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Resumo

O estudo da variabilidade da frequéncia cardiaca (HRV), derivada de sinais de eletrocardio-
grama (ECG), é amplamente realizado para obter indicadores sensiveis da saude cardiovascu-
lar e dos niveis de regulacdo autondmica em individuos. Isso se deve a influéncia do sistema
nervoso autondmico, representado principalmente pelos ramos simpdtico e parassimpatico,
que afetam significativamente esses indicadores de variabilidade. Adicionalmente, sabe-se
que o sinal de de pressdo arterial continua pode fornecer informacdes sobre a regulacdo
autonOdmica por meio da variabilidade das pressoes sistdlica (SBP) e diastélica (DBP). No
entanto, a obtencdo de medicdes continuas da pressdo arterial € comumente realizada com
o uso de equipamentos de alto custo. Como alternativa, o sinal de fotopletismografia (PPG),
obtido de forma ndo invasiva e a um custo menor, pode ser utilizado para estimar a pressdo
arterial e até mesmo servir como um novo marcador de variabilidade ou substituto para a
HRYV em casos especificos, na forma da variabilidade da frequéncia de pulso (PRV). Nesse
contexto, este estudo visa detalhar a criacdo de novos médulos para uma ferramenta existente,
na forma de uma interface grafica em MATLAB, para pré-processar, extrair novos sinais
a partir do sinal de fotopletismografia e analisar esses sinais utilizando uma abordagem a
nivel espectral (densidade espectral de poténcia) e a nivel de sistemas (resposta ao impulso e
funcdo de resposta em frequéncia). Adicionalmente, utilizando uma base de dados real de
individuos em posi¢do sentado em repouso, uma anélise comparativa € realizada para avaliar
diferencas significativas entre esses marcadores invariantes no tempo obtidos utilizando os
indicadores de HRV e PRV.

Palavras-chave: Fotopletismografia. Variabilidade da frequéncia cardiaca. Variabilidade da
frequéncia de pulso. MATLAB.



Abstract

The study of heart rate variability (HRV), derived from electrocardiogram (ECG) signals,
is widely conducted to obtain sensitive indicators of cardiovascular health and autonomic
regulation levels in individuals. This is due to the influence of the autonomic nervous
system, primarily represented by the sympathetic and parasympathetic branches, which
significantly affect these variability indicators. Additionally, it is known that continuous
arterial blood pressure signals can provide information about autonomic regulation through
the variability of systolic blood pressure (SBP) and diastolic blood pressure (DBP). However,
obtaining continuous blood pressure measurements is commonly performed using high-
cost equipment. As an alternative, the photoplethysmography (PPG) signal, obtained non-
invasively and at a lower cost, can be used to estimate blood pressure and even serve as a new
variability marker or a substitute for HRV in specific cases, in the form of pulse rate variability
(PRV). In this context, this study aims to detail the creation of new modules for an existing
tool, in the form of a graphical interface in MATLAB, to preprocess, extract new signals from
photoplethysmography, and analyze these signals using a spectral approach (power spectral
density) and a system-level approach (impulse response and frequency response function).
Additionally, using a real dataset of individuals in a seated resting position, a comparative
analysis is performed to assess significant differences between these time-invariant markers
obtained using HRV and PRV indicators.

Keywords: Photoplethysmography. Heart rate variability. Pulse rate variability. MATLAB.
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1 INTRODUGCAO

1.1 Motivacao

Os estudos iniciais acerca da variabilidade da frequéncia cardiaca (HRV do inglés
Heart Rate Variability) surgiram em uma pesquisa sobre morte fetal em meados da década
de 60. Na ocasido, Hon e Lee investigaram a relacdo da variabilidade da série temporal do
intervalo entre picos R (RRI do inglés R-to-R Interval) extraida do sinal de eletrocardiograma
(ECG), como um possivel fator correlacionado aos padrdes fisioldgicos observados. Na
década seguinte, Hyndman documentou um trecho de variacdo espontanea de 10 segundos
na pressao arterial (ABP do inglés Arterial Blood Pressure) e modelou um sistema de controle
para descrever sua descoberta (Kamath; Watanabe; Upton, 2016).

A partir desses estopins iniciais, o estudo da variabilidade e seus marcadores se tor-
naram amplamente conhecidos e difundidos na area da bioengenharia como indicadores
sensiveis do estado de saude cardiovascular e do nivel de regulacdo autondémica do indi-
viduo (Javorka et al., 2018). Em particular, a descoberta da influéncia do sistema nervoso
autonomo (SNA) em alteracdes significativas no HRV permitiu melhor entender como algu-
mas doencas, como a diabetes mellitus tipo 2 e apneia do sono, afetam a atuacgdo e a avaliacdo
das atividades autdnomas cardiovascular e nervosa (Marieb; Hoehn, 2019).

Além do HRYV, ha estudos com o sinal do fotopletismografia (PPG do inglés Photo-
plethysmography) como uma técnica alternativa para avaliar informacdes de HRV a partir
do sinal de onda de pulso PPG, que é obtido de forma nio invasiva. Esse sinal mede o volume
de sangue no tecido e, de forma andloga ao sinal de ECG, a série temporal do intervalo em
picos ou vales do pulso (PPI do inglés Peak-to-Peak Interval) é extraida e a variabilidade da
frequéncia de pulso (PRV do inglés Pulse Rate Variability) é obtida (Mejia-Mejia et al., 2020).
Entretanto, a relacdo entre PRV e HRV nio ¢ unanimidade no meio cientifico, visto que
h4 estudos que propdem o PRV como um marcador dissociado do HRV, enquanto outros
evidenciam uma relacao direta entre PRV e HRV.

Por exemplo, em (Yuda et al., 2020), sustenta-se que, apesar do HRV e PRV refletirem
batimentos periddicos do coracdo, ndo ¢ uma garantia que as variabilidades de ambos os
sinais também representam um mesmo significado. Em termos fisiolégicos, o HRV mede
mais diretamente a atividade elétrica do coragdo, enquanto o PRV mede a onda mecanica
resultante desta atividade elétrica nos tecidos periféricos. Diante disso, varidveis, como a
distensibilidade das artérias, mudancas no tonus vascular, doencas que afetem estas varia-
veis, mudancas de postura, métodos de processamento e até o ponto de medicdo do PPG
(segmentos distintos do dedo, punho, braco, 16bulo da orelha ou testa) podem modificar
os instantes de pulso em relacdo aos medidos no ECG e, consequentemente, resultar em
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medidas ou indices distintos obtidos pelo HRV e PRV. Em contrapartida, em (Verma et al.,
2019), resultados de marcadores espectrais e temporais mostraram que o PRV foi um bom
substituto do HRV para o monitoramento da regulagdo cardiovascular especialmente em
sujeitos jovens, saudaveis e em condigdes estaciondrias (repouso).

Ademais, além do sinal de ECG, o sinal de ABP também contém informacdes impor-
tantes da regulacao cardiovascular pelo sistema nervoso autonomo, por refletir diretamente a
influéncia do SNA nas variabilidades da pressao sist6lica e diast6lica batimento a batimento.
O ABP pode ser obtido a partir de equipamentos como o Finapres (Pefiaz, 1973). No entanto,
estes equipamentos costumam ser caros. Como alternativa, informacdes relacionada a ABP
podem ser obtidas combinando-se informacdes do sinal de ECG com o sinal de tempo de
trAnsito de pulso (PTT do inglés Pulse Transit Time). E importante mencionar também que
o PTT é amplamente utilizado para estudos de variabilidade e reflexo da funcdo arterial e,
especificamente, investiga-se o seu uso como alternativa de estimacdo da ABP de forma néo
invasiva (Ding et al., 2017). Esse sinal é obtido, de forma aproximada, a partir do intervalo
de tempo entre o pico R do sinal de ECG e o respectivo pico da primeira derivada do PPG
(ou ponto médio da amplitude do sinal de PPG) e, em termos fisiologicos, é definido como
o tempo em que um pulso arterial leva para se propagar de uma regido a outra do sistema
cardiovascular, além de ser um indicador da rigidez vascular do mesmo (Ding et al., 2017).

Neste contexto, sinais fisiolégicos, varidveis, marcadores e descritores podem ser
obtidos a partir de diferentes técnicas de processamentos de sinais e ferramentas matematicas
no dominio do frequéncia e do tempo. Na frequéncia, serd abordada o densidade espectral de
poténcia (PSD do inglés Power Spectral Density) das séries temporais que indicam o HRV e o
PRV e arespectiva distribuicdo em termos de diferentes componentes de frequéncia (Akselrod
et al., 1981). Essa técnica é amplamente utilizada para quantificar o comportamento do
sistema nervoso autdbnomo e possui a vantagem de ser facilmente computada pelas técnicas
de processamento de sinais existentes. No entanto, os indices espectrais sdo afetados por
diferencas no padrao respiratorio dos individuos e fornecem apenas informacdes sobre a

saida do sistema auténomo, sem revelar a dindmica subjacente (Jo, 2002).

Alternativamente, no dominio do tempo, hé a técnica de identificacio de sistemas que
permite caracterizar mecanismos fisioldgicos através da anélise de dados de entrada e saida,
impondo causalidade entre estes e permitindo a observacdo da interacdo entre mecanismos
de regulacdo cardiovascular. Além disso, a andlise no dominio do tempo, baseada na resposta
ao impulso, para cada par entrada-saida, estima, a partir de um modelo no dominio do
tempo que impde restri¢des de causalidade entre a entrada e saida, o que efetivamente "abre
amalha’, matematicamente, do sistema cardiorrespiratério, que é inerentemente um sistema
de malha fechada (Khoo, 2018).
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1.2 Obijetivos

Este trabalho tem por objetivo principal o desenvolvimento de moédulos para o pro-
cessamento de sinais de PPG para a toolbox CRSIDLab (Silva, 2017). O CRSIDLab (Cardi-
orespiratory System Identification Lab) é uma ferramenta programada em MATLAB para
a quantificacdo da funcio autondémica cardiaca. A partir de uma interface grafica, atual-
mente o toolbox CRSIDLab fornece um conjunto de ferramentas, incluindo diversas etapas
de pré-processamento de dados cardiorrespiratorios (ECG, ABP e fluxo de ar ou volume
pulmonar instantaneo), a estimacio da densidade espectral de poténcia e a identificagao
de um modelo cardiorrespiratério multivariavel no dominio do tempo. Os médulos imple-
mentados neste trabalho permitirdo a inclusio do sinal de PPG a andlise e quantificacdo do
sistema cardiovascular e respiratorio. Além disso, visa-se extrair novas variaveis, indicadores
quantitativos e marcadores importantes para o estudo da HRV e areas correlatas como, por
exemplo, o PTT a partir dos sinais de PPG e ECG. Esses modulos serdo representados por
meio de interfaces graficas e interativas, a fim de facilitar novas pesquisas cientificas.

O segundo objetivo deste trabalho €, a partir deste novos médulos implementados,
utilizando uma base de dados com sinais de ECG e PPG de 22 sujeitos sentados em posicao
sentada em repouso, realizar o estudo comparativo entre HRV e PRV, a fim de avaliar a
possibilidade de andlises espectrais univariadas, temporais multivariadas a nivel de sistemas
e respectivas andlise de coeréncia da funcio de transferéncia (TF do inglés Transfer Function)
obterem ou ndo diferencas significativas quando considerado cada um dos marcadores de
variabilidade, HRV e PRV.

O desenvolvimento de uma ferramenta com interface grafica para o estudo do sistema
nervoso autonomo cardiaco a partir de um modelamento multivaridvel, que possui ferramen-
tas para auxiliar desde o pré-processamento inicial de sinais como o ECG, PPG, ABP e o sinal
de respiracdo, até o calculo de indices univariaveis e multivariaveis, nos dominios espectral
e do tempo, permite que uma ampla gama de pesquisadores possam realizar e verificar
cada etapa de processamento e andlise, uma vez que ndo € necessario o conhecimento de
programacdo para o seu uso. Além disso, a investigacdo do PRV como um possivel substituto
do HRV em estudos de variabilidade da frequéncia cardiaca em determinadas situagdes é
importante, especialmente por ser uma alternativa mais econémica e conveniente quando
comparada a obtencdo do sinal de ECG. Ademais, com a opcdo de derivar o sinal de PPG
implementada, a extracdo de varidveis como a segunda derivada do PPG (SDPPG) tem sido
proposta para a estimacao da rigidez arterial (Takazawa et al., 1998), um indicador precoce
de doencas cardiovasculares como hipertensio arterial e insuficiéncia cardiaca (Shirwany;
Zou, 2010).



22

1.3 Estrutura do trabalho

Este trabalho esta organizado em sete capitulos.

No Capitulo 1, expde-se uma breve motivagdo por tras do estudo das variabilidades
das frequéncias cardiaca e de pulso com o foco direcionado as aplicacdes do sinal de PPG e
de PTT, bem como uma contextualizacdo dos principais focos de estudo desse tema na area
da engenharia biomédica. Além disso, esse capitulo também expde os objetivos do trabalho.

O Capitulo 2 expde os principais conceitos tedricos relevantes de serem previamente
conhecidos, para a compreensdo das contribuicdes apresentadas no restante do trabalho,
sdo abordados. Dentre esses conceitos, abordaram-se aspectos da fisiologia humana, sinais
fisiologicos, técnicas de pré-processamento e andlise de sinais e sistemas invariantes no
tempo nos dominios do tempo e da frequéncia e, por fim, métricas estatisticas utilizadas.

No Capitulo 3, h4d uma breve explanacdo de trabalhos relacionados os quais propu-
seram projeto de ferramentas computacionais de pré-processamento e andlise de sinais
fisiologicos.

O Capitulo 4 visa detalhar os novos modulos desenvolvidos e os modulos aprimorados
da ferramenta para incorporar o pré-processamento e andlise de sinais obtidos a partir do
PPG.

No Capitulo 5, detalha-se os procedimentos adotados para realizacdo da andlise
comparativa entre HRV e PRV. De inicio, o procedimento de pré-processamento dos sinais
de ECG e PPG ¢ descrito. Em seguida, a extracdo de indices espectrais, descritores compactos
e areas de ganho e métodos estatisticos de comparacao utilizados.

J4, no Capitulo 6, os resultados obtidos na analise comparativa entre HRV e PRV sdo
explanados e discutidos por meio das métricas estatisticas geradas.

Por fim, no Capitulo 7, as conclusdes, acerca da possibilidade da utilizacdo do PRV
como um substituto do HRV para estudos de variabilidade e nos moldes apresentados neste
trabalho, sdo apresentadas. Em complemento, mapeiam-se possiveis melhorias futuras e

novos focos de estudo direcionados a este trabalho.
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2 REFERENCIAL TEORICO

Este capitulo aborda conceitos tedricos importantes de serem conhecidos para que
todo o desenvolvimento dos métodos e obten¢do dos resultados gerados sejam compreendidos
em sua integralidade.

