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RESUMO

O cancer de mama é uma das principais causas de mortalidade entre mulheres no mundo e
representa um desafio para a satude publica. Sua detec¢ao precoce é de grande importancia, pois
pode auxiliar no sucesso do tratamento e na sobrevivéncia das pacientes. Os diagnoésitcos dessa
doencga sao realizados por um médico radiologista, que analisa a imagem de uma mamografia
gerada por técnicas como tomossintese ou radiografia e destaca o local do tumor, caso exista.
Como tradicionalmente o processo de diagnostostico é realizado com imagens, isso possibilita
que sejam utilizadas técnicas de processamento de imagens ou o desenvolvimento de redes

neurais artificiais que sejam capazes de realizar esse papel de deteccao de cancer.

Este trabalho explora o potencial das Redes Neurais Convolucionais (CNNs) na deteccdo
de cancer de mama ao utilizar técnicas de transfer learning com as arquiteturas DenseNet-121,
ResNet-50 e VGG-16. As redes foram treinadas para identificar caracteristicas especificas do
cancer de mama a partir do uso da linguagem de programacao python e a biblioteca tensorflow
para o processamento e organizacao das imagens do dataset publico DukeDBT e também o

desenvolvimento das redes neurais.

O objetivo do projeto ¢ avaliar a acurécia, especificidade e sensibilidade das CNNs na
deteccao de cancer de mama e destacar a viabilidade de sua aplicagao em ambientes clinicos com
recursos limitados, oferecendo uma alternativa para melhorar os diagnésticos e possivelmente

reduzir a mortalidade associada & doenca.

Os resultados obtidos no trabalho mostram uma viabilidade no uso dessas técnicas para
a deteccao de tumores. Como exemplo, a rede VGG-16 conseguiu classificar corretamente
as imagens que possuiam efetivamente tumores com 83% de sucesso e, possivelmente, mais

trabalhos e pesquisas nessa area poderiam melhorar a qualidade dessas classificacoes.

Palavras-chave: Cancer de mama, Tomossintese, Redes Neurais Convolucionais, transfer lear-

ning, DenseNet-121, ResNet-50, VGG-16, python, tensorflow



ABSTRACT

Breast cancer is one of the leading causes of mortality among women worldwide and re-
presents a significant public health challenge. Early detection is crucial, since it can improve
treatment success and patient survival. Diagnosing this disease is typically performed by a ra-
diologist who analyzes mammography images, generated through techniques like tomosynthesis
or radiography, to highlight the tumor location, if present. Since the diagnostic process tradi-
tionally relies on images, it opens up the possibility of employing image processing techniques

or developing artificial neural networks capable of performing cancer detection.

This study explores the potential of Convolutional Neural Networks (CNNs) in breast can-
cer detection using transfer learning techniques with DenseNet-121, ResNet-50, and VGG-16
architectures. The networks were trained to identify specific breast cancer characteristics using
the Python programming language and the TensorFlow library for processing and organizing

images from the public DukeDBT dataset and for developing the neural networks.

The project’s objective is to evaluate the accuracy, specificity, and sensitivity of CNNs in
detecting breast cancer and to highlight the viability of their application in resource-limited
clinical settings, providing an alternative to improve diagnoses and potentially reduce mortality

associated with the disease.

The results obtained indicate the viability of using these techniques for tumor detection.
For instance, the VGG-16 network successfully classified images containing tumors with an
83% success rate and further research and development in this area could possibly enhance the

quality of these classifications.

Keywords: Breast cancer, Tomosynthesis, Convolutional Neural Networks, Transfer Learning,

DenseNet-121, ResNet-50, VGG-16, Python, Tensorflow
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CAPITULO 1

INTRODUCAO

O cancer de mama é uma das principais causas de mortalidade entre mulheres em todo o
mundo e representa um dos maiores desafios de saude publica global. Sua detecgao precoce
é fundamental para aumentar as chances de tratamento bem-sucedido e a sobrevivéncia das
pacientes. Apesar disso, a escassez de radiologistas em muitos paises, especialmente nos em
desenvolvimento, compromete a eficacia dos diagnosticos e agrava a situagao das pessoas que

sofrem com essa doenga (DOC, 2022) (LANES| 2022) (XU, [2023]).

No Brasil, por exemplo, a distribuicao desigual de radiologistas é um problema significa-
tivo. Regioes como o Norte e o Nordeste enfrentam um déficit desses profissionais quando
comparadas as outras, o que resulta em longos tempos de espera para a realizagao e analise
de mamografias. Esse cenario leva a diagnosticos possivelmente atrasados, o que aumenta o
risco de mortalidade entre as pacientes. A falta de radiologistas nao é um problema exclusivo
do Brasil, pois até mesmo em paises como os Estados Unidos a caréncia desses profissionais
também afeta a qualidade do atendimento médico e a eficicia dos diagnosticos. A Figura [1.1

mostra uma distribui¢ao de radiologistas por milhao de pacientes globamente (DOC| [2022)

(LANES| 2022) (COLANGELO), 2022).

Nesse contexto, as inteligéncias artificiais, em especial as Redes Neurais Convolucionais
(CNNs), podem ser utilizadas como uma solugao para auxiliar no diagnostico de cancer de
mama. As CNNs sao uma classe de redes neurais profundas que se destacam no processamento

e analise de imagens, como mamografias. Essas redes podem ser treinadas para reconhecer

padroes e anomalias com alta precisao (COLANGELO, [2022)) (NG, [2024]).

A aplicacao de CNNs na radiologia pode ser muito vantajoso, visto que elas podem processar
grandes volumes de dados rapidamente, o que permite a anélise eficiente de mamografias e a
deteccao precoce de tumores. Em regides com escassez de radiologistas, as CNNs podem ser

implementadas em sistemas de atendimento a distancia (telerradiologia), o que beneficiaria
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Figura 1.1. Numero de ragiologistas por milhao de pacientes. E perceptivel a diferenca substancial do namero
de profissionais treinados entre os diferentes paises do mundo, principalmente entre o hemisfério Norte e o Sul
(COLANGELO, 2022).

areas remotas e com poucos especialistas. Além disso, a utilizacao dessas tecnologias poderia
aliviar a carga de trabalho dos profissionais, o que permitiria que focassem em casos mais

complexos e em outras tarefas clinicas essenciais (COLANGELO, 2022) (XU}, 2023). Por esses

motivos, este trabalho explora o potencial de CNNs na deteccao de cancer de mama e busca

testar sua eficacia nessa tarefa em imagens médicas obtidas via tomossintese.

Para o desenvolvimento deste trabalho, utilizou-se principalmente técnicas de transfer lear-
ning, que consiste em utilizar redes neurais pré-treinadas para outras tarefas de interesse. As
arquiteturas utilizdadas incluem a DenseNet-121, ResNet-50 e VGG-16 (HUANG] 2016) (HE|
2015) (SIMONYAN] 2014)).

As redes mencionadas foram ajustadas e treinadas para identificar caracteristicas especificas
associadas ao céncer de mama. A implementacao foi realizada utilizando a linguagem de

programacao python e a biblioteca tensorflow para processar e organizar as imagens do dataset

publico DukeDBT (BUDAJ 2024)) e também desenvolver e treinar as redes neurais.

Este projeto busca nao s6 avaliar a acuracia das CNNs na deteccao de cancer de mama,
mas também destacar a viabilidade de sua aplicagao pratica em ambientes clinicos com recursos

limitados.



Os resultados obtidos no trabalho mostram que existe uma viabilidade no uso dessas redes
neurais, pois a rede VGG-16, com uso da técnica de perda ponderada, conseguiu classificar

corretamente 83% das imagens com tumores e teve uma acuracia de 90%.



CAPITULO 2

IMAGENS MEDICAS VIA TOMOSSINTESE

A tecnologia de imagens médicas é muito utilizada na area da saude, visto que auxilia no
processo de obtencao de diagnosticos de pacientes. Entre as diversas modalidades de imagens,
os arquivos de Digital Imaging and Communications in Medicine (DICOM) e as imagens de
seios obtidas via tomossintese tém se destacado como ferramentas essenciais no diagnostico de

doencas complexas, como o cancer de mama (AGUILLAR] 2018).

Os arquivos DICOM sao o padrao internacional para armazenamento, transmissao e vi-
sualizacao de imagens médicas. Esses arquivos contém nao apenas as imagens, mas também
outros tipos de informagoes importantes para os médicos, como dados do paciente, parametros

de aquisi¢@o e anotagoes clinicas (VARMA| 2012).

A tomossintese mamaria, por sua vez, representa uma evolucao significativa na mamografia
tradicional. Também conhecida como mamografia 3D, essa técnica avancada captura miltiplas
imagens dos seios em diferentes angulos, permitindo a reconstru¢ao de uma imagem tridimen-
sional da mama. Isso possibilita uma melhor visualizacao das estruturas internas, aumentando

a sensibilidade e especificidade na detecgao de lesdes malignas (HELVIE] 2011)).

A partir disso, neste capitulo serao explorados o funcionamento da obtencao de imagens a

partir da tomossintese mamaria e a arquitetura de arquivos DICOM.

2.1 MAMOGRAFIA DIGITAL POR TOMOSSINTESE

As imagens contidas no dataset utilizado neste trabalho sdo imagens médicas obtidas por
meio de tomossintese. Por esse motivo, convém uma explicagao do procedimento utilizado para

sua obtencao.
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2.1.1 Definicdo de tomossintese

A mamografia digital da mama por meio de tomossintese (DBT) é uma tecnologia em
desenvolvimento para melhorar a deteccao e caracterizacao de lesoes na mama, especialmente

em mulheres com mamas nao gordurosas (HELVIE] 2011]).

Nesta técnica, miltiplas imagens de projecao sao reconstruidas permitindo a revisao visual
de secoes finas da mama, oferecendo o potencial para revelar canceres ocultos por tecido normal
localizado acima e abaixo da lesao. A DBT envolve a aquisicao de multiplas exposicoes de
projecao por um detector digital a partir de uma fonte de raios-X mamografica que se move
sobre um angulo de arco limitado. Esses conjuntos de dados de imagem de projecao sao

reconstruidos usando algoritmos especificos (HELVIE] 2011).

O leitor clinico é apresentado com uma série de imagens (fatias) através de toda a mama,
que sao lidas em uma estacao de trabalho. Como cada fatia reconstruida pode ter apenas 0,5
mm de espessura, massas e margens de massa que de outra forma podem estar sobrepostas
com estruturas fora do plano devem ser mais visiveis na fatia reconstruida. Isso deve permi-
tir a visualiza¢do (detecgdo) e melhor caracterizagdo de lesoes nao calcificadas em particular

(HELVIE, 2011).

2.1.2 Teécnica utilizada

O surgimento da mamografia digital e dos algoritmos de reconstrucao por computador
permitiu o desenvolvimento de tecnologias derivadas, incluindo a tomossintese. Na mamografia
digital convencional, uma mama comprimida é exposta & radiacao ionizante. A energia que
passa pela mama ¢é transformada em um sinal elétrico por um detector que produz a imagem
clinica. O tubo de raios-X é estacionério, a mama é estacionéria e o detector é estacionario

(HELVIE, [2011)).

A imagem produzida em uma tunica proje¢ao (vista) é uma representacao bidimensional
do espaco tridimensional. Cada pixel é, portanto, uma média das informagoes obtidas através
da espessura total da mama. Uma representacao tridimensional da mama seria vantajosa, se-

melhante as representagoes tridimensionais permitidas pela tomografia computadorizada (TC),
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ressonancia magnética (RM) ou ultrassonografia (HELVIE] [2011)).

Na tomossintese digital da mama, o tubo de raios-X é movido através de um angulo de
arco limitado enquanto a mama ¢ comprimida e uma série de exposicoes sao obtidas . Essas
exposicoes individuais representam apenas uma fragao da dose total de radiacao usada durante
a mamografia digital convencional. Se houver um arco de movimento de 45 graus e uma
exposicao for feita a cada 3 graus, havera 15 exposi¢oes individuais . Esses conjuntos de dados

brutos de projecao requerem reconstrugao usando algoritmos semelhantes aos usados em outros

conjuntos de imagens tridimensionais (HELVIE, 2011]).

Os conjuntos de dados de projecao geralmente nao sao interpretados pelos radiologistas, mas
sim a interpretagao ¢ baseada apenas nas imagens de tomossintese reconstruidas. Tipicamente,

os conjuntos de dados de projegao sao reconstruidos em fatias muito finas (por exemplo, 1 mm)

para revisao pelo radiologista (HELVIE, 2011).

Na Figura [2.1| é possivel observar uma representacao de como o procedimento de obtengao

de imagens de mama em diferentes angulos é realizada em laboratorio.

X-ray Tube —w <«

—— Compression Plate
. Breast

o
— Imaging Receptor

Projection Images ”’

Reconstruction

Figura 2.1. Visao esquemética da tomossintese digital da mama. O tubo de raios-X se move através de um
arco estreito enquanto a mama estd comprimida. Uma série de exposigoes resulta em multiplos conjuntos de
dados de imagens de proje¢do. Os conjuntos de dados de imagens de projegdo sdo reconstruidos em multiplas

imagens de fatias finas (por exemplo, 1 mm de espessura) para interpretagao pelo radiologista (HELVIE] 2011)).

E comum que diferentes posi¢coes da mama sejam obtidas por meio da tomossintese para
a analise de diagnoéstico em angulos diferentes. Como exemplo, o dataset utilizado para este

trabalho, o DukeDBT, é composto de imagens de pacientes com até quatro angulos distintos
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- vista obliqua médio-lateral esquerda (left mediolateral oblique view - LMLO), vista obliqua
meédio-lateral direita (right mediolateral oblique view - RMLO), vista craniocaudal esquerda
(left craniocaudal view - LCC), e vista craniocaudal direita (right craniocaudal view - RCC).

Essas diferentes views sao mostradas na Figura , para um mesmo paciente (BUDA| 2024]).

Figura 2.2. Os quatro angulos presentes no DukeDBT, da esquerda para a direita, LCC, LMLO, RCC e
RMLO. Todas elas sdo do mesmo paciente com diagnistico normal, ou seja, sem presenga de tumor (BUDA|
2024)).

2.1.3 Técnica de imagem

Varios fabricantes aplicaram diferentes métodos para desenvolver e realizar a tomossintese
e cada técnica possui suas vantagens e desvantagens. No entanto, essas diferencas podem
produzir resultados clinicos diferentes, tornando as comparacoes clinicas entre os fabricantes
dificeis. As restricoes de engenharia incluem a dose total de radiacao, tempo de imagem, movi-
mento do paciente, desempenho do detector, movimento do detector e capacidade de imaginar
toda a mama. Também é necessario fornecer capacidade futura de biépsia para aquelas lesoes

detectadas apenas pela tomossintese (HELVIE, 2011)).

