado em (ESKAN- 
DAR, 2023).
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(b) Põlinomial:
K(Xi ,  Xj ) =  ( (xi , Xj ) +  c)d,

onde c e uma constante e d e o grau do polinõmiõ. Uma aplicacao prática do 
kernel polinomial e apresentada em (CHANG et al., 2010).

(c) Sigmoidal:

O comportamento e a aplicabilidade do kernel sigmoidal saão discutidos em 
(LIN; LIN, 2003).

(d) Spline Kernel: Utilizado para dados com dependencias nãõ lineares suaves. 
Uma aplicaçcãao do spline kernel em simulaçcãao computacional áe m ostrada em 
(SZYMANSKI et al., 2006).

(e) Gaussian Kernel: Variante dõ RBF, com foco em proximidade. Um exemplo 
de generalizacãõ e uso dõ kernel Gaussiano esta em (CHAKRABORTY et al., 
2023).

(f) Laplacian Kernel:

Abordagens de mapeamento de caracteráisticas com esse kernel sãao discutidas 
em (AHIR; PANDIT, 2024).

(g) ANOVA Kernel:

Um uso praático do ANOVA kernel em anáalise de sensibilidade áe detalhado em 
(DURRANDE et al., 2013).

(h) Chi-Square Kernel: Utilizado principalmente em aplicacões de visao com puta­
cional:

A aplicacçãao do chi-square kernel em anáalise de sentimentos áe explorada em
(HOKIJULIANDY; NAPITUPULU; FIRDANIZA, 2023).

Esses kernels fornecem flexibilidade para ajustar õ SVM a diferentes tipos de 
dados e distribuiçcãoes.

K ( x i , Xj) =  tan h (« (x i , Xj) +  c).

d

k=1
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3 R esultados

3.1 Conjunto de Dados

O conjunto de dados Breast Cancer Wisconsin (Diagnostic) foi criado em 1992 
por pesquisadores da Universidade de Wisconsin, incluindo o Dr. William H. Wolberg, W. 
Nick Street e Olvi L. Mangasarian. Ele contem informacoes de 699 pacientes, dos quais 
458 apresentam tumores benignos e 241 malignos. A base ja  foi utilizada em centenas 
(se nao milhares) de estudos academicos para anólises comparativas de algoritmos de 
aprendizado de maquina. Veja por exemplo, a aplicacão de SVM em deteccao de cancer 
de mama por (BENNETT; MANGASARIAN, 1992) ou em (ABRAHAM; JAIN; YANG, 
2005), que utilizou de algoritmos híbridos, com base em SVM, para melhorar o diagnostico 
de cancer. Alem destes exemplo, temos tambem (SAHAN et al., 2007), que tambem 
propoe um  modelo híbrido, utilizando-se de redes neurais artificiais e K-NN (K-nearest 
neighbors) para analisar a referida base de dados.

Esse histórico estabelece um precedente sobre sua credibilidade e relevancia, visto 
que e uma base de dados amplamente utilizada na comunidade academica e científica. 
Pode-se citar trabalhos como o de (COWSIK; CLARK, 2019) sobre RNA’s (Redes Neu­
rais Artificiais) de duas camadas que usa de correlacães entre variaveis de entrada para 
classificar tumores de mama como malignos ou benignos, utilizando a base de dados Breast 
Cancer Wisconsin. Um outro trabalho muito interessante e o de (AGARAP, 2018), que 
compara 6 diferentes tipos de algoritmos que foram aplicados a base de dados, para medir 
sua acurócia na classificaçao de câncer de mama. Estes sao apenas exemplos pontuais do 
diversos trabalho que existem com a utilizacao da base de dados.

Os dados da base foram obtidos pela UCI Machine Learning Repository, Breast 
Cancer Wisconsin (Diagnostic) Data Set4.