O capitulo comeca abordando a fisiologia do sistema cardiovascular em termos de
funcionamento basico e sua regulacdo pelo sistema nervoso autdbnomo. A seguir procura-
se detalhar o sistema nervoso auténomo, em particular os efeitos dos ramos simpatico e
parassimpdtico na regulacdo cardiovascular. Os sinais de eletrocardiograma, pressdo arterial
(BP, do inglés Blood Pressure) e fotopletismografia, outros sinais fisioldgicos obtidos a partir de
operacdes e processamentos destes sinais, como a média da BP e o sinal de tempo de transito,
e suas respectivas interpretacoes fisiologicas em termos de variabilidade de frequéncia e

mecanismos de controle do reflexo barorreceptor arterial sdo entdo descritos.

Em sequéncia, descreve-se sobre sinais e sistemas invariantes no tempo e algumas téc-
nicas de andlise nos dominios do tempo e da frequéncia. Especificamente, para a frequéncia,
o método espectral de Welch é descrito e detalhado. J& como andlise temporal, descreve-se
o método de identificacdo de sistemas, focando nos mecanismos de anélise de dados de
entrada e saida, os quais impdem causalidade e permitem uma melhor visdo dos mecanismos
de controle e inter-relacdes entre varidveis. Como métodos, o capitulo foca na descricio de
descritores obtidos a partir da resposta ao impulso e da funcio de resposta em frequéncia

sob a consideragdo ou nao de um limiar de coeréncia.

Por fim, alguns testes estatisticos comparativos os quais mensuram o nivel de concor-
dancia entre métodos distintos que avaliam a mesma varidvel quantitativa sao descritos em
termos de aplicacdo e interpretacdo, One-Way ANOVA e o Teste de Bland Altman.

2.1 Fisiologia

2.1.1 Sistemas cardiovascular e cardiorrespiratorio

O sistema cardiovascular ¢ responsavel por bombear sangue para todo o corpo e
permitir que as células realizem respiracao celular, desempenhando suas funcées fim. Em
termos mais especificos, o coracdo, que é o principal musculo do sistema, realiza contracoes

ordenadas para o correto funcionamento do ciclo cardiaco.
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Figura 2.1 - Estrutura dos constituintes do sistema cardiovascular sanguineo humano e dos vasos
sanguineos. Fonte: Adaptado de (Lopes; Rosso, 2002).

Antes de bombear o sangue, o pulmao desempenha papel fundamental para realizar
a hematose (trocas gasosas) por meio da respiracdo pulmonar. O sistema cardiorrespiratorio
libera gas carbonico (CO,) por meio da expiragdo e absorve gas oxigénio (O,) por inspiracdo,
0 que garante que a oxigenacdo do sangue seja realizada de fato (Lopes; Rosso, 2002).

Com o sangue oxigenado, coracdo intercala seu comportamento em dois estados
principais: sistole (estado de contracdo) e diastole (estado de relaxamento). Como pode
ser observado na Figura 2.2, a anatomia do musculo € divida em duas camaras inferiores
(ventriculos) e duas camaras superiores (atrios), sendo cada uma das camaras separadas por
valvulas atrioventriculares. De maneira sistémica, os atrios recebem sangue venoso (rico em
CO,) de todo corpo e os ventriculos bombeiam sangue arterial (rico em O;) para o corpo.
Deste modo, os atrios e ventriculos estdo em diastole ao inicio do ciclo cardiaco, entrando
em sistole para o bombeamento do sangue somente apos o recebimento do pulso elétrico
pelo no6-sino atrial (SAN, do inglés Sino Atrial Node), repetindo esse mecanismo de forma
ciclica (Guyton et al., 2006).
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Figura 2.2 — Coracdo humano em vista posterior e em corte transversal. Fonte: Adaptado de (Lopes;
Rosso, 2002).

O ritmo com que esse ciclo se repete é denominada frequéncia cardiaca (HR, do inglés
Heart Rate), medida em batimentos por minuto (BPM) e é objeto amplo de estudo na area
da engenharia biomédica e medicina. Entretanto, outros sistemas, especialmente o nervoso,
interferem e modulam consideravelmente no comportamento deste ciclo (Marieb; Hoehn,
2019).

2.1.2 Sistema nervoso autébnomo

Ap6s o entendimento dos sistemas relacionados a atividade circulatoria e respiratdrio,
torna-se indispenséavel abordar o funcionamento geral do SNA, uma vez que a atividade
cerebral influencia diretamente o comportamento dos sistemas cardiovascular e cardiorres-
piratorio.

O organismo humano e sua respectiva organizacdo em sistemas, 6rgaos, tecidos e
células € estruturada para buscar uma situacao de estabilidade. Essa estabilidade ¢ modulada
por fator externos ou exdégenos, como mudangas no ambiente, e fatores internos ou endé-
genos, principalmente representados por manejo de recursos para as células do corpo. Em
situacoes exdgenas, eventuais situagdes que apresentem risco de sobrevivéncia ou finitude
de recursos alteram e modulam a estabilidade dos sistemas humano. Com o foco para os
fatores endogenos, o SNA desempenha papel fundamental na adaptabilidade dele e de outros
sistemas e subsistemas (Silverthorn et al., 2016).

Como explicitado na Figura 2.3, o SNA é parte dos sistema nervoso periférico (SNP),
controla reacdes involuntaria, como a vasodilatacdo ou taquicardia, que podem ser dividas
em outros dois ramos: simpdtico e parassimpatico ou vagal. De modo geral, esses ramos
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possuem atuacdes diametralmente opostos, entretanto podem atuar de maneira conjunta e
complementar em alguns casos (Marieb; Hoehn, 2019).
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Figura 2.3 — Representacao das principais vias simpdticas, em azul, e parassimpdticas, em preto, na
espécie humana. Fonte: Extraida de (Lopes; Rosso, 2002).
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O ramo simpatico condiciona, principalmente, modulagdes fisiologicas relacionadas
ao aumento de circulacdo sanguinea, como situacdes de estresse e fuga, a atuar na vasocons-
tricdo, aumento da HR e da BP e dilatacido dos bronquios e da pupila. De encontro, o ramo
parassimpatico modula situacdes de descanso e relaxamento, provocando vasodilatacio,
reducdo da HR e da BP e contri¢do dos bronquios e da pupila (Silverthorn et al., 2016).
Ademais, essas modulagées sdo condicionas por efeito de disparos, os quais os do ramo
simpéatico do SNA levam um certo tempo até se manifestar como um aumento da frequéncia
cardiaca, enquanto que, apos a chegada de pulsos via o ramo parassimpatico do SNA, a
diminui¢do no ritmo cardiaco se d4 logo no proximo batimento. E por esse motivo que, na
regido HF (HF, do inglés High Frequency) do HRV se considera que s6 ha influéncia do ramo
parassimpatico do SNA (além da respiracdo), enquanto que na regido LF (LF, do inglés Low
Frequency) do HRV ha contribuicdes de ambos os ramos do SNA.

Apesar da acio convencionalmente oposta, como evidenciado na Figura 2.3, as agoes
de ambos os ramos desempenham papel indispenséavel para o equilibrio e homeostase
fisiologica (Lopes; Rosso, 2002).
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2.1.3 Eletrocardiograma e pressdo arterial

Os sinais de ECG, PA e PPG foram, brevemente, introduzidos na Secdo 1.1, nado
obstante torna-se indispensavel melhor entender o que representam fisiologicamente, bem
a forma como sdo obtidos.

O ECG ¢ uma representacdo grafica do registro da diferenca de potencial elétrico
entre dois pontos da superficie do corpo ao longo de um determinado intervalo de tempo (Kil-
patrick; Johnston, 1994), como evidenciado na Figura 2.4. A sua obten¢do é amplamente
utilizada para a observacao do comportamento do ciclo cardiaco explicitado na Secdo 2.1.1.
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Figura 2.4 — Representacdo tipica de um sinal de ECG e suas respectivas partes. Fonte: Extraida
de (Silverthorn et al., 2016).

Como pode ser observado na Figura 2.2, entende-se cAmaras superiores como 0s
atrios e camaras inferiores como os ventriculos. De acordo com (Marieb; Hoehn, 2019), as
partes do sinal ECG sdo resumidas da seguinte forma:

« A onda P representa a despolarizacdo atrial, indicando a contracdo das camaras

superiores do coracao.

« O intervalo PR representa o tempo entre o inicio da excitaclo atrial e o inicio da

excitacdo ventricular.

« O segmento P-R ¢ o intervalo entre o final da onda P e o inicio do complexo QRS
e representa a conducao do impulso elétrico através das cAmaras superiores até as

camaras inferiores.

« O complexo QRS representa a despolarizacio ventricular, indicando a contragdo das

camaras inferiores do coracéo.
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« Ointervalo QT representa o periodo entre a despolarizacdo e repolarizacdo ventricular,
refletindo a duracdo da atividade elétrica no coracgao.

« Aonda T representa a repolarizacdo ventricular, indicando a recuperacio das caAmaras
inferiores apés a contracao.

« O segmento S-T ¢ uma linha de base entre a despolarizagdo e repolarizacio, podendo
indicar a presenca de alteracdes isquémicas ou outras condicOes cardiacas.

Deste modo, o inicio da atividade do SAN € marcada pela onda P. Entretanto, na
prética, o pico R do complexo QRS é comumente mais facil de ser identificado, sendo
portanto este ponto o marcador amplamente utilizado para o inicio da atividade elétrica do
coracdo (Clifford, 2002).

Ja a ABP é uma representacdo grafica da forca que o sangue exerce sobre as paredes
das artérias durante um intervalo de tempo. O ponto maxima amplitude do sinal de pressao
¢ denominado pressido arterial sistolica (SBP, do inglés Systolic Blood Pressure), enquanto
o ponto de minima amplitude é denominado pressdo arterial diast6lica (DBP, do inglés
Diastolic Blood Pressure), estes pontos representam os estados de contracdo e relaxamento
do coracdo respectivamente, como observado na Figura 2.5.
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Figura 2.5 — Representacio de um sinal de ABP com pontos de SBP, DBP e MAP. Fonte: Adaptado
de (Klabunde, 2023).

Além dos pontos de minima e de maxima amplitude, a pressio arterial média (MAP,
do inglés Mean Arterial Pressure) € um outro ponto que ¢ definido como a média da BP
em cada i-ésimo ciclo cardiaco (Kamath; Watanabe; Upton, 2016), como explicitado pela
Equacdo 2.1.
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2 - DBP(i) + SBP(i)

MAP(i) = ;

2.1)

2.1.4 Fotopletismografia e inversibilidade em amplitude

O sinal de PPG é uma representacdo grafica, utilizando um método nio invasivo, de
mudancas no volume de sangue em um leito microvascular da pele em um determinado
intervalo de tempo, com base em propriedades épticas, como absorc¢ao, dispersio da luz.
Como observado na Figura 2.6, a obtencdo da forma de onda do PPG ¢ através da inversdo da
intensidade de luz absorvida por um fotodetector, depois que parte desta luz é transmitida
ou refletida através do tecido humano. Comumente, oximetros de pulso sdo utilizados para
obtencdo do PPG (Park et al., 2022).
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Figura 2.6 — Mecanismo ilustrado do principio de obtencdo do sinal de PPG. A parte superior mostra
o sinal de PPG obtido por meio do oximetro de pulso. A parte inferior mostra o sinal
invertido em amplitude com os respectivos de inicio de ciclo, sistolico e diastolico da
forma de onda. Fonte: Extraido de (Park et al., 2022).

Em comparacido com outros outras técnicas hemodinamicas, a obtengdo do PPG é
ndo invasiva, econdmica e de facil obtencao. Além disso, o PPG € utilizado para estimacao
da ABP de forma néo invasiva, obten¢do do PTT e vastos estudos de machine learning que
analisam a relacdo entre a morfologia da onda de PPG e indicadores da ABP (Ding et al,,
2017).



30

Ademais, observa-se, na Figura 2.6, que o mecanismo de obten¢do do PPG por meio
de um sensor de luz comumente disponibiliza o sinal invertido em amplitude. Ou seja,
na parte superior da respectiva figura, os pontos sistélico, diastolico e o de inicio de ciclo
possuem suas localizacdes alteradas da forma dos locais convencionalmente esperados,
como evidenciado na parte inferior da mesma figura. Essa inversdo em amplitude pode
prejudicar na localizagdo correta dos pontos para possiveis andlises. Assim sendo, por vezes,
torna-se necessario aplicar uma inversdao em amplitude do sinal de PPG, de forma a se obter

corretamente os seus respectivos pontos de interesse.

2.1.5 Sinal de tempo de transito (pulse transit time)

Como introduzido na Secdo 1.1, o PTT aproximado é obtido a partir da obtencio
do intervalo de tempo entre pontos especificos extraidos do ECG e do PPG. Nido obstante,
como evidenciado em (Lin; Samuel; Li, 2018), para a obtencdo do PTT real, deve-se subtrair
do (PAT, do inglés Pulse Arrival Time) o periodo de pré-ejecdo (PEP, do inglés Pre-ejection
Period). O PEP representa o intervalo de tempo entre o inicio da despolarizacdo ventricular
(onda Q do ECG) e a abertura propriamente dita da valvula aortica (Pilz; Patzak; Bothe,
2023), ja o PAT ¢ definido como o intervalo de tempo entre o pico R dop sinal de ECG e
um ponto fiducial, comumente o pico da 12 derivada do PPG (Sun et al., 2023). A Figura
2.7 evidencia a determinac¢do do PEP e a Figura 2.8 explicita os intervalos PEP, PAT e PTT
aproximado.

Pre-ejection period (PEP) determination
PEP

| I

ECG PEP
/ AN ‘L‘P'I"I'

woltage in mV

] ICG - ’\\\ 7 /\v
! Aorta  PAT
: L
dPPG \/\_/-’\/\_
N
time in ms Figura 2.8 - Pontos representativos do inter-
Figura 2.7 - Determinagéop do PEP, definido valo RRI do ECG, ponto médio
como o intervalo de tempo entre da amplitude do PPG e o ponto
aonda Q do ECG (parte superior) do pico da derivada do PPG uti-
e o inicio da ejecio do sangue lizados para a extracdo do PTT.
(aumento do fluxo sanguineo na Fonte: Extraido de (Lin; Samuel;
aorta, parte inferior) (Pilz; Pat- Li, 2018).

zak; Bothe, 2023).
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Apesar disso, a medicdo do PEP se apresenta como um complicador adicional por
necessitar de um outro instrumento de medida denominado impedance cardiogram (ICG),
o qual detecta, analisa e registra as alteracdes hemodindmicas por meio da variacdo da
resisténcia elétrica no térax, traduzindo-as, graficamente, em ondas de impedancia (Ledo;
Silva, 2018), como observado na Figura 2.8. Portanto, o PTT aproximado é considerado
uma boa aproximacdo em decorréncia da facilidade de medicdo e robustez do método de
obtencdo (Lin; Samuel; Li, 2018). Especificamente, esse PTT é uma série temporal obtida
entre o intervalo de tempo entre o pico R do sinal ECG e o pico da primeira derivada do sinal
de PPG (ou, alternativamente, o ponto médio da amplitude do PPG), como observado na
Figura 2.9.

ECG

PPG

dPPG

Figura 2.9 — Pontos representativos do pico R do ECG e do ponto de referéncia do PPG e do pico da
sua 12 derivada para obtenc¢do do PTT, bem como a identificacdo do PTT. Fonte: Extraido
de (Lui; Chow, 2018).

