~
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Uma Abordagem Eficiente para Classificacao de
Textos Baseada em Compressao

Bruno Vargas de Souza

Monografia apresentada como requisito parcial

para conclusao do Bacharelado em Ciéncia da Computagao

Orientador
Prof. Dr. Pedro Garcia Freitas

Brasilia
2025

~
Universidade de Brasilia

Instituto de Ciéncias Exatas
Departamento de Ciéncia da Computagao

Uma Abordagem Eficiente para Classificacao de
Textos Baseada em Compressao

Bruno Vargas de Souza

Monografia apresentada como requisito parcial

para conclusao do Bacharelado em Ciéncia da Computagao

Prof. Dr. Pedro Garcia Freitas (Orientador)
CIC/UnB

Prof. Dr. Luis Paulo Faina Garcia Prof.a Dr.a Aletéia Patricia Favacho de Aratjo
CIC/UnB CIC/UnB

Prof. Dr. Marcelo Grandi Mandelli

Coordenador do Bacharelado em Ciéncia da Computacgao

Brasilia, 08 de dezembro de 2025

Dedicatoria

Dedico este trabalho aos meus pais e ao meu irmao. Vocés nao foram apenas meus maiores
incentivadores, mas a base de quem sou hoje. Obrigado por oferecerem todo o suporte, o
amor e, muitas vezes, o sacrificio necessario para que eu pudesse priorizar os meus estudos.

Cada passo dessa caminhada tem a marca de vocés. Vocés fazem parte desta conquistal

1il

Agradecimentos

Agradego ao meu orientador, Prof. Pedro Garcia Freitas, por conduzir este trabalho com
tanta dedicacao. Obrigado por ser sempre atencioso, prestativo e paciente em cada etapa
da producgao. Sua orientacao foi fundamental ndo apenas para este texto, mas para o meu
amadurecimento académico.

Ao Prof. Vinicius Borges, deixo um agradecimento especial por ter sido o grande
responsavel por despertar meu interesse pelas areas de Algoritmos, Processamento de
Linguagem Natural e Inteligéncia Artificial. Suas aulas inspiradoras e seu suporte con-
stante foram decisivos para que eu escolhesse trilhar este caminho.

Aos meus amigos e parceiros de pesquisa, Victor Hugo e Ana Sofia. Obrigado por me
acompanharem durante toda essa jornada, dividindo nao apenas a autoria de estudos e
publicagoes, mas também as angustias e alegrias da vida académica. O incentivo mituo
durante a escrita deste trabalho tornou o processo muito mais leve.

Ao Enzo Yoshio e a Isabel Starling, meus eternos parceiros de time. Vocés foram
pilares fundamentais da minha vivéncia na UnB. As horas que passamos treinando juntos
ao UnBalloon e resolvendo problemas de programacao competitiva criaram um lago que
vai muito além da universidade. Sou grato por cada desafio que superamos juntos e por
tudo o que aprendi ao lado de vocés

Estendo minha gratidao a todos os demais familiares e amigos que, de perto ou de
longe, se fizeram presentes, torceram por mim e me apoiaram durante essa caminhada.
O carinho de vocés foi indispenséavel.

A Universidade de Brasilia (UnB) e ao Departamento de Ciéncia da Computacao, pela
exceléncia no ensino e pelas oportunidades oferecidas.

O presente trabalho foi realizado com apoio da Coordenacao de Aperfeicoamento de

Pessoal de Nivel Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periédicos.

iv

Resumo

Nos ultimos anos, a comunidade de Aprendizado de Maquina tem desenvolvido modelos
cada vez mais complexos para classificacao de textos, especialmente com o avanco dos
Large Language Models (LLMs), que apresentam bom desempenho, mas exigem alta
capacidade computacional e grandes volumes de dados rotulados, o que limita seu uso em
cenarios com poucos recursos. Como alternativa, métodos baseados em compressao tém
sido estudados por seu baixo custo computacional, utilizando a Distancia de Compressao
Normalizada (do inglés, Normalized Compression Distance) (NCD), que usa a compressao
para medir a similaridade entre textos, em conjunto com classificadores K-vizinhos mais
Préximos (do inglés, K-Nearest Neighbors) (KNN), embora a busca exaustiva por vizinhos
mais proximos represente um gargalo de desempenho. Este trabalho propoe um método
de classificagdo textual baseado em compressao que utiliza uma Burkhard-Keller Tree
(BKTree) para otimizar essa busca e compara diferentes algoritmos de compressao sem
perda no dataset Fake News Filipino. Os resultados experimentais mostram que o método
mantém desempenho preditivo semelhante ao de abordagens mais complexas, com ganhos
de eficiéncia expressivos, incluindo aceleragoes de 20x, 25x, 7x, 6,6, 8x, 10x, 1,4x,
1,9%, 11x e 12x para os compressores Brotli, FSST, LZ4, LZAV, LZF, QuickLLZ, Shoco,
Smaz, Snappy e ZLib, respectivamente, configurando uma alternativa eficiente e escaléavel

para cenarios com recursos limitados.

Palavras-chave: Classificagao de textos, Compressao, BK-Tree, KNN, Eficiéncia com-

putacional

Abstract

In recent years, the Machine Learning community has developed increasingly complex
models for text classification, especially with the advancement of Large Language Models
(LLMs), which demonstrate good performance but require high computational capacity
and large volumes of labeled data, limiting their use in low-resource scenarios. As an al-
ternative, compression-based methods have been studied for their low computational cost,
utilizing the Normalized Compression Distance (NCD), which uses compression to mea-
sure similarity between texts, in conjunction with K-Nearest Neighbors (KNN) classifiers,
although the exhaustive search for nearest neighbors represents a performance bottle-
neck. This work proposes a compression-based text classification method that utilizes a
Burkhard-Keller Tree (BK-Tree) to optimize this search and compares different lossless
compression algorithms on the Fake News Filipino dataset. Experimental results show
that the method maintains predictive performance similar to complex approaches, with
significant efficiency gains, including speedups of 20x, 25x, 7x, 6.6x, 8x, 10x, 1.4x,
1.9x, 11x, and 12x for Brotli, FSST, LZ4, LZAV, LZF, QuickLZ, Shoco, Smaz, Snappy,
and ZLib compressors, respectively, configuring an efficient and scalable alternative for

low-resource scenarios.

Keywords: Text classification, Compression, BK-Tree, KNN, Computational efficiency

vi

Sumario

1 Introducgao 1
1.1 Justificativao 2
1.2 Objetivoso 3
1.3 Hipdtese de Pesquisa 3
1.4 Organizacdo da Monografia 4

2 Fundamentacgao Tedrica 5
2.1 Classificacao de Textos Lo)
2.2 Algoritmo dos K-vizinhos mais Préximos 6
2.3 Métricas de Similaridade para Strings 8

2.3.1 Distancias Empregadas e Breve Descricao 9
2.3.2 Distancia de Compressao Normalizada (NCD) 10
2.3.3 Observacoes Comparativas e Critérios para Experimentos 10
2.4 Compressoresot e 11
2.4.1 Compressao sem Perdas 11
2.4.2 Tipos de Compressores ot 11
2.4.3 Impacto Pratico.o 12
2.5 BKTree e Buscas em Espagos Métricos Discretos 13
2.5.1 Construcdo da Arvore 13
2.5.2 Processode Buscao 14
2.5.3 Complexidade e Aplicabilidade 16
2.6 Computacao Paralela 16
2.6.1 Taxonomiade Flynn 17
2.6.2 Programagao com OpenMP 17
2.7 Métricas e Comparacao de Eficiéncia L. 17
2.7.1 Speedup Relativo 18
2.7.2 Speedup Paralelo e Eficiéncia 19

vii

3 Solugao Proposta
3.1 Estruturacao do Espago de Buscao
3.1.1 Limitacoes de Arvores Espaciais Tradicionais
3.1.2 Adogado da BKTree para Espacos Métricos Discretos

3.2 Modelo de Processamento Paralelo

4 Metodologia
4.1 Implementacao e Construcao da BKTree
4.2 Orquestragdo da Busca Paralela

4.2.1 Mecanismos de Sincronizacdo e Poda

5 Experimentos
5.1 Configuragdo Experimentalo
5.1.1 Conjunto de Dados e Pré-processamento
5.1.2 Métodos e Compressores
5.1.3 Ambiente e Reprodutibilidade
5.2 Resultados Experimentais L.
5.2.1 Desempenho de Predicao
5.2.2 Relacao entre Desempenho e Eficiéncia
5.2.3 Speedup e Escalabilidade
5.2.4 Observagoes por Compressor o v v

5.2.5 Sumadrio dos Resultados

6 Conclusao
6.1 Sintese dos Resultados L.
6.2 Limitagoes e Consideragdes
6.3 Trabalhos Futuros.
6.4 Trabalhos Publicados

Referéncias

viil

20
21
21
22
22

23
23
24
25

26
27
27
27
28
29
29
30
32
37
38

39
39
40
40
41

42

2.1

2.2

3.1

4.1

0.1

5.2

9.3

Lista de Figuras

Comparagao visual da organizacao de dados utilizando a palavra “Casa”
como raiz. Para fins de clareza didatica, utilizou-se neste exemplo a Dis-
tdncia de Levenshtein para demonstrar as relagoes de proximidade. (a)
No espago métrico, observa-se o agrupamento por distancia radial. (b)
Na BKTree, esse agrupamento ¢ convertido em uma hierarquia, onde coli-

soes (como em “Cama”, “Rama”, “Mala” e “Toca”) sao resolvidas criando

SUbNIVEIS. . . .

Exemplo de busca na BKTree com a consulta ¢ = “Cama” e raio r = 1.

Observa-se a poda do ramo “Lona” na raiz e a filtragem do né “Mala”.

Arquitetura da solugao: indexacao via BKTree e classificacao hierarquica

baseada em NCD.

Fluxo de execucao concorrente: consumo de nos, verificagdo de poda e

atualizacao sincronizada das estruturas globais.

Diagrama do fluxo experimental: do pré-processamento as diferentes estra-

tégias de classificagdo e andlise. L.

Diagrama de dispersao da FI-score maxima versus tempo médio de execu-
¢ao (escala log) para todos os compressores avaliados. Os tipos de modelo

sao distinguidos por cor: ingénuo (vermelho), BKTree (azul), baseado em

sequéncia (verde). o

Curvas de speedup relativo e paralelo por compressor.

ix

Lista de Tabelas

5.1 Métricas de predi¢dao obtidas usando o método proposto baseado em BK-
Tree comparado com a abordagem ingénua de KNN quando o speedup
maximo foi alcancado. S,,q, representa o speedup relativo maximo alcan-
cado, e T,y € 0 nimero de threads que produziu esse speedup 6timo. Os
simbolos 91 e B representam, respectivamente, o método ingénuo (linha de
base) e 0 BKTree (proposto).

5.2 Comparagao entre método Naive e BKTree sequencial (1 thread)

5.3 Eficiéncia de paralelizagdo por compressor e niimero de threads (%)

Lista de Abreviaturas e Siglas

API Interface de Programacao de Aplicagdes (do inglés, Application Programming Inter-
face).

BERT Bidirectional Encoder Representations from Transformers.
BKTree Burkhard-Keller Tree.
BTree Ball Tree.

BWT Transformada de Burrows-Wheeler (do inglés, Burrows-Wheeler Transform).

CDM Métrica de Distancia de Compressao (do inglés, Compression Distance Metric).

CLM Modelos de Linguagem Baseados em Compressao (do inglés, Compression-based

Language Models).

CPU Unidade Central de Processamento (do inglés, Central Processing Unit).
DNN Redes Neurais Profundas (do inglés Deep Neural Networks).

GCC Colegao de Compiladores GNU (do inglés GNU Compiler Collection).

GRU Unidade Recorrente com Portas (do inglés, Gated Recurrent Unit).

KDTree K-Dimensional Tree.

KNN K-vizinhos mais Préximos (do inglés, K-Nearest Neighbors).

LLM Large Language Model.

LSTM Long Short-Term Memory.

MIMD Muiltiplas Instrugdes, Multiplos Dados (do inglés, Multiple Instruction Multiple
Data).

el

NCD Distancia de Compressao Normalizada (do inglés, Normalized Compression Dis-

tance).
OpenMP Open Multi-Processing.

PLN Processamento de Linguagem Natural.

PPM Predi¢ao por Correspondéncia Parcial (do inglés, Prediction by Partial Matching).
RINN Redes Neurais Recorrentes (do inglés, Recurrent Neural Networks).
SIMD Instrucio Unica, Multiplos Dados (do inglés, Single Instruction Multiple Data).

TF-IDF Frequéncia do Termo-Inverso da Frequéncia nos Documentos (do inglés, Term

Frequency-Inverse Document Frequency).

VPTree Vantage-Point Tree.

xii

Capitulo 1

Introducao

A classificacao automatica de textos consolidou-se como uma tarefa central nas areas
de Aprendizado de Maquina e Processamento de Linguagem Natural (PLN) [1]. Essa
relevancia deve-se a capacidade desses sistemas de organizar e extrair valor de grandes
volumes de dados nao estruturados de forma eficiente. Na pratica, tais algoritmos sustentam
aplicagoes criticas para a sociedade moderna, como a filtragem de noticias falsas [2] e a
deteccao de spam [3]. Além disso, sdo fundamentais em dominios analiticos e técnicos,
variando desde a andlise de sentimentos [4] até a categorizagdo automética de problemas
de programagao [5, 6].

Atualmente, o estado da arte é dominado por Redes Neurais Profundas (do inglés Deep
Neural Networks) (DNN) e arquiteturas baseadas em Transformers, como o Bidirectional
Encoder Representations from Transformers (BERT) e LLM [7, 8]. Embora esses modelos
demonstrem desempenho superior impulsionado por vastos volumes de dados e mecanismos
de atencao, essa hegemonia cobra um preco elevado. Tais arquiteturas exigem treinamento
intensivo, hardware de alto desempenho (GPUs) e consomem quantidades significativas de
energia [9]. Esse custo computacional limita severamente a aplicabilidade desses modelos
em cenarios de recursos escassos (low-resource), em dispositivos de borda ou em tarefas
onde a simplicidade e a interpretabilidade seriam preferiveis.

