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RESUMO

O uso de técnicas de aprendizado de máquina para auxiliar no diagnóstico de doenças por
meio de imagens médicas tem impulsionado um grande volume de pesquisas na área de visão
computacional. Neste trabalho, propomos a utilização de redes neurais convolucionais (CNNs)
para identificar doenças pulmonares e lesões de pele, com o objetivo de otimizar as etapas de
diagnóstico e tratamento. Buscamos implementar a arquitetura mais eficaz para sistemas de saúde
como o SUS, reduzindo o tempo necessário para o diagnóstico.

Realizou-se dois experimentos utilizando o conjunto de dados HAM10000, que inclui as
classes Nevo Melanocítico (NV), Melanoma (mel), Lesões Benignas (bkl), Carcinoma Basocelu-
lar (bcc), Ceratoses Actínicas e Carcinoma Intraepitelial/Doença de Bowen (akiec), Lesões Vas-
culares (vasc) e Dermatofibroma (df), e o conjunto de dados COVID, que contém as classes
Opacidade Pulmonar, COVID-19, Pneumonia Viral e Normal. Este estudo avalia seis redes con-
volucionais reconhecidas por seu alto desempenho em outras aplicações, buscando identificar a
arquitetura mais adequada com base em diversas métricas de avaliação.

Para cada modelo de CNN treinado, apresentamos as métricas de acurácia, sensibilidade,
especificidade, precisão e F1-score. Na classificação de lesões de pele com o conjunto de da-
dos HAM10000, a arquitetura que obteve melhor desempenho foi a EfficientNetB4, com uma
acurácia de 84% e F1-scores de 91.4%, 65.7%, 75.0%, 80.4%, 68.9%, 77.3% e 75.9%, respecti-
vamente, para as classes Nevo Melanocítico (nv), Melanoma (mel), Lesões benignas (bkl), Carci-
noma basocelular (bcc), Ceratoses actínicas e carcinoma intraepitelial/Doença de Bowen (akiec),
Lesões vasculares (vasc) e Dermatofibroma (df). Na classificação de doenças pulmonares, a Effi-
cientNetB7 se destacou com uma acurácia de 97% e F1-scores de 93.7%, 98.6% e 99.3% para as
classes Opacidade Pulmonar, COVID-19 e Pneumonia Viral, respectivamente.



ABSTRACT

The use of machine learning techniques to aid in the diagnosis of diseases through medical
images has driven a large volume of research in the area of computer vision. In this work, we pro-
pose the use of convolutional neural networks (CNNs) to identify lung diseases and skin lesions,
with the aim of optimizing the stages of diagnosis and treatment. We seek to implement the most
effective architecture for health systems such as SUS, reducing the time required for diagnosis.

Two experiments were carried out using the HAM10000 dataset, which includes the classes
Melanocytic Nevus (NV), Melanoma (mel), Benign Lesions (bkl), Basal Cell Carcinoma (bcc),
Actinic Keratoses and Intraepithelial Carcinoma/Bowen’s Disease (akiec), Vascular Lesions (vasc)
and Dermatofibroma (df), and the COVID dataset, which contains the classes Lung Opacity,
COVID-19, Viral Pneumonia and Normal. This study evaluates six convolutional networks rec-
ognized for their high performance in other applications, seeking to identify the most suitable
architecture based on several evaluation metrics.

For each trained CNN model, we present the metrics of accuracy, sensitivity, specificity, pre-
cision and F1-score. In the classification of skin lesions with the HAM10000 dataset, the ar-
chitecture that obtained the best performance was EfficientNetB4, with an accuracy of 84% and
F1-scores of 91.4%, 65.7%, 75.0%, 80.4%, 68.9%, 77.3% and 75.9%, respectively, for the classes
Melanocytic Nevus (nv), Melanoma (mel), Benign Lesions (bkl), Basal Cell Carcinoma (bcc), Ac-
tinic Keratoses and Intraepithelial Carcinoma/Bowen’s Disease (akiec), Vascular Lesions (vasc)
and Dermatofibroma (df). In the classification of lung diseases, EfficientNetB7 stood out with
an accuracy of 97% and F1-scores of 93.7%, 98.6% and 99.3% for the classes Lung Opacity,
COVID-19 and Viral Pneumonia, respectively.
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1 INTRODUCTION

When individuals develop illnesses, the diagnostic journey often involves appointments with
various specialists and numerous medical examinations. Identifying the ailment and determining
an effective treatment can be time-consuming. Physicians, as specialists, undergo extensive years
of study to analyze diseases through medical examinations, like medical images. However, the
inherent limitations of human capability can pose challenges, like the time to analysis, human
errors, disease evolution,genetic variation, skilled labor, and et cetera.

In a country like Brazil, which presents a healthcare system with big challenges related to
quality and universalization, an AI system for disease detection or patient triage could enhance
efficiency. Later in this text, we will explore into the details, but it’s worth noting that some dis-
eases covered by this project, like Pneumonia, Skin lesions, and COVID-19 are responsible for
thousands of deaths in Brazil: 2616 deaths were caused by Skin Cancer (SAUDE, 2020), Pneu-
monia 44.523 deaths from January to August 2022 (ALMEIDA et al., 2024), and the impact of
COVID-19 has been profound. Based on this, there is a great motivation to develop an automatic
tool to detect these illnesses (DUANMU et al., 2022).

The inception of Computer Aided Detection/Diagnosis (CAD) began in 1960 (FUJITA, 2020).
CAD leverages machine learning to analyze imaging data, offering insights into the patient’s con-
dition (CHAN; HADJIISKI; SAMALA, 2020). With the development of Artificial Intelligence
(AI) and, more specifically, Deep Learning (DL), it becomes feasible to extract specific features
from images that conventional analyses might overlook or require excessive time and specializa-
tion (GOEL et al., 2021; SUN; HUANG; GUO, 2021; MARTINEZ-MURCIA et al., 2021).

The first ailment from the first dataset, Lung Opacity, refers to areas that normally have dark-
appearing lungs that appear cloudy (HERRING, 2019). This opacity can be observed by areas
that appear white on a chest radiograph when it should be darker as said by Türk e Kökver
(2023). The identification of opacity in a chest X-ray image can signify various conditions,
including the presence of fluid in air spaces, thickening of air space walls, lung tissue thick-
ening, inflammation, pulmonary edema, vascular damage and bleeding, cancerous growth, and
fibrosis (TÜRK; KÖKVER, 2023; ARENAS-JIMÉNEZ; PLASENCIA-MARTÍNEZ; GARCÍA-
GARRIGÓS, 2021; KIM et al., 2022; ZHU et al., 2022).

Pneumonia, the second ailment, is an infection of one or both of the lungs. It can have several
types: bacteria, viruses, or fungi (HOPKINS, 2024a). As one can read on (HOPKINS, 2024b),
diagnosing pneumonia relies significantly on tests, which include a chest X-ray for internal imag-
ing, blood tests to check for infection, arterial blood gas testing to measure blood oxygen, sputum
culture for lung infection, pulse oximetry for painless blood oxygen measurement, a detailed chest
CT scan, bronchoscopy for direct lung airway examination, and a pleural fluid culture to identify
pneumonia-causing bacteria. These tests collectively contribute to a comprehensive diagnosis.
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The third ailment, COVID-19, gained widespread recognition in 2020 due to its global viral
outbreak, stemming from the SARS-CoV-2 virus. According to Pascarella et al. (2020), COVID-
19 diagnosis primarily relies on the detection of the virus’s genetic material using RT-PCR tests.
These tests utilize nasal swabs, tracheal aspirates, or bronchoalveolar lavage specimens. A mul-
tifaceted approach, combining clinical, laboratory, and radiological methods, enhances the ac-
curacy of COVID-19 diagnosis. Conventional chest radiography is not used to solely define the
diagnosis, because it has lower diagnostic sensitivity (BERNHEIM et al., 2020).

Diagnosing diseases often involves a spectrum of methods, ranging from cost-effective to ex-
pensive or highly invasive examinations. One particularly accessible and widely used diagnostic
tool is the Chest X-ray. The X-ray is a medical technique that is capable to visualize intern organs
and has become ubiquitous globally due to its relative affordability, as noted by (HAYGOOD;
BRIGGS, 1992).

AI algorithms can be employed to analyze these X-ray images, offering a valuable tool for
physicians in the diagnostic process. While not replacing the expertise of healthcare profession-
als, AI-assisted analysis can serve as a guide, optimizing the medical procedure. By providing a
preliminary assessment or highlighting regions of interest, these algorithms could help streamline
the diagnostic workflow. Additionally, such AI-driven screening methods could offer patients a
more informed and statistical perspective, aiding in shared decision-making regarding further di-
agnostic steps and potential treatment plans. This intersection of medical imaging and AI presents
an exciting avenue for enhancing efficiency and precision in healthcare practices.

The second dataset utilized in this study encompasses a broad range of skin lesions, each
representing a distinct condition. As highlighted by (SRINIVASU et al., 2021), there is a grow-
ing demand for research focused on developing procedures to identify the effects of various skin
diseases through imaging technology. New methods like lasers and photonics-based medical
technology have enabled a faster diagnosis of skin diseases, but the cost is still limited and ex-
pensive. This dataset consists of seven skin diseases: Melanocytic nevi, Benign keratosis-like
lesions, Dermatofibroma, Vascular lesions, Actinic keratoses, Intraepithelial carcinoma, Basal
cell carcinoma, and Melanoma. Actinic Keratoses and Intraepithelial Carcinoma/Bowen’s Dis-
ease (AKIEC) are precancerous growths resulting from prolonged sun exposure, characterized
by rough and scaly patches on the skin. Basal Cell Carcinoma (BCC), the most prevalent type
of skin cancer, is distinguished by the presence of pearly or waxy bumps with visible blood ves-
sels. Benign Keratosis-like Lesions (BKL) are non-cancerous skin growths that display a diverse
appearance, ranging from elevated to flat lesions.

