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Resumo

O estudo da variabilidade da frequência cardíaca (HRV), derivada de sinais de eletrocardio-
grama (ECG), é amplamente realizado para obter indicadores sensíveis da saúde cardiovascu-
lar e dos níveis de regulação autonômica em indivíduos. Isso se deve à influência do sistema
nervoso autonômico, representado principalmente pelos ramos simpático e parassimpático,
que afetam significativamente esses indicadores de variabilidade. Adicionalmente, sabe-se
que o sinal de de pressão arterial contínua pode fornecer informações sobre a regulação
autonômica por meio da variabilidade das pressões sistólica (SBP) e diastólica (DBP). No
entanto, a obtenção de medições contínuas da pressão arterial é comumente realizada com
o uso de equipamentos de alto custo. Como alternativa, o sinal de fotopletismografia (PPG),
obtido de forma não invasiva e a um custo menor, pode ser utilizado para estimar a pressão
arterial e até mesmo servir como um novo marcador de variabilidade ou substituto para a
HRV em casos específicos, na forma da variabilidade da frequência de pulso (PRV). Nesse
contexto, este estudo visa detalhar a criação de novosmódulos para uma ferramenta existente,
na forma de uma interface gráfica em MATLAB, para pré-processar, extrair novos sinais
a partir do sinal de fotopletismografia e analisar esses sinais utilizando uma abordagem a
nível espectral (densidade espectral de potência) e a nível de sistemas (resposta ao impulso e
função de resposta em frequência). Adicionalmente, utilizando uma base de dados real de
indivíduos em posição sentado em repouso, uma análise comparativa é realizada para avaliar
diferenças significativas entre esses marcadores invariantes no tempo obtidos utilizando os
indicadores de HRV e PRV.

Palavras-chave: Fotopletismografia. Variabilidade da frequência cardíaca. Variabilidade da
frequência de pulso. MATLAB.



Abstract

The study of heart rate variability (HRV), derived from electrocardiogram (ECG) signals,
is widely conducted to obtain sensitive indicators of cardiovascular health and autonomic
regulation levels in individuals. This is due to the influence of the autonomic nervous
system, primarily represented by the sympathetic and parasympathetic branches, which
significantly affect these variability indicators. Additionally, it is known that continuous
arterial blood pressure signals can provide information about autonomic regulation through
the variability of systolic blood pressure (SBP) and diastolic blood pressure (DBP). However,
obtaining continuous blood pressure measurements is commonly performed using high-
cost equipment. As an alternative, the photoplethysmography (PPG) signal, obtained non-
invasively and at a lower cost, can be used to estimate blood pressure and even serve as a new
variabilitymarker or a substitute for HRV in specific cases, in the form of pulse rate variability
(PRV). In this context, this study aims to detail the creation of new modules for an existing
tool, in the form of a graphical interface in MATLAB, to preprocess, extract new signals from
photoplethysmography, and analyze these signals using a spectral approach (power spectral
density) and a system-level approach (impulse response and frequency response function).
Additionally, using a real dataset of individuals in a seated resting position, a comparative
analysis is performed to assess significant differences between these time-invariant markers
obtained using HRV and PRV indicators.

Keywords: Photoplethysmography. Heart rate variability. Pulse rate variability. MATLAB.
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1 INTRODUÇÃO

1.1 Motivação

Os estudos iniciais acerca da variabilidade da frequência cardíaca (HRV do inglês
Heart Rate Variability) surgiram em uma pesquisa sobre morte fetal em meados da década
de 60. Na ocasião, Hon e Lee investigaram a relação da variabilidade da série temporal do
intervalo entre picos R (RRI do inglês R-to-R Interval) extraída do sinal de eletrocardiograma
(ECG), como um possível fator correlacionado aos padrões fisiológicos observados. Na
década seguinte, Hyndman documentou um trecho de variação espontânea de 10 segundos
na pressão arterial (ABP do inglês Arterial Blood Pressure) e modelou um sistema de controle
para descrever sua descoberta (Kamath; Watanabe; Upton, 2016).

A partir desses estopins iniciais, o estudo da variabilidade e seus marcadores se tor-
naram amplamente conhecidos e difundidos na área da bioengenharia como indicadores
sensíveis do estado de saúde cardiovascular e do nível de regulação autonômica do indi-
víduo (Javorka et al., 2018). Em particular, a descoberta da influência do sistema nervoso
autônomo (SNA) em alterações significativas no HRV permitiu melhor entender como algu-
mas doenças, como a diabetes mellitus tipo 2 e apneia do sono, afetam a atuação e a avaliação
das atividades autônomas cardiovascular e nervosa (Marieb; Hoehn, 2019).

Além do HRV, há estudos com o sinal do fotopletismografia (PPG do inglês Photo-
plethysmography) como uma técnica alternativa para avaliar informações de HRV a partir
do sinal de onda de pulso PPG, que é obtido de forma não invasiva. Esse sinal mede o volume
de sangue no tecido e, de forma análoga ao sinal de ECG, a série temporal do intervalo em
picos ou vales do pulso (PPI do inglês Peak-to-Peak Interval) é extraída e a variabilidade da
frequência de pulso (PRV do inglês Pulse Rate Variability) é obtida (Mejía-Mejía et al., 2020).
Entretanto, a relação entre PRV e HRV não é unanimidade no meio científico, visto que
há estudos que propõem o PRV como ummarcador dissociado do HRV, enquanto outros
evidenciam uma relação direta entre PRV e HRV.

Por exemplo, em (Yuda et al., 2020), sustenta-se que, apesar do HRV e PRV refletirem
batimentos periódicos do coração, não é uma garantia que as variabilidades de ambos os
sinais também representam ummesmo significado. Em termos fisiológicos, o HRV mede
mais diretamente a atividade elétrica do coração, enquanto o PRV mede a onda mecânica
resultante desta atividade elétrica nos tecidos periféricos. Diante disso, variáveis, como a
distensibilidade das artérias, mudanças no tônus vascular, doenças que afetem estas variá-
veis, mudanças de postura, métodos de processamento e até o ponto de medição do PPG
(segmentos distintos do dedo, punho, braço, lóbulo da orelha ou testa) podem modificar
os instantes de pulso em relação aos medidos no ECG e, consequentemente, resultar em
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medidas ou índices distintos obtidos pelo HRV e PRV. Em contrapartida, em (Verma et al.,
2019), resultados de marcadores espectrais e temporais mostraram que o PRV foi um bom
substituto do HRV para o monitoramento da regulação cardiovascular especialmente em
sujeitos jovens, saudáveis e em condições estacionárias (repouso).

Ademais, além do sinal de ECG, o sinal de ABP também contém informações impor-
tantes da regulação cardiovascular pelo sistema nervoso autônomo, por refletir diretamente a
influência do SNA nas variabilidades da pressão sistólica e diastólica batimento a batimento.
O ABP pode ser obtido a partir de equipamentos como o Finapres (Peñaz, 1973). No entanto,
estes equipamentos costumam ser caros. Como alternativa, informações relacionada à ABP
podem ser obtidas combinando-se informações do sinal de ECG com o sinal de tempo de
trânsito de pulso (PTT do inglês Pulse Transit Time). É importante mencionar também que
o PTT é amplamente utilizado para estudos de variabilidade e reflexo da função arterial e,
especificamente, investiga-se o seu uso como alternativa de estimação da ABP de forma não
invasiva (Ding et al., 2017). Esse sinal é obtido, de forma aproximada, a partir do intervalo
de tempo entre o pico R do sinal de ECG e o respectivo pico da primeira derivada do PPG
(ou ponto médio da amplitude do sinal de PPG) e, em termos fisiológicos, é definido como
o tempo em que um pulso arterial leva para se propagar de uma região a outra do sistema
cardiovascular, além de ser um indicador da rigidez vascular do mesmo (Ding et al., 2017).

Neste contexto, sinais fisiológicos, variáveis, marcadores e descritores podem ser
obtidos a partir de diferentes técnicas de processamentos de sinais e ferramentasmatemáticas
no domínio do frequência e do tempo. Na frequência, será abordada o densidade espectral de
potência (PSD do inglês Power Spectral Density) das séries temporais que indicam o HRV e o
PRVe a respectiva distribuição em termos de diferentes componentes de frequência (Akselrod
et al., 1981). Essa técnica é amplamente utilizada para quantificar o comportamento do
sistema nervoso autônomo e possui a vantagem de ser facilmente computada pelas técnicas
de processamento de sinais existentes. No entanto, os índices espectrais são afetados por
diferenças no padrão respiratório dos indivíduos e fornecem apenas informações sobre a
saída do sistema autônomo, sem revelar a dinâmica subjacente (Jo, 2002).

Alternativamente, no domínio do tempo, há a técnica de identificação de sistemas que
permite caracterizar mecanismos fisiológicos através da análise de dados de entrada e saída,
impondo causalidade entre estes e permitindo a observação da interação entre mecanismos
de regulação cardiovascular. Além disso, a análise no domínio do tempo, baseada na resposta
ao impulso, para cada par entrada-saída, estima, a partir de um modelo no domínio do
tempo que impõe restrições de causalidade entre a entrada e saída, o que efetivamente "abre
amalha", matematicamente, do sistema cardiorrespiratório, que é inerentemente um sistema
de malha fechada (Khoo, 2018).
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1.2 Objetivos

Este trabalho tem por objetivo principal o desenvolvimento de módulos para o pro-
cessamento de sinais de PPG para a toolbox CRSIDLab (Silva, 2017). O CRSIDLab (Cardi-
orespiratory System Identification Lab) é uma ferramenta programada emMATLAB para
a quantificação da função autonômica cardíaca. A partir de uma interface gráfica, atual-
mente o toolbox CRSIDLab fornece um conjunto de ferramentas, incluindo diversas etapas
de pré-processamento de dados cardiorrespiratórios (ECG, ABP e fluxo de ar ou volume
pulmonar instantâneo), a estimação da densidade espectral de potência e a identificação
de um modelo cardiorrespiratório multivariável no domínio do tempo. Os módulos imple-
mentados neste trabalho permitirão a inclusão do sinal de PPG à análise e quantificação do
sistema cardiovascular e respiratório. Além disso, visa-se extrair novas variáveis, indicadores
quantitativos e marcadores importantes para o estudo da HRV e áreas correlatas como, por
exemplo, o PTT a partir dos sinais de PPG e ECG. Esses módulos serão representados por
meio de interfaces gráficas e interativas, a fim de facilitar novas pesquisas científicas.

O segundo objetivo deste trabalho é, a partir deste novos módulos implementados,
utilizando uma base de dados com sinais de ECG e PPG de 22 sujeitos sentados em posição
sentada em repouso, realizar o estudo comparativo entre HRV e PRV, a fim de avaliar a
possibilidade de análises espectrais univariadas, temporais multivariadas a nível de sistemas
e respectivas análise de coerência da função de transferência (TF do inglês Transfer Function)
obterem ou não diferenças significativas quando considerado cada um dos marcadores de
variabilidade, HRV e PRV.

O desenvolvimento de uma ferramenta com interface gráfica para o estudo do sistema
nervoso autônomo cardíaco a partir de ummodelamento multivariável, que possui ferramen-
tas para auxiliar desde o pré-processamento inicial de sinais como o ECG, PPG, ABP e o sinal
de respiração, até o cálculo de índices univariáveis e multivariáveis, nos domínios espectral
e do tempo, permite que uma ampla gama de pesquisadores possam realizar e verificar
cada etapa de processamento e análise, uma vez que não é necessário o conhecimento de
programação para o seu uso. Além disso, a investigação do PRV como um possível substituto
do HRV em estudos de variabilidade da frequência cardíaca em determinadas situações é
importante, especialmente por ser uma alternativa mais econômica e conveniente quando
comparada à obtenção do sinal de ECG. Ademais, com a opção de derivar o sinal de PPG
implementada, a extração de variáveis como a segunda derivada do PPG (SDPPG) tem sido
proposta para a estimação da rigidez arterial (Takazawa et al., 1998), um indicador precoce
de doenças cardiovasculares como hipertensão arterial e insuficiência cardíaca (Shirwany;
Zou, 2010).
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1.3 Estrutura do trabalho

Este trabalho está organizado em sete capítulos.

No Capítulo 1, expõe-se uma breve motivação por trás do estudo das variabilidades
das frequências cardíaca e de pulso com o foco direcionado às aplicações do sinal de PPG e
de PTT, bem como uma contextualização dos principais focos de estudo desse tema na área
da engenharia biomédica. Além disso, esse capítulo também expõe os objetivos do trabalho.

O Capítulo 2 expõe os principais conceitos teóricos relevantes de serem previamente
conhecidos, para a compreensão das contribuições apresentadas no restante do trabalho,
são abordados. Dentre esses conceitos, abordaram-se aspectos da fisiologia humana, sinais
fisiológicos, técnicas de pré-processamento e análise de sinais e sistemas invariantes no
tempo nos domínios do tempo e da frequência e, por fim, métricas estatísticas utilizadas.

No Capítulo 3, há uma breve explanação de trabalhos relacionados os quais propu-
seram projeto de ferramentas computacionais de pré-processamento e análise de sinais
fisiológicos.

O Capítulo 4 visa detalhar os novosmódulos desenvolvidos e osmódulos aprimorados
da ferramenta para incorporar o pré-processamento e análise de sinais obtidos a partir do
PPG.

No Capítulo 5, detalha-se os procedimentos adotados para realização da análise
comparativa entre HRV e PRV. De início, o procedimento de pré-processamento dos sinais
de ECG e PPG é descrito. Em seguida, a extração de índices espectrais, descritores compactos
e áreas de ganho e métodos estatísticos de comparação utilizados.

Já, no Capítulo 6, os resultados obtidos na análise comparativa entre HRV e PRV são
explanados e discutidos por meio das métricas estatísticas geradas.

Por fim, no Capítulo 7, as conclusões, acerca da possibilidade da utilização do PRV
como um substituto do HRV para estudos de variabilidade e nos moldes apresentados neste
trabalho, são apresentadas. Em complemento, mapeiam-se possíveis melhorias futuras e
novos focos de estudo direcionados a este trabalho.
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2 REFERENCIAL TEÓRICO

Este capitulo aborda conceitos teóricos importantes de serem conhecidos para que
todo o desenvolvimento dosmétodos e obtenção dos resultados gerados sejam compreendidos
em sua integralidade.