Em resposta a essas limitagoes, a comunidade cientifica tem revisitado métodos
parameter-free baseados em compressao. A fundamentacao para tal alternativa reside na
NCD [10], uma métrica que opera sob o principio da teoria da informacao de que textos
semanticamente semelhantes compartilham redundéancia. O raciocinio intuitivo sugere que
a concatenacao de textos similares resulta em uma compressao muito mais eficiente do
que o processamento isolado das partes, pois o algoritmo consegue reaproveitar padroes
comuns para reduzir o tamanho final. Essa estratégia funciona como uma estimativa
pratica da Complexidade de Kolmogorov e permite classificar diretamente os dados brutos,

eliminando assim a necessidade de etapas custosas como a engenharia de atributos ou a

vetorizacao.

Recentemente, [11] demonstraram empiricamente a validade dessa abordagem com o
método NPC_Gzip, provando que a combinagao simples de um compressor (como Gzip)
com um classificador KNN pode rivalizar com redes neurais modernas em precisdo para
diversas tarefas. Contudo, a simplicidade desse método esbarra em um gargalo critico de
escalabilidade. A implementacao original depende de uma busca exaustiva por forca bruta,
exigindo que cada nova consulta seja comprimida em conjunto com todas as instancias do
treinamento. Isso torna o processo computacionalmente proibitivo a medida que o volume
de dados aumenta, dificultando sua adogao em larga escala.

O presente trabalho aborda diretamente essa lacuna, propondo uma reformulacao
estrutural do algoritmo de classificacao. A solucao desenvolvida baseia-se na integracao de
estruturas de dados métricas para indexacao eficiente, combinada com o uso de computagao

paralela para acelerar o processo de inferéncia.

1.1 Justificativa

Diante desse cenario, a limitacao de escalabilidade impoe uma restri¢ao severa ao uso pratico
desses classificadores. Especificamente, a implementagao ingénua do KNN com NCD exige
o calculo da distancia entre o texto de consulta e todas as m instancias do conjunto de
treinamento. Considerando que a operacao de compressao ¢ computacionalmente custosa,
a complexidade resultante, descrita como O(m - r - n) para strings de tamanhos r e n,
torna o método inviavel para bases de dados extensas ou aplicagoes que demandem tempo
de resposta rapido.

Além da questao de eficiéncia, existe uma necessidade clara de transparéncia nas
decises dos modelos. Enquanto as DNN funcionam muitas vezes como "caixas pretas'[12],
dificultando a compreensao do motivo de uma classificacdo, o método proposto oferece
uma vantagem direta, que é o fato de ser possivel identificar exatamente quais exemplos do
treinamento foram utilizados para classificar um novo texto. Essa capacidade de auditoria
é fundamental em dominios sensiveis, tais como o juridico, o médico ou o educacional, nos
quais nao basta apenas o resultado, mas também a justificativa por tras dele [12].

Portanto, este trabalho se justifica pela necessidade premente de transformar modelos
tedricos promissores, frequentemente restritos ao ambiente académico, em ferramentas
tecnicamente aplicaveis no mundo real. A proposta preenche uma lacuna importante ao
atacar o gargalo de escalabilidade que atualmente impede a ado¢ao massiva de classifica-
dores baseados em compressao. Ao mitigar o custo computacional excessivo sem sacrificar
a acuracia, valida-se uma alternativa robusta as redes neurais profundas. Consequente-

mente, abrem-se portas para o desenvolvimento de sistemas de classificacao que sejam,

simultaneamente, eficientes, transparentes e capazes de operar com total independéncia de

vocabulario e idioma.

1.2 Objetivos

O objetivo geral deste trabalho consiste em desenvolver e validar uma abordagem computa-
cionalmente eficiente para a classificacao de textos baseada em compressao, visando superar
os desafios de escalabilidade inerentes aos métodos atuais. Identifica-se que, apesar da
robustez tedrica das métricas de compressao, a sua aplicabilidade pratica é frequentemente
limitada pelo alto custo da busca exaustiva em grandes bases de dados. Nesse sentido,
a proposta central foca na otimizacao do tempo de inferéncia, substituindo a verificacao
linear pela integracdo de estruturas de dados métricas e processamento paralelo. Com isso,
busca-se entregar uma solucao que mantenha a acuracia dos modelos originais, tornando-os
viaveis para cenarios que exigem respostas rapidas e uso racional de recursos.

Para alcancar este proposito, a pesquisa desdobra-se em objetivos especificos interconec-
tados. Inicialmente, visa-se implementar uma estrutura de indexagao baseada em BKTree
[13], adaptando-a para organizar o espago métrico gerado pela NCD e permitindo a poda
eficiente de ramos de busca por meio da desigualdade triangular. Concomitantemente,
busca-se desenvolver uma estratégia de busca paralela capaz de explorar a arvore de forma
concorrente, maximizando o uso de arquiteturas multi-core para acelerar a recuperagao dos
vizinhos mais proximos. Adicionalmente, o trabalho propoe analisar comparativamente
diversos algoritmos de compressao lossless, como Zstd, LZ4, Brotli e Snappy [14], para
compreender o impacto de cada um no equilibrio entre acuracia preditiva e velocidade.
Por fim, avalia-se empiricamente o desempenho da solugao, mensurando os ganhos de
speedup e a manutengao das métricas de qualidade em relagao a abordagem ingénua de

forca bruta.

1.3 Hipétese de Pesquisa

A hipétese deste trabalho estipula que a integracao da estrutura BKTree com o processa-
mento paralelo supera as limitagoes de escalabilidade da classificacao baseada em NCD.
A premissa central defende que a poda eficiente do espaco de busca, somada a execugao
concorrente, proporciona ganhos significativos de speedup e mantém a acurdacia preditiva
equivalente a da abordagem de forga bruta. A confirmacao desta hipdtese viabiliza a
aplicagao pratica de modelos baseados em compressao em cenarios reais de classificagao

textual.

1.4 Organizacao da Monografia

A estrutura do restante deste trabalho segue uma ordem progressiva de fundamentacao,
proposicao e validagdo. O Capitulo 2 estabelece a base tedrica e revisa conceitos essenciais
como KNN, NCD e a estrutura BKTree. Na sequéncia, os Capitulos 3 e 4 detalham,
respectivamente, a arquitetura da solucao para superar as limitacoes de escalabilidade e
os aspectos concretos da implementacao e da orquestragao paralela. A validagdo empirica
ocorre no Capitulo 5 através da andlise de desempenho preditivo e curvas de speedup. Por

fim, o Capitulo 6 apresenta as consideracoes finais, limitacoes do estudo e perspectivas
para trabalhos futuros.

Capitulo 2
Fundamentacao Teodrica

Este capitulo tem como objetivo apresentar os conceitos tedricos fundamentais para o
entendimento da metodologia e dos experimentos realizados neste trabalho. Inicialmente,
é feita uma breve revisao sobre a tarefa de classificacdo de textos, mostrando como as
abordagens nessa area evoluiram ao longo do tempo. Na sequéncia, detalha-se o funciona-
mento do algoritmo KNN, destacando sua natureza nao paramétrica e a importancia da
escolha da métrica de distancia. Além disso, sao exploradas as métricas de similaridade
para strings, introduzindo a NCD e explicando como os compressores influenciam nesse
calculo. Por fim, descreve-se a BKTree, estrutura de dados essencial para a otimizacao de

busca proposta neste estudo.

2.1 Classificacao de Textos

A classificagao de textos desempenha um papel central no Aprendizado de Maquina
Supervisionado e serve de base para muitas aplicagoes de processamento de linguagem
natural. A tarefa tem como meta a atribuicao automatica de categorias a documentos
através da andlise de padrdes no texto. O historico da drea mostra mudancas importantes
nas ultimas décadas. O desenvolvimento comecou com abordagens baseadas em regras
manuais e simbolos, avancou para modelos estatisticos e chegou ao cenario atual dominado
por representagoes distribuidas e arquiteturas de atengao [15].

Inicialmente, métodos baseados em contagem e modelos de linguagem simples foram
amplamente utilizados. A representagao bag-of-words [16] e o uso de pesos Frequéncia
do Termo-Inverso da Frequéncia nos Documentos (do inglés, Term Frequency-Inverse
Document Frequency) (TF-IDF) tornaram-se padrdes para transformar documentos em
vetores numéricos, facilitando a classificacao e recuperagao [17]. Nessa fase, algoritmos
classicos de classificacao, como o KNN, foram consolidados como linhas de base tedricas e

praticas, juntamente com classificadores probabilisticos simples (por exemplo, Naive Bayes),

que demonstraram bom desempenho na categorizacao textual com custo computacional
reduzido [18, 19].

Com o aumento de corpora e poder computacional, modelos de linguagem baseados em
n-gramas [20] e modelos probabilisticos mais robustos surgiram, seguidos por arquiteturas
neurais. Redes Neurais Recorrentes (do inglés, Recurrent Neural Networks) (RNN) [21] e
suas variantes Long Short-Term Memory (LSTM) [22] mostraram capacidade de capturar
dependéncias sequenciais em textos, superando técnicas baseadas em n-gramas em diversas
tarefas de PLN. A arquitetura LSTM, com seus mecanismos de portas (gates) para controlar
o fluxo de informacao, resolveu problemas de gradientes desaparecentes presentes em RNNs
tradicionais, permitindo o aprendizado de dependéncias de longo prazo. Posteriormente, a
Unidade Recorrente com Portas (do inglés, Gated Recurrent Unit) (GRU) surgiu como uma
alternativa mais simples e eficiente, mantendo boa capacidade de modelagem sequencial [23].
Adicionalmente, abordagens convolucionais para texto revelaram eficacia na extragao de
padroes locais e na classificacao de sentencas e documentos, utilizando filtros convolucionais
para identificar n-gramas e estruturas sintaticas relevantes [24].

Uma segunda mudanca importante aconteceu com a chegada das representacgoes dis-
tribuidas (embeddings). Essa abordagem mapeia palavras e frases para espagos vetoriais
densos e permite medir a similaridade semantica através de operagdes geométricas [25].
O uso de técnicas como Word2Vec [25] transformou a engenharia de caracteristicas ao
oferecer vetores pré-treinados que melhoraram a capacidade de generalizagdo dos modelos.
Mais tarde, o mecanismo de atencao e a arquitetura de transformadores trouxeram grandes
progressos. Modelos baseados em atengao (p. ex. BERT) conseguem capturar relagoes de
contexto profundas entre tokens e definiram novos padroes de desempenho em classificagao
de textos e tarefas afins [26, 7].

Mesmo com a popularidade das representacoes vetoriais, métodos focados na similari-
dade direta entre sequéncias continuam importantes. Eles sao valiosos em situagoes com
poucos dados, quando é preciso explicar a classificacao ou lidar com restrigoes de idioma.
Abordagens baseadas em distancia (como Levenshtein [27]) mantém seu valor pratico em
problemas onde erros de edigdo ou variagoes locais trazem informacao. Da mesma forma,
medidas baseadas em compressao (como a NCD) permitem comparar documentos sem
depender de vocabulario, pois medem a informacao compartilhada entre as sequéncias
[10, 28, 29].

2.2 Algoritmo dos K-vizinhos mais Préximos

O algoritmo KNN representa uma das técnicas mais classicas e intuitivas do aprendizado

supervisionado. Cover e Hart apresentaram o método na década de 1960 [18] sob a

premissa de que exemplos com caracteristicas similares costumam fazer parte da mesma
classe. Ao contrario de modelos paramétricos [30, 31], que dependem de uma fungao de
decisao explicita, o KNN opera de maneira nao paramétrica e usa as préprias amostras de
treinamento como referéncia para a classificacao.

Na sua versao basica, o algoritmo trabalha com um conjunto de dados rotulados.
Diante de uma nova entrada, o sistema calcula a distancia até todos os elementos do
conjunto de treinamento. Em seguida, seleciona os k vizinhos mais préoximos e define a
categoria da nova instancia através de uma regra de decisdo. A estratégia mais comum
utiliza a moda, ou seja, a nova amostra recebe a classe mais frequente entre os vizinhos.
Outra possibilidade envolve ponderar a influéncia de cada vizinho pela distancia e dar
mais peso aos exemplos mais proximos [32].

O valor de k exerce influéncia direta no desempenho do algoritmo. Valores pequenos
tornam o modelo mais sensivel a ruidos e outliers, enquanto valores muito grandes podem
levar a perda de detalhes locais e a suavizagao excessiva do espac¢o de decisao. Assim, a
escolha de k envolve um equilibrio entre estabilidade e sensibilidade local [18, 33].

Uma implementagao direta do KNN para classificacao de textos, proposta por [11] no
método NPC_Gzip, utiliza uma estratégia de forga bruta. Nessa abordagem, para cada
consulta, calcula-se a distancia entre o texto de entrada e todas as instancias do conjunto
de treinamento, ordenando os resultados e selecionando os k vizinhos mais préximos
para determinar a classe por voto majoritario. O Algoritmo 1 descreve formalmente esse
procedimento.

Assim, embora essa implementacao seja intuitiva e de facil compreensao, sua comple-
xidade computacional é O(m) célculos de distdncia por consulta, onde m é o tamanho
do conjunto de treinamento. Quando a métrica de distancia envolve operacoes custosas,
como compressao no caso da NCD, esse custo pode tornar o método impraticavel para
conjuntos de dados grandes. Por essa razao, estruturas de indexagao como a BKTree, a
ser apresentada na Se¢ao 2.5, oferecem alternativas mais eficientes para acelerar a busca
por vizinhos, reduzindo significativamente o nimero de comparagoes necessarias.

