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RESUMO

Esse trabalho tem como foco a aplicagdo do Modelo de Volterra para sistemas de
controle ndo-linear. Esse modelo tem como principal pardmetro os kernels que serdo
representados matematicamente por fungdes ortonormais, mais especificamente as fungdes de
Laguerre. O sistema ndo linear escolhido foi uma reacdo quimica de polimerizacdo em um
reator de tanque agitado. Sera utilizada a abordagem de caixa preta, explorando os dados de
entrada e saida a partir do seu Modelo no Espaco de Estados. Teoricamente, 0 Modelo de
Volterra tem ordem infinita, mas a grande maioria dos estudos utiliza-o até a 2° ordem. O
objetivo desse trabalho sera explorar o modelo de 3° ordem para compara-lo com o Modelo de
2° ordem para um mesmo sistema ndo-linear. O custo computacional é parte importante do
trabalho e ao aumentar a ordem do modelo observou-se um aumento nessa importante variavel
do processo. Em contrapartida, houve uma diminui¢do nos erros calculados entre a saida real

do sistema e a saida do Modelo de Volterra.

Palavras-chave: Modelo de Volterra; kernel; sistema ndo-linear, fungdes de Laguerre.



ABSTRACT

This work is focused on the application of the Volterra Model for nonlinear control
systems. The main parameter of this model is called kernel and will be mathematically
represented by orthonormal functions, more specifically by Laguerre functions. The nonlinear
system chosen was a chemical polymerization reaction in a stirred tank reactor. The black box
approach will be used exploring the input and output data only from its state space model.
Theoretically the Volterra Model has infinite order, however the great majority of the works
use the 2° order model. The objective of this work will be to use the 3° order model to compare
the results with those of the 2° order model for the same non-linear system. The computational
cost is an important part of the work, as the order of the model was increased, an increase in the
computational cost was observed. On the other hand, a considerable decrease was observed in

the calculated errors between the system output data and the Volterra Model output.

Keywords: Volterra Model; kernel; non-linear system, Laguerre functions
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1 INTRODUCAO

1.1 Motivacéo

Problemas que envolvem sistemas néo-lineares tém chamado muita atencédo e gerado
interesse de muitos fisicos, matematicos e engenheiros. 1sso se da porque a maior parte dos
sistemas do mundo real possuem naturalmente uma dindmica néo-linear. Para possibilitar a
representacdo desses sistemas, foram propostos muitos modelos matematicos, dentre eles o
Modelo de Volterra (CHENG et al., 2017).

Entende-se por sistema ndo-linear aquele que nao satisfaz o principio da superposigéo.
Para que um sistema satisfaca esse principio, a saida do sistema para duas ou mais entradas
quaisquer devera ser igual a soma das saidas que teriam sido obtidas para cada entrada
separadamente (DA SILVA, 2006).

Sistemas com dinamica néo-linear geralmente sdo complexos do ponto de vista
matematico. Usualmente algumas simplificagcbes sdo consideradas para que um determinado
sistema originalmente n&o-linear possa ser analisado como um sistema linear. Dentre elas
podemos citar: linearizacdo em torno do ponto de equilibrio, aproximacéo de pequeno sinal e
a analise em pequenos intervalos (VIANA, 2021).

Nesse cenario, pode-se dizer que o sistema simplificado passa a se distanciar cada vez
mais do sistema original na medida em que mais simplificacbes matematicas sao utilizadas. Em
contrapartida, o estudo do sistema torna-se muito mais simples. E recomendado que haja um
equilibrio dessas simplificacdes para que a fidedignidade seja mantida, porém nem sempre é
possivel encontrar esse equilibrio e 0 uso de técnicas ndo-lineares torna-se indispensavel.

Existem diversos modelos matematicos ndo-lineares como opc¢éao, sendo o Modelo de
Volterra um dos mais populares atualmente e que surgiu nos trabalhos do matematico italiano
Vito Volterra. Durante grande parte do século XX sua aplicacdo era muito limitada por auséncia
de tecnologia disponivel e apenas a partir da criacdo e popularizacdo dos computadores que
esse modelo passou a ter ampla aplicacdo em areas como: aeroelasticidade, dindmica de fluidos,
engenharia biomédica e engenharia elétrica (CHENG et al., 2016).

As bases de fungdes ortonormais sdo extremamente Uteis nesse contexto pois possuem
propriedades que permitem diminuir a complexidade e o nUmero de termos que surgem quando
é feita a expansédo do sistema pelo Modelo de Volterra e geralmente essas sdo apresentadas no

dominio da frequéncia.



Entre essas familias de fungdes, destacam-se as Func¢des de Laguerre que possuem em
sua construcdo apenas multiplos polos reais. Optou-se por utilizar essas fungdes para
representar os kernels, considerados o ndcleo do Modelo de Volterra, porque tém uma
construcdo mais simples e geralmente satisfazem uma grande variedade de equagdes
diferenciais (DA ROSA; CAMPELLO; AMARAL, 2009).

Além disso essas fungbes geralmente sdo apropriadas para representar sistemas
dindmicos bem amortecidos pois envolvem funcdes de transferéncia racionais com uma forma
recursiva simples e completamente parametrizada por um tnico polo de valor real, o polo de
Laguerre p (DA ROSA; CAMPELLO; AMARAL, 2009).

Um dos principais objetivos desse trabalho sera calcular o valor 6timo para polo de
Laguerre do sistema em estudo. Ja que a principal proposta do trabalho é abordar o Modelo de
Volterra até a 3° ordem, optou-se por estimar o polo 6timo por meio de uma busca exaustiva
simples.

Quando os kernels do Modelo de Volterra séo representados por fungdes ortonormais,
da-se 0 nome para esse modelo de OBF-Volterra. Visando simplificar esse modelo foram
criadas versdes das funcdes de Laguerre filtradas pela entrada do sistema, assim o calculo dos
coeficientes das combinages das fungdes de Laguerre para representar os kernels torna-se mais
simples e pode ser feito a partir do método dos minimos quadrados.

Por fim, comparou-se 0s erros entra saida real e as saidas dos Modelos de Volterra de
2° e 3° ordens, visando verificar a viabilidade de se utilizar a 3° ordem, ja que que ha um
aumento do custo computacional envolvido nas solu¢fes numéricas do problema. Como
parametro de comparacao utilizou-se o erro quadratico médio (EQM) e o erro quadratico médio
normalizado (EQN).

E importante comentar que foi escrito um artigo cientifico como consequéncia desse
trabalho , em conjunto com o meu orientador, que sera publicado no final do ano no Congresso
Brasileiro de Automatica (SILVA; DA ROSA, 2024).

