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RESUMO

Neste trabalho é apresentado um estudo sobre linhas de transmissão de corrente contínua

em alta tensão e corrente alternada, com ênfase nas características de propagação e análise dos

modelos de linha. Primeiro, são apresentados os conceitos teóricos sobre modelagem de linhas

transmissão, com destaque na formulação matemática. Em seguida, são descritos os principais

modelos de linha para o estudo de transitórios eletromagnéticos. A avaliação desses modelos

é realizada através de diferentes situações de energização das linhas de transmissão. Também

é realizado um estudo das características de propagação dos sistemas, através de uma análise

detalhada da matriz de transformação modal, atenuação constante e velocidade de fase.

Palavras-chave: Linhas de Transmissão, Transitórios Eletromagnéticos, Parâmetros de Linha,

Propagação de Ondas, Matriz de Transformação, CCAT, Tensões Induzidas, Redução de Kron.



ABSTRACT

This report presents a study of high-voltage direct current and alternating current trans-

mission lines, with an emphasis on propagation characteristics and the analysis of line models.

First, the theoretical concepts of transmission line modeling are presented, with emphasis on

the mathematical formulation. Next, the main line models for studying electromagnetic tran-

sients are described. These models are evaluated using different transmission line energization

situations. A study of the propagation characteristics of the systems is also carried out, th-

rough a detailed analysis of the modal transformation matrix, constant attenuation and phase

velocity.

Keywords: Transmission Lines, Electromagnetic Transient, Line parameters, Wave Propaga-

tion, Transformation Matrix, HVDC, Induced Voltages, Kron Reduction.



SUMÁRIO

Sumário i

Lista de figuras iii

Lista de símbolos vi

Glossário viii

Capítulo 1 – Introdução 1

1.1 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contribuições . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Estrutura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Capítulo 2 – Fundamentação Teórica 5

2.1 Equações diferenciais de Linhas de transmissão . . . . . . . . . . . . . . . . . . . 5

2.2 Domínio Modal e Domínio de Fases . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Função e Velocidade de Propagação . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Matriz de Transformação Modal . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Influência do solo no cálculo dos parâmetros . . . . . . . . . . . . . . . . . . . . 11

2.6 Redução de Kron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.7 Síntese do capítulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Capítulo 3 – Modelos de Linha 14

3.1 Modelo de Bergeron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Modelo de J. Martí . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 ULM (Universal Line Model) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Modelo de transformada Numérica de Laplace . . . . . . . . . . . . . . . . . . . 19

3.5 Síntese do capítulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Capítulo 4 – Estudo de linhas de Transmissão 21

4.1 Sistema CCAT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22



Sumário ii

4.1.1 Características do Modo de Propagação . . . . . . . . . . . . . . . . . . . 23

4.1.1.1 Com redução de Kron . . . . . . . . . . . . . . . . . . . . . . . 23

4.1.1.2 Sem redução de Kron . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.2 Varredura em frequência . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1.3 Resposta transitória . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2 Sistema Genuinamente CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Características de propagação . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1.1 Com redução de Kron . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1.2 Sem redução de Kron . . . . . . . . . . . . . . . . . . . . . . . 37

4.2.2 Varredura em frequência . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.3 Resposta transitória . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Síntese do capítulo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Capítulo 5 – Conclusões e Trabalhos Futuros 44

Referências 46



LISTA DE FIGURAS

2.1 Circuito equivalente de uma linha de transmissão aérea monofásica . . . . . . . 5

2.2 Dois condutores paralelos acima de superfície da terra perfeitamente plana . . . 7

3.1 Circuito de impedância equivalente para o modelo de Bergeron . . . . . . . . . . 15

3.2 Modelo simplificado de linha desenvolvido por Dommel’s . . . . . . . . . . . . . 16

3.3 Circuito RC para representação de uma impedância equivalente a impedância

característica da linha . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4 Circuito equivalente no domínio da frequência para o modelo ULM . . . . . . . 17

4.1 Circuito teste construído no ATPDraw . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Corte transversal do sistema CCAT . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Características do modo de propagação com redução de Kron: (a) Atenuação

constante, (b) Velocidade de fase . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Representação dos termos da matriz de transformação modal em função da

frequência com redução de Kron . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.5 Resposta transitória do modelo de JMV usando diferentes frequências da matriz

de transformação para as entradas do tipo: (a) Degrau, (b) Dupla Exponencial . 27

4.6 Resposta transitória do modelo de JM usando diferentes frequências da matriz

de transformação para as entradas do tipo: (a) Degrau, (b) Dupla Exponencial . 27

4.7 Características do modo de propagação sem redução de Kron: (a) Atenuação

constante, (b) Velocidade de fase . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.8 Representação dos termos da matriz de transformação modal em função da

frequência sem redução de Kron . . . . . . . . . . . . . . . . . . . . . . . . . . . 29



Lista de Figuras iv

4.9 Tensão induzida para uma varredura em frequência com o comprimento de linha

: (a) 1 km, (b) 10 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.10 Tensão induzida para uma varredura em frequência com o comprimento de linha

: (a) 100 km, (b) 2450 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.11 Tensão induzida para resposta ao impulso com o comprimento de linha : (a) 1

km, (b) 10 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.12 Tensão induzida para resposta ao impulso com o comprimento de linha : (a) 100

km, (b) 2450 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.13 Tensão induzida para resposta ao degrau com o comprimento de linha : (a) 1

km, (b) 10 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.14 Tensão induzida para resposta ao degrau com o comprimento de linha : (a) 100

km, (b) 2450 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.15 Corte transversal do sistema CA . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.16 Características do modo de propagação: (a) Atenuação constante, (b) Velocidade

de fase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.17 Representação dos termos da matriz de transformação modal em função da

frequência com redução de Kron . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.18 Características do modo de propagação: (a) Atenuação constante, (b) Velocidade

de fase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.19 Representação dos termos da matriz de transformação modal em função da

frequência sem redução de Kron . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.20 Tensão induzida para uma varredura em frequência com o comprimento de linha

: (a) 1 km, (b) 10 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.21 Tensão induzida para uma varredura em frequência com o comprimento de linha

: (a) 100 km, (b) 400 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.22 Tensão induzida para resposta ao impulso com o comprimento de linha : (a) 1

km, (b) 10 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



LISTA DE SÍMBOLOS v

4.23 Tensão induzida para resposta ao impulso com o comprimento de linha : (a) 100

km, (b) 400 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.24 Tensão induzida para resposta ao degrau com o comprimento de linha : (a) 1

km, (b) 10 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.25 Tensão induzida para resposta ao degrau com o comprimento de linha : (a) 100

km, (b) 400 km . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42



LISTA DE SÍMBOLOS

I Corrente [A]

V Tensão [V]

z Impedância [Ω]

y Admitância [S]

ω Frequência angular [rad/s]

j Unidade imaginária

R Resistência por unidade de comprimento [Ω/m]

L Indutância por unidade de comprimento [L/m]

G Condutância por unidade de comprimento [S/m]

C Capacitância por unidade de comprimento [F/m]

Z Impedância série [Ω]

Y Admitância shunt [S]

Ip Vetor de corrente de ondas progressivas [A/m]

Ir Vetor de corrente de ondas regressivas [A/m]

γ Constante de propagação [m−1]

α Constante de Atenuação [Np/m]

β Constante de Fase [rad/m]

Yc Admitância característica [S]

Vr Tensão no terminal receptor [V]

Ve Tensão no terminal emissor [V]

l Comprimento da linha de transmissão [m]

v Velocidade de fase [m/s]

τ Tempo de propagação de uma onda viajante em uma linha de transmissão [s]

Z Matriz de impedância série [Ω/m]

Y Matriz de admitância shunt [S/m]

Ti Matriz de transformação modal



Lista de símbolos vii

λ Matriz diagonal de autovalores

I Matriz identidade

Znew
ij Impedância série da linha i e coluna j [Ω]

f1,2 Função arbitrária da propagação de ondas em linhas de tranmissão

Zc Impedância característica [Ω]

Zeq Impedância equivalente [Ω]

ki Resíduo

pi Polo

s Frequência complexa

H Matriz de propagação [m−1]

Yc Matriz de admitância característica [S/m]

ϵ Permissividade elétrica [F/m]

µ Permeabilidade elétrica [Ωm]

σ Condutividade elétrica [S/m]

t Tempo [s]



GLOSSÁRIO

EPE Empresa de perquisa energética

EMTP Electromagnetic transient program

CA Corrente alternada

CCAT Corrente contínua em alta tensão

ATPDraw Alternative transient program

BERG Modelo de linha de Bergeron

JM Modelo de linha de J. Martí

JMV Modelo de linha de J. Martí com vector fitting

ULM Modelo universal de linha

NLT Modelo de linha da transformada numérica de Laplace

LCC Line/Cable Constants



CAPÍTULO 1

INTRODUÇÃO

O consumo de energia elétrica no Brasil bateu recorde em novembro de 2023, atingindo

46.407 gigawatts-hora (GWh), de acordo com a Empresa de Pesquisa Energética (EPE), sendo

esse o maior consumo desde 2004 (EPE, 2023). Ao mesmo passo que o consumo aumenta,

é necessário que o sistema elétrico tenha capacidade de suportar essa quantidade de energia,

garantindo segurança e confiabilidade ao sistema.

Um dos pilares em um sistema elétrico de potência são as linhas de transmissão. Responsável

pelo transporte de energia elétrica nas redes de transmissão e distribuição, elas se estendem

por milhares de quilômetros e estão sujeitas a fenômenos eletromagnéticos de causas internas e

externas, devido as condições normais de operação e/ou pertubações no sistema. O programa

de expansão de transmissão do segundo semestre de 2023 desenvolvido pela EPE, prevê um

total de 14.600 km de linhas de transmissão a serem instaladas em todas as regiões do país

entre os anos de 2027 e 2038, com um investimento em torno de R$ 37,8 bilhões.