3.1.1 C o m p o sição  dos D ad o s

Os dados foram obtidos a partir de imagens digitalizadas de exames de puncao 
aspirativa por agulha fina (FNA) das massas mamarias. As amostras celulares coletadas 
foram analisadas microscopicamente para extrair características morfologicas dos nócleos, 
sendo classificadas em valores discretos de 1 a 10 por especialistas. Cada am ostra e descrita 
por 10 variaveis numericas discretas que representam aspectos visuais como espessura dos 
aglomerados celulares, uniformidade de tam anho e forma celular, presenca de mícleos

4disponível em: (https://archive.ics.uci.edu/dataset/15/breast+cancer+w isconsin+original), acesso 
em 07/05/2025.

https://archive.ics.uci.edu/dataset/15/breast+cancer+wisconsin+original
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desprotegidos, entre outros (W OLBERG, 1990).

Essa abordagem estatística permite representar de forma compacta e compre­
ensível um conjunto de dados que, de outra forma, seria massivo e redundante. O uso 
de estatísticas como míedia, desvio padrãao e o maíximo sãao amplamente adotadas em con­
textos clínicos para facilitar a interpretacao dos dados pelos medicos. Por exemplo, os 
trabalho recentes de (YEÇILBAÇ et al., 2024) e (DONG et al., 2024), que utilizam de 
estatísticas descritivas como media e desvio padrâo para analisar resultados clínicos.

3.1.2 V ariav e is  P re s e n te s

O conjunto de dados inclui as seguintes variáveis:

1. ID : Numero de identificacao da amostra.

2. C lasse: Diagníostico do tumor:

(a) B e n i g n : Benigno

(b) M a l i g n a n t : Maligno

3. C a ra c te r ís t ic a s  ce lu la re s  (10 v ariáv eis):

(a) C l.th ic k n ess  -  Espessura dos aglomerados celulares (Clump Thickness)

(b) C ell.s ize  -  Uniformidade do tam anho celular (Uniformity of Cell Size)

(c) C e ll.sh a p e  -  Uniformidade da forma celular (Uniformity of Cell Shape)

(d) M a rg .a d h e s io n  -  Aderência marginal entre as celulas (Marginal Adhesion)

(e) E p ith .c .s iz e  -  Tamanho das celulas epiteliais isoladas (Single Epithelial Cell 
Size)

(f) B a re .n u c le i -  Presença de nácleos desprotegidos (Bare Nuclei)

(g) B l.c ro m a tin  -  Aparência da crom atina (Bland Chromatin)

(h) N o rm a l.n u c leo li -  Presenca de nucleolos normais (Normal Nucleoli)

(i) M ito se s  -  Numero de mitoses (Mitoses)

Essas variaveis fornecem um a descriçao detalhada das características dos mícleos 
celulares, auxiliando na distinçao entre tumores benignos e malignos. Este conjunto de 
dados tem  sido amplamente utilizado em pesquisas de aprendizado de maquina para 
desenvolver e avaliar modelos de classificacao na detecçao de cancer de mama como o 
trabalho de (AGARAP, 2018), que aplicou alguns algoritmos na base de dados.
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3.2 Preparação dos Dados

O conjunto de dados utilizado e composto por informacães clínicas relacionadas 
a características celulares obtidas a partir de imagens digitalizadas de massas mamarias, 
com a respectiva classificacão entre tumores benignos e malignos.

Inicialmente, o conjunto de dados passou por um processo de pré-processamento. 
Primeiramente, a coluna de identificaçao dos pacientes foi removida, por nao conter in- 
formacao preditiva relevante. Em seguida, todos os registros que apresentavam valores 
ausentes foram eliminados, a fim de garantir a integridade e a consistencia das análises 
subsequentes.

As variaveis preditoras, originalmente do tipo categorica, foram convertidas para 
o formato numerico, permitindo a aplicacão dos algoritmos de classificaçao. A variavel res­
posta foi transform ada em um fator bináario, distinguindo as duas categorias de interesse: 
benigno e maligno (0 e 1).