1.2 Organizagéo do texto

Este trabalho esté organizado da seguinte maneira:
¢ No capitulo 2 apresentam-se: as representacdes continuas e discretas do Modelo de
Volterra, as fungbes ortonormais, 0 Modelo OBF-Volterra e por tltimo sdo citados

diversos trabalhos que se baseiam nesse modelo;



No capitulo 3 apresentam-se: o sistema escolhido, os algoritmos feitos para simular
0 sistema e por fim os resultados dos Modelos de Volterra de 2° e 3° ordens;
No capitulo 4 s&o apresentadas as conclusdes do trabalho e as propostas para

trabalhos futuros.



2 O MODELO DE VOLTERRA
2.1 Representacdes

Dentre os modelos que permitem uma caracterizacdo sistemética de um sistema ndo-
linear, o Modelo de Volterra é um dos mais consolidados. Essencialmente esse modelo é uma
extensdo da convolucdo tradicional, que é aplicdvel somente aos casos de sistemas lineares
(CHENG et al., 2016).

Esse modelo é caracterizado por utilizar uma sequéncia de operagdes, similares a
convolucdo, entre o sinal de entrada u(t) e as funcdes h,, conhecidas como kernels. Segue a

representacdo do Modelo de Volterra para o tempo continuo (DRONGELEN, 2010):

+oo

Y(©) = yo + f hy (et — 1p)de, +

400400
+ ff hz (Tl, Tz)u(t - Tl)u(t - Tz) dTl dTZ + -
+o00+4o00 + oo
+ ﬂ J h,(t1,T5, ., TOU(lt — Ut — 75) ... u(t — 7)) dt, d75 ... dT)

(2.1)

Nesse modelo, y(t) representa a saida do sistema , n indica a ordem dos kernels e o
offset do sistema y, seréd considerado nulo pois as varidveis de estado sistema tém condicdes
iniciais nulas. Com vistas a possibilitar a simulacdo computacional do sistema em anélise,
optou-se por utilizar a versao discreta do Modelo de Volterra neste trabalho, que tem a seguinte
representacdo (SCHETZEN, 2006):

)= D e —m) +

T{=—00

+00

D kGl - wulk = )+ -

‘[1=—oo ‘[2=—OO

T4=—00 Tp=—00 Tp= —00

(2.2)



Serd adotado um limite de truncamento €,, na representacdo e os kernels de ordem n
serdo considerados nulos. O sistema que serd analisado nesse trabalho é causal, ou seja, sua
saida depende somente de valores da entrada no instante presente ou passados ou de valores
passados da propria saida, isto € (BOYD; CHUA, 1985):

y(k) =0;k<0

Sabe-se que a versdo truncada representa com 6tima precisdo qualquer sistema
ndo-linear que seja causal, estavel, invariante no tempo cuja entrada u(k) possua energia
limitada. Assim, o limite inferior dos somatorios sera t,, = 0 e o Modelo sera truncado

(BOYD; CHUA, 1985):

k
y() = Yo+ ) ha(eule =) +

T1=0

k k
£ hy(rmulk — ulk — ) + -

T1 =0 T2 =0

+i Zk: i hy(T1, 70, tulk — T )ulk — 75) -~ ulk — 1)

T1=0 2=0

)

(2.3)

Segue a representacdo do Modelo de Volterra de 3° ordem:

k
y() = ) hy(@)ulk—1)+
71=0

k k

+ 7 hyrulk - tulk - ©,) +

71 =0 7, =0

k k k
+ Z Z Z hs(ty, 70, 3)ulk — tulk — )ulk — 13)

(2.4)



O sistema em questdo é do tipo SISO (uma entrada e uma saida), portanto a fungéo
u(k - ,,) representa diferentes amostras de uma mesma entrada. Assim, os kernels estdo

associados a um mesmo fator e podem ser considerados simétricos (SCHETZEN, 2006):

hy(t1,72) = hy(72,71)
h3(T3,72,71) = h3(T3,71,T2) = h3(T2,71,T3) = h3(T2,73,T1) = h3(T1,72,73) =
= h3(71,73,72)
(2.5)
2.2 Bases de FuncgGes Ortonormais

Uma familia de fung¢des ortonormais pode ser definida matematicamente da
seguinte maneira:
1, sei=j

0, sei+j

> wiow 0 =
k=0
(2.6)

Sendo ;(k) e ;(k) fungdes que pertencem a mesma base ortonormal. Uma
propriedade importante dessas funcdes é a completude, que significa que qualquer
funcio, dentro do espaco de Lebesgue L?[0, ), pode ser aproximada por uma combinacio
linear das fungdes que compdem a mesma base de fung¢des ortonormais. Essa
aproximacdo é baseada em uma precisao definida pelo modelo escolhido (OLIVEIRA et al,
2011). Para que uma fungao f(x) faca parte desse espaco de Lebesgue é necessario que
a integral do quadrado do médulo de f(x) sobre o intervalo [0, ) seja finita, ou seja

(GUIMARAES et al., 2006):

[1Feordx < e
0
(2.7)
Geralmente as bases de funcbes ortonormais sdao definidas no dominio da frequéncia,

logo sera necessario calcular a transformada Z inversa dessas funcgdes. Para que essas funcdes

possam ser utilizadas na identificacdo ou representacdo de modelos, necessariamente seus polos



devem ter médulo menor do que 1 pois a regido de convergéncia (ROC) da Transformada Z é

a parte interna do circulo unitario como segue na Figura 3.1 (OLIVEIRA et al, 2012).

Im (z)

ROC Re (z)

Figura 3.1. Regido de convergéncia da transformada Z
Fonte: JUNIOR, et al., 2010

2.2.1 Fung0es de Laguerre

As funcBes de Laguerre possuem como caracteristica ter somente polos reais multiplos,
p é chamado de polo de Laguerre e para que seja cumprida a condicdo de convergéncia, |p| <
1. Essa familia de funcbes geralmente é representada da seguinte maneira (OLIVEIRA E
SILVA, 1994):

TR L=y
Yilz) =z z—p (z—p)

(2.8)

Neste trabalho serdo utilizadas as 6 primeiras funcdes de Laguerre e o calculo detalhado da
Transformada Z inversa dessas fun¢des encontra-se no apéndice B. Apesar das funcfes de
Laguerre serem mais adequadas para representar sistemas de 1° ordem, mostraram-se
adequadas, quando comparadas com as funcdes de Kautz e as bases de fungdes ortonormais
generalizadas GOBF, para o sistema em analise que é de 4° ordem. A Figura 3.2 mostra o
comportamento das 6 funcdes para p = 0,5 (SILVA; DA ROSA, 2024).