Com isso, a análise de transitórios eletromagnéticos em sistemas de potência adquire maior

importância no planejamento do sistema, devido aos níveis de sobretensões oriundos desses

fenômenos (TOMASEVICH, 2011). Assim, surge a necessidade de modelos de linha de trans-

missão mais precisos, ou seja, com uma representação mais próxima do fenômeno físico, para

a simulação e análise em regime transitório, visando o melhor dimensionamento do sistema e

estratégias de proteção mais confiáveis.

Portanto, a motivação para este trabalho de conclusão de curso vem da necessidade de uma

maior compreensão sobre modelagem de linhas de transmissão.
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1.1 OBJETIVOS

Ao longo dos anos, os estudos acerca de transitórios eletromagnéticos em linhas de transmis-

são vem sendo aprimorados, sempre buscando uma representação mais fiel ao fenômeno físico.

Os primeiros registros de fenômenos transitórios em linhas de transmissão foram realizados no

início do século 20, com o uso de oscilógrafos de raios catódicos. Nessa época, os registros eram

de difícil visualização e não existiam ferramentas para a simulação de transitórios em sistemas

elétricos. Com o avanço da ciência ao longo dos anos, o uso de dispositivos microprocessados

fez com que análise de sinais analógicos fossem digitalizados, fazendo com que houvesse um

maior detalhamento do sinal. Com isso, também surgiram programas voltados para análise

de transitórios (Transient Network Analyzer (TNA)), que deram origem aos programas EMTP

(Electromagnetic Transient Program) adotados até hoje.

A forma como os parâmetros de linha são calculados nos programas EMTP, levaram a

diferentes abordagens na estimação de transitórios eletromagnéticos, dando origem a diversos

modelos de linhas de transmissão. Assim, o objetivo desse trabalho é apresentar um estudo

sobre as características de propagação em linhas de transmissão e uma análise dos modelos de

linha.

Esse objetivo pode ser subdivido em:

• Estudo da teoria para modelagem de linhas de transmissão;

• Determinação das principais diferenças entre os modelos de linhas de transmissão;

• Análise das características dois sistemas distintos:CA (Corrente alternada) e CCAT (Cor-

rente contínua em alta tensão);

• Desempenho dos modelos de linha para análise de transitórios eletromagnéticos;

1.2 CONTRIBUIÇÕES

As contribuições acadêmicas desse trabalho são:

• Estudo sobre a constante de atenuação, velocidade de fase e matriz de transformação

modal em linhas de transmissão com e sem a redução de Kron;
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• Análise da influência da redução de Kron em linhas de transmissão CCAT e CA;

• Comparação dos modelos de linha do ATPDraw com um modelo de linha construído

inteiramente no MATLAB® através da transformada numérica de Laplace;

• Demonstração que a matriz de transformação modal não influência no cálculo dos parâ-

metros para um sistema CCAT com redução de Kron;

Com relação à publicação dos resultados obtidos neste trabalho, o seguinte artigo foi sub-

metido e aceito em conferência:

• M. A. B. RIBEIRO; C. M. MORAES; A. G. MARTINS-BRITTO; K. M. SILVA, "As-

sessment of different frequency-dependent line models for EMT simulations of HVDC

systems", submetido para o WCNPS 2023: 8th Workshop on communication Networks

and Power Systems. Brasília, Brasil, 2023.

1.3 ESTRUTURA

O atual capítulo apresenta a relevância deste trabalho no atual contexto energético do país,

descreve os objetivos e cita suas contribuições.

O capítulo 2 aborda os conceitos teóricos sobre modelagem de linha de transmissão, com

ênfase na formulação das equações do telegrafista, que são a base nos estudos de modelagem

de linhas de transmissão. Além disso, descreve como são realizados os cálculos de função

e velocidade de propagação de ondas em linhas de transmissão, da matriz de transformação

modal e descreve a técnica de redução de Kron.

O capítulo 3 elenca as principais diferenças entre os modelos de linhas de transmissão.

Dentre os modelos mais usados na atualidade para a simulação de transitórios eletromagné-

ticos disponíveis no ATPDraw, pode-se dar destaque ao modelo de Bergeron, J. Martí e o

ULM(Universal Line Model). Também será adotado um modelo construído inteiramente no

MATLAB®, denominado transformada numérica de Laplace.

O capítulo 4 apresenta um estudo de uma linha de transmissão CCAT, atualmente em

operação no Brasil. Nesse estudo são utilizadas características reais da linha, como geometria
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do sistema e dados dos condutores. Também é abordada uma linha de Transmissão CA, com

o intuito de mostrar as diferenças ou semelhanças entre os dois sistemas.

O capítulo 5 expõe as conclusões e considerações finais acerca das simulações realizadas e

sugere diretrizes para a continuidade do trabalho.



CAPÍTULO 2

FUNDAMENTAÇÃO TEÓRICA

Este capítulo aborda os conceitos teóricos usados na modelagem de linhas de transmissão

para o cálculo dos seus parâmetros elétricos.

2.1 EQUAÇÕES DIFERENCIAIS DE LINHAS DE TRANSMISSÃO

Figura 2.1: Circuito equivalente de uma linha de transmissão aérea monofásica

Fonte: Adaptado de (MARTINEZ-VELASCO; GUSTAVSEN, 2001)

A figura 2.1 mostra um circuito que representa uma linha de transmissão aérea monofásica,

usada para a formulação das equações de tensão e corrente, onde z e y são a impedância e ad-

mitância da linha por unidade de comprimento, I e V são a corrente e tensão, respectivamente.

Aplicando a lei de Kirchhoff das tensões na malha que contém ambos os terminais:

−V (x+∆x) + (z ·∆x) · I(x) + V (x) = 0 (2.1)
V (x+∆x)− V (x)

∆x
= z · I(x) (2.2)

lim
∆x→ 0

V (x+∆x)− V (x)

∆x
≈ dV (x)

dx
= z · I(x) (2.3)
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Aplicando a lei de Kirchhoff das correntes no segundo nó, temos:

I(x+∆x)− (y ·∆x) · V (x+∆x)− I(x) = 0 (2.4)
I(x+∆x)− I(x)

∆x
= y · V (x+∆x) (2.5)

lim
∆x→ 0

I(x+∆x)− I(x)

∆x
− y · V (x+∆x) ≈ dI(x)

dx
= y · V (x) (2.6)

No domínio do tempo as equações 2.3 e 2.6, considerando z = R + jωL e y = G + jωC,

podem ser expressas da seguinte forma:

−∂V (x,t)

∂x
= R · I(x,t) + L

∂I(x,t)

∂t
(2.7)

−∂I(x,t)

∂x
= G · V (x,t) + C

∂V (x,t)

∂t
(2.8)

onde R, L, G e C são resistência, indutância, condutância e capacitância da linha expressos

por unidade de comprimento, respectivamente.

As equações 2.7 e 2.8 são conhecidas como equações do telegrafista e são consideras fun-

damentais na modelagem de linha de transmissão, desenvolvidas em 1876 por Oliver Heaviside

(HEAVISIDE, 1876). No domínio da frequência , através da transformada de Fourier, elas

podem ser expressas da seguinte forma:

−dV (ω)

dx
= Z(ω)I(ω) (2.9)

−dI(ω)

dx
= Y (ω)V (ω) (2.10)

onde Z(ω) e Y (ω) são as matrizes de impedância série e admitância shunt por unidade de

comprimento, respectivamente.

As impedâncias série e as admitâncias shunt são calculadas utilizando fórmulas exatas das

expressões integrais de Wise’s, tendo em conta o efeito das correntes de deslocamento nos

parâmetros da linha. Assumindo o caso de dois fios de acordo com a topologia da figura 2.2, as

fórmulas de admitância e impedância de Wise’s (WISE, 1934; WISE, 1948) para representar a

influência das correntes condutoras e de deslocamento num meio de propagação são dadas por
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(PAPADOPOULOS et al., 2020; MARTINS-BRITTO et al., 2022):

Zeij = Zpgij + Zgij =
jωµ0

2π

(
ln
Dij

dij
+Mij

)
(2.11)

Mij =

∫ ∞

0

2µge
−Hija0

agµ0 + a0µg

cos(xijλ)dλ (2.12)

Yeij = jωP−1
eij

= jω(Ppgij + Pgij)
−1 (2.13)

Peij = Ppgij + Pgij =
1

2πϵ0

(
ln
Dij

dij
+Qij

)
(2.14)

Qij =

∫ ∞

0

2µgγ
2
0(µ0α0 + αgµg)e

−Hija0

(agµ0 + a0µg)(agγ2
0µg + a0γ2

gµ0)
cos(xijλ)dλ (2.15)

onde λ é a variável de integração, Zpgij e Ppgij representam as influências do solo perfeitamente

condutor, Zgij e Pgij do solo imperfeito. Os coeficientes ϵ, µ, σ presentes na figura 2.2, represen-

tam a permissividade, permeabilidade e condutividade elétrica no ar e no solo, respectivamente.