A obtencdo do PTT possui papel importante para a estimacdo da, de maneira ndo
invasiva, de ABP de modo continuo. A medida com a bragadeira, que é geralmente feita
em consultas médicas, nio é uma medida continua de pressdo. Medidas continuas sdo
normalmente obtidas de modo invasivo com um cateter inserido em uma artéria. Ademais,
em grande parte dos procedimentos cirtrgicos, a medida de BP € necessaria de ser monitoria
intermitente com um manguito branquital. Apesar da ndo invasividade, essas medidas
intermitentes tém o risco de perder informacdes clinicamente relevantes nos intervalos
de tempo de interrupcdo. A utilizacdo de cateteres também pode ser utilizada, mas esta
associada ao aumento de riscos de efeitos adversos, como isquemia distal, sangramentos,
tromboses e infecgdes (Sun et al., 2023). Assim sendo, diante destas desvantagens, novas
formas de obtencdo de ABP modo continuo, como a estimacéo a partir do PTT.
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2.1.6 Variabilidades da frequéncia cardiaca e da frequéncia do pulso

A HRV refere-se as variagdes ou oscilacdes a cada batimento entre valores de HR
instantaneas consecutivas ou, de forma equivalente, ¢ também definida como as variagdes
nos intervalos de tempo entre picos R sucessivos do ECG, como observado na Figura 2.10.

Normal sinus rhythm

P wave

L ¢ L/

RR interval
V. £ 4

Premature ventricular contraction (PVC) ~.
~

Premature atrial contraction (PAC)

Non-compensatory
pause

¥ 4

Figura 2.10 - Comparacdo entre sinais de ECG normal e com contracdes ventriculares e atriais
prematuras, bem como a identificacdo de um batimento ectépico seguindo de uma
pausa compensatoria. Fonte: Adaptado de (Ectopic..., 2023).

Oscilacoes estas que sdo definias pelo SAN e sdo moduladas continuamente pelo SNP,
especificamente pelo sistemas simpdtico e parassimpatico (Oliveira et al., 2019). Ademais, a
figura anterior ilustra também os batimentos ectdpicos, que sdo batimentos prematuros extra-
sistole, ou seja, ndo oriundos da ativacdo do SAN pelos ramos simpatico e parassimpdtico e
a pausa compensatoria caracteristica provocada por eles (Peltola, 2012). Deste modo, como
ndo refletem a atividade do SNA, a etapa de pré-processamento do ECG deve identificé-los,

removeé-los e utilizar alguma técnica tratativa, como a interpolacdo (Clifford, 2002).

Analogamente a HRV, o PRV representa oscilacoes, a cada batimento, do intervalo de
tempo entre picos ou vales consecutivos do sinal de PPG, como explicitado na Figura 2.11. Os
batimentos ectdpicos citados anteriormente também influenciam a forma de onda do PPG
e, novamente, mostra-se a importancia de serem retirados e tratados (Guzman; Couderc;
Tsouri, 2019).
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PPI
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Figura 2.11 - Representacdo de alguns pontos do PPG. Em especial, dos intervalos PPI entre picos e
entre vales do PPG, denominados PPIyolic € PPIonset respectivamente. Fonte: Extraido
de (Park et al., 2022).

2.1.7 Reflexo barorreceptor arterial

O reflexo barorreceptor arterial (ABR, do inglés Arterial Baroreceptor Arterial), tam-
bém conhecido com barorreflexo, ¢ um mecanismo reflexo de feedback negativo constituido
por sensores denominados barorreceptores. Esses sensores estdo localizados em pontos
especificos de grandes artérias sistémicas e, a partir do envio de impulsos nervosos para o
sistema nervoso central (SNC), sinais de feedback sdo enviados de volta para controlar a HR
a partir da ABP (Guyton et al., 2006).

Neste sentido, 0 mecanismo de controle se comporta para que o aumento de pressao
implique em reducio da HR e vice-versa, caso o primeiro ocorra. A sensibilidade do baror-
reflexo (BRS, do inglés Baroreflex Sensitivity) ¢ uma medida representatica da capacidade
deste mecanismo de ajustar essa HR a mudancas na BP, sendo quanto mais alto de BRS,
mais sensivel é o sistema & mudanca de ABP (Kuusela, 2012a). Dados anteriores mostraram
que a atividade do sistema simpético provoca atenuagao do BRS (Skrapari et al., 2007).

Ao mesmo tempo, a funcio do barorreflexo ¢ manter a BP em niveis estaveis apesar
de mudancas de postura (Schrezenmaier et al., 2007). O mecanismo de regulacdo do ABP é
definido como um sistema de feedback constituido de sensores (barorreceptores, os quais
medem a ABP em locais especificos do corpo), uma unidade de processamento (localizada
no SNC) e uma unidade de saida (o SNA, o qual ajusta a ABP por meio das mudancas da
HR, da contratilidade cardiaca e da resisténcia dos vasos sanguineos periféricos) (Kamath;
Watanabe; Upton, 2016). O diagrama desse mecanismo simplificado de controle da ABP é

explicitado na Figura 2.12.
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Figura 2.12 - Modelo simplificado do mecanismo de regulacdo da ABP. SNC (51stema nervoso), MSNA
(atividade simpatica muscular), SA (n6 sino-atrial), RRI (intervalo RR), VS (volume
sistolico), CO (saida cardiaca), SAP (pressdo arterial sistélica), DAP (pressdo arterial
diastdlica). Neste modelo linear, os pares de sinais sio DAP (entrada)-MSNA (saida) e
SAP (entrada)-RRI (saida). Fonte: Extraido de (Kamath; Watanabe; Upton, 2016).

2.2 Sinais e sistemas invariantes no tempo

Os sinais fisioldgicos e os sistemas construidos a partir destes sdo considerados inva-
riantes no tempo, ou seja, ndo variam suas caracteristicas comportamentais e propriedades
estatisticas ao longo do tempo (Semmlow, 2014). Além da invaridncia no tempo, de suma
importancia garantir a estacionariedade destes sinais e sistemas construidos a partir destes.
Este conceito pode ser definido como o nlo deslocamento na linha de base do sinal que é
funcdo do tempo, além da manutencdo das caracteristicas estatisticas como média, variancia
e estrutura de correlacdo constantes ao longo do tempo (Kuusela, 2012b).

Em complemento, a caracteristica estaciondria esta fortemente relacionada a duracdo
do intervalo sugerido de andlise de sinais fisiol6gicos, uma vez que um quanto maior o
intervalo de anélise do registro do sinal utilizado, menos estacionario ele €. Deste modo,
alguns estudos sugerem que a melhor abordagem ¢ dividir o sinal em pequenos intervalos
(comumente de 5 minutos), os quais sio comumente mais estacionarios e geram resultados
mais confiaveis (Task Force, 1996).

Para sinais fisiolégicos que respeitam essas categorias, pode-se aplicar o método da
PSD (a nivel espectral) e o da andlise da IRe da FRF (a nivel de sistemas).
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2.2.1 Analise espectral: método de Welch

O método de Welch ¢ caracterizado por ser um método espectral que divide um sinal
em varios segmentos, aplica uma janela, com tamanho dos segmentos e nivel de sobrepo-
sicdo bem definidos, a cada um deles. Em sequéncia, a Transformada Discreta de Fourier
(TDF) é também aplicada a cada um destes e, por fim, calcula-se a média dos espectros de
cada segmento janelado (Semmlow, 2014). Considerando os sinais fisioldgicos como séries
temporais estaciondrias, isto €, possuem média, varidncia e estrutura de autocorrelacdo
constantes ao longo do tempo, pode-se aplicar a PSD, calculada a partir da funcao de auto-
correlacdo da série temporal, para realizar o estudo de espectro (Strichartz, 2003). A func¢@o
de autocorrelacdo de um sinal x[n] com N amostras € representada da seguinte forma:

N
Fex[k] = J%Zx[n] x[n+kl,Vke{-m, —m+1, ---, m} (2.2)
n=1

tal que k é o namero de amostras deslocadas e + m € o numero de amostras utilizadas.

A partir dessa funcdo de autocorrelagcdo, pode-se decompor a série temporal em uma
somatoria de componentes oscilatorios em multiplas frequéncias de oscilagdo. Deste modo,
pode-se também analisar a distribuicio de frequéncias da PSD dessa série temporal de acordo
com as multiplas frequéncias que a compde, como frequéncia muito baixa (VLF, do inglés
Very Low Frequency) entre 0 e 0,04 Hz, LF (entre 0,04 € 0,15 Hz) e HF (entre 0,15 e 0,4 Hz),
dentre outras bandas (Semmlow, 2014; Oliveira et al., 2019). Neste sentido, a PSD deste

mesmo sinal x[n] é definida como:

N-1 —j2nfk N
PIf1= ) rxlkl-e N Vfe{o.1, -, 2} (2.3)
k=0

tal que k é o indice da amostra do sinal, N é o numero de pontos do sinal.

O janelamento do sinal, realizado pelo método de Welch, representa a operacdo de
convolucdo entre o espectro do sinal e o da janela. Sendo que o espectro da janela possui um
l6bulo principal e 16bulos secunddrios, representando vestigios das frequéncias préximas e
distantes respectivamente, quando a operacio de janelamento for realizada (Semmlow, 2014).
H4 diversos tipos de janelas, cada uma com as suas respectivas especificidades de proporcdo
entre os l6bulos principal e secundéarios e a escolha do tipo ¢ feita diante as particularidades

de cada caso, como pode ser observado na Figura 2.13.
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Figura 2.13 - Sinal arbitrario dividido em 3 segmentos com uma sobreposicao de 50% e trés tipos
diferentes de janela que podem ser aplicadas: Retangular, Hanning, Hamming e Black-
man. A janela retangular é a que possui melhor resulacio espectral, porém possui
l6bulos secunddrios atenuados. As janelas de Hamming e de Hanning possuem re-
solucdo espectral inferior a retangular, mas possuem lébulos secundarios menores,
sendo estes de amplitude aproximadamente constante na de Hamming e de amplitude
decrescente na de Hanning de acordo com o distanciamento do lébulo principal. J4 a
de Blackman-Harris possui a pior resolucio espectral em comparacio as demais, mas
possui os menores 16bulos secundarios. Fonte: Adaptado de (Semmlow, 2014).

2.2.2 Identificacdo de sistemas: andlise da resposta ao impulso invariante

A andlise espectral explicitada na Se¢do 2.2.1 fornece informagdes que refletem o
efeito conjunto de todos os fatores contribuintes para o controle HRV, sendo, deste modo,
uma técnica pouco especifica para definir quais mecanismo fisiologicos sdo atuantes ou
afetados (Jo, 2002).

A fim de se estimar a influéncia de diferentes fisioldgicas na HRV de forma isolada, a
abordagem a nivel de sistemas se baseia na caracterizacdo quantitativa dos mecanismos re-
gulatérios cardiovasculares responsaveis pelo acoplamento das variabilidades entre pares de
sinais. Ha diferentes técnicas de andlise de sistemas, entretanto o foco sera na analise da res-
posta ao impulso (IR, do inglés Impulse Response) de sistemas invariantes no tempo (Oliveira
etal., 2019).

Usualmente, um modelo, que representa, matematicamente, relacdes causais conhe-
cidas entre variaveis fisiologicas, € definido antes de se realizar a resposta ao impulso. Como
exemplo, pode-se observar, na Figura 2.14, um diagrama de blocos de um sistema que acopla
os principais mecanismos de variabilidades na HRV e na ABP de curto prazo (Oliveira et al.,
2019). E suposto que a variacdo do RRI (ARRI) é gerada por variacoes do SBP (ASBP) em
decorréncia do reflexo barorreceptor (ABR) e pela relagio entre ARRI e ASBP, conhecida

como a dindmica circulatoria (CID). Ademais, ARRI também ¢é influenciada por variacdes
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na respiracdo (AV) decorrentes do acoplamento autonémico direto entre a HRV e AV (RCC),
sendo também parte das alteracdes no SBP provocadas por modifica¢gdes na pressdo intra-
toracica decorrentes da respiracdo (DER), as quais podem incluir a modulagdo simpatica
impulsionada pela respiragdo da contratilidade cardiaca ou ser de natureza mecanica (Khoo,
2008).

8F!Fil
ARRI
AV
RCC aé-) CID
BR ASBP X Espp

DER

Figura 2.14 — Diagrama de blocos do modelo de malha fechada minimo do controle vascular autono-
mico. E evidenciado que ARRI ¢ influenciado por ASBP - nas formas, principalmente,
dos mecanismos do barorreflexo (ABR) e da dindmica circulatéria (CID) - e por AV - por
meio do acoplamento autondmico direto (RCC) e modificacoes na pressao intratoracica.
Fonte: Extraido de (Khoo, 2008).

Com o modelo conhecido, a IR de um sistema, com entrada x(t) e saida y(t), define
o sistema linear invariante no tempo que relaciona x(t) e y(t), com a representacdo dos

componentes de malha direta e de realimentacio (Jo, 2002; Khoo, 2018).

A estimacao da IR para cada par entrada-saida precisa utilizar, um modelo de funcio
de base. Neste trabalho, foca-se na funcdo de base Laguerre (LBF, do inglés Laguerre Base
Function). Esta funcdo assume que a IRpode ser representada como uma soma ponderada de
funcées ortonormais, tendo, como principal vantagem, a reduc¢ao consideravel de pardmetros
a serem estimados e restricdo do comportamento da RI. Dada a robustez dessa técnica, dados
contaminados por ruido, curtos, entradas ndo gaussianas e ndo necessariamente de banda
larga podem ainda ser utilizadas (Khoo, 2018). A IRde um sistema linear, com uma entrada
e uma saida, expandida para soma ponderada de funcées k + 1 funcdes bésicas e n amostras

¢ observada a seguir:

k
h[n]:Zc[i]-Li[n],OSHSp—l (2.4)

i=0
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sendo Li[n] determinado recursivamente:

Lo[n] =+va"- (1 -a)

(2.5)

Linl=Va-Li-[n-1]+Va-Li_; - [n] -Va - Li_y - [n=1], Vi>0, ae(0,1) (2.6)

sendo a definido como a taxa de decaimento exponencial das LBF e selecionado com

base na memoria ou duragio efetiva (p) da IR e no nimero de LBF usadas na expansao, a

fim de que todas estas convirjam para zero ao final da memoria do sistema (Khoo, 2018).

Laguerre
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Figura 2.15 - Fucdes de base Laguerre para o € (0.6,0.8) e ordem n € (0,2). Fonte: Extraido de (Khoo,

2018).

Com a IR estimada finalmente, torna-se extrair métricas a partir da sua forma de onda,

como a magnitude da resposta ao impulso (IRM, do inglés Impulse Response Magnitude),

laténcia, tempo de pico e ganho dindmico (DG, do inglés Dynamic Gain). Na Figura 2.16, é

possivel observar essas métricas:
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Figura 2.16 - IRM, tempo de pico e laténcia da da resposta ao impulso de um sinal arbitrario, e 0 GD
da banda de frequéncia 0,05 a 0,4 Hz. Fonte: Extraido de (Silva, 2017).