- Laguen,

Laguarre,

Laguers;

Fungoes de Laguerre

Figura 3.2 Comportamento das fungdes de Laguerre

2.3 Modelo OBF-Volterra

Esse Modelo € simplesmente o Modelo de Volterra tradicional, porém com a
especificidade de que os kernels sdo expandidos através de uma base de fung¢Ges ortonormais.
Essa abordagem é vantajosa porque a utilizacdo dessas funcbes reduz significativamente a
quantidade de parametros a serem estimados (DOYLE et al., 2012).

Como consequéncia 0 custo computacional serd muito menor e ap0s ter calculado as
Z~1! das funcdes de Laguerre, os kernels para 0 modelo de 3° ordem serdo representados por
uma combinacéo dessas funcbes da seguinte maneira (SCHETZEN, 2006; RUGH, 1981)):

h) = ) B

ha(ry,7,) = Z Z Pie )y ()

n
h3(ty,72,73) = Z

=1

S

Z Buje i (T )Wy (2 ()

s=1

mMz

(2.18)



Onde os coeficientes B sdo numeros reais que serdo determinados computacionalmente
e n € o numero de funcdes de Laguerre. Ao aumentar a ordem do Modelo, a quantidade de
termos dessas combinagdes cresce exponencialmente, em contrapartida a propriedade de
simetria dos kernels diminui significativamente esse numero. Ao combinar as expressoes (2.4)
e (2.18):

k n
Ymoaeto (0 = D" Y fbi(r) ulle = 7,) +

T1 =0 i=1

* zk: Zk: Zn: Zn:Bij Y (DY (t)ulk — tulke — 1) +
= £
+ Zk: i zk: Zn: izn: Bijs lpi(T1)1/)j(T2)l/JS(T3)u( k —t)ulk — t,)ulk — 735)

(2.19)

A fim de facilitar a visualizacdo do Modelo e os céalculos computacionais, cria- se uma versao
das funcdes de Laguerre filtrada pela entrada do sistema [; (k) e em seguida é feita a substituicéo
dessa funcdo em (2.19) (SCHETZEN, 2006; RUGH, 1981)):

k
Onde, l;(k) = Y;(Duk — 1)
Ymodeto (k) = Z Bili (k) + z ]Zlﬁi,-zi(k) LK) + Z ]Z 2 Biisli (k) L ()15 (K)

(2.20)

2.4 Otimizacao dos kernels e aplicacoes

O ndmero de termos para representar os kernels é sempre muito grande, tornando sua
identificacdo muito ardua. Se considerarmos um sistema com memoria de N amostras, 0
Modelo de Volterra ira requerer NP coeficientes para representar um kernel de ordem p
(CHENG et al., 2016).

Existem diversas técnicas que possibilitam diminuir consideravelmente esse nimero de
coeficientes, dentre elas a expansdo dos kernels em termos de bases de fung¢Ges ortonormais.

Campello e Favier abordaram um método de identificacdo de sistemas ndo-lineares que utiliza



as funcgdes de Laguerre para chegar em uma expansdo 6tima das funcGes de resposta ao impulso
de um sistema de Volterra (CAMPELLO; FAVIER; DO AMARAL, 2006). Zhang e Tischenko
propuseram um novo algoritmo de controle adaptativo e utilizaram o Modelo de Volterra e
expandiram os kernels por meio das fungdes ortonormais de Laguerre (ZHANG; TISCHENKO;
YU, 2009).

E extremamente relevante levar em consideracdo os fatores ndo-lineares para atingir
uma performance ideal de controle. O Modelo de Volterra é amplamente utilizado em
problemas de controle em processos quimicos, comunicagdo eletrdnica, maquinas elétricas,
compensacdo de distor¢bes ndo-lineares, cancelamento de eco em canais de comunicacao,
modelagem de fala e até mesmo em processamento de imagens. Nesse contexto, inimeros
pesquisadores tém desenvolvido uma grande variedade de métodos efetivos de controle para
sistemas néo-lineares (CHENG et al., 2016).

Yoon e Sun desenvolveram um método de identificacdo de sistemas ndo-lineares e
utilizaram o Modelo de Volterra para o controle de rastreamento robusto de um atuador de um
motor de valvula livre ou sem came (YOON, SUN, 2014). Gruber e Guzman investigaram o
design do controle ndo-linear preditivo da temperatura de uma estufa utilizando ventilagdo
natural a partir do Modelo de Volterra de 2° ordem identificado experimentalmente a partir dos
dados de entrada e saida da estufa (GRUBER et al, 2011).

Kumar e Banerjee apresentaram um novo sistema de classificacdo de imagens e
utilizaram-no para reconhecimento facial. Os resultados desse estudo mostraram que a
abordagem do Modelo de Volterra superou consistentemente indmeros métodos de ultima
geracdo da mesma categoria (KUMAR; BANERJEE; VEMURI, 2012). Le Caillec e Garello
utilizaram uma decomposic¢édo baseada no Modelo de Volterra para investigar a modelagem de
um radar de abertura sintética utilizado no processo de mapeamento da superficie do oceano
(LE CAILLEC; GARELLO; CHAPRON, 2002).

Neste capitulo foram detalhados o Modelo de Volterra bem como as fung¢des de
Laguerre, além disso discutiu-se sobre: como otimizar os kernels, o modelo OBF-Volterra
e aplicacdes do Modelo. No préoximo capitulo o sistema a ser estudado sera apresentado e
serdo expostos os resultados da representacdo desse sistema pelos Modelos de Volterra

de 2° e 3° ordens.



3 APRESENTACAO DO SISTEMA E RESULTADOS

Neste capitulo sera detalhada a representagcdo no espaco de estados de uma reacdo de
polimerizacdo em um reator de tanque agitado, em inglés Continuous Stirred Tank Reactor
(CSTR), que sera o sistema a ser simulado. Em seguida serdo discutidos os resultados das

simulacGes dos modelos de 2° e 3° ordens por meio de graficos e Tabelas.

3.1 Reacao de polimerizagdo em um CSTR

Polimerizacdo é uma reacdo em que pequenas moléculas denominadas mondmeros se
combinam quimicamente formando macromoléculas chamadas de polimeros. A polimerizacao
pode ser feita por adicdo ou por condensacdo. Este trabalho trata da polimerizagéo por adicao,
isto é: os polimeros sdo formados a partir da reacdo de adi¢cdo de um unico tipo de monémero
(CANEVAROLO JR, 2002).