Figura 2.2: Dois condutores paralelos acima de superfície da terra perfeitamente plana

( xi ,hi )

Ar

Solo

x
ij

𝑑𝑖𝑗

Condutor i

Condutor j

ε
1
, σ

1
, μ

1
 

Condutor
   imagem  𝑗

Condutor  
imagem i  

D𝑖𝑗

x

y

ε
0
, σ

0
, μ

0
 

𝑧=0

( xi ,-hi )

( xj ,hj )

( xj ,-hj )

Fonte: Reproduzido de (MARTINS-BRITTO et al., 2022)

A solução geral para as equações 2.9 e 2.10 são da seguinte forma (MARTINEZ-VELASCO;

GUSTAVSEN, 2001):

I(ω) = Ip(ω)e
−γ(ω)x + Ir(ω)e

γ(ω)x (2.16)

V (ω) = Y −1
c (ω)[Ip(ω)e

−γ(ω)x − Ir(ω)e
γ(ω)x] (2.17)

onde Ip e Ir são vetores de propagação das ondas progressivas e regressivas, respectivamente.
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Pode-se definir γ como a constante de propagação e Yc a admitância característica:

γ(ω) =
√
Y Z → γ = α + jβ (2.18)

Yc(ω) =
√

(Y Z)−1Y (2.19)

onde α é a constante de atenuação e β é a constante de fase.

2.2 DOMÍNIO MODAL E DOMÍNIO DE FASES

Ao longo dos anos, o desenvolvimento dos estudos acerca da modelagem de linha de trans-

missão levou a duas principais abordagens, que consistem em modelar a linha de transmissão

por admitância nodal ou pelo método das características.

A modelagem pelo método das características aborda os modelos a serem descritos nesse

trabalho e é a mais utilizada em programas de análise transitórios eletromagnéticos em linhas

de transmissão (TOMASEVICH, 2011). Baseado na teoria de propagação de ondas em linhas

de transmissão, esse método representa os parâmetros da linha de transmissão por uma função

de propagação (ver a equação 2.22 mais adiante) e por uma matriz de admitância caracte-

rística (definida através da equação 2.19). O método das características usa duas formulações

diferentes: domínio modal e domínio de fases

No domínio modal, as matrizes de admitância e a função de propagação são desacopladas por

matrizes de transformação, para resolver o sistema de equações de forma independente, sendo

está uma representação já bem conhecida. A partir da teoria desenvolvida por (WEDEPOHL,

1963), os modelos de linha de transmissão foram desenvolvidos e aprimorados ao longo dos anos,

com abordagens que consideram a matriz de transformação dependente ou não da frequência.

A utilização de matrizes de transformação reais e constantes pode acarretar em imprecisões nos

cálculos dos parâmetros de linhas de transmissão com configurações fortemente assimétrica,

subterrâneas ou de circuitos duplos.

A solução através do domínio das fases foi primeiramente proposto por (NAKANISHI;

AMETANI, 1986), com o intuito de solucionar os erros do uso da matriz de transformação

real e constante para linhas não transpostas e cabos coaxiais. Neste trabalho, os parâmetros

de uma linha de transmissão são obtidos no domínio de fase utilizando a transformada de La-

place, levando em conta a dependência da frequência nos parâmetros de linha. Posteriormente,
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outros modelos foram desenvolvidos no domínio de fases, com destaque para o modelo ULM

(Universal Line Model) (MORCHED et al., 1999) que tem passado por melhorias ao longo dos

anos, como pode ser verificado em (GUSTAVSEN; NORDSTROM, 2008; GUSTAVSEN, 2013;

GUSTAVSEN, 2017).

2.3 FUNÇÃO E VELOCIDADE DE PROPAGAÇÃO

Um dos conceitos de maior importância usado para os cálculos dos parâmetros em uma

linha de transmissão ao longo dos anos é a função de propagação (conhecido também como

fator de propagação ou matriz de propagação). Esse conceito parte dos trabalhos desenvolvido

por (CARSON; HOYT, 1927; RICE, 1941; HEDMAN, 1965), que formularam as bases para os

problemas de propagação de ondas em linhas de transmissão. Pode-se concluir a partir desses

estudos e das equações 2.16 e 2.17, as seguintes equações:

Yc(ω)Vr − Ir(w) = e−γ(ω)l[Yc(ω)Ve(ω) + Ie(ω)] (2.20)

Yc(ω)Ve − Ie(w) = e−γ(ω)l[Yc(ω)Vr(ω) + Ir(ω)] (2.21)

onde os índices e e r se referem aos terminais emissor e receptor de uma linha de transmissão

com um comprimento l, respectivamente. Assim, a função de propagação é definida como:

A(ω) = e−γ(ω)l (2.22)

Considerando um meio sem perdas para as equações 2.7 e 2.8, a velocidade de propagação

pode ser deduzida com base nas equações:

∂V (x,t)

∂x
= −L

∂I(x,t)

∂t
(2.23)

∂Ix,t)

∂x
= −C

∂V (x,t)

∂t
(2.24)

Utilizando a transformada e Laplace de diferenciando as equações, temos:

d2V (ω)

dx2
− s2 · LC · V (ω) = 0 (2.25)

d2I(ω)

dx2
− s2 · LC · I(ω) = 0 (2.26)
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Cuja a solução geral é da forma:

V (ω) = Vp(ω) · e−ω·l/v + Vr(ω) · e+ω·l/v (2.27)

I(ω) = Ip(ω) · e−ω·l/v + Ir(ω) · e+ω·l/v (2.28)

onde v é a velocidade de propagação das ondas viajantes de tensão e corrente:

v =
1√
LC

m/s (2.29)

v =
ω

β
m/s (2.30)

onde ω é a frequência e β é a constante de fase.

Além desses dois conceitos, existe um tempo de propagação (τ) associado as ondas

viajantes em uma linha de transmissão, considerando parâmetros distribuídos e que pode ser

definido como:

v =
l

τ
→ 1√

LC
=

l

τ
(2.31)

τ = l ·
√
LC (2.32)

onde l é o comprimento da linha

2.4 MATRIZ DE TRANSFORMAÇÃO MODAL

De acordo com (DOMMEL, 1996), a solução para um sistema de equações de linhas de trans-

missão com n-fases se torna mais simples quando essas n equações acopladas são transformadas

em n equações desacopladas.

Assim, para o cálculo de um sistema com n-fases pode-se utilizar uma matriz de transfor-

mação modal para desacoplar as equações. Essa técnica é desenvolvida a partir da teoria de

autovalores e autovetores usada para diagonalizar matrizes. A matriz de transformação modal

é capaz de levar as equações do domínio das fases para o domínio modal. A partir das equações

2.9 e 2.10 é possível obter:

−d2V (ω)

dx2
= [Z(ω)Y (ω)]I(ω) (2.33)

−d2I(ω)

dx2
= [Y (ω)Z(ω)]V (ω) (2.34)
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Uma vez que Z e Y são matrizes simétricos, o produto entre ZY e Y Z são transpostos

entre si, entretanto esses produtos não são simétricos. Assim é necessário diagonalizar essas

matrizes através de técnicas matemáticas. Para os produtos de ZY e Y Z surgem as matrizes

Tv e Ti, respectivamente, que podem ser descritos pelas seguintes equações:

T−1
v · Z · Y · Tv = λ (2.35)

T−1
i · Y · Z · Ti = λ (2.36)

onde λ é a matriz diagonal de autovalores composta pelo produto de Y Z ou de ZY (WEDE-

POHL et al., 1996a) e Tv e Ti são as matrizes de autovetores que levam os produtos de ZY

e Y Z as suas respectivas formas diagonais (COSTA et al., 2010). Para a matriz Ti e a sua

matriz λ correspondente, a solução pode ser obtida a partir do seguinte sistema de equações

(WEDEPOHL et al., 1996b), onde I é a matriz identidade:

{Y . Z − λkI} . Ti,k = 0 (2.37)

2.5 INFLUÊNCIA DO SOLO NO CÁLCULO DOS PARÂMETROS

A representação do solo no cálculo de transitórios eletromagnéticos para linhas de trans-

missão aéreas vem sendo tratada de forma mais precisa ao longo dos anos e na maioria dos

modelos são usadas as fórmulas desenvolvidas por Carson (CARSON, 1926). Em boa parte da

literatura desenvolvida sobre modelagem de linhas de transmissão aéreas, os parâmetros do solo

são usualmente tratados de forma simplificada. Adotar essas simplificações pode levar a impre-

cisões na simulação de transitórios eletromagnéticos, principalmente ao se tratar de fenômenos

de descargas atmosféricas (TOMASEVICH, 2011).

Os trabalho desenvolvidos por (FARIA, 2002; PORTELA et al., 2002; PORTELA et al.,

2003; LIMA; PORTELA, 2007; VISACRO; SILVEIRA, 2015; LI et al., 2016) demonstraram a

importância de considerar a variação da frequência para os parâmetros de resistividade, per-

missividade e condutividade no estudo de transitórios eletromagnéticos. De forma semelhante,

os trabalhos desenvolvidos por (TSIAMITROS et al., 2006; MARTINS-BRITTO et al., 2020a;

BRITTO, 2020; PAPADOPOULOS et al., 2021; MARTINS-BRITTO et al., 2020; MARTINS-

BRITTO et al., 2020b; MARTINS-BRITTO et al., 2021) ressaltam a importância de considerar
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o solo de forma não homogênea para os estudos de interferências eletromagnéticas, descargas

atmosféricas e manobras de energização e/ou chaveamento.

2.6 REDUÇÃO DE KRON

De forma geral, as torres de linhas de transmissão são aterradas no solo. Esta conexão

envolve a estrutura da torre e os cabos para-raio da linha de transmissão. Anteriormente, era

razoável considerar que a tensão no cabo para-raio aterrado é igual à zero, para frequências

maiores que 250 kHz (MORAES, 2023). Essa condição pode ser aplicada a qualquer condutor

e estruturas metálicas que estejam aterradas (DOMMEL, 1996).

Essa afirmação permite que as matrizes oriundas das equações do telegrafista possam ter

sua ondem reduzida. Esse método em sistemas de potência é conhecido como redução de

Kron, que resulta em uma simplificação do sistema original de equações contendo a mesma

relação de tensão e corrente nos terminais de estudo. Considerando a equação(2.9), temos para

um sistema 3x3: 
∂V1

∂x

∂V2

∂x

∂V3

∂x

 =

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

 .