A principal vantagem do KNN esta em sua simplicidade e facilidade de interpretacao.
Como nao ha uma fase de treinamento propriamente dita, o algoritmo é classificado
como um método de aprendizado preguicoso (lazy learning) [34], realizando o esforgo
computacional apenas no momento da predi¢ao. Essa caracteristica permite rastrear cada
decisdo, identificando exatamente quais vizinhos influenciaram a classificacao final. Além
disso, o KNN ¢ flexivel quanto ao tipo de dado analisado, podendo empregar diferentes
métricas de distancia conforme o dominio, por exemplo, a distancia Euclidiana para dados
continuos, a distancia de Hamming para dados binarios, ou a distancia de edicao para

strings [35].

Algorithm 1 Algoritmo KNN por forca bruta para classificacdo de textos

Require: Conjunto de treinamento D = {(s1,¢1), ..., (Sm,Cm)}
Require: Texto de consulta q
Require: Numero de vizinhos k € N*
Require: Métrica de distancia d(-, -)
Ensure: Classe prevista para q
1: Inicializar uma lista vazia de pares (distancia, classe): £ < | |
2: for cada (s;,c;) em D do
3 Calcular a distancia entre q e s;: dist; < d(q,s;)
4 Adicionar (dist;, c;) a lista £
5: Ordenar £ em ordem crescente de distancia
6: Selecionar os k primeiros elementos: N < {(dist;, c;) | primeiros k elementos}
7. Extrair as classes dos vizinhos mais préximos: Cy, < {c; | (dist;,c;) € N'}
8: Definir a classe prevista como a moda das classes vizinhas: € «— Mode(Cy,,)
9: return €

Entretanto, o desempenho do KNN depende fortemente da métrica de similaridade
adotada, pois ela define o que significa “ser semelhante”. Em dominios textuais, métricas
tradicionais como as distancias Euclidiana ou Manhattan tendem a ser pouco informativas
devido a alta dimensionalidade e a esparsidade das representacoes. Por essa razao, este
trabalho dedica a préxima se¢ao a discussao de métricas especializadas para sequéncias
textuais, incluindo medidas de edi¢ao e de compressao, que serdo fundamentais para a

formulacao do classificador proposto.

2.3 Meétricas de Similaridade para Strings

As métricas de similaridade textual sao fungoes matematicas que expressam numericamente
o nivel de parentesco ou distancia entre duas cadeias de caracteres. Essas ferramentas
convertem a comparacao entre textos em dados quantificaveis e permitem o tratamento
computacional da linguagem. Tais medidas assumem papel central em tarefas de classifi-
cagao e recuperacao de informacao ao definir a vizinhanca entre exemplos, onde valores
baixos de distancia indicam alta similaridade semantica ou estrutural.

Historicamente, as medidas de edigao (edit distances) surgiram inicialmente para
representar alteragoes basicas entre cadeias, incluindo insercoes, remocoes e substituigoes.
A natureza exata dessas métricas favoreceu o uso em corretores ortograficos e na comparagao
de textos curtos. Ao mesmo tempo, a area progrediu com coeficientes que analisam
correspondéncias locais, como n-gramas, e regras que valorizam posigoes especificas, como
prefixos. Essas técnicas ganharam espaco em problemas pontuais, como o emparelhamento

de nomes e a eliminacdo de duplicatas em bancos de dados [36].

Mais recentemente, abordagens inspiradas em principios de informac¢ao motivaram o
uso de medidas de similaridade baseadas em compressao, como a NCD. Essas métricas
quantificam a informagao compartilhada entre duas sequéncias sem a necessidade de recorrer
a vocabuldrios fixos ou modelos pré-treinados [10, 28]. Nesse contexto, a eficiéncia do
processo de compressao conjunta reflete diretamente o quanto duas cadeias compartilham
padroes informacionais subjacentes. FEssa caracteristica fundamenta-se na teoria da
complexidade de Kolmogorov [28], oferecendo uma perspectiva universal para a comparagao
de dados.

2.3.1 Distancias Empregadas e Breve Descricao

Levenshtein. A distancia de Levenshtein mede o niimero minimo de operagoes atomicas
(insergao, delegao ou substituicdo de caracteres) necessarias para transformar uma cadeia
x em outra y [37]. E amplamente utilizada em busca aproximada e correcio ortografica.
O calculo cléssico, realizado por programacao dindmica, possui custo de tempo O(|z| - |y]|)
e pode ter seu custo de espago reduzido para O(min{|z|,|y|}) mediante otimizagoes
conhecidas [38].

Damerau—Levenshtein. Essa variacao amplia o conjunto de operacoes permitidas ao
incluir transposigoes de caracteres adjacentes, além de insercao, delecao e substituicao
[39]. Essa inclusdo torna a métrica mais adequada para capturar erros humanos comuns
de digitacdo, como a troca de letras vizinhas. E frequentemente aplicada em deduplicacio

e correcao de entradas fornecidas por usuérios [40].

Jaro—Winkler. O coeficiente de Jaro avalia a similaridade com base em correspondéncias
e transposi¢oes dentro de uma janela ajustavel. O refinamento proposto por Winkler
adiciona um fator de bonificagdo para prefixos coincidentes (prefiz scale), valorizando
cadeias que compartilham o mesmo inicio [41, 42]. Essa métrica é amplamente utilizada
em record linkage e emparelhamento de nomes, apresentando boa tolerancia a pequenas

discrepancias internas e dando énfase a coincidéncias no inicio das palavras [43].

Coeficiente de Dice (Strike-a-Match) - Simon White. Frequentemente referida
como “Strike-a-Match” na literatura de desenvolvimento, essa heuristica compara os
conjuntos de bigramas (ou n-gramas de ordem baixa) formados a partir de duas cadeias e
calcula uma similaridade baseada no coeficiente de Dice/Sgrensen entre esses conjuntos.
Essa abordagem é eficiente e, em geral, robusta a pequenas reordenacoes e variagoes leves
de forma. Por depender de n-gramas, sua sensibilidade esta relacionada ao comprimento

das cadeias e a granularidade adotada [44].

2.3.2 Distancia de Compressao Normalizada (NCD)

A NCD [10] é uma medida de similaridade derivada de principios de informagao e com-
pressao. A relagao entre compressao e similaridade textual decorre do principio de que
textos semelhantes compartilham padroes internos. Quando duas sequéncias x e y possuem
trechos em comum, a compressao conjunta tende a ser mais eficiente que a compressao
individual, resultando em C(zy) < C(z) 4+ C(y). Essa propriedade fundamenta o uso da
NCD para estimar a semelhanca entre cadeias: valores menores indicam maior sobreposicao
informacional entre os textos.

Proposta por Cilibrasi e Vitanyi [10] como uma medida universal de similaridade
baseada em compressao, a NCD deriva dos principios de complexidade de Kolmogorov

[28]. A sua definigao formal é expressa pela Equagao 2.1:

Clay) — min{C(x), Cy)}
max{C(z),C(y)}

NCD(z,y) = (2.1)
em que C(-) representa o tamanho comprimido (um valor inteiro) retornado por um
compressor pratico. Matematicamente, o resultado dessa equacao pertence ao intervalo
real continuo [0, 1]. No entanto, para adequar a métrica a estrutura de indexacao proposta
neste trabalho, aplica-se uma discretizacao que mapeia esses valores para o intervalo de
inteiros [0,100]. A NCD é atrativa por ser independente de vocabuldrio e aplicavel a
qualquer sequéncia representavel, mas sua eficicia depende fortemente do compressor
adotado e apresenta custo computacional elevado devido a necessidade de compressoes
conjuntas para cada par comparado.

Além da NCD, a literatura apresenta outras métricas e abordagens baseadas em
compressao. A Métrica de Distancia de Compressao (do inglés, Compression Distance
Metric) (CDM) utiliza formulagoes alternativas de normalizac¢do e oferece perspectivas
complementares sobre a similaridade entre sequéncias [29]. Por sua vez, as Modelos de
Linguagem Baseados em Compressao (do inglés, Compression-based Language Models)
(CLM) exploram a entropia cruzada entre um documento e modelos de linguagem cons-
truidos a partir de compressores, permitindo a classificacdo textual através da comparacao
de probabilidades de compressao [45, 46]. Essas abordagens compartilham o principio
fundamental de que a eficiéncia de compressao reflete padroes informacionais comuns, mas

diferem na forma como quantificam essa relacao.

2.3.3 Observacoes Comparativas e Critérios para Experimentos

As medidas descritas apresentam vantagens e limitagoes distintas. As distdncias de

Levenshtein [27] e Damerau-Levenshtein [39] capturam com precisao alteragoes locais, o que

10

¢ essencial em tarefas como, por exemplo, corre¢ao ortografica. A métrica Jaro-Winkler [41,
42| favorece correspondéncias com prefixos idénticos, caracteristica til na comparagao
de nomes préprios. A heuristica Strike-a-Match [44], também chamada de similaridade
de Simon-White [44], baseada em bigramas, é rdpida e robusta a pequenas reordenagoes.
Ja a NCD [47] oferece uma perspectiva mais ampla e independente de vocabulario, mas
exige maior custo computacional e depende da qualidade do compressor utilizado. Para
fins experimentais, essas métricas serdo aplicadas como critérios comparativos, avaliando
acuracia, sensibilidade e custo computacional, tanto de forma isolada quanto combinadas

a estratégias de indexacao (como BKTree).

2.4 Compressores

Os compressores sao algoritmos que reduzem o volume de arquivos ou sequéncias de dados
através da identificacdo de repeticoes e redundéncias [14]. Na aplicacao da NCD, esses
componentes assumem papel vital, pois definem os valores de C'(z) e C(zy). Essas fungoes
retornam, invariavelmente, um valor inteiro que corresponde ao tamanho total (em bytes
ou bits) da versdo comprimida da sequéncia isolada e da concatenacao. Logo, a selegao do

algoritmo impacta diretamente a eficacia da métrica em representar a similaridade textual.

2.4.1 Compressao sem Perdas

Neste trabalho utiliza exclusivamente compressores sem perdas (do inglés, lossless) [14].
A categoria engloba métodos capazes de reduzir o tamanho de uma string e garantir a
recuperacao exata do dado original, bit a bit, a partir da versdo comprimida [48]. O
processo assegura a integridade total do contetido apods a descompressao. Tal caracteristica
é indispensavel na analise de textos, ja que pequenas alteragoes de caracteres podem mudar
completamente o sentido de uma sequéncia. O método difere da compressao com perdas
(lossy) [14], comum em dudio e imagem [48], que descarta dados menos perceptiveis para

aumentar a taxa de compactagao, pratica inviavel em comparagoes de strings.

2.4.2 Tipos de Compressores

De maneira geral, os compressores lossless empregados para textos podem ser agrupados

em trés categorias principais:

o Baseados em dicionéario: identificam substrings recorrentes e as substituem por
referéncias a um "dicionario"de padroes previamente encontrados. Compressores
como LZ77, LZ78 e LZW sao exemplos classicos desse tipo [49, 50]. Eles apresentam

bom desempenho em textos com muitas repeticoes lexicais ou estruturas regulares;

11

o Por modelagem estatistica: constroem modelos probabilisticos do contexto anterior
para prever o proximo simbolo, atribuindo coédigos mais curtos a elementos mais
provéaveis. Métodos como o Predigdo por Correspondéncia Parcial (do inglés, Pre-
diction by Partial Matching) (PPM) e a Transformada de Burrows-Wheeler (do
inglés, Burrows-Wheeler Transform) (BWT) pertencem a essa categoria [51, 52].
Esses algoritmos sao mais sensiveis a dependéncias de longo alcance e capturam

caracteristicas estilisticas do texto;

o Hibridos: combinam técnicas de dicionario e de modelagem estatistica, buscando
equilibrar eficiéncia e profundidade de compressao. Um exemplo é o compressor
DEFLATE, que combina LZ77 com codificacdo de Huffman, sendo amplamente
utilizado em formatos como ZIP e GZIP [53].

2.4.3 Impacto Pratico

A defini¢ao do algoritmo de compressao impacta diretamente a precisao e a eficiéncia do
calculo da NCD. Compressores robustos, capazes de capturar dependéncias distantes e
contextos complexos, costumam gerar medidas de similaridade mais consistentes. Contudo,
tal sofisticacdo implica maior custo computacional e aumenta o tempo de resposta das
consultas. Em contrapartida, algoritmos mais simples garantem velocidade computacional
superior, embora apresentem risco de falha na detecgdo de semelhangas semanticas ou
estruturais sutis [10].

A eficacia da ferramenta depende também da natureza do algoritmo. Métodos baseados
em dicionario, por exemplo, demonstram maior aptidao para identificar repeticoes locais
e padroes lexicais exatos [14]. J4 os modelos estatisticos sobressaem na percepcao de
dependéncias de estilo e estruturas gramaticais abstratas [45]. Qualquer que seja o tipo,
o tamanho final do arquivo comprimido atua como indicador direto da complexidade
informacional: sequéncias redundantes geram arquivos compactos, enquanto textos ricos
produzem arquivos maiores [28].

Do ponto de vista da implementacao, algumas estratégias podem ser adotadas para
mitigar o custo computacional sem prejudicar o resultado final. Técnicas como o pré-
célculo de C'(z) para o conjunto de treinamento e a limitagdo do comprimento méximo
das sequéncias sdo essenciais para reduzir o tempo de execucao. Além disso, o uso
de amostragem controlada pode acelerar o processo sem comprometer drasticamente a
precisao da medida de distancia. Dessa forma, o compressor nao atua apenas como
um componente auxiliar da NCD, mas sim como uma variavel experimental critica que
influencia a capacidade do método de refletir a similaridade textual de maneira fiel e

eficiente.