Furthermore, the dataset comprises Dermatofibroma (DF), a benign skin nodule characterized
by firm, raised nodules that can have varying colors. Melanoma (MEL), the most severe form of
skin cancer, is identified by irregular moles displaying asymmetrical shapes and uneven colors.
Melanocytic Nevi (NV) are common moles, presenting as small, circular, typically brown spots
on the skin. Vascular Lesions (VASC) encompass skin conditions related to blood vessels, often
appearing as red or purple discolorations, such as hemangiomas. This diverse dataset provides
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a comprehensive representation of various skin lesions, facilitating the development of robust
diagnostic models.

Skin lesions are diagnosed through dermatological examinations that use visual inspection,
clinical expertise, and sometimes dermoscopy. Dermatologists evaluate the lesion’s appearance,
including its color, shape, size, and border irregularities. In more complicated cases, dermatopathol-
ogy may be used through a laboratory test.

The efficacy of a medical classification model may vary across countries, attributed to differ-
ences in training data sources and feature distributions. While the training dataset could originate
from a different country, the crucial factor is ensuring that validation and test datasets incorporate
real-world data relevant to the intended application. Merging datasets becomes a viable strategy
to augment the volume of training data.

1.1 OBJECTIVES

The core objective of this study is to develop a pragmatic prototype system for efficiently
detecting Viral Pneumonia, COVID-19, Lung Opacity, and various skin lesions. The envisioned
outcome is creating a cost-effective diagnostic tool that leverages radiological images for respira-
tory conditions and skin images. The primary goal is to establish a prototype system that aids in
the initial diagnosis, facilitating a more streamlined approach to patient triage within the Sistema
Único de Saúde (SUS) in Brazil. This triage system holds the potential to optimize SUS opera-
tions, reduce diagnostic processing time, and serve as a valuable decision-making support tool.
The anticipated advantages include mitigating hospital and health center congestion, alleviating
administrative burdens, and contributing to the overall enhancement of the healthcare system.

Two datasets were selected for this objective. One of the datasets selected for this study is
the Human Against Machine 10000 (HAM10000), which stands out as one of the largest and
most diverse collections of publicly available dermoscopic images. Composed of 10.015 der-
moscopic images, HAM10000 is widely used for training neural networks aimed at diagnosing
pigmented skin lesions. This dataset covers a significant variety of diagnostic categories, in-
cluding melanocytic nevus, melanoma, and benign and malignant lesions, among others, which
makes it an essential tool for the development and validation of machine-learning models aimed
at dermatology.

The second dataset chosen is the COVID Dataset. This dataset includes 3.616 confirmed cases
of COVID-19, 10.192 normal lung X-ray images, 6.012 images showing lung opacity, and 1.345

cases of viral pneumonia, all from a variety of reliable sources. The volume of data contained in
this dataset provides a solid foundation for training and evaluating neural network models aimed at
detecting lung infections, allowing for an in-depth and robust study of the different manifestations
of these conditions in imaging exams.

The secondary aim involves a comparative analysis of six distinct models applied to each se-
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lected dataset. This analysis seeks to unveil performance variations among the models, providing
insights into their strengths, weaknesses, and overall effectiveness within the specific contexts of
the datasets under consideration.
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2 BACKGROUND

A particular focus will be directed towards comprehending the theoretical frameworks under-
pinning Artificial Neural Networks (ANN), encompassing the intricate details of models, metrics,
and the inherent specifications that collectively define this expansive field.

2.1 NEURAL NETWORK

As highlighted by Wu e Feng (2017), ANN have been a prominent focus in Artificial Intel-
ligence (AI) since the 1980s. However, it’s important to note that ANN constitutes merely a
branch within Artificial Inteligence (AI) (GARDNER, 1998). The foundational theory underpin-
ning ANN is a inspiration from the network processes observed in the brain (SUN; LIANG; CUI,
2021). Analogous to the interconnected neurons forming networks in the brain, ANN features
layers containing numerous artificial neurons within each layer.

Figure 2.1: This figure is a representation of a Neural Network (ZHOU, 2020).The first layer of neurons, in blue, is
the input layer through where the data flows. Between two layers all neurons are connected.

Fig. 2.1 presents an example of an ANN, the Multilayer Perceptron (MLP). Every neuron,
symbolized by a small circle, establishes connections with all neurons in the subsequent layer.
The initial layers, depicted as blue circles, are responsible for receiving raw data.

As affirmed by Block (1962), the Multilayer Perceptron (MLP) stands as a preeminent and
extensively employed type of neural network, structured with an input layer, a hidden layer, and
an output layer. The designation "hidden" underscores its intermediary function, abstaining from
direct engagement with both inputs and outputs. Additionally, Kleyko et al. (2023) underscores
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the significance of the perceptron, introduced by Rosenblatt (ROSENBLATT, 1957), serving as
a fundamental artificial neuron or node within the MLP. Each node adeptly processes inputs,
incorporating assigned weights and biases to generate an output, as detailed by (DELASHMIT;
MISSILES, 2005):

yi =
N∑
k=1

wj,k · xk +B. (2.1)

Here, N represents the total number of neurons connected to the given neuron, and j denotes
the instance of each neuron. The terms wj,k represent the weights connecting the kth input unit to
the jth hidden unit, xk represents the input value of the preceding neuron, and B is the bias.

This function above represents a linear transformation, but with only this the layer it would
learn strictly linear relationships. So, a non-linear transformation is necessary like as an activation
function enabling the network to learn complex patterns (CHOLLET, 2022).

There are many types of activation functions, and each one has one output range. A list of
common activation functions is shown in Table 2.1.

Name Formula Range

Sigmoid σ(x) = 1
1+e−x (0, 1)

Hyperbolic Tangent (tanh) tanh(x) = ex−e−x

ex+e−x (−1, 1)
Rectified Linear Unit (ReLU) f(x) = max(0, x) [0,∞)
Leaky Rectified Linear Unit (Leaky ReLU) f(x) = max(αx, x) (−∞,∞)

Softmax Softmax(x)i = exi∑
j e

xj (0, 1)

Table 2.1: Activation Functions

In this project, we will focus on supervised learning it is a category of machine learning that
uses labeled datasets to train algorithms to predict outcomes and recognize patterns (GOODFEL-
LOW; BENGIO; COURVILLE, 2016). In other words, supervised learning involves training the
model with known answers.

2.1.1 Cost function

Training a Neural Network is to adjust the weights and bias to ensure the correct prediction
or classification. Initially, the weights and biases are randomly selected and during the process of
training, the parameters are iteratively modified each epoch.

An epoch is the process in which data passes through the neural network, from the input
layer to the output layer, ending with the updating of the parameters. To make this possible it
is necessary to have a cost function, that observes the true value and the predicted value and
computes a score of error or loss. Figure 2.2 shows two layers Neural Network with the Loss
function in a block diagram.
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Figure 2.2: This is block diagram about the Loss function inside a two layers Neural Network (CHOLLET, 2022).
The Cost function calculates a score, that has to be minimized, and that is the job of another function the Optimizer
that will find the best parameters to minimize the loss function.

It is expected that the loss will be high in the initial epochs and should decrease after each
subsequent epoch. The lesser the value of loss, the closer the output is to the true value.

2.1.2 Backpropagation

The loss function feeds into the backpropagation algorithm, a fundamental component of deep
learning. This algorithm, is part of the the optimizer and enables the operation of utilizes gradient
descent to adjust the weights and biases, minimizing the cost function (GOODFELLOW; BEN-
GIO; COURVILLE, 2016). Backpropagation computes these gradients by applying the chain
rule (GOODFELLOW; BENGIO; COURVILLE, 2016, Section 6.5.2).

Figure 2.3 shows the process of training a Neural Network using a block diagram. The input
data passes through two layers and the final layer contains the model prediction that is computed
using the loss function through the true samples with this a loss score is obtained which is the
input of the optimizer to update the weights of the neural network.

As outlined by Leung e Haykin (1991), the backpropagation algorithm employs a systematic
approach, aiming for the approximation of global minimization. It meticulously traverses the
complex terrain of optimization, allowing the neural network to iteratively fine-tune its parameters
and refine its ability to interpret and respond to the intricacies embedded in the input data.
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Figure 2.3: This is a block diagram about the training process of a Neural Network (CHOLLET, 2022). The Opti-
mizer employs the implementation of the backpropagation algorithm to comput the gradient of the loss function.

2.1.3 Convolutional Neural Network

Convolutional Neural Network (CNN), a subclass of neural networks (NN), exhibits best per-
formance in processing images, more specifically grid-shaped data. Over the years, CNN has
yielded groundbreaking results, particularly in pattern recognition (ALBAWI; MOHAMMED;
ALZAWI, 2017). This success is attributed to its adept management of pixel dependencies, this
has allowed the emergence of many applications in the area of computer vision (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012).

Initially, the utilization of CNN incurred substantial expenses, primarily due to the costs asso-
ciated with training high-resolution images. However, with the advancements in GPU technology,
it became more viable to work with CNNs.

The underlying concept of CNN lies in its hierarchical feature extraction process. A key inno-
vation of CNN is its approach of selecting small regions from an image and passing them through
the layers, eliminating the need for an excessive number of interconnected neurons for each,
but only to pixels in their receptive fields (GERON, 2019; ALBAWI; MOHAMMED; ALZAWI,
2017).

A typical structure of a Convolutional Neural Network for classification comprises three es-
sential layers, as outlined in (ALBAWI; MOHAMMED; ALZAWI, 2017): the Convolutional
layer, the Pooling layer, and the Fully-connected layer. The convolution operation entails the
application of a filter (or kernel) to the original image, presented as a three-dimensional array
(height, width, and channels). This filter traverses the entire image, generating a new array with
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updated values. This efficiency is a distinctive feature of CNN, as it processes only a portion of
the data, optimizing computational resources. Fig 2.4 illustrates this process.