2.2.3 Andlise da funcio de transferéncia: limiar de coeréncia

Além da RI, a obtencdo de funcio de transferéncia (TF, do inglés Transfer Function)
ou funcio de reposta em frequéncia (FRF, do inglés Frequency Response Function) é uma
outra abordagem a nivel de sistema que descreve como um sistema se comporta dada uma
entrada e, de igual modo a IR, a TF usa pares de variaveis fisioldgicas (Westwick; Kearney,
2003). A TF dada por H (f) é definida por:

Suy

H(f) = T (2.7)

sendo S“uy e S, 2 PSD do sinal de correlacdo cruzada entre o sinal de entrada u e a saida y
(ruy) e a PSD do sinal de autocorrelacdo da entrada u (r,,). Este sinais sdo definidos como:

1 N
ruylk] = < D vln] -uln+k]
" (2.8)
ruulk] = %;u[n] -uln +k]

Tal que ry,, indica o grau de similaridade que a entrada tem com ela mesma em suas
respectivas versdes deslocadas no tempo. Por outro lado, r,, quantifica a similaridade entre
os sinais de entrada e saida (Semmlow, 2014). Uma outra variavel, obtida a partir da FRF,
€ a coeréncia, que é uma funcio real em funcio da frequéncia e é interpretada como uma
medida de confiaca nos resultados obtidos, uma vez que ¢ a fracdo da variancia de saida
decorrente da resposta linear a uma entrada. Define-se a coeréncia como:

|Suy(a’) |2
Suu(w) - Syy(w)

yiy (w) = (2.9)
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De forma sucinta, a obtencao de um valor unitario de y € um indicativo, em uma
frequéncia especifica, que o sistema em questdo opera de forma perfeitamente linear e se
abstém de ruidos corruptores. De encontro, valores baixos de y indicam uma tendéncia de
funcionamento menos ideal ou a existéncia de ruido que provoca a estimativa da funcdo de

transferéncia menos confidvel na frequéncia em andlise (Berger et al., 1986).

Em questdo de exemplo, a depender das varidveis de entrada e saida, a coeréncia
pode ser interpretada de maneira fisiolégica também, como um reflexo do acoplamento
cardiorrespiratério para sinal de saida HRV e sinal de respiracdo como entrada (Westwick;
Kearney, 2003). Tipicamente, 0 < yiy < 1, entretanto, como limiar de confiancga, valores

> 0,5 sdo medidas adotadas na literatura (Robbe et al., 1987)

2.3 Testes estatisticos

Como forma de anélise, alguns testes estatisticos sao realizados a fim de se obter
outras métricas comparativas e tirar conclusoes pertinentes no estudo em questao. A seguir,

os testes estatisticos utilizados neste estudo sdo descritos:

2.3.1 Teste One-Way ANOVA

O One-Way Analysis of Variance (ANOVA) é um teste estatistico paramétrico, ou
seja, que possui hipdteses que se referem a um ou mais pardmetros de uma populacio ou
espaco amostral. Este teste, em especifico, baseia-se em hipoteses bem definidas e compara
se a média das amostras de dois ou mais grupos distintos ¢ significativamente distinta ou
ndo (Ross; Willson, 2017). Além disso, é necessario que os dados sigam uma distribuicao
normal e isso ¢é verificado pelo teste de Shapiro-Wilk com as seguintes hipoteses:

« Hipotese nula (Hp): os dados seguem uma distribuicdo normal (p > ).
« Hipotese alternativa (H;): os dados ndo seguem uma distribuicdo normal (p< «).

sendo p o valor-p, obtido a partir da distribuicdo F, e @ o nivel de significancia escolhido
como referéncia, tipicamente 0,05 (5%).

Ap6s a confirmacdo da Hy, o teste ANOVA pode ser finalmente aplicado. Como base,
a partir de uma anadlise de variancia, tem-se também o valor-p e o mesmo limiar « a fim de

verificar se rejeita ou ndo a hipétese nula:

« Hipotese nula (Hp): todas as médias dos grupos populacionais sio iguais, ou seja, ndo
h4 diferenca estatistica entre os grupos.

« Hipotese alternativa (H;): ndo todas as médias dos grupos populacionais sdo iguais,
ou seja, ha diferenca estatistica entre os grupos.
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Com valor-p < 0,05 (5%), pode-se concluir que ha diferenga estatistica significativa
entre os grupos e nao somente uma diferenca proveniente de fatores aleatérios (Ross; Willson,
2017).

2.3.2 Teste de Bland-Altman

O teste de Bland-Altman é uma ferramenta estatistica amplamente utilizada para
analisar o nivel de concordancia entre dois métodos distintos que avaliem a mesma variavel
quantitativa (Dogan, 2018). Dado um conjunto de n amostras para cada método, totalizando
2 - n amostras para os dois métodos, as coordenadas, x e y, de uma amostra S sdo dadas pela
média e a diferenca entre a respectiva amostra para os dois métodos respectivamente:

S;+8
S(x,y)=( 1; 2

sendo S; e S; as amostras dos métodos 1 e 2 respectivamente.

, 81— Sz) (2.10)

A fim de normalizar os dados, é comum também aplicar a transformacéo logarit-
mica (Giavarina, 2015). Essa transformacao € representada na obtencdo das seguintes coor-

denadas:

log,, S1 +1og;, S2
2

Com os dados distribuidos na forma de um grafico de dispersdo, como observado na

S(x,y) =

, log,, S1 —log;, S2 (2.11)

Figura 2.17. Calcula-se a média e o desvio padrdo (SD, do inglés Standard Deviation) das
coordenadas x de todas as amostras de ambos, uma das possibilidades € a realizacdo de um
teste T de uma amostra.

Bland-Altman Plot
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Figura 2.17 - Exemplo de grafico de Bland-Altman com dados, linha média e limiares de concordancia
superior e inferior. Fonte: Extraido de (Bland-Altman..., 2024).
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Deste modo, tracam-se linhas horizontais da média (MEAN), da linha de igualdade
entre métodos (x = 0,y = 0) e dos limites de concordancia (LoA, do inglés Limit of Agreement)
superior e inferior, MEAN + 1,96-SD e MEAN + —1,96-SD respectivamente, como evidenciado
também na Figura 2.17.

A linha MEAN ¢ definida como o viés e é interpretada com a diferenca média entre
as amostras, enquanto os LOAs sdo definidos como o limiar para a faixa do intervalo de
confianca (CI, do inglés Confidence Interval) de 95%. A interpretacdo do grafico é diversa e
pode ser feita de varias maneiras, mas geralmente esté relacionada a distribuicdo dos dados
na regioes delimitadas considerando a proximidade com a média, os LoAs e o IC.

A andlise do grafico de Bland-Altman néo diz se a concordancia entre métodos ¢é
suficiente para substituir um pelo outro de forma genérica, esta ferramenta estatistica apenas
quantifica o viés e o intervalo de concordancia, dentro do qual 95% das diferencas entre
um método e outro estdo incluidas. Para se obter o IC da linha de média e dos LOAs, faz-se
necessario calcular o erro padrio (SE, do inglés Standard Error) por meio das Equacdes
2.12a e 2.12b respectivamente, visto que n ¢ o numero de amostras.

DZ

SE = ST (2.12a)
X 2

SE =4/ :D (2.12b)

sendo CI obtido pelo produto de SE e valor t do teste T de uma amostra.

Assim sendo, a posicao das linhas de média e de igualdade, ao se considerar o IC,
e a distribuicdo dos pontos em termos de suas diferencas pode ser um indicativo de uma
possivel correspondéncia entre os resultados obtidos entre os métodos distintos (Dogan,
2018; Giavarina, 2015).
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3 TRABALHOS RELACIONADOS

Neste capitulo, apresenta-se um breve historico de programas no comerciais dis-
poniveis de anélise de sinais fisiolégicos e de HRV. Alguns destes trabalhos, no qual ha o
desenvolvimento e aprimoramento de uma ferramenta computacional em MATLAB como
produto, ha funcionalidades especificas de uso, mas algumas limitacoes.

Em sequéncia, as funcionalidades do programa CRSIDLab, o qual novos modulos
sdo desenvolvidos e antigos aprimorados neste trabalho, sdo detalhadas. Em complemento,
aborda-se a importancia de se introduzir as novas ferramentas, em forma de mddulos, para
o sinal de PPG e os contextos de pesquisa cientifica que este sinal e outros sinais obtidos a
partir deste sio utilizados, tornando o CRSIDLab uma ferramenta de software ainda mais
util.

3.1 Histodrico de programas de analise de sinais fisiologicos

H4 diversos programas computacionais disponiveis para processamento, andlise de
sinais fisiologicos e da HRV. Exemplos como ECGLab (CARVALHO, 2001), KARDIA (Pe-
rakakis et al., 2009), ARTiiFact (Kaufmann et al., 2011) e Kubios HRV (Tarvainen et al.,
2013) sao opcoes de progrmas baseado em MATLAB, enquanto RHRV (Rodriguez-Lifiares
et al., 2011) e gHRV (Rodriguez-Lifiares et al., 2014) sdo opg¢des desenvolvidas para outras

plataformas, usando a linguagem de programacéo R e Python respectivamente.

Em especifico, alguns desses programas possuem funcionalidades de pré-processamento
do ECG, como filtragem e extracdo de QRS, e realizam diferentes formas de andlise de HRV.
Outro programa, o POLYAN (Maestri; Pinna, 1998) também aceita diferentes entradas, como
o ECG, ABP e o sinal de respiracio (fluxo de ar), proporcionando avaliagdo par a par das
varidveis no dominio da frequéncia, que tem as limitagdes discutidas anteriormente. Outro
programa, o HeartScope (Badilini; Pagani; Porta, 2005) propde um modelo multivariado
para fornecer estimativas de BRS a partir da inclinacdo da RI a uma rampa unitéria, além de
fornecer andlises no dominio da frequéncia entre pares de varidveis também. Apesar disso,
essa estimativa de BRS considera os efeitos da respiracdo e pode separar efetivamente os
efeitos do CID do indice de BRS, porém ndo fornece informacdes como o atraso dindmico e

ndo fornece avaliacdo baseada em modelo dos efeitos da respiracdo sobre a HR.

Um outro programa, o Cardiorespiratory System Identification Lab (CRSIDLab) (Silva,
2017; Silva; Oliveira, 2020), que foi concebido como resultado de um trabalho de graducio e
mestrado, € uma toolbox de MATLAB mais completa para processamento de dados ECG,
ABP e respiragao (fluxo de ar ou volume pulmonar), o qual possibilita a identificacdo de

modelos de sistemas cardiorrespiratdrios através de um modelo paramétrico usando até
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trés varidveis extraidas dos dados. Para isso, estdo disponiveis modelos autorregressivos ou
autorregressivos com entradas exdgenas, assim como modelos LBF e outras func¢des base.
Ademais, permite a andlise no dominio da frequéncia das variaveis através da PSD. Modulos
oriundos do ECGLab foram incorporados e adaptados ao CRSIDLab no que diz respeito ao
pré-processamento de ECG, e uma func¢do que extrai SBP e DBP do registro de ABP.

3.2 Nova versao do CRSIDLab

Além das funcionalidades ja existentes, torna-se importante aprimorar as j4 existentes
e propor novas ferramentas, sendo este trabalho um produto da versao 3.0 da ferramenta.
Especificamente, o sinal de PPG e varidveis extraidas a partir dele e a partir da relacdo com
outros sinais, como o ECG, tém sido bastante utilizados no meio cientifico. Por exemplo, a
obtencdo do PRV, bem como a andlise comparativa com o HRV para estudos de variabilidade
da frequéncia cardiaca, obtencdo do PTT, estimacdo ndo invasiva da pressdo arterial com o
uso de aprendizado de méaquina sdo exemplos de dreas de estudo com este sinal. Ademais,
como citado na Se¢do 1.2, a obtencdo da segunda derivada do PPG, a qual tém sido utilizada
para estimacao da rigidez arterial e como indicadora precoce de doencas cardiovasculares
como hipertensdo arterial e insuficiéncia cardiaca, também é um sinal obtido a partir do
PPG e de bastante enfoque académico nos estudos da area de fisiologia.

Nesse contexto, além de modificacdes ja existentes e aprimoradas as quais serdo
detalhadas em sequéncia, esse trabalho propde processar o sinal de PPG, filtra-lo a partir de
filtros existentes ou a partir de um novo filtro, detectar os picos e os vales, extrair a amplitude
do sinal de PPG (PPGa, do inglés Photoplethysmography Amplitude), o pico do sinal de PPG
(PEAK), o vale do sinal de PPG (NADIR), o PRV (por meio do PPI entre picos ou entre vales),
extrair o PTT (por meio de dois algoritmos distintos). Propde-se também a extracdo do MAP
a partir do SBP e do DBP. Assim sendo, essas modificacdes visam contribuir para tornar o
CRSIDLab como uma ferramenta ainda mais completa e, em complemento, contribuir para

estudos futuros que processem e analisem estes sinais descritos.
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4 DESCRICAO DOS MODULOS NOVOS E
ADAPTADOS

Inicialmente, este capitulo visa detalhar os novos moédulos desenvolvidos para inserir
0 pré-processamento e extracao de variaveis a partir do sinal de PPG, o qual foi o sinal
fisiolégico adicional incorporado a toolbox e que agora pode ser processado e analisado além
dos sinais de ECG, ABP e respiracio. Além disso, foram também necessarias modificacdes
em modulos pré-existentes no CRSDILab para melhor integra-los as novas funcionalidades

exigidas para o correto pré-processamento do sinal de PPG.

4.1 Base de dados

Neste trabalho, utilizou-se a base de dados Pulse Transit Time PPG Dataset (Mehrgardt
et al., 2022) obtida através da plataforma PhysioNet (Goldberger et al., 2000). Essa base se
mostra relevante para este trabalho porque é de livre acesso e contém diferentes registros
de PPG de multiplos sensores em diferentes partes do corpo, além do sinal de ECG. Deste
modo, pode-se verificar a qualidade de diferentes sinais de PPG obtidos, extrair as respectivas
variaveis desejadas e também extrair o PTT a partir da relagdo com o sinal de ECG. Os dados
que compdem esta base foram obtidos a partir de um estudo realizado pela Universidade de
Sydney com 22 sujeitos saudaveis, 6 mulheres e 16 homens, idades variantes entre 20 e 53

anos, com uma média de 28,5 anos.

A aquisicao dos dados consistiu em instruir todos os participantes a realizar as seguin-
tes 3 atividades em ordem aleatdria: sentado em repouso, caminhada estaciondria e corrida.
Neste sentido, os dados foram coletados por um dispositivo semelhante a uma oximetro de
pulso comercial, que contém sensores comerciais conectados a um clip de dedo produzido
por uma impressdo 3D, como observado na Figura 4.1.
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Figura 4.1 — Esquematico do processo de obtencdo dos dados e producdo da base de dados. Fonte:
Extraido de (Mehrgardt et al., 2022).