O capítulo começa abordando a fisiologia do sistema cardiovascular em termos de
funcionamento básico e sua regulação pelo sistema nervoso autônomo. A seguir procura-
se detalhar o sistema nervoso autônomo, em particular os efeitos dos ramos simpático e
parassimpático na regulação cardiovascular. Os sinais de eletrocardiograma, pressão arterial
(BP, do inglêsBlood Pressure) e fotopletismografia, outros sinais fisiológicos obtidos a partir de
operações e processamentos destes sinais, como a média da BP e o sinal de tempo de trânsito,
e suas respectivas interpretações fisiológicas em termos de variabilidade de frequência e
mecanismos de controle do reflexo barorreceptor arterial são então descritos.

Em sequência, descreve-se sobre sinais e sistemas invariantes no tempo e algumas téc-
nicas de análise nos domínios do tempo e da frequência. Especificamente, para a frequência,
o método espectral de Welch é descrito e detalhado. Já como análise temporal, descreve-se
o método de identificação de sistemas, focando nos mecanismos de análise de dados de
entrada e saída, os quais impõem causalidade e permitem umamelhor visão dosmecanismos
de controle e inter-relações entre variáveis. Como métodos, o capítulo foca na descrição de
descritores obtidos a partir da resposta ao impulso e da função de resposta em frequência
sob a consideração ou não de um limiar de coerência.

Por fim, alguns testes estatísticos comparativos os quais mensuram o nível de concor-
dância entre métodos distintos que avaliam a mesma variável quantitativa são descritos em
termos de aplicação e interpretação, One-Way ANOVA e o Teste de Bland Altman.

2.1 Fisiologia

2.1.1 Sistemas cardiovascular e cardiorrespiratório

O sistema cardiovascular é responsável por bombear sangue para todo o corpo e
permitir que as células realizem respiração celular, desempenhando suas funções fim. Em
termos mais específicos, o coração, que é o principal músculo do sistema, realiza contrações
ordenadas para o correto funcionamento do ciclo cardíaco.
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Figura 2.1 – Estrutura dos constituintes do sistema cardiovascular sanguíneo humano e dos vasos
sanguíneos. Fonte: Adaptado de (Lopes; Rosso, 2002).

Antes de bombear o sangue, o pulmão desempenha papel fundamental para realizar
a hematose (trocas gasosas) por meio da respiração pulmonar. O sistema cardiorrespiratório
libera gás carbônico (CO2) por meio da expiração e absorve gás oxigênio (O2) por inspiração,
o que garante que a oxigenação do sangue seja realizada de fato (Lopes; Rosso, 2002).

Com o sangue oxigenado, coração intercala seu comportamento em dois estados
principais: sístole (estado de contração) e diástole (estado de relaxamento). Como pode
ser observado na Figura 2.2, a anatomia do músculo é divida em duas câmaras inferiores
(ventrículos) e duas câmaras superiores (átrios), sendo cada uma das câmaras separadas por
válvulas atrioventriculares. De maneira sistêmica, os átrios recebem sangue venoso (rico em
CO2) de todo corpo e os ventrículos bombeiam sangue arterial (rico em O2) para o corpo.
Deste modo, os átrios e ventrículos estão em diástole ao início do ciclo cardíaco, entrando
em sístole para o bombeamento do sangue somente após o recebimento do pulso elétrico
pelo nó-sino atrial (SAN, do inglês Sino Atrial Node), repetindo esse mecanismo de forma
cíclica (Guyton et al., 2006).
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Figura 2.2 – Coração humano em vista posterior e em corte transversal. Fonte: Adaptado de (Lopes;
Rosso, 2002).

O ritmo com que esse ciclo se repete é denominada frequência cardíaca (HR, do inglês
Heart Rate), medida em batimentos por minuto (BPM) e é objeto amplo de estudo na área
da engenharia biomédica e medicina. Entretanto, outros sistemas, especialmente o nervoso,
interferem e modulam consideravelmente no comportamento deste ciclo (Marieb; Hoehn,
2019).

2.1.2 Sistema nervoso autônomo

Após o entendimento dos sistemas relacionados à atividade circulatória e respiratório,
torna-se indispensável abordar o funcionamento geral do SNA, uma vez que a atividade
cerebral influencia diretamente o comportamento dos sistemas cardiovascular e cardiorres-
piratório.

O organismo humano e sua respectiva organização em sistemas, órgãos, tecidos e
células é estruturada para buscar uma situação de estabilidade. Essa estabilidade é modulada
por fator externos ou exógenos, como mudanças no ambiente, e fatores internos ou endó-
genos, principalmente representados por manejo de recursos para as células do corpo. Em
situações exógenas, eventuais situações que apresentem risco de sobrevivência ou finitude
de recursos alteram e modulam a estabilidade dos sistemas humano. Com o foco para os
fatores endógenos, o SNA desempenha papel fundamental na adaptabilidade dele e de outros
sistemas e subsistemas (Silverthorn et al., 2016).

Como explicitado na Figura 2.3, o SNA é parte dos sistema nervoso periférico (SNP),
controla reações involuntária, como a vasodilatação ou taquicardia, que podem ser dividas
em outros dois ramos: simpático e parassimpático ou vagal. De modo geral, esses ramos



26

possuem atuações diametralmente opostos, entretanto podem atuar de maneira conjunta e
complementar em alguns casos (Marieb; Hoehn, 2019).

Figura 2.3 – Representação das principais vias simpáticas, em azul, e parassimpáticas, em preto, na
espécie humana. Fonte: Extraída de (Lopes; Rosso, 2002).

O ramo simpático condiciona, principalmente, modulações fisiológicas relacionadas
ao aumento de circulação sanguínea, como situações de estresse e fuga, a atuar na vasocons-
trição, aumento da HR e da BP e dilatação dos brônquios e da pupila. De encontro, o ramo
parassimpático modula situações de descanso e relaxamento, provocando vasodilatação,
redução da HR e da BP e contrição dos brônquios e da pupila (Silverthorn et al., 2016).
Ademais, essas modulações são condicionas por efeito de disparos, os quais os do ramo
simpático do SNA levam um certo tempo até se manifestar como um aumento da frequência
cardíaca, enquanto que, após a chegada de pulsos via o ramo parassimpático do SNA, a
diminuição no ritmo cardíaco se dá logo no próximo batimento. É por esse motivo que, na
região HF (HF, do inglêsHigh Frequency) do HRV se considera que só há influência do ramo
parassimpático do SNA (além da respiração), enquanto que na região LF (LF, do inglês Low
Frequency) do HRV há contribuições de ambos os ramos do SNA.

Apesar da ação convencionalmente oposta, como evidenciado na Figura 2.3, as ações
de ambos os ramos desempenham papel indispensável para o equilíbrio e homeostase
fisiológica (Lopes; Rosso, 2002).



27

2.1.3 Eletrocardiograma e pressão arterial

Os sinais de ECG, PA e PPG foram, brevemente, introduzidos na Secão 1.1, não
obstante torna-se indispensável melhor entender o que representam fisiologicamente, bem
a forma como são obtidos.

O ECG é uma representação gráfica do registro da diferença de potencial elétrico
entre dois pontos da superfície do corpo ao longo de um determinado intervalo de tempo (Kil-
patrick; Johnston, 1994), como evidenciado na Figura 2.4. A sua obtenção é amplamente
utilizada para a observação do comportamento do ciclo cardíaco explicitado na Seção 2.1.1.

Figura 2.4 – Representação típica de um sinal de ECG e suas respectivas partes. Fonte: Extraída
de (Silverthorn et al., 2016).

Como pode ser observado na Figura 2.2, entende-se câmaras superiores como os
átrios e câmaras inferiores como os ventrículos. De acordo com (Marieb; Hoehn, 2019), as
partes do sinal ECG são resumidas da seguinte forma:

• A onda P representa a despolarização atrial, indicando a contração das câmaras
superiores do coração.

• O intervalo PR representa o tempo entre o início da excitação atrial e o início da
excitação ventricular.

• O segmento P-R é o intervalo entre o final da onda P e o início do complexo QRS
e representa a condução do impulso elétrico através das câmaras superiores até as
câmaras inferiores.

• O complexo QRS representa a despolarização ventricular, indicando a contração das
câmaras inferiores do coração.
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• O intervaloQT representa o período entre a despolarização e repolarização ventricular,
refletindo a duração da atividade elétrica no coração.

• A onda T representa a repolarização ventricular, indicando a recuperação das câmaras
inferiores após a contração.

• O segmento S-T é uma linha de base entre a despolarização e repolarização, podendo
indicar a presença de alterações isquêmicas ou outras condições cardíacas.

Deste modo, o início da atividade do SAN é marcada pela onda P. Entretanto, na
prática, o pico R do complexo QRS é comumente mais fácil de ser identificado, sendo
portanto este ponto o marcador amplamente utilizado para o início da atividade elétrica do
coração (Clifford, 2002).

Já a ABP é uma representação gráfica da força que o sangue exerce sobre as paredes
das artérias durante um intervalo de tempo. O ponto máxima amplitude do sinal de pressão
é denominado pressão arterial sistólica (SBP, do inglês Systolic Blood Pressure), enquanto
o ponto de mínima amplitude é denominado pressão arterial diastólica (DBP, do inglês
Diastolic Blood Pressure), estes pontos representam os estados de contração e relaxamento
do coração respectivamente, como observado na Figura 2.5.

Figura 2.5 – Representação de um sinal de ABP com pontos de SBP, DBP e MAP. Fonte: Adaptado
de (Klabunde, 2023).

Além dos pontos de mínima e de máxima amplitude, a pressão arterial média (MAP,
do inglês Mean Arterial Pressure) é um outro ponto que é definido como a média da BP
em cada i-ésimo ciclo cardíaco (Kamath; Watanabe; Upton, 2016), como explicitado pela
Equação 2.1.
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MAP(𝑖) = 2 · DBP(𝑖) + SBP(𝑖)
3

(2.1)

2.1.4 Fotopletismografia e inversibilidade em amplitude

O sinal de PPG é uma representação gráfica, utilizando um método não invasivo, de
mudanças no volume de sangue em um leito microvascular da pele em um determinado
intervalo de tempo, com base em propriedades ópticas, como absorção, dispersão da luz.
Como observado na Figura 2.6, a obtenção da forma de onda do PPG é através da inversão da
intensidade de luz absorvida por um fotodetector, depois que parte desta luz é transmitida
ou refletida através do tecido humano. Comumente, oxímetros de pulso são utilizados para
obtenção do PPG (Park et al., 2022).

Figura 2.6 – Mecanismo ilustrado do princípio de obtenção do sinal de PPG. A parte superior mostra
o sinal de PPG obtido por meio do oxímetro de pulso. A parte inferior mostra o sinal
invertido em amplitude com os respectivos de início de ciclo, sistólico e diastólico da
forma de onda. Fonte: Extraído de (Park et al., 2022).

Em comparação com outros outras técnicas hemodinâmicas, a obtenção do PPG é
não invasiva, econômica e de fácil obtenção. Além disso, o PPG é utilizado para estimação
da ABP de forma não invasiva, obtenção do PTT e vastos estudos demachine learning que
analisam a relação entre a morfologia da onda de PPG e indicadores da ABP (Ding et al.,
2017).
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Ademais, observa-se, na Figura 2.6, que o mecanismo de obtenção do PPG por meio
de um sensor de luz comumente disponibiliza o sinal invertido em amplitude. Ou seja,
na parte superior da respectiva figura, os pontos sistólico, diastólico e o de início de ciclo
possuem suas localizações alteradas da forma dos locais convencionalmente esperados,
como evidenciado na parte inferior da mesma figura. Essa inversão em amplitude pode
prejudicar na localização correta dos pontos para possíveis análises. Assim sendo, por vezes,
torna-se necessário aplicar uma inversão em amplitude do sinal de PPG, de forma a se obter
corretamente os seus respectivos pontos de interesse.

2.1.5 Sinal de tempo de trânsito (pulse transit time)

Como introduzido na Seção 1.1, o PTT aproximado é obtido a partir da obtenção
do intervalo de tempo entre pontos específicos extraídos do ECG e do PPG. Não obstante,
como evidenciado em (Lin; Samuel; Li, 2018), para a obtenção do PTT real, deve-se subtrair
do (PAT, do inglês Pulse Arrival Time) o período de pré-ejeção (PEP, do inglês Pre-ejection
Period). O PEP representa o intervalo de tempo entre o início da despolarização ventricular
(onda Q do ECG) e a abertura propriamente dita da válvula aórtica (Pilz; Patzak; Bothe,
2023), já o PAT é definido como o intervalo de tempo entre o pico R dop sinal de ECG e
um ponto fiducial, comumente o pico da 1ª derivada do PPG (Sun et al., 2023). A Figura
2.7 evidencia a determinação do PEP e a Figura 2.8 explicita os intervalos PEP, PAT e PTT
aproximado.

Figura 2.7 – Determinaçãop do PEP, definido
como o intervalo de tempo entre
a ondaQ do ECG (parte superior)
e o início da ejeção do sangue
(aumento do fluxo sanguíneo na
aorta, parte inferior) (Pilz; Pat-
zak; Bothe, 2023).

Figura 2.8 – Pontos representativos do inter-
valo RRI do ECG, ponto médio
da amplitude do PPG e o ponto
do pico da derivada do PPG uti-
lizados para a extração do PTT.
Fonte: Extraído de (Lin; Samuel;
Li, 2018).
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Apesar disso, a medição do PEP se apresenta como um complicador adicional por
necessitar de um outro instrumento de medida denominado impedance cardiogram (ICG),
o qual detecta, analisa e registra as alterações hemodinâmicas por meio da variação da
resistência elétrica no tórax, traduzindo-as, graficamente, em ondas de impedância (Leão;
Silva, 2018), como observado na Figura 2.8. Portanto, o PTT aproximado é considerado
uma boa aproximação em decorrência da facilidade de medição e robustez do método de
obtenção (Lin; Samuel; Li, 2018). Especificamente, esse PTT é uma série temporal obtida
entre o intervalo de tempo entre o pico R do sinal ECG e o pico da primeira derivada do sinal
de PPG (ou, alternativamente, o ponto médio da amplitude do PPG), como observado na
Figura 2.9.

Figura 2.9 – Pontos representativos do pico R do ECG e do ponto de referência do PPG e do pico da
sua 1ª derivada para obtenção do PTT, bem como a identificação do PTT. Fonte: Extraído
de (Lui; Chow, 2018).