Figure 2.4: This is a representation of a convolution operation in a CNN (KIM et al., 2021). Each pixel inside the
red block is multiplied by the corresponding value in the kernel, and all the values are added together. This sum is
the value that remains in the convolved feature.

The pooling layer modifies the output of the convolutional layers before passing it to the fully
connected layer. The objective is to replace the region of pixels with a summary statistic of nearby
outputs (GOODFELLOW; BENGIO; COURVILLE, 2016). Max pooling, for example, returns
the maximum output within a rectangular region (ZHOU; CHELLAPPA, 1988). Pooling reduces
the impact of small translations in the input sample (GOODFELLOW; BENGIO; COURVILLE,
2016). Fig 2.5 illustrates the pooling operation.

Figure 2.5: This represents a Pooling operation on the data. The table on the left represents a gray-scale image. The
two tables on the right demonstrate different types of pooling layer, the table above utilizes the max value and the
table below shows the average value., (YINGGE; ALI; LEE, 2020)

Finally, the fully connected layer establishes connections from all units in the preceding layer
to produce a prediction/decision. When dealing with multiple classes, which is the case of this
project, employing the softmax function becomes crucial, as it provides the probability distribu-
tion across different classes. Conversely, when addressing a binary classification task , a single
output neuron with, the sigmoid function proves to be effective. Figure 2.6 shows an example of
a CNN, VGG-16 (SIMONYAN; ZISSERMAN, 2014).
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Figure 2.6: Illustration of the VGG-16 architecture (FALQUETO; PAES; PASSARO, 2023). The numbers below are
the shape of each layer in the CNN.

2.1.4 Transfer Learning

Raghu et al. (2019) state that Transfer Learning, as its name suggests, involves the transference
of knowledge within neural networks through the weights and biases of an initial Neural Network
(NN) architecture. This involves utilizing an existing neural network architecture and fine-tuning
its parameters on a target dataset using a pre-trained model. This practice has become widely
prevalent in medical image applications. For instance, a sizable architecture trained on a diverse
dataset like IMAGENET (DENG et al., 2009) can be repurposed for tasks such as analyzing Chest
X-rays (RAGHU et al., 2019). As enunciated by (ZHUANG et al., 2021), transfer learning has
gained prominence and holds significant promise in machine learning, owing to its broad range
of application prospects.

In this study, transfer learning is employed to enhance classification outcomes. The selected
architectures for this purpose include ResNet50 and ResNet101 (HE et al., 2016), EfficientNetB0,
EfficientNetB4, and EfficientNetB7 (TAN; LE, 2019a), and VGG16 (SIMONYAN; ZISSER-
MAN, 2014). Subsequent sections will provide detailed explanations about these architectures
and their utilization in the research.

2.2 MODELS

This section aims to elucidate the models selected for training. In the overload of available
models, our decision-making process was anchored in the evaluation of their robustness. It’s im-
portant to acknowledge that, due to constraints in computing power and data availability, opting
for the most sophisticated CNN architecture may not guarantee optimal performance. As pre-
viously mentioned, our objective is to meticulously assess and compare the efficacy of various
models with these specific medical datasets.

10



2.2.1 VGG

VGG, or the Visual Geometry Group, is known for its iconic and effective architecture in
the field of convolutional neural networks (CNNs) (SIMONYAN; ZISSERMAN, 2014). VGG’s
approach focuses on depth and uses a uniform layout across its layers. VGG’s architectures in-
tegrate max-pooling layers and rectification (ReLU) non-linearities in hidden layers. Notably,
VGG does not use Local Response Normalisation (LRN) to increase memory consumption with-
out commensurate performance gains. Fig 2.6 represents the VGG16 architecture model.

VGG’s unique approach is its consistent use of small receptive fields (3 × 3) throughout the
entire network. VGG’s strategy of stacking multiple 3 × 3 convolution layers without spatial
pooling effectively achieves larger effective receptive fields while maintaining computational ef-
ficiency. This departure from conventional architectural choices highlights VGG’s commitment
to simplicity, yet its impact has been profound, influencing subsequent developments in deep
learning architectures (SIMONYAN; ZISSERMAN, 2014).

2.2.2 ResNet

The ResNet was designed to tackle the challenges of training deeper networks. It incorporates
shortcut connections, also known as skip connections or residual connections, which enable the
smooth flow of information through the network (HE et al., 2016). By introducing these residual
connections, certain layers can be bypassed, which helps to mitigate the vanishing gradient prob-
lem and alleviate the degradation issue that arises when training deeper networks. The vanishing
gradient is when the calculation of the gradient, in the backpropagation algorithm, has minimal
variation causing a saturation in the parameters (weights and bias), caused by the depth of the
neural network (HOCHREITER; SCHMIDHUBER, 1997; AMANATULLAH, 2023). The core
concept behind ResNet is to create shortcuts across pairs of 3×3 filters, resulting in a unique
architecture that fundamentally transforms the approach to building deep neural networks.

The ResNet family has a range of different models, including 18-layer, 34-layer, 50-layer, 101-
layer, and 152-layer configurations. The 50-layer ResNet introduced bottleneck blocks, while the
101-layer and 152-layer ResNets increased depth, showcasing the flexibility and scalability of the
ResNet architecture. Figure 2.7 shows the process of ResNet50. Bottleneck layers compresses
the input data, reducing computational cost by lowering dimensionality (REHMAN, 2024). The
advantages of depth, such as better accuracy and generalization, make ResNet a robust model
family, and the 152-layer ResNet achieved first place in the 2015 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC), (HE et al., 2016).
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Figure 2.7: This is a simple representation of ResNet50 architecture (MUKHERJEE, 2022). Flattering is a operation
to convert an array of n-dimension to one dimensional.

2.2.3 EfficientNet

The EfficientNet is a family of neural network architectures that represents a significant mile-
stone in achieving optimal trade-offs between model accuracy and computational efficiency. It
was introduced through the lens of neural architecture search, and it is designed to offer superior
performance compared to its predecessors, particularly in terms of accuracy and computational
speed (TAN; LE, 2019b). The key principle behind EfficientNet is the strategic scaling of base-
line networks through a systematic approach, resulting in a family of models denoted by different
scales, such as EfficientNet-B0 to EfficientNet-B7.

Figure 2.8: This shows the differences of Efficient net (TAN; LE, 2019a)

Figure 2.8 illustrates the relationship between EfficientNet and other CNN models. Efficient-
Net employs compound scaling, which simultaneously scales the network wider and deeper.

Each member of the EfficientNet family is a result of a careful balance achieved by scaling
up the baseline architecture, leading to remarkable improvements in accuracy while maintaining
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efficiency. Notably, the EfficientNet-B7, the flagship model of this family, has achieved state-of-
the-art performance on benchmark datasets like ImageNet, attaining an exceptional 84.3% top-1
accuracy (TAN; LE, 2019b), as shown in Fig 2.9

Figure 2.9: Comparison of models trained with Imagenet dataset, including EfficientNets and ResNet50, based on
accuracy and number of parameters. Figure 1 from Tan e Le (2019b)

2.3 METRICS

This section aims to introduce the metrics that will be employed to evaluate all the models
discussed herein. These metrics are crucial for enhancing not only the theoretical aspects of the
models but also their practical applicability in real-world scenarios. The metrics under consider-
ation include Accuracy, Precision, Recall, Sensitivity, Specificity, and F1-Score.

Accuracy is the most basic metric which is seen in DL, its formula is:

Accuracy =
Correct predictions

All predictions
. (2.2)

It is possible to define the accuracy in terms of true and false positives (TP and FP) and true and
false negatives (TN and FN), where true positives are the number of correct positive predictions,
false positives are the number of incorrect positive predictions, true negatives are the number of
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correct negative predictions, and false negatives are the number of incorrect negative predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.3)

Precision measures how often the model correctly predicts the positive class:

Precision =
TP

TP + FP
. (2.4)

Precision is the rate of true positive results divided by the number of all positive results, includ-
ing those not correctly classified. If the precision is set to 1, then all records may be considered
relevant (ALPAYDIN, 2020).

Recall, also known as sensitivity or true positive rate, is the number of true positive results
divided by the number of all relevant samples (the sum of true positives and false negatives) (AL-
PAYDIN, 2020).

Recall =
TP

TP + FN
. (2.5)

Specificity is the ability of a classification model to correctly identify true negative instances
or each available category (ALPAYDIN, 2020). It is calculated using the formula:

Specificity =
TN

TN + FP
. (2.6)

The F1-Score is a metric that provides a balance between precision and recall and is particu-
larly useful when there is an uneven class distribution. The formula for F1-Score is:

F1 = 2 · precision · recall
precision+ recall

. (2.7)

All these metrics are relative to each class worked. Each class has its own TP, TN, FP, and
FN.
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3 MATERIAL AND METHODS

This chapter involved a comprehensive search for medical datasets that met the specific re-
quirements and were suitable for the intended purpose, and an evaluation of various neural net-
works to ensure that they met the criteria for this project.

The evaluation process included a review of the dataset’s source, format, size, and content.
The datasets were also evaluated based on their relevance to the project’s objectives and the data
quality.

3.1 DATASET

As previously said, this project works with two datasets: The HAM10000, and the COVID
dataset.

3.1.1 The HAM10000

The HAM10000 dataset is a highly informative collection of dermatoscopic images gathered
from a diverse range of populations (TSCHANDL, 2018). It comprises 10015 images for training
and 1511 for testing each image has a resolution of 460 x 600 pixels. This dataset has 7 classes
of skin lesions associated with different diseases/causes: Actinic Keratoses and Intraepithelial
Carcinoma / Bowen’s Disease (AKIEC), Basal Cell Carcinoma (BCC), Benign Keratosis-like
Lesions (BKL), Dermatofibroma (DF), Melanoma (MEL), Melanocytic Nevi (NV) and Vascular
Lesions (VASC) (TSCHANDL, 2018).

The dataset is imbalanced. The distribution is shown in Table 3.1.