Para cada paciente, tém-se um arquivo .mat e um outro arquivo .hea, sendo o primeiro
o executavel MATLAB e o segundo um arquivo de texto para auxiliar na identificacdo da
leitura e identificacdo da ordem das variaveis do executdvel numérico. Deste modo, esses
arquivos incluem informagdes do género, idade, massa, SBP, DBP, HR e saturacdo de oxigénio
ao inicio e ao final de cada atividade. Como detalhado em (Mehrgardt et al., 2022), em relacdo
aos sinais fisioldgicos, tém-se a frequéncia de amostragem (F;, do inglés Sampling frequency),
os sinais de ECG (obtido por apenas um canal), PPG (obtido de 6 pontos ou canais diferentes,
como mostrado na Figura 4.1), pressao de fixacdo do sensor (em 2 pontos de medicdo),
temperatura (em 3 pontos de medicdo) e aceleracdo e velocidade angular (nas direcdes
X,¥,2).

Os sinais de ECG e de PPG foram digitalizados e amostrados a um taxa de 500 Hz e
foram aferidos em mV e unidade arbitraria respectivamente. E indispensavel a escolha de
frequéncia de amostragem correta, visto que uma taxa de amostragem baixa pode produzir
uma variacdo de laténcia na estimativa do ponto de interesse da onda R, o que altera signifi-
cativamente o espectro, sendo o intervalo ideal 250 a 500 Hz ou talvez até mais (Task Force,
1996).

Dentre os sinais disponiveis, utilizou-se o sinal de ECG e de PPG obtido pelo canal
2 (pleth2 como mostrado na Figura 4.1) para a posicdo estacionaria sentado em repouso
(sit). O unico canal de ECG disponivel foi o utilizado e o sinal de PPG obtido pelo canal 2
foi utilizado por apresentar menos ruido de aquisicao dentre os outros sinais dos demais
canais disponiveis. Além disso, a posicao sentado em repouso foi a tomada como base para o
estudo por ser a Unica situagdo, dentre as disponiveis no conjunto de dados, que os sujeitos
estdo em uma situacfo estacionaria e, deste modo, as técnicas de andlise nos dominios do
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tempo e da frequéncia se aplicam quando utilizada a janela de tempo do sinal condizente

para a andlise (Task Force, 1996).

Em relagdo a janela de tempo adequada e igual para ambos os sinais a fim de garantir
a qualidade da anadlise realizada, a fim de padronizar diferentes estudos que investigam a
HRYV de curto prazo, sdo preferidas gravacoes de 5 minutos de um sistema estaciondrio e, a
fim de garantir a estacionariedade, suposi¢do basica da andlise espectral para uma correta
interpretacao do espectro obtido, também ndo ¢ recomendado passar muito dessa janela de
tempo (Task Force, 1996). Assim sendo, utilizou-se uma janela de 5 minutos de duragio
(300 segundos), que é mais comumente utilizada, com o mesmo instante de tempo de inicio

e fim (de 0 a 300 segundos) para ambos os sinais.

Sob esta janela fixa, realizou-se a inspecdo visual de cada um dos sinais a fim de
garantir que ndo h4 arritmias, batimentos ectopicos, dados faltantes ou artefatos de ruidos
que possam afetar a andlise (Catai et al., 2020). Nesse sentido, esses eventos podem alterar
a estimativa do PSD do HRYV, logo, antes de se obter a série temporal do sinal de RRI, os
registros de tempo correspondentes a batimentos ectdpicos e artefatos devem ser tratado ou
removidos (Task Force, 1996, Clifford; Tarassenko, 2005).

Definiu-se por critérios de qualidade dos registros de PPG e ECG, durante os 300
segundos:

« Nao apresentar demasiado numero de ectépicos.
« Nao haver ponto algum de perda de sinal completa ou parcial.

« Nao haver ruido que, mesmo que retirado pela filtragem, altere a forma de onda do

sinal fisiologico.
« Nao haver trechos desfigurados das partes caracteristicas do sinal.

Dentre os 22 sujeitos iniciais disponiveis pela base de dados na posicdo sentado
em repouso, 17 passaram pelos critérios de qualidade e 5 sujeitos formam descartados. A
descricdo detalhada do porqué os sujeitos foram descartados pode ser observada na Tabela
4.1.
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Tabela 4.1 - Descricdo das condicoes de sinal dos sujeitos para ECG e PPG.

Posicio sit

Sujeito Descricdo
ECG PPG
sl bom bom -
s2 bom bom -
s3 bom bom -
s4 bom bom PPG ruidoso muitos instantes
s5 ruim bom perda de sinal do ECG
s6 bom bom -
s7 bom bom -
s8 bom ruim PPG muito ruidoso em 170 s
s9 bom bom -
s10 bom bom -
s11 bom ruim PPG ruidoso no inicio
s12 bom bom -
s13 ruim bom ECG ruidoso em muitos instantes
sl4 bom bom -
s15 bom bom -
s16 bom bom -
s17 bom bom -
s18 bom bom -
s19 bom ruim PPG ruidoso em muitos instantes
s20 bom bom -
s21 bom bom -
s22 bom bom -

A Figura 4.2 mostra, no grafico superior, um trecho do sinal de ECG ruidoso do

sujeito s13 descartado, da base de dados Pulse Transit Time PPG Dataset, na condicdo sentado

em repouso. O grafico inferior mostra um trecho do sinal de PPG ruidoso do sujeito s19

descartado, da mesma base de dados e na mesma condicao de postura.
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Figura 4.2 — Sinal de ECG do sujeito s13, da base de dados Pulse Transit Time PPG Dataset, com
trecho ruidoso marcado em vermelho (gréafico superior). Sinal de PPG do sujeito s19 com
trecho desfigurado marcado em vermelho (gréfico inferior). Fonte: Autor.

4.2 Modificagcoes implementadas no CRSIDLab

O CRSIDLab ¢ uma toolbox com interface grafica originalmente concebida para
auxiliar em todas as etapas de pré-processamento necessarias dos sinais de ECG, de ABP
e de respiracdo (fluxo de ar ou volume pulmonar instantdneo) para a geracio de indices
quantitativos do sistema nervoso autbnomo cardiaco, utilizando diferentes tipos de andlises
(univariaveis e multivaridveis, nos dominios do tempo e da frequéncia), como detalhado no

capitulo anterior.

Nesta se¢do, serd mostrada uma visdo geral das atualizagdes e novas contribuicoes
implementadas para incorporar as funcionalidades de pré-processamento e andlise do sinal
de PPG e variaveis secunddarias obtidas a partir deste sinal (como PEAK, NADIR, PPGa,
PRV), assim como a extracdo dos sinais de MAP a partir do pontos SBP e DBP do sinal
definidos no capitulo anterior e de PTT (obtido a partir dos sinais de ECG e PPG). Em
seguida, essas contribuicdes detalhadas juntamente com as diferentes andlises que podem ser
implementadas a partir destes novos sinais, assim como diferentes marcadores quantitativos
da modulacdo do sistema nervoso autdbnomo que podem ser calculados, nos dominios da
frequéncia e do tempo, incluindo indices invariantes e variantes no tempo. A toolbox da nova

versdo 3.0 do CRSIDLab estd localizada em um repositério GitHub do usudrio caiocflores.


https://github.com/caiocflores
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4.2.1 Visdo geral

A interface grafica do CRSIDLab 3.0 é compostas pelas abas principais: 1. Main page,
2. Pre-processing e 3. Analysis. Dentro de cada aba principal, ha subabas com as interfaces
gréficas para as respectivas funcionalidade da respectiva aba principal. A Figura 4.3 explicita
as subabas existentes em cada aba principal e a ordem légica de uso da ferramenta desde a

leitura dos dados até a obtencao das respectivas saidas desejadas.

CRSIDLab 3.0
Main Page @ Pre_processing @ Analysis @
|7| Fiiter ECG/BP/PPG Data Power Spectral Density
Input Data > »
. J ‘J @ @
Open/Create Patient File Extract Variables From ¢
: @ ECGBP @ System Identification
! )
Extract Variables from PPG ¢
TV Power Spectral Density
Patient F.zcar: ¢ @ J
@ Treat Ectopics ¢ @
TV System ldentification
v
- Y - Pre-process Respiration Data
Patient Data Overview ¢
@ ¢ @ Transfer Function
Align and Resample Data @
[ Output Data J

Figura 4.3 - Estrutura do CRSIDLab 3.0 (abas e subabas). Fonte: Autor.

A estrutura do CRSIDLab 3.0, ilustrada na Figura 4.3, serd melhor detalhada nas
secdes seguintes. Em particular, nio foi necessario modificar as estruturas ilustradas nas
subabas 2.2 e 2.5 da mesma figura, uma vez que referem-se a extracdo de varidveis do ECG e
da BP, assim como o pré-processamento do sinal de respiracdo, respectivamente.

4.2.2 Aba 1: Main Page

Na aba principal 1, a estrutura de divisao de subabas ilustradas, na Figura 4.3, ndo
sofreu alteracdes nesta nova versao 3.0. Foi necessario apenas a inclusio, nas subabas 1.1 e 1.3,
de opcoes para que os sinais de PPG (dado cru ou ja filtrado) e PTT (caso ja esteja disponivel)
também pudessem ser importados diretamente para o programa, assim como ja era possivel
para os sinais de ECG, ABP e respiracdo. Apds a importacdo destes dados, informacdes
gerais destes sinais do respectivo sujeito podem também ser visualizadas, juntamente com
as dos sinais de ECG, ABP e respiracdo, como ilustrado na Figura 4.4, antes das etapas de
processamento propriamente ditas.



51

Patient Data Ovenview

4. (ENE/UnB) CRSIDLab - Import / Remove variabl..  — m} X ECG data BP data Respiration data PPG data Systems and Models
Variable type Variable specification: FE ij‘;’ ?a‘a e
0 data available
Photoplsthysmography (.. Raw PPG - B R
F G

Raw PPG No data available
Variable: Filtered PPG

Pulse Transit Time (PTT) PPG Nadir

No variables ~ o No data available

Sampling Frequency: Start / End times: Aligned & Resampled PPG Peak data
No data available
Mo variables s to H M - .
PPG Peak Power Spectral Density (PSD)
No data available
Refresh variables from WS View data .
PPG Nadir
No data available
Patient file contents:
Aligned & Resampled PPG Nadir data
No data available

Add to patient file
PPG Nadir Power Spectral Density (PSD)

Remaove from patient file No data available

Done Cancel

v

Figura 4.4 — Importac¢do do sinal de PPG e visualizacio geral dos dados de PPG por paciente na aba
Main Page. Fonte: Autor.

4.2.3 Subaba 2.1: Filter ECG/BP/PPG

Com os sinais importados pelo usudrio na aba 1, segue-se para a aba principal 2. Nesta
segunda aba, renomeou-se a antiga subaba 2.1 de Filter ECG/BP para Filter ECG/BP/PPG.
Na nova subaba, com a introduc¢do do sinal de PPG, foram mantidas as opcoes de filtra-
gem ja existentes e implementadas nas versdes anteriores do programa para os sinais de
ECG (CARVALHO, 2001) e BP (Silva; Oliveira, 2020; Silva, 2017):

« Filtro Notch de 60 Hz, que € um filtro passa-bandas utilizado para retirar ruidos de
uma frequéncia especifica, no caso, da rede elétrica.

« Filtro passa-baixas, com frequéncia de corte (F.) entre 20 e 60 Hz, para retirar o ruido
muscular.

« Filtro passa-altas, com F, entre 0,001 e 1 Hz, para retirar a tendéncia de linha de base
de baixa frequéncia produzida por influéncia da respiracdo em alguns sinais, como
ABP e 0 PPG.

Como nova contribuicao, inseriu-se uma nova funcionalidade com o filtro passa-
baixas do tipo Chebyshev II, tipicamente utilizado para retirar ruidos de alta frequéncia
do sinal de PPG (Liang et al., 2018). Para o projeto do filtro Chebyshev tipo II, torna-se
necessario definir a sua ordem n, a atenuacao (ou ripple) da banda de parada ou atenuada,
em dB, e a frequéncia de corte F,.

A funcdo de transferéncia de um filtro Chebyshev tipo II é definida da seguinte forma:

H(jw)|* = (4.1)

+
e T, - (wo/w)

1
sendo e = ——— e relacionado a atenuacao da banda de parada.
V10917 — 1
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Tipicamente, o filtro Chebyshev II possui uma largura de transicdo pequena, nio
possui ripple na banda passante, mas possui certo ripple na banda atenuada. Para a retirada
do ruido de alta frequéncia, este tipo de filtro melhorou significativamente a qualidade do
sinal de PPG, quando comparada a outros tipos de filtro. Deste modo, decidiu-se por manter
os parametros deste filtro testados em (Liang et al., 2018), ou seja, o intervalo de ordem

n € [4, 6] foi definido na interface grafica como opcao de ajuste do usuario do programa,
mantendo n= 4 como o valor padrao.

Para implementar, computacionalmente, este filtro, utilizou-se a fun¢ao cheby2() do

MATLAB. Pode-se observar, na Figura 4.5, um exemplo de aplicacdo deste filtro no sinal de
PPG de um dos sujeitos da base de dados.

| VAT 1
\ | l'l. |
‘1,// \'v//

e

el

S AN /\"& / d
SV

\

Figura 4.5 — PPG do sujeito s18, na posicdo sentado em repouso, antes da aplicacdo do filtro Chebyshev

II (gréafico superior). PPG do mesmo sujeito na mesma posicdo postural apés aplicacio
mesmo filtro (grafico inferior). Fonte: Autor.

Além do filtro, percebeu-se que, dado o procedimento de obtencio do sinal de PPG
descrito na Subsecdo 2.1.3, este sinal estd comumente invertido. Deste modo, criou-se uma
funcionalidade de inversao (flip) em amplitude do PPG, de modo a obter o sinal na forma
de onda, convencionalmente, analisada, como explicitado em (Fine et al., 2021). Na Figura

4.5, observa-se o sinal de PPG antes (invertido) e ap6s (ap6s a aplicacdo da inversdo em
amplitude) a aplicacdo da inversdo em amplitude.
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Figura 4.6 — PPG filtrado do sujeito s18, na posi¢do sentado em repouso, antes da aplicacdo da inversio
em amplitude (grafico superior). PPG do mesmo sujeito na mesma posicao postural apos
da inversdo em amplitude (grafico inferior). Fonte: Autor.

4.2.4 Subaba 2.3: Extract Variables From PPG

Ap6s decidir em filtrar ou ndo o sinal de PPG na subaba 2.1, a subaba 2.3 foi criada,
nesta nova versao, para que, de forma separada, as variaveis iniciais PEAK (ponto de sistole)
e NADIR (ponto de inicio de ciclo do PPG) sejam extraidas em cada batimento cardiaco de
referéncia ao longo do tempo do sinal de PPG. Torna-se importante identificar esses dois
pontos para que outros pontos, posteriormente, possam ser identificados no PPG para que
novas variaveis sejam extraidas, como PPGa e o préprio PTT.

Em termos de caracteristicas de um batimento cardiaco, ha uma forte correlacio entre
parametros importantes do sinal de ECG e o sinal de PPG, como a HRV e a PRV (Banerjee et
al.,2014). Como detalhado em 2.1.1, os periodos de sistole e didstole sdo de suma importancia
para o funcionamento do coracdo e, dada essa forte correlagdo, esses periodos influenciam
diretamente na forma de onda do PPG (Mejia-Mejia et al., 2020).