12

2.5 BKTree e Buscas em Espacos Métricos Discretos

Burkhard e Keller [13] propuseram a BKTree como uma estrutura de dados para permitir
buscas eficientes em espacos métricos discretos. A sua compatibilidade com métricas de
edigao (por exemplo, distancia de Levenshtein [37]) ou informacionais (como a NCD [47])
a torna ideal para acelerar o processo de busca de vizinhos em algoritmos como o KNN,
reduzindo significativamente o niimero de comparagoes necessarias. O funcionamento
dessa estrutura baseia-se na propriedade fundamental da desigualdade triangular [54], que
define uma relacao entre as distancias de trés elementos quaisquer a, b e ¢ pertencentes a

um mesmo espaco métrico. Tal propriedade é expressa na Equagao 2.2.
d(a,c) < d(a,b) + d(b,c) (2.2)
ou, de forma equivalente, como apresentado na Equacao 2.3,
|d(a,b) —d(b,c)| < d(a,c) < d(a,b) + d(b,c). (2.3)

Essa relacao é essencial, pois permite restringir as regioes de busca, eliminando calculos
desnecessarios durante a procura por elementos semelhantes. Em outras palavras, a
estrutura se beneficia da geometria do espago métrico para reduzir o nimero de comparagoes

e, consequentemente, o custo computacional.

2.5.1 Construcio da Arvore

Para construir a BKTree, parte-se de um conjunto de elementos S = {x,z3,...,x,} e de
uma funcao de distancia d : S x S — R*. O primeiro elemento do conjunto é escolhido
como raiz, e os demais sao inseridos recursivamente. Para cada novo elemento x;, calcula-se
a distancia d(z;, ;) em relagdo ao nd atual z;, sendo essa distancia utilizada como rétulo
da aresta que conecta o novo né ao né pai. Cada nd, portanto, mantém um conjunto de
filhos indexados pelas distancias inteiras resultantes, conforme o mapeamento apresentado

na Equacao 2.4:
children(x;) = {(d(z;, %), zx) |) ¢ filho de z;} (2.4)

Essa organizacao hierarquica permite que a arvore seja explorada seletivamente durante
a busca, evitando o célculo redundante de distancias entre elementos que nao podem
satisfazer os critérios de similaridade definidos. Para ilustrar esse processo, a Figura 2.1

demonstra como o agrupamento por distancia radial no espago métrico (Figura 2.1a) é

13

.
.
Q.
:
1l
N
\
\
.
N
N
‘B

(a) Visualizacdo do Espago Métrico (b) Estrutura Hierdrquica BKTree

Figura 2.1: Comparacao visual da organizacao de dados utilizando a palavra “Casa” como
raiz. Para fins de clareza didatica, utilizou-se neste exemplo a Distancia de Levenshtein para
demonstrar as relagoes de proximidade. (a) No espago métrico, observa-se o agrupamento
por distancia radial. (b) Na BKTree, esse agrupamento é convertido em uma hierarquia,

onde colisdes (como em “Cama”, “Rama”, “Mala” e “Toca”) sdo resolvidas criando
subniveis.

convertido diretamente na estrutura hierdrquica de nés e arestas da BKTree (Figura 2.1b),

utilizando a palavra “Casa” como exemplo de raiz.

2.5.2 Processo de Busca

No processo de busca, dada uma consulta ¢ e um raio maximo r, calcula-se a distancia
d(q,z;) em relagdo ao né atual z;. Com base na desigualdade triangular, apenas sdo

explorados aqueles nés cujas arestas d(z;, z;) satisfazem a Equagao 2.5.
d(q,x;) —r < d(zj,zr) < d(q,z;)+ . (2.5)

Dessa forma, é possivel eliminar subarvores inteiras que nao contenham elementos dentro
do raio de busca, reduzindo significativamente o niimero de comparagoes necessarias. Esse
mecanismo de poda faz com que a BKTree seja especialmente eficiente em espacos nos
quais a fungdo de distancia apresenta distribuicdo desigual de valores, como ocorre com
distancias de edicdo entre cadeias de caracteres.

A Figura 2.2 ilustra uma simulacao de busca pela palavra ¢ = “Cama” com um raio de

tolerdncia fixo r = 1. Na raiz (“Casa”), a distancia para a consulta é d(Casa, Cama) = 1.

14

Busca: 'Cama’ (r=1)
d(Casa, Cama)=1
Intervalo: [0,2]

e e — e —————————

:' Candidato \
' Visitado(n&o-candidato); Casa
: O N6 podado :
1 1 \
: : s
| m— Aresta ' N
|= = Aresta podada AR [Aresta=3 vs Intervalo[O,Z]]
M e e e e o e e e e ’ \
1 2 3 PODADO (Lona)
\
\
Caso Lama Lona
/ [\
d(Caso, Cama)=2 d(Lama, Cama)=1
[Nao-Candidato] [Candidato]
Intervalo: [1,3] Intervalo: [0,2] 2
2 /1 2
Cama Rama Mala
d(Cama, Cama)=0 d(Rama, Cama)=1 d(Mala, Cama)=2
[Candidato] [Candidato] [Nao-Candidato]
Figura 2.2: Exemplo de busca na BKTree com a consulta ¢ = “Cama” e raio r = 1.

Observa-se a poda do ramo “Lona” na raiz e a filtragem do n6 “Mala”.

Aplicando a inequagao do intervalo de busca, temos [1 — 1,1 + 1], ou seja, apenas filhos
conectados por arestas de peso entre 0 e 2 devem ser visitados. Consequentemente, a aresta
para o n6 “Lona” (peso 3) é imediatamente podada, descartando toda a sua subarvore
sem a necessidade de comparar “Cama” com “Lona” ou seus descendentes. Por outro lado,
ao visitar o n6 “Lama” (onde d = 1, intervalo [0,2]), o né filho “Mala” é acessado pois sua,
aresta (peso 2) estd no intervalo, mas é descartado do resultado final pois sua distancia
real para a consulta excede o raio r (d(Mala, Cama) = 2 > 1).

E importante ressaltar que, no exemplo acima, o valor de r foi mantido fixo por questoes
didaticas. Entretanto, na aplicagao do algoritmo combinada com o método do KNN, o

raio de busca r torna-se dindmico. O processo inicia-se com r = oo (ou um valor maximo

15

arbitrario) até que os primeiros K candidatos sejam encontrados (por exemplo, K = 5).
Uma vez preenchida a lista com K vizinhos, r é atualizado para a distancia do candidato
mais distante dessa lista (o k-ésimo vizinho). A medida que a busca progride e novos nés
com distancias menores sao encontrados, a lista de melhores candidatos é atualizada e o
valor de r é reduzido. Esse ajuste continuo torna o critério de poda progressivamente mais
restritivo, otimizando o desempenho ao descartar ramos que, com certeza, nao contém

candidatos melhores que os ja encontrados.

2.5.3 Complexidade e Aplicabilidade

A complexidade de construcao da BKTree, no pior caso, é O(n?), uma vez que cada
elemento pode ser comparado com todos os demais ja inseridos. Entretanto, na pratica, a
estrutura tende a apresentar comportamento préximo de O(nlogn), devido a natureza
hierarquica da insercao e a eficiéncia da poda durante o processo. As buscas também
possuem custo O(n) no pior cendrio, mas geralmente sao sublineares, especialmente quando
o espago métrico possui boa separabilidade [55].

Diferentemente de estruturas como K-Dimensional Tree (KDTree) ou Ball Tree (BTree),
que sao projetadas para espacos vetoriais continuos e métricas euclidianas, a BKTree é
adequada para espacos discretos. Por essa razao, tem sido amplamente empregada em
aplicagoes que envolvem comparacao de cadeias de caracteres, como correcao ortografica
[56], recuperagdo de informagoes e classificacdo de textos. Sua compatibilidade com
métricas de edi¢ao, como Levenshtein e Damerau-Levenshtein, e também com medidas de
similaridade informacional, como a NCD, torna-a uma estrutura versatil para tarefas de

busca aproximada em grandes cole¢oes de dados textuais.

2.6 Computacao Paralela

A eficiéncia na busca pelos vizinhos mais proximos dentro de uma BKTree é o fator
determinante para a viabilidade do classificador proposto. Embora a estrutura da arvore
permita uma redugao dréastica no espaco de busca por meio da desigualdade triangular, o
custo acumulado de multiplas computacoes da NCD pode tornar a inferéncia lenta em
bases de dados extensas. Nesse cendrio, a computacao paralela é aplicada para acelerar
a travessia dos ramos da arvore, permitindo que miltiplos niicleos de processamento

colaborem na identificacdo dos candidatos de forma simultanea e independente [57].

16

2.6.1 Taxonomia de Flynn

A organizagao desse processamento paralelo fundamenta-se na Taxonomia de Flynn [58],
que classifica as arquiteturas conforme o fluxo de instrugoes e dados. A arquitetura
Multiplas Instrugoes, Multiplos Dados (do inglés, Multiple Instruction Multiple Data)
(MIMD) é a que melhor descreve o funcionamento dos processadores multinicleo modernos.
Em sistemas MIMD, cada nticleo possui autonomia para executar fluxos de instrugoes
distintos sobre subarvores variadas da BKTree. Adicionalmente, o conceito de Instrucao
Unica, Mrltiplos Dados (do inglés, Single Instruction Multiple Data) (SIMD) é relevante no
nivel de instrucao, permitindo que o hardware processe vetores de dados simultaneamente

para otimizar operagoes de baixo nivel dentro de cada thread de execucao [59].

2.6.2 Programagao com OpenMP

A implementacao da busca paralela foi realizada utilizando o padrao Open Multi- Processing
(OpenMP) [60], uma interface baseada em diretivas de compilador amplamente adotada
em computacao de alto desempenho [61]. O funcionamento do OpenMP segue o modelo
fork-join, onde uma thread mestre coordena a execucao e, ao encontrar uma regiao paralela,
cria threads trabalhadoras para processar os nos da arvore de forma concorrente. Ao
término da exploragao dos ramos, as threads sao sincronizadas e o controle retorna a
thread mestre para a finalizacdo da consulta.

A gestao de memoria no OpenMP é crucial para assegurar que a busca pelos vizinhos
mais proximos ocorra de forma correta. O modelo permite definir variaveis como privadas
a cada thread ou compartilhadas entre o grupo de execucao. Na BKTree, a estrutura da
arvore e os parametros de busca sao compartilhados, enquanto os buffers de calculo locais
sdo privados para evitar condigoes de corrida [61]. Para garantir a integridade da fila de
vizinhos e a atualizagao segura do limite de corte, utilizam-se se¢oes criticas e operagoes
atOmicas, permitindo que o acesso concorrente aos dados globais nao comprometa o

resultado final.

2.7 Meétricas e Comparacao de Eficiéncia

A avaliacado do desempenho preditivo dos modelos utilizou métricas amplamente consoli-
dadas em tarefas de classificagdo [62], como acurdcia, precisao, recall e F1-score (macro).
O célculo dessas medidas fundamenta-se nos quatro possiveis desfechos de uma classi-
ficacdo binaria derivados da matriz de confusao. Esses desfechos incluem o Verdadeiro
Positivo (VP) e o Verdadeiro Negativo (VN), que representam os acertos do modelo

para as classes positiva e negativa, respectivamente. Em contrapartida, os erros recebem

17

mapeamento como Falso Positivo (FP), quando a classe positiva é predita incorretamente,
e Falso Negativo (FN), quando o modelo falha ao identificar uma instancia que era de fato
positiva.
A acuracia é a métrica mais intuitiva para avaliar um classificador, pois indica a
proporc¢ao global de acertos do sistema, conforme expresso pela Equacao 2.6:
L. VP+ VN
AcuraCIa:VP—l—VN—i—FP—i—FN (2.6)

A precisao foca na qualidade das predic¢oes positivas, expressando a fragao de instancias

classificadas como positivas que realmente pertencem a essa classe (Equagao 2.7), enquanto
o recall avalia a completude, quantificando a capacidade do modelo de recuperar as

instdncias positivas reais (Equagao 2.8):

VP

Precisao = VPLFP (2.7)
vpr
Recall = m (28)

O F1-score macro, apresentado na Equacao 2.9, surge como uma medida agregadora
que estabelece a média harmoénica entre precisao e recall, garantindo um equilibrio na
avaliacao de todas as classes independentemente do volume de amostras.

Precisao x Recall

F1- =2 2.
SeOTe % Precisao + Recall (2.9)

Este trabalho dedica especial atengao a avaliacdo do custo computacional das solugoes.
Para quantificar os ganhos de eficiéncia introduzidos pela proposta paralela discutida na
Secao anterior, utilizam-se as métricas de speedup e eficiéncia, que permitem isolar os

ganhos advindos da estrutura de dados daqueles provenientes da execugao concorrente.

2.7.1 Speedup Relativo

O speedup relativo [59] é a métrica utilizada para comparar o desempenho do método
proposto paralelizado diretamente com a implementacao ingénua de referéncia. Esse valor
indica quantas vezes a versao otimizada com BKTree é mais rapida que a abordagem de
forga bruta ao empregar o mesmo algoritmo de compressao. O calculo segue a Equacao
2.10:

Tempo do método Naive

Speedup Relativo(p) (2.10)

- Tempo da BKTree com p threads

18

2.7.2 Speedup Paralelo e Eficiéncia

O speedup paralelo mede o ganho de escalabilidade obtido ao migrar o método proposto
de uma execugao serial para uma execucao com miultiplas threads, conforme a Equacao
2.11. Essa métrica revela o quanto o algoritmo consegue se beneficiar do uso de multiplos

nucleos de processamento.

_ Tempo da BKTree com 1 thread
"~ Tempo da BKTree com p threads

Speedup Paralelo(p) (2.11)

Complementarmente, a eficiéncia (E,) é calculada para observar o aproveitamento real
do hardware. Dessa forma, ela relaciona o speedup alcancado com o ntimero de recursos
empregados (p), sendo definida pela Equacao 2.12:

B, - Speedup Paralelo(p) (2.12)

p

19

Capitulo 3
Solucao Proposta

Este capitulo detalha a arquitetura desenvolvida para mitigar as limitacoes de desempenho
identificadas no método NPC_Gzip. A solugdo concebida tem como base a substituicao da
busca exaustiva linear por uma abordagem hierarquica e concorrente. O modelo integra a
estrutura de dados BKTree a um sistema de processamento paralelo. O objetivo central
é viabilizar a escalabilidade da classificacao baseada em compressao sem comprometer a
acuracia da métrica NCD.