Por motivos de amplo estudo j& documentado, o sistema escolhido para ser
representado pelo Modelo de Volterra serd uma reacdo de polimerizacdo de radical livre de
metacrilato de metila (MMA) como monémero com Azobisisobutironitrila (AIBN) como
iniciador e Tolueno como solvente em um CSTR.

Visando simplificar a reacdo de polimerizacdo, serdo adotadas as seguintes
simplificacbes: volume constante do Reator, operacdo Isotérmica, capacidade de calor
constante, mistura perfeita, hipoteses de estado quase estacionario e de cadeia longa adotadas,
sem reacdo de auto aceleracdo (efeito gel) e sem polimeros no fluxo de entrada (DOYLE et al,
1995).

Valendo-se dessas premissas, a representacdo no espaco de estados desse modelo foi
obtida por (DOYLE et al., 1995) tendo como entrada u(t) o quociente de vazdo do iniciador
em [m3/h] e saida o peso molecular médio em niimero (M,,), y,0q:(t) (kg/mol). As variaveis
de estado sdo: z,: Concentracdo do mondémero (MMA\), z,: Concentracdo do iniciador (AIBN),
z5: Peso total de todas as moléculas poliméricas da amostra e z,: Nimero total de moléculas da
amostra.

Foi feita a normalizacdo do modelo no espaco de estados por (DOYLE et al., 1995),
tornando as condicdes iniciais das variaveis de estado nulas, e uma aproximacao por séries de
Taylor truncadas em 2° ordem para fins de simplificacdo do célculo numérico durante a

simulacao do sistema e obteve-se:



7,(t) = —10.8957z, (t) — 0.4478372,(t) — 0.4478372, (t) 2, (t) + 0.11195922 (1),
2, () = —10.10222,(t) + 10.1022u(0),
{23 (0) = 241622, (t) + 8.77442,(t) — 1025 (t) + 1.225812, (t) 2, (¢) — 0.306453z2(t),

24 () = 102, (t) + 5.000012, (t) — 102, (t) + 5.00001z, (t)z,(t) — 1.2523 (1),

\ Vrear(t) = =23 (1) + 24(t) — 23 (D)2, (1) + 25 (D).
(4.1)

3.2 Algoritmos

Um dos motivos que tornam o Modelo de Volterra extremamente vantajoso
computacionalmente € o fato dele ser linear em seus parametros, ou seja, apesar da saida ser
ndo-linear em relacdo & entrada, os kernels séo lineares em relacéo a saida. O que permite o
uso de métodos computacionais mais simples, como 0 método dos minimos quadrados, para
as soluces de célculo numérico (VAN DEN HOF et al., 2000). Para a simulagdo do sistema
a presenca de ruidos na entrada e saida foram desconsiderados.

O custo computacional é extremamente relevante para esse trabalho. A maquina
utilizada possui as seguintes configuracdes: modelo Acer Swift 3, sistema operacional: 64
bits, baseado em x64, Windows 11 Home Single Language, processador: 11° geracao intel®
core™ j7-1165G7 @ 2.8GHz 2.8GHz, memaria volatil: RAM 16GB e memoéria ndo volatil:
SSD 1TB.

3.2.1 Modelo de Espaco de Estados e funcdes de Laguerre

O primeiro passo do trabalho é simplesmente obter a saida real do sistema y,..,; a partir
do Modelo no Espago de Estados. Foi criada uma funcéo que calcula as derivadas das variaveis
de estados a partir dos estados atuais do sistema e da entrada. E importante destacar o solver de
Equacbes Diferenciais Ordinarias (EDO’s) ode45 selecionado para a solucgao do sistema que é
baseado em um aprimoramento do Método de Runge-Kutta de 4° e 5° ordem. Esse solver
retorna os valores das varidveis de estados para todo k. e o algoritmo dessa etapa pode ser visto
no apéndice A.1.

As funcbes de Laguerre foram calculadas no apéndice B, assim foi possivel gera-las

diretamente no ambiente OCTAVE e em seguida foram geradas as funcdes de Laguerre



filtradas pela entrada [; (k) que irdo compor a matriz de regressores H(k) e o algoritmo dessa

etapa pode ser visto em A.2.

3.2.2 Estimacao dos coeficientes e calculo dos kernels

Essa é uma das partes mais relevantes do trabalho pois os kernels , considerados a
esséncia do sistema, serdo calculados. Utilizou-se o operador ‘\” para a solugéo do sistema linear
sobredeterminado A.x = B que minimiza |B — Ax|. Para o problema, A serd a matriz de

regressores H, x o vetor de coeficientes 5 e B o vetor Y. O algoritmo dessa 1° etapa pode ser

visto em A.3.
Hjiq ,258 —
(1,(0) ... 1(0) ;1(0)* 1,(0),(0) ... 1g(0)* 1,000 1,(0)11(0),(0) ... l(0)*]
L) - (D) 11(1)2 LMLA) - 16(1)2 l1(1)3 LLMLA) - l6(1)3
LK) T () Lk)? LWLE) T (k) LK) LELELE) T 1 (k)3
(4.2)
Biasg=lc1 = ¢ 11 €12 = Cee €111 ‘112 77 C666]
(4.3)
_yreal(o)_
yreal(l)
Y k11 =
—yreal(k)—
(4.4)

Uma vez que B foi estimado, € possivel calcular os kernels h,, h, e h; a partir das
expressoes (2.18). Cabe destaque a necessidade transformar cada coluna da matriz H em
tensores para que seja possivel calcular h; de maneira otimizada. O algoritmo dessa etapa pode

ser visto em A .4.



3.2.3 Calculo da saida do Modelo de Volterra

O cadigo que foi utilizado nessa etapa foi desenvolvido por (GOULART, 2024) e esta
disponivel no MATLAB Central File Exchange. Para que seja possivel o célculo da saida do
Modelo de Volterra é necessario que os kernels e a entrada do sistema sejam fornecidos e por

motivos de otimizacédo, esse algoritmo realiza os calculos no dominio da frequéncia.
3.2.4 Selecdo do valor 6timo para o polo de Laguerre

Nessa etapa optou-se pelo método de busca exaustiva variando p no intervalo ]0,1[ com
precisdo de duas casas decimais. O cddigo para essa etapa ndo foi inserido no trabalho pois
basicamente foi feito um loop externo a todos os calculos citados nas se¢des anteriores para
cada valor de p.

