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RESUMO 

 

Esse trabalho tem como foco a aplicação do Modelo de Volterra para sistemas de 

controle não-linear. Esse modelo tem como principal parâmetro os kernels que serão 

representados matematicamente por funções ortonormais, mais especificamente as funções de 

Laguerre. O sistema não linear escolhido foi uma reação química de polimerização em um 

reator de tanque agitado. Será utilizada a abordagem de caixa preta, explorando os dados de 

entrada e saída a partir do seu Modelo no Espaço de Estados. Teoricamente, o Modelo de 

Volterra tem ordem infinita, mas a grande maioria dos estudos utiliza-o até a  2° ordem. O 

objetivo desse trabalho será explorar o modelo de 3° ordem para compará-lo com o Modelo de 

2° ordem para um mesmo sistema não-linear. O custo computacional é parte importante do 

trabalho e ao aumentar a ordem do modelo observou-se um aumento nessa importante variável 

do processo. Em contrapartida, houve uma diminuição nos erros calculados entre a saída real 

do sistema e a saída do Modelo de Volterra.  

 

Palavras-chave: Modelo de Volterra; kernel; sistema não-linear, funções de Laguerre. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ABSTRACT 

 

This work is focused on the application of the Volterra Model for nonlinear control 

systems. The main parameter of this model is called kernel and will be mathematically 

represented by orthonormal functions, more specifically by Laguerre functions. The nonlinear 

system chosen was a chemical polymerization reaction in a stirred tank reactor. The black box 

approach will be used exploring the input and output data only from its state space model. 

Theoretically the Volterra Model has infinite order, however the great majority of the works 

use the 2° order model. The objective of this work will be to use the 3° order model to compare 

the results with those of the 2° order model for the same non-linear system. The computational 

cost is an important part of the work, as the order of the model was increased, an increase in the 

computational cost was observed. On the other hand, a considerable decrease was observed in 

the calculated errors between the system output data and the Volterra Model output. 

  

Keywords: Volterra Model; kernel; non-linear system, Laguerre functions 
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1 INTRODUÇÃO 

 

1.1 Motivação 

 

Problemas que envolvem sistemas não-lineares têm chamado muita atenção e gerado 

interesse de muitos físicos, matemáticos e engenheiros. Isso se dá porque a maior parte dos 

sistemas do mundo real possuem naturalmente uma dinâmica não-linear. Para possibilitar a 

representação desses sistemas, foram propostos muitos modelos matemáticos, dentre eles o 

Modelo de Volterra (CHENG et al., 2017). 

Entende-se por sistema não-linear aquele que não satisfaz o princípio da superposição. 

Para que um sistema satisfaça esse princípio, a saída do sistema para duas ou mais entradas 

quaisquer deverá ser igual a soma das saídas que teriam sido obtidas para cada entrada 

separadamente (DA SILVA, 2006).  

Sistemas com dinâmica não-linear geralmente são complexos do ponto de vista 

matemático. Usualmente algumas simplificações são consideradas para que um determinado 

sistema originalmente não-linear possa ser analisado como um sistema linear. Dentre elas 

podemos citar: linearização em torno do ponto de equilíbrio, aproximação de pequeno sinal e  

a análise em pequenos intervalos (VIANA, 2021). 

Nesse cenário, pode-se dizer que o sistema simplificado passa a se distanciar cada vez 

mais do sistema original na medida em que mais simplificações matemáticas são utilizadas. Em 

contrapartida, o estudo do sistema torna-se muito mais simples. É recomendado que haja um 

equilíbrio dessas simplificações para que a fidedignidade seja mantida, porém nem sempre é 

possível encontrar esse equilíbrio e o uso de técnicas não-lineares torna-se indispensável. 

Existem diversos modelos matemáticos não-lineares como opção, sendo o Modelo de 

Volterra um dos mais populares atualmente e que surgiu nos trabalhos do matemático italiano 

Vito Volterra. Durante grande parte do século XX sua aplicação era muito limitada por ausência 

de tecnologia disponível e apenas a partir da criação e popularização dos computadores que 

esse modelo passou a ter ampla aplicação em áreas como: aeroelasticidade, dinâmica de fluidos, 

engenharia biomédica e engenharia elétrica (CHENG et al., 2016). 

As bases de funções ortonormais são extremamente úteis nesse contexto pois possuem 

propriedades que permitem diminuir a complexidade e o número de termos que surgem quando 

é feita a expansão do sistema pelo Modelo de Volterra e geralmente essas são apresentadas no 

domínio da frequência.  



Entre essas famílias de funções, destacam-se as Funções de Laguerre que possuem em 

sua construção apenas múltiplos polos reais. Optou-se por utilizar essas funções para 

representar os kernels, considerados o núcleo do Modelo de Volterra, porque têm uma 

construção mais simples e geralmente satisfazem uma grande variedade de equações 

diferenciais (DA ROSA; CAMPELLO; AMARAL, 2009). 

Além disso essas funções geralmente são apropriadas para representar sistemas 

dinâmicos bem amortecidos pois envolvem funções de transferência racionais com uma forma 

recursiva simples e completamente parametrizada por um único polo de valor real, o polo de 

Laguerre 𝑝 (DA ROSA; CAMPELLO; AMARAL, 2009). 

Um dos principais objetivos desse trabalho será calcular o valor ótimo para polo de 

Laguerre do sistema em estudo. Já que a principal proposta do trabalho é abordar o Modelo de 

Volterra até a 3° ordem, optou-se por estimar o polo ótimo por meio de uma busca exaustiva 

simples. 

Quando os kernels do Modelo de Volterra são representados por funções ortonormais, 

dá-se o nome para esse modelo de OBF-Volterra. Visando simplificar esse modelo foram 

criadas versões das funções de Laguerre filtradas pela entrada do sistema, assim o cálculo dos 

coeficientes das combinações das funções de Laguerre para representar os kernels torna-se mais 

simples e pode ser feito a partir do método dos mínimos quadrados. 

Por fim, comparou-se os erros entra saída real e as  saídas dos Modelos de Volterra de 

2° e 3° ordens, visando verificar a viabilidade de se utilizar a 3° ordem, já que que há um 

aumento do custo computacional envolvido nas soluções numéricas do problema. Como 

parâmetro de comparação utilizou-se o erro quadrático médio (EQM) e o erro quadrático médio 

normalizado (EQN). 

É importante comentar que foi escrito um artigo científico como consequência desse 

trabalho , em conjunto com o meu orientador, que será publicado no final do ano no Congresso 

Brasileiro de Automática (SILVA; DA ROSA, 2024). 

 

1.2  Organização do texto 

 

Este trabalho está organizado da seguinte maneira: 

• No capítulo 2 apresentam-se: as representações contínuas e discretas do Modelo de 

Volterra, as funções ortonormais, o Modelo OBF-Volterra e por último são citados 

diversos  trabalhos que se baseiam nesse modelo; 



• No capítulo 3 apresentam-se: o sistema escolhido, os algoritmos feitos para simular 

o sistema e por fim os resultados dos Modelos de Volterra de 2° e 3° ordens; 

• No capítulo 4 são apresentadas as conclusões do trabalho e as propostas para 

trabalhos futuros. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2 O MODELO DE VOLTERRA  

 

2.1 Representações 

 

Dentre os modelos que permitem uma caracterização sistemática de um sistema não-

linear, o Modelo de Volterra é um dos mais consolidados. Essencialmente esse modelo é uma 

extensão da convolução tradicional, que é aplicável somente aos casos de sistemas lineares 

(CHENG et al., 2016). 

Esse modelo é caracterizado por utilizar uma sequência de operações, similares a 

convolução, entre o sinal de entrada 𝑢(𝑡) e as funções ℎ𝑛 conhecidas como kernels. Segue a 

representação do Modelo de Volterra para o tempo contínuo (DRONGELEN, 2010): 

 

𝑦(𝑡) = 𝑦0 + ∫ ℎ1(𝜏1)𝑢(𝑡 − 𝜏1)𝑑𝜏1 + 

+∞

−∞

 

+ ∬ ℎ2(𝜏1, 𝜏2)𝑢(𝑡 − 𝜏1)𝑢(𝑡 − 𝜏2)𝑑𝜏1

+∞+∞

−∞−∞

𝑑𝜏2  + ⋯  

+ ∬  

+∞+∞

−∞−∞

… ∫ ℎ𝑛(𝜏1, 𝜏2, … , 𝜏𝑛)𝑢(𝑡 − 𝜏1)𝑢(𝑡 − 𝜏2)…𝑢(𝑡 − 𝜏𝑛) 𝑑𝜏1 𝑑𝜏2

+∞

−∞

…𝑑𝜏𝑛 

(2.1) 

 

Nesse modelo, 𝑦(𝑡) representa a saída do sistema , 𝑛 indica a ordem dos kernels e o 

offset do sistema 𝑦0 será considerado nulo pois as variáveis de estado sistema têm condições 

iniciais nulas. Com vistas a possibilitar a simulação computacional do sistema em análise, 

optou-se por utilizar a versão discreta do Modelo de Volterra neste trabalho, que tem a seguinte 

representação (SCHETZEN, 2006): 