A Figura 3.1 apresenta a visao geral da solugao e ilustra o fluxo desde a organizacao

dos dados até a estratégia de consulta.

20

Construgao

|

|

|

' Métrica de
| Distancia
|

|

|

=

- Compressor
Dados

BKTree
N o
Texto « /Acha o mais + Classificagéo
Comprimido "\ proximo g KNN

Consulta

Figura 3.1: Arquitetura da solucao: indexacao via BKTree e classificacdo hierarquica
baseada em NCD.

3.1 Estruturacao do Espaco de Busca

A otimizacgao do algoritmo KNN em cenéarios de alto custo computacional exige o abandono
da forca bruta em favor de estruturas de indexacao eficientes. O uso de compressores
impoe esse cenario. A premissa da solugdo consiste em reduzir a complexidade da consulta
de linear O(m) para sublinear ou logaritmica O(logm) [63]. No entanto, a natureza da

métrica NCD impoe restrigoes especificas sobre qual estrutura de dados é adequada.

3.1.1 Limitacdes de Arvores Espaciais Tradicionais

Diversas estruturas de indexacao consolidadas na literatura partem do pressuposto de
que os dados residem em um espago vetorial euclidiano. Exemplos incluem KDTree [64],
BTree [65] e Vantage-Point Tree (VPTree) [63]. Tais métodos dependem de operagoes
geométricas como o calculo de centréides, divisdes de eixos ou proje¢des ortogonais.
Essas premissas sao inadequadas para a extensdo do trabalho de [11]. A métrica
NCD e as operagoes sobre strings nao possuem representacao vetorial nativa nem eixos
coordenados explicitos. A tentativa de for¢ar uma representagao vetorial (embedding) para

utilizar arvores espaciais adicionaria uma camada de complexidade indesejada. Além disso,

21

causaria perda de informagcao e contradi¢ao com a proposta parameter-free da classificagao

por compressao.

3.1.2 Adocao da BKTree para Espacos Métricos Discretos

Diante da auséncia de geometria euclidiana, a solugao adota a BKTree [13]. O desenho
desta estrutura contempla especificamente espagos métricos discretos. A justificativa para
a escolha reside no fato de a BKTree nao requerer coordenadas e exigir apenas que a
funcao de distancia respeite a desigualdade triangular.

Compressores reais podem apresentar leves desvios tedricos. Mesmo assim, a literatura
demonstra que a NCD aproxima a desigualdade triangular de forma robusta o suficiente para
permitir indexagao métrica [10]. A BKTree permite organizar o conjunto de treinamento
com base puramente na informatividade relativa entre os textos. A estrutura cria ramos
para agrupar instancias com taxas de compressao similares. Isso viabiliza a poda eficiente

de subéarvores inteiras durante a busca.

3.2 Modelo de Processamento Paralelo

A segunda vertente da solu¢ao proposta ataca o custo de Unidade Central de Processamento
(do inglés, Central Processing Unit) (CPU) individual de cada operagao de compressao.
Mesmo com a poda eficiente da arvore, percorrer os ramos restantes de forma sequencial
subutilizaria a capacidade dos processadores modernos.

O modelo arquitetural desenhado tem como principio a decomposi¢ao da busca em
tarefas granulares e independentes. Ao contrario da recursao tradicional onde cada passo
bloqueia o anterior, a solu¢do propoe um sistema produtor-consumidor dindmico. A
exploracao de um no6 da arvore gera novas tarefas para distribuicao entre multiplos nicleos
de processamento.

Essa estratégia visa amortizar o custo de laténcia da compressao através do throughput
elevado do paralelismo. O modelo prevé o uso de estruturas de sincronizacao globais para
manter a consisténcia dos resultados. Isso garante que a versao paralela produza resultados
deterministicos e idénticos a versao sequencial. O ganho de desempenho (speedup) em

ambientes multi-core passa a ser significativo com essa abordagem.

22

Capitulo 4
Metodologia

Este capitulo descreve os procedimentos de implementacao da solucao arquitetural proposta.
O texto detalha os algoritmos desenvolvidos para a construcao da estrutura de dados.
Também apresenta a adaptagao da métrica NCD para o dominio discreto e os mecanismos

de sincronizacao utilizados na orquestracao da busca paralela.

4.1 Implementacao e Construcao da BKTree

A implementagao da BKTree neste trabalho difere da versao classica utilizada para distancia
de Levenshtein devido a natureza continua da NCD. Para adequar a métrica a estrutura
o projeto introduziu uma etapa de discretizacao. A estrutura opera eficientemente com
arestas rotuladas por inteiros e a discretizacao viabiliza esse funcionamento.

Os valores de NCD estao originalmente no intervalo continuo [0,1]. O algoritmo
submete esses valores a um fator de escala de 100 e realiza o arredondamento. Isso resulta
em distancias operacionais inteiras no intervalo [0, 100]. O valor 0 representa identidade
informacional e o valor 100 denota maxima dissimilaridade. Essa transformagao permite
mapear os vizinhos em buckets discretos na arvore e otimiza a dispersao dos nos.

O procedimento de construcao consta no Algoritmo 2. A execucgao ocorre de forma
sequencial como uma etapa de pré-processamento. A insercao de cada noé respeita a

hierarquia métrica e garante a organizacao necessaria para a poda futura.

23

Algorithm 2 Construcao de BKTree com Discretizagao de NCD

Require: Conjunto de treinamento D.
Require: Funcao de NCD d(-,-).
Ensure: Raiz da BKTree T;oot-

1: Troot < null

2: for cada (x;,y;) em D do

3 if Tioot = null then

4 Troot < create_node(x;, y;)

5 else

6: INSERTNODE(Tro0t, Xi, Yi, d)

7: return 7o

8: procedure INSERTNODE(node, x, vy, d)

9: raw_dist <— d(node.string, x)

10: dist < round(raw__dist x 100) > Discretizagao
11: if nao existe chave dist em node.children then
12: node.children|dist] <— create_node(x, y)

13: else

14: INSERTNODE(node.children[dist], x, y, d)

4.2 Orquestracao da Busca Paralela

A metodologia de busca implementada substitui a recursao em profundidade tradicional.
O sistema utiliza uma abordagem baseada em fila de tarefas (Task Queue) executada por
um pool de worker threads.

A Figura 4.1 ilustra o fluxo de dados implementado. O funcionamento ocorre através
de um ciclo de realimentacao. O processo consome tarefas e pode gerar novas tarefas que

retornam a fila caso satisfagcam os critérios de poda.

Worker Threads ' | it ra/ | EStado Compartilhado
; Desenfileira :
Plade |~ "~ 5[y «—E59M5, gija ge Prioridade (Top-K)
Tarefas W
A Worker Delta (Raio de Poda)

Nao Sim
Poda? Retorna

Figura 4.1: Fluxo de execucao concorrente: consumo de nos, verificagdo de poda e
atualizagao sincronizada das estruturas globais.

24

4.2.1 Mecanismos de Sincronizacao e Poda

O sistema possui duas estruturas globais protegidas por mecanismos de exclusao mutua
(mutex/locks) para garantir a consisténcia dos dados em um ambiente concorrente. A
primeira estrutura fundamental é a Fila Prioritaria Compartilhada (P Qgparea), responsavel
por armazenar os k vizinhos mais préximos encontrados até o momento por qualquer thread.
O acesso de escrita a esta fila é bloqueante para evitar condi¢oes de corrida. A segunda
estrutura é o Limite Global de Corte (dspareq), Uma variavel atomica ou protegida que
armazena a pior distancia presente na fila prioritaria. Ela atua como um limiar dindmico
e qualquer thread pode ler esse valor instantaneamente para decidir sobre a poda de um
ramo sem necessidade de bloqueio constante.

O Algoritmo 3 detalha a logica de execucao. A poda utiliza a desigualdade triangular.
Um ramo com distancia de aresta d.qq. s6 recebe exploracao se |dnode query — edge| < Oshared-
A atualizacao continua de d4p4req permite que a descoberta de um bom vizinho por uma

thread acelere a poda em todas as outras threads imediatamente.

Algorithm 3 Algoritmo de Busca Paralela na BKTree

Require: Raiz T, Consulta ¢, k, Fungao d(-, -).
Ensure: Classe prevista yp,eq.

1: PQgharea < PriorityQueue(k)

2: 5shared — 0

3: TaskQueue.add(Troot)

4: while existem tarefas ou workers ativos do

5: node < TaskQueue.pop()

6: PROCESSNODE(node) em Thread disponivel
7. procedure PROCESSNODE(node)

8: deyrr < d(node.string, q)

9: LOCK(P Qshared)
10: if d.. qualifica para top-k then
11: P Qsharea-update(dey,, node.class)
12: 6shared — PQshared-madeiSt()
13: UNLOCK(PQShared)
14: for cada (d.qge, child) em node.children do
15: if |dewrr — dedge| < Osharea then > Critério de Poda
16: TaskQueue.add(child)
17: return Moda(P Qsnared)

25

Capitulo 5
Experimentos

Neste capitulo, o texto avalia empiricamente a eficicia e a eficiéncia da abordagem proposta.
O objetivo central dos experimentos consiste em validar a hipétese de que a integracao da
estrutura BKTree com a busca paralelizada reduz drasticamente o custo computacional
da classificacao baseada em compressao sem degradar a qualidade das predi¢oes. Para
isso, o estudo conduziu uma bateria de testes comparativos entre o método proposto, a
implementagao ingénua de forca bruta e abordagens baseadas em distancias de edicao
classicas utilizando um corpus de deteccao de fake news e uma variedade de algoritmos de

compressao.

Dataset

Classificagao
Sequencial

Pré-processamento

Classificagao
Ingénua
(Forga-Bruta)

Analise de
Resultados

Variagao de
Compressores

Classificagao
BKTree

Figura 5.1: Diagrama do fluxo experimental: do pré-processamento as diferentes estratégias
de classificacao e analise.

A estrutura dos experimentos ilustrada na Figura 5.1 inicia a execuc¢ao com a ingestao
do dataset e segue para uma etapa de pré-processamento padronizada. A partir deste
ponto, o fluxo bifurca em duas vertentes principais. A primeira encaminha os dados para

a classificagao sequencial baseada em métricas de edicao. A segunda vertente submete

26

os dados a uma variacao de compressores cujos resultados alimentam duas estratégias
distintas: a classificacdo ingénua (forga-bruta) e a classificacdo otimizada via BKTree.
Por fim, as saidas das trés estratégias (sequencial, ingénua e BKTree) convergem para a
etapa de analise de resultados na qual ocorre a consolidagao das métricas de desempenho

e eficiéncia.

5.1 Configuracao Experimental

Esta secao descreve de forma detalhada o protocolo experimental estabelecido para a
validacao desta pesquisa. O foco central consiste em avaliar a eficacia e a eficiéncia
do método proposto através do confronto direto com as linhas de base comparativas
selecionadas na literatura. Esse nivel de detalhamento objetiva nao apenas fundamentar
a analise dos dados subsequente mas também garantir a total reprodutibilidade dos

experimentos e assegurar uma comparac¢ao justa entre todas as abordagens analisadas.

5.1.1 Conjunto de Dados e Pré-processamento

Para os experimentos o projeto utilizou o corpus Low-Resource Fake News Detection Cor-
pora in Filipino [66] que contém 3.206 noticias rotuladas por especialistas com distribui¢ao
balanceada entre classes verdadeira e falsa. O material é majoritariamente em filipino e
apresenta insercoes ocasionais de termos em inglés presentes no uso coloquial. O protocolo
aplicou apenas uma limpeza textual minima para manter condi¢oes experimentais consis-
tentes e reduzir vieses introduzidos por etapas complexas de normalizacao. Essa limpeza
envolveu especificamente a remocao de espagos extremos e normalizacdo basica de tokens
por meio da Interface de Programagao de Aplicagbes (do inglés, Application Program-
ming Interface) (API) do HuggingFace [67]. Essa escolha visa preservar as caracteristicas
originais das sequéncias textuais relevantes para métodos baseados em compressao.

A divisao dos dados adotou uma particao fixa de 80% dos exemplos para treino e
20% para teste. O codigo fixou todas as sementes e pardmetros randémicos de modo que
cada execugao observasse exatamente as mesmas parti¢coes e assegurasse comparagoes
deterministicas entre os diferentes métodos e compressores. Os tempos de execugao
reportados correspondem a média observada em multiplas repeticbes experimentais com o

intuito de reduzir a variabilidade introduzida por ruido no sistema.

5.1.2 Métodos e Compressores

A avaliagdo ampliou o escopo para além do GZip utilizado originalmente em [11] e incluiu

um conjunto representativo de algoritmos de compressao sem perda agrupados conforme

27

sua natureza. A selegao incluiu compressores estatisticos representados pelo Brotli [68]
e Bz2 [69] bem como métodos baseados em dicionario, categoria que engloba GZip [70],
ZLib [71], Zstd [72], LZAV [73] e LZF [74]. Adicionalmente, o estudo avaliou compressores
leves com foco em velocidade tais como QuickLZ [75], Shoco [76], Snappy [77], FSST [78]
e Smaz [79]. A motivacao para a escolha desses algoritmos reside no compromisso entre
razao de compressao e velocidade uma vez que compressores distintos tendem a inverter
esse compromisso e impactar diretamente a NCD utilizada na classificacao.