I1I2
I3

 (2.38)

desde de que Vn = 0 e ∂Vn

∂x
= 0, a matriz pode ser reduzida eliminando In.

A título de exemplo, considerando V3 = 0, a matriz fica da seguinte forma:

0 = Z31 · I1 + Z32 · I2 + Z33 · I3 (2.39)

I3 = −Z31 · I1
Z33

− Z32 · I2
Z33

(2.40)[
∂V1

∂x

∂V2

∂x

]
=


(
Z11 − Z13·Z31

Z33

) (
Z12 − Z13·Z32

Z33

)
(
Z21 − Z23·Z31

Z33

) (
Z22 − Z23·Z32

Z33

)
 .

[
I1
I2

]
(2.41)

Esse método pode ser generalizado para n-barras no sistema. Considerando n-barras, a

redução da matriz pode ser obtida através da fórmula (BERGEN, 2009):

Z
(new)
ij = Zij −

Zik · Zkj

Zkk

i,j = 1,2,...,n i,j ̸= k (2.42)

onde i é o número da linha, j é o número da coluna, k é o número da linha a ser reduzida e o

termo new se refere aos novos elementos provenientes da matriz original.

A mesma formulação adotada acima pode ser aplicada à matriz de admitância shunt.
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2.7 SÍNTESE DO CAPÍTULO

Neste capítulo, foram abordados conceitos fundamentais para entendimento do trabalho

realizado. As equações diferenciais em linhas de transmissão foram apresentadas como sendo

a base teórica utilizada na modelagem de linhas de transmissão, dando origem as equações do

telegrafista.

Foram abordados aspectos usados para os cálculos dos parâmetros de linha, que envolvem a

modelagem pelo método das características. As diferenças entre domínio modal e domínio das

fases foi discutida de forma breve.

Em seguida, conceitos como função de propagação, matriz de transformação modal e veloci-

dade de propagação foram apresentados, mostrando suas respectivas formulações matemáticas.

Posteriormente, a influência do solo no cálculo dos parâmetros de linha foi brevemente citada.

Por fim, o equacionamento da técnica matemática da redução de Kron foi descrito.

No próximo capítulo, serão apresentadas as principais diferentes entre os modelos de linha

de transmissão, oriunda das diferentes metodologias adotadas para os cálculos dos conceitos

apresentados nesse capítulo.



CAPÍTULO 3

MODELOS DE LINHA

Os modelos de linha ao longo dos anos tem passado por avanços, considerando diferentes

aspectos nos cálculos dos parâmetros, fazendo com que certos modelos representem as linhas

de transmissão de forma mais ou menos precisa (STEINSLAND, 2018). Este capítulo aborda

os principais pontos que caracterizam cada um dos modelos descritos nesse trabalho usados

atualmente em programas de simulação de transitórios eletromagnéticos.

Dois tipos de modelos geralmente são usados para descrever o comportamento das tensões e

correntes ao longo de uma linha de transmissão: modelos a parâmetros concentrados e modelos

a parâmetros distribuídos. Neste trabalho, apenas modelos a parâmetros distribuídos foram

utilizados.

3.1 MODELO DE BERGERON

Partindo das soluções de modelagem de linhas no domínio modal, o modelo de Bergeron,

apresenta as soluções para os cálculos dos parâmetros no domínio do tempo. Essa abordagem se

baseia num pressuposto de linha sem perdas para representar as ondas viajantes (BERGERON,

1950; WEDEPOHL, 1963).

As equações para tensão e corrente neste modelo podem ser obtidas a partir das equações

(2.7) e (2.8), considerando um meio sem perdas:

∂i(x,t)

∂x
= −C

∂V (x,t)

∂t
(3.1)

∂V (x,t)

∂x
= −L

∂i(x,t)

∂t
(3.2)

onde L e C são as respectivas indutância e capacitância da linha.
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A solução geral das equações 3.1 e 3.2 são expressas por (CABALLERO et al., 2016):

i(x,t) = f1(x− vt) + f2(x+ vt) (3.3)

V (x,t) = Zcf1(x− vt) + Zcf2(x+ vt) (3.4)

onde f1 e f2 são funções arbitrárias que representam a propagação das ondas ao longo da linha,

Zc é a impedância característica e v é a velocidade de fase.

Pelo fato de considerar uma linha sem perdas, a tensão no começo da linha deve ser a mesma

no final. Assim a equação da tensão ao longo da linha é expressa da seguinte forma:

Vm(t− τ) + Zc im,k(t− τ) = Vk(t) + Zc(−ik,m(t)) (3.5)

onde τ é o tempo para uma onda percorrer uma linha de transmissão em uma certa distância,

de acordo com a equação (2.32).

Expressando a solução como uma rede de impedâncias equivalentes, de acordo com a figura

3.1, as correntes obtidas pelo método de Bergeron são:

ik(t− τ) = − 1

Zc

Vm(t− τ)− im,k(t− τ) (3.6)

im(t− τ) = − 1

Zc

Vk(t− τ)− ik,m(t− τ) (3.7)

Figura 3.1: Circuito de impedância equivalente para o modelo de Bergeron

Fonte: Reproduzido de (CABALLERO et al., 2016)

Os parâmetros de linha e as características de propagação são calculados para uma frequên-

cia específica, o que resulta numa abordagem de frequência única. Consequentemente, a sua

gama de aplicabilidade é limitada para estudos além da frequência fundamental (DOMMEL,

1996).
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3.2 MODELO DE J. MARTÍ

O modelo de J. Martí considera os parâmetros distribuídos e variantes na frequência, per-

mitindo representações mais precisas em relação ao modelos apresentados nos anos anteriores.

Figura 3.2: Modelo simplificado de linha desenvolvido por Dommel’s

Fonte: Reproduzido de (MARTI, 1982)

Com uma nova formulação para interpretar as funções de Meyer e Dommel’s (MEYER;

DOMMEL, 1974), esse modelo substitui a resistência R1 da figura 3.2, por um circuito equi-

valente com uma impedância igual à impedância característica da linha, fazendo com que não

haja reflexão nas extremidades (MARTI, 1982). Assim, o problema se torna em sintetizar um

circuito capaz de representar a impedância característica da linha.

Figura 3.3: Circuito RC para representação de uma impedância
equivalente a impedância característica da linha

Fonte: Reproduzido de (MARTI, 1982)

O circuito equivalente (Zeq) para a representação da impedância característica da linha é

sintetizado através de um circuito série de blocos paralelos RC, representados na figura 3.3. O

número de blocos RC é determinado pelo processo de ajuste utilizado. Para o modelo clássico

de J Martí, os parâmetros dos blocos RC são forçados à serem polos de valor real, determinados

utilizando um procedimento de ajuste de curva no domínio de Bode através da transformada

de Laplace:

Zeq(s) =
N(s)

D(s)
= H

(s+ z1)(s+ z2)...(s+ zn)

(s+ p1)(s+ p2)...(s+ pn)
(3.8)
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Esse modelo assume uma matriz de transformação modal real e invariante na frequência.

Os valores de Ri e Ci na figura 3.3 são determinados expandindo a equação 3.8 em série de

frações parciais:

Zeq(s) = k0 +
k1

s+ p1
+

k2
s+ p2

+ ... +
kn

s+ pn
(3.9)

R0 = ko Ri =
ki
pi

Ci =
1

ki
(3.10)

As melhorias subsequentes do modelo original de J. Martí envolvem a utilização de técnicas

mais sofisticadas, como o ajuste vetorial (Vector Fitting), para extrair os parâmetros da função

racional (DE CONTI; EMIDIO, 2016). No entanto, devido às restrições impostas em relação à

matriz de transformação e a restrição de polos com valor real, o modelo de J. Martí continua a

apresentar imprecisões quando lida com configurações assimétricas, tais como linhas de circuito

duplo não transpostas e cabos subterrâneos (HOIDALEN; SOLOOT, 2010; DOMMEL, 1996).

3.3 ULM (UNIVERSAL LINE MODEL)

Atualmente, o modelo mais utilizado para o estudo de transitórios eletromagnéticos em dife-

rentes tipos de linhas de transmissão (simétricas, assimétricas e cabos subterrâneos), baseia-se

no conceito do ULM (GUSTAVSEN; SEMLYEN, 1999; MORCHED et al., 1999). Essencial-

mente, ele ultrapassa as limitações fundamentais do modelo de J. Martí, utilizando a técnica

de ajuste vetorial com polos de valor complexo para encontrar representações mais adequadas

das admitâncias características de linha diretamente no domínio de fase, lidando assim com o

característica de variação na frequência para a matriz de transformação modal.

Figura 3.4: Circuito equivalente no domínio da frequência para o modelo ULM

Fonte: Reproduzido de (ZANON et al., 2021)

De acordo com a figura 3.4, as correntes e tensões nos terminais k e m são (NAREDO et

al., 2011; ZANON et al., 2021):
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Ik − YcVk = −H(Im + YcVm) (3.11)

Im − YcVm = −H(Ik + YcVk) (3.12)

Yc = Y −1
√
Y Z (3.13)

H = e−
√
Y Zl (3.14)

onde Vk, Ik, Vm e Im são as tensões e correntes nas extremidades da linha. Yc e H são as

matrizes de admitância característica e de propagação, respectivamente. Essas equações são as

bases para o modelo do ULM, onde:

Bk = H(Im + YcVm) (3.15)

Bm = H(Ik + YcVk) (3.16)

O modelo ULM traz uma abordagem para o cálculo das matrizes de propagação e admitân-

cia característica, que são dependentes da frequência e geralmente são calculadas por funções

discretas no domínio da frequência. Os polos da matriz aproximada Ỹc são calculados através

do traço de Yc, usando o ajuste vetorial (MORCHED et al., 1999; ZANON et al., 2021):

Yc ≈ Ỹc = k0 +

NpY∑
n=1

kn
s− pn

(3.17)

onde NpY é igual ao número de polos necessários para o ajuste de Yc.