Para a divisao dos dados, optou-se por reservar aproximadamente 35% das ob- 
servacoes para o conjunto de treino, utilizando a funcao de particionamento estratificado 
para m anter a proporcçaão entre as classes. Este procedimento assegura que tanto  os con­
juntos de treino quanto de teste possuam distribuições semelhantes, minimizando o vies 
na avaliacao dos modelos.

A distribuicao das classes nos conjuntos de treino e teste foi visualizada atraves 
de graáficos de barras e de proporcçãao, evidenciando o equilábrio relativo mantido apáos o 
particionamento.

3.3 Construção e Avaliação Inicial dos Modelos SVM

3.3.1 T re in a m e n to  e A valiação  dos M o d elo s

Com os dados devidamente preparados, procedeu-se a construcao dos primeiros 
modelos de classificaçao utilizando a tecnica do SVM. Quatro tipos de kernels foram 
empregados, sendo o kernels linear um a base para comparacao. Os outros três kernels 
utilizados foram: Sigmoidal, Radial e Polinomial. Todos os modelos foram aplicados a 
um a malha de valores avaliados sob a láogica de qual áe o modelo que gera menor nuámero 
de falsos positivos.
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Figura 2: Malha de Valores - Modelo SVM com Kernel Linear

N <V <b (x <3 <0
Cost

Figura 3: Malha de Valores - Modelo SVM com Kernel Radial

Cost

Figura 4: Malha de Valores - Modelo SVM com Kernel Sigmoidal

Cost
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Figura 5: Malha de Valores - Modelo SVM com Kernel Polinomial

N <v ' b  <3 <0

Cost

Os melhores resultados foram obtidos com kernel polinomial, onde foi possível 
identificar um a diferenca relevante do numero de falsos positivos entre os modelos como 
m ostram  as Figuras 2, 3, 4 e 5. Por sua vez, o modelo linear foi ajustado para otimizaçao 
de desempenho assim como foi feito com os outros modelos.

A avaliação dos modelos foi realizada com base em metricas tradicionais de clas- 
sificacao, incluindo a acurácia, a sensibilidade (recall), a especificidade, a curva ROC 
(Receiver Operating Characteristic) e a estatística KS (Kolmogorov-Smirnov).

As Tabelas a seguir comparam os resultados de teste dos dois modelos:

Tabela 1: Matriz de confusão SVM com Kernel Linear

P re d iç ã o  B en ig n o  M alig n o  T o ta l
B en ig n o 198 8 206
M alig n o 3 100 103
T o ta l 201 108 309

Tabela 2: Matriz de confusao SVM com Kernel Polinomial

P re d iç ã o  B en ig n o  M alig n o  T o ta l
B en ig n o  200 14 214
M alig n o  1 94 138
T o ta l 201 108 309
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Tabela 3: Indicadores de Desempenho dos Modelos

M e tr ic a M o d elo  L in ea r M o d elo  P o lin o m ia l

Acuráacia 0,9644 0,9514
Sensibilidade 0,9850 0,9950
Especificidade 0,9259 0,8703
Acuráacia Balanciada 0,9555 0,9326
F1 Score 0,9729 0,9638
Kappa 0,9208 0,8901

Os resultados indicaram que ambos os modelos alcancaram valores elevados de 
acuracia, situando-se práximo de 95%, demonstrando boa capacidade de generalizacao 
para o conjunto de teste. De maneira geral, os resultados das máetricas de avaliaçcõao se 
m ostraram  muito práximos, com um a diferenca mais acentuada nas especificidades dos 
modelos.

A avaliaçao de modelos preditivos, especialmente em contextos medicos, exige 
metricas que capturem  nao apenas a acurácia global, mas tambem a capacidade do modelo 
em distinguir entre classes de interesse (por exemplo, maligno e benigno).

Duas metricas fundamentais para essa avaliaçao sõo a Area sob a Curva ROC 
(AUC) e a estatística de KS.