Table 3.1: Class Distribution Percentage

Class Percentage (%) Absolute value

NV 76 7613
MEL 12 1316
BKL 13 1284
BCC 6 607

AKIEC 3.7 159
VASC 1.7 370

DF 1.6 177

All data of the HAM10000 dataset are deposited at the Harvard Dataverse in the following
Link. An example of the images is shown in Figure 3.1.
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(a) AKIEC (b) BCC (c) BKL

(d) DF (e) MEL (f) NV

(g) VASC

Figure 3.1: Images from HAM10000 Dataset, showing (a) Actinic Keratoses and Intraepithelial Carcinoma / Bowen’s
Disease (AKIEC), (b) Basal Cell Carcinoma (BCC), (c) Benign Keratosis-like Lesions (BKL), (d) Dermatofibroma
(DF), (e) Melanoma (MEL), (f) Melanocytic Nevi (NV), and (g) Vascular Lesions (VASC).

3.1.2 COVID dataset

The COVID dataset is a compilation from several reputable sources, as said by Nascimento et
al. (2023). This dataset spans a wide spectrum of well-known diseases, categorizing images into
four distinct classes: Viral Pneumonia, COVID-19, Lung Opacity, and Normal. It is noteworthy
that, similar to the HAM10000 dataset, the COVID dataset exhibits an imbalance classes.

The images within this dataset are encoded in RGB format. Each image maintains a resolution
of 299 x 299 pixels. Importantly, the dataset has not been pre-divided for training and testing
purposes, as this segmentation is part of the ongoing project.

The dataset is imbalanced. The distribution is shown in Table 3.2.
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Table 3.2: Class Distribution Percentage

Class Percentage (%) Absolute value

Normal 6 10192
Lung Opacity 13 6012

COVID-19 76 3616
Viral Pneumonia 12 1345

An example of the images is shown in Figure 3.2.

(a) COVID (b) Lung Opacity (c) Viral Pneumonia

(d) Normal

Figure 3.2: COVID Dataset Images, in which (a) COVID, (b) Lung Opacity, (c) Viral Pneumonia, and (d) Normal.

3.2 PREPROCESSING

3.2.1 HAM10000

The dataset was already divided into train and test sets, and a CSV file with the name, path,
and label was already created. The validation set had to be split, thus it was chosen 10% of the
train set to be the validation data. Table 3.3 shows the quantity for each set.
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Table 3.3: Number of images per class in the training, validation, and test datasets

Class Training Validation Test

NV 6034 671 908
MEL 1001 112 171
BKL 989 110 217
BCC 462 52 93

AKIEC 294 33 43
VASC 127 15 35

DF 103 12 44

3.2.2 COVID

The dataset comprises individual folders, each containing images of a specific disease. Thus,
the processing must be capable of manipulating this form of data. Prior to data partitioning, a
dataset variable (pandas.DataFrame) is created to include the name, path, and label. This facili-
tates easier data manipulation and manual verification, if necessary.

The split percentage chosen for this dataset was 80% of the images for train, 10% for test, and
10% for validation. Table 3.4 shows the number of images for each class. All this proportion split
has to be verified because all the analysis, training, and evaluation depend on it.

Table 3.4: Number of images per class in the training, validation, and test datasets

Class Training Validation Test

Normal 8153 1020 1019
Lung Opacity 4809 602 601

COVID-19 2892 362 362
Viral Pneumonia 1076 135 134

3.3 ANALYSIS

Before exploring into data processing, a comprehensive understanding of relevant aspects is
crucial. When employing a Neural Network, standardizing the data format is paramount. This
involves examining key metrics such as maximum and minimum pixel values, standard devia-
tion, the average size of images, and the prevalence of images conforming to this average shape.
Notably, this average size serves as the input dimension for the Neural Network. This section
provides insights into the datasets and their inherent details, as discussed earlier in Section 3.1.

The pseudocode provided in Algorithm 1 and Algorithm 2 illustrates the logic underlying the
analysis process, including the data and image statistics.
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Algorithm 1 Data Analysis and Dataset Statistics

1: procedure ANALYZEDATASET(dataset)
2: Input: dataset - DataFrame with images and labels
3: for image in dataset do
4: Step 1: Analyze Image
5: Compute standard deviation, max, min pixel values, and average of channels
6: Print the analysis results
7: Step 2: Check Image Existence
8:

9: if image not in dataset then
10: Print message: "Image not found in the dataset"
11: end if
12: end for
13: Step 3: Count Labels and Print Statistics
14:

15: Count the number of occurrences for each label in the dataset
16: Print the total number of images for each label
17: Calculate and print the total and average shape of the images
18: end procedure

Algorithm 2 Main Routine
1: Main:
2: ANALYZEDATASET(train_dataset) ▷ For Train Dataset
3: ANALYZEDATASET(test_dataset) ▷ For Test Dataset
4: ANALYZEDATASET(validation_dataset) ▷ For Validation Dataset

This algorithm outputs the smallest and largest pixel values, total images processed, and chan-
nel statistics (average and standard deviation) for the R, G, and B channels. It provides valuable
insights into pixel values and their distribution, which is useful for image processing. Table 3.5
shows the values for each dataset.

Table 3.5: Channel Values for COVID and HAM10000 Datasets. The µ is the mean and σ the standard deviation

Channel Values - COVID Values - HAM10000
R - µ± σ 193± 24 193± 22
G - µ± σ 141± 31 139± 30
B - µ± σ 147± 35 145± 33

Other Outputs Value
Smallest pixel value 0
Largest pixel value 255

These values span the range observed across the training, validation, and test sets. The average
and the standard deviation show that the image content is significant in all channels of the images,
and doesn’t have a duplicate channel. All code related to this work is available in the GitHub
repository LucasLessa1/medical_images_models 1.

1<https://github.com/LucasLessa1/medical_images_models>
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3.4 MODEL PREPARATION

In this section, we will prepare the data for input into a neural network model. This involves
several considerations, including the specification of the loss function to be used, the selection
of appropriate weights, and the formatting of the input data. The model is saved in .pth, pytorch
format.

3.4.1 Loss

In multi-class scenarios, the commonly employed loss function is the Cross-entropy loss (AL-
PAYDIN, 2020):

E (Θ | χ) = −
∑
n

∑
i

rni log y
n
i , (3.1)

where Θ denotes the set of parameters/weights associated with the neural network, χ represents
the current batch of examples, yni is the probality estimate given by the NN for the i-th class of
the n-th batch instance, while rni represents the respective ground truth.

To handle imbalanced data, a good option is to use cost-sensitive learning, which adjusts the
weight of each instance based on the cost of misclassifying its class. This maintains the total
weight of the training set, ensuring that the impact of each instance reflects its importance (TING,
1998).

An algorithm will be utilized to determine suitable weights for loss calculation. This algo-
rithm is based on the logic outlined in Algorithm 3 as specified in (REZAEI-DASTJERDEHEI;
MIJANI; FATEMIZADEH, 2020).

Algorithm 3 Calculate Weights

1: procedure CALCULATEWEIGHTS(train_df, label_dict, dict_train_qntd)
2: Input: train_df - DataFrame with training data
3: label_dict - Dictionary mapping labels to their indices
4: dict_train_qntd - Dictionary containing label occurrences in the training set
5: Step 1: Initialize Variables
6: num_classes← Number of unique classes in label_dict
7: total_samples← Total number of samples in train_df
8: weights← []
9: Step 2: Calculate Weights for Each Class

10: weights← Empty list
11: Function: CalculateWeight(total_samples, label_count, num_classes)
12: weight← total_samples

label_count×num_classes
13: Return weight
14: Append weight to weights
15: Step 3: Return Computed Weights
16: return weights
17: end procedure
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The calculation for each weight is formulated in Eq. 3.2 as follows (REZAEI-DASTJERDEHEI;
MIJANI; FATEMIZADEH, 2020).

Weight =
Total number of samples in the dataset

Quantity of samples per label× Number of labels
(3.2)

3.4.2 Model input

Both datasets in this project are represented in RGB, necessitating that the CNN model’s in-
put consist of three channels. Ensuring consistency in data format during preprocessing stages is
crucial. As emphasized throughout this study, minimizing extraneous data improves the perfor-
mance of the neural network model. To achieve this, Algorithm 1 was implemented to validate
data consistency, and the results are shown on Section 3.3.

3.5 MODEL

This project uses the Transfer Learning method, as described in 2.1.4. It involves taking a
pre-trained model, which in this case was trained on the ImageNet dataset (DENG et al., 2009),
and fine-tuning it using our data. Specifically, we import a pre-trained CNN architecture and then
fine-tune the model using our data, doing so separately for each dataset.

For each model employed, the initial layer is adjusted to accommodate the precise number of
input channels. Simultaneously, the concluding layer undergoes a linear transformation, incor-
porates the Rectified Linear Unit (ReLU) activation function, a dropout layer, and is ultimately
tailored to output, through a softmax layer, the specific number of classes relevant to the given
task.

Overfitting occurs when a model performs exceptionally well on the training data but exhibits
poor performance when evaluated on new, unseen samples. To mitigate overfitting and enhance
the model’s robustness, a dropout layer is implemented. This layer selectively deactivates a frac-
tion of neurons during training, discouraging the network from relying excessively on specific
features. The goal is to foster a more resilient and generalized model, promoting improved over-
all performance.