Através da transformação modal, a matriz de propagação pode ser reescrita da seguinte

forma (ZANON et al., 2021):

e−
√
λl = T−1

i HTi (3.18)

H =

Nmod∑
j=1

Dje
√

λj l (3.19)

onde λ é a matriz diagonal com os autovalores de Y Z, Ti é a matriz de transformação modal

com os autovetores de Y Z e Nmod são os modos de propagação.

Através da matriz Dj os problemas de indeterminação são eliminados (ZANON et al., 2019).

Utilizando a técnica de ajuste vetorial, a matriz H fica da seguinte forma:

H ≈ H̃ =

Nmod∑
j=1

NpH∑
i=1

kij

s− pi

 e−sτj (3.20)
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onde NpH são o número de polos necessários para o ajuste e τj é o tempo mínimo de atraso

associado a cada modo de propagação.

3.4 MODELO DE TRANSFORMADA NUMÉRICA DE LAPLACE

A característica dependente da frequência nos parâmetros das linhas de transmissão deve-se

principalmente aos efeitos do retorno à terra nas impedâncias e admitâncias (MARTI, 1982;

DOMMEL, 1996; MARTINS-BRITTO et al., 2020a; MARTINS-BRITTO et al., 2022; MO-

RAES et al., 2021). Uma classe particular de modelos de linha baseia-se na realização de

cálculos primeiro no domínio da frequência e, em seguida, a solução transitória é obtida através

da transformada de Laplace. Assim, este modelo foi desenvolvido com base nessas premissas no

intuito de representar de forma tão realista quanto possível as características de propagação de

linhas de transmissão. Ele se baseia numa análise nodal generalizada, numa abordagem modal

multi-condutor e no algoritmo numérico convencional da transformada de Laplace, desenvol-

vido por (CHRYSOCHOS et al., 2015). A decomposição modal é feita através do algoritmo de

Levenberg-Marquardt, usado para resolver problemas de autovalores com formulação não linear

(CHRYSOCHOS et al., 2014), obtendo uma transformação modal mais suave no domínio da

frequência. Estes métodos estão disponíveis através de uma interface para linha de transmissões

aéreas (OHLToolbox) em (MARTINS-BRITTO et al., 2023).

Não se faz necessário à síntese de circuitos através de técnicas de ajustes para o cálculo

dos parâmetros de linha neste modelo, ou seja, o circuito é resolvido de forma direta, sem

aproximações ou perda de informações. Além disso, as fórmulas de Wise’s, apresentadas no

capítulo anterior, são usadas sem adotar simplificações.

3.5 SÍNTESE DO CAPÍTULO

Neste capítulo, as principais metodologias usadas para os cálculos dos parâmetros de linha

foram descritas para os modelos de Bergeron, J. Martí, ULM e a transformada numérica de

Laplace.

Verificou-se que as diferenças estão fortemente relacionadas a dependência dos parâmetros
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em relação à frequência. Ao se considerar ou não alguns parâmetros dependentes da frequência,

os cálculos se tornam mais complexos, necessitando de técnicas de ajuste específicas. Foram

abordadas para cada modelo seus respectivos equacionamentos, destacando as fórmulas adota-

das e suas principais especificações.

No próximo capítulo, é apresentado um estudo das características de propagação e uma

avaliação do desempenho dos modelos de linha na estimação de fenômenos transitórios para

duas linhas de transmissão: CCAT e CA.



CAPÍTULO 4

ESTUDO DE LINHAS DE TRANSMISSÃO

Este capítulo mostra as análises das características do modo de propagação, do espectro

de frequência e respostas transitórias de alta e baixa frequência para os modelos apresentados

anteriormente para dois tipos diferentes de sistemas: linha de transmissão CCAT e linha de

transmissão CA. Nas simulações a seguir, adota-se a seguinte nomenclatura:

• JM → Modelo de J. Martí

• JMV → Modelo de J. Martí utilizando o ajuste vetorial

• BERG → Modelo de Bergeron

• ULM → Modelo universal de linha

• NLT → Modelo da transformada numérica de Laplace

onde o modelo NLT será tratado com referência para comparação dos resultados nas simulações.

O circuito de teste construído no ATPDraw para efetuar as análises está representado na

figura 4.11. O objeto LCC (Line/Cable Constants) é definido para linha de transmissão aérea,

levando em conta o efeito pelicular nos condutores e a resistividade do solo é assumida igual

a 1000 Ω.m para todas as simulações. Na abordagem LCC, as impedâncias de linha são cal-

culadas utilizando a equação de Carson, as admitâncias são obtidas utilizando o método das

imagens eletrostáticas e a decomposição modal é realizada através da fatoração QR (DOMMEL,

1996). As simulações são executadas para diferentes comprimentos da linha de transmissão,

a depender do sistema analisado. Os polos, ou fases, são considerados aproximadamente sem

reflexão das ondas que se propagam ao longo da linha, ao serem terminados com as impedâncias

correspondentes à impedância característica da linha, indicadas pelas resistências na figura 4.1.

1Devido a similaridade entre os dois circuitos, apenas a figura do sistema CCAT foi apresentada.
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Para a varredura de frequência, é aplicada uma fonte de tensão senoidal que produz 1

p.u.. Para as respostas transitórias, utiliza-se uma fonte exponencial dupla (esse tipo de fonte

pode ser associada a uma descarga atmosférica) com um formato de um pulso de 1,2/50 µs e

uma fonte em degrau (esse tipo de fonte pode ser associada a manobras de energização) com

amplitude de 1 p.u.. Para o sistema CCAT, considerando um bipolo, a fonte é aplicada ao polo

negativo do terminal emissor e em seguida são registadas as tensões induzidas no polo positivo

do terminal receptor. Para o sistema CA, a fonte é aplicada em uma das fases no terminal

emissor e em seguida são registradas as tensões induzidas nas outras fases no terminal receptor.

O passo de tempo adotado é de 1 µs, com um tempo total de simulação de 100 ms. As chaves

mostradas na figura 4.1 são fechados individualmente em t = 0 s, de acordo com os testes

realizados. As análises são feitas considerando que os terminais que não estejam energizados,

estão aterrados, ou seja, é considerado que a corrente tem seu retorno pela terra.

Uma análise nos sistemas das figuras 4.15 e 4.2 mostra que as linhas de transmissão são

compostas pelo seus condutores e por um para-raio composto por dois cabos. Uma vez que

os cabos para-raio são ligados à terra em cada torre e nas estações terminais, as matrizes que

descrevem os parâmetros de linha podem ser simplificados via redução de Kron, pois a corrente

que circula nos cabos para-raio pode ser considerada zero (DEGENEFF et al., 1995).

Figura 4.1: Circuito teste construído no ATPDraw

Polo +

Para-Raio

BERG/JM/JMV/ULM1 p. u.

LCC

Polo -

Fonte: Autoria própria.

4.1 SISTEMA CCAT

O sistema de interesse é a linha de transmissão Madeira CCAT, composto por dois polos

de 600 kV cada, comprimento de 2450 km e uma corrente nominal de 2625 A. Esta linha de

transmissão conecta a subestação Porto Velho no estado de Rondônia à subestação Araraquara-

2 no estado de São Paulo e foi colocada em operação no ano de 2013. A seção transversal típica
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da torre está representada na figura 4.2. Cada polo é composto por quatro condutores ACSR

2312 MCM agrupados e a linha está equipada com dois cabos para-raios de 3/8”.

Figura 4.2: Corte transversal do sistema CCAT
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Fonte: Adpatação de (FERNANDES et al., 2019).

4.1.1 Características do Modo de Propagação

Está seção traz uma análise dos modos de propagação e da matriz de transformação modal

com e sem a redução de Kron no cálculo dos parâmetros do sistema.

4.1.1.1 Com redução de Kron

Em um sistema com n cabos paralelos existem, geralmente, n modos de propagação, que

correspondem ao número de raízes associadas à constante de propagação (essas raízes são a

solução geral para as equações diferenciais em linhas de transmissão) (CARSON, 1926).

Assim, atenuação constante e a velocidade de fase dos dois modos naturais de propagação

calculados em função da frequência são mostrados nas figura 4.3.O modo #1 apresenta caracte-

rísticas de propagação aérea, descrito por um modo entre polos de baixa atenuação e velocidade

de fase que se aproxima da velocidade da luz no vácuo. O modo #2 apresenta características de

propagação terrestre, descrito por características de baixa atenuação com uma pequena oscila-

ção em baixas frequências e velocidade de fase reduzida em baixas frequências. Comparando a
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figura 4.3 com a figura 4.7, nota-se que o modo #2 é influenciado pelas características do cabo

para-raio, devido a redução de Kron no sistema, resultando assim em um modo misto. Este

fato pode ser observado perincipalmente entre as frequências 0,01 e 1 Hz dentro do espectro.

Figura 4.3: Características do modo de propagação com redução de Kron: (a) Atenuação constante, (b)
Velocidade de fase
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Fonte: Autoria própria.

Para obter uma visão mais clara sobre a natureza desses modos de propagação, é conveniente

verificar a matriz de transformação Ti que desacopla o sistema original do domínio da fase para

o domínio modal, expressa pelo produto matricial de Y Z. Na figura 4.4 os termos da matriz

Ti, tanto a parte real como parte imaginária, são representados em função da frequência.

Pode inferir-se que o modo #1 é excitado injetando uma corrente unitária em qualquer polo

e extraído do solo na estação terminal. Isto está de acordo com a ideia de que, em operação

CCAT monopolar, a corrente retorna através do caminho pela terra.