Os fabricantes variam o arco de movimento (tipicamente de 11° a 60°), o nimero de exposi-
¢oes individuais (tipicamente entre 9 e 25) , 0 uso de exposigao continua ou pulsada, estabilidade
ou movimento do detector, parametros de exposicao, dose total, tamanho efetivo dos pixels,
fonte de raios-X/filtro, pixels tnicos ou agrupados e posigao do paciente. Essas decisoes tedricas
e de engenharia podem levar a resultados clinicos diferentes e recomendagoes de leitura diferen-
tes para os diferentes fabricantes. De particular importancia é a avaliagao de microcalcificagoes
e se se tenta representar com precisao microcalcificagoes por DBT. Devido ao angulo limitado

de varredura, as imagens sao apenas quase 3D (HELVIE] 2011)).

O conjunto de dados pode ser reconstruido para o radiologista ler exibindo diferentes es-
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pessuras. Por exemplo, se uma mama comprimida de 60 cm for reconstruida com espessura de
1 mm, havera 60 fatias para o médico revisar. Se as imagens forem reconstruidas com espes-
suras de 0,5 mm, havera 120 imagens a serem revisadas. Se as imagens forem reconstruidas
com laminas de 10 mm de espessura usando proje¢ao de intensidade maxima (MIP), havera 6

imagens a serem revisadas (HELVIE] 2011).

2.2 ARQUIVOS DICOM (.DCM)

O dataset utilizado neste trabalho providencia as imagens em formato DICOM (.dem), entao

¢é de importancia uma breve analise de como este tipo de arquivo é estruturado.

2.2.1 Definicao de um arquivo DICOM

Todas as modalidades na pratica radioldgica se tornaram digitais e, portanto, lidam com
imagens DICOM. Arquivos de imagem que estao em conformidade com o padrao DICOM sao

representados como .dem (VARMA| 2012).

O DICOM difere de outros formatos de imagem por agrupar informagoes em conjuntos de
dados. Um arquivo DICOM consiste em um cabegalho e conjuntos de dados de imagem com-
pactados em um tnico arquivo. As informagoes dentro do cabecalho sao organizadas como uma
série constante e padronizada de tags. Ao extrair dados dessas tags, é possivel acessar informa-

¢oes importantes sobre as caracteristicas demograficas do paciente, parametros do estudo, etc

(VARMA], 2012).

No interesse da confidencialidade do paciente, todas as informacoes que podem ser usadas
para identifica-lo sao removidas antes que os arquivos DICOM sejam transmitidas pela rede

para fins educacionais ou outros (VARMA| [2012)).

2.2.2 Estrutura de arquivos DICOM

Um arquivo DICOM consiste em um cabecalho e conjuntos de dados de imagem, todos

compactados em um unico arquivo.
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Os primeiros pacotes de informagao em um arquivo de imagem DICOM constituem o ca-
becalho. Ele armazena informacoes demograficas sobre o paciente, parametros de aquisi¢ao
para o estudo de imagem, dimensoes da imagem, tamanho da matriz, espaco de cores e uma
série de informacoes nao relacionadas a intensidade necessérias para que o computador exiba

corretamente a imagem (VARMA| 2012).

O cabegalho é seguido por um tnico atributo que contém todos os dados de intensidade de
pixel da imagem. Esses dados sao armazenados de forma binaria de ponto fixo, com ntmero

de bits dado pelo cabecalho, que podem ser reconstruidos como a imagem usando as suas

informagoes (VARMA| 2012).

As informagoes dos dados do cabegalho sao codificadas dentro do arquivo DICOM de forma
que nao possam ser separadas acidentalmente dos dados da imagem. Se o cabecalho for separado
dos dados da imagem, o computador nao sabera qual estudo de imagem foi realizado ou a
quem pertence, e nao sera capaz de exibir corretamente a imagem, levando a uma situacao
potencialmente médico-legal. Na Figura|2.3|é possivel visualizar uma representacao de como a

estrutura dos arquivos DICOM ¢ dividida (VARMA, [2012)).
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Preamble (128 bytes)

Prefix - ‘'D')'I',’C'/'M’

Header:

Data Set

- Group 1 (0002)
- Element 1 (0002,0000)
- Element 2 (0002,0001)
- Element 3...etc.

- Group 2 (0008)

- Group 3...etc.

Image Pixel Intensity Data:
10011010011001011010100
01011010100100110100110
10100110010110101001001
10011010011001011010100
01011010100100110100111
10100110010110101001........

Figura 2.3. Estrutura de um arquivo .dcm que mostra o que cada parte desse tipo de arquivo contém, como
cabecalho com informagoes médicas gerais e os dados da imagem armazenada no arquivo (VARMA| |2012)).

Para este trabalho, apenas as partes de imagens dos arquivos .dem foram utilizadas para

seu desenvolvimento.

2.3 DATASET DUKEDBT

O dataset utilizado neste trabalho é baseado em um conjunto de dados selecionados de

imagens de tomossintese digital de mama que inclui casos normais, actionable, benignos com-

provados por bidpsia e cancer comprovado por biopsia (BUDA| [2024).
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2.3.1 Tipos de diagnésitcos no dataset

Diagnosticos actionable sao aqueles em que sao necessarios maiores analises nos mesmos a

fim de definir qual seria a classificagdo apropriada (BUDAJ 2024)).

Um tumor benigno é aquele que permanece em seu local primario sem invadir outros lugares
do corpo. Ele nao se espalha para estruturas locais ou para partes distantes do corpo, mas
podem crescer lentamente. Eles geralmente nao sao probleméticos, mas podem crescer bastante

e comprimir estruturas proximas, causando dor ou outras complicagoes médicas (PATELL 2020).

O tumor maligno (i.e. cancer propriamente dito) possui células que crescem de forma
descontrolada e se espalham localmente e/ou para locais distantes. Eles se espalham através
da corrente sanguinea ou do sistema linfatico. Esse espalhamento é chamado de metéastase. A
metastase pode ocorrer em qualquer parte do corpo e é mais comumente encontrada no figado,

pulmoes, cérebro e ossos (PATEL; [2020)).
Um diagnoéstico normal significa que o paciente esta saudével e nao precisa de tratamento.

Como mencionado anteriormente, os exames dessa base da dados possuem até 4 angulos
diferentes para cada paciente - LCC, LMLO, RCC e RMLO. Nos casos de tumor presente,

apenas as vistas em que ele pode ser visualizado sdo incluidas (BUDA, [2024)).

Cada um dos angulos diferentes de cada imagem possui um ntmero de canais diferente, os
quais também sao chamados de slices. Nos casos em que ha tumor presente, a fatia em que os
médicos o identificaram é especificada. Para o trabalho, apenas um dos canais de cada imagem

¢é utilizado e qual deles é selecionado irda depender do diagnostico atribuido.

2.3.2 Estrutura do dataset

Os conjuntos de teste, treino e validagao sao instalados separadamente pelo site em que o
a base de dados esté presente. Como sao uma colecao de arquivos DICOM, eles ocupam uma

quantidade grande de memoria.

O conjunto de dados foi originalmente utilizado para o desafio DBTex2, que contém um

total de 22.032 exames de tomossintese mamaria de 5.060 pacientes, os quais sao dividos em:
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e Teste - 1.721 exames (135,14 GB)
e Treinamento - 19.148 exames (1,42 TB)

e Validacao - 1.163 exames (84,71 GB)

Além dos arquivos DICOM, cada conjunto também possui 3 arquivos .csvs relacionados de
grande importancia — um que indica as paths em que cada arquivo seré salvo, outro que indica
em qual diagnostico o arquivo se encaixa e, por fim, um que indica nao sé as posi¢oes das caixas
delimitadoras (i.e. bounding bozes) que marcam o cancer (que nao foi o foco deste trabalho),

mas também em qual das fatias das imagens o cancer esté presente.

2.3.3 Paper do dataset

O dataset possui junto a ele um paper introdutoério da natureza dos dados funcionam e como
foram pré-processados, além de informagoes breves acerca da rede proposta que usa um modelo

DenseNet para a detec¢ao de tumores nas imagens (BUDA| 2021).

O paper possui foco na tarefa de segmentacao de imagens, enquanto que este trabalho

buscou a classificagao das mamografias em seus diagnosticos corretos.

A partir do que foi apresentado acerca dos tipos de arquivos que foram utilizados no trabalho
e como eles foram obtidos, pode-se agora introduzir os conceitos acerca de Redes Neurais

Convolucionais (CNNs) e as técnicas usadas em conjunto com elas.



CAPITULO 3

APRENDIZADO SUPERVISIONADO COM REDES
NEURAIS CONVOLUCIONAIS

O aprendizado supervisionado é um dos métodos comumente utilizados no aprendizado de
méaquina. Nele um modelo ¢é treinado utilizando um conjunto de dados rotulados, ou seja,
dados onde as respostas corretas sao conhecidas. O objetivo é que o modelo aprenda a mapear
entradas para saidas corretas com base nesses exemplos e que seja capaz de generalizar essa
habilidade para dados novos e nao vistos. Aplicagoes tipicas incluem classificacao de imagens,

reconhecimento de fala e predi¢ao de séries temporais (NG, [2024]).

As Redes Neurais Convolucionais (CNNs) sdo uma arquitetura especifica de redes neurais
artificiais, criadas para processar dados que possuem uma estrutura em grade, como imagens.
Introduzidas inicialmente na década de 1980 (Neocognitron), as CNNs ganharam popularidade
a partir de 2012 (AlexNet), ao demostrar um desempenho superior em tarefas de reconhecimento
de imagem. Utilizando camadas convolucionais, essas redes conseguem capturar caracteristicas
espaciais e padroes locais das imagens de maneira eficiente, o que permite a construcao de
modelos que podem reconhecer objetos, rostos e realizar diagnésticos médicos com alta precisao

(KUMAR) [2021).

Neste capitulo, serao apresentados os funcionamentos de aprendizado supervisionado e
CNNs e como podem ser utilizados para resolver problemas complexos de visao computacional,
especificamente de diagnostico de imagens médicas de tomossintese. Também serao apresen-
tadas ideias importantes acerca de aprendizado por transferéncia (i.e. transfer learning) e as

arquiteturas utilizadas para este trabalho.
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3.1 REDES NEURAIS CONVOLUCIONAIS

Redes Neurais Convolucionais (CNNs) sdo um tipo de Rede Neural Artificial (ANN) que
possuem alta capacidade em reconhecimento de padroes. Por esse motivo, sao usadas princi-
palmente para aplicagoes em visao computacional como deteccao de objetos e classificacao de
imagens. Uma arquitetura de uma CNN simples para classificacao de digitos é representada
na Figura [3.1] Nota-se que ela possui uma camada convolucional com uma néao-linearidade
(ReLU), uma camada de pooling seguida de uma camada completamente conectada, seguida
de uma camada de saida com 10 possiveis valores, que representam os 10 possiveis digitos que

a rede pode classificar a imagem de entrada.

convolution
wi/ReLu poaling fully-connected
| |
/ AR
% : 0
\_‘_/ 9
put output

fully-connected
w/! ReLu

Figura 3.1. Arquitetura simples de uma CNN com apenas 5 camadas (O’SHEA; NASH, [2015).

3.1.1 Camadas convolucionais e filtros

O que principalmente diferencia as CNNs de ANNs padrao é o fato de que aquelas possuem
camadas escondidas chamadas de camadas convolucionais, nas quais ocorre a operacao de con-
volugao. Assim como em ANNs, essas camadas possuem neuroénios que recebem uma entrada,
aplicam uma operacao nela junto com uma nao-linearidade e geram uma saida que sera passada

para frente da rede (O’SHEA; NASH| 2015).

As camadas convolucionas das CNNs possuem filtros, os quais também sdo chamados de
kernels, que sao responsaveis por aplicar a operacao de convolugao na entrada dos neuronios.

Sao esses filtros que, em esséncia, sao responsaveis pelo realce de padroes como bordas, formas
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e objetos em imagens. De forma geral, as camadas convolucionais inicias sao responsaveis
por detectar padroes mais simples de imagens (e.g. bordas), enquanto que aquelas que estao

mais profundas na rede reconhecem caracteristicas mais complexas (e.g. objetos inteiros) (NG|,

2024).

Os filtros das camadas convolucionais sao matrizes de dimensao definida (geralmente 3x3,
5x5), em que cada uma de suas células tem um valor associado, que representam os pesos
que serao responsaveis pela deteccao de caracteristicas nas imagens. De forma geral, os pesos
dos kernels sao inicializados aleatoriamente e atualizados durante um processo chamado back

propagation (NG, 2024]).

Os filtros associados as camadas convolucionais que aplicam a operacao de convolucao em
suas entradas, sobrepondo pequenas partes das imagens definidas pela dimensao do kernel,

comegando do topo esquerdo, e deslizando-se aos poucos em quantidades definidas (i.e. stride)

(NG|, 2024).

A operagao de convolugao que o filtro aplica é definida por uma multiplicacao de elemento
por elemento na regiao que o kernel sobrepoe seguida de uma soma dos produtos, a qual pode

ser visualizada na Figura 3.2 (REYNOLDS| 2019)) (NG|, 2024)).

1j]0f(1jo|1}|0 11011 1(2]3 31
of1f1]o|1]1 ol1|1|*k|4]|5|6|—m
1{o0f1Jo|1|0O 1101 71819

1(0j1|1|1]0 Image patch Kernel

ol 110l 1|2 (Local receptive field) (filter) Output
1101|010

Input

Figura 3.2. Representagao do processo de convolucao em CNNs. Na figura apenas a primeira etapa é repre-
sentada, a qual gera o primeiro pixel da imagem de saida da camada. Para os pixels subsequentes, o mesmo

processo é repetido. Na figura, o asterisco representa uma operagao de produto interno entre o patch e o kernel
(REYNOLDS; [2019).

A partir do apresentado na Figura [3.2], percebe-se que ocorre uma redugdo nas dimensoes
da saida da operacao de convolucao. Sem operagoes adicionais, a imagem resultante tera as

seguintes dimensoes (em um canal):

m—f+1)x(n—f+1) (3.1)
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em que n representa as dimensoes originais da entrada e f representa as dimensoes do filtro. E

possivel realizar operagoes conjuntas com a convolugao para alterar a dimensao da imagem da

saida, como padding e stride, que sao apresentados a seguir (REYNOLDS| 2019) (NG, 2024)).