Trés categorias distintas de estratégias de classificacao foram implementadas e confron-
tadas. A primeira estabelecida como linha de base ingénua consiste na implementacgao
por forga bruta de KNN empregando NCD como métrica conforme a formulagao de [11].
A segunda categoria refere-se a abordagem proposta (BKTree) que aplica o KNN sobre
representacoes compactadas indexadas em uma estrutura adaptada para compressao com
busca paralela conforme descrito no Capitulo 4. A terceira categoria abrange as versoes
baseadas em sequéncia que utilizam KNN de forca bruta sem compressao e empregam
métricas de distancia entre strings classicas como Levenshtein [37], Damerau-Levenshtein
[39], Jaro-Winkler [41, 42] e Simon- White [44] como linhas de base complementares. Todas

as variagoes que utilizam KNN fixaram k£ = 5 (cinco vizinhos) para a votacdo majoritéria.

5.1.3 Ambiente e Reprodutibilidade

A implementacao optou por uma arquitetura hibrida que equilibra desempenho e facilidade
de orquestracdo. O ntucleo critico do sistema engloba os compressores e as estruturas
de dados e teve seu desenvolvimento em linguagem C/C++. A compilagao utilizou a
Colegao de Compiladores GNU (do inglés GNU Compiler Collection) (GCC) 13.2 para
garantir maxima eficiéncia enquanto a biblioteca OpenMP viabilizou a execugao paralela
em memoria compartilhada. A integracao eficiente entre esse nucleo de baixo nivel e a
camada de orquestracao em Python 3.10 ocorreu por meio da ferramenta Cython. Essa
abordagem permitiu a interoperabilidade direta entre as linguagens e eliminou gargalos de
comunicagdo. A manipulagdo numérica e as rotinas de avaliacao estatistica em Python
empregaram a biblioteca SciPy. Todas as execugdes ocorreram em uma estacao de trabalho
equipada com um processador AMD Ryzen Threadripper 1950X de 16 ntcleos fisicos onde
o protocolo buscou minimizar cargas concorrentes para assegurar a estabilidade das
medigoes temporais.

A transparéncia cientifica e a possibilidade de verificacdo independente constituem
requisitos fundamentais nesta pesquisa. O projeto optou pela abertura total dos artefatos
produzidos com o objetivo de facilitar a reproducao exata dos resultados obtidos e encorajar

a extensao do estudo pela comunidade. O conjunto completo engloba o cédigo-fonte da

28

aplicacao e os scripts de automacao experimental e encontra-se disponivel publicamente

em repositério de controle de versao'.

5.2 Resultados Experimentais

Esta secao apresenta e discute os resultados obtidos com a aplicagao da metodologia
proposta e estabelece um confronto direto entre o desempenho preditivo e os ganhos de
eficiéncia computacional. A andlise detalha as métricas de F'1-score, acuracia, precisao e
recall para fornecer uma visdo abrangente. Os experimentos abrangeram trés categorias
distintas de modelos para garantir uma base comparativa sélida. As categorias avaliadas
incluem a linha de base ingénua (for¢a bruta com NCD), a abordagem proposta otimizada,
com BKTree e busca paralelizada e uma versao de controle baseada em métricas classicas
de similaridade de sequéncias.

O foco central da anélise reside em demonstrar a viabilidade técnica da integracao da
BKTree com a NCD. O objetivo primério consiste em comprovar que essa nova arquitetura
é capaz de manter a qualidade de classificagdo do método original e preservar sua robustez
tedrica. Simultaneamente, busca-se evidenciar que a mudanga estrutural introduz ganhos
significativos de speedup em relacao a abordagem ingénua. Assim, os dados apresentados a
seguir visam validar a hipotese de que a eficiéncia de execucao pode aumentar drasticamente

sem o sacrificio da acuracia preditiva.

5.2.1 Desempenho de Predicao

A Tabela 5.1 permite observar que o método baseado em BKTree apresenta desempenho
semelhante a implementacgao ingénua, produz resultados praticamente idénticos e demonstra
equivaléncia estatistica na maioria dos casos. O método baseado em BK'Tree obteve
pontuagoes iguais ou ligeiramente superiores as da implementacao ingénua para a maioria
dos compressores. Isso demonstra que a estratégia de busca otimizada proporciona ganhos
de eficiéncia sem sacrificar a acuracia de classificacdo. Conforme indicado na tabela 5.1, os
resultados do método proposto sao referidos como “BKTree” (simbolo 98) e o método de
[11] é denominado “ingénuo” (simbolo 91). Além disso, as colunas Top: € Spas especificam
os hiperparametros de paralelizacao utilizados para obter os valores de F1-score, acuracia,
precisao e recall por se tratar de uma estrutura implementada de forma paralela. Mais
especificamente, 7, indica o nimero de threads que proporcionou o melhor speedup relativo

enquanto S, revela o speedup relativo alcancado com esse nimero de threads.

'https://gitlab.com/lisa-unb/comtext/

29

https://gitlab.com/lisa-unb/comtext/

Tabela 5.1: Métricas de predi¢ao obtidas usando o método proposto baseado em BKTree
comparado com a abordagem ingénua de KNN quando o speedup maximo foi alcancado.
Spmaz Tepresenta o speedup relativo maximo alcangado, e 7, € o nimero de threads que
produziu esse speedup 6timo. Os simbolos 91 e B representam, respectivamente, o método
ingénuo (linha de base) e o BKTree (proposto).

F1-Score Acurécia Precisao Recall

| o | T | S |
| | n B | N B | N B | N B | | |
Brotli | 0.90 0.92 | 090 0.92] 091 0.92 | 0.90 0.92 | 12 | 19.74
FSST |0.89 0.88 | 0.89 0.88 | 0.89 0.88 | 0.89 0.88 | 24 | 24.73
LZ4 0.92 0.92 | 0.92 0.92| 0.92 0.93|0.92 0.92| 8 6.8
LZAV | 0.88 0.89 | 0.88 0.89 | 0.89 0.90 | 0.88 0.89 | 8 | 6.36
LZF 0.90 0.91 | 0.90 0.91] 090 0.91| 090 0.91| 16 | 8.03
Quicklz | 0.81 0.92 | 0.81 0.92 | 0.83 0.92 | 0.81 0.92 | 12 | 9.93
Shoco | 0.56 0.33 | 0.61 0.50 | 0.68 0.25 | 0.61 0.5 | 12 | 1.31
Smaz 043 0.54 | 0.52 0.55|0.57 0.56 | 0.52 0.55| 8 | 1.89
Snappy | 049 0.91 | 0.58 0.91| 0.75 0.91 | 0.58 0.91| 16 | 11.38
ZLib 0.94 094094 094 0.94 0.94|0.94 0.94| 12 | 11.83
ZStd 0.95 094 |0.95 094 |0.95 094 |0.95 094 | 24 | 6.1

5.2.2 Relacao entre Desempenho e Eficiéncia

A relacao entre desempenho e eficiéncia aparece ilustrada na Figura 5.2 que apresenta um
diagrama de dispersao comparando a F1-score maxima com o tempo médio de execucao
de cada modelo. Na visualizagao, as implementagoes ingénuas aparecem em vermelho, as
abordagens baseadas em BKTree em azul e os métodos sem compressao (baseados em
sequéncia) em verde. Um modelo ideal situa-se no quadrante superior esquerdo (maior F1 e
menor tempo). Nesse quadrante os modelos baseados em BKTree predominam e evidenciam
melhor compromisso entre eficiéncia e acuracia. Em contrapartida, as implementagoes
ingénuas tendem a apresentar maiores tempos de execugao e posicionam-se a direita do
grafico. Os métodos sem compressao exibem caracteristicas temporais semelhantes as das

implementagoes ingénuas.

Eficiéncia da BKTree Sequencial vs. Método Naive

Para validar o impacto da estrutura de dados na reducao do esfor¢o computacional, realizou-
se uma comparagao direta entre a busca exaustiva (Naive) e a busca fundamentada na
BKTree, ambas executadas em uma tnica thread. O objetivo desta etapa ¢é isolar o ganho
proporcionado exclusivamente pela aplicacao da desigualdade triangular na poda de ramos

da arvore. Os resultados consolidados na Tabela 5.2 demonstram que a utilizagao da

30

Tempo vs F1: FakeNewsFilipinoDataset

mé Oﬁf"OIyY'*’o,v

0.8 ¢ @

1.0

© 0.6 1
5 +23
£ |
= 0.4 - « +
0.2
0.0 T T T T
10! 102 103 104
Tempo Médio (s) - Escala Logaritmica
Algoritmo (Tipo)
@ Brotli (Naive) + Smaz (Naive) # Shoco (BKTree)
[l Bz2 (Naive) [l Snappy (Naive) -+ Smaz (BKTree)
V Fsst (Naive) Y ZLib (Naive) Il Snappy (BKTree)
L GZip (Naive) ‘ Zstd (Naive) Y ZLib (BKTree)
A Lz4 (Naive) @ Brotli (BKTree) ’ Zstd (BKTree)
< Lzav (Naive) V¥V Fsst (BKTree) @ DameraulLevenshtein (BS)
P> Lzf (Naive) A Lz4 (BKTree) @ JaroWinkler (BS)
= Lzma (Naive) <« Lzav (BKTree) Y Levenshtein (BS)
’ Quicklz (Naive) P> Lzf (BKTree) X SimonWhite (BS)
$8 Shoco (Naive) ’ Quicklz (BKTree)

Figura 5.2: Diagrama de dispersao da F'I-score maxima versus tempo médio de execugao
(escala log) para todos os compressores avaliados. Os tipos de modelo sdo distinguidos por
cor: ingénuo (vermelho), BKTree (azul), baseado em sequéncia (verde).

BKTree resultou em reducgoes significativas no tempo de treinamento e inferéncia total
para a maioria dos compressores.

A andlise dos dados revela que compressores como o FSST e o Brotli obtiveram os
maiores indices de aceleracao, com speedups de 14,70x e 4,78 X, respectivamente. Esse
comportamento sugere que a distribuigdo das distancias NCD gerada por esses algoritmos
permitiu uma poda eficaz da arvore. Por outro lado, observou-se que compressores
otimizados para strings muito curtas, como o Shoco, apresentaram um speedup ligeiramente
inferior a unidade (0,92x). Esse fendmeno ocorre quando o custo fixo de percorrer a
estrutura da arvore e gerenciar a fila de busca supera a economia gerada pela reducao no
numero de calculos de distancia, indicando que a eficiéncia da BKTree é sensivel ao tempo
de execucao intrinseco de cada compressor. Esses resultados sequenciais definem o ponto

de partida para a avaliacao do processamento paralelo via OpenMP, discutida a seguir.

31

Tabela 5.2: Comparagao entre método Naive e BKTree sequencial (1 thread)

Compressor | Tempo Total Naive (s) Tempo Total BKTree (s) Speedup
Brotli 11.003,00 2.303,43 4,78 %
Fst 52.098,00 3.544,00 14,70%
Lz4 169,56 71,31 2,38 %
Lzav 182,23 74,43 2,45%
Laf 175,50 68,49 2,56
Quicklz 50,67 14,82 349
Shoco 217,56 236,48 0,92x
Smaz 340,87 287,58 1,19x
Snappy 44,29 10,14 4,37x
7Lib 996,15 62,85 3,60
Zstd 95,45 77,12 1,24

5.2.3 Speedup e Escalabilidade

Os hiperparametros de paralelizacdo 7Ty € Simae apresentados na Tabela 5.1 correspondem
aos pontos maximos nas curvas laranja exibidas na Figura 5.3. Essa figura apresenta a
curva numero de threads versus speedup para cada compressor: as curvas azuis representam
o speedup paralelo (comparagao entre BKTree paralelo e BKTree serial) e as laranjas
representam o speedup relativo (comparagao entre BKTree paralelo e a implementagao
ingénua). Observa-se que a escalabilidade obtida pela paralelizagdo tende a saturar
rapidamente, isto é, o speedup deixa de aumentar apesar do incremento no nimero de
threads, porém a curva laranja permanece assintoticamente acima da curva azul na maioria
dos casos. Esse comportamento indica que a vantagem principal do método proposto
advém da estrutura em BKTree que reduz a complexidade computacional da busca e nao
apenas da paralelizacao. Como exemplo, o compressor Zstd atingiu speedup relativo de 6x
em relacao a linha de base ingénua e cerca de 5x de speedup paralelo em relagao a execucao
com thread tnica, o que evidencia que o uso de multiplas threads reduz substancialmente
o tempo de execuc¢ao. Outros compressores também se beneficiaram do processamento
paralelo, mesmo quando sua escalabilidade é menor, e apresentaram ganhos relevantes de
taxa de processamento.

A eficiéncia de paralelizacao, calculada conforme a Equacao 7?7, permite avaliar o
grau de aproveitamento dos recursos computacionais a medida que a carga de trabalho
é distribuida entre multiplos niicleos de processamento. Os resultados apresentados na
Tabela 5.3 revelam uma tendéncia comum de declinio na eficiéncia com o aumento do
nimero de threads, fendmeno atribuido a sobrecarga (overhead) de sincronizagao e a

contencao de recursos na gestao da fila de tarefas da BKTree.

32

Comparacao de Speedup (BKTreeBrotli)

20 1 === S i]
15 - A
2
S w
g 10 . //
& X
=N :./././0 ° ° °
0 5 10 15 20 25 30
NUmero de Threads
—@— Paralelo =M - Relativo vs Naive
(a) Brotli
Comparacao de Speedup (BKTreeFsst)
25 1 ”’,l—___.___——.' ————————— il gy ey =]
20 A /'
o) |
2154 =
(0]
g
& 10
5 -
0 oo—0—0— —0— —& @ @
0 5 10 15 20 25 30
NUmero de Threads
—@— Paralelo =M - Relativo vs Naive
(b) FSST
Comparacao de Speedup (BKTreelLz4)
Roainh il EEEEE TLEEE R [EEE T e |
6 - vad
/
4
o L4
=} /
D 44 A
(0] /
o /
- | —0 o o
[|
2 .
0 5 10 15 20 25 30
NUmero de Threads
—8— Paralelo —M - Relativo vs Naive
(c) Lz4

Figura 5.3: Curvas de speedup relativo e paralelo por compressor.