Além disso, nota-se que o método de (CHRYSOCHOS et al., 2014) fornece uma solução

estável e generalizada para o problema dos autovalores, sem impor quaisquer restrições espe-

cíficas relativamente à matriz de autovetores. Ou seja, a solução numérica da decomposição

modal através do algoritmo de Levenberg-Marquardt, neste caso, converge para uma matriz

de transformação com valor real e invariante em frequência. Isto é explicado pelo fato de os

condutores de cada polo, ilustrados na figura 4.2, serem idênticos e colocados simetricamente
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em relação ao eixo vertical, resultando em matrizes Y e Z simétricas e equilibradas para cada

amostra de frequência. Devido à essa simetria e homogeneidade, a matriz de ordem dois do

produto de Y Z pode ser escrita como:

M2×2 = Y Z =

[
Mp Mm

Mm Mp

]
∀f, (4.1)

onde cada Mp e Mm são escalares complexos não nulos que combinam características dos pa-

râmetros de linha próprios(denotado pelo índice p) e mútuos(denotado pelo índice m) e f é a

frequência.

Os autovalores de M são determinados a partir da equação característica:

det(M − λI) = det
([

Mp − λ Mm

Mm Mp − λ

])
= 0 (4.2)

(Mp − λ)2 −M2
m = 0 (4.3)

onde I é a matriz identidade.

As raízes dessa equação são λ1 = Mp−Mm e λ2 = Mp+Mm. Para determinar os autovetores

correspondentes a cada autovalor, é necessário encontrar os valores que satisfaçam a seguinte

relação:

(M − λkI)νk = 0, (4.4)

onde λk é o autovalor e νk é o autovetor correspondente.

• Para o autovalor λ1 = Mp −Mm:

([
Mp Mm

Mm Mp

]
−
[
Mp −Mm 0

0 Mp −Mm

])[
ν1
ν2

]
=[

Mm Mm

Mm Mm

] [
ν1
ν2

]
=

[
0
0

]
→ ν1 = −ν2.

(4.5)

• Para o autovalor λ2 = Mp +Mm:

([
Mp Mm

Mm Mp

]
−

[
Mp +Mm 0

0 Mp +Mm

])[
ν1
ν2

]
=[

−Mm Mm

Mm −Mm

] [
ν1
ν2

]
=

[
0
0

]
→ ν1 = ν2.

(4.6)
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A partir de (4.5) e (4.6) é evidente que os autovetores associados aos autovalores λ1 e λ2

são quaisquer múltiplos escalares de
[
1
−1

]
e
[
1
1

]
, respectivamente. Uma vez que qualquer fator

de escala aplicado aos autovetores νk também são escolhas válidas, a matriz de transformação

modal pode ser expressa como:

Ti =

√
2

2

[
1 −1
1 1

]
, (4.7)

que é a matriz 2× 2 clássica de Fortescue (FORTESCUE, 1918), multiplicada por um fator de
√
2. A equação 4.7 descreve os valores encontrados para a matriz de transformação modal do

sistema CCAT na figura 4.4.

Figura 4.4: Representação dos termos da matriz de transformação modal
em função da frequência com redução de Kron
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Fonte: Autoria própria.

A partir das observações acima, depreende-se que, considerando um bipolo para o sistema

CCAT, homogêneo e simétrico, as respostas transitórias obtidas usando o modelo clássico de J.

Martí não são afetadas pela escolha da frequência na matriz de transformação, bem como pela

restrição de valor real imposta a Ti, porque as características de propagação do sistema CCAT

cumprem intrinsecamente com estas hipóteses do modelo.

Para demonstrar essa afirmação, foram efetuadas simulações com diferentes frequências

da matriz de transformação nos dois modelos de J. Martí descritos nesse trabalho: 91 Hz
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(frequência de ressonância do sistema de acordo com a figura 4.10b), 5 kHz (recomendação do

ATP Rule Book), 50 kHz e 1 MHz.

Figura 4.5: Resposta transitória do modelo de JMV usando diferentes frequências
da matriz de transformação para as entradas do tipo: (a) Degrau, (b) Dupla Exponencial
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Fonte: Autoria própria.

Observou-se, de fato, que o resultado permanece inalterado pela escolha da frequência da

matriz de transformação modal para os modelos JM e JMV, como pode ser observado nas

figuras 4.5 e 4.6.

Figura 4.6: Resposta transitória do modelo de JM usando diferentes frequências
da matriz de transformação para as entradas do tipo: (a) Degrau, (b) Dupla Exponencial
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Fonte: Autoria própria.

Para que não houvesse redundâncias no resultados apresentados anteriormente, foi conside-

rada apenas o tamanho real da linha de transmissão para demonstrar o efeito da frequência na

matriz de transformação modal.
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4.1.1.2 Sem redução de Kron

Figura 4.7: Características do modo de propagação sem redução de Kron: (a) Atenuação constante, (b)
Velocidade de fase
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Fonte: Autoria própria.

Atenuação constante e a velocidade de fase dos três modos naturais de propagação calculados

em função da frequência são mostrados na figura 4.7. Para esta análise, os dois cabos para-raio

do sistema, de acordo com a figura 4.2, foram considerados como uma fase2.

O modo #1 corresponde às características de propagação aérea do cabo para-raio. Esse

modo tem uma baixa atenuação em relação à frequência e uma velocidade quase constante em

todo o espectro e próxima da velocidade da luz no vácuo para frequências acima de 1Hz. O

modo #2 corresponde as características de propagação aérea entre os polos, caracterizado por

uma baixa atenuação e uma velocidade próxima da velocidade da luz no vácuo, desde as baixas

frequências. Desses dois modos pode-se entender que o sistema não possui perdas relevantes

em condições normais de operação, ou seja, as ondas se propagam sem grandes atenuações e

próximas da velocidade da luz.

O modo #3 corresponde às características de propagação terrestre, que é energizado por

uma corrente unitária nos polos e no cabo para-raio e tem seu retorno através do caminho pela

terra. Esse modo possui baixa velocidade de fase em todo o espectro e uma alta atenuação a

2Nesse contexto o termo "fases"deve ser tratado no sentido geral, equivalente a barramento.



4.1 – Sistema CCAT 29

partir de 1 Hz em relação aos outros modos. A baixa velocidade é devido à elevada impedância

indutiva do trajeto pelo solo nas regiões de baixas frequências com um leve aumento com a

frequência (MARTINS-BRITTO et al., 2022; AMETANI et al., 2014).

Na figura 4.8 os termos da matriz Ti, tanto a parte real como a imaginária, são representados

em função da frequência. Os números entre parênteses representam as linhas e colunas da

matriz, respectivamente, e o número de cada coluna está diretamente relacionado com os modos

de propagação #1,#2 e #3.

Figura 4.8: Representação dos termos da matriz de transformação modal
em função da frequência sem redução de Kron
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Fonte: Autoria própria.

Pode-se observar que o modo #2 é constante e real em relação as linhas 1 (a parte imaginária

para da linha 1 é 180°, ou seja, uma inversão nos valores de magnitude) e 2 da matriz de

transformação. Isso mostra que o modo aéreo não é influenciado pelo condutor para-raio.

Além disso, ao se comparar as figuras 4.7 e 4.3, nota-se que os modos aéreos (modo #2 na

figura 4.7 e modo #1 na figura 4.3) são iguais em relação a atenuação e velocidade de fase3.

Ao se comparar as duas matrizes de transformação, observa-se que a inclusão do cabo

para-raio no sistema faz com que surja variações na parte real e imaginaria da matriz de

transformação modal. Pode-se depreender das análises do sistema sem e com a redução de
3Pelo fato de tratar de uma solução numérica, o número relacionado a cada modo muda de acordo com o

sistema. Os modos são determinados como aéreo ou terrestre de acordo com natureza dos seus parâmetros.
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Kron, para efeitos de influência nos estudos de tensões induzidas nos polos do sistemas com

resistividade do solo finita, que o sistema não sofre alterações relevantes quanto ao seu modo

de propagação aérea.

4.1.2 Varredura em frequência

As figuras 4.9 e 4.10 descrevem as tensões induzidas no polo positivo do terminal receptor

para uma entrada senoidal de tensão de 1 p.u. aplicada ao polo negativo no terminal de

emissor para diferentes comprimentos de linha. Apesar de se tratar de um sistema em corrente

contínua, é interessante verificar componentes de frequência ao longo da linha através de uma

fonte senoidal, pois elas são importantes nas análises de descargas atmosféricas.

Figura 4.9: Tensão induzida para uma varredura em
frequência com o comprimento de linha : (a) 1 km, (b) 10 km
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Fonte: Autoria própria.

Verifica-se, em geral, que a parte dominante do espetro é deslocada para a esquerda à medida

que o comprimento da linha aumenta, o que é esperado e está relacionado com o fenômeno de

ressonância (MARTINS-BRITTO et al., 2022). Para o comprimento real da linha (2450 km), a

frequência de ressonância ocorre aproximadamente em 91 Hz, com valores de ganho relevantes

até 51 kHz.

Observa-se que a representação pelo modelo de Bergeron produz uma distorção geral das

curvas e picos de magnitude maiores em relação à referência, produzindo um erro RMS na

ordem de 37% no pior caso (figura 4.10b). Embora o modelo de Bergeron siga a referência

perto do CC (baixas frequências), ocorrem desvios consideráveis na ordem de quilo-hertz e

superiores, sem um padrão claro, uma vez que, em alguns casos, as componentes de frequência
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são amplificadas (figura 4.9a) e, em outros, a mesma faixa é atenuada (figura 4.10b).

As curvas do modelo ULM concordam satisfatoriamente com a referência para todos os

comprimentos de linha em consideração, em todo o espetro, desde CC até o fim do espectro.