This project employed the VGG-16, ResNet50, ResNet101, EfficientNetB0, EfficientNetB4,
and EfficientNetB7 architectures, which were described in Chapter 2. Size and parameters infor-
mation of these models are presented in Table 3.6
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Table 3.6: Neural Network Model Comparison

Model Total Layers Total Params Trainable Params Input Size (MB) Estimated Total Size (MB)

VGG16 43 136,361,799 136,361,799 3.09 1696.87
ResNet50 178 24,560,711 24,560,711 3.09 1666.21
ResNet101 348 43,552,839 43,552,839 3.09 2543.63
EfficientB0 280 4,016,515 4,016,515 3.09 1132.10
EfficientB4 548 5,288,548 5,288,548 3.09 786.99
EfficientB7 931 63,804,887 63,804,887 3.09 6928.38

An important aspect is the Hyperparameters, which are architecture-level parameters (CHOL-
LET, 2022), in other words, they are external configurations for the learning and training. In this
work we didn’t change their values for each simulation. The Hyperparameters used are on Table
3.7

Table 3.7: Optimization Hyperparameters

Hyperparameters Value

Optimizer Adam
Weight Decay 1× 10−5

Learning Rate 1× 10−4

Lr Scheduler
Function Step LR
Patience 7
Gamma 0.5

To determine the optimal learning rate, various tests were conducted. The most effective value
identified was 1×10−4. This learning rate was validated through fine-tuning using the datasets em-
ployed in this study. Regarding the optimizer, Adam was selected based on the findings of Yaqub
et al. (2020), which demonstrate that Adam performs well in classification problems.
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4 RESULTS

Due to the large size of the datasets, the initial training was constrained to 10 epochs across
the five different models: VGG16, ResNet50, ResNet101, EfficientNetB0, EfficientNetB4 and
EfficientNetB7. For the second phase, the top three models—selected based on the evaluation
metrics discussed in Section 2.3, were trained for 20 epochs. Finally, the best-performing model
from the second phase was trained for an extended period of 50 epochs. This process was repeated
for each dataset, ensuring a consistent evaluation approach.

4.1 DATASET HAM10000

4.1.1 10 epochs

Tables 4.1-4.6 present the detailed results in 10 epochs for each class and for each model using
HAM10000 dataset.

Table 4.1: Performance Metrics for VGG16

Class Precision Recall F1-Score Specificity
nv 0.960 0.503 0.660 0.968

mel 0.237 0.731 0.358 0.700
bkl 0.311 0.304 0.308 0.887
bcc 0.310 0.290 0.300 0.958

akiec 0.149 0.302 0.200 0.950
vasc 0.489 0.629 0.550 0.984
df 0.182 0.318 0.231 0.957

Mean 0.377 0.440 0.373 0.915
Accuracy 0.479

Table 4.1 highlights that the Precision for class “nv” is the highest among all classes. However,
the Precision for the remaining classes is considerably low, with an average of 37%. Both Recall
and F1-score are also notably low. In contrast, specificity shows a favorable result, with an average
of 91.5%.
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Table 4.2: Performance Metrics for ResNet50

Class Precision Recall F1-Score Specificity
nv 0.917 0.783 0.845 0.894

mel 0.462 0.708 0.559 0.895
bkl 0.599 0.737 0.661 0.917
bcc 0.600 0.613 0.606 0.973

akiec 0.478 0.256 0.333 0.992
vasc 0.808 0.600 0.689 0.997
df 0.365 0.523 0.430 0.973

Mean 0.604 0.603 0.589 0.949
Accuracy 0.731

The precision achieved by ResNet50 (Table 4.2) is twice that of VGG-16 (Table 4.1), with
classes “nv” and “vasc” demonstrating particularly strong results. The Recall and F1-score both
remain around 60%. An accuracy of 73% and a specificity mean of 94.9% indicate a relatively
good performance.

Table 4.3: Performance Metrics for ResNet101

Class Precision Recall F1-Score Specificity
nv 0.922 0.689 0.789 0.912

mel 0.372 0.719 0.490 0.845
bkl 0.551 0.668 0.604 0.909
bcc 0.523 0.602 0.560 0.964

akiec 0.533 0.372 0.438 0.990
vasc 0.435 0.771 0.557 0.976
df 0.436 0.386 0.410 0.985

Mean 0.539 0.601 0.550 0.940
Accuracy 0.668

Compared to the results from ResNet50 (Table 4.2), the results obtained with ResNet101
(Table 4.3) were relatively lower. The accuracy decreases by 7% compared to ResNet50, which
has a smaller architecture.

Table 4.4: Performance Metrics for EfficientNetB0

Class Precision Recall F1-Score Specificity
nv 0.899 0.937 0.918 0.841

mel 0.667 0.596 0.630 0.962
bkl 0.767 0.714 0.740 0.964
bcc 0.844 0.699 0.765 0.992

akiec 0.540 0.628 0.581 0.984
vasc 0.906 0.829 0.866 0.998
df 0.740 0.841 0.787 0.991

Mean 0.766 0.749 0.755 0.962
Accuracy 0.838

Table 4.4 shows that the Accuracy of 83.8% and the mean Specificity of 96.2% is the highest
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among the models presented here. However, the classes “mel” and “akiec” exhibited the lowest
Precision and Recall, indicating that the model struggled to correctly predict positive samples for
these classes.

Table 4.5: Performance Metrics for EfficientNetB4

Class Precision Recall F1-Score Specificity
nv 0.907 0.921 0.914 0.857

mel 0.632 0.684 0.657 0.949
bkl 0.801 0.705 0.750 0.971
bcc 0.813 0.796 0.804 0.988

akiec 0.660 0.721 0.689 0.989
vasc 0.725 0.829 0.773 0.993
df 0.857 0.682 0.759 0.997

Mean 0.771 0.762 0.764 0.963
Accuracy 0.841

EfficientNetB4 metrics (Table 4.5) had the highest accuracy from all models trained with 10
epochs, an accuracy of 84.1%. The mean of the Precision, Recall and F1-score stays equal or
higher than trained with EfficientNetB0.

Table 4.6: Performance Metrics for EfficientNetB7

Class Precision Recall F1-Score Specificity
nv 0.877 0.942 0.908 0.801
mel 0.739 0.515 0.607 0.977
bkl 0.815 0.668 0.734 0.974
bcc 0.778 0.828 0.802 0.984
akiec 0.569 0.860 0.685 0.981
vasc 0.568 0.714 0.633 0.987
df 0.903 0.636 0.747 0.998
Mean 0.750 0.738 0.731 0.958
Accuracy 0.831

The largest architecture, EfficientNetB7, did not exhibit the best performance (Table 4.6). Its
accuracy is lower than that of EfficientNetB0 (Table 4.4), yet it remains superior when compared
to VGG-16 (Table 4.1), ResNet50 (Table 4.2), and ResNet101 (Table 4.3). Table 4.7 presents a
summary analysis of all training with 10 epochs.
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Table 4.7: Performance from each model in 10 epochs.

Models Accuracy Precision Recall F1-Score Specificity
VGG16 0.479 0.310 0.318 0.308 0.957

ResNet50 0.731 0.599 0.613 0.606 0.973
ResNet101 0.668 0.523 0.668 0.557 0.964

EfficientNetB0 0.838 0.767 0.714 0.765 0.984
EfficientNetB4 0.841 0.801 0.721 0.759 0.988
EfficientNetB7 0.831 0.778 0.714 0.734 0.981

Best EfficientNetB4 EfficientNetB4 EfficientNetB4 EfficientNetB0 EfficientNetB4
Second Best EfficientNetB0 EfficientNetB7 EfficientNetB0 EfficientNetB4 EfficientNetB0
Third Best EfficientNetB7 EfficientNetB0 EfficientNetB7 EfficientNetB7 EfficientNetB7

Table 4.7 presents the top three models based on all metrics evaluated in this study. Efficient-
NetB4 ranked first overall, outperforming EfficientNetB0 in every metric except for the F1-score.
EfficientNetB7 consistently maintained the third position across all metrics, except for Precision,
where it ranked second.

Based on the aforementioned results, it was chosen the top 3 models for performing a new
training session with 20 epochs, which are the EfficientNet family models.

4.1.2 20 epochs

As a reminder, the best models trained with 10 epochs were the EfficientNet family (Table4.7).
In this subsection, they will be evaluated using training with 20 epochs. Tables 4.8 - 4.10 present
the results in 20 epochs for EfficientNet family class.

Table 4.8: Performance Metrics for EfficientNetB0

Class Precision Recall F1-Score Specificity
nv 0.897 0.953 0.924 0.836

mel 0.718 0.462 0.562 0.977
bkl 0.768 0.719 0.743 0.964
bcc 0.805 0.710 0.754 0.989

akiec 0.652 0.698 0.674 0.989
vasc 0.560 0.800 0.659 0.985
df 0.661 0.841 0.740 0.987

Mean 0.723 0.740 0.722 0.961
Accuracy 0.835

The results from EfficientNetB0 over 20 epochs, as shown in Table 4.8 are inferior to those
obtained over 10 epochs (Table 4.4). The Accuracy decreased by 0.3%, with the most significant
reduction observed in Precision, which declined by 4.3%.
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Table 4.9: Performance Metrics for EfficientNetB4

Class Precision Recall F1-Score Specificity
nv 0.894 0.947 0.920 0.831

mel 0.727 0.544 0.622 0.974
bkl 0.803 0.733 0.766 0.970
bcc 0.841 0.796 0.818 0.990

akiec 0.551 0.628 0.587 0.985
vasc 0.780 0.914 0.842 0.994
df 0.711 0.727 0.719 0.991

Mean 0.758 0.756 0.753 0.962
Accuracy 0.845

Different to the EfficientNetB0 (Table 4.8), results over 20 epochs in EfficientNetB4, Table
4.9, are superior to those obtained over 10 epochs (Table 4.5). The mean for all metrics increased,
and Accuracy increased by 0.4%.

Table 4.10: Performance Metrics for EfficientNetB7

Class Precision Recall F1-Score Specificity
nv 0.889 0.950 0.919 0.821

mel 0.750 0.474 0.581 0.980
bkl 0.717 0.724 0.720 0.952
bcc 0.892 0.796 0.841 0.994

akiec 0.725 0.674 0.699 0.993
vasc 0.640 0.914 0.753 0.988
df 0.800 0.727 0.762 0.995

Mean 0.773 0.751 0.753 0.960
Accuracy 0.839

The accuracy achieved by EfficientNetB7 after 20 epochs, as presented in Table 4.10, exhibits
an improvement of 0.8% compared to the results obtained after 10 epochs (Table 4.6). Further-
more, all other evaluated metrics demonstrated an increase as well.