3.1.2 Padding

Padding consiste em adicionar bordas de zeros ao redor da imagem de entrada da camada,
o que, consequentemente, fard com que a saida fique com dimensoes maiores. Além disso,
essa operagao ira incluir mais informacoes acerca das bordas da imagem original, visto que

convolugoes serao aplicadas mais vezes nelas (quando nao héa padding o filtro so6 vé, por exemplo,
a borda esquerda superior da imagem uma vez) (NG| 2024)).

A forma mais comum de aplicar padding é por meio da adicao de zeros nas bordas da

imagem de entrada (i.e. zero-padding), que é representada na Figura [3.3] (D] [2021) (NG| 2024).

Kernel
0 60 | 113 0 0 -1 [v] 114 | 328 | -26 .:
0 73 1121 0 a1, 5 =]
0 |131 |99 | 70 | 129|127 | © 0 -1 0

0 80 |57 |115| 69 | 134 | O

0 | 104126 (123 | 95 | 130 | O

Figura 3.3. Exemplo de operagao de convolugao com zero-padding, usada quando nao deseja-se que a imagem
de saida de uma camada convolucional tenha suas dimensoes reduzidas demais ou para incluir mais vezes os
pixels das bordas na operacao de convolugao (]E, 2021).

Uma entrada que teve uma convolugao com padding tera a seguinte saida:

m—f+2p+1)x(n—f+2p+1) (3.2)

em que p representa o numero de bordas adicionadas via padding.
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3.1.3 Stride

Além da operagao de adigao de bordas, também hé a possibilidade de adi¢ao de stride nas
camadas convolucionais, que consiste em quantos pixels o filtro ira deslizar pela imagem apoés
uma convolucao, tanto da esquerda para a direita como também de cima para baixo. Como

o kernel ira4 pular partes da entrada, a saida resultante terd uma redugao em suas dimensoes

(REYNOLDS, 019) (NG|, [2024).

A partir disso, a dimensao final de uma imagem apds uma convolucao tanto com padding

como também com stride sera:

(E;:lﬁt2£_+1> y (E;:lﬁtzﬂ_%1> (3.3)

s s
em que s representa quantos pixels serao pulados na operagao de stride aplicada (REYNOLDS|
2019) (NG, 2024).

Muitas das imagens que sao colocadas nas entradas de CNNs terao mais do que um canal
(e.g. imagens PNG com canais RGB). O nimero de canais que o filtro que aplicara a convolugao
na imagem deve possuir o mesmo nimero de canais que ela. A operagao serd entao realizada

sobre todo o volume da entrada, que é representada na Figura (REYNOLDS, [2019) (NG|,

2021).

3x3x3 pha

6Ex6x3

Figura 3.4. Representacio de operagdo de convolugdo com os canais RGB da imagem representados. Nesta
figura o asterisco representa a operagéo de convolugao sendo aplicada (REYNOLDS]|, 2019)).

Pode-se perceber da Figura 3.4 que cada canal do filtro iré aplicar uma convolucao em cada
respectivo canal da imagem e, ao final, o resultado é somado em apenas um canal na saida.
Para aumentar o volume do resultado, deve-se utilizar um maior nimero de filtros, que resulta

na seguinte dimensao para a saida:



3.1 — REDES NEURAIS CONVOLUCIONAIS 20

(n_f+2p+1)x<n_f+2p+1)xn’c (3.4)

S S

em que n., representa o nimero de filtros utilizados na camada. Considerando que o nimero de
células dos filtros representam os pesos que serao treinados, tem-se entao que a quantidade de

parametros treinados em cada camada convolucional é dado por:

(f x fxn.+1)xn, (3.5)

em que n. representa o numero de canais em cada filtro. Apods a camada convolucional, é de
praxe aplicar uma nao-linearidade diretamente depois nos pesos e nos viéses (i.e. biases), muito
comumente a Rectified Linear Unit (ReLU), que é uma fungao que tem valor zero para qualquer

entrada negativa e para qualquer entrada positiva ela retorna o mesmo valor (NG, [2024).

3.1.4 Pooling

No geral, CNNs sao compostas nao s6 das camadas convolucionais, mas também de camadas
de pooling e camadas completamente conectadas (FCL). Cada uma dessas camadas possui uma

fungao especifica na rede (NG, [2024)).

Como mencionado anteriormente, camadas convolucionais serao responsaveis pela deteccao
dos padroes na imagem de entrada da rede por meio de filtros, comumente seguida de uma
nao-linearidade (i.e. fungao de ativacao), principalmente a Rectified Linear Unit (ReLU) (NG|
2024).

Camadas de pooling sao responséaveis por realizar uma reducao na resolugao da imagem
de entrada (i.e. down-sampling) a fim de diminuir o nimero de pardmetros das operagoes

e destacar determinadas caracteristicas das imagens. Dentre os tipos operagoes de pooling,

pode-se destacar (SAVYAKHOSLA| [2023):

e Max Pooling - Pega o valor maximo dentro de uma regiao definida por um filtro, geral-

mente com stride. Usado para destacar as caracteristicas mais proeminetes da regiao,

assim como visto na Figura [3.5] (SAVYAKHOSLA| 2023).
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Max Pool
—

Filter - (2 x 2)
Stride - (2, 2)

Figura 3.5. Representacao de Mazx Pooling com filtro 2x2 e um stride de 2 (SAVYAKHOSLA| 2023).

e Average Pooling - Calcula o valor médio dos elementos presentes dentro da regiao de um
filtro, geralmente com stride. Destaca a média das caracteristicas dentro da regiao do

filtro. Essa operagao ¢é representada na Figura 3.6 (SAVYAKHOSLA| [2023).

Average Pool
—

Filter - (2 x 2)
Stride - (2, 2)

Figura 3.6. Representacao de Average Pooling com filtro 2x2 e stride de 2 (SAVYAKHOSLA| [2023)).

e Global Pooling - Reduz cada canal de uma entrada para um valor tinico. Um imagem
de dimensdes ny X n, X n. apods esse tipo de pooling fica com dimensoes 1 x 1 X n..

Comunmente usado para pegar ou o valor maximo ou valor médio de cada um dos canais

7'

3.1.5 Camadas completamente conectadas

Camadas completamente conectadas sao um tipo de camada de rede neural onde cada

neurénio esté conectado a todos os neurdnios da camada anterior. Isso significa que todas as

caracteristicas de entrada sao usadas para calcular cada caracteristica de saida (NG| 2024)).

Cada neurénio em uma camada totalmente conectada calcula uma soma ponderada de suas
entradas, adiciona o viés e entao aplica uma funcao de ativagao. A representacao matemaética

para uma camada totalmente conectada pode ser representada como:
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y = f(wr +0) (3.6)

em que y é um vetor de saida da camada que contém informagoes de cada neurdnio, f representa
a funcao de ativacao usada, w é a matriz de pesos, = é o vetor das entradas da camada e b é

um vetor dos viéses (NG| 2024).

Camadas completamente conectadas sao responsaveis pela interpretacao das caracteristicas
reconhecidas pelas camadas convolucionais. Geralmente sao colocadas mais ao final das redes
para auxiliar na classificacao final junto com uma camada softmax se houver mais de duas

possiveis classes, caso contrario ¢ comum utilizar uma saida com fungao de ativagao sigmoide

para classificagdo binaria (O’SHEA; NASH, 2015) (NG, [2024)).

Uma representagao de uma FCC simples é mostrada na Figura [3.7] Destaca-se como nes-
ses tipos de camadas cada neurdnio é conectado com cada um dos neurdnios das camadas

subsequentes.

Input Layer Hidden Layer

Output Layer

Figura 3.7. Representacao de uma FCL com uma camada de entrada, sua camada escondida de 2 neurdnios
e uma saida (O’SHEA; NASH| 2015]).
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3.2 APRENDIZADO EM CNNS

Assim como em ANNs, CNNs utilizam técnicas como descida por gradiente (i.e. gradient
descent), forward propagation (i.e. forwardprop) e back propagation (i.e. backprop), as quais

utilizam funcgoes de custo e otimizadores associados.

3.2.1 Forward propagation

Forwardprop é um processo em que os dados de entrada sao processados através das cama-
das de uma rede neural para computar a saida da rede. Os dados de entrada passam pelas
camadas da rede, com cada camada realizando operagoes como transformagoes lineares (somas

ponderadas) e fungoes de ativagao para gerar valores para as camadas subsequentes (NG} 2024)).

O forwardprop € um processo que é comumente inicializado com pesos com valores aleatorios
e viéses com zeros (NG| 2024). No caso de aprendizado transferido (transfer learning), pode-se

ou utilizar os pesos ja treinados da rede original ou retreiné-los por completo ou parcialmente.

Apos cada etapa de forwardprop, ocorrera subsequentemente o backprop, o qual depende da

descida por gradiente e de uma funcao de custo.

3.2.2 Funcgdes de perda e de custo

Quando trabalha-se com redes neurais, sao utilizadas fungoes de perda e de custo para que
seja possivel o aprendizado da rede. A tltima camada tera como saida valores calculados de,
por exemplo, uma classificacao. A funcao de perda seré responséavel por realizar a comparacao
entre o valor calculado e o valor real da entrada da rede. A funcao de custo é a média de todas

as perdas dos exemplos usados no treinamento da rede (NG, [2024]).

Busca-se entao minimizar o valor da funcao de custo a partir de ajustes nos pesos e vieses,
o que resulta na maior proximidade naquilo que a rede prevé e os valores reais de sua entrada

(LECUN] 2000).

Duas fungoes comumente utilizadas sao a de entropia cruzada categoérica para problemas

multi-classe e entropia cruzada binaria para problemas de classes binarias. Respectivamente,
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sao definidas, para um tnico exemplo, por:

L==2 yilog(i) (3.7)
L= —[ylog(y) + (1 —y)log(1l — g)] (3.8)

em que K representa o nimero de classes, y representa o valor real e § representa o valor
previsto pela rede. Para que os pesos sejam atualizados e ocorra uma melhoria no resultado
de fungao de perda, utiliza-se em conjunto o forwardprop com o backprop para a descida por

gradiente (NG| 2024)).

3.2.3 Descida por gradiente e backprop

O aprendizado por gradiente baseia-se no fato de que geralmente é muito mais facil minimi-
zar uma fungao continua e razoavelmente suave do que uma fungao discreta (combinatoria). A
funcao de custo pode ser minimizada estimando o impacto de pequenas varia¢oes nos valores
dos parametros na fungao de perda (pesos e vises). Isso é medido pelo gradiente da fungao de

perda em relagao aos parametros (LECUN]| [1998).

Algoritmos de aprendizado eficientes podem ser elaborados quando o vetor gradiente pode
ser calculado de forma analitica (em oposi¢ao ao calculo numérico através de perturbagoes).
Esta é a base de numerosos algoritmos de aprendizado baseados em gradiente com parametros

de valores continuos (LECUN] [1998)).

O backprop consiste em atualizar os pesos e vieses a partir do negativo do gradiente da
funcoes de custo, visto que ele apontara para um possivel minimo da funcdao. No caso de
CNNs, 0s pesos e viés sao matrizes que podem ter diversas dimensoes, visto que dependem dos
fatores mencionados anteriormente. Uma representagao da descida de gradiente é representada

na Figura (GUDIMALLA] 2021) (NG, [2024)).
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Cost

. Learning step

Minimum

Random
initial value

@>

Figura 3.8. Visualizac¢do de descida por gradiente com inicializa¢do aleatoria de valores. A figura mostra como
o valor da funcdo de custo ira reduzir até que chegar em um valor minimo, ou seja, convergir (GUDIMALLA|
2021)).

O grau em que os valores dos pesos e dos vieses sao atualizados dependem de um parametro
chamado taxa de aprendizagem (i.e. learning rate). As formas com que esses parametros sao
atualizados sao definidos pelo otimizadores aplicados (LECUN] 1998) (NG| 2024). Antes de
falar deles, convém diferenciar os conceitos de aprendizado estocastico e aprendizado por lotes

(i.e. batches).

3.2.4 Tipos de aprendizado

De forma geral, existem trés tipos principais de formas em que uma rede neural pode

aprender; aprendizado estocastico, aprendizado em batches e aprendizado por mini-batches.

Deep Learning tende a apresentar melhor desempenho quando treinado com grandes quan-
tidades de dados, o que pode resultar em tempos de treinamento muito longos. Por esse motivo,
a escolha de algoritmos eficientes é importante para lidar com esse grande volume de dados
e otimizar o processo de treinamento (NG, 2024). Durante o treinamento da rede, o modelo
analisa repetidamente os mesmos dados de um conjunto de treinamento, passando por varias
iteragoes conhecidas como épocas (i.e. epochs). Cada época representa uma passagem com-
pleta por todo o conjunto de dados de treinamento, o que permite que o modelo ajuste seus

parametros e melhore seu desempenho a cada ciclo.

Ao utilizar uma base de dados com 5 milhoes de exemplos de treinamento, se a rede analisar
todos eles de uma vez pode levar uma quantidade muito grande de tempo para ocorrer a

atualizagao de parametros. Por outro lado, a fungao de custo ira ser reduzida a cada época de



3.2 — APRENDIZADO EM CNNSs 26

forma suave, o que deixa as condigoes de convergéncia mais claras e as analise de atualizacao

de pesos e viéses mais simples (LECUN]| 2000).

Esse processo em que a rede visualiza o dataset por completo antes de atualizar os parame-

tros é chamado de aprendizado por batches, que é representado na Figura (NG, [2024)).

Batch gradient descent

cost

\J

# 1terations

Figura 3.9. Representacio de descida por gradiente em batch. E notével como a funcdo de custo é reduzida
por época de forma suave até eventualmente chegar em um minimo (NG| 2024)).

Por outro lado, existe o treinamento estocastico, que consiste em atualizar os parametros
da rede a cada exemplo que ela visualiza. Esse tipo de aprendizado tende a ser muito mais
rapido que o aprendedizado em batch, resulta em solugoes melhores e permite uma visualizacao
rapida das mudangas que ocorrem no treinamento (LECUN| 2000). Apesar disso, essa técnica é
extramemente ruidosa e pode nao atingir um verdadeiro minimo global, apenas ficara flutuando

em torno dele (NG| 2024)).