A AUC e um a medida que resume o desempenho de um classificador em todos 
os possáveis limiares de decisao. Ela representa a probabilidade de que o modelo atribua 
um a pontuaçao mais alta a uma observacõo positiva do que a um a negativa. Em termos 
praticos, uma AUC proxima de 1 indica excelente capacidade discriminativa, enquanto 
valores práoximos de 0,5 sugerem desempenho equivalente ao acaso. Essa avaliaçcõao áe 
crucial por contemplar tanto  a sensibilidade (verdadeiros positivos) quanto a especificidade 
(verdadeiros negativos), permitindo uma visõo abrangente da capacidade de generalizacao 
do modelo, independentemente do ponto de corte utilizado.

Já  a estatística de KS mede a maior diferenca entre as funcoes de distribuicao 
acumulada das pontuações previstas para as classes positiva e negativa. Em outras pala­
vras, o KS quantifica o quao bem separadas estao as distribuições de previsao para cada 
classe. Um valor de KS proximo a 1 indica que as classes sao altam ente separáveis.

Portanto, a analise conjunta de AUC e KS fornece um a avaliaçao consistente do 
desempenho do modelo, assegurando tan to  a capacidade discriminativa quanto a separabi- 
lidade das classes, sendo aspectos essenciais para garantir confiançca em cenaários sensáveis 
como diagnosticos medicos.
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Conforme as Figuras 6 e 7 abaixo, podemos avaliar os resultados obtidos por cada 
um dos modelos.

Figura 6: Curva ROC para o Modelo SVM com Kernel Linear.
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Figura 7: Curva ROC para o Modelo SVM com Kernel Polinomial.
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O modelo SVM com kernel polinomial apresentou um a AUC de 0,997, conforme 
a Figura 7 assim como o modelo SVM com kernel linear, que tambem obteve um a AUC 
de 0,997, de acordo com a Figura 6 , ambos indicando excelente capacidade discriminativa. 
Na pratica, a AUC quantifica a habilidade do modelo em distinguir corretamente entre as 
classes positivas (malignas) e negativas (benignas). Um valor de AUC próximo a 1 sugere 
que o modelo atribui probabilidades mais altas a exemplos positivos do que a exemplos 
negativos na grande maioria dos casos, o que e crucial em contextos como o diagnostico 
medico, onde erros de classificação podem ter consequencias severas.
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A estatística de Kolmogorov-Smirnov (KS) quantifica a distancia máxima en­
tre as funcoes de distribuição acumulada empírica e teórica, ou entre duas distribuições 
empíricas. Essa distancia corresponde ao maior desvio vertical observado entre as duas 
curvas, sendo formalmente definida como:

Dn =  sup |Fn(x) -  F (x)|
X

no caso do teste de um a amostra, em que Fn (x) e a função de distribuiçao acu­
mulada empírica e F (x) e a funcao de distribuicao acumulada teorica.

Para o teste de duas amostras, a estatística e dada por:

Dn,m =  sup |Fn(x) -  Gm(x)|

em que Fn (x) e Gm(x) são as funcoes de distribuiçao acumulada empírica das 
duas amostras. O valor de D e utilizado como estatística de teste para avaliar a aderência 
entre as distribuicçãoes consideradas.

Nas Figuras 8 e 9 e possível conferir o desempenho das curvas de distribuicao 
empírica, utilizada na avaliacao da estatística KS.

Figura 8: Curvas de Distribuição Acumulada Empírica para Cálculo do KS - Linear.

1.00

m  0 .7 5  

ra

0 .5 0

0 .2 5

0.00

KS = 0. 971
C lasse

—  Benign

—  M alignant

0.00 0.25 0.50 0.75
Probabilidade prevista para 'maligno'

1.00

X



R esu l ta d o s 31

Figura 9: Curvas de Distribuição Acumulada Empírica para Cálculo do KS - Polinomial.
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Alem disso, a estatística KS foi calculada para ambos os modelos, resultando em 
0,966 para o SVM polinomial e 0,971 para o SVM linear, de acordo com as Figuras 8 e 9. 
A estatística KS mede a maior diferenca entre as distribuições acumuladas das classes 
positiva e negativa. Em outras palavras, ela avalia o quao separáveis sao as distribuições 
das pontuacoes previstas para cada classe. Um valor de KS próximo de 1 indica excelente 
separabilidade, o que confirma que o modelo consegue distinguir com grande eficácia entre 
amostras benignas e malignas.