𝑦(𝑘) = ∑ ℎ1(𝜏1)𝑢

+∞

𝜏1=−∞

(𝑘 − 𝜏1) + 

+ ∑  

+∞

𝜏1 = −∞

∑ ℎ2(𝜏1, 𝜏2)𝑢(𝑘 −  𝜏1)𝑢(𝑘 −  𝜏2) + ⋯      

+∞

𝜏2 = −∞

 

+ ∑  

+∞

𝜏1= −∞

∑ ⋯

+∞

𝜏2= −∞

∑ ℎ𝑛(𝜏1, 𝜏2,⋯ , 𝜏𝑛)𝑢(𝑘 −  𝜏1)𝑢(𝑘 − 𝜏2)⋯𝑢(𝑘 − 𝜏𝑛)

+∞

𝜏𝑛= −∞

 

      (2.2) 



Será adotado um limite de truncamento ∈𝑛 na representação e os kernels de ordem 𝑛 

serão considerados nulos. O sistema que será analisado nesse trabalho é causal, ou seja, sua 

saída depende somente de valores da entrada no instante presente ou passados ou de valores 

passados da própria saída, isto é (BOYD; CHUA, 1985): 

 

y(k) = 0; 𝑘 < 0 

 

Sabe-se que a versão truncada representa com ótima precisão qualquer sistema 

não-linear que seja causal, estável, invariante no tempo cuja entrada 𝑢(𝑘) possua energia 

limitada. Assim, o limite inferior dos somatórios será 𝜏𝑛  =  0  e o Modelo será truncado 

(BOYD; CHUA, 1985): 

𝑦(𝑘) = 𝑦0 + ∑ ℎ1(𝜏1)𝑢

𝑘

𝜏1=0

(𝑘 − 𝜏1) +  

+ ∑  

𝑘

𝜏1 =0

∑ ℎ2(𝜏1, 𝜏2)𝑢(𝑘 − 𝜏1)𝑢(𝑘 − 𝜏2) + ⋯     

𝑘

𝜏2  =0

 

+ ∑  

𝑘

𝜏1=0

∑⋯

𝑘

𝜏2=0

∑ ℎ𝑛(𝜏1, 𝜏2,⋯ , 𝜏𝑛)𝑢(𝑘 − 𝜏1)𝑢(𝑘 − 𝜏2)⋯𝑢(𝑘 − 𝜏𝑛)

𝑘

𝜏𝑛=0

 

(2.3) 

 

Segue a representação do Modelo de Volterra de 3° ordem: 

 

𝑦(𝑘) = ∑ ℎ1(𝜏1)

𝑘

𝜏1=0

𝑢(𝑘 − 𝜏1) + 

+ ∑  

𝑘

𝜏1  =0

∑ ℎ2(𝜏1, 𝜏2)𝑢(𝑘 − 𝜏1)𝑢(𝑘 − 𝜏2) + 

𝑘

𝜏2 =0

 

+∑  

𝑘

𝜏1=0

∑  

𝑘

𝜏2=0

∑ ℎ3(𝜏1, 𝜏2, 𝜏3)𝑢(𝑘 − 𝜏1)𝑢(𝑘 − 𝜏2)𝑢(𝑘 − 𝜏3)

𝑘

𝜏3=0

 

       (2.4) 

 



O sistema em questão é do tipo SISO (uma entrada e uma saída), portanto a função 

𝑢(𝑘 – 𝜏𝑛) representa diferentes amostras de uma mesma entrada. Assim, os kernels estão 

associados a um mesmo fator e podem ser considerados simétricos (SCHETZEN, 2006): 

 

ℎ2(𝜏1, 𝜏2) =  ℎ2(𝜏2, 𝜏1)  

 ℎ3(𝜏3, 𝜏2, 𝜏1) =  ℎ3(𝜏3, 𝜏1, 𝜏2) =  ℎ3(𝜏2, 𝜏1, 𝜏3) =  ℎ3(𝜏2, 𝜏3, 𝜏1) = ℎ3(𝜏1, 𝜏2, 𝜏3) =

   = ℎ3(𝜏1, 𝜏3, 𝜏2)   

(2.5) 

2.2 Bases de Funções Ortonormais 

 

Uma família de funções ortonormais pode ser definida matematicamente da 

seguinte maneira: 

 ∑𝜓𝑖(𝑘)𝜓𝑗(𝑘) = {

1,   𝑠𝑒  𝑖 = 𝑗
 

0,   𝑠𝑒  𝑖 ≠ 𝑗
 

     

∞

𝑘=0

 

                                                                                                                                 (2.6) 

 

Sendo 𝜓𝑖(𝑘) 𝑒 𝜓𝑗(𝑘) funções que pertencem à mesma base ortonormal. Uma 

propriedade importante dessas funções é a completude, que significa que qualquer 

função, dentro do espaço de Lebesgue 𝐿2[0,∞), pode ser aproximada por uma combinação 

linear das funções que compõem a mesma base de funções ortonormais. Essa 

aproximação é baseada em uma precisão definida pelo modelo escolhido (OLIVEIRA et al., 

2011).  Para que uma função 𝑓(𝑥) faça parte desse espaço de Lebesgue é necessário que 

a integral do quadrado do módulo de 𝑓(𝑥) sobre o intervalo [0,∞) seja finita, ou seja 

(GUIMARÃES et al., 2006): 

 

∫|𝑓(𝑥)|2𝑑𝑥

∞

0

<  ∞ 

(2.7) 

 

Geralmente as bases de funções ortonormais são definidas no domínio da frequência, 

logo será necessário calcular a transformada 𝑍 inversa dessas funções. Para que essas funções 

possam ser utilizadas na identificação ou representação de modelos, necessariamente seus polos 



devem ter módulo menor do que 1 pois a região de convergência (ROC) da Transformada Z é 

a parte interna do círculo unitário como segue na Figura 3.1 (OLIVEIRA et al, 2012).  

 

 

Figura 3.1. Região de convergência da transformada Z 

Fonte: JUNIOR, et al., 2010 

 

2.2.1 Funções de Laguerre 

 

As funções de Laguerre possuem como característica ter somente polos reais múltiplos, 

p é chamado de polo de Laguerre e para que seja cumprida a condição de convergência, |𝑝| <

1. Essa família de funções geralmente é representada da seguinte maneira (OLIVEIRA E 

SILVA, 1994): 

𝜓𝑖(𝑧) = 𝑧
√1 − 𝑝2

𝑧 − 𝑝
(
1 − 𝑝𝑧

𝑧 − 𝑝
)
(𝑖−1)

 

(2.8) 

             

 Neste trabalho serão utilizadas as 6 primeiras funções de Laguerre e o cálculo detalhado da 

Transformada 𝑍  inversa dessas funções encontra-se no apêndice B. Apesar das funções de 

Laguerre serem mais adequadas para representar sistemas de 1° ordem, mostraram-se 

adequadas, quando comparadas com as funções de Kautz e as bases de funções ortonormais 

generalizadas GOBF, para o sistema em análise que é de 4° ordem. A Figura 3.2 mostra o 

comportamento das 6 funções para 𝑝 = 0,5 (SILVA; DA ROSA, 2024). 

 

 



 

Figura 3.2 Comportamento das funções de Laguerre 
 

 

2.3 Modelo OBF-Volterra  

 

 Esse Modelo é simplesmente o Modelo de Volterra tradicional, porém com a 

especificidade de que os kernels são expandidos através de uma base de funções ortonormais. 

Essa abordagem é vantajosa porque a utilização dessas funções reduz significativamente a 

quantidade de parâmetros a serem estimados (DOYLE et al., 2012). 

 Como consequência o custo computacional será muito menor e após ter calculado as 

𝑍−1 das funções de Laguerre, os kernels para o modelo de 3° ordem serão representados por 

uma combinação dessas funções da seguinte maneira (SCHETZEN, 2006; RUGH, 1981)): 

 

ℎ1(𝜏1) =  ∑  

𝑛

𝑖=1

𝛽𝑖𝜓𝑖
 (𝜏1) 

ℎ2(𝜏1, 𝜏2) =∑ 

𝑛

𝑖=1

∑β𝑖𝑗

𝑛

𝑗=1

𝜓𝑖
 (𝜏1)𝜓𝑗

 (𝜏2)  

ℎ3(𝜏1, 𝜏2, 𝜏3) =∑ 

𝑛

𝑖=1

∑  ∑ 

𝑛

𝑠=1

β𝑖𝑗𝑠

𝑛

𝑗=1

𝜓𝑖
 (𝜏1)𝜓𝑗

 (𝜏2)𝜓𝑠
 (𝜏3) 

  (2.18)  



Onde os coeficientes β são números reais que serão determinados computacionalmente 

e 𝑛 é o número de funções de Laguerre. Ao aumentar a ordem do Modelo, a quantidade de 

termos dessas combinações cresce exponencialmente, em contrapartida a propriedade de 

simetria dos kernels diminui significativamente esse número. Ao combinar as expressões (2.4) 

e (2.18): 

 𝑦𝑚𝑜𝑑𝑒𝑙𝑜(𝑘) = ∑  

𝑘

𝜏1 =0

∑ 

𝑛

𝑖=1

𝛽𝑖𝜓𝑖
 (𝜏1) 𝑢(𝑘 − 𝜏1) + 

+ ∑  

𝑘

𝜏1 =0

∑ ∑ 

𝑛

𝑖=1

∑β𝑖𝑗

𝑛

𝑗=1

𝜓𝑖
 (𝜏1)𝜓𝑗

 (𝜏2)𝑢(𝑘 − 𝜏1)𝑢(𝑘 −  𝜏2) +  

𝑘

𝜏2 =0

         