Utilizou-se o erro quadratico médio (EQM) e o erro quadratico médio normalizado
(EQN) como parametro para selecdo do valor 6timo de p , y,., € a saida real do sistema
Ymodelo € @ Saida do modelo (OLIVEIRA et al., 2012):

1 Ng 2
EQM = N_dzkzl(yreal(k) _ymodelo(k)) ,
(4.5)

Zl}gil(yreal (k) — Ymodelo (k))z

EQN = 10log >
legil(yreal (k))

(4.6)

3.3 Apresentacao e discussdo de resultados

Nesta secdo serdo apresentadas as saidas dos Modelos de Volterra de 2° e 3° ordens
para duas entradas distintas: impulso §(k) e uma sequéncia de degraus. Ao aumentar a ordem
do Modelo de Volterra é esperado que o erro também diminua. O principal objetivo desse
trabalho é fazer essa confirmacao e verificar se essa diminuicéo € significativa em contrapartida
de um custo computacional mais elevado. Além disso os resultados apresentados poderdo

nortear estudos de outros sistemas nao-lineares representados pelo Modelo de Volterra.



Para que o célculo da saida do Modelo de Volterra seja possivel € necessario obter: a
saida real do sistema y,..,;, as func@es de Laguerre no dominio k, a solucdo do sistema linear
H.B =Y eoskernels hy, h, e h; . Quanto maior p, mais lentamente os kernels irdo convergir,
isso é justificado pela maneira como as fun¢des de Laguerre sdo construidas no dominio k e
pode ser facilmente percebido graficamente.

Os kernels h, e h, podem ser facilmente representados, ja a representacdo de h5 torna-
se muito mais complexa pois ndo é possivel representa-lo em 2 ou 3 dimensdes de forma direta.
Existe a possibilidade de optar por fixar uma das variaveis e obter a funcédo resultante em termos
das outras 2 variaveis. Essa abordagem é conhecida como visualizagcdo por se¢des ou planos de
corte e € til para entender a variacdo da funcdo em relacdo a diferentes combinagdes de
variaveis.

O polo de Laguerre foi calculado simultaneamente para h,, h, e h; e obteve-se:
Potimo = 0,05 para o Modelo de 2° ordem e pgimo = 0,08 para 0 Modelo de 3° ordem.
Destaca-se que houve um aumento consideravel no custo computacional ao incluir o kernel
hs(kq, ks, k3). Assim, ao escolher o Modelo deve-se considerar se a precisao fornecida pelo de
2° ordem ja € suficiente para o sistema em estudo.

A seguir serdo apresentadas 2 se¢Oes, uma para cada entrada, onde serdo mostrados
gréficos da entrada e saida reais do sistema, representacdo grafica dos kernels, grafico
simultaneo de V,ear € Ymodeio € POr fim os calculos dos erros EQM, EQN e E (k). Define-se
como E(k):

E(k) = Yreal — Ymodelo

Para fins de comparacéo nas figuras 5.4, 5.5, 5.8 e 5.9 colocou-se os resultados dos dois
modelos lado a lado, onde a imagem da esquerda representa 0 Modelo de 2° ordem e a da direita

0 Modelo de 3° ordem.

3.3.1 Resposta a sequéncia de degraus

E importante ressaltar que para fins de simulacio a escolha da entrada u(t) ¢ arbitraria
desde que possua energia limitada. Optou-se por escolher a entrada como um sinal aleatorio
com amplitude variando uniformemente no intervalo [—0.6,0.8] ao longo de 100 horas, com

passo de amostra de 0,5 horas. Para a representacdo grafica dos kernels utilizou-se um outro



tempo de simulagdo pois como pg:ime = 0,05 entdo os kernels convergem muito rapido e ndo
teriam amostras suficientes para ter uma boa representacao grafica.
Seguem abaixo:

A Figura 5.1 que mostra o comportamento da entrada e saida durante a simulacéo;

Os kernels h;e h, do Modelo de 3° ordem estéo representados respectivamente pelas
Figuras 5.2 € 5.3;

A Figura 5.4 que mostra o grafico simultaneo de Y, .4; € Ymodeio Para 0s 2 modelos;

O erro ao longo do tempo E (k) para os 2 modelos na Figura 5.5;

A Tabela 5.1 que mostra o comportamento de EQM e EQN para pstimo-
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Figura 5.1- Entrada e saida u(k) e y(k)
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Figura 5.2 — Representacdo de h; para pstimo
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Tabela 5.1 - EQM e EQN para pstimo

Modelo EQM EQN
2° ordem 1,3856 x 10~> | —31,0259
3° ordem 54752 x 107° —35,0584

Foram feitas diversas simulacOes para a construgdo da Tabela e utilizou-se um valor
médio de EQM e EQN. Quanto mais negativo for o valor EQN melhor sera a precisdo do
modelo, isso se deve ao fato de EQN ser calculado utilizando uma escala logaritmica.

Por meio da Tabela e dos graficos observa-se que o Modelo de 3° ordem teve uma
performance melhor tanto para EQM quanto para EQN. Por outro lado, houve um aumento no

custo computacional mas que nao impossibilitou a simulagéo.

3.3.2 Resposta ao impulso & (k)

O Modelo OBF-Volterra é do tipo NFIR( Non-linear finite impulse response), possui
resposta finita ao impulso § (k). A resposta ao impulso & (k) fornece uma viséo parcial de como
um sistema néo-linear invariante no tempo reage a diferentes entradas e pode ser aplicado a
uma ampla gama de sistemas (VAN DEN HOF et al., 2000).

O impulso é uma funcdo que pode ser facilmente implementada pois é simplesmente
um pico de amplitude em uma Unica amostra. Essa simulacdo foi feita ao longo de 5 horas, com
passo de amostra de 0,025 horas

Seguem abaixo:

e Os kernels h, e h, estdo representados respectivamente pelas Figuras 5.6 e 5.7,

e A Figura5.8 que mostra o grafico simultaneo de V,.4; € Vmodeio Para os 2 modelos;

e O erro ao longo do tempo E (k) para os 2 modelos na Figura 5.9;

e A Tabela 5.2 que mostra o comportamento de EQM e EQN para pgtimo-
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Tabela 5.2 - EQM e EQN para pstimo

Modelo EQM EQN(dB)
2° ordem 2,1381x 1078 | —33,2795
3° ordem 8,1005x 10710 | —47,4946

E possivel observar claramente a propriedade de simetria de h, graficamente. Assim
como na resposta ao degrau, 0 modelo de 3° ordem apresentou uma performance melhor do que
0 modelo de 2° ordem. Visualmente o erro dos dois modelos parece ser muito préximo para a
resposta ao &(k), porém diferenca entre os dois modelos foi muito maior do que na resposta ao

degrau ja que EQ43M foi cerca de 100 vezes menor para 0 modelo de 3° ordem.