Para a deteccio destes pontos, foram adaptados dois algoritmos ja presentes na versao
anterior do CRSIDLab para a deteccido dos pontos de SBP e DBP do sinal de ABP a cada
batimento (Silva, 2017; Silva; Oliveira, 2020). O primeiro algoritmo é baseado na detec¢do
do PEAK a partir da posicao do pico R do ECG e, em seguida, na deteccdo do NADIR, que é
o ponto de minimo entre o pico relacionado ao PEAK (originalmente relacionado ao SBP)
naquele batimento e o préximo pico-R do ECG. Ja o segundo algoritmo detecta o PEAK e
o NADIR, simultaneamente, baseando-se na forma de onda do PPG. Definiu-se também
a possibilidade de ajuste de um limiar, no sentido que acima deste limiar considera-se um
PEAK, e abaixo se considera um NADIR, para que o usuario possa corrigir, de forma manual,
cada ponto de PEAK e NADIR marcado ao longo do sinal por um circulo e um asterisco

respectivamente, caso seja necessario ou desejado. Um exemplo desses pontos marcados sdo
visualizados na Figura 4.7.
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Além disso, dada a relacdo entre os sinais de ECG e PPG, batimentos ectépicos no
coracdo alteram a forma de onda do PPG e precisam ser identificados para que estratégias de
tratamento sejam aplicadas no processamento do sinal fisiolégico (Clifford, 2002). A versao
ja existente do CRSIDLab possui uma funcionalidade de marcacdo e desmarcacdo destes
batimentos no sinal de ECG pelo usudrio e havendo também a possibilidade de replicacio da
marcacao dos pontos de SBP e DBP do sinal de SBP correspondentes ao batimento cardiaco.
Uma vez que ao menos um batimento ectdpico é marcado, o usudrio possui algumas opcoes
de tratd-lo, as quais serdo detalhadas na aba seguinte. Para o sinal de PPG, replicou-se esta

funcionalidade de marcacio e desmarcacio destes batimentos no sinal de ECG.

Normalized amplitude

o

. Amplitude (mmHg)

. 2
@

51 52 53 54 55 56 57 58 59 60

Time (seconds)

Figura 4.7 — Pontos de pico R do ECG e pontos PEAK e NADIR do PPG do sujeito s3 na posicdo
sentado em repouso. Fonte: Autor.

A partir da marcacdo dos pontos PEAK e NADIR, implementou-se a extragdo das
séries temporais destes sinais, as quais indicam a distribuicao dos dados de PEAK e NADIR
ao longo do registro de PPG. Na Figura 4.8, observa-se a série temporal do PEAK no grafico
superior e a do NADIR no gréfico inferior.
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Figura 4.8 — Séries temporais do PEAK (grafico superior) e NADIR (grafico inferior) extraidas do
sujeito s3 na posicdo sentado em repouso. Fonte: Autor.

4.2.5 Subaba 2.4: Treat Ectopics

Para se proceder com o pré-processamento dos sinais de ECG, ABP e PPG, primei-
ramente, o usuario deve decidir qual procedimento adotar com os batimentos ectépicos
marcados na sub-aba 2.3. A subaba 2.4 foi criada, utilizando a base com adaptacdes, do
tratamento de ectopicos nos sinais de ECG e ABP da versio anterior da toolbox, na qual este
tratamento era realizado na aba de Align and Resample Data Set originalmente. Entretanto,
optou-se por criar uma aba exclusiva para somente tratar ectopicos e extrair novas variaveis
provenientes dos sinais tratados, uma vez que, com a insercao do sinal de PPG, a antiga
aba da versdo anterior conteria muitas funcionalidades juntas e isso poderia ser confuso ao
usudrio.

Esse procedimento de tratamento de ectopicos é importante para que as variaveis
iniciais extraidas do ECG (RRI), ABP (SBP e DBP) e do PPG (PEAK e NADIR) tenham a
influéncia dos batimentos ectdpicos tratada. Dentre as possibilidades oferecidas ao usuario
para este tratamento, héd a op¢do de remové-los, aplicar um método de interpolacio cubica
baseado nas amostras vizinhas para as amostras de dados e de tempo ou nao tratar esses
batimentos. A primeira abordagem de tratamento ¢ comumente aplicada quando h4 muitos
batimentos ectopicos, enquanto a segunda abordagem é mais usual (Clifford, 2002; Clifford;
Tarassenko, 2005). Antes de seguir com a extracio dos demais sinais, o usuario deve escolher
um dos métodos de tratamento, aplicd-lo para cada sinal de interesse e salvar as modificacdes
realizadas.

Com os ectopicos tratados, implementou-se a possibilidade para o usuério de extracao,
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batimento-a-batimento das séries temporais destes sinais, as quais indicam a distribuicdo dos
dados ao longo do registro de PPG, seguintes sinais: PPGa, PRV, MAP, ponto de referéncia
do PPG (com duas opg¢des para o usudrio) para a obtengdo do PTT e o préprio PTT.

Inicialmente, o PPGa pode ser extraido, a cada batimento, como a diferenca entre o
PEAK e o NADIR (Equagio 4.2), extraidos na subaba 2.3.
PPGa(i) = PEAK(i) — PEAK(i) (4.2)

A Figura 4.9 mostra um exemplo de série temporal do PPGa extraida do sujeito s3, da
base de dados Pulse Transit Time PPG Dataset.

PPGa (mmHg)

12 | |
0 50 100

Time (seconds)

Figura 4.9 — Série temporal do PPGa extraida do sujeito s3 em posicio sentado em repouso. Fonte:
Autor.

Com os pontos PEAK e NADIR identificados na subaba 2.3, o sinal PRV, como
detalhado em 2.1.6, pode ser obtido a partir do PPI entre pontos PEAK (denominado PRVp)
ou pontos NADIR consecutivos (denominado PRVn).Nesta presente subaba, implementou-se
a extracao desse marcador com essas duas possibilidades a depender da escolha do usuadrio.
Por meio da Figura 4.10, como exemplo, as séries temporais do PRVp e PRVn extraidas do
sujeito s3, da base de dados Pulse Transit Time PPG Dataset sdo visualizadas.
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Figura 4.10 - Séries temporais do PRVp (grafico superior) e PRVn (grafico inferior) extraidas do
sujeito s18 na posi¢do sentado em repouso. Fonte: Autor.

Caso o usudrio esteja utilizando dados de ABP, apds a deteccdo dos pontos SBP e
DBP, implementou-se a extracdo da série temporal sinal de MAP, o qual é obtido de acordo
com a Equacdo 2.1. Como a base de dados principal utilizada neste trabalho nao possui
dados de ABP, a fim de se testar e exemplificar a extracdo do MAP, uma outra base de dados,
denominada Cerebromicrovascular Disease in Elderly with Diabetes do PhysioNet (Novak;
Quispe, 2022), foi utilizada. Um exemplo da série temporal do MAP do sujeito s0314, da
base de dados Cerebromicrovascular Disease in Elderly with Diabetes, extraida € visualizada

na Figura 4.11.
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Figura 4.11 - Série temporal do MAP extraida do sujeito s0314 da base de dados Cerebromicrovascular
Disease in Elderly with Diabetes (Novak; Quispe, 2022), em posicdo sentado em repouso.
Fonte: Autor.

Além desses sinais tempo, antes da extracdo do sinal de PTT, ¢ importante localizar o

ponto de referéncia do PPG para que, em seguida, o intervalo de tempo entre o pico R do
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ECG e esse ponto seja calculado ao longo iterativamente. Nesta subaba 2.4, com os pontos
PEAK e NADIR anteriormente localizados e agora tratados, o usudrio pode escolher pela
localiza¢do de um desses pontos de referéncia.

Como detalhado na Subsecdo 2.1.5, os dois pontos de referéncia do PPG comumente
utilizados para este prop6sito sdo: o ponto médio do PPGa (PPGyp) € 0 pico da primeira deri-
vada do PPG (PPGpp). O programa s6 permite a extracdo de um desses pontos de referéncia

e, caso seja desejado extrair o outro ponto, € necessario apagar o anteriormente extraido.

A fim de se obter PPGyp, utilizou-se os pontos de PEAK e NADIR anteriormente
extraidos para, por meio da Equacio 4.3, identificar iterativamente o ponto médio de PPGa
para cada i-ésimo ciclo do sinal de PPG.

[PEAK(i) + NADIR(i)]
2

Internamente, o CRSIDLab ja salva um vetor com esses pontos ao longo do tempo. En-

PPGup (i) = PEAK(i) —

(4.3)

tretanto, caso o usudrio deseje visualizar a série temporal desses valores, € possivel visualiza-la
graficamente também. A Figura 4.12 mostra um trecho do sinal de PPG do sujeito s3, da
base de dados Pulse Transit Time PPG Dataset, com os pontos PPGyp identificados por um
ponto vermelho.

Fotopletismografia e os pontos PPGI\JP

0.5

Amplitude normalizada

1 2 3 4 5 6 7 8 9 10
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Figura 4.12 - Sinal de PPG do sujeito s3, em posicao sentado em repouso, e os respectivos pontos
PPGyp. Fonte: Autor.

Caso se opte pela extracdo do outro ponto de referéncia do PPG, a extracdo, batimento-

a-batimento, do ponto PPGpp também foi implementada. De inicio, calculou-se a primeira
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derivada do sinal de PPG por meio da funcdo gradient(), propria do MATLAB. Na sequéncia,
por meio do mesmo algoritmo utilizado para deteccdo do SBP e do PEAK, como detalhado
na Subsecdo 4.2.4, os picos da 12 derivada foram identificados a partir do PEAK do sinal
original de PPG. A Figura 4.13 mostra, no grafico superior, um trecho do sinal de PPG do
sujeito s3, da base de dados Pulse Transit Time PPG Dataset, na condic¢io sentado em repouso.
O grafico inferior mostra a derivada deste trecho do PPG, com os picos (os pontos PPGpp)
identificados por um ponto vermelho.
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Figura 4.13 - Sinal de PPG do sujeito s3, em posicdo sentado em repouso, 12 derivada deste sinal e os
respectivos pontos PPGpp. Fonte: Autor.

Com um desses pontos de referéncia localizado, a cada batimento, o usuério pode
finalmente extrair a série temporal do sinal de PTT a cada i-ésimo ciclo. Com o pico R do sinal
de ECG e o respectivo ponto de referéncia do PPG localizados anteriormente, a obtencdo do
PTT consiste em apenas calcular, a diferenca temporal entre o pico R e o ponto de referéncia
iterativamente, como evidencia a Equacdo 4.4. A Figura 4.14 mostra uma série temporal de
um trecho do sinal de PPG do sujeito s3, da base de dados Pulse Transit Time PPG Dataset,
na condicdo sentado em repouso.

PTT(i) = Rpgak (i) — PPGRrgr(i) (4.4)

sendo Rpgak (i) 0 pico R e PPGrgr(i) o ponto de referéncia.
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Figura 4.14 - Série temporal do PTT do sujeito s3, em posicao sentado em repouso. Fonte: Autor.

4.2.6 Subaba 2.5: Align and Resample Data Set

Como explicitado na Subsecdo 4.2.5, o tratamento de ectopicos foi transferido para
uma em separado. A subaba 2.5, em termos de funcionalidade, mantém a base da estrutura
dessa subaba implementada na versao anterior do CRSIDLab, sendo utilizada reamostrar

dados das séries temporais em um mesma referéncia de tempo.

O usuério pode aplicar e escolher a ordem do detrend polinomial as varidveis a fim
de eliminar possiveis distor¢oes, escolher o processo de reamostragem (linear, cubica ou
algoritmo de Berger), escolher os pontos de referéncia temporal inicial e final da reamostra-
gem, escolher o método para preencher os dados de borda (constant padding ou symetric

extension) e determinar a frequéncia de amostragem.

Como novidade, as varidveis extraidas a partir do PPG foram disponibilizadas para
serem amostradas em combinacdes de varidveis ou sozinhas, a depender da escolha do
usuario. Como exemplo, a interface com o sinal de PTT extraido e modificacoes realizadas é
explicitada na Figura 4.15.
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Figura 4.15 - Séries temporais de RRI e PTT e adaptacdes implementadas a subaba. Fonte: Autor.

Essa reamostragem ¢ importante para que seja calculada a PSD de sinais e a modela-
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gem de sistemas fisiologicos seja realizada por estarem reamostrados a mesma frequéncia e
terem a mesma referéncia temporal.

4.2.7 Aba 3: Analysis

Na ultima aba do programa, manteve-se a estrutura da aba e subabas da versdo
anterior do programa e as subabas 3.1, 3.2, 3.3, 3.4 e 3.5 foram apenas adaptadas para que
seja possivel calcular, das variaveis extraidas do PPG, as respectivas PSD e IR de sistemas
com essas variaveis, em tempo invariante e variante, e a funcdo de transferéncia de possiveis
novos sistemas.

Na subada 3.1, a PSD e as 4reas das bandas de frequéncia VLF, LF e HF podem ser
extraidas utilizando os métodos de Fourier, de Welch ou o modelo AR. Como exemplo, a PSD
e as respectivas dreas, em tempo invariante do PTT extraida para um sujeito é nas Figuras
4.16: e 4.17.
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Figura 4.16 — PSD (sinal de PTT em tempo inva-Figura 4.17 — Areas da bandas de frequéncia do

riante), utilizando os métodos de PSD (sinal de PTT em tempo invari-
Fourier, Welch e AR, do sujeito s3 ante) utilizando o método de Fourier,
em posicdo sentado em repouso. do sujeito s3 em posicdo sentado em
Fonte: Autor. repouso. Fonte: Autor.

Na subaba de identificacio de sistemas, 3.2, a estimacdo e validacao do sistema pode
utilizar o modelo autorregressivo, LBF ou o de Meixner. Como exemplo, para o sujeito s3, da
base de dados Pulse Transit Time PPG Dataset, na condicdo sentado em repouso, a estimacio
e validacdo, utilizando o modelo LBF, do sistema com entrada RRI e saida PTT foram obtidas
e sdo visualizadas na Figura 4.18. Para 0 mesmo sujeito nas mesma condicdes posturais, a
IR é mostrada na Figura 4.19.
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Figura 4.18 - Estimacdo e validacdo do sistema RRI—-PTT em tempo invariante, do sujeito
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Figura 4.19 - Resposta ao impulso do sistema RRI—-PTT em tempo invariante, do sujeito

s3 em posicdo sentado em repouso.
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Na subaba 3.3, como exemplo, utilizando o sujeito s3, da base de dados Pulse Transit
Time PPG Dataset, na condicdo sentado em repouso, a PSD em tempo variante extraida ¢
mostrada na Figura 4.20. As variacdes LF, HF e LF/HF desse mesmo sujeito nas mesmas

condicdes posturais podem ser visualizadas nas Figuras 4.21 e 4.22.
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Figura 4.22 - Variacdo LF/HF do sinal de
PTT, em tempo variante, do su-
jeito s3 em posicdo sentado em
repouso.