+∑  

𝑘

𝜏1=0

∑  

𝑘

𝜏2=0

∑∑ 

𝑛

𝑖=1

∑∑ 

𝑛

𝑠=1

β𝑖𝑗𝑠

𝑛

𝑗=1

𝜓𝑖
 (𝜏1)𝜓𝑗

 (𝜏2)𝜓𝑠
 (𝜏3)𝑢( 𝑘 − 𝜏1)𝑢(𝑘 − 𝜏2)𝑢(𝑘 − 𝜏3)

𝑘

𝜏3=0

 

           (2.19)          

 

A fim de facilitar a visualização do Modelo e os cálculos computacionais, cria- se uma versão 

das funções de Laguerre filtrada pela entrada do sistema 𝑙𝑖(𝑘) e em seguida é feita a substituição 

dessa função em (2.19) (SCHETZEN, 2006; RUGH, 1981)): 

 

𝑂𝑛𝑑𝑒,   𝑙𝑖(𝑘) =  ∑𝜓𝑖
 (τ)u(k − τ)

𝑘

𝝉=𝟎

 

𝑦𝑚𝑜𝑑𝑒𝑙𝑜(𝑘) =  ∑𝛽𝑖𝑙𝑖(𝑘) +∑ ∑𝛽𝑖𝑗𝑙𝑖(𝑘)

6

𝑗=1

𝑙𝑗(𝑘) +∑ 

6

𝑖=1

∑ 

6

𝑗=1

∑𝛽𝑖𝑗𝑠𝑙𝑖(𝑘)

6

𝑠=1

𝑙𝑗(𝑘)𝑙𝑠(𝑘)

6

𝑖=1

6

𝑖=1

 

(2.20) 

  

2.4 Otimização dos kernels e aplicações 

 

O número de termos para representar os kernels é sempre muito grande, tornando sua 

identificação muito árdua. Se considerarmos um sistema com memória de N amostras, o 

Modelo de Volterra irá requerer 𝑁𝑝  coeficientes para representar um kernel de ordem 𝑝 

(CHENG et al., 2016). 

Existem diversas técnicas que possibilitam diminuir consideravelmente esse número de 

coeficientes, dentre elas a expansão dos kernels em termos de bases de funções ortonormais. 

Campello e Favier abordaram um método de identificação de sistemas não-lineares que utiliza 



as funções de Laguerre para chegar em uma expansão ótima das funções de resposta ao impulso 

de um sistema de Volterra (CAMPELLO; FAVIER; DO AMARAL, 2006).  Zhang e Tischenko 

propuseram um novo algoritmo de controle adaptativo e utilizaram o Modelo de Volterra e 

expandiram os kernels por meio das funções ortonormais de Laguerre (ZHANG; TISCHENKO; 

YU, 2009). 

É extremamente relevante levar em consideração os fatores não-lineares para atingir 

uma performance ideal de controle. O Modelo de Volterra é amplamente utilizado em 

problemas de controle em processos químicos, comunicação eletrônica, máquinas elétricas, 

compensação de distorções não-lineares, cancelamento de eco em canais de comunicação, 

modelagem de fala e até mesmo em processamento de imagens. Nesse contexto, inúmeros 

pesquisadores têm desenvolvido uma grande variedade de métodos efetivos de controle para 

sistemas não-lineares (CHENG et al., 2016). 

Yoon e Sun desenvolveram um método de identificação de sistemas não-lineares e 

utilizaram o Modelo de Volterra para o controle de rastreamento robusto de um atuador de um 

motor de válvula livre ou sem came (YOON, SUN, 2014). Gruber e Guzmán investigaram o 

design do controle não-linear preditivo da temperatura de uma estufa utilizando ventilação 

natural a partir do Modelo de Volterra de 2° ordem identificado experimentalmente a partir dos 

dados de entrada e saída da estufa (GRUBER et al, 2011).  

Kumar e Banerjee apresentaram um novo sistema de classificação de imagens e 

utilizaram-no para reconhecimento facial. Os resultados desse estudo mostraram que a 

abordagem do Modelo de Volterra superou consistentemente inúmeros métodos de última 

geração da mesma categoria (KUMAR; BANERJEE; VEMURI, 2012). Le Caillec e Garello 

utilizaram uma decomposição baseada no Modelo de Volterra para investigar a modelagem de 

um radar de abertura sintética utilizado no processo de mapeamento da superfície do oceano 

(LE CAILLEC; GARELLO; CHAPRON, 2002). 

Neste capítulo foram detalhados o Modelo de Volterra bem como as funções de 

Laguerre, além disso discutiu-se sobre: como otimizar os kernels, o modelo OBF-Volterra 

e aplicações do Modelo. No próximo capítulo o sistema a ser estudado será apresentado e 

serão expostos os resultados da representação desse sistema pelos Modelos de Volterra 

de 2° e 3° ordens. 

 

 

 

 



3 APRESENTAÇÃO DO SISTEMA E RESULTADOS 

 

Neste capítulo será detalhada a representação no espaço de estados de uma reação de 

polimerização em um reator de tanque agitado, em inglês Continuous Stirred Tank Reactor 

(CSTR), que será o sistema a ser simulado. Em seguida serão discutidos os resultados das 

simulações dos modelos de 2° e 3° ordens por meio de gráficos e Tabelas. 

 

3.1 Reação de polimerização em um CSTR 

 

Polimerização é uma reação em que pequenas moléculas denominadas monômeros se 

combinam quimicamente formando macromoléculas chamadas de polímeros. A polimerização 

pode ser feita por adição ou por condensação. Este trabalho trata da polimerização por adição, 

isto é: os polímeros são formados a partir da reação de adição de um único tipo de monômero 

(CANEVAROLO JR, 2002). 

 Por motivos de amplo estudo já documentado, o sistema escolhido para ser 

representado pelo Modelo de Volterra será uma reação de polimerização de radical livre de 

metacrilato de metila (MMA) como monômero com Azobisisobutironitrila (AIBN) como 

iniciador e Tolueno como solvente em um CSTR.  

Visando simplificar a reação de polimerização, serão adotadas as seguintes 

simplificações: volume constante do Reator, operação Isotérmica, capacidade de calor 

constante, mistura perfeita, hipóteses de estado quase estacionário e de cadeia longa adotadas, 

sem reação de auto aceleração (efeito gel) e sem polímeros no fluxo de entrada (DOYLE et al, 

1995). 

Valendo-se dessas premissas, a representação no espaço de estados desse modelo foi 

obtida por (DOYLE et al., 1995) tendo como entrada 𝑢(𝑡) o quociente de vazão do iniciador 

em [𝑚3/ℎ] e saída o peso molecular médio em número (𝑀𝑛), 𝑦𝑟𝑒𝑎𝑙(𝑡) (kg/mol). As variáveis 

de estado são: 𝑧1: Concentração do monômero (MMA), 𝑧2: Concentração do iniciador (AIBN), 

𝑧3: Peso total de todas as moléculas poliméricas da amostra e 𝑧4: Número total de moléculas da 

amostra. 

Foi feita a normalização do modelo no espaço de estados por (DOYLE et al., 1995), 

tornando as condições iniciais das variáveis de estado nulas, e uma aproximação por séries de 

Taylor truncadas em 2° ordem para fins de simplificação do cálculo numérico durante a 

simulação do sistema e obteve-se: 

 



{
 
 
 
 

 
 
 
 ż1(t) = −10.8957𝑧1(𝑡) − 0.447837𝑧2(𝑡) − 0.447837𝑧1(𝑡)𝑧2(𝑡) + 0.111959𝑧2

2̇ (t),                               
 

   ż2 (t) = −10.1022𝑧2(𝑡) + 10.1022𝑢(𝑡),                                                                                                                 
  

  ż3 (t) = 2.4162z1(t) + 8.7744𝑧2(𝑡) − 10𝑧3(𝑡) + 1.22581𝑧1(𝑡)𝑧2(𝑡) − 0.306453𝑧2
2(𝑡),                       

 
 ż4 (t) = 10𝑧1(𝑡) + 5.00001𝑧2(𝑡) − 10𝑧4(𝑡) + 5.00001𝑧1(𝑡)𝑧2(𝑡) − 1.25𝑧2

2(𝑡),                                      
 

  𝑦𝑟𝑒𝑎𝑙(t) = −z3(t) + z4(t) − z3(t)z4(t) + z3
2(t).                                                                                                         

 

     (4.1) 

 

3.2 Algoritmos 

 

Um dos motivos que tornam o Modelo de Volterra extremamente vantajoso 

computacionalmente é o fato dele ser linear em seus parâmetros, ou seja, apesar da saída ser 

não-linear em relação à entrada, os kernels são lineares em relação a saída. O que permite o 

uso de métodos computacionais mais simples, como o método dos mínimos quadrados, para 

as soluções de cálculo numérico (VAN DEN HOF et al., 2000). Para a simulação do sistema 

a presença de ruídos na entrada e saída foram desconsiderados. 