3.3.3 Comparagéo dos resultados

Segue abaixo a Tabela 5.3 que resume EQM e EQN para ambas entradas e modelos. A
tabela 5.4 mostra a comparacdo do custo computacional para os dois modelos variando a

guantidade de amostras a partir da entrada degrau.

Tabela 5.3 - EQM e EQN

u(k) 2° ordem 2° ordem 3° ordem 3° ordem

EQM EQN(dB) EQM EQN(dB)
degrau | 1,3856 x 107> —31,0259 5,4752 x 107° —35,0584
3(k) 2,1381x 1078 —33,2795 8,1005 x 10719 —47,4946




Tabela 5.4 — Custo computacional para ambos os modelos

Numero de 2° ordem 3° ordem
amostras (segundos) (segundos)

100 2 8

150 9 36
200 15 91
250 19 167
300 23 199
350 27 353
400 36 605

De modo geral o Modelo de 3° ordem apresentou uma performance superior ao Modelo
de 2° ordem apesar do aumento do custo computacional para as duas entradas simuladas. No
proximo capitulo serdo apresentadas as conclusdes do trabalho assim como as propostas para

trabalhos futuros.



4 CONCLUSOES E PROPOSTAS FUTURAS

O principal objetivo desse trabalho é verificar se h4 uma melhoria na preciséo do sistema
ao utilizar o Modelo de Volterra de 3° ordem para representar sua saida. Além disso, analisar o
aumento do custo computacional envolvido, uma vez que esse tema ainda foi pouco explorado.
Como ja foi mencionado, as funcdes de Laguerre geralmente sdo indicadas para representar
sistemas de 1° ordem, entretanto obteve-se um resultado muito satisfatorio utilizando-as para
representar os kernels do sistema de 4° ordem analisado.

Por ser um software livre, a simulagéo do sistema foi totalmente feita na linguagem
OCTAVE, a funcéo Isqr, disponivel no matlab, ndo esta disponivel para OCTAVE. Assim foi
necessario utilizar como alternativa 0 operador ‘\’ para a solugdo do sistema linear
sobredeterminado H.B =Y. Essa abordagem também foi muito satisfatoria para a
determinacdo dos coeficientes S e consequentemente para o célculo do kernels
hi(t1), hy(T1,72) € hs (71, T2, T3).

Ao comparar os resultados obtidos pelos dois Modelos, EQM, EQN e E (k) sdo de fato
menores para 0 modelo de 3° ordem, todavia o custo computacional tornou-se mais elevado, o
que fica evidenciado pela tabela 5.4. Assim conclui-se que é primordial considerar se 0 modelo
de 2° ordem é suficiente para atender os requisitos de precisdo para um determinado problema
antes de se implementar um modelo de ordem superior.

Para obter conclusdes mais sélidas sobre o assunto uma sugestao para futuros trabalhos
é simular outros sistemas além do CSTR utilizando o Modelo de Volterra de 3° ordem e fazer
a mesma comparacdo feita neste trabalho. Além disso sugere-se o uso de simuladores de
processos quimicos para validacdo dos resultados como, por exemplo, 0 AVEVA Process
Simulation.

Outra proposta futura é utilizar outras bases de fungdes ortonormais, como a de Kautz e
GOBF, para a representacdo dos kernels do Modelo de Volterra de 3° ordem e verificar se ha
uma melhoria na precisdo ao comparar com os resultados obtidos utilizando as func6es de
Laguerre.

O célculo do pg:im, também pode ser aprimorado. Foi feita apenas uma busca exaustiva
simples neste trabalho, uma sugestdo é utilizar o método de Levenberg-Marquardt que pode
superar 0s métodos do gradiente descende e gradiente conjugado para problemas de tamanho
médio e é uma escolha usual em problemas de otimizacdo ndo-linear (DA ROSA;
CAMPELLO; AMARAL, 2009).
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APENDICE A - CODIGOS

Todos os cddigos que estdo anexados nesse apéndice sdo de autoria do autor e foram
feitos na plataforma do OCTAVE.

A.1 Representacdo do sistema utilizando o Modelo em Espaco de Estados

% Condigdes iniciais
x0 =[0;0;0;0];

% Tempo de Simulagéo
k =0:0.03:32;

% Entrada do sistema
num_aleatorios = rand(1, length(k));

X =-0.6 + 1.4* num_aleatorios;

% Definigdo da fungdo que retorna o vetor de derivadas das variaveis de estado do sistema
function dxdk = sistema_nao_linear(ksim, xsim, x)
if nargin < 2
xsim = zeros(4, 1);
end
dxdk = zeros(4, 1);
dxdk(1) = -10.8957*xsim(1) - 0.447837*xsim(2) - 0.447837*xsim(1)*xsim(2)
+0.111959 * xsim(2)"2;
dxdk(2) =-10.1022*xsim(2) + 10.1022*x;
dxdk(3) = 2.4162*xsim(1) + 8.7744*xsim(2) - 10*xsim(3) + 1.22581* xsim(1)*xsim(2) -
0.306453*xsim(2)"2;
dxdk(4) = 10*xsim(1) + 5.00001*xsim(2) - 10*xsim(4) + 5.00001*xsim(1)*xsim(2) -
1.25* xsim(2)"2;

end

% Simulagéo usando ode45
[ksim, xsim] = ode45(@(ksim, xsim) sistema_nao_linear(ksim, xsim, interpl1(k, x, ksim, 'previous',
0)), k, x0);



%o Saida do sistema

y_real =-xsim(:, 3) + xsim(:, 4) - xsim(:, 3) .*xsim(:, 4) + xsim(:, 3)."2;

A.2 Geracdo das fungdes de Laguerre e suas respectivas versoes filtradas

% p pode assumir qualquer valor no intervalo ]0,1[ inicialmente
p =0.09;

% Definic¢ao das fungdes de Laguerre

Laguerre_1 = ((1-p"2)N(1/2))*(p”"K);

Laguerre_2 = ((1-p"2)N(1/2)).*((k+1).*(p.Nk+1))-k.*(p.A(k-1)));