Por fim, existe o treinamento em mini-batches, o qual consiste em separar o conjunto de
treinamento em pacotes menores, o qual a rede ird analisar e atualizar seus parametros ao
visualizar por inteiro cada um deles. Isso torna esse processo um meio termo entre o aprendizado
estocastico e o em batch. Ele sera um pouco mais ruidoso e rapido que o segundo, mas diferente
do primeiro possui maior probabilidade de atingir um minimo global e, por esses motivos, ¢é

mais comumente utilizado (NG|, 2024)). Esse tipo de aprendizado poder visualizado na Figura

B.10
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Mini-batch gradient descent

h

cost

»

mini batch # (t)

Figura 3.10. Representacao de descida por gradiente em mini-batch. Percebe-se maior ruidosidade no exemplo,
mas mesmo assim ele é capaz de atingir um minimo global (NG, [2024)).

Com o conceito desses tipos de aprendizados em mente, pode-se agora introduzir o conceito

de otimizadores em redes neurais.

3.2.5 Otimizadores

Uma das formas mais simples de atualizar os valores dos parametros é por meio da descida

por gradiente estocastica (SGD), que é definida por:

B 0J(w, b)
W = Wp_1 — Q N (3.9)
0J(w, b)
=b, 4 —— 1
by = b1 —a—— (3.10)

em que J(w, b) representa a fung¢ao de custo utilizada pela rede, w representa a matriz de pesos,
b é a matriz de viéses e « representa a taxa de aprendizado. O subindice k representa em qual

iteragao de mini-batch a rede se encontra (LECUN| 1998).

Para facilitar a notagao, as derivadas parciais dos pesos e vieses serao representadas agora

em diante como dw e db.

Uma outra forma comum de otimizar os pesos e vieses de uma rede é por meio do uso de
uma descida por gradiente com momento, que é definida por deixar o processo de aprendizado

menos ruidoso e pode facilitar o processo de encontrar um minimo global:
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Vawk = BVawr—1 + (1 — B)dw (3.11)
Vave = BVapr—1 + (1 — 3)db (3.12)
wg = Wi—1 — Vi (3.13)

b = be_1 — AV (3.14)

em que [ representa o coeficiente de momento, o qual pode ser variado. No geral, utilizar

f = 0,9 traz bons resultados para o otimizador (NG| 2024).

Além desses otimizadores, existe ainda um alternativo chamado Root Mean Square propaga-
tion (RMSprop), o qual é caracterizado por, assim como a descida por gradiente com momento,

acelerar o processo de encontrar um minimo global (NG| 2024).

O algoritmo de RMSprop é baseado na atualizacao de parametros por meio da inclusao de
uma divisdo que leva em considera¢ao médias ponderadas exponecialmente (i.e. exponentially

weighted averages):

Sawr = BSawp_1+ (1 — B)dw? (3.15)
Savk = BSapp—1 + (1 — B)db* (3.16)
W = Wp_1 — Q dw (3.17)

€+ vV Suw

db
€+ vV Sa

em que o $ do RMSprop nao possui a mesma definicao que na descida por gradiente por

bk = bk,1 — (318)

momento. Aqui ele representa um parametro de média movel (i.e. moving average). O € é um
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valor muito baixo que existe para evitar divisoes por zero, o qual geralmente possui valor fixo

de 10~ (NG| [2024)).

Por fim, um outro otimizador muito utilizado é o Adam, o qual, em esséncia, junta RMSprop

e descida de gradiente com momento:

Viwk = B1Vawg—1 + (1 — B1)dw

Vv = B1Vapp—1 + (1 — B1)db

Sawr = BaSawr—1+ (1 — Bo)dw®

Savx = B2Sap 1+ (1 — Bo)db?

VCorrigido _ ‘/dw
dw - t
1=p

Va

Corrigido

1% —
db t

1—py

SCorrigz’do _ de
dw - t
1 -7

SCorrigido _ Sap
db - t
1 =75

Corrigido
Vi

Corrigido
e+/S;0

Corrigido
de

Corrigido
e+4/S5""

W = Wg—1 —

bk = bk—l —

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

em que « é a taxa de aprendizagem, [3; é p coeficiente de momento (i.e. chamado de primeiro

momento), $; ¢ a média movel (i.e. segundo momento), € ¢ um valor fixo (107®) e ¢ representa
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a atual iteracao do mini-batch. Os valores com superindice C'orrigido sao termos de correcao
de viés (i.e. bias correction), que é uma técnica usada para ajustar a estimativa de momento e

de média movel durante a inicializagao do algoritimo de backprop (NG 2024)).

3.3 FORMAS DE AVALIACAO APOS O TREINAMENTO

Para avaliar a eficacia do treinamento da rede neural, sao utilizadas diferentes métricas e
calculos baseados nos resultados obtidos ao aplicar o modelo na base de teste. Essas métricas
permitem uma analise detalhada do desempenho do modelo e ajudam a identificar pontos fortes

e areas que necessitam de melhorias (NG| 2024)).

As métricas de avaliagdo geralmente baseiam-se nos conceitos de verdadeiros positivos ( True
Positives - TP), verdadeiros negativos (True Negatives - TN), falsos positivos (False Positives
- FP), falsos negativos (False Negatives - FN), positivos (Positives - P) e negativos (Negatives
- N) (NG}, 2024):

e True Positives (TP) - Sao os casos em que o modelo previu corretamente um exemplo
da classe A como pertencente a classe A. Em um problema de classificacao binéria, se
a classe positiva representa a presenca de uma doenca, um verdadeiro positivo seria um

paciente que tem a doenca e foi corretamente identificado pelo modelo.

e True Negatives (TN) - S@o os casos em que o modelo acertou ao nado classificar um
exemplo da classe A como nao pertencente a classe B. Um verdadeiro negativo seria um
paciente que nao tem a doenca e foi corretamente identificado como nao tendo a doenca

pelo modelo.

e Fualse Positives (FP) - Sdo os casos em que o modelo previu incorretamente um exemplo
de uma outra classe B como pertencente a classe A. Um falso positivo seria um paciente

que nao tem a doenca, mas o modelo previu que ele tem.

e Fulse Negatives (FN) - Sao os casos em que o modelo previu incorretamente um exemplo
da classe A como pertencente a uma outra classe B. Um falso negativo seria um paciente

que tem a doenca, mas o modelo previu que ele nao tem.

e Positives (P) - Sao todos os casos que pertencem a uma determinada classe (T'P + F'N).
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e Negatives (N) - Sao todos os casos que nao pertencem a uma determinada classe (T'N +

FP).

3.3.1 Acuracia

A acuracia é uma medida da proporgao de previsoes corretas em relagao ao total de previsoes.

Ela pode ser calculada a partir de (NG| 2024)):

TP+TN

2
P+N (3.29)

3.3.2 Especificidade

A especificidade é responsavel por medir a proporc¢ao de verdadeiros negativos em relacao
ao total de instancias que realmente pertencem a classe negativa, ou seja, ¢ a capacidade do
modelo de identificar corretamente as insténcias negativa, que pode ser calculada como (NG|,

2024):

TN

TN+ FP (3:30)

3.3.3 Sensibilidade

A sensibilidade mede a proporc¢ao de verdadeiros positivos em relagao ao total de instancias
que realmente pertencem a classe positiva. Em outras palavras, é a capacidade do modelo de
identificar corretamente as instancias positivas. Ela representa a métrica mais importante para
esse trabalho, visto que seu objetivo é a deteccao correta de casos de cancer. Essa grandeza é

calculada a partir de (NG, [2024)):

TP

—_— 31
TP+ FN (3:31)
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3.3.4 Precisao

A precisao é uma métrica que mede a proporc¢ao entre os verdadeiros positivos em relagao

ao todal de classifica¢oes verdadeiros positivos e falsos positivos, ou seja (NG, [2024):

TP

TP+ FP (3:32)

3.3.5 F1-score

O F1-score representa a média harmonica da precisao e da sensibilidade. A média harmoénica
¢é utilizada pois penaliza valores extremos, o que garante que um baixo valor de precisao ou
sensibilidade resulte em um F1-score baixo. Essa grandeza pode ser calculada a partir de (NG|,

2024):

2TP
2P+ FP+ FN

(3.33)

3.4 TECNICAS DE REGULARIZACAO

Técnicas de regularizagao sao métodos usados para prevenir o overfitting, ou seja, para
melhorar a capacidade do modelo de generalizar bem para dados nao vistos pela rede. O
overfitting ocorre quando o modelo se ajusta muito bem aos dados de treinamento, mas nao
consegue ter um bom desempenho em novos dados. As técnicas de regularizagao ajudam a

controlar a complexidade do modelo e aprender representagoes mais robustas (NG|, 2024]).

3.4.1 Regularizacdo L2

A regularizacao L2 funciona a partir da adigdo de um termo de penalidade (\) & funcéo
de perda que o modelo utiliza. Esse termo de penalidade é proporcional & soma dos valores
quadrados de todos os pesos no modelo. Ele possui o objetivo de for¢car o modelo a ter pesos

com valores baixos, 0 que torna-o mais simples e com menor probabildade de sofrer overfitting
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(NG|, 2024).

O termo de penalidade é um hiperparametro que pode ser definido manualmente e, no geral,

requer ajustes finos para encontrar o valor 6timo para determinada tarefa (NG| 2024)).

Levando-se em consideragao uma funcao de custo genérica com regularizacao L2 aplicada,

tem-se que:

1 A
Tw,b) = — 37 LGP, y) + |l (3:31)

Nx

lwll3 =D w? =w'w (3.35)

Jj=1
em que m representa o numero de exemplos do dataset, ¢ representa o i-ésimo exemplo de
trei to, A\ éot d larizad 2¢ lidi d t
reinamento, A é o termo de regularizador, ||w||5 é a norma euclidiana do peso, que representa

a soma ao quadrado de todos os pesos e 7, representa o nimero total de pesos (NG| 2024]).

Ao considerar a as matrizes de pesos utilizadas em redes neurais, tem-se entao que:

L
1 NORNG A
J(w!P bl = — Zﬁ(y( ),y @) + 5 Z e[ |2 (3.36)
; =1

pli=11 5l
o3 =3 (w)? (3.37)

i=1 j=1

pli=11 it

will = > (wi)? (3.38)

i=1 j=1
em que L representa o numero total de camadas da rede, [ representa a camada atual e a matriz

da norma dos pesos é chamada de norma de Forbenius (NG} [2024]).

Por fim, nesse tipo de regularizagao os pesos serao entao atualizados da seguintes forma:

A

dwh = b.p. + =Wl (3.39)
m

wl = Wl — adwlt (3.40)
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em que b.p. é o valor resultante do back propagation. A regularizagao L2 é também chamada
de weight decay pois forca com que o os pesos tenham valores menores devido ao termo de

regularizagao (NG| 2024).

3.4.2 Dropout

A técnica de regularizacao de dropout desativa aleatoriamente uma fracao de neur6nios
(exceto os da camada de saida) na rede em cada iteracao. Esses neurdnios desativados sao
ignorados tanto durante a etapa de forwardprop quanto durante a etapa de back propagation.
A probabilidade de desativacao é determinada por um hiperparametro chamado taxa de dropout.
E importante ressaltar que esse processo é realizado apenas na etapa de treinamento da rede

(NG|, [2024).

Esse tipo de regularizacao funciona porque evita que a rede se concentre excessivamente em
determinadas caracteristicas, forcando-a a distribuir os pesos de forma mais uniforme. Esse

processo pode ser visualizado na Figura [3.11]

(a) Standard Neural Net (b) After applying dropout.

Figura 3.11. Representacao de dropout em redes neurais, em que, durante o treinamente, neurénios aleatorios
da rede sao desativados a fim de reduzir overfitting (NG, [2024).

3.4.3 Early stopping

FEarly stopping é uma técnica de regularizagao que consiste em interromper o treinamento
antes que o modelo comece a memorizar os dados do conjunto de treinamento e perca desem-

penho nos dados de validagao (NG| 2024).
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Esse método envolve o uso de um critério de parada chamado paciéncia, o qual monitora
continuamente a perda de validagdo por um nimero determinado de épocas. Se a perda de
validacao nao melhorar, o treinamento ¢é interrompido e os pesos da época com a melhor perda

de validagao s@o recuperados e salvos no modelo para uso nos testes (NG, [2024)).

Em suma, o early stopping é utilizado para garantir que o modelo treinado tenha uma
melhor capacidade de generalizagao e nao memorize os dados de treinamento. O processo de

interrupg¢ao do treino pode ser visto na Figura |3.12

Error

Validation set

1

1

1

) «

) Training set
]

0 Early Number of
stopping iterations

Figura 3.12. Representacao de early stopping, em que o treinamento é interrompido se a funcao de perda
de validagdo nao melhorar ap6s um numero pré-definido de épocas consecutivas, conhecido como paciencia
(GENCAY], 2021) (NG} [2024).

3.4.4 Data augmentation

A técnica de regularizacao de data augmentation envolve a criacao de novas amostras de
dados de treinamento a partir de transformacoes dos dados existentes. Essas transformacoes
podem incluir operacoes como rotacoes, translacoes, cortes, mudancas de escala, ajustes de
brilho e contraste, adi¢cao de ruido, etc. O objetivo é aumentar a diversidade dos dados de

treinamento e, assim, melhorar a capacidade de generalizacao do modelo (NG| 2024).

Essa forma de regularizagao é utilizada principalmente quando ha poucos dados de treina-
mento que a rede possa utilizar ou quando ha um desbalanceameneto muito grande de dados.
Ela funciona porque expande o conjunto de treinamento de forma artificial, permitindo que

a rede neural aprenda a reconhecer padroes mais gerais e robustos, o que ajuda a previnir o
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overfitting (NG|, [2024). Algumas operagoes de data augmentation podem ser visualizadas na
Figura|3.13

Original Image
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) De-colorized
-——.I! Data Augmentation |

Edge Enhanced

Salient Edge Map

A
v
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Figura 3.13. Representagao de data augmentation, em que diferentes operagoes sao aplicadas nas imagens de
treinamento a fim de gerar uma maior base de dados artificial e reduzir overfitting (HOSNI, 2023) (NG, 2024).

3.4.5 Funcao de perda ponderada

O uso da fungao de perda ponderada em CNNs é uma técnica que modifica a funcao de
perda com o objetivo de priorizar certas classes em detrimento de outros durante o treinamento.

Assim como o data augmentation, ela é util em casos de bases de dados desbalanceados, onde

existem classes sub-representadas em relagao as outras (NG| [2024)).

Essa forma de regulariacao consiste em adicionar pesos adicionais na fun¢ao de perda, o
que forga com que erros em uma classe sejam mais custosos do que em outra (e.g. classificar

um caso de cancer como normal). Em outras palavras, quando a rede cometer um erro mais

custoso, o resultado da funcao de perda ird aumentar (NG| 2024)).