Na subaba 3.4, a fim de exemplificar as funcionalidades adaptadas para o sinal de
PPG, com o uso do sujeito s3, da base de dados Pulse Transit Time PPG Dataset, na condicdo
sentado em repouso, a estimacao e validacdo do mesmo sistema RRI— PTT ¢ evidenciada
na Figura 4.23. A IR deste mesmo sujeito nas mesma condi¢des de postura, ambas em tempo

variante, sdo também mostradas na Figura 4.24.
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Na ultima subaba 3.5, o ganho, fase e valor de coeréncia, na banda de frequéncia de 0
a 0,5 Hz da TF do sistema RRI— PTT sdo obtidas, utilizando o sujeito s3, da base de dados
Pulse Transit Time PPG Dataset, na condicao sentado em repouso. A Figura mostra as areas

absolutas em LF e HF, com e sem o limiar de coeréncia, 4.25:
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Figura 4.25 - Ganho, fase e valor de coeréncias da TF do sistema RRI— PTT do sujeito s3 em posi¢do

sentado em repouso. Fonte: Autor.
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5 ANALISE COMPARATIVA ENTRE HRV E
PRV

Com os novos modulos e funcionalidades desenvolvidas para o sinal de PPG, este
capitulo tem por objetivo detalhar o procedimento padronizado de pré-processamento dos
sinais de ECG e PPG dos sujeitos utilizados, descritos na Secao 4.1, para que estejam no
formato e qualidade esperados para a andlise. Além disso, visa-se descrever a abordagem
utilizada na extracdo de indices espectrais e descritores temporais para a realizacido das
respectivas andlises comparativas entre 0 HRV e o PRV nos dominio da frequéncia e do
tempo respectivamente e os métodos estatisticos de comparacdo utilizados.

5.1 Pré-processamento

5.1.1 Filtragem dos sinais de ECG e PPG

Em relac@o ao sinal ECG, ¢ sabido que a existéncia de ruidos podem afetar a extragio
de varidveis a partir dos sinais de referéncia, ndo obstante a filtragem deste sinal é contextual
e deve ser realizada apenas quando estritamente necessario, por exemplo, para o caso em que
a presenca do ruido induz uma ambiguidade no reconhecimento das partes do ECG (Nayak;
Soni; Bansal, 2012).

Deste modo, na subaba 2.1, optou-se por aplicar os fitros digitais do CRSIDLab apenas
quando havia clara ambiguidade na identificacdo das partes do ECG em decorréncia de algum
tipo de ruido. Em especifico, utilizou-se, quando necessario, o filtro notch passa-bandas de 60
Hz quando detectado possiveis interferencia de baixa frequéncia provavelmente provenientes
da rede elétrica. Apo6s a aplicacdo deste primeiro filtro, caso ainda houvesse a existéncia
de ruidos de alta frequéncia, aplicou-se o filtro passa-baixas de 35 Hz para retirar o ruido
muscular, como recomendado em (CARVALHO, 2001).

J4 para o sinal de PPG, quando necessario, aplicou-se somente o novo filtro Chebyshev
Tipo II de ordem 4 para retirar o ruido de alta frequéncia. Para todos os sujeitos utilizados,
a aplicacdo deste filtro foi suficiente para retirar esse tipo de ruido. Adicionalmente, como
descrito na Subsecdo 2.1.3, o sinal de PPG é comumente obtido invertido, entdo a nova
funcionalidade de flip em amplitude quando necessario.

5.1.2 Extracdo das variaveis do ECG e PPG

Para extrair o HRV do sinal de RRI, na subaba 2.2, utilizou-se o algoritmo implemen-
tado por (Pan; Tompkins, 1985) para identificacdo dos picos R, o qual est4 disponivel no
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CRSIDLab. J4 para a identificacdo do PEAK e do NADIR do PPG a cada ciclo de batimento,
utilizou-se o algoritmo que detecta o PEAK a partir do pico R e, em seguida, detecta o NADIR
a partir do PEAK imediatamente anterior, conforme detalhado na Subsecao 4.2.4.

Com os picos R e os respectivos pontos PEAK e NADIR identificados, realizou-se
uma inspecdo visual a fim de garantir que os pontos foram marcados corretamente, detectar
ectdpicos, caso existam, e para garantir a correta correspondéncia de pontos entre os dois

sinais.

5.1.3 Tratamento de ectépicos

Na subaba 2.3, a fim de evitar a dimininuicdo do namero de amostras do sinal, optou-
se por utilizar o método da interpolacdo cubica para tratar os batimentos ectopicos no sinal
RRI obtido e, posteriormente, extrair o HRV, como sugerido em (Peltola, 2012). Em sequéncia,
optou-se por extrair o PRV a partir do PPI obtido entre os picos do PPG. Observa-se, na
interface do CRSIDLab, as séries temporais de um sujeito tratado. Por fim, identificou-se o

ponto de referéncia do PPGpp e se calculou a série temporal do PTT.

5.1.4 Alinhamento e reamostragem

Como descrito em 4.2.6, torna-se necessario reamostrar os sinais de RRI e PTT a uma
mesma taxa para uma futura andlise a nivel de sistrmas. Optou-se por utilizar o método de
interpolagdo de Berger, visto que este produz o melhor resultados em relacao a resolucao
espectral, suavidade de espectro e reproducdo de picos (Berger et al., 1986). Como Fy, escolheu-
se 4 Hz, uma vez que a maior frequéncia cardiaca encontrada no sinal de RRI est4d em torno
de 1,5 Hz, que respeita o critério de Nyquist (Fy > 2Fnax) € € uma taxa comumente utilizada
em experimentos espectrais, pois permite calcular estimativas confidveis entre DC e 1 Hz,

banda de frequéncias na qual o SNA possui uma resposta significativa (Chen; Hu; Lin, 2018).

Com o intuito de garantir a estacionariedade dos sinais, ou seja, garantir que suas
respectivas propriedades estatisticas (como a média, varidncia e autocovariancia) ndo mudam
ao longo do tempo, aplicou-se também um detrend polinomial de 52 ordem, como realizado
por (Jo, 2002).

Como referencial, definiu-se o inicio e o final do sinal de RRI. Deste modo, nos
extremos dos sinais, para o tratamento de lacunas, partiu-se do pressuposto que os dados
fora da borda possuem dados proximos ao de borda, optou-se utilizar por utilizar a opcdo de
Constant padding (border values), a qual repete os valores da primeira e da tltima amostra.
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5.2 Analise dos sinais

5.2.1 Andlise univariada: densidade espectral de poténcia

Nesta abordagem, define-se por andlise univariada o envolvimento de apenas um
sinal como objeto de estudo e andlise, no caso, no dominio espectral (Oliveira et al., 2019).
Nesta etapa, a PSD do sinais de RRI e PPI é calculada, de forma individualizada, a fim de se
verificar as areas por banda de frequéncia de interesse. O método de célculo da PSD utilizado
foi o de Welch.

Inicialmente, definiu-se a resolu¢do de 2048 pontos para o célculo da TDF, janela-
mento de Hanning, nimero de 256 amostras por segmento com uma taxa de sobreposi¢do
de 50% (128 amostras). O fato do numero de pontos ser uma poténcia de 2 permite uma
maior eficiéncia computacional (Semmlow, 2014). Optou-se pelo janelamento de Hanning
pelo fato deste proporcionar uma estimativa espectral mais suavizada e, a0 mesmo tempo,
apresentar picos claramente delineados em bandas de baixa e alta frequéncias (Singh et al,,
2004).

Como proposic¢ao, os indices espectrais, ou areas absolutas da PSD, dos sinais de
RRI e PPI dos sujeitos em posicio senta e em repouso serdo extraidos. Em sequéncia, os
resultados, em cada banda de frequéncia, serdo comparados entre ambos a fim de analisar se
ha diferenca significativa, baseando-se em critérios estatisticos descritos na Secdo 2.3, entre
os marcadores de HRV e PRV para a andlise univariada no dominio da frequéncia, indicando
ou ndo se o PRV pode ser ou ndo um substituto do HRV para andlises de variabilidade.

5.2.2 Andlise multivariada: resposta ao impulso invariante do sistema

Para andlise multivariada, utilizou-se uma abordagem a nivel de sistema para o estudo
das variabilidades e gerar informacdes ndo apenas a respeito das oscilacoes das varidveis
de forma individualizada, mas também de um mecanismo neural regulatério ou sistema
responsavel pela geracdo destas oscilacdes (Oliveira et al., 2019). Como modelo de andlise,
montou-se o sistema com entrada PTT e saida RRI.

Em (Khoo; Wang; Chalacheva, 2011; Khoo; Chalacheva, 2016), ha a proposi¢do de
um novo marcador da fun¢do autonémica, BRSprr, baseado em um sistema como saida
RRI e entrada PTT. Além disso, os resultados evidenciaram que, principalmente na posicdo
supina, ha uma forte correlagdo entre o novo marcador de sensibilidade do barorreflexo e
o marcador classico obtido a partir do sinal de SBP, BRSggp. Deste modo, utilizou-se PTT
como um substituto do ABP neste sistema que estima a sensibilidade do barorreflexo.

Para a estimacdo da RI do modelo, adotou-se o modelo LBF com polindmios de ordem
np; = 1enp, = 12 e atrasos ng; = —8 e ng, = 8 a fim de se impor limites de causalidade,
como sugerido em (Jo, 2002). Dividiu-se 80% (240 segundos) das amostras do dado para
estimacdo e 20% (60 segundos) para a validacdo. Adicionalmente, a fim de evitar aliasing,
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utilizou-se um filtro de Kaiser (passa-baixas) com Fy = 0,5 Hz, visto que os sinais de interesse
estdo contidos na faixa de frequéncia abaixo de 0,4 Hz (Jo, 2002; Silva, 2017).

Como proposicdo deste trabalho, serd estimada a RI dos sujeitos em posicao sentada
e em repouso e, a fim de realizar uma andlise comparativa entre o HRV e PRV, os descritores
compactos do SNA serdo extraidos para os dois sistemas, ambos com entrada PTT e saidas
RRI para um e PPI para o outro. Esta andlise visa verificar se ha diferenca significativa entre
estes descritores destes dois sistemas, os quais variam apenas a entrada, o que pode indicar
se 0 PRV pode ser ou ndo um substituto do HRV para este caso.

5.2.3 Andlise de coeréncia: funcio de resposta em frequéncia do sistema

Como ultima analise, dada a entrada e a saidas dos dois sistemas, obteve-se a FRF
para cada um. O janelamento de Hanning serd utiliza e serdo calculadas as dreas das bandas
de LF e HF desconsiderando e considerando um limiar de coeréncia de 0,5.

Como proposic¢ao, essas areas de ganho da FRF nas bandas LF e HF serdo calculadas
para, comparativamente, verificar se ha diferencas significativas para o caso em que a saida
do sistema varia entre os sinais de RRI e PPI. Novamente, esta comparacdo visa investigar se
o PRV pode ser ou ndo um substituto do HRV para estudos de variabilidade.

5.2.4 Analise estatistica

A fim de, por meio de métricas estatisticas, comparar os indices espectrais, descritores
compactos e areas de ganho da FRF obtidos para as anélises univariada, multivariada e de
coeréncia entre dos marcadores do HRV e PRV, aplicaram-se os testes de Bland-Altman
e o teste One-way ANOVA a fim de se verificar diferenca estatistica significativa entre os
resultados.

De inicio, verificou-se a normalidade da distribuicdo das amostras por meio do teste
de Shapiro-Wilk, que é um teste relativamente robusto para poucas amostras (Mendes; Pala,
2003). Se a distribuicdo das amostras fosse normal, o teste ANOVA foi diretamente aplicado.
Caso contrario, aplicou-se uma transformacao logaritmica em base 10 a fim de normalizar
dos dados, como indicado em (Keene, 1995). Em tltimo caso, caso a amostra ndo apresentasse
distribuicdo normal pelas aplicacdes do teste de Shapiro-Wilk e da transformacao logaritmica,
utilizou-se o teste ANOVA On Ranks, que se baseia no mesmo principio do One-Way ANOVA
e, por ser ndo-paramétrico, pode ser aplicado para distribui¢cées ndo-normais.

Como detalhado na Secdo 2.3, a andlise de variancia retorna um valor-p que indica,
quando valor-p < 0,05, diferenca significativa entre os conjuntos de dados. Para a anélise em
questao, esse valor vai mensurar o nivel de diferenca estatistica para os resultados obtidos do
mesmo tipo de andlise para o HRV e o PRV. Para realizar essa andlise, utilizou-se o software
Sigma Plot.
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Complementarmente, com o intuito de melhor observar a diferenca comparativa
entre pares de amostras de PRV e de HRV (com grandezas normalizadas pela transformacao
logaritmica na base 10) com a média destes mesmos pares, construiu-se o grafico de Bland-
Altman. Inicialmente, a fim de obter a média e o desvio padrao dessa diferenca, realizou-se
um teste T de uma amostra. Em seguida, tracaram-se linhas horizontais da média, linhas
horizontais dos LOAs, bem como seus respectivos ICs superior e inferior. Esta anélise foi
realizada no software IBM SPSS Statistics.
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6 RESULTADOS E DISCUSSOES

Apds todo o pré-processamento e andlises realidades, este capitulo evidencia os
resultados obtidos e a interpretacdo fisioldgica gerados por meio de marcadores estatisticos.
O enfoque esta direcionado para a comparac¢do entre os marcadores do HRV e PRV e se
estes possuem diferencas significativas, especificamente na posi¢do sentada em repouso,
para indicar uma possivel substituicio do HRV pelo PRV como indice de variabilidade da
atividade autonomica.

Como padrdo, a linha preta tracejada com pontos representa a linha de equivaléncia
em (0,0), as linhas pretas pontilhas representam os LOAs superior inferior, a regido entre a
linha azul representa o IC do LOA superior, a linha vermelha representa o IC da média e a
linha laranjada representa o IC do LOA inferior. A demarcagdo dos LOAs, da média e de
seus respectivos ICs utilizada nos graficos de Bland-Altman dos resultados é exemplificada
na Figura 6.1, a fim de se entender o padrao utilizado.

LOA inferior-| IC do LOA superior

- Média--{ - 1C da média

Diferenga entre PRV ¢ HRV

-LOA-Inferior-|  1c do LOA inferior

200 250 300 350

Média

Figura 6.1 — Grafico de Bland-Altman arbitrdrio com os LOAs superior e inferior, média e seus
respectivos ICs.
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6.1 Analise univariada

Os indices espectrais, explicitados no formato média + SD na Tabela 6.1, foram
obtidos conforme detalhado na Subsec¢do 5.2.1.

Tabela 6.1 - Indices espectrais de HRV e PRV aplicando o teste One-Way ANOVA. Observacio: os
asteriscos (*) indicam que os valores foram normalizados em uma transformacao logo.

i indice Marcador
Método Espectral HRV PRV Valor-p
LF*! 3,004 + 0,370 3,026 + 0,377 0,744
Welch HF 2,400 + 0,528 2,667 + 0,601 0,178
LF/HF* 0,604 + 0,357 0,359 + 0,378 0,061

A partir da aplicacio do teste One-Way ANOVA, observa-se, na Tabela 6.1, que ndo
houve diferenca estatisticamente significativa entre os indices espectrais obtidos, na posicao
sentada em repouso, a partir do HRV e do PRV para nenhuma das 4reas LF, HF e da razdo
LF/HF. Especificamente, os valores-p para LF e HF foram relativamente distantes do limiar
de diferenca estatistica (valor-p < 0,05). Por outro lado, a razdo LF/HF foi comparativamente
mais proxima deste limiar apesar de ainda nio o atingir.