O custo computacional é extremamente relevante para esse trabalho. A máquina 

utilizada possui as seguintes configurações: modelo Acer Swift 3, sistema operacional: 64 

bits, baseado em x64, Windows 11 Home Single Language, processador: 11° geração intel® 

core™ i7-1165G7 @ 2.8GHz  2.8GHz, memória volátil: RAM 16GB  e memória não volátil:  

SSD 1TB. 

 

3.2.1 Modelo de Espaço de Estados e funções de Laguerre 

 

O primeiro passo do trabalho é simplesmente obter a saída real do sistema 𝑦𝑟𝑒𝑎𝑙 a partir 

do Modelo no Espaço de Estados. Foi criada uma função que calcula as derivadas das variáveis 

de estados a partir dos estados atuais do sistema e da entrada. É importante destacar o solver de 

Equações Diferenciais Ordinárias (EDO´s) 𝑜𝑑𝑒45 selecionado para a solução do sistema que é 

baseado em um aprimoramento do Método de Runge-Kutta de 4° e 5° ordem. Esse solver 

retorna os valores das variáveis de estados para todo k. e o algoritmo dessa etapa pode ser visto 

no apêndice A.1.  

As funções de Laguerre foram calculadas no apêndice B, assim foi possível gerá-las 

diretamente no ambiente OCTAVE e em seguida foram geradas as funções de Laguerre 



filtradas pela entrada 𝑙𝑖(𝑘) que irão compor a matriz de regressores 𝐻(𝑘) e o algoritmo dessa 

etapa pode ser visto em A.2. 

 

3.2.2 Estimação dos coeficientes e cálculo dos kernels 

 

Essa é uma das partes mais relevantes do trabalho pois os kernels , considerados a 

essência do sistema, serão calculados. Utilizou-se o operador ‘\’ para a solução do sistema linear 

sobredeterminado 𝐴. 𝑥 = 𝐵 que minimiza |𝐵 − 𝐴𝑥|. Para o problema, 𝐴 será a matriz de 

regressores 𝐻, 𝑥 o vetor de coeficientes 𝛽 e 𝐵 o vetor 𝑌. O algoritmo dessa 1° etapa pode ser 

visto em A.3. 

 

𝐻 𝑘+1  ,258 =   

[
 
 
 
 
 
 
𝑙1(0)
 

𝑙1(1)
 

 

⋮
 

𝑙1(𝑘)

⋯
 
⋯
 
⋮
 
⋯

𝑙6(0)
 

𝑙6(1)
 

 

⋮
 

𝑙6(𝑘)
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𝑙1(𝑘)
2
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⋮
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⋯
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𝑙6(1)
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𝑙1(0)
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𝑙1(1)
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𝑙1(𝑘)
3

𝑙1(0)𝑙1(0)𝑙2(0)
 

𝑙1(1)𝑙1(1)𝑙2(1)
 
⋮
 

𝑙1(𝑘)𝑙1(𝑘)𝑙2(𝑘)

⋯
 
⋯
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⋯

𝑙6(0)
3

 
𝑙6(1)

3

 
⋮
 

𝑙6(𝑘)
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(4.2) 

𝛽 1 ,258 = [𝑐1 ⋯ 𝑐6 𝑐1,1 𝑐1,2 ⋯ 𝑐6,6 𝑐1,1,1 𝑐1,1,2 ⋯ 𝑐6,6,6] 

(4.3)           

𝑌 𝑘+1,1 = 

[
 
 
 
 
 
 
𝑦𝑟𝑒𝑎𝑙(0)

 
𝑦𝑟𝑒𝑎𝑙(1)

 
⋮
 

𝑦𝑟𝑒𝑎𝑙(𝑘)]
 
 
 
 
 
 

 

(4.4) 

 

Uma vez que 𝛽 foi estimado, é possível calcular os kernels ℎ1, ℎ2 e ℎ3 a partir das 

expressões (2.18). Cabe destaque a necessidade transformar cada coluna da matriz H em 

tensores para que seja possível calcular ℎ3 de maneira otimizada. O algoritmo dessa etapa pode 

ser visto em A.4. 

 

 



3.2.3 Cálculo da saída do Modelo de Volterra 

 

O código que foi utilizado nessa etapa foi desenvolvido por (GOULART, 2024) e está 

disponível no MATLAB Central File Exchange. Para que seja possível o cálculo da saída do 

Modelo de Volterra é necessário que os kernels e a entrada do sistema sejam fornecidos e por 

motivos de otimização, esse algoritmo realiza os cálculos no domínio da frequência.  

 

3.2.4 Seleção do valor ótimo para o polo de Laguerre 

 

Nessa etapa optou-se pelo método de busca exaustiva variando p no intervalo ]0,1[ com 

precisão de duas casas decimais. O código para essa etapa não foi inserido no trabalho pois 

basicamente foi feito um loop externo a todos os cálculos citados nas seções anteriores para 

cada valor de p.  

Utilizou-se o erro quadrático médio (𝐸𝑄𝑀) e o erro quadrático médio normalizado 

(𝐸𝑄𝑁) como parâmetro para seleção do valor ótimo de 𝑝 , 𝑦𝑟𝑒𝑎𝑙 é a saída real do sistema  

𝑦𝑚𝑜𝑑𝑒𝑙𝑜 é a saída do modelo (OLIVEIRA et al., 2012): 

 

𝐸𝑄𝑀 =  
1

𝑁𝑑
∑ (𝑦𝑟𝑒𝑎𝑙(𝑘) − 𝑦𝑚𝑜𝑑𝑒𝑙𝑜(𝑘))

2𝑁𝑑

𝑘=1
, 

      (4.5) 

𝐸𝑄𝑁 ≜ 10𝑙𝑜𝑔
∑ (𝑦𝑟𝑒𝑎𝑙(𝑘) − 𝑦𝑚𝑜𝑑𝑒𝑙𝑜(𝑘))

2𝑁𝑑
𝑘=1

∑ (𝑦𝑟𝑒𝑎𝑙(𝑘))
2𝑁𝑑

𝑘=1

 , 

(4.6) 

 

3.3 Apresentação e discussão de resultados 

 

Nesta seção serão apresentadas as saídas  dos Modelos de Volterra de 2° e 3° ordens 

para duas entradas distintas: impulso 𝛿(𝑘) e uma sequência de degraus. Ao aumentar a ordem 

do Modelo de Volterra é esperado que o erro também diminua. O principal objetivo desse 

trabalho é fazer essa confirmação e verificar se essa diminuição é significativa em contrapartida 

de um custo computacional mais elevado. Além disso os resultados apresentados poderão 

nortear estudos de outros sistemas não-lineares representados pelo Modelo de Volterra. 



Para que o cálculo da saída do Modelo de Volterra seja possível é necessário obter: a 

saída real do sistema 𝑦𝑟𝑒𝑎𝑙, as funções de Laguerre no domínio 𝑘, a solução do sistema linear  

𝐻. 𝛽 = 𝑌 e os kernels ℎ1, ℎ2 𝑒 ℎ3 . Quanto maior 𝑝, mais lentamente os kernels irão convergir, 

isso é justificado pela maneira como as funções de Laguerre são construídas no domínio 𝑘 e 

pode ser facilmente percebido graficamente.  

Os kernels ℎ1 e ℎ2 podem ser facilmente representados, já a representação de ℎ3 torna-

se muito mais complexa pois não é possível representá-lo em 2 ou 3 dimensões de forma direta. 

Existe a possibilidade de optar por fixar uma das variáveis e obter a função resultante em termos 

das outras 2 variáveis. Essa abordagem é conhecida como visualização por seções ou planos de 

corte e é útil para entender a variação da função em relação a diferentes combinações de 

variáveis.  

O polo de Laguerre foi calculado simultaneamente para ℎ1, ℎ2 𝑒 ℎ3 e obteve-se: 

𝑝ó𝑡𝑖𝑚𝑜 = 0,05 para o Modelo de 2° ordem e 𝑝ó𝑡𝑖𝑚𝑜 = 0,08 para o Modelo de 3° ordem. 

Destaca-se que houve um aumento considerável no custo computacional ao incluir o kernel 

ℎ3(𝑘1, 𝑘2, 𝑘3). Assim, ao escolher o Modelo deve-se considerar se a precisão fornecida pelo de 

2° ordem já é suficiente para o sistema em estudo. 

 A seguir serão apresentadas 2 seções, uma para cada entrada, onde serão mostrados 

gráficos da entrada e saída reais do sistema, representação gráfica dos kernels, gráfico 

simultâneo de 𝑦𝑟𝑒𝑎𝑙 𝑒 𝑦𝑚𝑜𝑑𝑒𝑙𝑜 e por fim os cálculos dos erros 𝐸𝑄𝑀, 𝐸𝑄𝑁 𝑒 𝐸(𝑘). Define-se 

como 𝐸(𝑘): 

𝐸(𝑘) = 𝑦𝑟𝑒𝑎𝑙 − 𝑦𝑚𝑜𝑑𝑒𝑙𝑜  

 

 Para fins de comparação nas figuras 5.4, 5.5, 5.8 e 5.9 colocou-se os resultados dos dois 

modelos lado a lado, onde a imagem da esquerda representa o Modelo de 2° ordem e a da direita 

o Modelo de 3° ordem. 