Laguerre_3 = ((1-p.~2).M(1/2)).*(p.Nk+2).*((k.N2+3.%k+2)/2)- p~k.*(k.A2+K)+ p.A(K-2).*(k.*(k-1)/2));
Laguerre_4 = ((1-p.”2).M1/2)).*(-p.~(k+3).*((k."3+6.*k.A2+11.*k+6)/6) +

p.AK+1).*((k"3+3.%k A2+2.%K)/2)+p. A (k-1). *(-k.A3+K) 2+ p.A(k-3).*(k.N3-3.%k.N2+2.%K)/6);
Laguerre_5 = ((1-p.~2).M(1/2)).*1/24.*p.Nk-4).*((k+1).*(k+2).* (k+3).*(k+4).*p."8 - 4.%k.*(k+1).*(k
+2).*(k+3).*p.~6 + 6.%(k-1).*k.*(k+1).*(k+2).*p.M - 4.*(k-2).*(k-1).*k.*(k+1).*p. 2 + (k-3).*(k -
2).*(k-1).*k);

Laguerre_6 = ((1 - p.*2).”(1/2)).*1/120.*p.~(k - 5).*(10.*k.*(k.4 - 5.%k. "2 + 4).*p. M - (K + 1).%(k +
2).*(k + 3).*(k + 4).*(k + 5).*p.~10 + 5. *k.*(k + 1).*(k + 2).*(k + 3).*(k + 4).*p.”8 - 10.*(k -
1).%k.*(k + 1).*(k + 2).*(k + 3).*p.”6 - 5.*%(k - 3).*(k - 2).*(k - 1).*k.*(k + 1).*p."2 + (k - 4).*(k -
3).*(k - 2).*(k - 1).*k);

Laguerres = [Laguerre_1', Laguerre_2', Laguerre_3', Laguerre_4', Laguerre_5', Laguerre_6';

% Funcdes de Laguerre Filtradas pela entrada x
L1 = zeros(size(k));
L2 = zeros(size(k));
L3 = zeros(size(k));
L4 = zeros(size(k));
L5 = zeros(size(k));
L6 = zeros(size(k));

for i = L:length(K)
for tau = 0:i-1
L1(i) = L1(i) + Laguerre_1(tau+1)*x(i - tau);
L2(i) = L2(i) + Laguerre_2(tau+1)*x(i - tau);
L3(i) = L3(i) + Laguerre_3(tau+1)*x(i - tau);



L4(i) = L4(i) + Laguerre_4(tau+1)*x(i - tau);

L5(i) = L5(i) + Laguerre_5(tau+1)*x(i - tau);

L6(i) = L6(i) + Laguerre_6(tau+1)*x(i - tau);
end

end

Laguerres_f=[L1', L2, L3, L4, L5, L67;
M = size(Laguerres_f, 2);

N = length(Kk);

A.3 Construcgéo dos regressores e estimacao dos coeficientes

% Regressores de primeira ordem

H1 = Laguerres_f;

% Regressores de segunda ordem
H2 = zeros(N, M"2);

count = 1;
fori=1:M
forj=1:M

H2(:, count) = Laguerres_f(:, i).*Laguerres_f(:, J);
count = count + 1;
end

end

% Regressores de terceira ordem
H3 = zeros(N, M”3);
count =1,
fori=1:M
forj=1:M
forl=1:M
H3(:, count) = Laguerres_f(:, i) .* Laguerres_f(:, j) .* Laguerres_f(:, );
count = count + 1;

end



end

end

% Concatenacdo dos Regressores
H=[H1 H2 H3];

% Estimacdo utilizando o operador '\'
coef = zeros(size(H, 2), 1);

coef =H\y_real,

% coeficientes para cada ordem
coef 1 ordem = coef(1:M);
coef_2_ordem = coef(M+1:M+M”"2);

coef_3_ordem = coef(M+M"2+1:end);

A.4 Célculo dos kernels

% kernel de primeira ordem

K1 =coef 1 ordem'* [Laguerre 1; Laguerre_2; Laguerre_3; Laguerre_4; Laguerre_5;

Laguerre_6];

% kernel de segunda ordem
K2 = zeros(length(k), length(k));

count =1;
fori=1.M
forj=1:M

K2 = K2 + coef_2_ordem(count)*(Laguerres(:, i) * Laguerres(:, j));
count = count + 1;
end

end



% kernel de terceira ordem
K3 = zeros(length(k), length(k), length(Kk));
count = 1;
fori=1:M
forj=1:M
forl=1:M
% Expanséo tensorial
Li = reshape(Laguerres(:, i), [length(k), 1, 1]);
Lj = reshape(Laguerres(:, j), [1, length(k), 1]);
LI = reshape(Laguerres(:, 1), [1, 1, length(k)]);
K3 = K3 + coef_3 ordem(count) * (Li.* Lj.* LI);
count = count + 1;
end
end
end



APENDICE B - CALCULO DAS FUNCOES DE LAGUERRE

Serdo calculadas as Z~! das 6 primeiras func¢des de Laguerre e sera necessario utilizar as

seguintes propriedades da transformada Z: (adicionar referéncia)

2 4 aku(k) (1)
(z-a)
= & ka () @
A z k(k—1)

a*2u(k) 3)

z—a® 2
2z (e=2)(k— Dk

=) G a*3u(k) (4)
k—3)(k—2)(k— 1)k

(z _Za)s L ( X 24 X ) a*~*u(k) (5)
k—4)(k—-3)(k—-2)(k—1)k

(z —Za)6 & ( . igo X ) a*~*u(k) (6)

Uma vez que o sistema serd avaliado somente para k > 0, entdo u(k) = 1. Aseguir

serdo calculadas as Z 1.

1) ¢2(2)
_  Yimp? (1mp2\0 iy
1[11(2) =z zZ—-p (z—p) =z z—p
(2.9)
Ao utilizar a propriedade (1) teremos:
Z7 P (2) 1=y1- p?p*
Z7 (D] = Py(k)

(2.10)

Onde Z7[ Y, (z) ] simboliza a transformada inversa de 1, (2).



2) P, (2)

wz(z)—zm(l pz) ,1=p7(-p2)

z-p \z-p (z-p)?
wz(z> (1-pz)
¥y (2)= J1-p? = 2 ap)y
(2.11)
Expandindo em fragdes parciais:
(1 pz) __ A B _ A(z—p)+B
V(@) =20 =2 (z—p) t ((z—p)z) =( @p)? )
) _ . (Az-p)+B
IDDZ(Z) - Z( (z—p)z )
(2.12)
Comparando (2.11) e (2.12) temos que:
A= —p
{B =1-7p?
, — (X — ) (2 —
1’[)2 (Z) =P (z—p) + (1 p )((z—p)z)
Utilizando as propriedades (1) e (2), teremos:
Z7 Py @)] = -p(p*) + (1 = pDkp*™) = - ((k+1)p**' - kp*™")
()] =-y1— p? ((k+ Dp“** -kp*™")
(2.13)

3)P3(2)

) \/1 p? (1-pz)?