Por exemplo, a perda de entropia cruzada binaria ponderada sera dada por:

L = —[woy; log(ys) + w1 (1 — ;) log(1 — ;)] (3.41)
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N

=— 3.42
Ni X Nelasses ( )

Wi

em que wy e wy sao os pesos atribuidos para cada classe, os quais sao calculados a partir da
Equagao 4.42, na qual N representa o nimero total de exemplos, N; representa o nimero de

exemplos da i-ésima classe e ngqsses representa a quantidade de classes diferentes (NG| 2024).

3.5 TRANSFER LEARNING

Ao construir uma aplicacao de visao computacional, em vez de treinar os pesos da rede do
zero a partir de uma inicializacao aleatoria, frequentemente é possivel obter um desempenho
muito mais rapido (e melhor) ao utilizar pesos que foram previamente treinados por outra rede

e usé-los em outra tarefa de interesse, processo chamado de transfer learning (NG| 2024]).

E possivel realizar o congelamento dos pesos e vieses das redes baixadas para que eles nao
sejam alterados durante o treinamento. Nesses casos, a ultima camada de classificacao original
é substituida por uma camada propria, especifica para a nova aplicagao. Dessa forma, apenas
a nova camada sera treinada do zero, enquanto o restante da rede mantém os conhecimentos
adquiridos previamente. Isso ¢ 1til pois a rede original pode ter sido treinada para um propoésito

diferente ou possui um numero de classes distinto (NG, [2024]).

Congelar a rede inteira é geralmente feito quando nao se tem uma quantidade de dados
elevada. Quando a base de dados é grande, é comum descongelar alguns dos tdltimos layers da
rede, permitindo que ela aprenda mais sobre os detalhes finos das novas entradas. O desconge-

lamente gradual da rede também é comum como uma forma de fino ajuste, para melhorar seu

desempenho (NG| [2024)).

Além de descongelar aos poucos a rede, também é de praxe adicionar algumas camadas
completamente conectadas apds as originais e antes da nova camada de classificacao, a fim de

tentar extrair mais informagoes sobre as entradas (NG, [2024)).

Existem diversas redes open-source que podem ser baixadas diretamente. Para este projeto,

as principais utilizadas foram a DenseNet-121, ResNet-50 e a VGG-16.
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3.5.1 DenseNet-121

Uma DenseNet é uma uma arquitetura que é definida por um padrao de conectividade
simples a fim de garantir o fluxo méximo de informacoes entre as camadas na rede. Ela conecta
todas as camadas (com tamanhos de mapas de caracteristicas correspondentes) diretamente
umas as outras. Para preservar a natureza de alimentacao direta, cada camada obtém entradas
adicionais de todas as camadas precedentes e passa seus proprios mapas de caracteristicas para

todas as camadas subsequentes. A Figura[3.14]ilustra uma camada densa de forma esquemaética.

(HUANG, 2016).

Figura 3.14. Um bloco de camada densa de 5 layers com uma taxa de crescimento de k = 4. Cada camada
utiliza todos os mapas de caracteristicas precedentes como entrada. (HUANG], [2016)).

As DenseNets nunca combinam caracteristicas por soma antes de serem passadas para uma
camada. FEm vez disso, elas juntam caracteristicas por meio de concatenagoes. Assim, a
camada n tem n entradas, as quais consistem nos mapas de caracteristicas de todos os blocos
de convolucao precedentes. Seus proprios mapas de caracteristicas sao passados para todas as
L — n camadas subsequentes. Isso introduz L(L + 1)/2 conexdes em uma rede de L camadas,

em vez de apenas L, como nas arquiteturas tradicionais. A Figura|3.15 mostra uma arquitetura

de uma DenseNet com 3 blocos densos (HUANG], 2016).
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Figura 3.15. Um DenseNet com trés blocos densos. As camadas entre dois blocos adjacentes sao referidas como
camadas de transicao e alteram os tamanhos dos mapas de caracteristicas via convolugao e pooling. (HUANG

2016).

DenseNets precisam de menos parametros do que as redes convolucionais tradicionais, pois
nao ha necessidade de reaprender mapas de caracteristicas redundantes. Arquiteturas tradici-
onais de alimentagao direta podem ser vistas como algoritmos com um estado, que é passado
de camada em camada. Cada camada 1é o estado de sua camada precedente e escreve para a
camada subsequente. Ela modifica o estado, mas também passa informagcoes que precisam ser

preservadas. Isso faz com que DenseNets sejam capazes de diferenciar explicitamente entre a

informacao que é adicionada a rede e a informacao que é preservada (HUANG] 2016).

Além de melhor eficiéncia de parametros, uma grande vantagem das DenseNets é o fluxo
aprimorado de informagoes e gradientes por toda a rede, o que as torna faceis de treinar. Cada
camada tem acesso direto aos gradientes da funcao de perda e ao sinal de entrada original. Isso
ajuda no treinamento de arquiteturas de rede mais profundas. Além disso, conexoes densas tém

um efeito regularizador, que reduz o overfitting em tarefas com tamanhos menores de conjuntos

de treinamento (HUANG; 2016)).

A DenseNet-121 é uma das variagoes de uma DenseNet com 121 camadas em sua estrutura.

Sua arquitetura é representada na Figura [3.16]
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Figura 3.16. Arquitetura da DenseNet-121, que é uma variacao de uma DenseNet com 121 camadas (PATEL

2023).

3.5.2 ResNet-50

Redes muito profundas sao dificeis de treinar devido aos problemas relacionados aos gradi-

entes que explodem ou desaparecem.

O problema de gradientes que explodem ocorre quando os gradientes das camadas iniciais se
tornam grandes durante o treinamento e crescem exponencialmente. Isso faz com que os pesos
da rede sejam atualizados de forma excessiva, levando a instabilidades e a um desempenho ruim

do modelo.

J& o problema de gradientes que desaparecem ocorre quando os gradientes das camadas ini-
ciais de uma rede neural se tornam pequenos durante o treinamento. Como resultado, os pesos
das camadas subsequentes nao sao atualizados de forma eficaz, o que prejudica o aprendizado

da rede.

ResNets sao caracterizadas por utilizarem um tipo de conexao especial denominadas skip-
connections, que permitem que a rede colete uma ativagdo de uma determinada camada e
alimenta-la para outra camada mais profunda na rede neural. Essas conexoes permitem o

treinamento de redes profundas de forma mais eficiente e mitigam problemas com gradientes

(NG, p024) (fIE, 2015).
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Em ResNets, as skip-connections sao usadas em camadas chamadas de blocos residuais,

os quais alimentam ativacoes anteriores diretamente en outra camada dentro de sua funcao

de ativagdo nao-linear. A Figura mostra a representacao dessa conexao.(NG, 2024) (HE,

2015)

weight layer
i
-FKX) l relu

weight layer

X

identity

F(x) +x

Figura 3.17. Representagao de um bloco residual de uma ResNet, no qual a saida da fungao de ativacao de
uma camada ¢ alimentada diretamente na nao-linearidade de outro layer que estd mais profundo na rede (HE]

2015).

Em esséncia, uma ResNet consiste em vérios blocos residuais subsequentes. Um exemplo
de uma ResNet de 34 camadas comparada com uma rede comum com a mesma quantidade de

layers é mostrada na figura [3.18 A ResNet-50 ¢ uma ResNet com 50 camadas.

3x3 conv, 128, /2

pool, /2

34-layer plain

34-layer residual

Figura 3.18. Comparacdo de uma rede comum de 34 camadas com uma ResNet com 34 blocos residuais (HE

2015) (NG 2021).
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3.5.3 VGG-16

As redes VGG foram criadas por um grupo chamado Virtual Geometry Group (VGG) com
a finalidade de testar como a profundidade de CNNs afetam o desempenho no treinamento. No

caso da VGG-16, ela possui 16 camadas com pesos treindveis, o que inclui layers convolucionais

e completamente conectados. Sua arquitetura é representada na Figura [3.19] (SIMONYAN|

2014).
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Figura 3.19. Arquitetura da VGG-16, com 16 camadas com pesos treinaveis, camadas de pooling e camadas
densas no final 2021)).

A VGG-16 é caracterizada por sua simplicidade e arquitetura uniforme, onde as camadas
convolucionais sao principalmente filtros de 3x3 aplicados com um stride de 1 e padding de 1.
Suas camadas de max-pooling sao filtros de 2x2 com um stride de 2. Esse design direto tem sido

um modelo de referéncia em tarefas de visao computacional e influenciou muitas arquiteturas

subsequentes de redes neurais (SIMONYAN, [2014]) 2021) (NG, [2024]).

Com todos os conceitos utilizados neste trabalho apresentados, pode-se mostrar agora o que

foil desenvolvido nele com uso dessas ferramentas.



CAPITULO 4

TESTES INICIAIS COM BASE DE DADOS REDUZIDA

Os primeiros testes realizados coma base de dados foram apenas no dataset de teste, visto
que para utilizar a base de dados inteira seria necessario uma grande quantidade de armazena-

mento e muito tempo de treinamento.

A partir disso, foram realizados processamentos iniciais das imagens para que esses testes

pudessem ser realizados com diferentes arquiteturas de CNNs.

4.1 PRE-PROCESSAMENTO INICIAL DAS IMAGENS

A primeira etapa dos testes iniciais foi de realizar o pré-processamento das imagens da base
de dados de teste. A Figura mostra como o conjunto de teste é organizado.

Porcentagem de imagens em cada classe

Tabela quantidade-porcentagem:
Quantidade Porcentagem

Porcentagem
&

actionable 248 15.374760
30 benign 61 3.9@7751
cancer 1<) 3.8436090
normal 1288 J6.87379%

actionable kenign cancer norral
Classe

Figura 4.1. Estrutura do conjunto de teste do DukeDBT, nos quais os testes iniciais foram realizados.
Para que fosse possivel utilizar as imagens armazenadas nos arquivos .dcm, foi necessario

primeiro extrai-las deles. Como mencionado anteriormente, o dataset fornece nao s6 os arquivos

.dem, mas também arquivos .csv para que seja possivel identificar o que cada um dele representa.
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Ao instalé-los, eles s@o colocados em uma pasta que os separa por ID de paciente (Patien-
tID), sem especificar qual o diagnostico ou qual tipo de vista esta sendo representada. Cada
pasta de paciente armazena outra tnica pasta, a qual tem até 4 outras pastas dentro com os
arquivos .dcm, que sao os diferentes angulos do exame, mas que também nao sao especificados

explicitamente. Todos os arquivos DICOM tém o mesmo nome, “1-1.decm”.

Como exemplo, tem-se a path de um tinico arquivo .dem do conjunto de teste - “... /test /manifest-
1617905855234 / Breast-Cancer-Screening-DBT /DBT-P00004 /01-01-2000-DBT-S03764-MAMMO
screening digital bilateral-73497,/11920.000000-70893/1-1.dcm”.

O arquivo .csv de paths disponibiliza o local em que os arquivos serao organizados ao serem
baixados, visto que a base de dados possui uma forma especifica de fornecer os arquivos .dem. O
arquivo .csv de diagnosticos possibilita identificar a qual classe cada arquivo DICOM pertence.

Ambos fornecem também cada vista dos estudos.

As figuras [£.2) e [4.3] mostram os headers de cada um desses arquivos, que representam suas

estruturas.
PatientlD StudyUID View MNormal Actionable Benign Cancer
0 DBT-P00882 DBT-S04273 lcc 0 0 0 1
1 DBT-P00882 DBT-504273 Imlo 0 0 0 1
2 DBT-P01803 DBT-S04833 rcc 0 0 0 1
3 DBT-P01803 DBT-504833 rmlo 0 0 0 1
4 DBT-P01183 DBT-S04722 rcc 0 0 0 1
Figura 4.2. Header do arquivo .csv utilizado para relacionar o ID do paciente com seu diagnéstico em codificado
one-hot.
PatientD  StudyUID View descriptive_path classic_path

0 DBT-P0O0036
1 DBT-P0O0036

DBT-S03354 lcc
DBT-503354  Imlo

Breast-Cancer-Screening-DBT/DBT-P0O0036/01-01-2..
Breast-Cancer-Screening-DET/DBT-P00036/01-01-2

Breast-Cancer-Screening-DBT/DBT-P00036/1.2.826. ..
Breast-Cancer-Screening-DBET/DBT-P00036/1 2 826

2 DBT-P00036 DBT-S03354 rcc Breast-Cancer-Screening-DBT/DBT-P00036/01-01-2... Breast-Cancer-Screening-DBT/DBT-P00036/1.2.826...
3 DBT-PO0036 DBT-303354 mmlo Breast-Cancer-Screening-DBT/DBT-P00036/01-01-2... Breast-Cancer-Screening-DBT/DBT-P00036/1.2.826...
4 DBT-PO00BT DBT-504170 lcc  Breast-Cancer-Screening-DBT/DBT-P00087/01-01-2...  Breast-Cancer-Screening-DET/DBT-P00087/1.2.826...
Figura 4.3. Header do arquivo .csv utilizado para relacionar o ID do paciente com o local em que o arquivo

foi instalado.

A diferenca entre descriptive path e classic path é apenas entre os nomes das paths em que

os arquivos sao instalados, que é uma opcao escolhida ao baixé-los. Neste trabalho a primeira
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foi utilizada.

Para extrair as imagens dos arquivos .dcm, ambos os .csv foram utilizados junto com um
cddigo desenvolvido em python para converté-las em .png, a fim de reduzir o espago de arma-
zenamento necessario do dataset e possibilitar uma visualizacao mais facil das figuras. Além
disso, pastas para cada diagnostico também foram criadas para separar cada imagem por classe.
E importante ressaltar que para essa conversao para .png, o mesmo canal foi repetido trés vezes

para os canais RGB.

O caminho de cada arquivo é relacionado sequencialmente junto com o PatientID e sua
respectiva vista para cada .dcm. Com o local do .dem definido, extrai-se a informacgao contida
apenas no primeiro canal (i.e. slice) da imagem contida nele e sdo normalizados os valores de

seus pizels de 0 até 255, visto que originalmente possuiam valores muito altos.

Para a normalizagao, primeiro toda a matriz de valores da imagem contida no .dcm é dividida
pelo valor maximo, o que faz com que maior pizel seja igual a 1 e os valores intermediarios
fiquem entre 0 e 1. Posteriormente, ela é multiplicada por 255, para que todos os pizels fiquem

entre 0 e 255. Esse processo é mostrado pelas equagoes [£.1] e

, pizel Array
[A = 4.1
PRECATT O = hax (pizel Array) (4.1)
pizel Array = pixel Array x 255 (4.2)

Depois da normalizagao da imagem, ela é convertida para .png e renomeada a partir do
PatientID e sua vista e é salva na pasta de seu diagnostico, informacgoes obtidas a partir dos

.csvs. A Figura 4.4 representa como a estrutura de uma das pastas fica apds esse processo.
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Figura 4.4. Pasta das mamografias com diagndstico actionable do dataset de teste apos extracao e conversao
para .png e renomeagao a partir do PatientID e vista.