A avaliaçao do KS e crítica porque perm ite detectar, de m aneira intuitiva, se 
ha sobreposicao significativa entre as pontuacoes das classes — um problema que pode 
comprometer a interpretacao clínica dos resultados. Em aplicacoes na area medica, valores 
de KS superiores a 0,6 já  sao considerados otimos; portanto, os valores obtidos reforçam 
a eficácia dos modelos desenvolvidos, mesmo em um espaco de alta dimensionalidade.

Por fim, as visualizacoes a seguir da curva ROC e as curvas acumuladas por classe, 
usadas no calculo do KS, reforçam visualmente o bom desempenho do modelo, mostrando 
um a separacao clara e forte entre as classes. Essas analises complementam a avaliacao 
numerica e sustentam  a decisao pela adocao do modelo polinomial como principal solucao 
deste trabalho pela sua alta capacidade de diferenciaçao entre as classes, alta acertividade 
e a baixíssima quantidade de falsos-positivos detectada pelo modelo.
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3.3.2 A v aliação  d a  Im p o r tâ n c ia  d as  V ariáveis

A interpretação dos modelos de SVM nao e tao direta quanto em modelos lineares 
ou baseados em arvores de decisao. No entanto, e possível estim ar a im p o r ta n c ia  re la ­
t iv a  d as  v a riav e is  por meio de abordagens empíricas, como ao criar modelos retirando 
um a variavel afim de avaliar o impacto de cada das variaeis na performance preditiva do 
modelo, baseando-se na acuracia.

A Figura 10 apresenta os valores estimados de im portancia das variáveis no mo­
delo SVM com kernel polinomial. Os valores foram padronizados para facilitar a inter- 
pretacão. Nota-se que algumas variáveis se destacam significativamente em relacão as 
demais, indicando maior influencia na definiçao da fronteira de decisao do classificador.

Entre os atributos com maior relevância, destacam-se:

• Uniformidade da forma celular (Cell.shape);

• Grau de adesao da margem celular das celulas tumorais (Marg.adhesion);

• Presenca de mícleos desprotegidos (Bare.nuclei);

• Crom atina suave (Bl.cromatin).

Estes atributos estao diretamente relacionados a características das celulas, fre­
quentemente utilizadas por profissionais da saude para avaliar suspeitas de malignidade. 
O fato de o modelo estatístico reconhecer essas variaveis como relevantes valida a coerência 
da analise computacional a favor da integracao entre estatística e medicina.

Figura 10: Importância Relativa das Variáveis no Modelo SVM com Kernel Polinomial.
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A presenca de outras variaveis com relevancia moderada tambem evidencia que 
o modelo leva em consideraçao um a co m b in açao  d e  m á ltip la s  c a ra c te r ís t ic a s  para 
realizar a classificaçao — característica desejável em situacões de alta complexidade, como 
o diagnostico de cancer de mama. Nõo somente as variáveis ajudam  a explicar como a 
entender toda a situaçcõao, que no caso deste estudo, foi observada a significativa diferençca 
de náveis de im portância dos tamanhos celulares para diagnosticar corretamente e explicar 
o problema.

3 .3 .3  V isu a lizacão  do  SV M  - V ariáveis  S e lec io n ad as

Para explorar a capacidade de separaçcõao proporcionada pelas variáaveis mais im­
portantes, foram construídas visualizacoes de fronteiras de decisao considerando a com- 
binacao dos pares dessas variaveis.