33

Comparacao de Speedup (BKTreelLzav)

-] g - W@ ____
61 < = = =4
//
5 -
o /’
'g 4 7 //
(0]
9 o
&31
[] o —e
2 .
1 L T T T T T T T
0 5 10 15 20 25 30
Namero de Threads
—@— Paralelo =M - Relativo vs Naive
(d) LZAV
Comparacao de Speedup (BKTreelzf)
8 - R L et =
//
///
6 -
5 =
k5 M
I -
i o o — —e
2 .
0 5 10 15 20 25 30
Ndmero de Threads
—@— Paralelo =M - Relativo vs Naive
(e) LZF
Comparacao de Speedup (BKTreeQuicklz)
10 A P I = =]
/.”
8 ///
o a£
3 6 /'
(0]
$.
o
n 4 ./
@— —@ g
2 -
0 5 10 15 20 25 30
NUmero de Threads
—@— Paralelo =M - Relativo vs Naive

(f) QuickLZ

Figura 5.3: Curvas de speedup relativo e paralelo por compressor (continuagao).

34

Comparacao de Speedup (BKTreeShoco)

1.4 1
1.3 A
o
=]
2 1.2 1
(0]
& 1.1
1.0 A1
0-9 T T T T T T T
0 5 10 15 20 25 30
Ndmero de Threads
—@— Paralelo =M - Relativo vs Naive
(g) Shoco
Comparacao de Speedup (BKTreeSmaz)
B el e o ity it e e |
1.8
g- 1.6 1 O— ®
k5
g 1.4 A
()]
1.2 A
1-0 L T T T T T T T
0 5 10 15 20 25 30
Ndmero de Threads
—@— Paralelo =M - Relativo vs Naive
(h) Smaz
Comparacao de Speedup (BKTreeSnappy)
e R BEEE =1 =
10 A /'
//
N [
[T /l’
g | g
(V)] 4 | §
2 ._./ ¢ ¢ °
0 5 10 15 20 25 30
NUmero de Threads
—@— Paralelo =M - Relativo vs Naive
(i) Snappy

Figura 5.3: Curvas de speedup relativo e paralelo por compressor (continuagao).

35

Comparacao de Speedup (BKTreeZLib)

R T RREEEEEEEE _Ee—
JR< 9=~
10 A =
% 8 1 /.’
©
® 61
o
wn 4
| e *—— — o
2_
0 10 15 20 25 30

NUmero de Threads

—@— Paralelo =M - Relativo vs Naive
(j) ZLib

Comparacao de Speedup (BKTreeZstd)

0 5 10 15 20 25 30
NUmero de Threads

—@— Paralelo =M - Relativo vs Naive
(k) Zstd

Figura 5.3: Curvas de speedup relativo e paralelo por compressor (continuagao).

36

Tabela 5.3: Eficiéncia de paralelizagdo por compressor e nimero de threads (%)

Compressor | 1 2 4 8 12 16 24 32
Brotli 100 85,0 61,0 40,9 344 258 17,1 129
Fsst 100 59,2 36,6 209 13,3 10,5 7,0 5,1
Lz4 100 59,5 44,0 358 235 17,5 116 8,7
Lzav 100 674 516 32,5 21,2 16,2 10,7 78
Lzf 100 67,9 473 272 26,0 196 13,0 9,6
Quicklz 100 76,4 488 33,0 24,2 181 11,8 89
Shoco 100 56,1 356 17,7 11,9 87 59 44
Smaz 100 50,5 382 20,0 132 99 6,6 49
Snappy 100 59,5 36,1 222 21,6 16,3 10,7 79
ZLib 100 73,9 573 325 274 20,5 136 94
Zstd 100 99,3 79,1 404 36,2 284 20,6 15,0

5.2.4 Observacoes por Compressor

Quanto as caracteristicas individuais, a analise demonstrou que diferentes compressores se
destacaram por propriedades especificas e evidenciaram o compromisso entre a precisao
da métrica NCD e a eficiéncia computacional. Os compressores Snappy e QuickLZ
destacaram-se por apresentar eficiéncia temporal elevada com comprometimento minimo
da acurécia e, portanto, constituem boas escolhas quando o tempo de resposta é critico.
Em contrapartida, ZLib e Zstd forneceram a acurdcia superior (F1-scores de até 0,95) em
velocidades competitivas e posicionam-se como alternativas mais equilibradas quando a
prioridade for a méxima precisao de predicao.

Outros algoritmos como LZj, LZF e LZAV também demonstraram excelente perfor-
mance e alcangaram F1-scores consistentemente proximos ou superiores a 0,90 (variando
de 0,88 a 0,92) além de apresentar ganhos de speedup relativo notaveis que variaram entre
6,36x e 8,03x em relacao a linha de base ingénua. Isso os consolida como alternativas
solidas que conseguem manter um bom balanceamento entre a qualidade preditiva e a
eficiéncia temporal. Por outro lado, o FiSST e o Brotli demonstraram maior sensibilidade a
complexidade computacional da compressao e impactaram o tempo de execucao. Embora
o F'SST tenha alcancado o maior speedup relativo (24,73x), o tempo de execucao absoluto
de ambos foi mais elevado, o que indica um custo maior por consulta.

No extremo de desempenho, os algoritmos Smaz e Shoco exibiram as maiores dificulda-
des em termos de acuracia e eficiéncia. O baixo desempenho do Shoco se explica pelo fato
de ser um compressor otimizado especificamente para strings curtas em inglés enquanto o
conjunto de dados foi testado em um corpus de noticias em filipino, o que resultou em uma

identificacdo de padroes insuficiente para textos maiores. O Smaz também é voltado para

37

strings muito curtas e isso limita sua capacidade de capturar os padroes informacionais
necessarios para a métrica NCD em documentos textuais de maior extensao.

Em sintese, as evidéncias indicam que a selecao de compressores nao deve ser arbitréaria
mas sim estritamente orientada pelos requisitos da aplicacdo. E fundamental buscar um
equilibrio criterioso entre a eficiéncia da taxa de compressao, que afeta a sensibilidade
da NCD, e o custo temporal de execugao do algoritmo em si. Para cendarios que exigem
maxima acuracia, deve-se optar por ZLib ou Zstd ao passo que Snappy ou QuickLZ
tornam-se preferiveis quando a prioridade ¢ a laténcia minima. Por fim, vale ressaltar que
compressores como LZj e LZF oferecem um excelente meio-termo e consolidam-se como

opgoes versateis para casos de uso gerais.

5.2.5 Sumario dos Resultados

Os resultados experimentais demonstram inequivocamente a eficacia da abordagem pro-
posta para otimizar a classificacdo de textos baseada na NCD. A estrutura de dados
baseada na BKTree mostrou-se crucial pois nao apenas preservou mas em alguns ce-
narios de compressores chegou a melhorar marginalmente as métricas de classificacao
em comparacao com a custosa implementacao ingénua de forca bruta. Este sucesso em
manter a qualidade preditiva reside na capacidade da BKTree de restringir eficientemente
o espaco de busca a vizinhos préximos sem comprometer significativamente a identificagao
do vizinho mais proximo com base na NCD.

A principal contribuicao pratica e o ganho mais substancial residem na eficiéncia.
A organizacao dos dados em BKTree atua diretamente na reducdo da complexidade
computacional da fase de busca e transforma uma operagao de tempo O(N) em uma busca
com complexidade esperada muito menor. Esta otimizagao estrutural combinada com o
uso estratégico da paralelizacdo em miltiplos niicleos permitiu a obtencao de speed-ups
relativos significativos e substanciais em relagao a linha de base ingénua. A capacidade de
processar consultas em uma fracdo do tempo do método ingénuo valida o uso da BKTree
como um acelerador fundamental para a NCD em grandes colegoes de texto e torna o
método aplicavel em ambientes onde o tempo de resposta é uma limitagao critica.

Para aplicagoes praticas a selecao do compressor deve ser uma decisao de engenharia
baseada no compromisso desejado entre precisao e velocidade. Compressores como ZLib e
Zstd sao a escolha ideal quando a prioridade inegociavel é maximizar a acuracia devido a
sua capacidade superior de capturar estruturas complexas do texto e gerar uma NCD mais
informativa. Por outro lado, para cenarios de tempo real ou onde o volume de consultas
exige a maxima velocidade, compressores como Snappy e QuickLZ, juntamente com L7/
e LZF, representam a melhor alternativa pois oferecem ganhos massivos de eficiéncia

temporal com uma degradacao de acuracia que se mostrou aceitavel na maioria dos casos.

38

Capitulo 6
Conclusao

Este trabalho apresentou uma reformulacao estrutural do método NPC_Gzip, originalmente
proposto por [11], visando superar suas limitagoes de escalabilidade. A abordagem
desenvolvida substituiu a busca exaustiva por uma estrutura hierarquica de dados baseada
em BKTree, além de incorporar estratégias modernas de paralelizacao. Como resultado,
obteve-se uma arquitetura robusta que preserva a simplicidade e a interpretabilidade
inerentes ao método original. Simultaneamente, essa nova estrutura proporcionou ganhos
substanciais e mensuraveis em termos de desempenho computacional e capacidade de

processamento.

6.1 Sintese dos Resultados

Os experimentos realizados validaram a hipdtese central da pesquisa, demonstrando que a
abordagem proposta alcanga acuracia equivalente ou até superior a implementacao ingénua.
Com F'I-scores atingindo marcas de até 0,95, confirmou-se que a otimizagao estrutural via
arvores métricas ndo compromete a qualidade das predigoes finais. A principal contribuicao
deste estudo reside, contudo, nos ganhos de eficiéncia operacional. Foram obtidos speedups
relativos de até 25x em comparacao a linha de base de forca bruta, o que evidencia o
enorme potencial da combinacao entre BKTree e paralelizagdo para acelerar a classificacao
baseada em compressao.

Quanto a diversidade de algoritmos, a avaliacdo comparativa de onze compressores
distintos revelou padroes importantes sobre o compromisso entre precisao e velocidade.
Compressores focados em rapidez, como Snappy e QuickLLZ, destacaram-se pelo excelente
desempenho em tempo de execucao, sendo ideais para aplicagoes de baixa laténcia. Por
outro lado, algoritmos como ZLib e Zstd alcancaram as maiores taxas de acuracia mantendo

uma eficiéncia temporal competitiva. Esses resultados oferecem subsidios praticos valiosos,

39

permitindo a escolha informada de compressores conforme as restri¢oes especificas de cada
aplicacgao.

No que se refere a escalabilidade, a anélise aprofundada indicou que a vantagem principal
do método advém da organizagdo dos dados na estrutura BKTree, que reduz drasticamente
a complexidade computacional da busca. Embora a paralelizacao seja benéfica, observou-se
que a escalabilidade tende a saturar com o aumento excessivo do numero de threads. Ainda
assim, os ganhos obtidos pela execucao concorrente sao substanciais quando comparados a
execugao serial. Isso torna o método viavel e eficiente para o processamento de conjuntos

de dados de grande porte.

6.2 Limitacoes e Consideracoes

Embora os resultados obtidos sejam promissores, é necessario reconhecer algumas limitagoes
inerentes a abordagem proposta. A construcao da BKTree exige uma etapa de pré-
processamento computacionalmente intensiva, o que pode representar um custo inicial
elevado. Por essa razao, o método se mostra mais adequado para cendrios caracterizados
por um alto volume de consultas sobre um mesmo conjunto de treinamento estatico, onde
esse investimento inicial é amortizado ao longo do tempo. Além disso, a eficicia da poda
depende estritamente da adequacao da métrica de distancia ao espago métrico, sendo
imperativo verificar se a desigualdade triangular ¢é satisfeita para garantir a corretude dos
resultados.

No que tange a generalizacao dos achados, os experimentos foram conduzidos sobre
um corpus especifico de deteccao de fake news no idioma filipino. Consequentemente, a
extensao e a validagao desses resultados para outros dominios textuais e linguas diferentes
ainda precisam ser investigadas em profundidade. Outro ponto de atencao é a influéncia
direta da escolha do compressor tanto na precisao quanto na eficiéncia do sistema. Isso
exige que o usuario possua conhecimento prévio sobre as caracteristicas do dominio dos

dados para realizar uma selecao adequada do algoritmo de compressao.

6.3 Trabalhos Futuros

Como direcoes para pesquisas futuras, pretende-se expandir as avaliagbes experimentais
para uma variedade maior de dominios textuais e idiomas. O objetivo é investigar a
capacidade de generalizacdo do método proposto e identificar padroes de comportamento
em contextos linguisticos diversos. Além disso, a exploragao de estratégias alternativas de

paralelizacao para a BK'Tree permanece como um campo aberto. Isso inclui, especifica-

40

mente, a investigacdo de técnicas para paralelizar também a fase de construcao da arvore,
o que representa uma oportunidade significativa de otimizacao adicional.
Adicionalmente, vislumbra-se a integracao de técnicas leves de aprendizado supervisio-
nado ao fluxo de classificacdo. Abordagens como o ajuste fino de hiperparametros baseado
em validacao cruzada ou a ponderacao adaptativa de vizinhos podem aprimorar ainda mais
a aplicabilidade pratica dos métodos baseados em compressao. Por fim, a investigagao
de compressores especializados para dominios textuais especificos, bem como a anélise de
métodos hibridos que combinem diferentes métricas de similaridade, constituem dire¢oes

promissoras para a continuidade deste trabalho.

6.4 Trabalhos Publicados

Conferéncias Internacionais

o SILVESTRE, A.S.S.; DE SOUZA, B. V.; LISBOA, V. H. F.; BORGES, V.R. P. A
Multi-Label Classification Approach for Categorizing Beginner Program-
ming Problems from Online Judges. In: 2024 IEEFE Frontiers in Education
Conference (FIE). IEEE, 2024. p. 1-8. DOI: 10.1109/FIE61694.2024.10893153.