Com as imagens efetivamente separadas por classes dos conjuntos de treino, teste e validagao,
foi possivel realizar testes iniciais para ver como CNNs simples responderiam a elas durante o
treinamento. E importante ressaltar que inicialmente os testes tinham sido feitos ainda com a

classe actionable.

4.2 ARQUITETURAS INICIAIS DE CNNS

As imagens dos arquivos DICOM que foram extraidas possuem resolu¢oes bem altas, as quais
possuem dimensao de (1996x2457x3) ou (1890x2457x3). Para estes testes iniciais, elas foram
reduzidas consideravelmente, para (256x256x3), a fim de verificar se as redes seriam capazes

de identificar as diferencas entre as 4 classes. Esse redimensionamento pode ser verificado na

Figura [4.5
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Figura 4.5. Redimensionamento inicial das imagens do dataset para (256x256x3) antes de serem alimentadas
na rede. Apesar da resolucdo ter diminiuido, ainda sdo notaveis os detalhes da figura.

4.2.1 CNN simples para testes iniciais

Com as imagens prontas, elas foram divididas em conjuntos de treino, teste e validagao,
com uma divisao de, respectivamente, 70%, 15% e 15% e batch size de 32. O primeiro teste
foi realizado com uma rede simples criada do zero, a qual tem arquitetura mostrada na Figura

[4.6] Todos os treinamentos deste trabalho foram realizados com uso de tensorflow e python.

Layer (type) Output Shape Param #
conv2d (Conv2D) ( , 254, 254, 32 | 206
batch_normalization ( , 254, 254, 32 ‘ 128
(BatchNormalization)

max_pooling2d (MaxPooling2D) ([ . 127, 127, 32 | a8
conv2d 1 (Conv2D) ( , 125, 125, 64) | 18,496
batch_normalization_1 ( , 125, 125, &4 ‘ 256
(BatchNormalization)

max_pooling2d 1 (MaxPooling2D) ( , 62, 62, 64) | 5
flatten (Flatten) ( , 246016) | o
dense (Dense) ( , 128) | 31,490,176
dense 1 (Dense) ( , 4) | 516

Figura 4.6. Arquitetura simples utilizada em testes iniciais no dataset de teste, composta de camadas convo-
lucionais, pooling, normalizacao e densas.
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O treinamento desta rede foi realizado utilizando a técnica de regularizagao de early stopping
para interromper o treinamento antes que a perda de validagao comece a aumentar significati-

vamente, a fim de evitar um possivel overfitting.

Para este caso, aplicou-se o early stopping com uma paciéncia de 6 épocas, ou seja, o
treinamento ¢ interrompido se a perda de validagao nao apresentar melhora apoés 6 épocas
consecutivas. Se isso ocorrer, o treinamento é cessado e os pesos correspondentes & menor

perda de validacao sao recuperados e salvos no modelo.

Antes das imagens serem alimentadas na rede, os valores dos pizels das bases de treino,
validacao e teste sao normalizadas para terem valores entre 0 e 1, ou seja, elas tém todos os
seus valores dividos por 255. Essa serd a normalizacao utilizada para todas as redes, exceto

para a ResNet-50, a qual necessita de um procedimento especifico.

Por fim, foi utilizado o otimizador Adam com taxa de aprendizado igual a 0,0001 e fun¢ao
de perda de entropia cruzada categorica. A Figural[d.7/mostra os graficos da acurécia e de perda

do treinamento e validagao.

Training and Validation Accuracy Training and Validation Loss
1009 — Taining Accuracy 10 —— Training Loss
095 Validation Accuracy Validation Loss

090 15

0.85

0.80 10

Loss

Accuracy

075
070 5

0.65

060

o 1 2 3 4 5 & 7 8 0 1 2 3 4 5 & 7 8
Epoch Epoch

Figura 4.7. Gréaficos gerados do treinamento e validacao da rede simples desenvolvida com early stopping de
paciéncia de 6 épocas. Percebe-se do grafico de acuracia que bem cedo no treinamento a rede ja seguia para um
overfitting, representado pela acuracia de treinamento se aproximando de 100% e a de validacao estagnada.

A rede teve acuracia de 76,6% e perda de 0,9164 nas imagens de teste. Inicialmente parecem
ser bons resultados, mas na realidade ela jogou todas as suas predi¢oes na classe majoritaria,
de imagens de diagnostico normal. Isso pode ser observado na matriz de confusao representada

na Figura 4.8|
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Figura 4.8. Matriz de confusao gerada a partir da aplicagdo do modelo no conjunto de teste. Os valores de 0
a 3 representam, respectivamente, as classes actionable, benign, cancer e normal.

Na Figura [£.8] os valores de 0 até 3 nos eixos verticais e horizontais representam, respec-
tivamente, as classes actionable, benign, cancer e normal, enquanto que os valores dentro dos
quadrados mostram a quantidade de predigoes realizadas em determinada classe. Por exemplo,
o valor 36 no canto superior direito representa que a rede classificou 36 casos actionable (va-
lor real, representado pelo eixo vertical) como normais (valor previsto, representado pelo eixo

horizontal).

Apos os testes com a rede original, tentou-se aplicar trasnfer learning com uso da VGG-16.

4.2.2 Transfer learning com a VGG-16

Para o uso da VGG-16, seus pesos foram congelados e apos a rede original foi adicionada uma
operacao de flatten para que as informacoes das saidas das redes convolucionais pudessem ser
alimentadas a uma camada densa de 256 neurdnios, também adicional. Por fim, uma camada

de softmax de 4 classes foi colocada no fim para a classificao das imagens de entrada.

As mesmas configuragoes para a regularizacao, otimizacao e perda anteriores foram utili-
zadas. O resultado do treinamento e validacao é representado na Figura [£.90 O teste teve

acuracia de 69,39% e perda de 0,8604.
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Figura 4.9. Gréficos de treinamento e validagao dos testes iniciais com a VGG-16.

A partir dos graficos da Figura 5.9, percebe-se que a rede teve dificuldade para chegar em

um overfitting quando comparada & CNN anterior, visto que sua acuracia flutuou na casa do

80% no treinamento. Apesar disso, durante o teste, ela foi capaz de classificar algumas das

imagens como casos actionable, o que pode ser visualizado na Figura [£.10]

Matriz de confusao

o - B 0
- - 1 0
=
u
B
£
~N - o 0
m - 3 0
0 1

) 0 - 1440
- 120

0 9 - 100
- B0

o 9 - 60

- 20

2

Valer previsto

Figura 4.10. Matriz de confusao dos testes inicias com a VGG-16. Nela é notavel que classificou alguns dos

casos para a classe actionable

Por fim, para os testes iniciais, tentou-se também transfer learning com uso da DenseNet-

121.
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4.2.3 Transfer learning com a DenseNet-121

Para o transfer learning com a DenseNet-121, a mesma configuragao para as camadas apos
a rede da VGG-16 foram utilizadas, além de também as mesmas configuragao de regularizagao,
otimizagao e de perda e seus pesos foram congelados. Os gréficos resultantes do treinamento e

validacao podem ser vistos na Figura 4.11l O teste teve acurécia de 76,6% e perda de 0,98.
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Figura 4.11. Gréficos de treinamento e valida¢do dos testes iniciais com DenseNet-121. Percebe-se como
rapidamente a rede chegou em um valor de acuracia e perda que tiveram pouca variagao nas proximas épocas.

A partir dos graficos da Figura percebe-se que a rede teve um pico de acuracia e um
vale para a perda, nos quais nao foi capaz de melhorar. O resultado do teste foi muito préximo

com o da CNN simples, que pode ser observado na matriz de confusao da Figura [£.12

A partir dos resultados das trés redes, concluiu-se que seria possivel ter melhores resultados
com uma base de dados binaria, visto que a quantidade de imagens é desbalanceada com muitos

casos de classificacao normal.
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Figura 4.12. Matriz de confusao dos testes inicias com a DenseNet-121. Percebe-se que teve os mesmos
resultados que a CNN desenvolvida do zero.

4.3 TESTES INICIAIS COM BASE DE DADOS BINARIA

Nestes testes, foram utilizadas as mesmas configuragoes das trés redes desenvolvidas ante-
riormente, mantendo as mesmas dimensoes para as imagens de entrada. No entanto, a saida e
a perda foram ajustadas para uma classificacao binaria e com early stopping com paciéncia de
10, aplicada a um dataset que foi dividido em apenas duas classes; normal e other (que inclui

as classes actionable, benign e cancer) para classificagdo binaria.

4.3.1 CNN simples para testes binarios iniciais

A rede simples desenvolvida chegou em um overfitting durante o treinamento bem rapido,
visto que a partir da 7% época ja havia chegado em uma acurécia bem proxima de 100%, porém

com uma perda de validagao cada vez maior. Esses resultados podem ser vistos na Figura [£.13]
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Figura 4.13. Treinamento e validagao para a classificacao binaria com a CNN simples. Percebe-se um caso
de overfitting a partir da 7% época, visto que o treinamento chega em acuracia de proxima de 100% mas sem
resultados bons na validagao.

No teste, teve-se uma acuracia de 60% com perda de 0,7847. Apesar disso, pelos resultados
que podem ser vistos na matriz de confusao da Figura[4.14] percebe-se que a rede foi capaz de

comecar a separar os casos em classes diferentes.
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Figura 4.14. Matriz de confusao para a classificagao binaria inicial com a CNN simples. E notavel que com
classificagao binaria a rede comega a separar alguns dos casos de teste, em que a classe 0 representa os casos
normais e 1 representa os casos other.

Apos os testes com a CNN simples, tentou-se novamente um treinamento com transfer

learning com a DenseNet-121 e a VGG-16.
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4.3.2 Transfer learning com DenseNet-121 e VGG-16

Tanto a DenseNet-121 quanto a VGG-16 apresentaram dificuldades durante o treinamento
e validagao, alcancando uma acuracia de 75% na primeira fase e estagnando na segunda, o que

pode ser observado nos graficos da Figura [4.15
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Figura 4.15. Gréaficos de trainamento e validagao na classificagdo bindria inicial com a VGG-16 (a) e DenseNet-
121 (b). E perceptivel como ambas chegaram em um ponto de estagnagio tanto no treinamento e validagao.

Durante a fase de teste, ambas as rede tiveram acuracia de 76,6%, classificando todas as
imagens como a classe majoritaria durante o treinamento (normal), o que pode ser visualizado

nas matrizes de confusdo da Figura [4.16]
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Figura 4.16. Matrizes de confusio na classifica¢ao binaria inicial com a VGG-16 (a) e DenseNet-121 (b). Nota-
se como ambas tiveram os mesmos resultados, classificando todas as imagens de teste como a classe majoritaria
de treinamento (normal).

A partir destes testes, supos-se que seria possivel tem um melhor desempenho a partir do
uso de imagens com resolugdes maiores, visto que provavelmente ocorre perda de informagao

com o redimensionamento realizado. Além disso, os proximos testes realizados foram feitos com

uma base de dados balanceada para analisar como isso afetaria o treinamento da rede.

4.3.3 Testes iniciais com base de dados balanceada

Nestes testes foi feita uma divisao da base de dados para que ela ficasse o mais balanceada
possivel, separando cada classe em valores proximos um dos outros. A divisdo implementada

pode ser visualizada na Figura [4.1

Além do balanceamento, também foi definido um novo valor para o redimensionamento das
imagens de entrada da rede. Como mencionado anteriormente, ha dois possiveis tamanhos para
as figuras: (1996x2457x3) e (1890x2457x3). O redimensionamento foi baseado na menor reso-
lugdo, aplicando uma redugao de escala de 4x, resultando em imagens de tamanho (472x614x3)

para a entrada da rede.

O testes realizado com essas imagens foram feitos a partir de transfer learning com a

DenseNet-121 e a VGG-16, com uma divisao de 70%/15%/15% para os conjuntos treino, vali-
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Figura 4.17. Grafico da base de dados balanceada dos testes iniciais, na qual a classe benign possui 61 imagens
e as restantes possuem 60.

dacao e teste.

Ambas as redes tiveram a mesma configuragao, com uso de um batch size de 8, uso do
otimizador Adam com taxa de aprendizagem padrao de 0,001 e perda de entropia cruzada
categorica. Seus pesos foram mantidos congelados e adicionou-se uma operacao de flatten apos
ambas as redes, além de uma camada densa de 256 neurdnios seguida de uma softmax para 4
classes. Elas foram treinadas dessa vez sem early stopping por 50 épocas para ver como um

treinamento longo afetaria a perda na validacao.

4.3.4 Transfer learning com a DenseNet-121

Com as configuragoes mencionadas, a DenseNet-121 nao foi capaz de ter um treinamento
nem validagao efetivos, com acuracia de treinamento flutuante e de validacao estagnada. Além
disso, ambas as perdas rapidamente chegaram em um valor sem variar mais, o que pode ser

visualizado na Figura [4.18|
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Figura 4.18. Treinamento e validagao da DenseNet-121 com classes balanceadas. Percebe-se como a acuracia
de treinamento flutuou bastante, enquanto que a acuracia de validagao e ambas as perdas estagnaram rapida-
mente

Para os testes, a rede fez todas as suas classificagoes na classe benign, com acuracia de

27,03%, que & representado na matriz de confusdo da Figura [4.19
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Figura 4.19. Matriz de confusdo da base balanceada com DenseNet-121. O resultado revela que a rede
classificou todas as imagens como pertencentes a classe actionable. O treinamento insatisfatorio sugere que a
rede nao conseguiu aprender as caracteristicas distintivas das classes, mas simplesmente fez predigoes aleatoérias.
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4.3.5 Transfer learning com a VGG-16

Comparado com os resultados da DenseNet-121, o treinamento da VGG-16 foi um pouco
melhor, visto que a rede chegou em um overfitting apos 21 épocas, mas continuou com resultados
ruins de validagao, o que é mostrado nos gréaficos da Figura [4.20]
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Figura 4.20. Treinamento e validacao da VGG-16 com classes balanceadas. E notével como no treinamento
a rede atinge um overfitting, visto que a acuracia chega em 100% sem ter melhoras em sua validagao.

J& no teste, a rede foi capaz de classificar as imagens em classes diferentes, o que pode ser
visto na matriz de confusao da Figura [4.21] mas a CNN ainda nao teve resultados bons, com

acuracia de 27,03%.