Figura 11: Fronteiras de Decisao Geradas pelo SVM com Duas das Combinacos de Pares das 4
Variaveis Mais Explicativas. - Parte 1

B are.nucle i vs  C ell.shape B are.nucle i vs  B l.crom atin
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•  malignant 5.0
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Bare.nuclei Bare.nuclei

Figura 12: Fronteiras de Decisão Geradas pelo SVM com Duas das Combinacos de Pares das 4
Variáveis Mais Explicativas. - Parte 2

B are.nucle i vs M arg .adhesion  Cell.shape  vs  B l.crom atin
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Bare.nuclei Cell.shape
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Figura 13: Fronteiras de Decisão Geradas pelo SVM com Duas das Combinaçõs de Pares das 4
Variáveis Mais Explicativas. - Parte 3

Cell.shape  vs  M arg .adhesion  B l.crom atin  vs  M arg.adhesion

2.5 5.0 7.5 10.0 2.5 5.0 7.5 10.0
Cell.shape Bl.cromatin

Ao observar as Figuras 11, 12 e 13, notou-se que, apesar de alguma separação 
entre as classes, as fronteiras nao eram bem definidas, havendo considerável sobreposição 
entre as observacães benignas e malignas. Essa dificuldade visual reforçou o diagnostico 
de que as relaçoes entre as variaveis são nao lineares e de difícil separação apenas por 
meio de combinacoes simples.

Dessa forma, tornou-se necessária a adoçao de um a abordagem que pudesse cap­
tu rar de m aneira mais eficaz as estruturas latentes dos dados, justificando a utilizacão da 
Análise de Componentes Principais (PCA), que e abordada na práxima Seção. Para mais 
informações sobre a PCA, consulte (JOHNSON; W ICHERN et a l., 2002).

3.4 Aplicação do PCA e Avaliação dos Modelos

^  *
3.4.1 V isu a lização  dos D ad o s sob  O tic a  do  P C A

Para melhor compreender a separabilidade das classes no conjunto de dados, foi 
aplicada um a P C A . O objetivo foi reduzir a dimensionalidade das variáaveis explicativas 
e observar visualmente se há uma tendencia de agrupamento entre a classe das amostras, 
benignas e malignas.

Tabela 4: Resumo da Analise de Componentes Principais (PCA) - Parte 1

C o m p o n e n te PC1 PC2 PC3 PC4 PC5
Desvio padrãao 
Proporçao da variância 
Proporcçaão acumulada

2,4382
66,05%
66,05%

0,8799
8,60%

74,65%

0,7540
6,31%

80,97%

0,6564
4,78%

85,76%

0,5794
3,73%

89,49%
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Tabela 5: Resumo da Análise de Componentes Principais (PCA) - Parte 2

C o m p o n e n te PC 6 PC7 P C 8 PC9
Desvio padrõao 0,5750 0,5335 0,4723 0,3280
Proporção da variancia 3,67% 3,16% 2,47% 1,19%
Proporçcõao acumulada 93,16% 96,32% 98,80% 100%

A PCA foi calculada com todas as variáveis numéricas do conjunto original e os 
dados foram projetados nas duas primeiras componentes principais (PC1 e PC2). Dentro 
dos resultados obtidos, nota-se, de acordo com as Tabelas 4 e 5, as duas primeiras com­
ponentes comportam aproximadamente 75% das informações dos dados. Isso nos ajuda a 
resumir, explicar e visualizar os dados do trabalho, como nas Figura 14:

Figura 14: Distribuiçao dos Dados no Espaco das Duas Primeiras Componentes Principais (PC1 e
PC2).

C la ss

•  benign

•  malignant

C la s s e

•  Teste 

A Treino

O gráfico resultante, apresentado na Figura 14, revela um a boa separaçao entre 
as classes, embora com certo grau de sobreposição em algumas regiões. Essa s o b re p o s to  
acontece bastante em dados reais onde o comportamento pode apresentar areas nao muito 
definidas dada um a certa projecõo. A PCA foi utilizada nessa situacao a fim de facilitar 
a aprensentacõo visual dos dados e ten tar minimizar a possível sobreposiçao dos dados. 
Em sua grande maioria, os dados apresentam centros/centroides, um a concentraçao de 
observacões em certas areas, criando assim um a possável tendencia que pode facilitar a 
detecçao das classes pelo SVM.