Table 4.11 compares the metrics of the EfficientNet models.

Table 4.11: Performance from EfficientNet model using 20 epochs.

Models Accuracy Precision Recall F1-Score Specificity
EfficientNetB0 0.835 0.718 0.719 0.740 0.985
EfficientNetB4 0.845 0.780 0.733 0.766 0.985
EfficientNetB7 0.839 0.750 0.727 0.753 0.988

Best EfficientNetB4 EfficientNetB4 EfficientNetB4 EfficientNetB4 EfficientNetB7
Second Best EfficientNetB7 EfficientNetB7 EfficientNetB7 EfficientNetB7 EfficientNetB4
Third Best EfficientNetB0 EfficientNetB0 EfficientNetB0 EfficientNetB0 EfficientNetB0

One can see that the EfficientNetB4 demonstrates improved performance, through the lens
of all metrics, than the other variants, indicating that training for more epochs is advantageous,
particularly for larger models like the B7.
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4.1.3 50 epochs

Table 4.12 presents the results in 50 epochs for each class:

Table 4.12: Performance Metrics for EfficientNetB4

Class Precision Recall F1-Score Specificity
nv 0.906 0.930 0.917 0.854

mel 0.692 0.591 0.637 0.966
bkl 0.787 0.733 0.759 0.967
bcc 0.835 0.817 0.826 0.989

akiec 0.549 0.651 0.596 0.984
vasc 0.667 0.914 0.771 0.989
df 0.732 0.682 0.706 0.993

Mean 0.738 0.760 0.745 0.963
Accuracy 0.835

The accuracy achieved by EfficientNetB4 after 50 epochs, as reported in Table 4.12, exhibits
a decrease of 0.4% compared to the results obtained after 20 epochs (Table 4.10). Additionally,
the F1-score demonstrates an increment of 0.4% relative to EfficientNetB7 trained for 20 epochs

4.1.4 Analysis of all training with HAM dataset

The following table indicate the best model for every training with the HAM dataset. The
numbers after the model name specifies the number of training epochs.

Table 4.13: Performance Metrics - Part 1 (Accuracy to F1-Score)

Models Accuracy Precision Recall F1-Score
Best Model EfficientNetB4 - 20 EfficientNetB7 - 20 EfficientNetB4 - 10 EfficientNetB4 - 10

Second Best Model EfficientNetB4 - 10 EfficientNetB4 - 10 EfficientNetB4 - 50 EfficientNetB0 - 10
Third Best Model EfficientNetB4 - 50 EfficientNetB0 - 10 EfficientNetB4 - 20 EfficientNetB4 - 20
Fourth Best Model EfficientNetB7 - 20 EfficientNetB4 - 20 EfficientNetB7 - 20 EfficientNetB7 - 20
Fifth Best Model EfficientNetB0 - 10 EfficientNetB7 - 10 EfficientNetB0 - 10 EfficientNetB4 - 50
Sixth Best Model EfficientNetB0 - 20 EfficientNetB4 - 50 EfficientNetB0 - 20 EfficientNetB7 - 10

Seventh Best Model EfficientNetB7 - 10 EfficientNetB0 - 20 EfficientNetB7 - 10 EfficientNetB0 - 20
Eighth Best Model ResNet50 - 10 ResNet50 - 10 ResNet50 - 10 ResNet50 - 10
Ninth Best Model ResNet101 - 10 ResNet101 - 10 ResNet101 - 10 ResNet101 - 10
Tenth Best Model VGG16 - 10 VGG16 - 10 VGG16 - 10 VGG16 - 10
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Table 4.14: Performance Metrics - Part 2 (Specificity to Sum of False Negatives)

Models Specificity False Negatives Sum False Negatives
Best Model EfficientNetB4 - 10 EfficientNetB4 - 20 EfficientNetB4 - 20

Second Best Model EfficientNetB4 - 50 EfficientNetB4 - 10 EfficientNetB4 - 10
Third Best Model EfficientNetB4 - 20 EfficientNetB4 - 10 EfficientNetB4 - 10
Fourth Best Model EfficientNetB0 - 10 EfficientNetB7 - 20 EfficientNetB7 - 20
Fifth Best Model EfficientNetB0 - 20 EfficientNetB0 - 10 EfficientNetB0 - 10
Sixth Best Model EfficientNetB7 - 20 EfficientNetB0 - 20 EfficientNetB0 - 20

Seventh Best Model EfficientNetB7 - 10 EfficientNetB7 - 10 EfficientNetB7 - 10
Eighth Best Model ResNet50 - 10 ResNet50 - 10 ResNet50 - 10
Ninth Best Model ResNet101 - 10 ResNet101 - 10 ResNet101 - 10
Tenth Best Model VGG16 - 10 VGG16 - 10 VGG16 - 10

Upon reviewing Tables 4.13 and Table 4.14, and considering the validation losses of 0.262
after 10 epochs and 0.435 after 20 epochs, it is concluded that the optimal model is EfficientNetB4
trained over 10 epochs.

4.1.5 The Best model - HAM

Based on the overall ranking of the models, depicted in the aforementioned tables, it is possi-
ble to recognize as the best model for the HAM dataset the EfficientNetB4 when trained with 10
epochs, evaluated based on F1-Score. Table 4.15 shows again the results the model obtained in
this scenario. Moreover, Fig. 4.1 presents the learning curve over the epochs.

Table 4.15: Performance Metrics for EfficientNetB4

Class Precision Recall F1-Score Specificity
nv 0.907 0.921 0.914 0.857

mel 0.632 0.684 0.657 0.949
bkl 0.801 0.705 0.750 0.971
bcc 0.813 0.796 0.804 0.988

akiec 0.660 0.721 0.689 0.989
vasc 0.725 0.829 0.773 0.993
df 0.857 0.682 0.759 0.997

Mean 0.771 0.762 0.764 0.963
Accuracy 0.841
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Figure 4.1: Curve of Accuracy and Loss from the EfficientNetB4 trained with 10 epochs. This model achieved an
accuracy of 84%.

The performance metrics for the EfficientNetB4 model show variations across different classes.
The “nv” class, representing Melanocytic Nevi, has the highest Precision (0.907), F1-Score (0.914),
and Recall (0.921), indicating a high accuracy rate and effective detection of true positives.

Conversely, the “mel” class, representing Melanoma, exhibits the lowest Precision (0.632),
F1-Score (0.657), and Recall (0.684), suggesting that the model has difficulty on accurately iden-
tifying this class.

The “bkl” class, representing Benign Keratosis, has a good Precision (0.801) but moderate
Recall (0.705), implying a balanced performance. The “bcc” class, representing Basal Cell Car-
cinoma, demonstrates strong metrics across the board, with high Precision (0.813), F1-Score
(0.804), and Specificity (0.988).

Actinic Keratosis (“akiec”) has a high Specificity (0.989), indicating a low rate of false pos-
itives, but lower values for Precision (0.660), Recall (0.721), and F1-Score (0.689), suggesting
that this class could be more refined.

Vascular Lesion (“vasc”) and Dermatofibroma (“df”) exhibit moderate Precision, with the
latter showing high Specificity (0.997), indicating a reliable identification rate, though “df” has
lower Recall (0.682).

In summary, while the EfficientNetB4 model shows strong performance across certain classes,
some areas require improvement, particularly in the detection of challenging classes like Melanoma
(“mel”). These insights can guide further model refinement and training to achieve a more bal-
anced and robust performance.

To view the loss curves for the other models, please refer to the Appendix.
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4.2 THE COVID DATASET

4.2.1 10 epochs

Tables 4.16-4.21 present the detailed results in 10 epochs for each class and for each model
using COVID dataset.

Table 4.16: Performance Metrics for VGG16

Class Precision Recall F1-Score Specificity
Normal 0.952 0.899 0.925 0.958

Lung Opacity 0.854 0.925 0.789 0.937
COVID 0.957 0.975 0.797 0.991

Viral Pneumonia 0.970 0.970 0.970 0.998
Mean 0.933 0.942 0.870 0.971

Accuracy 0.924

Table 4.16 presents the results for VGG-16, with an accuracy of 92.4% and all other metrics
exceeding 90%, except for the F1-Score mean, which is 87%, still a commendable result. The
VGG-16 model (Table 4.1) performed worse when trained with the HAM10000 dataset compared
to its performance with the COVID dataset, as shown in Table 4.16.

Table 4.17: Performance Metrics for ResNet50

Class Precision Recall F1-Score Specificity
Normal 0.940 0.969 0.954 0.943

Lung Opacity 0.950 0.894 0.921 0.982
COVID 0.975 0.978 0.977 0.995

Viral Pneumonia 0.971 1.000 0.985 0.998
Mean 0.959 0.960 0.959 0.979

Accuracy 0.951

The results obtained with ResNet50, as presented in Table 4.17, are superior to those of the
VGG-16 model 4.16. All other metrics exceed 95.9%. The accuracy is 2.7% higher, and the
F1-Score, which was 87% for VGG-16, is 95.9% for ResNet50.

Table 4.18: Performance Metrics for ResNet101

Class Precision Recall F1-Score Specificity
Normal 0.939 0.965 0.952 0.942

Lung Opacity 0.955 0.890 0.922 0.983
COVID 0.981 0.992 0.986 0.996

Viral Pneumonia 0.937 1.000 0.968 0.995
Mean 0.953 0.962 0.957 0.979

Accuracy 0.950

The accuracy achieved with ResNet101, as shown in Table 4.18, is 0.1% lower than that
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achieved with ResNet50 (Table 4.17). Specificity remains consistent with that of ResNet50, while
Precision is slightly lower, and consequently, the F1-Score is also marginally reduced.