Visto que os resultados seguiram insatisfatorios, os proximos treinamentos realizados foram
com uso da técnica de regularizagao de data augmentation, que consiste em aplicar operacoes
como espelhamentos verticais e horizontais nas imagens de treinamento, para que a rede possa

analisar "novas"figuras e ter uma base de treino maior.
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Figura 4.21. Matriz de confusao da base balanceada com VGG-16. Percebe-se que a rede foi capaz de
classificar as imagens em todas as classes, mas nao de forma efetiva.

4.4 TESTES INICIAIS COM BASE DE DADOS BALANCEADA E APLICACAO DE
DATA AUGMENTATION

Diversos testes com diferentes tipos de data augmentation foram realizados. O que resultou
em resultados melhores foi com uso da base de dados balanceada com aplicacao das operacoes
de espelhamento vertical, horizontal e ambos simultaneamente. Além disso, também foram
alterados os valores dos pizels das imagens de forma aleatoria entre valores de -50 até 50 (que
representam mudangas no brilho das imagens), aplicados ajustes de contraste aleatorios e, por

fim, também foi adicionado ruido.

Essas operagoes foram aplicadas com uso da biblioteca OpenCV (CV2) do python, o que
permitiu um aumento do conjunto de treinamento de 168 imagens para 1176. E importante
ressaltar que essas operagoes foram aplicadas separadamente nas imagens originais e apenas no
conjunto de treinamento, visto que o conjunto de validagao e o de teste devem ter a mesma
distribuicao.

Além disso, a grande maioria dos proximos testes foram feito com uso apenas da DenseNet-

121, visto que é o modelo utilizado no paper do dataset (BUDAJ [2021}).



4.4 — TESTES INICIAIS COM BASE DE DADOS BALANCEADA E APLICAGAO DE DATA AUGMENTATION 60

4.4.1 Transfer learning com a DenseNet-121

O transfer learning foi feito com congelamento geral da rede e adi¢ao de uma operacao de
flatten seguida por uma camada densa de 128 neurdnios. Por fim, foi colocada uma camada
softmax para a classificagdo dos 4 possiveis diagnosticos. A rede foi treinada por 50 épocas
com uso do otimizador Adam com taxa de aprendizagem 0,0001 e perda de entropia cruzada

categorica. Além disso, utilizou-se um batch size de 32.

A rede aparenta atingir um overfitting apos a 13% época, quando atingiu acuracia de 100%,
mas nao conseguiu ter melhorias na acuracia e perda de validagao, as quais flutuaram bastante.
Os resultados podem ser vistos na Figura [4.22]
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Figura 4.22. Treinamento e validacdo da DenseNet-121 com classes balanceadas e transfer learning. E

perceptivel como a rede chegou em um overfitting mas nao conseguiu aprender as caracteristicas da base de
dados, visto que a acuracia e perda na validagao flutuaram constantemente.

Assim como anteriormente, os testes seguiram insatisfatérios, com uma acuracia de apenas
16,22% e perda de 3,7664. A matriz de confusao gerada para os testes pode ser visualizada na

Figura 4.23



4.4 — TESTES INICIAIS COM BASE DE DADOS BALANCEADA E APLICAGAO DE DATA AUGMENTATION 61

Matrz de confusao

'_|
I
g
=]
£
(]
-20
-15
™
i i -10

0 1 2 3
Valor previsto

Figura 4.23. Matriz de confusdo da DenseNet-121 com classes balanceadas e transfer learning. A partir dela,

é notavel como a rede parece chutar a classificacdo das imagens aleatoriamente dentre as possiveis classes.
Visto que os resultados dos testes seguiram insatisfatérios, as proximas etapas do projeto

foram realizadas com a base de dados completa, a fim de analisar se a adicao de uma maior

quantidade de imagens melhoraria o desempenho da rede.



CAPITULO 5

TESTES COM A BASE DE DADOS COMPLETA

Devido aos resultados insatisfatérios com uma base de dados reduzida, supds-se que o motivo
por tras da falta da capacidade da rede de aprender as caracteristicas das imagens da base de
dados era devido & baixa quantidade delas. Com isso, a proxima etapa do projeto foi de

treinamento de redes com uso do dataset completo.

5.1 PRE-PROCESSAMENTO COMPLETO DAS IMAGENS

Os mesmos procedimentos feitos anteriormente para a base de teste foram realizados também
para a base de validagao e treinamento, o que resultou em bases de validagao e treino dividas

da forma representada pela Figura [5.1]

Provavelmente devido ao grande desbalanceamento de dados, o paper do dataset propoe
uma separacao diferente das imagens, a qual reduz em grande quantidade o nimero de imagens

da classe normal que sao utilizadas. Essa divisao é mostrada na Figura (BUDA| 2021)).

Além disso, o paper reduz também a quantidade de imagens das outras classes. Apesar
disso, para este trabalho, optou-se pelo uso da quantidade especificada para os casos da classe
normal, mas foram utilizadas todas as imagens disponiveis para as restantes, a fim de reduzir
um pouco o desbalanceamento e, possivelmente, melhorar o desempenho do treinamento. A

separagao utilizada é representada na Figura [5.3]
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Figura 5.1. Conjunto de treinamento (a) e de validacao (b) completos do dataset. Percebe-se que, assim como
a base de treinamento, tem-se um desbalanceamento alto de dados, em que a maioria das classificacoes sao do

diagnéstico normal.

Table 1. Descriptive Statistics of the Data Set Used for Training, Validation, and Testing

No.
Characteristics Training set Validation set Test set
Patients
Total 4362 280 418
Normal group, No. (%) 4109 (94.2) 200(71.4) 300(71.8)
Actionable group, No. (%) 178 (4.1) 40 (14.2) 60(18.9)
Benign group, No. (%) 62 (1.4) 20(7.1) 30(7.2)
Cancer group, No. (%) 39(0.9) 20(7.1) 30(7.2)

Figura 5.2. Separacao do dataset proposta pelo paper. Destaca-se como ele reduz em grande quantidade o

numero de imagens pertencentes & classe normal (BUDA| [2021)).
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Figura 5.3. Separacao do dataset proposta pelo trabalho, a qual teve uma maior quantidade de imagens das
classes minoritarias incluidas. Os graficos representam a base de teste (a), treinamento (b) e validagao (c).
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5.2 TESTES COM A DENSENET-121 COM USO DA BASE DE DADOS COM-
PLETA

Como mencionado anteriormente, neste momento, o treinamento da base de dados focou
no uso da DenseNet-121. Foram realizados diversos testes com essa rede, com uso de diferen-
tes arquiteturas adicionais apos o transfer learning e com uso das quatro classes e também

classificagao binéaria.

5.2.1 Transfer learning com a DenseNet-121 com quatro classes

Com uso das quatro classes da base de dados, diferentes arquiteturas foram adicionadas
apos o transfer learning. Além disso, foi testado o descongelamento gradual das tltimas cama-
das e diversas técnicas de data augmentation, mas nenhum desses testes produziu resultados

satisfatorios.

A configuracao que trouxe os melhores resultados envolveu o uso de data augmentation
apenas nas classes minoritarias de treinamento, ou seja, actionable, benign e cancer. Foram
aplicadas operagoes de espelhamento vertical e horizontal, além da adicao aleatoria de ruido
nas imagens. A divis@o da base de dados apds a aplicacao dessas operagoes pode ser vista na

Figura [5.4]
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Figura 5.4. Base de dados po6s data augmentation. Percebe-se um aumento na quantidade das classes mi-
noritairas, mas o desbalancieamento continua presente, visto que as imagens diangdsticas como normais ainda
compoem por volta de 50% do dataset.
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O modelo utilizado para o treinamento foi a partir do uso da transfer learning com DenseNet-
121 completamente congelada com batch size de 16. Apos a rede original, foi aplicada uma
operacao de flatten seguida por uma camada densa de 256 neurénios e, por fim, uma softmax
de quatro classes. O otimizador utilizado foi o Adam, com taxa de aprendizado igual a 0,001.
A perda usada foi a entropia cruzada categorica. Além disso, foi utilizado um early stopping
com paciéncia de 25 épocas.

Durante o treinamento, a rede aproximou-se de um overfitting, mas o early stopping impediu
que a rede efetivamente chegasse em uma acuracia de 100%. Os resultados do treinamento e
validagao podem ser vistos na Figura [5.5
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Figura 5.5. Treinamento e validacao da DenseNet-121. Percebe-se como desde o comego do treinamento a
rede ja teve dificuldades de ter bons resultados na validagao desde o comego.

Os testes nao tiveram resultados bons, com acuracia de 46,67% e perda 1,2255. Os resultados

podem ser visualizados na matriz de confsao da Figura [5.6
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Figura 5.6. Matriz de confusdo dos testes com a DenseNet-121. Perecbe-se que a rede colocou algumas das

imagens previstas na classe actionable, mas a maioria ainda foi classificada como normal.

Assim como anteriormente, os proximos testes realizados foram com uso de uma base dados

binéaria, a fim de verificar como isso afetaria o treinamento da rede.

5.2.2 Transfer learning com a DenseNet-121 com classificdo binaria

Nestes testes, as imagens que resultaram em melhores resultados vieram da base com data

augmentation aplicado da Figura Ao dividir-se as classes de forma binaria (cancer type e

normal), tem-se a configuracao mostrada na Figura
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Figura 5.7. Base binaria com data augmentation utilizada nos testes com a DenseNet-121. Essa configuragao
foi utilizada pois resultou em um bom balanceamento de dados. Os graficos representam a base de teste (a),
treinamento (b) e validagao (c).
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A rede utilizada foi a DenseNet-121 com seus pesos congelados e batch size de 32, seguida de
uma operacao de flatten e uma camada densa de classificacao binéaria. Uitlizou-se o otimizador
Adam com taxa de aprendizado de 0,001 e perda de entropia cruzada categorica. Por fim, foi

usado early stopping com paciéncia de 25 épocas.

Os resultados do treinamento e valida¢ao sdo representados na Figura [5.8, que mostra que

a rede teve novamente dificuldade na validagao.
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Figura 5.8. Teste e validagao com DenseNet-121 com a base binaria. Percebe-se dos graficos que a rede chega
proxima a um overfitting, mas o early stopping para o treinamento antes que a acuracia chegue em 100%.

Com essas configuracgoes, a rede teve no teste uma acuracia de 54,01% e perda de 3,0925.

A matriz de confusao gerada a partir das predigoes é representada na Figura [5.9

Como os resultados das diversas arquiteturas testadas com diferentes redes mostraram-se
insatisfatorios, foi realizada uma revisao do dataset e do paper para avaliar o que poderia ser

feito para aprimorar tanto o treinamento como também a fase de testes das redes.
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Figura 5.9. Matriz de confusao dos testes com DenseNet-121 com base binéria. Percebe-se que a rede foi capaz
de realizar classificagoes nas duas classes, mas ainda parece realizar chutes. Os Os representam classificagao de
cancer, enquanto que os 1s representam o diagnéstico normal.



CAPITULO 6

TESTES FINAIS COM A BASE DE DADOS CORRIGIDA

A partir de uma releitura tanto do paper como também de uma analise mais aprofundada
dos arquivos .csv disponibilizados pelo dataset descobriu-se dois fatos importantes acerca das

imagens dos diagnosticos de cancer de mama.

O primeiro foi que a classe actionable representa um diagnostico em que sao necessarios
maiores analises da imagem a fim de definir qual seria a classificacao apropriada, ou seja, nao
pode ser efetivamente considerada nem como cancer nem como normal. Por esse motivo, os

proximos testes foram realizados sem essa classe (BUDA| 2021)) (BUDA] 2024)).

O segundo foi que as imagens de cancer tém apenas um de seus canais efetivamente diagnos-
ticados por um radiologista com presenca de tumor, visto que somente uma delas possui uma
bounding box para segmentagao associada. Devido a isso, tanto as imagens classficadas como
benign e cancer foram convertidas novamente para .png a partir de seus arquivos .dem da base
de dados, mas agora extraindo o canal que o médico indicou efetivamente o cancer em vez do

primeiro. As imagens com diagnéstico normal foram mantidas iguais (BUDA]| [2021) (BUDA|

2024).

A nova base de dados ¢é representadas na Figura [6.1] Como todos os testes anteriores que

tiveram melhores resultados foram com classificagoes binarias, a mesma divisao foi feita aqui.
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Figura 6.1. Base de dados binaria dos testes finais. Nela foi retirada a classe actionable e os canais corretos
das imagens classificadas como benign e cancer foram utilizadas. Os graficos representam a base de treino (a),
teste (b) e validagao (c).
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6.1 TESTES INICIAIS NA BASE DA DADOS CORRIGIDA

Os primeiros testes realizados com a nova base de dados foi com uso apenas do transfer
learning das redes DenseNet-121, ResNet-50 e VGG-16 seguidas por uma operacgao de flatten
e uma sigmoide para a classificacao da imagem de entrada, a fim de avaliar como as redes sem
mudancas iriam avaliar o dataset da Figura [6.1l Todos os pesos das redes foram mantidos

congelados.

6.1.1 Transfer learning com ResNet-50

Para o aprendizado transferido com a rede ResNet-50, utilizou-se o otimizador Adam com
taxa de aprendizado de 0,0005 e perda de entropia cruzada binéaria. Além disso, usou-se early
stopping com uma paciéncia de 15 épocas e um batch size de 16. Por fim, utilizou-se a fungao de
normalizagao propria do tensorflow para essa rede (tf.keras.applications.resnet.preprocess input).
Os resultados de treinamento e validacao sao representados na Figura [6.2
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Figura 6.2. Resultados do treinamento e validagao com a ResNet-50. Nota-se que assim como anteriormente,
a rede aparenta resultar em overfitting, visto que nao tem bom resultados no conjunto de validagao.

Apesar dos resultados ruins em relagao ao conjunto de validagao, a rede teve uma boa
acuracia de 91,69% e perda de 2,76 no conjunto de teste. Os resultados das predicoes sao

mostrados na Figura |6.3
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Valor real

Figura 6.3. Matriz de confusao do conjunto de teste com a ResNet-50, em que os Os representam os casos com
cancer e os 1s com os casos normais. Apesar dos resultados ruins na validagao, a rede teve bom desempenho

no conjunto de teste.