3.4 .2  A p licação  de  M o d e lo  P C A  e A n á lise  dos R e su lta d o s

Com base nas duas componentes principais, foram treinados dois modelos, um 
com kernel linear e um modelo de kernel polinomial, com os mesmo parâmetros inci- 
almente utilizados pás analise nas possibilidades de parâmetros. Tais parâm etros sao:

• v . . »  v .»

.V-H

PC1
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a proporçao das amostras de treino e teste, as entradas do modelo SVM, avaliacao das 
metricas. Essa abordagem perm itiu a geracao da f ro n te ira  de  decisão  em duas di­
mensões nas duas abordagens.

A Figura 15 m ostra a fronteira gerada pelo classificador sobre o espaco das duas 
primeiras componentes principais no modelo linear.

Figura 15: Fronteira de Decisao do Modelo SVM com Kernel Linear no Espaço Bidimensional (PC1 e
PC2).
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A Figura 16 m ostra as possibilidades de adequacao do modelo aos dados com o 
kernel polinomial.

Figura 16: Fronteira de Decisao do Modelo SVM com Kernel Polinomial no Espaço Bidimensional
(PC1 e PC2).
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Cabe destacar que o modelo SVM treinado com as duas componentes principais 
(PC1 e PC2) foi utilizado apenas para fins de visualizaçcaão da fronteira de decisãao em duas 
dimensãoes, e naão substitui o modelo final treinado com todas as variáaveis originais. Essa 
simplificaçcaão visa apenas ilustrar a capacidade do kernel polinomial de construir limites 
de decisão nao lineares mesmo em projecões bidimensionais, como pode ser comparado 
com a Figura 17.

Figura 17: Fronteira de Decisao do Modelo SVM com Kernel Polinomial e Linear no Espaco
Bidimensional (PC1 e PC2).
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Cada um dos modelos de PCA geram suas respectivas matrizes de confusao, que 
podem ser conferidas com as Tabelas 6 e 7:

Tabela 6: Matriz de Confusão -  Modelo Linear SVM com PC1 e PC2

P re d iç ã o  B en ig n o  M alig n o  T o ta l
B en ig n o 281 4 285
M alig n o 7 151 158
T o ta l 288 155 443

Tabela 7: Matriz de Confusaão -  Modelo Polinomial SVM com PC1 e PC2

P re d iç a o B en ig n o M aligno T o ta l
B en ig n o 288 31 319
M alig n o 0 124 124
T o ta l 288 155 443
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Nao só as contagens foram realizadas mas tambem foram coletados as metricas 
de avaliacao, que podem ser conferidas na Tabela 8 abaixo:

Tabela 8: Indicadores de Desempenho dos Modelos de CPA

M e tr ic a M o d elo  L in ea r C P A M o d elo  P o lin o m ia l C P A

Acuráacia 0,9751 0,9300
Sensibilidade 0,9756 1
Especificidade 0,9741 0,8000
Acuracia Balanciada 0,9749 0,9000
F1 Score 0,9808 0,9489
Kappa 0,9456 0,8387

Ao aplicar o modelo gerado pelo PCA, na prediçcãao das classes na am ostra inteira, 
observamos resultados parecidos, de maneira geral, com o modelo polinomial sem PCA. 
Ha de se ponderar que foi um modelo mais “radical” , visto que nao obteve nenhum falso- 
positivo, sua taxa de acurada foi menor, mas os resultados ainda são bastante parecidos 
dado que foi utilizado apenas duas componentes principais em ambos os modelos.
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4 Conclusao

Neste trabalho, foi investigada a aplicacao de SVM na deteccão de cancer de 
mama a partir de atributos morfolágicos celulares, utilizando o conjunto de dados Breast 
Cancer Wisconsin (Original). A pesquisa integrou fundamentos matematicos da tecnica 
com a implementacao computacional em R, evidenciando o potencial de modelos baseados 
em SVM como suporte a area medica.