Table 4.19: Performance Metrics for EfficientNetB0

Class Precision Recall F1-Score Specificity
Normal 0.929 0.960 0.944 0.932

Lung Opacity 0.946 0.872 0.907 0.980
COVID 0.973 0.989 0.981 0.994

Viral Pneumonia 0.943 0.993 0.967 0.996
Mean 0.948 0.953 0.950 0.976

Accuracy 0.942

The results from ResNet50 (Table 4.17) are better than compared to the results from Efficient-
NetB0 presented in Table 4.19. The accuracy in EfficientNetB0 is 0.9% lower than ResNet50.

Table 4.20: Performance Metrics for EfficientNetB4

Class Precision Recall F1-Score Specificity
Normal 0.954 0.956 0.955 0.957

Lung Opacity 0.942 0.922 0.932 0.978
COVID 0.984 0.992 0.988 0.997

Viral Pneumonia 0.944 1.000 0.971 0.996
Mean 0.956 0.967 0.961 0.982

Accuracy 0.955

Training with EfficientNetB4 yielded superior results compared to ResNet50, as demonstrated
in Table 4.20 and Table 4.17. Only the Precision metric is slightly lower than that of ResNet50
by 0.3%; however, all other metrics are higher.

Table 4.21: Performance Metrics for EfficientNetB7

Class Precision Recall F1-Score Specificity
Normal 0.954 0.967 0.960 0.956

Lung Opacity 0.949 0.922 0.935 0.980
COVID 0.989 0.994 0.992 0.998

Viral Pneumonia 0.985 0.993 0.989 0.999
Mean 0.969 0.969 0.969 0.983

Accuracy 0.960

The model that achieved the highest accuracy is EfficientNetB7, as shown in Table 4.21, with
an accuracy of 96%. Additionally, all other metrics are higher as well.

Table 4.22 presents a summary analysis of all models.
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Table 4.22: Performance Comparison of Different Models

Models Accuracy Precision Recall F1-Score Specificity
VGG16 0.92391 0.93326 0.94233 0.87008 0.97106

ResNet50 0.95085 0.95917 0.96000 0.95926 0.97924
ResNet101 0.95038 0.95304 0.96164 0.95675 0.97916

EfficientNetB0 0.94187 0.94768 0.95328 0.94987 0.97552
EfficientNetB4 0.95510 0.95584 0.96734 0.96135 0.98181
EfficientNetB7 0.96030 0.96909 0.96886 0.96891 0.98329

Higher EfficientNetB7 EfficientNetB7 EfficientNetB7 EfficientNetB7 EfficientNetB7
Second Higher EfficientNetB4 ResNet50 EfficientNetB4 EfficientNetB4 EfficientNetB4
Third Higher ResNet50 EfficientNetB4 ResNet101 ResNet50 ResNet50

Based on the aforementioned results, it was choosen the top 3 models: EfficientNetB7, Effi-
cientNetB4, and ResNet50.

4.2.2 20 epochs

As a reminder, the best models trained with 10 epochs were the ResNet50, EfficientNetB4,
and EfficientNetB7 (Table 4.22). In this subsection, they will be evaluated using training with 20
epochs.

Table 4.23-4.25 presented the results with 20 epochs of the 3 models chosen.

Table 4.23: Performance Metrics for ResNet50

Class Precision Recall F1-Score Specificity
Normal 0.940 0.971 0.955 0.943

Lung Opacity 0.957 0.892 0.923 0.984
COVID 0.986 0.997 0.992 0.997

Viral Pneumonia 0.964 0.993 0.978 0.997
Mean 0.962 0.963 0.962 0.980

Accuracy 0.954

The performance of the ResNet model trained for 20 epochs, as depicted in Table 4.23, ex-
hibits improvements compared to the model trained for 10 epochs, as shown in Table 4.17. Specif-
ically, the accuracy, recall, and precision metrics show an enhancement of 0.3%.

Table 4.24: Performance Metrics for EfficientNetB4

Class Precision Recall F1-Score Specificity
Normal 0.946 0.977 0.961 0.948

Lung Opacity 0.970 0.905 0.936 0.989
COVID 0.981 0.994 0.988 0.996

Viral Pneumonia 0.985 0.993 0.989 0.999
Mean 0.970 0.967 0.969 0.983

Accuracy 0.961
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The performance of EfficientNetB4 trained for 20 epochs, as presented in Table 4.24, sur-
passes the results obtained with 10 epochs (Table 4.19). The accuracy increased from 95.5% to
96.1%, an improvement of 0.6%, and all other metrics are higher, with the exception of Recall,
which remains unchanged at 0.967.

Table 4.25: Performance Metrics for EfficientNetB7

Class Precision Recall F1-Score Specificity
Normal 0.944 0.984 0.964 0.946

Lung Opacity 0.975 0.902 0.937 0.991
COVID 0.984 0.989 0.986 0.997

Viral Pneumonia 0.993 0.993 0.993 0.999
Mean 0.974 0.967 0.970 0.983

Accuracy 0.962

The performance of EfficientNetB7 trained for 20 epochs, as shown in Table 4.25, is notably
impressive. An accuracy of 96.2%, an F1-Score of 97%, and a specificity of 98.3% demonstrate
that the model has learned effectively.

Table 4.26 presents a summary analysis of the results in 20 epochs for the models trained in
this section.

Table 4.26: Performance Metrics for top 3 Models

Models Accuracy Precision Recall F1-Score Specificity
ResNet50 0.95416 0.96184 0.96305 0.96203 0.98034

EfficientNetB4 0.96078 0.97042 0.96740 0.96855 0.98295
EfficientNetB7 0.96219 0.97383 0.96690 0.96991 0.98326

Higher EfficientNetB7 EfficientNetB7 EfficientNetB4 EfficientNetB7 EfficientNetB7
Second Higher EfficientNetB4 EfficientNetB4 EfficientNetB7 EfficientNetB4 EfficientNetB4
Third Higher ResNet50 ResNet50 ResNet50 ResNet50 ResNet50

One can see that the EfficientNetB7 demonstrates improved performance, through the lens
of almost all metrics, than the other variants, indicating that training for more epochs is a good
option.

4.2.3 50 epochs

Table 4.27 presents the results in 50 epochs for each class, for EfficientNetB7.
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Table 4.27: Performance Metrics for EfficientNetB7

Class Precision Recall F1-Score Specificity
Normal 0.943 0.974 0.958 0.945

Lung Opacity 0.959 0.899 0.928 0.985
COVID 0.975 0.989 0.982 0.995

Viral Pneumonia 1.000 1.000 1.000 1.000
Mean 0.967 0.981 0.970 0.990

Accuracy 0.957

Comparing the performance metrics between 20 epochs (Table 4.25) and 50 epochs (Table
4.27), it is observed that only the accuracy and recall are higher with 20 epochs.

4.2.4 Analysis of all training with COVID dataset

The following table indicates the best model for every training with the COVID dataset. The
numbers after the model name specifies the number of training epochs.

Table 4.28: Performance Metrics - Part 1 (Accuracy to F1-Score)

Models Accuracy Precision Recall F1-Score
Best Model EfficientNetB7 - 20 EfficientNetB7 - 20 EfficientNetB7 - 10 EfficientNetB7 - 20

Second Best Model EfficientNetB4 - 20 EfficientNetB4 - 20 EfficientNetB4 - 20 EfficientNetB7 - 10
Third Best Model EfficientNetB7 - 10 EfficientNetB7 - 50 EfficientNetB4 - 10 EfficientNetB4 - 20
Fourth Best Model EfficientNetB7 - 50 EfficientNetB7 - 10 EfficientNetB7 - 20 EfficientNetB7 - 50
Fifth Best Model EfficientNetB4 - 10 ResNet50 - 20 EfficientNetB7 - 50 ResNet50 - 20
Sixth Best Model ResNet50 - 20 ResNet50 - 10 ResNet50 - 20 EfficientNetB4 - 10

Seventh Best Model ResNet50 - 10 EfficientNetB4 - 10 ResNet101 - 10 ResNet50 - 10
Eighth Best Model ResNet101 - 10 ResNet101 - 10 ResNet50 - 10 ResNet101 - 10
Ninth Best Model EfficientNetB0 - 10 EfficientNetB0 - 10 EfficientNetB0 - 10 EfficientNetB0 - 10
Tenth Best Model VGG16 - 10 VGG16 - 10 VGG16 - 10 VGG16 - 10

Table 4.29: Performance Metrics - Part 2 (Specificity to Sum of False Negatives)

Models Specificity False Negatives Sum False Negatives
Best Model EfficientNetB7 - 20 EfficientNetB7 - 20 EfficientNetB7 - 20

Second Best Model EfficientNetB4 - 20 EfficientNetB4 - 20 EfficientNetB4 - 20
Third Best Model EfficientNetB7 - 50 EfficientNetB7 - 50 EfficientNetB7 - 10
Fourth Best Model ResNet50 - 20 ResNet50 - 20 EfficientNetB7 - 50
Fifth Best Model EfficientNetB4 - 10 EfficientNetB4 - 10 EfficientNetB4 - 10
Sixth Best Model EfficientNetB0 - 10 EfficientNetB0 - 10 ResNet50 - 20

Seventh Best Model EfficientNetB7 - 10 EfficientNetB7 - 10 ResNet50 - 10
Eighth Best Model ResNet50 - 10 ResNet50 - 10 ResNet101 - 10
Ninth Best Model ResNet101 - 10 ResNet101 - 10 EfficientNetB0 - 10
Tenth Best Model VGG16 - 10 VGG16 - 10 VGG16 - 10

Upon reviewing Tables 4.28 and Table 4.29 it is concluded that the optimal model is Efficient-
NetB7 trained over 20 epochs.

35



4.2.5 The Best model - COVID

Based on the overall ranking of the models, depicted in the aforementioned tables, it is possi-
ble to recognize as the best model for the COVID dataset the EfficientNetB7 when trained with
20 epochs, evaluated based on F1-Score. Table 4.30 shows again the results the model obtained
in this scenario. Moreover, Fig. 4.2 presents the learning curve over the epochs.