Em termos fisiologicos, a drea HF € relacionada como um indicador da modula¢do
vagal de HRV, visto que estimulos simpdticos sdo substancialmente atenuados em frequéncias
acima de 0,15 Hz. Na area LF, ha controvérsias se esta representa somente a atividade
simpdtica ou uma combinacao entre as atividades simpdtica e vagal. J4 para a razdo LF/HF
¢ utilizada como um indice de “equilibrio simpatovagal”, sendo o aumento deste valor um
indicativo do aumento da atividade simpatica e vice-versa (Jo et al., 2003).

Os gréficos de Bland-Altman, com a diferenca comparativa entre os valores de LF,
HF e LF/HF de HRV e PRV, sdo explicitados nas Figuras 6.2, 6.3 e 6.4 respectivamente.
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Figura 6.2 - Grafico de Bland-Altman da distribuicdo da diferenca entre os valores log;o(LF PRV) e
log1o(LF HRV) obtidos a partir da PSD ao longo da média de cada par destas variaveis.
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Figura 6.3 - Grafico de Bland-Altman da distribui¢do da diferenca entre os valores log;o(HF PRV) e
log1o(HF HRV) obtidos a partir da PSD ao longo da média de cada par destas variaveis.
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Figura 6.4 — Gréfico de Bland-Altman da distribuicdo da diferenca entre os valores log;o(LF/HF PRV)
e log;o(LF/HF HRV) obtidos a partir da PSD ao longo da média de cada par destas
variaveis.

A partir das Figuras 6.2, 6.3 e 6.4, pode-se observar que, para os trés indices espectrais,
a linha de equivaléncia, a qual indicaria uma hipétese inicial de que ndo ha discrepancia
entre os indices obtidos a partir do PRV e do HRYV, est4 localizada no IC da média. Esse
fato ¢ um indicativo que o viés do respectivo indice obtido a partir do PRV e do HRV néo
¢ consideravel e, deste modo, as diferencas entre os indices obtidos por PRV e HRV estdo
todas localizadas nas regides do LOA inferior e superior, que sdo os limiares de diferenca
aceitaveis (Bunce, 2009; Giavarina, 2015).

A distribuicao das amostras evidencia que ndo hé relacdo entre o nivel de discrepancia
da diferencas das amostras e o nivel de medic¢do, visto que a variabilidade destas diferencas
ndo aumenta com o aumento da média do log;oLF, mas sim se distribui para cima e para
baixo da linha de média. Deste modo, para este caso, os LOAs sio validos (Bunce, 2009).
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6.2 Analise multivariada

Como detalhado na Subsecdo 5.2.2, os descritores compactos do SNA foram obtidos e

explicitados, na Tabela 6.2, com formato média + SD.

Tabela 6.2 — Descritores compactos do SNA do sistema de saida RRI e entradas HRV ou PRV, aplicando
o teste One-Way ANOVA.

Descritor Saida
Entrada Compacto HRV PRV Valor-p
IRM 0,574 + 0,206 0,484 + 0,243 0,254
PTT LF DG* -0,039 + 0,099 -0,039 + 0,100 0,593
HF DG* -0,105 + 0,098 -0,130 + 0,126 0,850

Os resultados obtidos a partir da aplicacio do teste One-Way ANOVA, na Tabela 6.2,
evidenciam que nao houve diferenca estatistica significativa entre os descritores compactos
obtidos pela RI dos sistemas fisiolégicos com entrada PTT e saida variando entre HRV e PRV,
para o caso da posicao sentada em repouso. Os descritores IRM, LF DG e HF DG obtidos se

mostraram bastantes distantes do limiar valor-p < 0,05.

Fisiologicamente, os descritores obtidos a partir da RI se mostraram promissores
como indicadores da funcio autondmica e, comparativamente, mais sensiveis que descritores
univariados de HRV. Adicionalmente, o aumento do ganho IRM do barorreflexo, no caso
representado alternativamente pelo BRSprr, indica um aumento da atividade vagal. J4 o DG

LF indica uma disfun¢do do barroreflexo (Oliveira et al., 2019).

Os graficos de Bland-Altman, com a diferenca comparativa entre os valores de IRM,
LF DG e HF DG dos sistemas, com entrada PTT e saida RRI ou PPI, sio mostrados nas

Figuras 6.5, 6.6 e 6.7 respectivamente.
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Figura 6.5 - Grafico de Bland-Altman da distribuicao da diferenca entre os valores log;o(IRM PRV) e
log1o(IRM HRV) obtidos a partir da RI ao longo da média de cada par destas variaveis.
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Figura 6.6 — Grafico de Bland-Altman da distribuicdo da diferenca entre os valores log;o(LF DG PRV)
e log;o(LF DG HRV) obtidos a partir da RT ao longo da média de cada par destas varidveis.
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Figura 6.7 — Grafico de Bland-Altman da distribuicao da diferenca entre os valores log;o(HF DG
PRV) e log,o(HF DG HRV) obtidos a partir da RI ao longo da média de cada par destas
variaveis.

Nas Figuras 6.5 e 6.7, observa-se que, para os descritores compactos IRM e HF DG, a
linha de equivaléncia estd localizada aproximadamente no limiar superior do IC da média,
o que indica um viés aceitdvel e pouco significativo. J& para o descritor LF DG, na Figura 6.6,
essa linha esta ligeiramente acima do IC da média e indica um viés significativo.

Em relacao a distribui¢do das amostras, para o IRM e HF DG, estas se distribuem
para cima e para baixo da linha de média e é evidente que nlo hé relacdo entre o nivel de
discrepancia da diferencas das amostras e o respectiva média, uma vez que a variabilidade
destas diferencas ndo aumenta com o aumento da média do log;o. Diante disso, os LOAs sdo
validos para esse caso e as diferencas entre os indices obtidos por PRV e HRV estio dentre
dos limiares de diferenca aceitaveis.

De encontro, para o LF DG, nota-se que a variabilidade das diferencas das amostras
aumentam com o aumento da média. Assim sendo, os LOAs inferior e superior sdo clara-
mente muito largos em pequenas diferencas entre os descritores obtidos pelos sistemas com
PPI e RRI. Apesar disso, apenas uma amostra se localiza fora do LOA e do IC inferior e a

maioria das amostras se concentram dentro da regido delimitada pelos limiares de diferenca.
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6.3 Analise de coeréncia

Novamente, as dreas de ganho da FRF foram obtidas a partir do detalhamento descrito
na Subsecdo 5.2.3. Na tabela 6.3, os resultados obtidos estdo na forma média + SD.

Tabela 6.3 — Areas de ganho da FRF (com e sem o limiar de coeréncia) da funcio de transferéncia do
sistema, aplicando o teste One-Way ANOVA. Observacdo: o subscrito ¢ indica que se leva
em consideracdo o limiar de coeréncia de 0,5.

Entrada Are?ig%g%nho Saida Valor-p
HRV PRV
LF *? 1,079 £ 0,098 1,079 £ 0,098 0,904
PTT HF * 1,342 + 0,154 1,228 + 0,258 0,209
LF* 1,079 £ 0,098 1,091 £ 0,111 0,744
HF* 1,367 £ 0,109 1,412 £ 0,115 0,102

Como pode ser visualizado na Tabela 6.3, apos a aplicacdo do teste One-Way ANOVA,
novamente ndo houve diferenca estatisticamente significativas entre as areas de ganho da
FRF (considerando e desconsiderando o limiar de coeréncia de 0,5) dos sistemas definidos

na andalise multivariada.

Em uma abordagem a nivel de sistemas, o estudo da funcdo de transferéncia se mostra
uma abordagem poderosa em torno do estudo do comportamento do sistema ndo somente
por evidenciar as caracteristicas de ganho e de fase, mas também por permitir o calculo
de uma medida de confianca dos resultados, a coeréncia. Nas bandas LF e HF, o valor de
coeréncia ¢ um indicativo do comportamento do sistema e da confiabilidade dos resultados
obtidos (Berger et al., 1986).

Os graficos de Bland-Altman, com a diferenca comparativa entre os valores de LF,
e HF. das 4reas de ganho da FRF dos sistemas, com entrada PTT e saida RRI ou PPI, sdo
visualizados nas Figuras 6.8, 6.9 respectivamente.
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Figura 6.8 — Grafico de Bland-Altman da distribui¢ao da diferenca entre os valores log;o(LF, PRV) e
log1o(LF. HRV) obtidos a partir da FRF (com limia de coeréncia 0,5) ao longo da média
de cada par destas variaveis.
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Figura 6.9 — Grafico de Bland-Altman da distribuicdo da diferenca entre os valores log;o(HF. PRV) e
logo(HF. HRV) obtidos a partir da FRF (com limiar de coeréncia 0,5) ao longo da média
de cada par destas variaveis.

Considerando o limiar de coeréncia de 0,5, observa-se, nas Figuras 6.8 e 6.9, que h4

um viés consideravel entre as diferencas das amostras, ja que a linha de equivaléncia ndo

esta dentro do IC da média.

Em LF, (Figura 6.8), é notdrio o aumento da variabilidade das diferencas com o

aumento da média, além do fato destes valores serem, principalmente, valores maiores de
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média. Assim sendo, € dificil precisar se os LOAs sdo completamente adequados para o
indice em questdao. Nao obstante, todas as amostras se localizam dentro dos LOAs superior
e inferior e, portanto, as diferencas entre as areas de ganho obtidas por PRV e HRV estdo
localizadas dentro dos limiares de diferenca aceitaveis.

Por outro lado, na Figura 6.9, pode-se verificar que a variabilidade das diferencas
diminui com o aumento da média e grande parte das amostras serem valores maiores de
média. Diante disso, os LOAs inferior e superior sdo muito largos para essa distribuicao.
Apesar desse fato, apenas uma amostra estd localizada fora do LOA inferior, mas ainda
dentro do seu IC, e as demais amostras estao inseridas dentro dos limiares de diferenca
delimitados.

Ja desconsiderando o limiar de coeréncia, os graficos de Bland-Altman, com a dife-
ren¢a comparativa entre os valores de LF, HF das areas de ganho da FRF dos sistemas, com
entrada PTT e saida RRI ou PPI, s3o mostrados nas Figuras 6.10, 6.11 respectivamente.
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Figura 6.10 - Grafico de Bland-Altman da distribuicio da diferenca entre os valores log;o(LF PRV) e
logy1o(LF HRV) obtidos a partir da FRF (sem limiar de coeréncia) ao longo da média de
cada par destas variaveis.
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Figura 6.11 - Grafico de Bland-Altman da distribuicio da diferenca entre os valores log;o(HF PRV) e

log1o(HF HRV) obtidos a partir da FRF (sem limiar de coeréncia) ao longo da média de
cada par destas variaveis.

Desconsiderando o limiar de coeréncia, a partir das Figuras 6.10 e 6.11, as linhas
de equivaléncia estdo foras do IC. Visualiza-se também o aumento da variabilidade das
diferencas com o aumento da média para as areas de ganho LF e HF. Diante disso, os
LOAs superior e inferior sdo muito largos para valores de média pequenos. Para LF, todas
as amostras estio inseridas dentros dos LOAs inferior e superior todas as amostras estio
inseridas dentros dos LOAs inferior e superior e, para HF, apenas uma amostra est4 localizada
fora do LOA superior (mas dentro do IC). Por conseguinte, as diferencas dessas areas de
ganho obtidas por PRV e HRV estdo dentre dos limites de diferenca aceitaveis.
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7 CONCLUSAO

Neste trabalho, foi detalhado os novos modulos de pré-processamento e analise,
incorporados a foolbox CRSIDLab, do sinal fisiol6gico PPG, outros sinais extraidos a partir
de componentes deste sinal (amplitude, pico, vale, PPI), sinal extraido a partir do intervalo
de tempo entre o pico R do ECG e um determinado ponto do PPG (PTT) e um outros sinal
fisiolégico ndo relacionado ao PPG, mas sim a ABP (MAP). Além desses novos modulos,
descreveu-se o processo de adaptacdo dos mddulos pré-existentes, os quais foram adaptados

para a utilizaco dos novos sinais obtidos.

Como forma de realizar uma andlise comparativa entre HRV e PRV de uma base
de dados real, utilizou-se estes novos modulos criados e adaptados para realizar o pré-
processamento, andlises espectral, temporal da IR e das areas de ganho da FRF. Com os
indices e descritos obtidos por estes processos, realizou-se uma andlise estatistica comparativa
a fim de mensurar se ha diferenca significativa entre os resultados obtidos quando se utilizou

o sinal de RRI ou de PPI, os quais representam HRV e PRV respectivamente.

Em outras palavras, este estudo comparativo visou verificar, como amplamente inves-
tigado na literatura, se o PRV pode ser utilizado como um substituto do HRV em estudos de
variabilidade e regulacdo autondémica. Nos moldes deste estudo, com sujeitos em posicao
sentada e em repouso, o teste ANOVA para as andlises univariadas, multivariadas e de coe-
réncia ndo apresentou valor-p < 0,05, que € o limiar para indicar diferenca significativa entre
os resultados. Assim sendo, este teste ndo indicou discrepancia consideravel entre os indices
obtidos nas trés andlises, indicando que, neste caso de posicio sentada e em repouso, o PRV
poderia ser utilizado como um possivel substituto ao HRV nos estudos de variabilidade.

Como uma outra alternativa de andlise, os graficos de Bland-Altman também foram
gerados a fim de se verificar a distribuicdo das diferencas das amostras com as suas respectivas
médias. Como se verificou por meio dos resultados, os resultados evidenciaram que a maioria
das amostras se concentraram dentro dos limiares de diferenca aceitdveis. Em algumas
situacoes, o viés da diferenca entre PRV e HRV foi consideravel e os LOAs largos para
valores pequenos de médias. Diante disso, para estes casos, estudos que considerem métricas
fisiolégicas para redimensionar os LOAs seriam um alternativa.

Pode-se concluir que, para a situacio sentado e em repouso avaliada neste trabalho, as
analises estatisticas ANOVA e pelo grafico de Bland-Altman demonstraram que nio houve
diferenca estatisticamente significativa (quando houve amostra fora do LOA no gréfico de
Bland-Altman, foi desprezivel por se apenas uma amostra) entre os indices e descritores
obtidos pelo PRV e HRV. Assim sendo, h4 um indicativo que o PRV pode ser utilizado com
um substituto do HRV em estudos de variabilidade para situagdes de repouso sentado.
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7.1 Trabalhos futuros

Como trabalhos futuros, seria relevante investigar, por meio dos mesmas métricas
estatisticas, se ha diferenca estatistica significativa entre resultados obtidos a partir do PRV
e HRV para sujeitos em outras situacées, como em posicao supina, cabeca erguida e outras
situacdes variantes no tempo, como mudanca de postura, caminhada e corrida.

Ademais, com a obtencao do sinal de PTT gerado pelo CRSIDLab, uma nova contri-
buicdo seria utilizar algortimos de otimizacao e inteligéncia artificial para estimar a ABP a
partir do PTT. Como discutido no escopo deste trabalho, o sinal de PTT ¢ facilmente obtido
e uma estimacao precisa de ABP a partir deste sinal seria uma contribuicdo de grande valia
para estudos cientificos e aplicacoes praticas da drea médica.
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