A obtenção do PTT possui papel importante para a estimação da, de maneira não
invasiva, de ABP de modo contínuo. A medida com a braçadeira, que é geralmente feita
em consultas médicas, não é uma medida contínua de pressão. Medidas contínuas são
normalmente obtidas de modo invasivo com um cateter inserido em uma artéria. Ademais,
em grande parte dos procedimentos cirúrgicos, a medida de BP é necessária de ser monitoria
intermitente com um manguito branquital. Apesar da não invasividade, essas medidas
intermitentes têm o risco de perder informações clinicamente relevantes nos intervalos
de tempo de interrupção. A utilização de cateteres também pode ser utilizada, mas está
associada ao aumento de riscos de efeitos adversos, como isquemia distal, sangramentos,
tromboses e infecções (Sun et al., 2023). Assim sendo, diante destas desvantagens, novas
formas de obtenção de ABP modo contínuo, como a estimação a partir do PTT.
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2.1.6 Variabilidades da frequência cardíaca e da frequência do pulso

A HRV refere-se às variações ou oscilações a cada batimento entre valores de HR
instantâneas consecutivas ou, de forma equivalente, é também definida como as variações
nos intervalos de tempo entre picos R sucessivos do ECG, como observado na Figura 2.10.

Figura 2.10 – Comparação entre sinais de ECG normal e com contrações ventriculares e atriais
prematuras, bem como a identificação de um batimento ectópico seguindo de uma
pausa compensatória. Fonte: Adaptado de (Ectopic. . . , 2023).

Oscilações estas que são definias pelo SAN e são moduladas continuamente pelo SNP,
especificamente pelo sistemas simpático e parassimpático (Oliveira et al., 2019). Ademais, a
figura anterior ilustra também os batimentos ectópicos, que são batimentos prematuros extra-
sístole, ou seja, não oriundos da ativação do SAN pelos ramos simpático e parassimpático e
a pausa compensatória característica provocada por eles (Peltola, 2012). Deste modo, como
não refletem a atividade do SNA, a etapa de pré-processamento do ECG deve identificá-los,
removê-los e utilizar alguma técnica tratativa, como a interpolação (Clifford, 2002).

Analogamente à HRV, o PRV representa oscilações, a cada batimento, do intervalo de
tempo entre picos ou vales consecutivos do sinal de PPG, como explicitado na Figura 2.11. Os
batimentos ectópicos citados anteriormente também influenciam a forma de onda do PPG
e, novamente, mostra-se a importância de serem retirados e tratados (Guzman; Couderc;
Tsouri, 2019).
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Figura 2.11 – Representação de alguns pontos do PPG. Em especial, dos intervalos PPI entre picos e
entre vales do PPG, denominados PPIsystolic e PPIonset respectivamente. Fonte: Extraído
de (Park et al., 2022).

2.1.7 Reflexo barorreceptor arterial

O reflexo barorreceptor arterial (ABR, do inglês Arterial Baroreceptor Arterial), tam-
bém conhecido com barorreflexo, é um mecanismo reflexo de feedback negativo constituído
por sensores denominados barorreceptores. Esses sensores estão localizados em pontos
específicos de grandes artérias sistêmicas e, a partir do envio de impulsos nervosos para o
sistema nervoso central (SNC), sinais de feedback são enviados de volta para controlar a HR
a partir da ABP (Guyton et al., 2006).

Neste sentido, o mecanismo de controle se comporta para que o aumento de pressão
implique em redução da HR e vice-versa, caso o primeiro ocorra. A sensibilidade do baror-
reflexo (BRS, do inglês Baroreflex Sensitivity) é uma medida representatica da capacidade
deste mecanismo de ajustar essa HR a mudanças na BP, sendo quanto mais alto de BRS,
mais sensível é o sistema à mudança de ABP (Kuusela, 2012a). Dados anteriores mostraram
que a atividade do sistema simpático provoca atenuação do BRS (Skrapari et al., 2007).

Ao mesmo tempo, a função do barorreflexo é manter a BP em níveis estáveis apesar
de mudanças de postura (Schrezenmaier et al., 2007). O mecanismo de regulação do ABP é
definido como um sistema de feedback constituído de sensores (barorreceptores, os quais
medem a ABP em locais específicos do corpo), uma unidade de processamento (localizada
no SNC) e uma unidade de saída (o SNA, o qual ajusta a ABP por meio das mudanças da
HR, da contratilidade cardíaca e da resistência dos vasos sanguíneos periféricos) (Kamath;
Watanabe; Upton, 2016). O diagrama desse mecanismo simplificado de controle da ABP é
explicitado na Figura 2.12.
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Figura 2.12 – Modelo simplificado domecanismo de regulação daABP. SNC (sistema nervoso),MSNA
(atividade simpática muscular), SA (nó sino-atrial), RRI (intervalo RR), VS (volume
sistólico), CO (saída cardíaca), SAP (pressão arterial sistólica), DAP (pressão arterial
diastólica). Neste modelo linear, os pares de sinais são DAP (entrada)-MSNA (saída) e
SAP (entrada)-RRI (saída). Fonte: Extraído de (Kamath; Watanabe; Upton, 2016).

2.2 Sinais e sistemas invariantes no tempo

Os sinais fisiológicos e os sistemas construídos a partir destes são considerados inva-
riantes no tempo, ou seja, não variam suas características comportamentais e propriedades
estatísticas ao longo do tempo (Semmlow, 2014). Além da invariância no tempo, de suma
importância garantir a estacionariedade destes sinais e sistemas construídos a partir destes.
Este conceito pode ser definido como o não deslocamento na linha de base do sinal que é
função do tempo, além da manutenção das características estatísticas como média, variância
e estrutura de correlação constantes ao longo do tempo (Kuusela, 2012b).

Em complemento, a característica estacionária está fortemente relacionada à duração
do intervalo sugerido de análise de sinais fisiológicos, uma vez que um quanto maior o
intervalo de análise do registro do sinal utilizado, menos estacionário ele é. Deste modo,
alguns estudos sugerem que a melhor abordagem é dividir o sinal em pequenos intervalos
(comumente de 5 minutos), os quais são comumente mais estacionários e geram resultados
mais confiáveis (Task Force, 1996).

Para sinais fisiológicos que respeitam essas categorias, pode-se aplicar o método da
PSD (a nível espectral) e o da análise da IRe da FRF (a nível de sistemas).
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2.2.1 Análise espectral: método deWelch

O método deWelch é caracterizado por ser um método espectral que divide um sinal
em vários segmentos, aplica uma janela, com tamanho dos segmentos e nível de sobrepo-
sição bem definidos, a cada um deles. Em sequência, a Transformada Discreta de Fourier
(TDF) é também aplicada a cada um destes e, por fim, calcula-se a média dos espectros de
cada segmento janelado (Semmlow, 2014). Considerando os sinais fisiológicos como séries
temporais estacionárias, isto é, possuem média, variância e estrutura de autocorrelação
constantes ao longo do tempo, pode-se aplicar a PSD, calculada a partir da função de auto-
correlação da série temporal, para realizar o estudo de espectro (Strichartz, 2003). A função
de autocorrelação de um sinal 𝑥[𝑛] com 𝑁 amostras é representada da seguinte forma:

𝑟𝑥𝑥 [𝑘] =
1
𝑁

𝑁∑︁
𝑛=1

𝑥[𝑛] · 𝑥[𝑛 + 𝑘],∀ 𝑘 ∈ {−𝑚, −𝑚 + 1, · · · , 𝑚} (2.2)

tal que 𝑘 é o número de amostras deslocadas e ±𝑚 é o número de amostras utilizadas.

A partir dessa função de autocorrelação, pode-se decompor a série temporal em uma
somatória de componentes oscilatórios em múltiplas frequências de oscilação. Deste modo,
pode-se também analisar a distribuição de frequências da PSD dessa série temporal de acordo
com as múltiplas frequências que a compõe, como frequência muito baixa (VLF, do inglês
Very Low Frequency) entre 0 e 0,04 Hz, LF (entre 0,04 e 0,15 Hz) e HF (entre 0,15 e 0,4 Hz),
dentre outras bandas (Semmlow, 2014; Oliveira et al., 2019). Neste sentido, a PSD deste
mesmo sinal 𝑥[𝑛] é definida como:

𝑃 [𝑓] =
𝑁−1∑︁
𝑘=0

𝑟𝑥𝑥 [𝑘] · 𝑒
−𝑗2𝜋𝑓𝑘

𝑁 ,∀ 𝑓 ∈ {0, 1, · · · , 𝑁

2
} (2.3)

tal que 𝑘 é o índice da amostra do sinal, 𝑁 é o número de pontos do sinal.

O janelamento do sinal, realizado pelo método deWelch, representa a operação de
convolução entre o espectro do sinal e o da janela. Sendo que o espectro da janela possui um
lóbulo principal e lóbulos secundários, representando vestígios das frequências próximas e
distantes respectivamente, quando a operação de janelamento for realizada (Semmlow, 2014).
Há diversos tipos de janelas, cada uma com as suas respectivas especificidades de proporção
entre os lóbulos principal e secundários e a escolha do tipo é feita diante as particularidades
de cada caso, como pode ser observado na Figura 2.13.
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Figura 2.13 – Sinal arbitrário dividido em 3 segmentos com uma sobreposição de 50% e três tipos
diferentes de janela que podem ser aplicadas: Retangular, Hanning, Hamming e Black-
man. A janela retangular é a que possui melhor resulação espectral, porém possui
lóbulos secundários atenuados. As janelas de Hamming e de Hanning possuem re-
solução espectral inferior à retangular, mas possuem lóbulos secundários menores,
sendo estes de amplitude aproximadamente constante na de Hamming e de amplitude
decrescente na de Hanning de acordo com o distanciamento do lóbulo principal. Já a
de Blackman-Harris possui a pior resolução espectral em comparação as demais, mas
possui os menores lóbulos secundários. Fonte: Adaptado de (Semmlow, 2014).

2.2.2 Identificação de sistemas: análise da resposta ao impulso invariante

A análise espectral explicitada na Seção 2.2.1 fornece informações que refletem o
efeito conjunto de todos os fatores contribuintes para o controle HRV, sendo, deste modo,
uma técnica pouco específica para definir quais mecanismo fisiológicos são atuantes ou
afetados (Jo, 2002).

A fim de se estimar a influência de diferentes fisiológicas na HRV de forma isolada, a
abordagem a nível de sistemas se baseia na caracterização quantitativa dos mecanismos re-
gulatórios cardiovasculares responsáveis pelo acoplamento das variabilidades entre pares de
sinais. Há diferentes técnicas de análise de sistemas, entretanto o foco será na análise da res-
posta ao impulso (IR, do inglês Impulse Response) de sistemas invariantes no tempo (Oliveira
et al., 2019).

Usualmente, um modelo, que representa, matematicamente, relações causais conhe-
cidas entre variáveis fisiológicas, é definido antes de se realizar a resposta ao impulso. Como
exemplo, pode-se observar, na Figura 2.14, um diagrama de blocos de um sistema que acopla
os principais mecanismos de variabilidades na HRV e na ABP de curto prazo (Oliveira et al.,
2019). É suposto que a variação do RRI (∆RRI) é gerada por variações do SBP (∆SBP) em
decorrência do reflexo barorreceptor (ABR) e pela relação entre ∆RRI e ∆SBP, conhecida
como a dinâmica circulatória (CID). Ademais, ∆RRI também é influenciada por variações
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na respiração (∆V) decorrentes do acoplamento autonômico direto entre a HRV e ∆V (RCC),
sendo também parte das alterações no SBP provocadas por modificações na pressão intra-
torácica decorrentes da respiração (DER), as quais podem incluir a modulação simpática
impulsionada pela respiração da contratilidade cardíaca ou ser de natureza mecânica (Khoo,
2008).

Figura 2.14 – Diagrama de blocos do modelo de malha fechada mínimo do controle vascular autonô-
mico. É evidenciado que ∆RRI é influenciado por ∆SBP - nas formas, principalmente,
dos mecanismos do barorreflexo (ABR) e da dinâmica circulatória (CID) - e por∆V - por
meio do acoplamento autonômico direto (RCC) e modificações na pressão intratorácica.
Fonte: Extraído de (Khoo, 2008).

Com o modelo conhecido, a IR de um sistema, com entrada 𝑥(𝑡) e saída 𝑦(𝑡), define
o sistema linear invariante no tempo que relaciona 𝑥(𝑡) e 𝑦(𝑡), com a representação dos
componentes de malha direta e de realimentação (Jo, 2002; Khoo, 2018).

A estimação da IR para cada par entrada-saída precisa utilizar, um modelo de função
de base. Neste trabalho, foca-se na função de base Laguerre (LBF, do inglês Laguerre Base
Function). Esta função assume que a IRpode ser representada como uma soma ponderada de
funções ortonormais, tendo, como principal vantagem, a redução considerável de parâmetros
a serem estimados e restrição do comportamento da RI. Dada a robustez dessa técnica, dados
contaminados por ruído, curtos, entradas não gaussianas e não necessariamente de banda
larga podem ainda ser utilizadas (Khoo, 2018). A IRde um sistema linear, com uma entrada
e uma saída, expandida para soma ponderada de funções 𝑘 + 1 funções básicas e 𝑛 amostras
é observada a seguir:

ℎ[𝑛] =
𝑘∑︁
𝑖=0

𝑐[𝑖] · 𝐿𝑖 [𝑛], 0 ≤ 𝑛 ≤ 𝑝 − 1 (2.4)
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sendo 𝐿𝑖[𝑛] determinado recursivamente:

𝐿0 [𝑛] =
√︁
𝛼𝑛 · (1 − 𝛼) (2.5)

𝐿𝑖 [𝑛] =
√
𝛼 · 𝐿𝑖 · [𝑛 − 1] +

√
𝛼 · 𝐿𝑖−1 · [𝑛] −

√
𝛼 · 𝐿𝑖−1 · [𝑛 − 1], ∀ 𝑖 > 0, 𝛼 ∈ (0, 1) (2.6)

sendo 𝛼 definido como a taxa de decaimento exponencial das LBF e selecionado com
base na memória ou duração efetiva (p) da IR e no número de LBF usadas na expansão, a
fim de que todas estas convirjam para zero ao final da memória do sistema (Khoo, 2018).

Figura 2.15 – Fuções de base Laguerre para 𝛼 ∈ (0.6, 0.8) e ordem 𝑛 ∈ (0,2). Fonte: Extraído de (Khoo,
2018).

Com a IR estimada finalmente, torna-se extrair métricas a partir da sua forma de onda,
como a magnitude da resposta ao impulso (IRM, do inglês Impulse Response Magnitude),
latência, tempo de pico e ganho dinâmico (DG, do inglês Dynamic Gain). Na Figura 2.16, é
possível observar essas métricas:
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Figura 2.16 – IRM, tempo de pico e latência da da resposta ao impulso de um sinal arbitrário, e o GD
da banda de frequência 0,05 a 0,4 Hz. Fonte: Extraído de (Silva, 2017).