Isto não é surpreendente, devido à formulação robusta do modelo ULM no domínio do tempo e

por impor menos restrições ao procedimento de ajuste vetorial, mais especificamente por lidar

naturalmente com representações de estado complexo, que são muitas vezes necessárias para

alcançar um ajuste de modelo de alta qualidade.

Curiosamente, as respostas ao se utilizar o modelo de J. Martí seguem geralmente a forma de

onda do modelo ULM, com leves desvios na parte superior do espetro. No entanto, a implemen-

tação clássica de J. Martí (JM), baseada no ajuste de Bode, mostra imprecisões significativas

para frequências perto do nível CC (figura 4.10b), confirmando trabalhos anteriores (SILVA

et al., 2007). Por outro lado, o modelo J. Martí com ajuste vetorial (JMV) proporciona um

aumento razoável no desempenho, com uma melhor concordância perto do nível CC em relação

à referência.

Figura 4.10: Tensão induzida para uma varredura em
frequência com o comprimento de linha : (a) 100 km, (b) 2450 km
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Fonte: Autoria própria.

4.1.3 Resposta transitória

As figuras 4.11 e 4.12 mostram as respostas transitórias no terminal de recepção devido

a uma função de decaimento exponencial duplo com um formato de um pulso de 1,2/50 µs,

enquanto as figuras 4.13 e 4.14 mostram as respostas transitórias no terminal de recepção

para uma fonte do tipo degrau unitário.
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Figura 4.11: Tensão induzida para resposta ao
impulso com o comprimento de linha : (a) 1 km, (b) 10 km
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Fonte: Autoria própria.

Devido às grandes variações identificadas pelo modelo de Bergeron (figuras 4.9 e 4.10), esta

abordagem não será utilizada nas análises a seguir, de modo a evitar que picos artificias no

domínio do tempo prejudiquem a visibilidade dos gráficos.

Em geral, para ordens de frequências mais elevadas, todos os resultados concordam com a

referência. JM e JMV apresentam pequenas discrepâncias em comparação com a referência,

especialmente na determinação do pico na figura 4.11b. À medida que o tamanho da linha

aumenta, a duração do efeito transitório até à acomodação e o momento em que efeito ocorre

no terminal de recepção também aumentam(este fato fica mais evidente na figura 4.12b), o que

se relaciona com o tempo de propagação das ondas viajantes, de acordo com a equação (2.32).

Figura 4.12: Tensão induzida para resposta ao
impulso com o comprimento de linha : (a) 100 km, (b) 2450 km
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Fonte: Autoria própria.
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Figura 4.13: Tensão induzida para resposta ao
degrau com o comprimento de linha : (a) 1 km, (b) 10 km
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Fonte: Autoria própria.

Figura 4.14: Tensão induzida para resposta ao
degrau com o comprimento de linha : (a) 100 km, (b) 2450 km
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Fonte: Autoria própria.

Os resultados para a fonte degrau unitário podem ser associados à uma manobra de ener-

gização em um dos polos do sistema CCAT. As tensões transitórias nas figuras 4.13 e 4.14

mostram padrões típicos de ondas viajantes, com características distorcidas do tipo degrau

causadas por reflexões e refrações, o que está de acordo com o fato dos condutores simulados

estarem quase, mas não perfeitamente, emparelhados. A figura 4.14a ilustra particularmente

as imprecisões introduzidas pelo método J.Martí no ajuste de frequências próximas ao CC e seu

impacto nas respostas no domínio do tempo. A medida que o sistema se aproxima do estado

estacionário, observa-se que as tensões residuais indicadas nas curvas JM e JMV são até duas

vezes superiores ao valor encontrado pela referência. No pico de magnitude do fenômeno tran-
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sitório presente na figura 4.14b, os modelos de JM, JMV e ULM apresentam um valor maior

que a referência, com uma forma de onda semelhante.

4.2 SISTEMA GENUINAMENTE CA

O sistema de interesse é a linha de transmissão CA composta por três fases, com tensão

de linha igual à 150 kV. A secção transversal típica da torre está representada na figura 4.15 e

faz parte de uma série de linhas de transmissão para estudos do uso de fórmulas fechadas na

estimação de backflashover 4 (DATSIOS et al., 2021). Cada polo é composto por um condutor

ACSR Grosbeak e a linha está equipada com dois cabos para-raios GLV Steel.

Figura 4.15: Corte transversal do sistema CA
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Fonte: Adpatação de (DATSIOS et al., 2021).

4.2.1 Características de propagação

Está seção traz uma análise dos modos de propagação e da matriz de transformação modal

com e sem a redução de Kron no cálculo dos parâmetros do sistema.

4Backflashover é a disrupção do isolamento de uma linha provocada pela sobretensão resultante na cadeia
de isoladores decorrente da incidência direta de descargas no cabo de blindagem ou na torre.
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4.2.1.1 Com redução de Kron

Atenuação contante e a velocidade de fase dos três modos naturais de propagação calculados

em função da frequência são mostrados na figura 4.16. O modo #1 apresenta caraterísticas

de propagação terrestre, com atenuação maior em relação aos outros modos para frequências

acima de 10 Hz. A velocidade de fase é reduzida em comparação com os outros dois modos,

para frequências perto do CC e na frequência de operação da rede, 60 Hz. Comparando a

figura 4.16 com a figura 4.18, nota-se que o modo #1 é influenciado pelas características do

cabo para-raio, devido a redução de Kron no sistema, resultando em um modo misto. Este fato

pode ser observado principalmente para frequências entre 10 e 100 Hz dentro do espectro.

Os modos #2 e #3 apresentam características de propagação aérea, descrito por um modo de

baixa atenuação entre as fases e uma velocidade próxima da velocidade da luz para frequências

acima de 10 Hz. Pode-se inferir que o modo terra tem uma atenuação maior e se propaga de

forma mais lenta que os modos aéreos, o que está de acordo com a resistividade finita do solo

produzir um meio que contém perdas.

Figura 4.16: Características do modo de propagação: (a) Atenuação constante, (b) Velocidade de fase
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Fonte: Autoria própria.

A figura 4.17 contém os dados da matriz de transformação modal, parte real e parte ima-

ginária, onde os números entre parênteses representam as linhas e colunas da matriz, respecti-
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vamente. O número de cada coluna está diretamente relacionado com os modos de propagação

#1,#2 e #3.

Diferente da matriz de transformação modal do sistema CCAT com a redução de Kron, a

matriz de transformação modal do sistema CA não é uma matriz somente com valores reais e

varia com a frequência. As interações entre os parâmetros da linha (admitâncias e impedâncias

mútuas e próprias) se dá de forma diferente, devido as distâncias entre os condutores, ou seja,

o condutor A não está na mesma distância em relação ao condutor B do que está em relação

ao condutor C5, de acordo com a figura 4.15, e pelas características do sistema.

Figura 4.17: Representação dos termos da matriz de transformação modal
em função da frequência com redução de Kron
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Fonte: Autoria própria.

Pode-se notar, assim como no sistema CCAT sem redução de Kron, que o modo #2 é

constante e real em relação as linhas 1 e 3 da matriz de transformação. Apesar de se tratar de

sistemas diferentes, as características de propagação são semelhantes.

5Nesse caso pode ser considerado condutor A qualquer condutor localizado nas extremidades.
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4.2.1.2 Sem redução de Kron

A atenuação constante e a velocidade de fase de quatro modos naturais de propagação

calculados em função da frequência são mostrados na figura 4.18. Para esta análise, o dois

cabos para-raio do sistema, de acordo com a figura 4.15, são considerados como uma fase.

O modo #1 corresponde às características de propagação aérea do cabo para-raio. Esse

modo possui uma atenuação maior em baixas frequências em relação aos outros modos e uma

baixa atenuação em altas frequências, com uma baixa velocidade de fase no início do espectro.

Os modos #3 e #4 correspondem às características de propagação aérea das fases, descrito

por modos de baixa atenuação e velocidade de fase próxima da velocidade da luz no vácuo para

frequências acima de 10 Hz. Observando as figuras 4.16 e 4.18, os modos de propagação aéreas

das fases não sofrem mudanças com a inclusão dos cabos para-raio nos parâmetros do sistema.

Figura 4.18: Características do modo de propagação: (a) Atenuação constante, (b) Velocidade de fase
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Fonte: Autoria própria.

O modo #2 corresponde às características de propagação terrestre, com atenuação maior

em relação aos outros modos para frequências acima de 10 Hz. A velocidade de fase é reduzida

em quase todo o espectro e aumenta junto com a frequência. Assim como nas outras análises,

o modo terra tem velocidade de fase reduzida e uma atenuação maior em relação aos outros

modos.
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Na figura 4.19 os termos da matriz Ti, tanto parte real como parte imaginária, são represen-

tados em função da frequência. Os números entre parênteses representam as linhas e colunas

da matriz, respectivamente, e o número de cada coluna está diretamente relacionado com os

modos de propagação de #1 a #4.

Figura 4.19: Representação dos termos da matriz de transformação modal
em função da frequência sem redução de Kron

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0,5

1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

100

200

F
as

e 
(°

)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0,2

0,4

0,6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-100

-50

0

F
as

e 
(°

)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

0,5

1

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

-400

-200

0

F
as

e 
(°

)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Frequência (Hz)

0

0,2

0,4

0,6

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Frequência (Hz)

-1000

0

1000

F
as

e 
(°

)

(4,1)

(4,1)

(4,2)

(4,2)

(4,3) (4,3)

(4,4)

(4,4)

(1,1)

(1,1)

(1,2)

(1,3)

(1,4)

(1,2)

(1,3)

(1,4)

(2,1)

(2,2)

(2,3)

(2,4)

(2,1)

(2,2)

(2,3)

(2,4)

(3,1)

(3,2)

(3,3)

(3,4)

(3,1)

(3,2)

(3,3)

(3,4)

Fonte: Autoria própria.