(z—-p)3

Y3(2) =2 ((12_—1;2))32 —7 (ﬁ) tz ((Z—Bp)z) tz (ﬁ)

, _ . (A(z-p)?B(z—p)+C
1/13 (Z) - Z( (Z—p)3 )




A= p?
B =2p3-2p

C=rp*—2p>+1
b3(2)=p ( )+(2p _ZP)((z p)2)+(p —2ptt D) ((z p)3)

Ao utilizar as propriedades (1), (2) e (3):

2 [ ()] = P2 () + 297 — 2p) (kp* ™) + (p* — 2p? + 1) (HE22)

2

k?+4+3k+2

I U (e B )

(2.14)

4) P, (2)

J1-p? (1-pz 1/1 V1-p? (1-p2)? -pz)3
Yal2) = (z—p) et

pi@ =207 (ip) 2(G2) +2(55s) + 2(2)
V,(2) = z (A(Z_p)sB(iz__p;j:‘C(Z—p)+D)

A= —p
4 B =3p*(1-p?)
| C= 3p(-p*+2p*-1)
\D = —p®+3p*-3p*+1

Y@= —p* (%) +3p°(1 - p?) (55) + 3p(-p* + 207 = 1) (55) +

+ (=p° +3p* =3p* + 1) ()
Ao utilizar as propriedades (1), (2), (3) e (4):

[, @]=-p>@*) + 3p>(1 — p?) (kp " +3p(—p* + 2p? — 1) ((2p*2) +

2
(k=2)(k-Dk j,_
pk 3)

+(—p® +3p* —3p? + 1) (2



6 2

—k3+k k3 —3k%+ 2k
e () e (F2 )

s (k3 +6k% + 11k + 6) 4kt <k3 +3k% + 2k> +\

Z7 P (@] =1 - p? k

(2.15)

5) ¥5(2)

V() = 2 (L) - L ey

z-p \z-p (z-p)>

Yi(z) =z ((12__1;2)): =z (ﬁ) +z ((Z_Bp)2> +z ((Z_Cp)3) + z ((Z_Dp)4) +z (#)
Vi(z) = z (A(z—p)4+B(z—p)(32+_Cp()zs—p)2+D(z—p)+E)

(o
B=4p°(p*-1)
{ C=6p*(p*—2p*+1)
D = 4p(p® — 3p* +3p%? - 1)
E=p%—4p°+6p* —4p? +1

V4

s@=p* (5)+ ° 0 - (G55) + 6’ 0" — 207 + D (55) +

z

6 _ 2,4 2 _ 8 _ Apb 4 _ g2 z
+4p(p® —3p” +3p° - 1) ((Z_p)4)+(p 4p° + 6p* —4p° + 1) ((Z_p)s)

Ao utilizar as propriedades (1), (2), (3), (4) e (5):

Z7 [ (@)] = p* (@) + 4p° 0 — Dkp*™) + 6p> (p* — 2p* + 1) (2 ph2) +

+ 4p(p® — 3p* +3p% — 1) (7(’(_2)(]‘_1)’(1)"‘3) +

6

+ (p® — 4p® + 6p* —4p? + 1) (—(k_3)(k;j)(k_1)k p"“‘)



Expandindo os termos:

_ k*+10k3+35k2+50k+24 k*+6k3+11k%+6k
Z7yYs(2)] =1 — p? <pk+4( 24 )_pk+2( 6 ) +

k*+2k3-Kk2%-2k _o (—k*+2Kk3+k?%-2k _a (k*—6k3+11k%-6k
(L s (AR | i (Lot

(2.16)
6) Pe(2)

Wo(z) = 7L (102 _ et

z-p \z-p (z-p)®

Y, (z) = z% =z (ﬁ) +z ((Z_Bp)2)+z ((Z_Cp)s) +z ((Z_Dp)4) +z (ﬁ) +

z ((Z—Fp)e)

A(z—p)°+B(z—p)*+C(z—p)3+D(z—p)*+E(z—p) +F
1[)’6(2) _ Z( (z—p)>+B(z—p) ((2_101;)6 (z—p)*+E(z-p) )
r
| B = 5p*(1-p*)
{ C= 10p3(—p*+2p%—-1)
D = 10p*(1 — 3p? + 3p* — p®)
|  E=—-5p(1—4p? + 6p* — 4p° +p®)
\F = —p1® + 5p% — 10p® + 10p* — 5p2 + 1

z z

V(@)= —p° (é) +5p(1-p%) ((z—p)z) +10p°(=p* +2p° = 1) ((z—p)3) +

z
(z-p)*

~10p°® + 10p* — 5p* + 1) ( (Z_Zp)ﬁ)

z

+10p?(1 — 3p? + 3p* — p®) ( P

) —5p(1 — 4p* + 6p* — 4p® + +p®) ( )+(—p1° + 5p® —

Ao utilizar as propriedades (1), (2), (3), (4), (5) e (6):

Z7 Py (@)]=—p° (") + 5p*(1 — p*) (kp*™) +
+10p3(—p* +2p% - 1) <—k(k2_1) pk_z) +

+10p? (1 — 3p? + 3p* — pb) (LRI pr-3) 4

(k—3)(k-2)(k—Dk ,_,
24 v >+

— 5p(1 — 4p? + 6p* — 4p°® + p®) (



k—4)(k—3)(k-2)(k=1)k _j—
+(=p™® + 5p8 — 10p® + 10p* — 5p + 1) (( )( I;O )(k—1) pk 5)

Expandindo os termos:

_ Kk54+15k*4+85k3+225k24274k+120
A 1[ Ye(2)] = V1- p? <_pk+5 ( 120 ) +

k+3 [(k5+10k*+35k3+50k2+24k k+1 (kS+5k*+5k3-5Kk2—6k k—1 (k53— 5Kk3+4k
tP 24 -p 12 tp 12 +

n pk_3 (—k5+5k4+5k3—5k2+6k) n pk‘s (k5+10k4+35k3+50k2+24k)
24 120

(2.17)

Um aplicativo para todas as suas necessidades de Word,



Excel, PowerPoint e PDF. Obter o aplicativo Microsoft 365:
https://aka.ms/GetM365
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