2.2.3 Análise da função de transferência: limiar de coerência

Além da RI, a obtenção de função de transferência (TF, do inglês Transfer Function)
ou função de reposta em frequência (FRF, do inglês Frequency Response Function) é uma
outra abordagem a nível de sistema que descreve como um sistema se comporta dada uma
entrada e, de igual modo à IR, a TF usa pares de variáveis fisiológicas (Westwick; Kearney,
2003). A TF dada por 𝐻̂ (𝑓) é definida por:

𝐻̂ (𝑓) =
𝑆̂𝑢𝑦

𝑆̂𝑢𝑢
(2.7)

sendo 𝑆̂𝑢𝑦 e 𝑆̂𝑢𝑢 a PSD do sinal de correlação cruzada entre o sinal de entrada 𝑢 e a saída 𝑦
(𝑟𝑢𝑦) e a PSD do sinal de autocorrelação da entrada 𝑢 (𝑟𝑢𝑢). Este sinais são definidos como:

𝑟𝑢𝑦 [𝑘] =
1
𝑁

𝑁∑︁
𝑛=1

𝑦[𝑛] · 𝑢[𝑛 + 𝑘]

𝑟𝑢𝑢 [𝑘] =
1
𝑁

𝑁∑︁
𝑛=1

𝑢[𝑛] · 𝑢[𝑛 + 𝑘]
(2.8)

Tal que 𝑟𝑢𝑢 indica o grau de similaridade que a entrada tem com ela mesma em suas
respectivas versões deslocadas no tempo. Por outro lado, 𝑟𝑢𝑦 quantifica a similaridade entre
os sinais de entrada e saída (Semmlow, 2014). Uma outra variável, obtida a partir da FRF,
é a coerência, que é uma função real em função da frequência e é interpretada como uma
medida de confiaça nos resultados obtidos, uma vez que é a fração da variância de saída
decorrente da resposta linear a uma entrada. Define-se a coerência como:

𝛾2𝑢𝑦 (𝜔) =
|𝑆𝑢𝑦 (𝜔) |2

𝑆𝑢𝑢 (𝜔) · 𝑆𝑦𝑦 (𝜔)
(2.9)
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De forma sucinta, a obtenção de um valor unitário de 𝛾 é um indicativo, em uma
frequência específica, que o sistema em questão opera de forma perfeitamente linear e se
abstém de ruídos corruptores. De encontro, valores baixos de 𝛾 indicam uma tendência de
funcionamento menos ideal ou a existência de ruído que provoca a estimativa da função de
transferência menos confiável na frequência em análise (Berger et al., 1986).

Em questão de exemplo, a depender das variáveis de entrada e saída, a coerência
pode ser interpretada de maneira fisiológica também, como um reflexo do acoplamento
cardiorrespiratório para sinal de saída HRV e sinal de respiração como entrada (Westwick;
Kearney, 2003). Tipicamente, 0 ≤ 𝛾2𝑢𝑦 ≤ 1, entretanto, como limiar de confiança, valores
≥ 0,5 são medidas adotadas na literatura (Robbe et al., 1987)

2.3 Testes estatísticos

Como forma de análise, alguns testes estatísticos são realizados a fim de se obter
outras métricas comparativas e tirar conclusões pertinentes no estudo em questão. A seguir,
os testes estatísticos utilizados neste estudo são descritos:

2.3.1 Teste One-Way ANOVA

O One-Way Analysis of Variance (ANOVA) é um teste estatístico paramétrico, ou
seja, que possui hipóteses que se referem a um ou mais parâmetros de uma população ou
espaço amostral. Este teste, em específico, baseia-se em hipóteses bem definidas e compara
se a média das amostras de dois ou mais grupos distintos é significativamente distinta ou
não (Ross; Willson, 2017). Além disso, é necessário que os dados sigam uma distribuição
normal e isso é verificado pelo teste de Shapiro-Wilk com as seguintes hipóteses:

• Hipótese nula (𝐻0): os dados seguem uma distribuição normal (p > 𝛼).

• Hipótese alternativa (𝐻1): os dados não seguem uma distribuição normal (p≤ 𝛼).

sendo p o valor-p, obtido a partir da distribuição F, e 𝛼 o nível de significância escolhido
como referência, tipicamente 0,05 (5%).

Após a confirmação da𝐻0, o teste ANOVA pode ser finalmente aplicado. Como base,
a partir de uma análise de variância, tem-se também o valor-p e o mesmo limiar 𝛼 a fim de
verificar se rejeita ou não a hipótese nula:

• Hipótese nula (𝐻0): todas as médias dos grupos populacionais são iguais, ou seja, não
há diferença estatística entre os grupos.

• Hipótese alternativa (𝐻1): não todas as médias dos grupos populacionais são iguais,
ou seja, há diferença estatística entre os grupos.
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Com valor-p < 0,05 (5%), pode-se concluir que há diferença estatística significativa
entre os grupos e não somente uma diferença proveniente de fatores aleatórios (Ross;Willson,
2017).

2.3.2 Teste de Bland-Altman

O teste de Bland-Altman é uma ferramenta estatística amplamente utilizada para
analisar o nível de concordância entre dois métodos distintos que avaliem a mesma variável
quantitativa (Doğan, 2018). Dado um conjunto de 𝑛 amostras para cada método, totalizando
2 · 𝑛 amostras para os dois métodos, as coordenadas, 𝑥 e 𝑦, de uma amostra 𝑆 são dadas pela
média e a diferença entre a respectiva amostra para os dois métodos respectivamente:

𝑆 (𝑥, 𝑦) =
(
𝑆1 + 𝑆2
2

, 𝑆1 − 𝑆2

)
(2.10)

sendo 𝑆1 e 𝑆2 as amostras dos métodos 1 e 2 respectivamente.

A fim de normalizar os dados, é comum também aplicar a transformação logarít-
mica (Giavarina, 2015). Essa transformação é representada na obtenção das seguintes coor-
denadas:

𝑆 (𝑥, 𝑦) =
(
log10 𝑆1 + log10 𝑆2

2
, log10 𝑆1 − log10 𝑆2

)
(2.11)

Com os dados distribuídos na forma de um gráfico de dispersão, como observado na
Figura 2.17. Calcula-se a média e o desvio padrão (SD, do inglês Standard Deviation) das
coordenadas 𝑥 de todas as amostras de ambos, uma das possibilidades é a realização de um
teste T de uma amostra.

Figura 2.17 – Exemplo de gráfico deBland-Altman comdados, linhamédia e limiares de concordância
superior e inferior. Fonte: Extraído de (Bland–Altman. . . , 2024).
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Deste modo, traçam-se linhas horizontais da média (MEAN), da linha de igualdade
entremétodos (𝑥 = 0, 𝑦 = 0) e dos limites de concordância (LoA, do inglêsLimit of Agreement)
superior e inferior,MEAN+ 1,96·SD eMEAN+−1,96·SD respectivamente, como evidenciado
também na Figura 2.17.

A linha MEAN é definida como o viés e é interpretada com a diferença média entre
as amostras, enquanto os LOAs são definidos como o limiar para a faixa do intervalo de
confiança (CI, do inglês Confidence Interval) de 95%. A interpretação do gráfico é diversa e
pode ser feita de várias maneiras, mas geralmente está relacionada à distribuição dos dados
na regiões delimitadas considerando a proximidade com a média, os LoAs e o IC.

A análise do gráfico de Bland-Altman não diz se a concordância entre métodos é
suficiente para substituir um pelo outro de forma genérica, esta ferramenta estatística apenas
quantifica o viés e o intervalo de concordância, dentro do qual 95% das diferenças entre
um método e outro estão incluídas. Para se obter o IC da linha de média e dos LOAs, faz-se
necessário calcular o erro padrão (SE, do inglês Standard Error) por meio das Equações
2.12a e 2.12b respectivamente, visto que 𝑛 é o número de amostras.

SE =

√︄
SD2

𝑛
(2.12a)

SE =

√︄
3 · SD2

𝑛
(2.12b)

sendo CI obtido pelo produto de SE e valor t do teste T de uma amostra.

Assim sendo, a posição das linhas de média e de igualdade, ao se considerar o IC,
e a distribuição dos pontos em termos de suas diferenças pode ser um indicativo de uma
possível correspondência entre os resultados obtidos entre os métodos distintos (Doğan,
2018; Giavarina, 2015).
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3 TRABALHOS RELACIONADOS

Neste capítulo, apresenta-se um breve histórico de programas não comerciais dis-
poníveis de análise de sinais fisiológicos e de HRV. Alguns destes trabalhos, no qual há o
desenvolvimento e aprimoramento de uma ferramenta computacional em MATLAB como
produto, há funcionalidades específicas de uso, mas algumas limitações.

Em sequência, as funcionalidades do programa CRSIDLab, o qual novos módulos
são desenvolvidos e antigos aprimorados neste trabalho, são detalhadas. Em complemento,
aborda-se a importância de se introduzir as novas ferramentas, em forma de módulos, para
o sinal de PPG e os contextos de pesquisa científica que este sinal e outros sinais obtidos a
partir deste são utilizados, tornando o CRSIDLab uma ferramenta de software ainda mais
útil.

3.1 Histórico de programas de análise de sinais fisiológicos

Há diversos programas computacionais disponíveis para processamento, análise de
sinais fisiológicos e da HRV. Exemplos como ECGLab (CARVALHO, 2001), KARDIA (Pe-
rakakis et al., 2009), ARTiiFact (Kaufmann et al., 2011) e Kubios HRV (Tarvainen et al.,
2013) são opções de progrmas baseado emMATLAB, enquanto RHRV (Rodríguez-Liñares
et al., 2011) e gHRV (Rodríguez-Liñares et al., 2014) são opções desenvolvidas para outras
plataformas, usando a linguagem de programação R e Python respectivamente.

Emespecífico, alguns desses programas possuem funcionalidades de pré-processamento
do ECG, como filtragem e extração de QRS, e realizam diferentes formas de análise de HRV.
Outro programa, o POLYAN (Maestri; Pinna, 1998) também aceita diferentes entradas, como
o ECG, ABP e o sinal de respiração (fluxo de ar), proporcionando avaliação par a par das
variáveis no domínio da frequência, que tem as limitações discutidas anteriormente. Outro
programa, o HeartScope (Badilini; Pagani; Porta, 2005) propõe um modelo multivariado
para fornecer estimativas de BRS a partir da inclinação da RI a uma rampa unitária, além de
fornecer análises no domínio da frequência entre pares de variáveis também. Apesar disso,
essa estimativa de BRS considera os efeitos da respiração e pode separar efetivamente os
efeitos do CID do índice de BRS, porém não fornece informações como o atraso dinâmico e
não fornece avaliação baseada em modelo dos efeitos da respiração sobre a HR.

Um outro programa, o Cardiorespiratory System Identification Lab (CRSIDLab) (Silva,
2017; Silva; Oliveira, 2020), que foi concebido como resultado de um trabalho de gradução e
mestrado, é uma toolbox de MATLAB mais completa para processamento de dados ECG,
ABP e respiração (fluxo de ar ou volume pulmonar), o qual possibilita a identificação de
modelos de sistemas cardiorrespiratórios através de um modelo paramétrico usando até
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três variáveis extraídas dos dados. Para isso, estão disponíveis modelos autorregressivos ou
autorregressivos com entradas exógenas, assim como modelos LBF e outras funções base.
Ademais, permite a análise no domínio da frequência das variáveis através da PSD. Módulos
oriundos do ECGLab foram incorporados e adaptados ao CRSIDLab no que diz respeito ao
pré-processamento de ECG, e uma função que extrai SBP e DBP do registro de ABP.

3.2 Nova versão do CRSIDLab

Além das funcionalidades já existentes, torna-se importante aprimorar as já existentes
e propor novas ferramentas, sendo este trabalho um produto da versão 3.0 da ferramenta.
Especificamente, o sinal de PPG e variáveis extraídas a partir dele e a partir da relação com
outros sinais, como o ECG, têm sido bastante utilizados no meio científico. Por exemplo, a
obtenção do PRV, bem como a análise comparativa com o HRV para estudos de variabilidade
da frequência cardíaca, obtenção do PTT, estimação não invasiva da pressão arterial com o
uso de aprendizado de máquina são exemplos de áreas de estudo com este sinal. Ademais,
como citado na Seção 1.2, a obtenção da segunda derivada do PPG, a qual têm sido utilizada
para estimação da rigidez arterial e como indicadora precoce de doenças cardiovasculares
como hipertensão arterial e insuficiência cardíaca, também é um sinal obtido a partir do
PPG e de bastante enfoque acadêmico nos estudos da área de fisiologia.

Nesse contexto, além de modificações já existentes e aprimoradas as quais serão
detalhadas em sequência, esse trabalho propõe processar o sinal de PPG, filtrá-lo a partir de
filtros existentes ou a partir de um novo filtro, detectar os picos e os vales, extrair a amplitude
do sinal de PPG (PPGa, do inglês Photoplethysmography Amplitude), o pico do sinal de PPG
(PEAK), o vale do sinal de PPG (NADIR), o PRV (por meio do PPI entre picos ou entre vales),
extrair o PTT (por meio de dois algoritmos distintos). Propõe-se também a extração do MAP
a partir do SBP e do DBP. Assim sendo, essas modificações visam contribuir para tornar o
CRSIDLab como uma ferramenta ainda mais completa e, em complemento, contribuir para
estudos futuros que processem e analisem estes sinais descritos.
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4 DESCRIÇÃO DOS MÓDULOS NOVOS E
ADAPTADOS

Inicialmente, este capítulo visa detalhar os novos módulos desenvolvidos para inserir
o pré-processamento e extração de variáveis a partir do sinal de PPG, o qual foi o sinal
fisiológico adicional incorporado à toolbox e que agora pode ser processado e analisado além
dos sinais de ECG, ABP e respiração. Além disso, foram também necessárias modificações
em módulos pré-existentes no CRSDILab para melhor integrá-los às novas funcionalidades
exigidas para o correto pré-processamento do sinal de PPG.