 

3.3.1 Resposta a sequência de degraus 

 

É importante ressaltar que para fins de simulação a escolha da entrada 𝑢(𝑡) é arbitrária 

desde que possua energia limitada. Optou-se por escolher a entrada como um sinal aleatório 

com amplitude variando uniformemente no intervalo [−0.6,0.8] ao longo de 100 horas, com 

passo de amostra de 0,5 horas. Para a representação gráfica dos kernels utilizou-se um outro 



tempo de simulação pois como 𝑝ó𝑡𝑖𝑚𝑜 = 0,05 então os kernels convergem muito rápido e não 

teriam amostras suficientes para ter uma boa representação gráfica.  

Seguem abaixo: 

• A Figura 5.1 que mostra o comportamento da entrada e saída durante a simulação; 

• Os kernels ℎ1e ℎ2 do Modelo de 3° ordem estão representados respectivamente pelas 

Figuras 5.2 e 5.3; 

•  A Figura 5.4 que mostra o gráfico simultâneo de 𝑦𝑟𝑒𝑎𝑙  𝑒 𝑦𝑚𝑜𝑑𝑒𝑙𝑜 para os 2 modelos; 

• O erro ao longo do tempo 𝐸(𝑘) para os 2 modelos na Figura 5.5; 

• A Tabela 5.1 que mostra o comportamento de 𝐸𝑄𝑀 e 𝐸𝑄𝑁 para 𝑝ó𝑡𝑖𝑚𝑜. 

 

 

   Figura 5.1- Entrada e saída 𝑢(𝑘) 𝑒 𝑦(𝑘) 

 

 

                                Figura 5.2 – Representação de ℎ1 para 𝑝ó𝑡𝑖𝑚𝑜 

 



 

                                Figura 5.3 – Representação de ℎ2 para 𝑝ó𝑡𝑖𝑚𝑜 

 

 

      Figura 5.4 -  𝑦𝑟𝑒𝑎𝑙 (𝑒𝑚 𝑣𝑒𝑟𝑚𝑒𝑙ℎ𝑜) e 𝑦𝑚𝑜𝑑𝑒𝑙𝑜 (𝑒𝑚 𝑎𝑧𝑢𝑙) para os Modelos de 2° e 3° ordens 

 

 

         Figura 5.5 - Representação de 𝐸(𝑘) para os Modelos de 2° e 3° ordens 



Tabela 5.1 - EQM e EQN para 𝑝ó𝑡𝑖𝑚𝑜 

Modelo EQM EQN 

2° ordem 1,3856 𝑥 10−5 −31,0259 

3° ordem 5,4752 𝑥 10−6 −35,0584 

 

 Foram feitas diversas simulações para a construção da Tabela e utilizou-se um valor 

médio de 𝐸𝑄𝑀 e 𝐸𝑄𝑁. Quanto mais negativo for o valor 𝐸𝑄𝑁 melhor será a precisão do 

modelo, isso se deve ao fato de 𝐸𝑄𝑁 ser calculado utilizando uma escala logarítmica.  

Por meio da Tabela e dos gráficos observa-se que o Modelo de 3° ordem teve uma 

performance melhor tanto para EQM quanto para EQN. Por outro lado, houve um aumento no 

custo computacional mas que não impossibilitou a simulação. 

 

3.3.2 Resposta ao impulso 𝛿(𝑘) 

 

O Modelo OBF-Volterra é do tipo NFIR( Non-linear finite impulse response), possui 

resposta finita ao impulso 𝛿(𝑘). A resposta ao impulso 𝛿(𝑘) fornece uma visão parcial de como 

um sistema não-linear invariante no tempo reage a diferentes entradas e pode ser aplicado a 

uma ampla gama de sistemas (VAN DEN HOF et al., 2000).  

O impulso é uma função que pode ser facilmente implementada pois é simplesmente 

um pico de amplitude em uma única amostra. Essa simulação foi feita ao longo de 5 horas, com 

passo de amostra de 0,025 horas  

Seguem abaixo: 

• Os kernels ℎ2 e ℎ1 estão representados respectivamente pelas Figuras 5.6 e 5.7; 

•  A Figura 5.8 que mostra o gráfico simultâneo de 𝑦𝑟𝑒𝑎𝑙  𝑒 𝑦𝑚𝑜𝑑𝑒𝑙𝑜 para os 2 modelos; 

• O erro ao longo do tempo 𝐸(𝑘) para os 2 modelos na Figura 5.9; 

• A Tabela 5.2 que mostra o comportamento de 𝐸𝑄𝑀 e 𝐸𝑄𝑁 para 𝑝ó𝑡𝑖𝑚𝑜. 

 



 

Figura 5.6- ℎ2 do Modelo de 3° ordem  para 𝑝ó𝑡𝑖𝑚𝑜 

 

 

Figura 5.7- ℎ1 do Modelo de 3° ordem  para 𝑝ó𝑡𝑖𝑚𝑜 

 

 

 Figura 5.8 - 𝑦𝑟𝑒𝑎𝑙 (𝑒𝑚 𝑣𝑒𝑟𝑚𝑒𝑙ℎ𝑜) e 𝑦𝑚𝑜𝑑𝑒𝑙𝑜 (𝑒𝑚 𝑎𝑧𝑢𝑙) para os Modelos de 2° e 3° ordens 



 

 

                   Figura 5.9 -  Representação de 𝐸(𝑘) para os Modelos de 2° e 3° 

 

Tabela 5.2 - EQM e EQN para 𝑝ó𝑡𝑖𝑚𝑜 

Modelo EQM EQN(dB) 

2° ordem 2,1381 𝑥 10−8 −33,2795 

3° ordem 8,1005 𝑥 10−10 −47,4946 

 

 É possível  observar claramente a propriedade de simetria de ℎ2 graficamente. Assim 

como na resposta ao degrau, o modelo de 3° ordem apresentou uma performance melhor do que 

o modelo de 2° ordem. Visualmente o erro dos dois modelos parece ser muito próximo para a 

resposta ao 𝛿(𝑘), porém diferença entre os dois modelos foi muito maior do que na resposta ao 

degrau já que EQ43M foi cerca de 100 vezes menor para o modelo de 3° ordem.  

 

3.3.3 Comparação dos resultados 

 

Segue abaixo a Tabela 5.3 que resume 𝐸𝑄𝑀 𝑒 𝐸𝑄𝑁 para ambas entradas e modelos. A 

tabela 5.4 mostra a comparação do custo computacional para os dois modelos variando a 

quantidade de amostras a partir da entrada degrau. 

 

Tabela 5.3 - EQM e EQN  

𝑢(𝑘) 2° ordem 2° ordem 3° ordem 3° ordem 

 𝐸𝑄𝑀 𝐸𝑄𝑁(dB) 𝐸𝑄𝑀 𝐸𝑄𝑁(dB) 

degrau 1,3856 𝑥 10−5 −31,0259 5,4752 𝑥 10−6 −35,0584 

𝛿(𝑘) 2,1381 𝑥 10−8 −33,2795 8,1005 𝑥 10−10 −47,4946 



 

Tabela 5.4 – Custo computacional para ambos os modelos  

Número de 

amostras    

2° ordem 

(𝑠𝑒𝑔𝑢𝑛𝑑𝑜𝑠) 
3° ordem 

(segundos) 

100 2  8  

150 9  36  

200 15  91  

250 19  167  

300 23  199  

350 27  353  

400 36  605  

 

 

De modo geral o Modelo de 3° ordem apresentou uma performance superior ao Modelo 

de 2° ordem apesar do aumento do custo computacional para as duas entradas simuladas. No 

próximo capítulo serão apresentadas as conclusões do trabalho assim como as propostas para 

trabalhos futuros. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 CONCLUSÕES E PROPOSTAS FUTURAS 

 

O principal objetivo desse trabalho é verificar se há uma melhoria na precisão do sistema 

ao utilizar o Modelo de Volterra de 3° ordem para representar sua saída. Além disso, analisar o 

aumento do custo computacional envolvido, uma vez que esse tema ainda foi pouco explorado. 

Como já foi mencionado, as funções de Laguerre geralmente são indicadas para representar 

sistemas de 1° ordem, entretanto obteve-se um resultado muito satisfatório utilizando-as para 

representar os kernels do sistema de 4° ordem analisado. 

Por ser um software livre, a simulação do sistema foi totalmente feita na linguagem 

OCTAVE, a função 𝑙𝑠𝑞𝑟, disponível no matlab, não está disponível para OCTAVE. Assim foi 

necessário utilizar como alternativa o operador ‘\’ para a solução do sistema linear 

sobredeterminado 𝐻. 𝛽 = 𝑌. Essa abordagem também foi muito satisfatória para a 

determinação dos coeficientes 𝛽 e consequentemente para o cálculo do kernels 

ℎ1(𝜏1),ℎ2(𝜏1, 𝜏2) 𝑒 ℎ3(𝜏1, 𝜏2, 𝜏3). 