Table 4.30: Performance Metrics for EfficientNetB7

Class Precision Recall F1-Score Specificity
Normal 0.944 0.984 0.964 0.946

Lung Opacity 0.975 0.902 0.937 0.991
COVID 0.984 0.989 0.986 0.997

Viral Pneumonia 0.993 0.993 0.993 0.999
Mean 0.974 0.967 0.970 0.983

Accuracy 0.962

Figure 4.2: Curve of Accuracy and Loss from EfficientNetB7 trianed with 20 epochs. This model achieved an
accuracy of 96.2%.

The EfficientNetB7 model demonstrates high performance across all evaluated metrics. Be-
ginning with precision, which assesses the accuracy of positive predictions, notable high values
are observed across all classes. Particularly noteworthy is the model’s perfect precision for the
"Viral Pneumonia" class, indicating that all positive predictions for this class are accurate. Fur-
thermore, the model exhibits excellent recall scores, effectively capturing a substantial proportion
of true positives for each class. Notably, the "COVID" class stands out with nearly perfect recall,
underscoring the model’s capability to identify almost all instances of COVID-19.

Turning to the F1-Score, the model consistently achieves high scores across all classes, in-
dicative of balanced performance in terms of false positives and false negatives. This contributes
significantly to its overall effectiveness in classification tasks. Moreover, the model demonstrates
impressive accuracy, accurately classifying most instances across all classes.

Specificity, which measures the capacity to correctly identify true negatives, is exceptionally
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high across all classes, highlighting the model’s ability to minimize false positives. This is partic-
ularly evident in the "Viral Pneumonia" class, where the model achieves perfect specificity.

In summary, the EfficientNetB7 model exhibits robust performance across diverse metrics,
underscoring its efficacy in accurately classifying chest X-ray images into various categories of
pulmonary diseases, including COVID-19, Viral Pneumonia, Lung Opacity, and Normal cases.

4.3 DISCUSSION

4.3.1 The HAM10000

In the (TSCHANDL, 2018), the researchers fine-tuned an InceptionV3 architecture with weights
pre-trained on ImageNet data, achieving an accuracy of 98.68%. This was accomplished using
a learning rate of 0.003, a gamma value of 0.1, and a batch size of 64. In contrast, the model
presented in this work achieved an accuracy of 84%, which is 14% lower than the top-performing
model.

Table 4.31: InceptionV3 and EfficientB4 Architecture Details

Model Total Layers Total Params

InceptionV3 298 27,161,264
EfficientB4 548 19,341,616

When comparing the parameters of EfficientNetB4 and InceptionV3 (Tables 4.31 and 3.6), it
is observed that, while InceptionV3 has a greater number of total parameters, EfficientNetB4 is
more compact in terms of estimated total size and the number of layers.

Other results like (GAMAGE et al., 2024) achieved 98,37% accuracy using a Xception model.

4.3.2 The COVID dataset

In (ISLAM et al., 2023), a multi-class classification was performed by fine-tuning ResNet50,
VGG19, and Xception models. The researchers achieved an accuracy of 75% for ResNet50, 92%
for VGG19, and 93% for Xception. In comparison, the best COVID model trained in this work
achieved an accuracy of 96.2%.

The 93% accuracy using Xception reported by (ISLAM et al., 2023) was attained using
Google’s Colab Pro edition hardware, which consists of 26.3 GB of system RAM and 16.1 GB
of GPU memory, for this work it was used a 6 GB of GPU. They employed the same method to
handle class imbalance by using weighted categorical loss and trained the models for 200 epochs.

This model has the potential to significantly improve the efficiency of doctors as they work
through the intricate steps of diagnosis in pulmonary diseases. It helps doctors to dedicate their
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time to other activities that are more urgent or perhaps require more technical knowledge. More-
over, the implementation of this model can lead to a substantial reduction in the costs associated
with diagnosis. This includes not only the professional costs, such as the time but also the opera-
tional costs related to the use of medical equipment, laboratory tests, and other resources.

4.4 SUS-AI-COVID

The model trained with the COVID-19 dataset showed promising performance, justifying
the investment in this diagnostic tool, aimed at detecting COVID-19, viral pneumonia and lung
opacity. For implementation, it will be necessary to use the winning model to perform inferences
on standard X-ray images. The cost of implementing and deploying the model is relatively low,
and it can be easily integrated into the software used in the SUS via the internet (COOP, 2017).
This means that the tool can be accessible anywhere in Brazil with internet access.

The X-ray images must be converted to .png format and resized to 299 x 299 pixels, main-
taining the standard used during model training. Implementing the model in a cloud infrastruc-
ture can allow inferences to be performed efficiently and affordably (ENOH, 2024). The SUS
software must be configured to receive these inferences and, instead of simply displaying the pre-
dicted class, it must present the probability or confidence level with which the model classifies
each condition. To maximize the effectiveness of the tool, it would be advisable to create a spe-
cific course to train healthcare professionals in understanding and using the model. This will not
only allow the physician to have the final say in the decision, but will also provide the possibil-
ity of complementing the diagnosis with other traditional tests. The main objective is to provide
additional support to the physician, assisting in the clinical decision-making process.

Another fundamental aspect is the storage of the new data generated. This data, together
with the final diagnoses, should be used for continuous re-training of the model, ensuring that
it is constantly improving and adapting to new information (NUBANK, 2022). In addition, it is
essential to consider the privacy and security issues of the data, ensuring that it is stored only with
the patient’s consent.
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5 CONCLUSION

This work aimed to present various models capable of classifying lung diseases and skin
lesions. Models such as these have the potential to reduce queues in hospitals and assist in diag-
nostic decision-making. The first analysis was conducted using the HAM10000 dataset, which
comprises images of skin lesions. To evaluate the optimal model, the performance of six Con-
volutional Neural Network (CNN) models was assessed over 10 epochs. Following this initial
evaluation, three of the six models were selected for further training over 20 epochs. Ultimately,
the best-performing model was subjected to 50 epochs of training. For the HAM10000 dataset,
the most effective model was EfficientNetB4, trained with 20 epochs.

The second analysis utilized the COVID dataset, encompassing three lung diseases: COVID-
19, Viral Pneumonia, and Pulmonary Opacity. This dataset consists of chest X-rays. The same
methodology was applied, with the six models initially trained over 10 epochs. Subsequently,
three models were selected for 20 epochs of training, culminating in the best model being trained
over 50 epochs. For the COVID dataset, the most effective model was EfficientNetB7, trained
with 20 epochs.

In the realm of computer vision, optimal model performance necessitates a substantial amount
of data to prevent overfitting issues. Hence, high-quality data is imperative for achieving satis-
factory results. As demonstrated in this work, utilizing the largest model does not necessarily
guarantee superior outcomes.

5.1 FUTURE WORK

In this work, we proposed an analysis to classify different types of skin lesions and pulmonary
diseases using images as input. Through this work, we identified several areas for improvement.

One area for further exploration is hyperparameters. Hyperparameter tuning, using methods
such as grid search or random search, could help identify the optimal set of hyperparameters for
the model. Additionally, we could explore different types of optimizers (KANDEL; CASTELLI;
POPOVIČ, 2020), including:

• Adam

• RMSprop

• Batch Gradient Descent

• Stochastic Gradient Descent

• Mini-Batch Gradient Descent
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• Nesterov Momentum Gradient Descent

Another potential improvement may lie in the loss function. The Focal Loss function, for
instance, is particularly suited for imbalanced classification.

Data augmentation is another technique worth exploring. This technique increases the size
of the dataset by applying transformations to the original images, such as rotation, translation,
scaling, flipping, and zooming. While data augmentation does not always improve the model,
other approaches, such as adding white noise or random-erasing parts of an image, have been
shown to enhance CNN models (MIKOłAJCZYK; GROCHOWSKI, 2018).

Reinforcement Learning (RL) is another promising technique. RL involves an agent learning
to achieve a goal by interacting with the environment. In this context, the goal would be to classify
the image correctly. One possibility is to use the Actor-Critic method, where the Actor is a neural
network and the Critic is another neural network that outputs the value function for the Actor.
RL could make the model more robust and adaptive to different data distributions (SUTTON;
BARTO, 2018).
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A APPENDIX

For all the following images, consider that the blue curve represents the ”Validation“ loss, not
the ”Evaluation“ as said written in the image.

A.1 HAM10000 - TRAINING CURVE

Figure A.1: Loss function values over 10 epochs, during training and validation of model EfficientNetB0.
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Figure A.2: Loss function values over 20 epochs, during training and validation of model EfficientNetB0.

Figure A.3: Loss function values over 10 epochs, during training and validation of model EfficientNetB4.

42



Figure A.4: Loss function values over 20 epochs, during training and validation of model EfficientNetB4.

Figure A.5: Loss function values over 10 epochs, during training and validation of model EfficientNetB7.
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Figure A.6: Loss function values over 20 epochs, during training and validation of model EfficientNetB7.

Figure A.7: Loss function values over 10 epochs, during training and validation of model ResNet101.
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Figure A.8: Loss function values over 10 epochs, during training and validation of model ResNet50.

Figure A.9: Loss function values over 10 epochs, during training and validation of model VGG16.
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A.2 COVID - TRAINING CURVE

Figure A.10: Loss function values over 10 epochs, during training and validation of model EfficientNetB0.

Figure A.11: Loss function values over 20 epochs, during training and validation of model EfficientNetB0.
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Figure A.12: Loss function values over 10 epochs, during training and validation of model EfficientNetB4.

Figure A.13: Loss function values over 20 epochs, during training and validation of model EfficientNetB4.
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Figure A.14: Loss function values over 10 epochs, during training and validation of model EfficientNetB7.

Figure A.15: Loss function values over 20 epochs, during training and validation of model EfficientNetB7.
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Figure A.16: Loss function values over 10 epochs, during training and validation of model ResNet101.

Figure A.17: Loss function values over 10 epochs, during training and validation of model ResNet50.
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Figure A.18: Loss function values over 10 epochs, during training and validation of model VGG16.
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