4.1 Base de dados

Neste trabalho, utilizou-se a base de dados Pulse Transit Time PPGDataset (Mehrgardt
et al., 2022) obtida através da plataforma PhysioNet (Goldberger et al., 2000). Essa base se
mostra relevante para este trabalho porque é de livre acesso e contém diferentes registros
de PPG de múltiplos sensores em diferentes partes do corpo, além do sinal de ECG. Deste
modo, pode-se verificar a qualidade de diferentes sinais de PPG obtidos, extrair as respectivas
variáveis desejadas e também extrair o PTT a partir da relação com o sinal de ECG. Os dados
que compõem esta base foram obtidos a partir de um estudo realizado pela Universidade de
Sydney com 22 sujeitos saudáveis, 6 mulheres e 16 homens, idades variantes entre 20 e 53
anos, com uma média de 28,5 anos.

A aquisição dos dados consistiu em instruir todos os participantes a realizar as seguin-
tes 3 atividades em ordem aleatória: sentado em repouso, caminhada estacionária e corrida.
Neste sentido, os dados foram coletados por um dispositivo semelhante a uma oxímetro de
pulso comercial, que contém sensores comerciais conectados a um clip de dedo produzido
por uma impressão 3D, como observado na Figura 4.1.
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Figura 4.1 – Esquemático do processo de obtenção dos dados e produção da base de dados. Fonte:
Extraído de (Mehrgardt et al., 2022).

Para cada paciente, têm-se um arquivo .mat e um outro arquivo .hea, sendo o primeiro
o executável MATLAB e o segundo um arquivo de texto para auxiliar na identificação da
leitura e identificação da ordem das variáveis do executável numérico. Deste modo, esses
arquivos incluem informações do gênero, idade,massa, SBP, DBP, HR e saturação de oxigênio
ao início e ao final de cada atividade. Como detalhado em (Mehrgardt et al., 2022), em relação
aos sinais fisiológicos, têm-se a frequência de amostragem (F𝑠, do inglês Sampling frequency),
os sinais de ECG (obtido por apenas um canal), PPG (obtido de 6 pontos ou canais diferentes,
como mostrado na Figura 4.1), pressão de fixação do sensor (em 2 pontos de medição),
temperatura (em 3 pontos de medição) e aceleração e velocidade angular (nas direções
𝑥, 𝑦, 𝑧).

Os sinais de ECG e de PPG foram digitalizados e amostrados a um taxa de 500 Hz e
foram aferidos em mV e unidade arbitrária respectivamente. É indispensável a escolha de
frequência de amostragem correta, visto que uma taxa de amostragem baixa pode produzir
uma variação de latência na estimativa do ponto de interesse da onda R, o que altera signifi-
cativamente o espectro, sendo o intervalo ideal 250 a 500 Hz ou talvez até mais (Task Force,
1996).

Dentre os sinais disponíveis, utilizou-se o sinal de ECG e de PPG obtido pelo canal
2 (pleth2 como mostrado na Figura 4.1) para a posição estacionária sentado em repouso
(sit). O único canal de ECG disponível foi o utilizado e o sinal de PPG obtido pelo canal 2
foi utilizado por apresentar menos ruído de aquisição dentre os outros sinais dos demais
canais disponíveis. Além disso, a posição sentado em repouso foi a tomada como base para o
estudo por ser a única situação, dentre as disponíveis no conjunto de dados, que os sujeitos
estão em uma situação estacionária e, deste modo, as técnicas de análise nos domínios do
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tempo e da frequência se aplicam quando utilizada a janela de tempo do sinal condizente
para a análise (Task Force, 1996).

Em relação à janela de tempo adequada e igual para ambos os sinais a fim de garantir
a qualidade da análise realizada, a fim de padronizar diferentes estudos que investigam a
HRV de curto prazo, são preferidas gravações de 5 minutos de um sistema estacionário e, a
fim de garantir a estacionariedade, suposição básica da análise espectral para uma correta
interpretação do espectro obtido, também não é recomendado passar muito dessa janela de
tempo (Task Force, 1996). Assim sendo, utilizou-se uma janela de 5 minutos de duração
(300 segundos), que é mais comumente utilizada, com o mesmo instante de tempo de início
e fim (de 0 a 300 segundos) para ambos os sinais.

Sob esta janela fixa, realizou-se a inspeção visual de cada um dos sinais a fim de
garantir que não há arritmias, batimentos ectópicos, dados faltantes ou artefatos de ruídos
que possam afetar a análise (Catai et al., 2020). Nesse sentido, esses eventos podem alterar
a estimativa do PSD do HRV, logo, antes de se obter a série temporal do sinal de RRI, os
registros de tempo correspondentes a batimentos ectópicos e artefatos devem ser tratado ou
removidos (Task Force, 1996; Clifford; Tarassenko, 2005).

Definiu-se por critérios de qualidade dos registros de PPG e ECG, durante os 300
segundos:

• Não apresentar demasiado número de ectópicos.

• Não haver ponto algum de perda de sinal completa ou parcial.

• Não haver ruído que, mesmo que retirado pela filtragem, altere a forma de onda do
sinal fisiológico.

• Não haver trechos desfigurados das partes características do sinal.

Dentre os 22 sujeitos iniciais disponíveis pela base de dados na posição sentado
em repouso, 17 passaram pelos critérios de qualidade e 5 sujeitos formam descartados. A
descrição detalhada do porquê os sujeitos foram descartados pode ser observada na Tabela
4.1.
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Tabela 4.1 – Descrição das condições de sinal dos sujeitos para ECG e PPG.

Sujeito Posição sit Descrição
ECG PPG

s1 bom bom -
s2 bom bom -
s3 bom bom -
s4 bom bom PPG ruidoso muitos instantes
s5 ruim bom perda de sinal do ECG
s6 bom bom -
s7 bom bom -
s8 bom ruim PPG muito ruidoso em 170 s
s9 bom bom -
s10 bom bom -
s11 bom ruim PPG ruidoso no início
s12 bom bom -
s13 ruim bom ECG ruidoso em muitos instantes
s14 bom bom -
s15 bom bom -
s16 bom bom -
s17 bom bom -
s18 bom bom -
s19 bom ruim PPG ruidoso em muitos instantes
s20 bom bom -
s21 bom bom -
s22 bom bom -

A Figura 4.2 mostra, no gráfico superior, um trecho do sinal de ECG ruidoso do
sujeito s13 descartado, da base de dados Pulse Transit Time PPGDataset, na condição sentado
em repouso. O gráfico inferior mostra um trecho do sinal de PPG ruidoso do sujeito s19
descartado, da mesma base de dados e na mesma condição de postura.
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Figura 4.2 – Sinal de ECG do sujeito s13, da base de dados Pulse Transit Time PPG Dataset, com
trecho ruidoso marcado em vermelho (gráfico superior). Sinal de PPG do sujeito s19 com
trecho desfigurado marcado em vermelho (gráfico inferior). Fonte: Autor.

4.2 Modificações implementadas no CRSIDLab

O CRSIDLab é uma toolbox com interface gráfica originalmente concebida para
auxiliar em todas as etapas de pré-processamento necessárias dos sinais de ECG, de ABP
e de respiração (fluxo de ar ou volume pulmonar instantâneo) para a geração de índices
quantitativos do sistema nervoso autônomo cardíaco, utilizando diferentes tipos de análises
(univariáveis e multivariáveis, nos domínios do tempo e da frequência), como detalhado no
capítulo anterior.

Nesta seção, será mostrada uma visão geral das atualizações e novas contribuições
implementadas para incorporar as funcionalidades de pré-processamento e análise do sinal
de PPG e variáveis secundárias obtidas a partir deste sinal (como PEAK, NADIR, PPGa,
PRV), assim como a extração dos sinais de MAP a partir do pontos SBP e DBP do sinal
definidos no capítulo anterior e de PTT (obtido a partir dos sinais de ECG e PPG). Em
seguida, essas contribuições detalhadas juntamente com as diferentes análises que podem ser
implementadas a partir destes novos sinais, assim como diferentes marcadores quantitativos
da modulação do sistema nervoso autônomo que podem ser calculados, nos domínios da
frequência e do tempo, incluindo índices invariantes e variantes no tempo. A toolbox da nova
versão 3.0 do CRSIDLab está localizada em um repositório GitHub do usuário caiocflores.

https://github.com/caiocflores
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4.2.1 Visão geral

A interface gráfica do CRSIDLab 3.0 é compostas pelas abas principais: 1.Main page,
2. Pre-processing e 3. Analysis. Dentro de cada aba principal, há subabas com as interfaces
gráficas para as respectivas funcionalidade da respectiva aba principal. A Figura 4.3 explicita
as subabas existentes em cada aba principal e a ordem lógica de uso da ferramenta desde a
leitura dos dados até a obtenção das respectivas saídas desejadas.

Figura 4.3 – Estrutura do CRSIDLab 3.0 (abas e subabas). Fonte: Autor.

A estrutura do CRSIDLab 3.0, ilustrada na Figura 4.3, será melhor detalhada nas
seções seguintes. Em particular, não foi necessário modificar as estruturas ilustradas nas
subabas 2.2 e 2.5 da mesma figura, uma vez que referem-se à extração de variáveis do ECG e
da BP, assim como o pré-processamento do sinal de respiração, respectivamente.

4.2.2 Aba 1:Main Page

Na aba principal 1, a estrutura de divisão de subabas ilustradas, na Figura 4.3, não
sofreu alterações nesta nova versão 3.0. Foi necessário apenas a inclusão, nas subabas 1.1 e 1.3,
de opções para que os sinais de PPG (dado cru ou já filtrado) e PTT (caso já esteja disponível)
também pudessem ser importados diretamente para o programa, assim como já era possível
para os sinais de ECG, ABP e respiração. Após a importação destes dados, informações
gerais destes sinais do respectivo sujeito podem também ser visualizadas, juntamente com
as dos sinais de ECG, ABP e respiração, como ilustrado na Figura 4.4, antes das etapas de
processamento propriamente ditas.
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Figura 4.4 – Importação do sinal de PPG e visualização geral dos dados de PPG por paciente na aba
Main Page. Fonte: Autor.

4.2.3 Subaba 2.1: Filter ECG/BP/PPG

Com os sinais importados pelo usuário na aba 1, segue-se para a aba principal 2. Nesta
segunda aba, renomeou-se a antiga subaba 2.1 de Filter ECG/BP para Filter ECG/BP/PPG.
Na nova subaba, com a introdução do sinal de PPG, foram mantidas as opções de filtra-
gem já existentes e implementadas nas versões anteriores do programa para os sinais de
ECG (CARVALHO, 2001) e BP (Silva; Oliveira, 2020; Silva, 2017):

• Filtro Notch de 60 Hz, que é um filtro passa-bandas utilizado para retirar ruídos de
uma frequência específica, no caso, da rede elétrica.

• Filtro passa-baixas, com frequência de corte (F𝑐) entre 20 e 60 Hz, para retirar o ruído
muscular.

• Filtro passa-altas, com F𝑐 entre 0,001 e 1 Hz, para retirar a tendência de linha de base
de baixa frequência produzida por influência da respiração em alguns sinais, como
ABP e o PPG.

Como nova contribuição, inseriu-se uma nova funcionalidade com o filtro passa-
baixas do tipo Chebyshev II, tipicamente utilizado para retirar ruídos de alta frequência
do sinal de PPG (Liang et al., 2018). Para o projeto do filtro Chebyshev tipo II, torna-se
necessário definir a sua ordem n, a atenuação (ou ripple) da banda de parada ou atenuada,
em dB, e a frequência de corte F𝑐.

A função de transferência de um filtro Chebyshev tipo II é definida da seguinte forma:

|𝐻 (𝑗𝜔) |2 = 1√︄
1 + 1

𝜀2 · 𝑇 2𝑛 · (𝜔0/𝜔)

(4.1)

sendo 𝜀 =
1

√
100,1·𝛾 − 1

e relacionado à atenuação da banda de parada.
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Tipicamente, o filtro Chebyshev II possui uma largura de transição pequena, não
possui ripple na banda passante, mas possui certo ripple na banda atenuada. Para a retirada
do ruído de alta frequência, este tipo de filtro melhorou significativamente a qualidade do
sinal de PPG, quando comparada a outros tipos de filtro. Deste modo, decidiu-se por manter
os parâmetros deste filtro testados em (Liang et al., 2018), ou seja, o intervalo de ordem
n ∈ [4, 6] foi definido na interface gráfica como opção de ajuste do usuário do programa,
mantendo n= 4 como o valor padrão.

Para implementar, computacionalmente, este filtro, utilizou-se a função cheby2() do
MATLAB. Pode-se observar, na Figura 4.5, um exemplo de aplicação deste filtro no sinal de
PPG de um dos sujeitos da base de dados.

Figura 4.5 – PPGdo sujeito s18, na posição sentado em repouso, antes da aplicação do filtro Chebyshev
II (gráfico superior). PPG do mesmo sujeito na mesma posição postural após aplicação
mesmo filtro (gráfico inferior). Fonte: Autor.

Além do filtro, percebeu-se que, dado o procedimento de obtenção do sinal de PPG
descrito na Subseção 2.1.3, este sinal está comumente invertido. Deste modo, criou-se uma
funcionalidade de inversão (flip) em amplitude do PPG, de modo a obter o sinal na forma
de onda, convencionalmente, analisada, como explicitado em (Fine et al., 2021). Na Figura
4.5, observa-se o sinal de PPG antes (invertido) e após (após a aplicação da inversão em
amplitude) a aplicação da inversão em amplitude.
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Figura 4.6 – PPGfiltrado do sujeito s18, na posição sentado em repouso, antes da aplicação da inversão
em amplitude (gráfico superior). PPG do mesmo sujeito na mesma posição postural após
da inversão em amplitude (gráfico inferior). Fonte: Autor.

4.2.4 Subaba 2.3: Extract Variables From PPG

Após decidir em filtrar ou não o sinal de PPG na subaba 2.1, a subaba 2.3 foi criada,
nesta nova versão, para que, de forma separada, as variáveis iniciais PEAK (ponto de sístole)
e NADIR (ponto de início de ciclo do PPG) sejam extraídas em cada batimento cardíaco de
referência ao longo do tempo do sinal de PPG. Torna-se importante identificar esses dois
pontos para que outros pontos, posteriormente, possam ser identificados no PPG para que
novas variáveis sejam extraídas, como PPGa e o próprio PTT.

Em termos de características de um batimento cardíaco, há uma forte correlação entre
parâmetros importantes do sinal de ECG e o sinal de PPG, como a HRV e a PRV (Banerjee et
al., 2014). Como detalhado em 2.1.1, os períodos de sístole e diástole são de suma importância
para o funcionamento do coração e, dada essa forte correlação, esses períodos influenciam
diretamente na forma de onda do PPG (Mejía-Mejía et al., 2020).