Ao comparar os resultados obtidos pelos dois Modelos, 𝐸𝑄𝑀, 𝐸𝑄𝑁 e 𝐸(𝑘) são de fato 

menores para o modelo de 3° ordem, todavia o custo computacional tornou-se mais elevado, o 

que fica evidenciado pela tabela 5.4.  Assim conclui-se que é primordial considerar se o modelo 

de 2° ordem é suficiente para atender os requisitos de precisão para um determinado problema 

antes de se implementar um modelo de ordem superior. 

Para obter conclusões mais sólidas sobre o assunto uma sugestão para futuros trabalhos 

é simular outros sistemas além do CSTR utilizando o Modelo de Volterra de 3° ordem e fazer 

a mesma comparação feita neste trabalho. Além disso sugere-se o uso de simuladores de 

processos químicos para validação dos resultados como, por exemplo, o AVEVA Process 

Simulation. 

Outra proposta futura é utilizar outras bases de funções ortonormais, como a de Kautz e 

GOBF, para a representação dos kernels do Modelo de Volterra de 3° ordem e verificar se há 

uma melhoria na precisão ao comparar com os resultados obtidos utilizando as funções de 

Laguerre.  

O cálculo do 𝑝ó𝑡𝑖𝑚𝑜 também pode ser aprimorado. Foi feita apenas uma busca exaustiva 

simples neste trabalho, uma sugestão é utilizar o método de Levenberg-Marquardt que pode 

superar os métodos do gradiente descende e gradiente conjugado para problemas de tamanho 

médio e é uma escolha usual em problemas de otimização não-linear (DA ROSA; 

CAMPELLO; AMARAL, 2009). 
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APÊNDICE A – CÓDIGOS 

 

Todos os códigos que estão anexados nesse apêndice são de autoria do autor e foram 

feitos na plataforma do OCTAVE. 

 

A.1 Representação do sistema utilizando o Modelo em Espaço de Estados 

 

% Condições iniciais 

X0 = [0;0;0;0]; 

 

% Tempo de Simulação 

k = 0:0.03:32; 

 

% Entrada do sistema 

num_aleatorios = rand(1, length(k)); 

x = -0.6 + 1.4* num_aleatorios; 

 

% Definição da função que retorna o vetor de derivadas das variáveis de estado do sistema 

function dxdk = sistema_nao_linear(ksim, xsim, x) 

 if nargin < 2 

  xsim = zeros(4, 1);  

     end 

     dxdk = zeros(4, 1); 

dxdk(1) = -10.8957*xsim(1) - 0.447837*xsim(2) - 0.447837*xsim(1)*xsim(2)          

+0.111959 * xsim(2)^2; 

     dxdk(2) = -10.1022*xsim(2) + 10.1022*x; 

dxdk(3) = 2.4162*xsim(1) + 8.7744*xsim(2) - 10*xsim(3) + 1.22581* xsim(1)*xsim(2) -                                    

0.306453*xsim(2)^2; 

dxdk(4) = 10*xsim(1) + 5.00001*xsim(2) - 10*xsim(4) + 5.00001*xsim(1)*xsim(2) -      

1.25* xsim(2)^2; 

end 

 

% Simulação usando ode45 

[ksim, xsim] = ode45(@(ksim, xsim) sistema_nao_linear(ksim, xsim, interp1(k, x, ksim, 'previous', 

0)), k, x0); 

 



% Saída do sistema 

y_real = -xsim(:, 3) + xsim(:, 4) - xsim(:, 3) .*xsim(:, 4) + xsim(:, 3).^2; 

 

A.2 Geração das funções de Laguerre e suas respectivas versões filtradas 

 

% p pode assumir qualquer valor no intervalo ]0,1[ inicialmente 

p = 0.09; 

 

% Definição das funções de Laguerre 

Laguerre_1 = ((1-p^2)^(1/2))*(p^k); 

Laguerre_2 = ((1-p^2)^(1/2)).*((k+1).*(p.^(k+1))-k.*(p.^(k-1))); 

Laguerre_3 = ((1-p.^2).^(1/2)).*(p.^(k+2).*((k.^2+3.*k+2)/2)- p^k.*(k.^2+k)+ p.^(k-2).*(k.*(k-1)/2)); 

Laguerre_4 = ((1-p.^2).^(1/2)).*(-p.^(k+3).*((k.^3+6.*k.^2+11.*k+6)/6)+ 

p.^(k+1).*((k.^3+3.*k.^2+2.*k)/2)+p.^(k-1).*(-k.^3+k)/2+ p.^(k-3).*(k.^3-3.*k.^2+2.*k)/6); 

Laguerre_5 = ((1-p.^2).^(1/2)).*1/24.*p.^(k-4).*((k+1).*(k+2).*(k+3).*(k+4).*p.^8 - 4.*k.*(k+1).*(k 

+2).*(k+3).*p.^6 + 6.*(k-1).*k.*(k+1).*(k+2).*p.^4 - 4.*(k-2).*(k-1).*k.*(k+1).*p.^2 + (k-3).*(k - 

2).*(k-1).*k);  

Laguerre_6 = ((1 - p.^2).^(1/2)).*1/120.*p.^(k - 5).*(10.*k.*(k.^4 - 5.*k.^2 + 4).*p.^4 - (k + 1).*(k + 

2).*(k + 3).*(k + 4).*(k + 5).*p.^10 + 5.*k.*(k + 1).*(k + 2).*(k + 3).*(k + 4).*p.^8 - 10.*(k - 

1).*k.*(k + 1).*(k + 2).*(k + 3).*p.^6 - 5.*(k - 3).*(k - 2).*(k - 1).*k.*(k + 1).*p.^2 + (k - 4).*(k - 

3).*(k - 2).*(k - 1).*k); 

 

Laguerres = [Laguerre_1', Laguerre_2', Laguerre_3', Laguerre_4', Laguerre_5', Laguerre_6']; 

 

% Funções de Laguerre Filtradas pela entrada x 

L1 = zeros(size(k)); 

L2 = zeros(size(k)); 

L3 = zeros(size(k)); 

L4 = zeros(size(k)); 

L5 = zeros(size(k)); 

L6 = zeros(size(k)); 

 

for i = 1:length(k) 

    for tau = 0:i-1 

        L1(i) = L1(i) + Laguerre_1(tau+1)*x(i - tau); 

        L2(i) = L2(i) + Laguerre_2(tau+1)*x(i - tau); 

        L3(i) = L3(i) + Laguerre_3(tau+1)*x(i - tau); 



        L4(i) = L4(i) + Laguerre_4(tau+1)*x(i - tau); 

        L5(i) = L5(i) + Laguerre_5(tau+1)*x(i - tau); 

        L6(i) = L6(i) + Laguerre_6(tau+1)*x(i - tau); 

    end 

end 

 

Laguerres_f = [L1', L2', L3', L4', L5', L6']; 

M = size(Laguerres_f, 2); 

N = length(k); 

    

A.3 Construção dos regressores e estimação dos coeficientes 

 

% Regressores de primeira ordem 

H1 = Laguerres_f; 

 

% Regressores de segunda ordem 

H2 = zeros(N, M^2); 

count = 1; 

for i = 1:M 

    for j = 1:M 

        H2(:, count) = Laguerres_f(:, i).*Laguerres_f(:, j); 

        count = count + 1; 

    end 

end 

 

% Regressores de terceira ordem 

H3 = zeros(N, M^3); 

count = 1; 

for i = 1:M 

    for j = 1:M 

        for l = 1:M 

            H3(:, count) = Laguerres_f(:, i) .* Laguerres_f(:, j) .* Laguerres_f(:, l); 

            count = count + 1; 

        end 



    end 

end 

 

% Concatenação dos Regressores 

H = [H1 H2 H3]; 

 

% Estimação utilizando o operador '\' 

coef = zeros(size(H, 2), 1); 

coef = H \ y_real; 

 

% coeficientes para cada ordem 

coef_1_ordem = coef(1:M); 

coef_2_ordem = coef(M+1:M+M^2); 

coef_3_ordem = coef(M+M^2+1:end); 

 

A.4 Cálculo dos kernels 

 

%  kernel de primeira ordem 

K1 = coef_1_ordem' * [Laguerre_1; Laguerre_2; Laguerre_3; Laguerre_4; Laguerre_5; 

Laguerre_6]; 

 

% kernel de segunda ordem 

K2 = zeros(length(k), length(k)); 

count = 1; 

for i = 1:M 

    for j = 1:M 

        K2 = K2 + coef_2_ordem(count)*(Laguerres(:, i) * Laguerres(:, j)'); 

        count = count + 1; 

    end 

end 

 

 

 

 



% kernel de terceira ordem 

K3 = zeros(length(k), length(k), length(k)); 

count = 1; 

for i = 1:M 

    for j = 1:M 

        for l = 1:M 

            % Expansão tensorial 

            Li = reshape(Laguerres(:, i), [length(k), 1, 1]); 

            Lj = reshape(Laguerres(:, j), [1, length(k), 1]); 

            Ll = reshape(Laguerres(:, l), [1, 1, length(k)]); 

            K3 = K3 + coef_3_ordem(count) * (Li .* Lj .* Ll); 

            count = count + 1; 

        end 

    end 

end 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



APÊNDICE B – CÁLCULO DAS FUNÇÕES DE LAGUERRE 

 

Serão calculadas as Z−1 das 6 primeiras funções de Laguerre e será necessário utilizar as 

seguintes propriedades da transformada Z: (adicionar referência) 