Como a rede operou bem nos testes, foram calculadas também as outras métricas importan-
tes para a avaliagao da qualidade dela a partir dos valores da matriz de confusao da Figura [6.3]
A diagonal principal representa os valores dos TPs e TNs, enquanto que a diagonal secundéria

representa os valores dos FNs e FPs. Os resultados das métricas sao representados na Tabela

6. 11
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Acuracia

Especificidade

Sensibilidade

Precisao

F1-Score

91,69%

98,67%

74,38%

95,74%

83,72%

Tabela 6.1. Tabela de métricas de desempenho da ResNet-50 calculadas a partir dos valores resultantes do
conjunto de teste. Os resultados foram no geral bons, mas a sensibilidade esta mais baixo que as outras.

Nota-se da Tabela que a rede teve no geral bons resultados, mas o mais importante, a

sensibilidade, nao foi tao boa quanto as demais.
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6.1.2 Transfer learning com a DenseNet-121

Para os testes com a DenseNet-121, as mesmas configuracoes que a ResNet-50 foram utili-
zadas, com excecao de uma taxa de aprendizado reduzida de 0,001 e a normalizacao utilizada
anteriormente para essa rede, representada nas Equacoes e Os resultados do treina-

mento e validagao com essa rede sao mostrados na Figura [6.4]
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Figura 6.4. Resultados do treinamento e validagao com a DenseNet-121. Novamente, a rede aparenta se
aproximar de um overfitting, visto que vai bem no conjunto de treinamento, mas mal na validacao.

Assim como anteriormente, a rede nao teve bons resultados com o conjunto de validagao,
mas ficou cada vez melhor com o conjunto de treinamento. Nos testes ela teve predigoes que
parecem ter aprendido um pouco as caracteristicas das imagens com cancer, com acuracia de

85,99% e perda igual a 8,8. As predi¢oes realizadas podem ser visualizadas na Figura |6.5

Os resultados das métricas importantes para a avaliacao da qualidade da rede foram calcu-

lada e sao representadas na Tabela

Acuracia Especificidade Sensibilidade Precisao F1-Score
85,99% 99% 53,72% 95,59% 68,78%

Tabela 6.2. Tabela de métricas de desempenho da DenseNet-121 calculadas a partir dos valores resultantes
do conjunto de teste. Apesar de uma especificidade muito boa, sua sensibilidade est4 muito perto de um chute.

E perceptivel dos valores da Tabela como uma reducao significativa da sensibilidade

reduziu bastante o F'1-Score.
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Figura 6.5. Matriz de confusao do conjunto de teste com a DenseNet-121. Nota-se das predigoes realizadas
que a rede parece conseguir diferenciar algumas das imagens de cancer daquelas com diagnostico normal, mas
ainda nao teve resultados muito bons.

6.1.3 Transfer learning com a VGG-16
Por fim, foram realizados testes com transfer learning com uso da rede VGG-16. As mesmas

configuragoes utilizadas para a DenseNet-121 foram usadas aqui. Os resultados do treinamento

e validagao sdo apresentados na Figura [6.6]
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Figura 6.6. Resutado do treinamento e validagao com a VGG-16. Nota-se menores perdas na validacao para
essa rede, quando comparado ao treinamento com a ResNet50 e a DenseNet-121.

E importante ressaltar que para a VGG-16, como pode ser visto na Figura , a perda da

validagao ficou muito menor quando comparada as duas redes anteriores, mas esmo assim, a

acuracia da validagao continuou baixa. Ja nos testes, a rede teve uma boa acuracia de 85,04%

e perda de 0,6077. As predigoes realizadas nesse conjunto sao representadas na Figura [6.7]
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Figura 6.7. Matriz de confusdo dos testes com a VGG-16. Assim como a ResNet-50, percebe-se que ela nao
teve uma boa sensibilidade.

A partir dos resultados dos testes, foram novamente calculadas as métricas importantes
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para a avaliagao da rede, que sao representadas na Tabela

Acuracia Especificidade Sensibilidade Precisao F1-Score
85,04% 100% 47,93% 100% 64,8%

Tabela 6.3. Tabela de métricas de desempenho da VGG-16 calculadas a partir dos valores resultantes do
conjunto de teste. Ela teve uma espeficidade perfeita, mas uma sensibilidade ruim.

Ao analisar-se os resultados obtidos na Tabela [6.3] percebe-se que a rede conseguiu uma
especificidade e precisao perfeitas, mas uma sensibilidade muito ruim, que mais uma vez abaixou

consideravelmente o F1-Score.

A partir dos resultados obtidos com as trés redes, testou-se o uso de técnicas de regularizacao
com a base de dados corrigida, a fim de verificiar a possibilidade de melhorias no desempenho
das redes, principalmente na sensibilidade, que representa a métrica mais importante para o

proposito do trabalho.

6.2 TESTES COM PERDA PONDERADA NA BASE DE DADOS CORRIGIDA

Foram realizados diferentes testes com diferentes formas de regularizacao e diferentes confi-
guracoes de redes, mas os que trouxeram os melhores resultados foi a partir do uso da técnica
de regularizacao da fungao de perda ponderada junto com o transfer learning das redes seguidas
por uma operacao de flatten e sigmoide. Para todas elas, um batch size de 16 foi utilizado junto

com um early stopping com paciéncia de 20 épocas e perda de entropia cruzada binaria.

Os pesos da técnica de perda ponderada foram configurados a partir da quantidade de dados
em cada classe presente no conjunto de treinamento, representado na Figura[6.1l A partir disso,

eles sao calculados a partir da Equagao como:

1 4309
o = o5 X —3— = 10,77 (6.1)
1 4309

em que wy representa os pesos para a classe minoritaria cancer type e w; representa os pesos

para a classe majoritaria normal.
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6.2.1 Transfer learning com a ResNet-50

Para a ResNet-50, foi utilizado o otimizador Adam com uma taxa de aprendizagem de
0,0005 e foi normalizada a com a funcao de otimizagao fornecida pelo tensorflow. Os resultados

de treinamento e validagdo sao apresentados na Figura
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Figura 6.8. Resultados do treinamento e validagao com a ResNet-50 na base de dados corrigida. Nota-se que
a rede aparenta resultar em overfitting, visto que ndo tem bom resultados no conjunto de validagao.

A partir dos graficos da Figura é notavel que mais uma vez a rede nao se sai bem no
conjunto de validagao, mas chega em um owverfitting no treinamento. Apesar disso, ela teve
bons resultados no teste, com acurécia de 90,02% e perda de 5,35. As predigoes realizadas sao

mostradas na Figura [6.9]

Nota-se da matriz de confusdo da Figura [6.9 que no conjunto de teste a rede foi capaz de
prever as classes das imagens de forma eficiente quando comparada aos testes anteriores. As

métricas de qualidade calculadas sdo representadas na Tabela [6.4]

Acuracia Especificidade Sensibilidade Precisao F1-Score
90,02% 93% 82,64% 82,64% 82,54%

Tabela 6.4. Tabela de métricas de desempenho da ResNet-50 na base corrigida. E notéavel como tanto a
sensibilidade como também o F'I-Score tiveram resultados melhores, apesar da reducao da especificidade.

Os valores calculados das métricas de qualidade da rede mostram que houve uma melhoria
consideravel na capacidade da rede de detectar as imagens com presenca de tumores, apesar de

uma pequena piora em sua especificidade.
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Figura 6.9. Matriz de confusao da ResNet-50 na base de dados corrigida. Percebe-se que no teste, a rede teve
bons resultados, visto que conseguiu prever corretamente uma boa quantidade das imagens.

6.2.2 Transfer learning com a DenseNet-121
As mesmas configuracoes para a rede utilizadas na subsecao foram utilizadas aqui.

Apos o treinamento e validagao, os graficos representados na Figura [6.10| mostram sua acuracia

e perda nesses dois conjuntos.
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Figura 6.10. Treinamento e validacao da DenseNet-121 na base de dados corrigida. Mais uma vez, a rede nao
teve bons valores de perda para o conjunto de validagao.

Mais uma vez, é perceptivel como a rede falhou em conseguir compreender o conjunto de
validagao. Contudo, ela se saiu um pouco melhor no conjunto de teste, com uma acuracia de
75,77% e perda de 6,45. As predigoes realizadas sdo representadas na matriz de confusao da

Figura|6.11
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Figura 6.11. Matriz de confusao com a base corrigida da DenseNet-121. Nota-se das predicoes realizadas que
a rede conseguiu classificar muito bem as imagens de cAncer, mas néo as classificadas como normais.

Nota-se dos resultados das predi¢oes como a rede conseguiu classificar muito bem as imagens
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de cancer, mas piorou na classificacao das imagens normais. As meétricas calculadas estao

representadas na Tabela [6.5]

Acuracia Especificidade Sensibilidade Precisao F1-Score
75,77% 67% 97,52% 54,38% 69,82%

Tabela 6.5. Tabela de métricas de desempenho da DenseNet-121 na base corrigida. Percebe-se como houve
um desempenho alto em relagao a sensibilidade, mas a queda na especificidade fez com que o F1-Score ficasse
baixo.

A partir dos resultados da Tabela [6.5] é perceptivel que a rede teve um desempenho muito

bom em relagao a sensibilidade, mas teve um redugao grande em sua especificidade, precisao e

F1-Score.

6.2.3 Transfer learning com a VGG-16

As mesmas configuracoes para a rede utilizadas na subsecao foram utilizadas aqui.
Ap6s o treinamento e validagao, os graficos representados na Figura [6.10] mostram sua acuracia

e perda nesses dois conjuntos.
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Figura 6.12. Treinamento e validagdo da VGG-16 na base de dados corrigida. Novamente, a rede nao teve
bons valores de perda para o conjunto de validacao, mas foi bem no treinamento. Mais uma vez, a VGG-16 se
mostra com uma perda significantivamente menor do que as outras redes na validagao.

Apesar da ineficacia da rede durante o cojunto de validagao, ela se mostrou boa ao realizar as
predi¢coes com o conjunto de teste, com uma acuracia de 90,26% e perda de 0,355. Além disso,
quando comparada as outras duas redes, sua perda é signicativamente menor. As predi¢oes

realizadas durante o teste podem ser visualizadas na Figura [6.13
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Figura 6.13. Matriz de confusao com a base corrigida da VGG-16. E notavel que, no geral, a rede conseguiu
prever corretamente as classes das imagens.

A partir da matriz de confusao da Figura percebe-se que a rede teve bons resultados
nas predi¢coes das classes das imagens da base de dados. As métricas calulcadas para essa rede

no conjunto de teste estao representadas na Tabela

Acuracia Especificidade Sensibilidade Precisao F1-Score
90,26% 93% 83,47% 82,79% 83,13%

Tabela 6.6. Tabela de métricas de desempenho da VGG-16 na base corrigida. No geral, as métricas de
qualidade da rede tiveram bons valores.

Pode-se perceber dos valores da Tabela e da perda de treinamento que a rede teve um

bom desempenho na classificacao das imagens da base de dados corrigia.
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6.2.4 Comparacdo dos resultados com a base de dados corrigida

Por fim, a comparacao dos resultados das redes desta segao sao representadas para uma

comparagao facil na Tabela [6.7]

Modelo Weighted Loss Acuracia Especificidade Sensibilidade Precisao F1-score
DenseNet-121 Nao 86% 99% 54% 96% 69%
DenseNet-121 Sim 76% 67% 98% 54% 70%
ResNet-50 Nao 92% 99% 74% 96% 84%
ResNet-50 Sim 90% 93% 83% 83% 83%
VGG-16 Nao 85% 100% 48% 100% 65%
VGG-16 Sim 90% 93% 83% 83% 83%

Tabela 6.7. Comparagao de desempenho das redes neurais com a base de dados corrigida, com e sem o uso de
perda ponderada.

A partir dos resultados obtidos, é notavel como o uso de técnicas de regularizacao afetam
os resultados do teste das redes, principalmente com melhorias nos valores da sensbilidade, no
geral em detrimento da especificidade. Destaca-se principalmente a VGG-16 com uso da perda

ponderada, que teve uma grande melhoria em sua capacidade de classificar corretamente as

imagens com tumores.



CONCLUSOES E TRABALHOS FUTUROS

A partir dos resultados obtidos neste trabalho, nota-se como o uso de CNNs, principalmente
quando desenvolvidas junto com técnicas de regularizacao, foi capaz de classificar com certa
eficacia as imagens das mamografias. A VGG-16 com perda ponderada se destacou, visto que
teve um valor de loss baixa (quando comparada aos outros modelos) durante o teste e bons
resultados gerais em suas predi¢oes quando comparados com as outras configuracoes das redes,

como mostra a Tabela [6.71

Além disso, também foi notavel no decorrer do trabalho as dificuldades relacionadas a
encontrar configuragoes de redes neurais apropriadas para realizar as tarefas de classificagao de
imagens, visto que diversas arquiteturas e ajustes finos diferentes foram testados até encontrar

um padrao que conseguisse diferenciar as caracteristicas presentes nas mamografias.

A partir dos resultados com a VGG-16, percebeu-se também como nao necessariamente uma
rede mais complexa ou mais profunda sera a melhor para toda tarefa, visto que, dentre as trés

redes utilizadas neste trabalho, ela possui a arquitetura mais simples, que pode ser observada
na Figura [3.19

Outrossim, foi possivel também perceber como é de grande importancia nao s realizar
apropriadamente o pré-processamento das imagens das bases de dados, mas também como
a organizacao correta das classes das mamografias possibilitou uma melhoria significativa no

desempenho das trés redes utilizadas no trabalho.

No entanto, para que o uso dessas CNNs seja considerado viadvel em casos clinicos, é neces-
sario melhorar ainda mais os resultados das classificacoes, especialmente em termos de sensibi-
lidade. A capacidade da rede em identificar corretamente os casos de cancer em situagoes reais

¢é crucial para a qualidade de vida das pacientes.

Trabalhos futuros poderiam se concentrar na melhoria das arquiteturas de redes neurais e na

integracao de novas técnicas de pré-processamento de imagens, visto que nao foram aproveitados
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100% dos dados disponiveis do dataset, ja que neste projeto apenas um dos canais de cada uma

das imagens foi utilizado no treinamento, validacao e teste das CNNs.

Além disso, seria de grande importancia para proximas pesquisas avaliar e corrigir os possi-
veis motivos por tras da grande discrepancia do desempenho das redes nos trés conjuntos, visto

que todas elas tiveram resultados ruins na validacao, independente da configuracao utilizada.

Por fim, também seria recomendéavel para trabalhos futuros obter mais opinioes de radiolo-
gistas acerca das imagens classificadas como actionable na base de dados, visto que poderiam
contribuir para um melhor desepenho no treinamento da rede caso fossem classificadas dentro

dos outros trés diagnosticos, ja que isso aumentaria a quantidade de imagens disponiveis.
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