Para a detecção destes pontos, foram adaptados dois algoritmos já presentes na versão
anterior do CRSIDLab para a detecção dos pontos de SBP e DBP do sinal de ABP a cada
batimento (Silva, 2017; Silva; Oliveira, 2020). O primeiro algoritmo é baseado na detecção
do PEAK a partir da posição do pico R do ECG e, em seguida, na detecção do NADIR, que é
o ponto de mínimo entre o pico relacionado ao PEAK (originalmente relacionado ao SBP)
naquele batimento e o próximo pico-R do ECG. Já o segundo algoritmo detecta o PEAK e
o NADIR, simultaneamente, baseando-se na forma de onda do PPG. Definiu-se também
a possibilidade de ajuste de um limiar, no sentido que acima deste limiar considera-se um
PEAK, e abaixo se considera umNADIR, para que o usuário possa corrigir, de formamanual,
cada ponto de PEAK e NADIR marcado ao longo do sinal por um círculo e um asterisco
respectivamente, caso seja necessário ou desejado. Um exemplo desses pontos marcados são
visualizados na Figura 4.7.
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Além disso, dada a relação entre os sinais de ECG e PPG, batimentos ectópicos no
coração alteram a forma de onda do PPG e precisam ser identificados para que estratégias de
tratamento sejam aplicadas no processamento do sinal fisiológico (Clifford, 2002). A versão
já existente do CRSIDLab possui uma funcionalidade de marcação e desmarcação destes
batimentos no sinal de ECG pelo usuário e havendo também a possibilidade de replicação da
marcação dos pontos de SBP e DBP do sinal de SBP correspondentes ao batimento cardíaco.
Uma vez que ao menos um batimento ectópico é marcado, o usuário possui algumas opções
de tratá-lo, as quais serão detalhadas na aba seguinte. Para o sinal de PPG, replicou-se esta
funcionalidade de marcação e desmarcação destes batimentos no sinal de ECG.

Figura 4.7 – Pontos de pico R do ECG e pontos PEAK e NADIR do PPG do sujeito s3 na posição
sentado em repouso. Fonte: Autor.

A partir da marcação dos pontos PEAK e NADIR, implementou-se a extração das
séries temporais destes sinais, as quais indicam a distribuição dos dados de PEAK e NADIR
ao longo do registro de PPG. Na Figura 4.8, observa-se a série temporal do PEAK no gráfico
superior e a do NADIR no gráfico inferior.
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Figura 4.8 – Séries temporais do PEAK (gráfico superior) e NADIR (gráfico inferior) extraídas do
sujeito s3 na posição sentado em repouso. Fonte: Autor.

4.2.5 Subaba 2.4: Treat Ectopics

Para se proceder com o pré-processamento dos sinais de ECG, ABP e PPG, primei-
ramente, o usuário deve decidir qual procedimento adotar com os batimentos ectópicos
marcados na sub-aba 2.3. A subaba 2.4 foi criada, utilizando a base com adaptações, do
tratamento de ectópicos nos sinais de ECG e ABP da versão anterior da toolbox, na qual este
tratamento era realizado na aba de Align and Resample Data Set originalmente. Entretanto,
optou-se por criar uma aba exclusiva para somente tratar ectópicos e extrair novas variáveis
provenientes dos sinais tratados, uma vez que, com a inserção do sinal de PPG, a antiga
aba da versão anterior conteria muitas funcionalidades juntas e isso poderia ser confuso ao
usuário.

Esse procedimento de tratamento de ectópicos é importante para que as variáveis
iniciais extraídas do ECG (RRI), ABP (SBP e DBP) e do PPG (PEAK e NADIR) tenham a
influência dos batimentos ectópicos tratada. Dentre as possibilidades oferecidas ao usuário
para este tratamento, há a opção de removê-los, aplicar um método de interpolação cúbica
baseado nas amostras vizinhas para as amostras de dados e de tempo ou não tratar esses
batimentos. A primeira abordagem de tratamento é comumente aplicada quando há muitos
batimentos ectópicos, enquanto a segunda abordagem é mais usual (Clifford, 2002; Clifford;
Tarassenko, 2005). Antes de seguir com a extração dos demais sinais, o usuário deve escolher
um dos métodos de tratamento, aplicá-lo para cada sinal de interesse e salvar as modificações
realizadas.

Com os ectópicos tratados, implementou-se a possibilidade para o usuário de extração,
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batimento-a-batimento das séries temporais destes sinais, as quais indicam a distribuição dos
dados ao longo do registro de PPG, seguintes sinais: PPGa, PRV, MAP, ponto de referência
do PPG (com duas opções para o usuário) para a obtenção do PTT e o próprio PTT.

Inicialmente, o PPGa pode ser extraído, a cada batimento, como a diferença entre o
PEAK e o NADIR (Equação 4.2), extraídos na subaba 2.3.

PPGa(𝑖) = PEAK(𝑖) − PEAK(𝑖) (4.2)

A Figura 4.9 mostra um exemplo de série temporal do PPGa extraída do sujeito s3, da
base de dados Pulse Transit Time PPG Dataset.

Figura 4.9 – Série temporal do PPGa extraída do sujeito s3 em posição sentado em repouso. Fonte:
Autor.

Com os pontos PEAK e NADIR identificados na subaba 2.3, o sinal PRV, como
detalhado em 2.1.6, pode ser obtido a partir do PPI entre pontos PEAK (denominado PRVp)
ou pontos NADIR consecutivos (denominado PRVn).Nesta presente subaba, implementou-se
a extração desse marcador com essas duas possibilidades a depender da escolha do usuário.
Por meio da Figura 4.10, como exemplo, as séries temporais do PRVp e PRVn extraídas do
sujeito s3, da base de dados Pulse Transit Time PPG Dataset são visualizadas.



57

Figura 4.10 – Séries temporais do PRVp (gráfico superior) e PRVn (gráfico inferior) extraídas do
sujeito s18 na posição sentado em repouso. Fonte: Autor.

Caso o usuário esteja utilizando dados de ABP, após a detecção dos pontos SBP e
DBP, implementou-se a extração da série temporal sinal de MAP, o qual é obtido de acordo
com a Equação 2.1. Como a base de dados principal utilizada neste trabalho não possui
dados de ABP, a fim de se testar e exemplificar a extração do MAP, uma outra base de dados,
denominada Cerebromicrovascular Disease in Elderly with Diabetes do PhysioNet (Novak;
Quispe, 2022), foi utilizada. Um exemplo da série temporal do MAP do sujeito s0314, da
base de dados Cerebromicrovascular Disease in Elderly with Diabetes, extraída é visualizada
na Figura 4.11.

Figura 4.11 – Série temporal doMAP extraída do sujeito s0314 da base de dados Cerebromicrovascular
Disease in Elderly with Diabetes (Novak; Quispe, 2022), em posição sentado em repouso.
Fonte: Autor.

Além desses sinais tempo, antes da extração do sinal de PTT, é importante localizar o
ponto de referência do PPG para que, em seguida, o intervalo de tempo entre o pico R do
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ECG e esse ponto seja calculado ao longo iterativamente. Nesta subaba 2.4, com os pontos
PEAK e NADIR anteriormente localizados e agora tratados, o usuário pode escolher pela
localização de um desses pontos de referência.

Como detalhado na Subseção 2.1.5, os dois pontos de referência do PPG comumente
utilizados para este propósito são: o ponto médio do PPGa (PPGMP) e o pico da primeira deri-
vada do PPG (PPGDP). O programa só permite a extração de um desses pontos de referência
e, caso seja desejado extrair o outro ponto, é necessário apagar o anteriormente extraído.

A fim de se obter PPGMP, utilizou-se os pontos de PEAK e NADIR anteriormente
extraídos para, por meio da Equação 4.3, identificar iterativamente o ponto médio de PPGa
para cada i-ésimo ciclo do sinal de PPG.

PPGMP(𝑖) = PEAK(𝑖) −
[PEAK(𝑖) +NADIR(𝑖)]

2
(4.3)

Internamente, o CRSIDLab já salva um vetor com esses pontos ao longo do tempo. En-
tretanto, caso o usuário deseje visualizar a série temporal desses valores, é possível visualizá-la
graficamente também. A Figura 4.12 mostra um trecho do sinal de PPG do sujeito s3, da
base de dados Pulse Transit Time PPG Dataset, com os pontos PPGMP identificados por um
ponto vermelho.

Figura 4.12 – Sinal de PPG do sujeito s3, em posição sentado em repouso, e os respectivos pontos
PPGMP. Fonte: Autor.

Caso se opte pela extração do outro ponto de referência do PPG, a extração, batimento-
a-batimento, do ponto PPGDP também foi implementada. De ínicio, calculou-se a primeira
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derivada do sinal de PPG por meio da função gradient(), própria doMATLAB. Na sequência,
por meio do mesmo algoritmo utilizado para detecção do SBP e do PEAK, como detalhado
na Subseção 4.2.4, os picos da 1ª derivada foram identificados a partir do PEAK do sinal
original de PPG. A Figura 4.13 mostra, no gráfico superior, um trecho do sinal de PPG do
sujeito s3, da base de dados Pulse Transit Time PPGDataset, na condição sentado em repouso.
O gráfico inferior mostra a derivada deste trecho do PPG, com os picos (os pontos PPGDP)
identificados por um ponto vermelho.

Figura 4.13 – Sinal de PPG do sujeito s3, em posição sentado em repouso, 1ª derivada deste sinal e os
respectivos pontos PPGDP. Fonte: Autor.

Com um desses pontos de referência localizado, a cada batimento, o usuário pode
finalmente extrair a série temporal do sinal de PTT a cada i-ésimo ciclo. Com o pico R do sinal
de ECG e o respectivo ponto de referência do PPG localizados anteriormente, a obtenção do
PTT consiste em apenas calcular, a diferença temporal entre o pico R e o ponto de referência
iterativamente, como evidencia a Equação 4.4. A Figura 4.14 mostra uma série temporal de
um trecho do sinal de PPG do sujeito s3, da base de dados Pulse Transit Time PPG Dataset,
na condição sentado em repouso.

PTT(𝑖) = RPEAK(𝑖) − PPGREF(𝑖) (4.4)

sendo RPEAK(𝑖) o pico R e PPGREF(𝑖) o ponto de referência.
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Figura 4.14 – Série temporal do PTT do sujeito s3, em posição sentado em repouso. Fonte: Autor.

4.2.6 Subaba 2.5: Align and Resample Data Set

Como explicitado na Subseção 4.2.5, o tratamento de ectópicos foi transferido para
uma em separado. A subaba 2.5, em termos de funcionalidade, mantém a base da estrutura
dessa subaba implementada na versão anterior do CRSIDLab, sendo utilizada reamostrar
dados das séries temporais em ummesma referência de tempo.

O usuário pode aplicar e escolher a ordem do detrend polinomial às variáveis a fim
de eliminar possíveis distorções, escolher o processo de reamostragem (linear, cúbica ou
algoritmo de Berger), escolher os pontos de referência temporal inicial e final da reamostra-
gem, escolher o método para preencher os dados de borda (constant padding ou symetric
extension) e determinar a frequência de amostragem.

Como novidade, as variáveis extraídas a partir do PPG foram disponibilizadas para
serem amostradas em combinações de variáveis ou sozinhas, a depender da escolha do
usuário. Como exemplo, a interface com o sinal de PTT extraído e modificações realizadas é
explicitada na Figura 4.15.

Figura 4.15 – Séries temporais de RRI e PTT e adaptações implementadas à subaba. Fonte: Autor.

Essa reamostragem é importante para que seja calculada a PSD de sinais e a modela-
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gem de sistemas fisiológicos seja realizada por estarem reamostrados à mesma frequência e
terem a mesma referência temporal.

4.2.7 Aba 3: Analysis

Na última aba do programa, manteve-se a estrutura da aba e subabas da versão
anterior do programa e as subabas 3.1, 3.2, 3.3, 3.4 e 3.5 foram apenas adaptadas para que
seja possível calcular, das variáveis extraídas do PPG, as respectivas PSD e IR de sistemas
com essas variáveis, em tempo invariante e variante, e a função de transferência de possíveis
novos sistemas.

Na subada 3.1, a PSD e as áreas das bandas de frequência VLF, LF e HF podem ser
extraídas utilizando os métodos de Fourier, deWelch ou omodelo AR. Como exemplo, a PSD
e as respectivas áreas, em tempo invariante do PTT extraída para um sujeito é nas Figuras
4.16: e 4.17.

Figura 4.16 – PSD (sinal de PTT em tempo inva-
riante), utilizando os métodos de
Fourier, Welch e AR, do sujeito s3
em posição sentado em repouso.
Fonte: Autor.

Figura 4.17 – Áreas da bandas de frequência do
PSD (sinal de PTT em tempo invari-
ante) utilizando ométodo de Fourier,
do sujeito s3 em posição sentado em
repouso. Fonte: Autor.

Na subaba de identificação de sistemas, 3.2, a estimação e validação do sistema pode
utilizar o modelo autorregressivo, LBF ou o de Meixner. Como exemplo, para o sujeito s3, da
base de dados Pulse Transit Time PPG Dataset, na condição sentado em repouso, a estimação
e validação, utilizando o modelo LBF, do sistema com entrada RRI e saída PTT foram obtidas
e são visualizadas na Figura 4.18. Para o mesmo sujeito nas mesma condições posturais, a
IR é mostrada na Figura 4.19.
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Figura 4.18 – Estimação e validação do sistema RRI→PTT em tempo invariante, do sujeito
s3 em posição sentado em repouso.

Figura 4.19 – Resposta ao impulso do sistema RRI→PTT em tempo invariante, do sujeito
s3 em posição sentado em repouso.
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Na subaba 3.3, como exemplo, utilizando o sujeito s3, da base de dados Pulse Transit
Time PPG Dataset, na condição sentado em repouso, a PSD em tempo variante extraída é
mostrada na Figura 4.20. As variações LF, HF e LF/HF desse mesmo sujeito nas mesmas
condições posturais podem ser visualizadas nas Figuras 4.21 e 4.22.

Figura 4.20 – PSD do sinal de PTT, em tempo
variante, do sujeito s3 em posi-
ção sentado em repouso.

Figura 4.21 – Variações LF e HF do sinal de
PTT, em tempo variante, do su-
jeito s3 em posição sentado em
repouso.

Figura 4.22 – Variação LF/HF do sinal de
PTT, em tempo variante, do su-
jeito s3 em posição sentado em
repouso.