 

 
𝑧

(𝑧−𝑎) 

𝒁
↔ 𝑎𝑘𝑢(𝑘)                                                                                                                       (1) 

 
𝑧

(𝑧 − 𝑎)2
𝒁
↔𝑘𝑎𝑘−1𝑢(𝑘)                                                                                                              (2) 

            
𝑧

(𝑧 − 𝑎)3
𝒁
↔
𝑘(𝑘 − 1)

2
𝑎𝑘−2𝑢(𝑘)                                                                                               (3) 

𝑧

(𝑧 − 𝑎)4
𝒁
↔
(𝑘 − 2)(𝑘 − 1)𝑘

6
𝑎𝑘−3𝑢(𝑘)                                                                               (4) 

  
𝑧

(𝑧 − 𝑎)5
𝒁
↔
(𝑘 − 3)(𝑘 − 2)(𝑘 − 1)𝑘

24
𝑎𝑘−4𝑢(𝑘)                                                                 (5) 

  
𝑧

(𝑧 − 𝑎)6
𝒁
↔
(𝑘 − 4)(𝑘 − 3)(𝑘 − 2)(𝑘 − 1)𝑘

120
𝑎𝑘−5𝑢(𝑘)                                                   (6) 

 

Uma vez que o sistema será avaliado somente para 𝑘 > 0, então 𝑢(𝑘) = 1.  A seguir 

serão calculadas as 𝑍−1. 

 

1) 𝜓2(𝑧) 

 

𝜓1(𝑧) = 𝑧
√1− 𝑝2

𝑧−𝑝
(
1−𝑝𝑧

𝑧−𝑝
)
0
=  𝑧

√1− 𝑝2

𝑧−𝑝
 

(2.9) 

Ao utilizar a propriedade (1) teremos: 

 

𝑍−1[ 𝜓1
 (𝑧)  ] = √1− 𝑝2  pk 

 𝑍−1[ 𝜓1
 (𝑧)] =   𝜓1

 (𝑘) 

 (2.10)              

Onde Z−1[ ψ1
 (z)  ] simboliza a transformada inversa de  𝜓1

 (𝑧). 

 

 

 

 



2) 𝜓2(𝑧)  

 

𝜓2(𝑧) = 𝑧
√1− 𝑝2

𝑧−𝑝
(
1−𝑝𝑧

𝑧−𝑝
)
 
= 𝑧

√1− 𝑝2  (1−𝑝𝑧)

(𝑧−𝑝)2
      

𝜓2
, (z)= 

𝜓2(𝑧)

√1− 𝑝2
 = 𝑧

(1−𝑝𝑧)

(𝑧−𝑝)2
     

(2.11) 

Expandindo em frações parciais: 

 

𝜓2
, (z) = 𝑧

(1−𝑝𝑧)

(𝑧−𝑝)2
  = 𝑧 (

𝐴

𝑧−𝑝
) + 𝑧 (

𝐵

(𝑧−𝑝)2
) = 𝑧 (

𝐴(𝑧−𝑝)+𝐵

(𝑧−𝑝)2
) 

 𝜓2
, (z) = 𝑧 (

𝐴(𝑧−𝑝)+𝐵

(𝑧−𝑝)2
)   

(2.12) 

Comparando (2.11) e (2.12) temos que: 

 

{
𝐴 =  −𝑝 

𝐵 = 1 − 𝑝2

    

 

𝜓2
, (z)  = − 𝑝 (

𝑧

𝑧−𝑝
) + (1 − 𝑝2) (

𝑧

(𝑧−𝑝)2
) 

 

Utilizando as propriedades (1) e (2), teremos: 

 

𝑍−1[ 𝜓2
, (z)] = -p( 𝑝𝑘) + (1 − 𝑝2)(𝑘𝑝𝑘−1) = - ( (k+1)𝑝𝑘+1 –  k𝑝𝑘−1) 

 

𝑍−1[ 𝜓2
 (z)] = - √1 − 𝑝2 ( (k + 1)𝑝𝑘+1 – k𝑝𝑘−1) 

(2.13)  

 

3)𝜓3(𝑧)   

 

𝜓3(𝑧) = 𝑧
√1− 𝑝2

𝑧−𝑝
(
1−𝑝𝑧

𝑧−𝑝
)
2 

= 𝑧
√1− 𝑝2  (1−𝑝𝑧)2

(𝑧−𝑝)3
 

𝜓3
, (z) = 𝑧

(1−𝑝𝑧)2

(𝑧−𝑝)3
  = 𝑧 (

𝐴

𝑧−𝑝
) + 𝑧 (

𝐵

(𝑧−𝑝)2
) + 𝑧 (

𝐶

(𝑧−𝑝)3
) 

𝜓3
, (z) = 𝑧 (

𝐴(𝑧−𝑝)2𝐵(𝑧−𝑝)+𝐶

(𝑧−𝑝)3
)   

 



{

𝐴 = 𝑝2

𝐵 = 2𝑝3 − 2𝑝

𝐶 = 𝑝4 − 2𝑝2 + 1

 

 

𝜓3
, (z)= 𝑝2 (

𝑧

𝑧−𝑝
) + (2𝑝3 − 2𝑝)(

𝑧

(𝑧−𝑝)2
) + (𝑝4 − 2𝑝2 + 1) (

𝑧

(𝑧−𝑝)3
) 

 

Ao utilizar as propriedades (1), (2) e (3): 

 

𝑍−1[ 𝜓3
, (z)] = 𝑝2(𝑝𝑘) + (2𝑝3 − 2𝑝)(𝑘𝑝𝑘−1) + (𝑝4 − 2𝑝2 + 1) (

𝑘(𝑘−1)𝑝𝑘−2

2
) 

 

  𝑍−1[ 𝜓3
 (z)] = √1 − 𝑝2 (𝑝𝑘+2 (

𝑘2 + 3𝑘 + 2

2
) − 𝑝𝑘(𝑘2 + 𝑘) + 𝑝𝑘−2 (

𝑘(𝑘 − 1)

2
)) 

(2.14) 

 

4) 𝜓4(𝑧)    

    

𝜓4(𝑧) = 𝑧
√1− 𝑝2

𝑧−𝑝
(
1−𝑝𝑧

𝑧−𝑝
)
3 

=𝑧
√1− 𝑝2 (1−𝑝𝑧)3

(𝑧−𝑝)4
 

𝜓4
, (z) = 𝑧

(1−𝑝𝑧)3

(𝑧−𝑝)4
  = 𝑧 (

𝐴

𝑧−𝑝
) + 𝑧 (

𝐵

(𝑧−𝑝)2
) + 𝑧 (

𝐶

(𝑧−𝑝)3
) +  𝑧 (

𝐷

(𝑧−𝑝)4
)   

 𝜓4
, (z) =  𝑧 (

𝐴(𝑧−𝑝)3𝐵(𝑧−𝑝)2+𝐶(𝑧−𝑝)+𝐷

(𝑧−𝑝)4
)   

 

{
 
 

 
 𝐴 = −𝑝3

𝐵 = 3𝑝2(1 − 𝑝2)

𝐶 =  3𝑝(−𝑝4 + 2𝑝2 − 1)

𝐷 = −𝑝6 + 3𝑝4  −3𝑝2 + 1

 

 

𝜓4
, (z)= −𝑝3 (

𝑧

𝑧−𝑝
) + 3𝑝2(1 − 𝑝2) (

𝑧

(𝑧−𝑝)2
) + 3𝑝(−𝑝4 + 2𝑝2 − 1) (

𝑧

(𝑧−𝑝)3
) + 

 +  (−𝑝6 + 3𝑝4 −3𝑝2 + 1) (
𝑧

(𝑧−𝑝)4
) 

 

Ao utilizar as propriedades (1), (2), (3) e (4): 

 

𝑍−1[ 𝜓4
, (z)]=−𝑝3(𝑝𝑘) + 3𝑝2(1 − 𝑝2)(𝑘𝑝𝑘−1)+3𝑝(−𝑝4 + 2𝑝2 − 1)(

𝑘(𝑘−1)

2
𝑝𝑘−2) + 

+(−𝑝6 + 3𝑝4 −3𝑝2 + 1)(
(𝑘−2)(𝑘−1)𝑘

6
𝑝𝑘−3) 



 

𝑍−1[ 𝜓4
 (z)] = √1− 𝑝2

(

 
 
−𝑝𝑘+3 (

𝑘3 + 6𝑘2 + 11𝑘 + 6

6
) + 𝑝𝑘+1 (

𝑘3 + 3𝑘2 + 2𝑘

2
) +

+ 𝑝𝑘−1 (
−𝑘3 + 𝑘

2
) + 𝑝𝑘−3 (

𝑘3 − 3𝑘2 + 2𝑘

6
)

)

 
 

 

(2.15) 

 

5) 𝜓5(𝑧)  

 

𝜓5(𝑧) = 𝑧
√1− 𝑝2

𝑧−𝑝
(
1−𝑝𝑧

𝑧−𝑝
)
4 

= 𝑧
√1− 𝑝2  (1−𝑝𝑧)4

(𝑧−𝑝)5
 

𝜓5
, (z) = 𝑧

(1−𝑝𝑧)4

(𝑧−𝑝)5
  = 𝑧 (

𝐴

𝑧−𝑝
) + 𝑧 (

𝐵

(𝑧−𝑝)2
) + 𝑧 (

𝐶

(𝑧−𝑝)3
) +  𝑧 (

𝐷

(𝑧−𝑝)4
) +𝑧 (

𝐸

(𝑧−𝑝)5
)   