Do ponto de vista metodolágico, foram testadas duas configuracoes de kernel: 
linear e polinomial. Ambas apresentaram  acuracia acima dos 90%, mas um a analise 
mais aprofundada da matriz de confusao revelou que o modelo com kernel polinomial 
apresentou menor incidencia de falsos positivos — fator decisivo na escolha final, dada a 
sensibilidade do contexto clínico. O modelo polinomial demonstrou ainda um excelente 
desempenho nas metricas quantitativas, com AUC de 0,997 e estatística KS de 0,966, 
indicando elevada capacidade discriminativa.

Adicionalmente, foi possível observar, por meio da PCA, um a separacão visual 
satisfatória entre as classes no espaço projetado em duas dimensães. O modelo SVM com 
kernel polinomial mostrou-se adaptavel aos dados, sendo capaz de construir fronteiras de 
decisaão naão lineares coerentes com os agrupamentos observados.

A analise da im portância das variíveis revelou que atributos como a Uniformidade 
da forma celular, a Uniformidade do tamanho celular, a Presenca de núcleos desprotegidos 
e a Cromatina suave foram os mais relevantes para a classificacão, reforçando a aderência 
do modelo ao conhecimento biomedico ja  consolidado sobre alteracoes celulares associadas 
a malignidade.

Os resultados obtidos indicam que o uso de SVM, especialmente com kernel po­
linomial, e um a alternativa viavel e precisa para auxiliar no diagnostico do cancer de 
mama, desde que associado a ferramentas de apoio medico. Ressalta-se, no entanto, que 
o modelo desenvolvido neste estudo tem  carater experimental e foi aplicado a um con­
junto de dados limitado, pela tipologia dos dados discretos e com apenas nove atributos. 
Isso abre margem para algoritmos ainda melhores caso os dados disponibilizados possuam 
qualidade e quantidade maiores.

Conclui-se, portanto, que a integracao entre modelagem m atem atica e analise 
computacional, quando orientada por critérios técnicos e sensíveis ao contexto da area da 
saúde, pode contribuir significativamente para o avanço do diagnostico clínico. Ressalta- 
se, entretanto, que tais aplicacoes devem ser desenvolvidas em colaboracao com pesquisa­
dores da area, cujas expertises acumuladas ao longo de anos de trabalho sao fundamentais 
para garantir a relevâancia e a aplicabilidade dos resultados.
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5 Apêndice

5.1 Banco de Dados

C l.th ic k n e s s C e ll .s i z e C e ll .s h a p e M a r g .a d h E p ith .s iz e B a r e .n u c B l.c h r o m N o r m .n u c M ito s e s C la s s

5 1 1 1 2 1 3 1 1 benign
5 4 4 5 7 10 3 2 1 benign
3 1 1 1 2 2 3 1 1 benign
6 8 8 1 3 4 3 7 1 m alignant
4 1 1 3 2 1 3 1 1 benign
8 10 10 8 7

• •  •

10 9 7 1 m alignant

3 2 1 1 1 1 2 1 1 benign
1 1 1 1 2 1 2 1 1 benign
1 1 1 1 2 1 2 1 1 benign
8 9 9 5 10 10 7 8 1 m alignant
10 10 10 10 10 10 7 10 1 m alignant
4 8 6 4 3 4 10 6 1 m alignant

5.2 Códigos R

O codigo-fonte desenvolvido em linguagem R (formatado em RMarkdown) e u ti­
lizado neste trabalho pode ser acessado diretamente no seguinte link:

Aplicacao de SVM na Deteccao de Câncer de Mama - TCC - Lucas Menezes.Rmd

https://raw.githubusercontent.com/lucasmnzs/tcc-R-code/refs/heads/main/SVM_CancerDeMama_TCC_LucasMenezes%20-%20Final.Rmd