Na subaba 3.4, a fim de exemplificar as funcionalidades adaptadas para o sinal de
PPG, com o uso do sujeito s3, da base de dados Pulse Transit Time PPG Dataset, na condição
sentado em repouso, a estimação e validação do mesmo sistema RRI→ PTT é evidenciada
na Figura 4.23. A IR deste mesmo sujeito nas mesma condições de postura, ambas em tempo
variante, são também mostradas na Figura 4.24.
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Figura 4.23 – Estimação e validação do sis-
tema RRI→PTT em tempo va-
riante, do sujeito s3 em posição
sentado em repouso.

Figura 4.24 – Resposta ao impulso do sistema
RRI→PTT em tempo variante,
do sujeito s3 em posição sen-
tado em repouso.

Na última subaba 3.5, o ganho, fase e valor de coerência, na banda de frequência de 0
a 0,5 Hz da TF do sistema RRI→ PTT são obtidas, utilizando o sujeito s3, da base de dados
Pulse Transit Time PPG Dataset, na condição sentado em repouso. A Figura mostra as áreas
absolutas em LF e HF, com e sem o limiar de coerência, 4.25:

Figura 4.25 – Ganho, fase e valor de coerências da TF do sistema RRI→PTT do sujeito s3 em posição
sentado em repouso. Fonte: Autor.
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5 ANÁLISE COMPARATIVA ENTRE HRV E
PRV

Com os novos módulos e funcionalidades desenvolvidas para o sinal de PPG, este
capítulo tem por objetivo detalhar o procedimento padronizado de pré-processamento dos
sinais de ECG e PPG dos sujeitos utilizados, descritos na Seção 4.1, para que estejam no
formato e qualidade esperados para a análise. Além disso, visa-se descrever a abordagem
utilizada na extração de índices espectrais e descritores temporais para a realização das
respectivas análises comparativas entre o HRV e o PRV nos domínio da frequência e do
tempo respectivamente e os métodos estatísticos de comparação utilizados.

5.1 Pré-processamento

5.1.1 Filtragem dos sinais de ECG e PPG

Em relação ao sinal ECG, é sabido que a existência de ruídos podem afetar a extração
de variáveis a partir dos sinais de referência, não obstante a filtragem deste sinal é contextual
e deve ser realizada apenas quando estritamente necessário, por exemplo, para o caso em que
a presença do ruído induz uma ambiguidade no reconhecimento das partes do ECG (Nayak;
Soni; Bansal, 2012).

Deste modo, na subaba 2.1, optou-se por aplicar os fitros digitais do CRSIDLab apenas
quando havia clara ambiguidade na identificação das partes do ECG emdecorrência de algum
tipo de ruído. Em específico, utilizou-se, quando necessário, o filtro notch passa-bandas de 60
Hz quando detectado possíveis interferencia de baixa frequência provavelmente provenientes
da rede elétrica. Após a aplicação deste primeiro filtro, caso ainda houvesse a existência
de ruídos de alta frequência, aplicou-se o filtro passa-baixas de 35 Hz para retirar o ruído
muscular, como recomendado em (CARVALHO, 2001).

Já para o sinal de PPG, quando necessário, aplicou-se somente o novo filtro Chebyshev
Tipo II de ordem 4 para retirar o ruído de alta frequência. Para todos os sujeitos utilizados,
a aplicação deste filtro foi suficiente para retirar esse tipo de ruído. Adicionalmente, como
descrito na Subseção 2.1.3, o sinal de PPG é comumente obtido invertido, então a nova
funcionalidade de flip em amplitude quando necessário.

5.1.2 Extração das variáveis do ECG e PPG

Para extrair o HRV do sinal de RRI, na subaba 2.2, utilizou-se o algoritmo implemen-
tado por (Pan; Tompkins, 1985) para identificação dos picos R, o qual está disponível no
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CRSIDLab. Já para a identificação do PEAK e do NADIR do PPG a cada ciclo de batimento,
utilizou-se o algoritmo que detecta o PEAK a partir do pico R e, em seguida, detecta o NADIR
a partir do PEAK imediatamente anterior, conforme detalhado na Subseção 4.2.4.

Com os picos R e os respectivos pontos PEAK e NADIR identificados, realizou-se
uma inspeção visual a fim de garantir que os pontos foram marcados corretamente, detectar
ectópicos, caso existam, e para garantir a correta correspondência de pontos entre os dois
sinais.

5.1.3 Tratamento de ectópicos

Na subaba 2.3, a fim de evitar a dimininuição do número de amostras do sinal, optou-
se por utilizar o método da interpolação cúbica para tratar os batimentos ectópicos no sinal
RRI obtido e, posteriormente, extrair oHRV, como sugerido em (Peltola, 2012). Em sequência,
optou-se por extrair o PRV a partir do PPI obtido entre os picos do PPG. Observa-se, na
interface do CRSIDLab, as séries temporais de um sujeito tratado. Por fim, identificou-se o
ponto de referência do PPGDP e se calculou a série temporal do PTT.

5.1.4 Alinhamento e reamostragem

Como descrito em 4.2.6, torna-se necessário reamostrar os sinais de RRI e PTT a uma
mesma taxa para uma futura análise a nível de sistrmas. Optou-se por utilizar o método de
interpolação de Berger, visto que este produz o melhor resultados em relação à resolução
espectral, suavidade de espectro e reprodução de picos (Berger et al., 1986). Como𝐹𝑠, escolheu-
se 4 Hz, uma vez que a maior frequência cardíaca encontrada no sinal de RRI está em torno
de 1,5 Hz, que respeita o critério de Nyquist (𝐹𝑠 ≥ 2𝐹máx) e é uma taxa comumente utilizada
em experimentos espectrais, pois permite calcular estimativas confiáveis entre DC e 1 Hz,
banda de frequências na qual o SNA possui uma resposta significativa (Chen; Hu; Lin, 2018).

Com o intuito de garantir a estacionariedade dos sinais, ou seja, garantir que suas
respectivas propriedades estatísticas (como amédia, variância e autocovariância) nãomudam
ao longo do tempo, aplicou-se também um detrend polinomial de 5ª ordem, como realizado
por (Jo, 2002).

Como referencial, definiu-se o início e o final do sinal de RRI. Deste modo, nos
extremos dos sinais, para o tratamento de lacunas, partiu-se do pressuposto que os dados
fora da borda possuem dados próximos ao de borda, optou-se utilizar por utilizar a opção de
Constant padding (border values), a qual repete os valores da primeira e da última amostra.



67

5.2 Análise dos sinais

5.2.1 Análise univariada: densidade espectral de potência

Nesta abordagem, define-se por análise univariada o envolvimento de apenas um
sinal como objeto de estudo e análise, no caso, no domínio espectral (Oliveira et al., 2019).
Nesta etapa, a PSD do sinais de RRI e PPI é calculada, de forma individualizada, a fim de se
verificar as áreas por banda de frequência de interesse. O método de cálculo da PSD utilizado
foi o deWelch.

Inicialmente, definiu-se a resolução de 2048 pontos para o cálculo da TDF, janela-
mento de Hanning, número de 256 amostras por segmento com uma taxa de sobreposição
de 50% (128 amostras). O fato do número de pontos ser uma potência de 2 permite uma
maior eficiência computacional (Semmlow, 2014). Optou-se pelo janelamento de Hanning
pelo fato deste proporcionar uma estimativa espectral mais suavizada e, ao mesmo tempo,
apresentar picos claramente delineados em bandas de baixa e alta frequências (Singh et al.,
2004).

Como proposição, os índices espectrais, ou áreas absolutas da PSD, dos sinais de
RRI e PPI dos sujeitos em posição senta e em repouso serão extraídos. Em sequência, os
resultados, em cada banda de frequência, serão comparados entre ambos a fim de analisar se
há diferença significativa, baseando-se em critérios estatísticos descritos na Seção 2.3, entre
os marcadores de HRV e PRV para a análise univariada no domínio da frequência, indicando
ou não se o PRV pode ser ou não um substituto do HRV para análises de variabilidade.

5.2.2 Análise multivariada: resposta ao impulso invariante do sistema

Para análisemultivariada, utilizou-se uma abordagem a nível de sistema para o estudo
das variabilidades e gerar informações não apenas a respeito das oscilações das variáveis
de forma individualizada, mas também de um mecanismo neural regulatório ou sistema
responsável pela geração destas oscilações (Oliveira et al., 2019). Como modelo de análise,
montou-se o sistema com entrada PTT e saída RRI.

Em (Khoo; Wang; Chalacheva, 2011; Khoo; Chalacheva, 2016), há a proposição de
um novo marcador da função autonômica, BRSPTT, baseado em um sistema como saída
RRI e entrada PTT. Além disso, os resultados evidenciaram que, principalmente na posição
supina, há uma forte correlação entre o novo marcador de sensibilidade do barorreflexo e
o marcador clássico obtido a partir do sinal de SBP, BRSSBP. Deste modo, utilizou-se PTT
como um substituto do ABP neste sistema que estima a sensibilidade do barorreflexo.

Para a estimação da RI domodelo, adotou-se omodelo LBF com polinômios de ordem
𝑛𝑏1 = 1 e 𝑛𝑏2 = 12 e atrasos 𝑛𝑘1 = −8 e 𝑛𝑘2 = 8 a fim de se impor limites de causalidade,
como sugerido em (Jo, 2002). Dividiu-se 80% (240 segundos) das amostras do dado para
estimação e 20% (60 segundos) para a validação. Adicionalmente, a fim de evitar aliasing,
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utilizou-se um filtro de Kaiser (passa-baixas) com 𝐹𝑠 = 0,5 Hz, visto que os sinais de interesse
estão contidos na faixa de frequência abaixo de 0,4 Hz (Jo, 2002; Silva, 2017).

Como proposição deste trabalho, será estimada a RI dos sujeitos em posição sentada
e em repouso e, a fim de realizar uma análise comparativa entre o HRV e PRV, os descritores
compactos do SNA serão extraídos para os dois sistemas, ambos com entrada PTT e saídas
RRI para um e PPI para o outro. Esta análise visa verificar se há diferença significativa entre
estes descritores destes dois sistemas, os quais variam apenas a entrada, o que pode indicar
se o PRV pode ser ou não um substituto do HRV para este caso.

5.2.3 Análise de coerência: função de resposta em frequência do sistema

Como última análise, dada a entrada e a saídas dos dois sistemas, obteve-se a FRF
para cada um. O janelamento de Hanning será utiliza e serão calculadas as áreas das bandas
de LF e HF desconsiderando e considerando um limiar de coerência de 0,5.

Como proposição, essas áreas de ganho da FRF nas bandas LF e HF serão calculadas
para, comparativamente, verificar se há diferenças significativas para o caso em que a saída
do sistema varia entre os sinais de RRI e PPI. Novamente, esta comparação visa investigar se
o PRV pode ser ou não um substituto do HRV para estudos de variabilidade.

5.2.4 Análise estatística

A fim de, por meio demétricas estatísticas, comparar os índices espectrais, descritores
compactos e áreas de ganho da FRF obtidos para as análises univariada, multivariada e de
coerência entre dos marcadores do HRV e PRV, aplicaram-se os testes de Bland-Altman
e o teste One-way ANOVA a fim de se verificar diferença estatística significativa entre os
resultados.

De início, verificou-se a normalidade da distribuição das amostras por meio do teste
de Shapiro-Wilk, que é um teste relativamente robusto para poucas amostras (Mendes; Pala,
2003). Se a distribuição das amostras fosse normal, o teste ANOVA foi diretamente aplicado.
Caso contrário, aplicou-se uma transformação logarítmica em base 10 a fim de normalizar
dos dados, como indicado em (Keene, 1995). Emúltimo caso, caso a amostra não apresentasse
distribuição normal pelas aplicações do teste de Shapiro-Wilk e da transformação logarítmica,
utilizou-se o teste ANOVA On Ranks, que se baseia no mesmo princípio do One-Way ANOVA
e, por ser não-paramétrico, pode ser aplicado para distribuições não-normais.

Como detalhado na Seção 2.3, a análise de variância retorna um valor-p que indica,
quando valor-p < 0,05, diferença significativa entre os conjuntos de dados. Para a análise em
questão, esse valor vai mensurar o nível de diferença estatística para os resultados obtidos do
mesmo tipo de análise para o HRV e o PRV. Para realizar essa análise, utilizou-se o software
Sigma Plot.



69

Complementarmente, com o intuito de melhor observar a diferença comparativa
entre pares de amostras de PRV e de HRV (com grandezas normalizadas pela transformação
logarítmica na base 10) com a média destes mesmos pares, construiu-se o gráfico de Bland-
Altman. Inicialmente, a fim de obter a média e o desvio padrão dessa diferença, realizou-se
um teste T de uma amostra. Em seguida, traçaram-se linhas horizontais da média, linhas
horizontais dos LOAs, bem como seus respectivos ICs superior e inferior. Esta análise foi
realizada no software IBM SPSS Statistics.
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6 RESULTADOS E DISCUSSÕES

Após todo o pré-processamento e análises realidades, este capítulo evidencia os
resultados obtidos e a interpretação fisiológica gerados por meio de marcadores estatísticos.
O enfoque está direcionado para a comparação entre os marcadores do HRV e PRV e se
estes possuem diferenças significativas, especificamente na posição sentada em repouso,
para indicar uma possível substituição do HRV pelo PRV como índice de variabilidade da
atividade autonômica.

Como padrão, a linha preta tracejada com pontos representa a linha de equivalência
em (0,0), as linhas pretas pontilhas representam os LOAs superior inferior, a região entre a
linha azul representa o IC do LOA superior, a linha vermelha representa o IC da média e a
linha laranjada representa o IC do LOA inferior. A demarcação dos LOAs, da média e de
seus respectivos ICs utilizada nos gráficos de Bland-Altman dos resultados é exemplificada
na Figura 6.1, a fim de se entender o padrão utilizado.

Figura 6.1 – Gráfico de Bland-Altman arbitrário com os LOAs superior e inferior, média e seus
respectivos ICs.
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6.1 Análise univariada

Os índices espectrais, explicitados no formato média ± SD na Tabela 6.1, foram
obtidos conforme detalhado na Subseção 5.2.1.

Tabela 6.1 – Índices espectrais de HRV e PRV aplicando o teste One-Way ANOVA. Observação: os
asteriscos (*) indicam que os valores foram normalizados em uma transformação log10.