𝜓5
, (z) =  𝑧 (

𝐴(𝑧−𝑝)4+𝐵(𝑧−𝑝)3+𝐶(𝑧−𝑝)2+𝐷(𝑧−𝑝)+𝐸 

(𝑧−𝑝)5
)  

 

{
 
 

 
 

𝐴 =  𝑝4

𝐵 = 4𝑝3(𝑝2 − 1)

𝐶 = 6𝑝2(𝑝4 − 2𝑝2 + 1)

𝐷 = 4𝑝(𝑝6 − 3𝑝4  +3𝑝2 − 1)

 𝐸 = 𝑝8 − 4𝑝6 + 6𝑝4 − 4𝑝2 + 1

 

 

𝜓5
, (z)=  𝑝4 (

𝑧

𝑧−𝑝
) + 4𝑝3(𝑝2 − 1) (

𝑧

(𝑧−𝑝)2
) + 6𝑝2(𝑝4 − 2𝑝2 + 1) (

𝑧

(𝑧−𝑝)3
) + 

+ 4𝑝(𝑝6 − 3𝑝4 +3𝑝2 − 1) (
𝑧

(𝑧−𝑝)4
) + (𝑝8 − 4𝑝6 + 6𝑝4 − 4𝑝2 + 1) (

𝑧

(𝑧−𝑝)5
) 

 

Ao utilizar as propriedades (1), (2), (3), (4) e (5): 

 

𝑍−1[ 𝜓5
, (z)] = 𝑝4(𝑝𝑘) + 4𝑝3(𝑝2 − 1)(𝑘𝑝𝑘−1) + 6𝑝2(𝑝4 − 2𝑝2 + 1) (

𝑘(𝑘−1)

2
𝑝𝑘−2) + 

+ 4𝑝(𝑝6 − 3𝑝4  +3𝑝2 − 1) (
(𝑘−2)(𝑘−1)𝑘

6
𝑝𝑘−3) + 

+ (𝑝8 − 4𝑝6 + 6𝑝4 − 4𝑝2 + 1) (
(𝑘−3)(𝑘−2)(𝑘−1)𝑘

24
𝑝𝑘−4) 

 

 

 

 

 

 



Expandindo os termos: 

 

𝑍−1[ 𝜓5
 (z)] = √1 − 𝑝2 (𝑝𝑘+4 (

𝑘4+10𝑘3+35𝑘2+50𝑘+24

24
) − 𝑝𝑘+2 (

𝑘4+6𝑘3+11𝑘2+6𝑘

6
) +

+ (
𝑘4+2𝑘3−𝑘2−2𝑘

4
) + +𝑝𝑘−2 (

−𝑘4+2𝑘3+𝑘2−2𝑘

6
) + 𝑝𝑘−4 (

𝑘4−6𝑘3+11𝑘2−6𝑘

24
))   

(2.16) 

 

6) 𝜓6(𝑧)  

 

𝜓6(𝑧) = 𝑧
√1− 𝑝2

𝑧−𝑝
(
1−𝑝𝑧

𝑧−𝑝
)
5 

= 𝑧
√1− 𝑝2  (1−𝑝𝑧)5

(𝑧−𝑝)6
 

𝜓6
, (z) = 𝑧

(1−𝑝𝑧)5

(𝑧−𝑝)6
  = 𝑧 (

𝐴

𝑧−𝑝
) + 𝑧 (

𝐵

(𝑧−𝑝)2
)+𝑧 (

𝐶

(𝑧−𝑝)3
) + 𝑧 (

𝐷

(𝑧−𝑝)4
) + 𝑧 (

𝐸

(𝑧−𝑝)5
) +

𝑧 (
𝐹

(𝑧−𝑝)6
) 

𝜓6
, (z) =  𝑧 (

𝐴(𝑧−𝑝)5+𝐵(𝑧−𝑝)4+𝐶(𝑧−𝑝)3+𝐷(𝑧−𝑝)2+𝐸(𝑧−𝑝) +𝐹 

(𝑧−𝑝)6
)    

 

{
  
 

  
 

𝐴 = −𝑝5

𝐵 = 5𝑝4(1 − 𝑝2)

𝐶 =  10𝑝3(−𝑝4 + 2𝑝2 − 1)

𝐷 =  10𝑝2(1 − 3𝑝2 + 3𝑝4 − 𝑝6)

 𝐸 = −5𝑝(1 − 4𝑝2 + 6𝑝4 − 4𝑝6 + 𝑝8) 

𝐹 =  −𝑝10 + 5𝑝8 − 10𝑝6 + 10𝑝4 − 5𝑝2 + 1

 

 

 𝜓6
, (z)= −𝑝5 (

𝑧

𝑧−𝑝
) + 5𝑝4(1 − 𝑝2) (

𝑧

(𝑧−𝑝)2
) + 10𝑝3(−𝑝4 + 2𝑝2 − 1) (

𝑧

(𝑧−𝑝)3
) + 

+10𝑝2(1 − 3𝑝2 + 3𝑝4 − 𝑝6) (
𝑧

(𝑧−𝑝)4
) − 5𝑝(1 − 4𝑝2 + 6𝑝4 − 4𝑝6 + +𝑝8) (

𝑧

(𝑧−𝑝)5
)+(−𝑝10 + 5𝑝8 −

−10𝑝6 + 10𝑝4 − 5𝑝2 + 1) (
𝑧

(𝑧−𝑝)6
) 

  

Ao utilizar as propriedades (1), (2), (3), (4), (5) e (6): 

 

 

𝑍−1[ 𝜓6
, (z)]=−𝑝5(𝑝𝑘) + 5𝑝4(1 − 𝑝2)(𝑘𝑝𝑘−1) + 

+10𝑝3(−𝑝4 + 2𝑝2 − 1) (
𝑘(𝑘−1)

2
𝑝𝑘−2) + 

+ 10𝑝2(1 − 3𝑝2 + 3𝑝4 − 𝑝6) (
(𝑘−2)(𝑘−1)𝑘

6
𝑝𝑘−3) +  

− 5𝑝(1 − 4𝑝2 + 6𝑝4 − 4𝑝6 + 𝑝8) (
(𝑘 − 3)(𝑘 − 2)(𝑘 − 1)𝑘

24
𝑝𝑘−4) + 



+(−𝑝10 + 5𝑝8 − 10𝑝6 + 10𝑝4 − 5𝑝2 + 1) (
(𝑘−4)(𝑘−3)(𝑘−2)(𝑘−1)𝑘

120
𝑝𝑘−5) 

 

Expandindo os termos: 

 

                                  𝑍−1[ 𝜓6
 (z)] = √1 − 𝑝2 (−𝑝𝑘+5 (

𝑘5+15𝑘4+85𝑘3+225𝑘2+274𝑘+120

120
) +

                               +𝑝𝑘+3 (
𝑘5+10𝑘4+35𝑘3+50𝑘2+24𝑘

24
) − 𝑝𝑘+1 (

𝑘5+5𝑘4+5𝑘3−5𝑘2−6𝑘

12
) + 𝑝𝑘−1 (

𝑘5− 5𝑘3+4𝑘

12
)  +

                                               +  𝑝𝑘−3 (
−𝑘5+5𝑘4+5𝑘3−5𝑘2+6𝑘

24
) + 𝑝𝑘−5 (

𝑘5+10𝑘4+35𝑘3+50𝑘2+24𝑘

120
))                                                                                                    

            (2.17)  




	1 INTRODUÇÃO
	1.1 Motivação

	1.2  Organização do texto
	2 o MODELO DE VOLTERRA
	2.1 Representações

	2.2 Bases de Funções Ortonormais
	2.2.1 Funções de Laguerre
	2.3 Modelo OBF-Volterra
	2.4 Otimização dos kernels e aplicações
	3 APRESENTAÇÃO DO SISTEMA E RESULTADOS
	3.1 Reação de polimerização em um CSTR

	(4.1)
	3.2 Algoritmos
	3.2.1 Modelo de Espaço de Estados e funções de Laguerre

	3.2.2 Estimação dos coeficientes e cálculo dos kernels
	3.2.3 Cálculo da saída do Modelo de Volterra
	3.2.4 Seleção do valor ótimo para o polo de Laguerre
	3.3 Apresentação e discussão de resultados
	3.3.1 Resposta a sequência de degraus
	3.3.2 Resposta ao impulso 𝛿(𝑘)
	É possível  observar claramente a propriedade de simetria de ,ℎ-2. graficamente. Assim como na resposta ao degrau, o modelo de 3  ordem apresentou uma performance melhor do que o modelo de 2  ordem. Visualmente o erro dos dois modelos parece ser muit...
	3.3.3 Comparação dos resultados
	4 CONCLUSÕES E PROPOSTAS FUTURAS
	REFERÊNCIAS
	APÊNDICE A – CÓDIGOS
	APÊNDICE B – CÁLCULO DAS FUNÇÕES DE LAGUERRE