Nota-se uma variação maior na parte de magnitude e fase da matriz em relação a figura

4.17, em especial as interações que envolvem a linha 4. Pode-se observar, assim como nas

análises anteriores, que o modo #4 é constante e real em relação às linhas 1 e 3 da matriz de

transformação.

Ao se observar as figuras 4.8 e 4.19 nota-se que a inclusão de condutores nos dois sistemas,

varia a matriz de transformação dos dois sistemas. Entretanto, os modos de propagação aéreos

não sofrem alterações, seja dos polos ou das fases, com a inclusão de mais condutores no sistema.

Portanto, a redução de Kron não altera o modo de propagação aérea entre fases também no

sistema CA.
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4.2.2 Varredura em frequência

As figuras 4.20 e 4.21 ilustram o comportamento das tensões induzidas na fase B da linha

de transmissão CA para uma entrada senoidal aplicada na fase A para diferentes comprimentos

de linha.

Observa-se que a parte dominante do espectro é deslocada a esquerda à medida que o

comprimento da linha aumenta. Conforme o tamanho da linha aumenta, a frequência de

ressonância para cada tamanho também se descola para a esquerda, tendo seu pico de magnitude

em torno de 0,4. Para o maior comprimento da linha, a frequência de ressonância ocorre

aproximadamente em 2 kHz.

Figura 4.20: Tensão induzida para uma varredura em
frequência com o comprimento de linha : (a) 1 km, (b) 10 km
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Fonte: Autoria própria.

Figura 4.21: Tensão induzida para uma varredura em
frequência com o comprimento de linha : (a) 100 km, (b) 400 km
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Fonte: Autoria própria.
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Verifica-se que a representações de JM e JMV concordam entre si para todos os tamanhos

de linha em todo o espectro. Esses modelos seguem a referência, com certa discrepância em

altas frequências. Especialmente na figura 4.21b, onde o pico de magnitude é menor em relação

à referência e segue o modelo ULM em quase todo o espectro. A implementação clássica do

modelo de J. Martí apresenta resultados precisos em todo o espectro, mostrando que a utilização

do Vector Fitting para esse sistema não trouxe resultados significantes.

O modelo ULM apresenta algumas discrepâncias nas figuras 4.20 e 4.21 relevantes em altas

frequências. Para a frequência de ressonância do sistema, o modelo de forma geral concorda

com a referência. Por se tratar de uma versão beta implementada no ATPDraw 7.4, alguns

resultados podem não seguir à referência, mas isso se dá pelo fato de haver limitações da atual

implementação do modelo no ATP, e não pelo modelo em si. Nesta versão não é usada uma

técnica de interpolação para problemas de instabilidade numéricas no espectro de frequências

presente em (GUSTAVSEN, 2013).

Considerando todos os tamanhos de linha, a representação pelo modelo de Bergeron produz

distorção geral das curvas e picos de magnitudes destoantes em todo o espectro, hora ampli-

ficando as componentes de frequência, hora atenuando dentro da mesma faixa (esse fato fica

evidente ao se observar figura 4.21a e b entre as frequências 10 kHz e 100 kHz). Por se tratar

de uma modelo onde os parâmetros de linha são calculados para uma frequência específica, os

resultados apresentados não são relevantes para este tipo de estudo.

4.2.3 Resposta transitória

As figuras 4.22 e 4.23 mostram as respostas transitórias na fase B devido a uma função de

decaimento exponencial duplo com um formato de um pulso de 1,2/50 µs. Devido às grandes

variações identificadas pelo modelo de Bergeron (figuras 4.20 e 4.21), esta abordagem não será

utilizada nas análises a seguir, de modo a evitar que picos artificias no domínio do tempo

prejudiquem a visibilidade dos gráficos.

De forma geral, as formas de ondas para todos os tamanhos de linha seguem a referência,

exceto pelo pico de tensão induzida nas figuras 4.22a e 4.23b. Comparando com as figuras

4.11 e 4.12, nota-se que há semelhança entre as formas de onda do efeito nos dois sistemas,
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especialmente para o comprimento de linha igual à 10 km e 100 km, com picos de magnitudes

diferentes.

Figura 4.22: Tensão induzida para resposta ao
impulso com o comprimento de linha : (a) 1 km, (b) 10 km
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Fonte: Autoria própria.

Figura 4.23: Tensão induzida para resposta ao
impulso com o comprimento de linha : (a) 100 km, (b) 400 km
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Fonte: Autoria própria.

As figuras 4.24 e 4.25 mostram as respostas transitórios na fase B para uma entrada degrau

na fase A. As tensões induzidas mostram um padrão típico de ondas viajantes, com caracterís-

ticas distorcidas para uma entrada degrau, devido às reflexões e refrações. Nesse sistema, as

distorções ficam evidentes para todos os tamanhos de linha.

Os modelos de JM e JMV apresentam imprecisões em relação ao pico de magnitude do

efeito na figura 4.24a e para as tensões residuais na figura 4.25, apresentam resultados distintos
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e maior em relação a referência. A mesma discrepância mostrada no sistema CCAT para o

modelo de J. Martí é notada para o sistema CA. O ajuste através do Vector Fitting apresenta

resultados mais próximos a referência, porém com certa imprecisão, especialmente na figura

4.25b. O modelo ULM não segue a forma de onda da referência, entretanto as tensões residuais

tem valores próximos e pico de magnitude semelhantes.

Figura 4.24: Tensão induzida para resposta ao
degrau com o comprimento de linha : (a) 1 km, (b) 10 km
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Fonte: Autoria própria.

Figura 4.25: Tensão induzida para resposta ao
degrau com o comprimento de linha : (a) 100 km, (b) 400 km
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Fonte: Autoria própria.

4.3 SÍNTESE DO CAPÍTULO

Neste capítulo, foi realizado um estudo em dois tipos de linhas de transmissão com ca-

racterísticas distintas. As análises foram realizadas para suas respectivas características de
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propagação, varredura em frequência e resposta transitória.

A matriz de transformação utilizada no sistema CCAT demonstrou ser real e constante

para o caso com a redução de Kron. Além disso, seu modo de propagação aéreo não teve

variações relevantes considerando a inclusão do para-raio no sistema. O sistema CA mostrou

características de propagação semelhante ao sistema CCAT, com uma maior variação na matriz

de transformação modal.

O modelo de Bergeron se mostrou ineficiente para os dois sistemas na análise do espectro

de frequência, não tendo um padrão claro acerca da frequência de ressonância dos sistemas. Os

modelos ULM e NLT apresentaram poucas diferenças nas respostas transitórias, com formas de

ondas e picos de magnitudes semelhantes. O modelo de J. Martí mostrou imprecisões relevantes

em frequências próximas do CC (este fato pode ser notado com maior clareza nas figuras 4.10b

e 4.25b).

No próximo capítulo, são apresentadas as conclusões gerais acerca dos estudos apresentados

e propostas para trabalhos futuros.



CAPÍTULO 5

CONCLUSÕES E TRABALHOS FUTUROS

Este trabalhou apresentou um estudo dos parâmetros de linhas de transmissão e uma análise

de transitórios eletromagnéticos através de modelos de linha.

Foram apresentados dois casos: uma linha de transmissão CCAT 600 kV em atual opera-

ção no Brasil; Uma linha de transmissão CA 150 kV. Parâmetros modais das duas linhas de

transmissão mostraram que os sistemas possuem características semelhantes, especialmente em

relação ao seus modos de propagação. A partir das simulações, constatou-se que o sistema

CCAT com a utilização da redução de Kron apresentou uma matriz de transformação modal

constante e real, o que mostra que os estudos oriundos de sistemas CA podem ser estendidos

para sistemas CCAT, com as devidas adaptações. O modelo de J. Martí, de forma particular,

devido a suas limitações acerca da matriz de transformação modal ser considerada constante e

invariante com a frequência, tem a sua resposta no tempo não afetada quando o sistema CCAT

utiliza a técnica da redução de Kron.

As análise revelaram que o modelo de Bergeron se desvia consistentemente da resposta espe-

rada e não é recomendado para aplicações críticas em que diferentes componentes de frequência

são relevantes. O modelo ULM mostrou resultados satisfatórios em quase todas as análises,

sendo limitado pela atual implementação da ferramenta no ATPDraw 7.4. Ambas as aborda-

gens usando o modelo de J. Martí resultaram em respostas suficientemente precisas para a parte

superior do espetro de frequências. No entanto, pode afirmar-se que o modelo J. Martí com o

ajuste baseado em Bode através da transformada de Laplace, pode não representar caracterís-

ticas relevantes próximos às frequências CC, exigindo assim uma avaliação muito cuidadosa da

qualidade do ajuste antes da aplicação do modelo.

Apesar das diferentes características de geometria da torre e tipo dos condutores, os dois

sistemas apresentam comportamentos semelhantes. Pode-se afirmar que, para solos com resis-

tividade finita, o fenômeno transitório oriundo das tensões induzidas em linhas de transmissão



45

CCAT tem resposta no tempo análoga ao fenômeno transitório em linhas de transmissão CC.

Por fim, o trabalho proposto pode ser expandido à outros estudos, com alguns pontos

interessantes a serem abordados, como:

• Implementação de ajustes mais preciso para a síntese de circuitos, através de algoritmos

para solucionar problemas de passividade;

• Análise do desempenho dos modelos de linha mediante fenômenos transitórios oriundos

de falta;

• Expansão do modelo NLT para implementação em outras plataformas;

• Avaliação das características de propagação para o solo com resistividades distintas e para

solo de multi-camadas em linhas de transmissão CCAT e CA.
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