Método Índice
Espectral

Marcador Valor-p
HRV PRV

Welch
LF*1 3,004 ± 0,370 3,026 ± 0,377 0,744
HF 2,400 ± 0,528 2,667 ± 0,601 0,178

LF/HF* 0,604 ± 0,357 0,359 ± 0,378 0,061

A partir da aplicação do teste One-Way ANOVA, observa-se, na Tabela 6.1, que não
houve diferença estatisticamente significativa entre os índices espectrais obtidos, na posição
sentada em repouso, a partir do HRV e do PRV para nenhuma das áreas LF, HF e da razão
LF/HF. Especificamente, os valores-p para LF e HF foram relativamente distantes do limiar
de diferença estatística (valor-p < 0,05). Por outro lado, a razão LF/HF foi comparativamente
mais próxima deste limiar apesar de ainda não o atingir.

Em termos fisiológicos, a área HF é relacionada como um indicador da modulação
vagal deHRV, visto que estímulos simpáticos são substancialmente atenuados em frequências
acima de 0,15 Hz. Na área LF, há controvérsias se esta representa somente a atividade
simpática ou uma combinação entre as atividades simpática e vagal. Já para a razão LF/HF
é utilizada como um índice de “equilíbrio simpatovagal", sendo o aumento deste valor um
indicativo do aumento da atividade simpática e vice-versa (Jo et al., 2003).

Os gráficos de Bland-Altman, com a diferença comparativa entre os valores de LF,
HF e LF/HF de HRV e PRV, são explicitados nas Figuras 6.2, 6.3 e 6.4 respectivamente.
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Figura 6.2 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(LF PRV) e
log10(LF HRV) obtidos a partir da PSD ao longo da média de cada par destas variáveis.

Figura 6.3 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(HF PRV) e
log10(HF HRV) obtidos a partir da PSD ao longo da média de cada par destas variáveis.
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Figura 6.4 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(LF/HF PRV)
e log10(LF/HF HRV) obtidos a partir da PSD ao longo da média de cada par destas
variáveis.

A partir das Figuras 6.2, 6.3 e 6.4, pode-se observar que, para os três índices espectrais,
a linha de equivalência, a qual indicaria uma hipótese inicial de que não há discrepância
entre os índices obtidos a partir do PRV e do HRV, está localizada no IC da média. Esse
fato é um indicativo que o viés do respectivo índice obtido a partir do PRV e do HRV não
é considerável e, deste modo, as diferenças entre os índices obtidos por PRV e HRV estão
todas localizadas nas regiões do LOA inferior e superior, que são os limiares de diferença
aceitáveis (Bunce, 2009; Giavarina, 2015).

A distribuição das amostras evidencia que não há relação entre o nível de discrepância
da diferenças das amostras e o nível de medição, visto que a variabilidade destas diferenças
não aumenta com o aumento da média do log10LF, mas sim se distribui para cima e para
baixo da linha de média. Deste modo, para este caso, os LOAs são válidos (Bunce, 2009).
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6.2 Análise multivariada

Como detalhado na Subseção 5.2.2, os descritores compactos do SNA foram obtidos e
explicitados, na Tabela 6.2, com formatomédia ± SD.

Tabela 6.2 – Descritores compactos do SNAdo sistema de saída RRI e entradasHRVouPRV, aplicando
o teste One-Way ANOVA.

Entrada Descritor
Compacto

Saída Valor-p
HRV PRV

PTT
IRM 0,574 ± 0,206 0,484 ± 0,243 0,254

LF DG* -0,039 ± 0,099 -0,039 ± 0,100 0,593
HF DG* -0,105 ± 0,098 -0,130 ± 0,126 0,850

Os resultados obtidos a partir da aplicação do teste One-Way ANOVA, na Tabela 6.2,
evidenciam que não houve diferença estatística significativa entre os descritores compactos
obtidos pela RI dos sistemas fisiológicos com entrada PTT e saída variando entre HRV e PRV,
para o caso da posição sentada em repouso. Os descritores IRM, LF DG e HF DG obtidos se
mostraram bastantes distantes do limiar valor-p < 0,05.

Fisiologicamente, os descritores obtidos a partir da RI se mostraram promissores
como indicadores da função autonômica e, comparativamente, mais sensíveis que descritores
univariados de HRV. Adicionalmente, o aumento do ganho IRM do barorreflexo, no caso
representado alternativamente pelo BRSPTT, indica um aumento da atividade vagal. Já o DG
LF indica uma disfunção do barroreflexo (Oliveira et al., 2019).

Os gráficos de Bland-Altman, com a diferença comparativa entre os valores de IRM,
LF DG e HF DG dos sistemas, com entrada PTT e saída RRI ou PPI, são mostrados nas
Figuras 6.5, 6.6 e 6.7 respectivamente.
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Figura 6.5 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(IRM PRV) e
log10(IRM HRV) obtidos a partir da RI ao longo da média de cada par destas variáveis.

Figura 6.6 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(LF DG PRV)
e log10(LF DGHRV) obtidos a partir da RI ao longo damédia de cada par destas variáveis.
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Figura 6.7 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(HF DG
PRV) e log10(HF DG HRV) obtidos a partir da RI ao longo da média de cada par destas
variáveis.

Nas Figuras 6.5 e 6.7, observa-se que, para os descritores compactos IRM e HF DG, a
linha de equivalência está localizada aproximadamente no limiar superior do IC da média,
o que indica um viés aceitável e pouco significativo. Já para o descritor LF DG, na Figura 6.6,
essa linha está ligeiramente acima do IC da média e indica um viés significativo.

Em relação a distribuição das amostras, para o IRM e HF DG, estas se distribuem
para cima e para baixo da linha de média e é evidente que não há relação entre o nível de
discrepância da diferenças das amostras e o respectiva média, uma vez que a variabilidade
destas diferenças não aumenta com o aumento da média do log10. Diante disso, os LOAs são
válidos para esse caso e as diferenças entre os índices obtidos por PRV e HRV estão dentre
dos limiares de diferença aceitáveis.

De encontro, para o LF DG, nota-se que a variabilidade das diferenças das amostras
aumentam com o aumento da média. Assim sendo, os LOAs inferior e superior são clara-
mente muito largos em pequenas diferenças entre os descritores obtidos pelos sistemas com
PPI e RRI. Apesar disso, apenas uma amostra se localiza fora do LOA e do IC inferior e a
maioria das amostras se concentram dentro da região delimitada pelos limiares de diferença.
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6.3 Análise de coerência

Novamente, as áreas de ganho da FRF foram obtidas a partir do detalhamento descrito
na Subseção 5.2.3. Na tabela 6.3, os resultados obtidos estão na formamédia ± SD.

Tabela 6.3 – Áreas de ganho da FRF (com e sem o limiar de coerência) da função de transferência do
sistema, aplicando o teste One-Way ANOVA. Observação: o subscrito c indica que se leva
em consideração o limiar de coerência de 0,5.

Entrada Área de Ganho
da FRF

Saída Valor-p
HRV PRV

PTT

LFc*2 1,079 ± 0,098 1,079 ± 0,098 0,904
HFc* 1,342 ± 0,154 1,228 ± 0,258 0,209
LF* 1,079 ± 0,098 1,091 ± 0,111 0,744
HF* 1,367 ± 0,109 1,412 ± 0,115 0,102

Como pode ser visualizado na Tabela 6.3, após a aplicação do teste One-Way ANOVA,
novamente não houve diferença estatisticamente significativas entre as áreas de ganho da
FRF (considerando e desconsiderando o limiar de coerência de 0,5) dos sistemas definidos
na análise multivariada.

Em uma abordagem a nível de sistemas, o estudo da função de transferência semostra
uma abordagem poderosa em torno do estudo do comportamento do sistema não somente
por evidenciar as características de ganho e de fase, mas também por permitir o cálculo
de uma medida de confiança dos resultados, a coerência. Nas bandas LF e HF, o valor de
coerência é um indicativo do comportamento do sistema e da confiabilidade dos resultados
obtidos (Berger et al., 1986).

Os gráficos de Bland-Altman, com a diferença comparativa entre os valores de LF𝑐
e HF𝑐 das áreas de ganho da FRF dos sistemas, com entrada PTT e saída RRI ou PPI, são
visualizados nas Figuras 6.8, 6.9 respectivamente.
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Figura 6.8 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(LF𝑐 PRV) e
log10(LF𝑐 HRV) obtidos a partir da FRF (com limia de coerência 0,5) ao longo da média
de cada par destas variáveis.

Figura 6.9 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(HF𝑐 PRV) e
log10(HF𝑐 HRV) obtidos a partir da FRF (com limiar de coerência 0,5) ao longo da média
de cada par destas variáveis.

Considerando o limiar de coerência de 0,5, observa-se, nas Figuras 6.8 e 6.9, que há
um viés considerável entre as diferenças das amostras, já que a linha de equivalência não
está dentro do IC da média.

Em LF𝑐 (Figura 6.8), é notório o aumento da variabilidade das diferenças com o
aumento da média, além do fato destes valores serem, principalmente, valores maiores de
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média. Assim sendo, é difícil precisar se os LOAs são completamente adequados para o
índice em questão. Não obstante, todas as amostras se localizam dentro dos LOAs superior
e inferior e, portanto, as diferenças entre as áreas de ganho obtidas por PRV e HRV estão
localizadas dentro dos limiares de diferença aceitáveis.

Por outro lado, na Figura 6.9, pode-se verificar que a variabilidade das diferenças
diminui com o aumento da média e grande parte das amostras serem valores maiores de
média. Diante disso, os LOAs inferior e superior são muito largos para essa distribuição.
Apesar desse fato, apenas uma amostra está localizada fora do LOA inferior, mas ainda
dentro do seu IC, e as demais amostras estão inseridas dentro dos limiares de diferença
delimitados.

Já desconsiderando o limiar de coerência, os gráficos de Bland-Altman, com a dife-
rença comparativa entre os valores de LF, HF das áreas de ganho da FRF dos sistemas, com
entrada PTT e saída RRI ou PPI, são mostrados nas Figuras 6.10, 6.11 respectivamente.

Figura 6.10 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(LF PRV) e
log10(LF HRV) obtidos a partir da FRF (sem limiar de coerência) ao longo da média de
cada par destas variáveis.
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Figura 6.11 – Gráfico de Bland-Altman da distribuição da diferença entre os valores log10(HF PRV) e
log10(HF HRV) obtidos a partir da FRF (sem limiar de coerência) ao longo da média de
cada par destas variáveis.

Desconsiderando o limiar de coerência, a partir das Figuras 6.10 e 6.11, as linhas
de equivalência estão foras do IC. Visualiza-se também o aumento da variabilidade das
diferenças com o aumento da média para as áreas de ganho LF e HF. Diante disso, os
LOAs superior e inferior são muito largos para valores de média pequenos. Para LF, todas
as amostras estão inseridas dentros dos LOAs inferior e superior todas as amostras estão
inseridas dentros dos LOAs inferior e superior e, paraHF, apenas uma amostra está localizada
fora do LOA superior (mas dentro do IC). Por conseguinte, as diferenças dessas áreas de
ganho obtidas por PRV e HRV estão dentre dos limites de diferença aceitáveis.
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7 CONCLUSÃO

Neste trabalho, foi detalhado os novos módulos de pré-processamento e análise,
incorporados à toolbox CRSIDLab, do sinal fisiológico PPG, outros sinais extraídos a partir
de componentes deste sinal (amplitude, pico, vale, PPI), sinal extraído a partir do intervalo
de tempo entre o pico R do ECG e um determinado ponto do PPG (PTT) e um outros sinal
fisiológico não relacionado ao PPG, mas sim à ABP (MAP). Além desses novos módulos,
descreveu-se o processo de adaptação dos módulos pré-existentes, os quais foram adaptados
para a utilização dos novos sinais obtidos.

Como forma de realizar uma análise comparativa entre HRV e PRV de uma base
de dados real, utilizou-se estes novos módulos criados e adaptados para realizar o pré-
processamento, análises espectral, temporal da IR e das áreas de ganho da FRF. Com os
índices e descritos obtidos por estes processos, realizou-se uma análise estatística comparativa
a fim demensurar se há diferença significativa entre os resultados obtidos quando se utilizou
o sinal de RRI ou de PPI, os quais representam HRV e PRV respectivamente.

Em outras palavras, este estudo comparativo visou verificar, como amplamente inves-
tigado na literatura, se o PRV pode ser utilizado como um substituto do HRV em estudos de
variabilidade e regulação autonômica. Nos moldes deste estudo, com sujeitos em posição
sentada e em repouso, o teste ANOVA para as análises univariadas, multivariadas e de coe-
rência não apresentou valor-p < 0,05, que é o limiar para indicar diferença significativa entre
os resultados. Assim sendo, este teste não indicou discrepância considerável entre os índices
obtidos nas três análises, indicando que, neste caso de posição sentada e em repouso, o PRV
poderia ser utilizado como um possível substituto ao HRV nos estudos de variabilidade.

Como uma outra alternativa de análise, os gráficos de Bland-Altman também foram
gerados a fimde se verificar a distribuição das diferenças das amostras comas suas respectivas
médias. Como se verificou pormeio dos resultados, os resultados evidenciaram que amaioria
das amostras se concentraram dentro dos limiares de diferença aceitáveis. Em algumas
situações, o viés da diferença entre PRV e HRV foi considerável e os LOAs largos para
valores pequenos de médias. Diante disso, para estes casos, estudos que consideremmétricas
fisiológicas para redimensionar os LOAs seriam um alternativa.

Pode-se concluir que, para a situação sentado e em repouso avaliada neste trabalho, as
análises estatísticas ANOVA e pelo gráfico de Bland-Altman demonstraram que não houve
diferença estatisticamente significativa (quando houve amostra fora do LOA no gráfico de
Bland-Altman, foi desprezível por se apenas uma amostra) entre os índices e descritores
obtidos pelo PRV e HRV. Assim sendo, há um indicativo que o PRV pode ser utilizado com
um substituto do HRV em estudos de variabilidade para situações de repouso sentado.
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7.1 Trabalhos futuros

Como trabalhos futuros, seria relevante investigar, por meio dos mesmas métricas
estatísticas, se há diferença estatística significativa entre resultados obtidos a partir do PRV
e HRV para sujeitos em outras situações, como em posição supina, cabeça erguida e outras
situações variantes no tempo, como mudança de postura, caminhada e corrida.

Ademais, com a obtenção do sinal de PTT gerado pelo CRSIDLab, uma nova contri-
buição seria utilizar algortimos de otimização e inteligência artificial para estimar a ABP a
partir do PTT. Como discutido no escopo deste trabalho, o sinal de PTT é facilmente obtido
e uma estimação precisa de ABP a partir deste sinal seria uma contribuição de grande valia
para estudos científicos e aplicações práticas da área médica.
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