Conferéncias Nacionais

« SOUZA, B.; FREITAS, P. Efficient Compression-Based Low-resource Text
Classification. In: Anais do XXII Encontro Nacional de Inteligéncia Artifi-
cial e Computacional (ENIAC). Porto Alegre: SBC, 2025. p. 1797-1808. DOI:
10.5753/eniac.2025.13966.

« SOUZA, B.; SILVESTRE, A.; LISBOA, V.; BORGES, V. Pre-trained Lan-
guage Models for Multi-Label Text Classification of Competitive Pro-
gramming Problems. In: Anais do XXI Encontro Nacional de Inteligéncia
Artificial e Computacional (ENIAC). Porto Alegre: SBC, 2024. p. 73-84. DOLI:
10.5753 /eniac.2024.245222.

41

Referéncias

[1] Sebastiani, Fabrizio: Machine learning in automated text categorization. ACM Com-
puting Surveys, 34(1):1-47, 2002. 1

[2] Shu, Kai, Amy Silva, Suhang Wang, Jiliang Tang e Huan Liu: Fake news detection
on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter,
19(1):22 36, 2017. 1

[3] Sahami, Mehran, Susan Dumais, David Heckerman e Eric Horvitz: A bayesian approach
to filtering junk e-mail. Em Learning for Text Categorization: Papers from the 1998
Workshop, paginas 98-105, Madison, Wisconsin, 1998. AAAI Press. 1

[4] Pang, Bo e Lillian Lee: Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1-2):1-135, 2008. 1

[5] Vargas, Bruno, Ana Silvestre, Victor Lisboa e Vinicius Borges: Pre-trained language
models for multi-label text classification of competitive programming problems. Em
Anais do XXI Encontro Nacional de Inteligéncia Artificial e Computacional, paginas
73-84, Porto Alegre, RS, Brasil, 2024. SBC. https://sol.sbc.org.br/index.php/
eniac/article/view/33783. 1

[6] Silvestre, Ana Sofia S., Bruno Vargas De Souza, Victor Hugo F. Lisboa e Vinicius R.
P. Borges: A multi-label classification approach for categorizing beginner programming
problems from online judges. Em 2024 IEEE Frontiers in Education Conference (FIE),
paginas 1-8, 2024. 1

[7] Devlin, Jacob, Ming Wei Chang, Kenton Lee e Kristina Toutanova: Bert: Pre-training
of deep bidirectional transformers for language understanding. Em Proceedings of
NAACL-HLT, paginas 4171-4186, 2019. 1, 6

[8] LeCun, Yann, Yoshua Bengio e Geoffrey Hinton: Deep learning. Nature, 521(7553):436—
444, 2015. 1

[9] Strubell, Emma, Ananya Ganesh e Andrew McCallum: Energy and policy considera-
tions for deep learning in NLP. Em Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, paginas 36453650, Florence, Italy, 2019.
Association for Computational Linguistics. 1

[10] Cilibrasi, Rudi e Paul M. B. Vitanyi: Clustering by compression. IEEE Transactions
on Information Theory, 51(4):1523-1545, 2005. 1, 6, 9, 10, 12, 22

42

https://sol.sbc.org.br/index.php/eniac/article/view/33783
https://sol.sbc.org.br/index.php/eniac/article/view/33783

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Jiang, Zhiying, Matthew Y. R. Yang, Mikhail Tsirlin, Raphael Tang, Yiqin Dai e
Jimmy Lin: "low-resource” text classification: A parameter-free classification method
with compressors. Em Rogers, Anna, Jordan L. Boyd-Graber e Naoaki Okazaki
(editores): Findings of the Association for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, paginas 6810-6828. Association for Computational
Linguistics, 2023. https://doi.org/10.18653/v1/2023.findings-acl.426. 2, 7,
21, 27, 28, 29, 39

Rudin, Cynthia: Stop ezxplaining black boxr machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206—
215, 2019. 2

Burkhard, Walter A. e Robert M. Keller: Some approaches to best-match file searching.
Communications of the ACM, 16(4):230-236, 1973. 3, 13, 22

Salomon, David: Data Compression: The Complete Reference. Springer Science &
Business Media, 42 edicao, 2007. 3, 11, 12

Minaee, Shervin, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu
e Jianfeng Gao: Deep learning-based text classification: A comprehensive review. ACM
Computing Surveys (CSUR), 54(3):1-40, 2021. 5

Salton, Gerard, Anita Wong e Chung Shu Yang: A vector space model for automatic
indexing. Communications of the ACM, 18(11):613-620, 1975. 5

Salton, G. e C. Buckley: Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5):513-523, 1988. 5

Cover, T. M. e P. E. Hart: Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21-27, 1967. 6, 7

McCallum, A. e K. Nigam: A comparison of event models for naive bayes text
classification. 1998. Também disponivel como technical report; referéncia classica
sobre Naive Bayes em texto. 6

Shannon, Claude E.: A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379-423, 1948. 6

Elman, Jeffrey L.: Finding structure in time. Cognitive Science, 14(2):179-211, 1990.
6

Hochreiter, S. e J. Schmidhuber: Long short-term memory. Neural Computation,
9(8):1735-1780, 1997. 6

Cho, Kyunghyun, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk e Yoshua Bengio: Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014. 6

43

https://doi.org/10.18653/v1/2023.findings-acl.426

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Kim, Yoon: Convolutional neural networks for sentence classification. Em Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), paginas 17461751, 2014. 6

Mikolov, Tomas, Kai Chen, Greg Corrado e Jeffrey Dean: Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013. 6

Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser e Illia Polosukhin: Attention is all you need. Em Advances
in Neural Information Processing Systems (NeurIPS) / Proceedings, 2017. 6

Levenshtein, V. I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707-710, 1966. 6, 10

Li, Ming e Paul M. B. Vitanyi: An Introduction to Kolmogorov Complezity and Its
Applications. Springer, 2nd edicao, 1997. 6, 9, 10, 12

Li, M., X. Chen, X. Li, B. Ma e P. M. B. Vitanyi: The similarity metric. arXiv
preprint (cs/0111054), 2001. 6, 10

Nala, Vinicius: Modelos ML: Paramétricos x Nao-
paramétricos. https://medium.com/@viniciusnala/
modelos-ml-paramAltricos-x-nA&o-paramATtricos-Occ68ela82aa, fev 2024.
Artigo publicado no Medium. Acessado em: 21 de novembro de 2025. 7

Izbicki, Rafael e Tiago Mendonga dos Santos: Aprendizado de mdquina: uma abor-
dagem estatistica. Publicacao Independente, 12 edicao, 2020, ISBN 978-65-00-02410-4.
https://rafaelizbicki.com/ame/, Disponivel para download gratuito. Acessado
em: 21 de novembro de 2025. 7

Dudani, S. A.: The distance-weighted k-nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics, 6(4):325-327, 1976. 7

Fix, Evelyn e Joseph L. Hodges: Discriminatory analysis: Nonparametric discrimina-
tion, consistency properties. Technical Report 21-49-004, USAF School of Aviation
Medicine, 1951. 7

Aha, David W, Dennis Kibler e Marc K Albert: Instance-based learning algorithms.
Machine learning, 6(1):37-66, 1991. 7

Duda, Richard O., Peter E. Hart e David G. Stork: Pattern Classification. Wiley-
Interscience, 2nd edigao, 2000. 7

Cohen, William W., Pradeep Ravikumar e Stephen E. Fienberg: A comparison of
string metrics for matching names and records. Em KDD Workshop on Data Cleaning
and Object Consolidation, volume 3, paginas 73-78, Washington, DC, 2003. 8

Levenshtein, Vladimir I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707-710, 1966. 9, 13, 28

44

https://medium.com/@viniciusnala/modelos-ml-paramétricos-x-não-paramétricos-0cc68e1a82aa
https://medium.com/@viniciusnala/modelos-ml-paramétricos-x-não-paramétricos-0cc68e1a82aa
https://rafaelizbicki.com/ame/

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

Wagner, Robert A. e Michael J. Fischer: The string-to-string correction problem.
J. ACM, 21(1):168-173, janeiro 1974, ISSN 0004-5411. https://doi.org/10.1145/
321796.321811. 9

Damerau, Fred J.: A technique for computer detection and correction of spelling errors.
Communications of the ACM, 7(3):171-176, 1964. 9, 10, 28

Christen, Peter: A comparison of personal name matching: techniques and practical
issues. Em Sizth IEEFE International Conference on Data Mining - Workshops
(ICDMW’06), paginas 290-294. IEEE, 2006. 9

Jaro, Matthew A.: Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Em JSM Proceedings, Social Statistics Section, 1989.
9, 11, 28

Winkler, William E.: String comparator metrics and enhanced decision rules in the
fellegi—sunter model of record linkage. Relatério Técnico, U.S. Bureau of Census, 1990.
9, 11, 28

Elmagarmid, Ahmed K, Panagiotis G Ipeirotis e Vassilios S Verykios: Duplicate
record detection: A survey. IEEE Transactions on Knowledge and Data Engineering,
19(1):1-16, 2007. 9

White, Simon: How to strike a match: A simple algorithm for string similarity.
http://www.catalysoft.com/articles/StrikeAMatch.html, 2000. Accessed 2025-
05-20. 9, 11, 28

Teahan, William J e David J Harper: Using compression-based language models for
text categorization. Language modeling for information retrieval, pdginas 141-165,
2003. 10, 12

Frank, Eibe, Chang Chui e lan H Witten: Text categorization using compression
models. Em Proceedings of the Conference on Data Compression, pagina 555, 2000.
10

Cebrian, Manuel, Manuel Alfonseca e Alfonso Ortega: The normalized compression
distance is resistant to noise. IEEE Transactions on Information Theory, 53(5):1895-
1900, 2007. 11, 13

Sayood, Khalid: Introduction to data compression. Morgan Kaufmann, 2017. 11

Ziv, Jacob e Abraham Lempel: A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337-343, 1977. 11

Welch, Terry A.: A technique for high-performance data compression. Computer,
17(6):8-19, 1984. 11

Cleary, John G. e Ian H. Witten: Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, 32(4):396-402, 1984. 12

45

https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811
http://www.catalysoft.com/articles/StrikeAMatch.html

[52] Burrows, Michael e David J. Wheeler: A block-sorting lossless data compression
algorithm. Relatorio Técnico, Digital Equipment Corporation, 1994. 12

[53] Deutsch, P.: Deflate compressed data format specification version 1.3. Relatorio
Técnico, IETF RFC 1951, 1996. 12

[54] Zezula, Pavel, Giuseppe Amato, Vlastislav Dohnal e Michal Batko: Similarity Search:
The Metric Space Approach. Springer Science & Business Media, New York, 2006. 13

[55] Chévez, Edgar, Gonzalo Navarro, Ricardo Baeza-Yates e José Luis Marroquin: Search-
ing in metric spaces. ACM Computing Surveys (CSUR), 33(3):273-321, 2001. 16

[56] Zobel, Justin e Alistair Moffat: Inverted files for text search engines. ACM Computing
Surveys, 38(2):6-56, 2004. 16

[57] Pacheco, Peter S.: An Introduction to Parallel Programming. Morgan Kaufmann,
2011. 16

[58] Flynn, Michael J.: Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948-960, 1972. 17

[59] Hennessy, John L. e David A. Patterson: Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 6th edicao, 2017. 17, 18

[60] OpenMP Architecture Review Board: OpenMP Application Program Interface Version
6.0, November 2024. https://www.openmp.org/specifications/. 17

[61] Chapman, Barbara, Gabriele Jost e Ruud Van Der Pas: Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007. 17

[62] Sokolova, Marina e Guy Lapalme: A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427-437, 2009. 17

[63] Yianilos, Peter N.: Data structures and algorithms for nearest neighbor search in
general metric spaces. Em Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 93, pagina 311-321, USA, 1993. Society for Industrial
and Applied Mathematics, ISBN 0898713137. 21

[64] Bentley, J. L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509-517, 1975. 21

[65] Omohundro, Stephen M.: Five balltree construction algorithms. Em International
Computer Science Institute Technical Report, nimero ICSI TR-89-063, 1989. 21

[66] Cruz, Jan Christian Blaise, Julianne Agatha Tan e Charibeth Cheng: Localization
of fake news detection via multitask transfer learning. Em Proceedings of the 12th
Language Resources and Fvaluation Conference, paginas 2596-2604, 2020. 27

[67) Huggingface: Fake news filipino (jcblaise/fake_news_filipino). https://
huggingface.co/datasets/jcblaise/fake_news_filipino, 2020. Accessed: 2025-
05-20. 27

46

https://www.openmp.org/specifications/
https://huggingface.co/datasets/jcblaise/fake_news_filipino
https://huggingface.co/datasets/jcblaise/fake_news_filipino

[68]

[71]

[72]

[73]

78]

[79]

Alakuijala, Jyrki, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert
Obryk, Zoltan Szabadka e Lode Vandevenne: Brotli: A general-purpose data compres-
sor. ACM Transactions on Information Systems, 37:1-30, dezembro 2018. 28

Seward, Julian: bzip2: A block-sorting file compressor. Source code and documentation,
1996. Released July 1996; official site: https://www.bzip.org/. 28

Gailly, Jean-loup e Mark Adler: gzip: Gnu file compression utility. Software and
format specification, 1992. Initial release 31 October 1992; official site: https:
//www.gnu.org/software/gzip/. 28

Gailly, Jean-loup e Mark Adler: z2lib: A lossless data compression library. Software
library and documentation, 1995. First released May 1, 1995; official site: https:
//zlib.net/. 28

Collet, Yann: Zstandard (zstd): A fast lossless compression algorithm. Reference
C implementation and specification, 2016. First released August 31, 2016; format
standardized in IETF RFC 8878 (February 2021); official site: https://facebook.
github.io/zstd/. 28

Avaneev, Dmitry: LZAV: Fast in-memory 1277-based data compressor (header-only
¢/c++). GitHub repository, 2023. Available at https://github.com/avaneev/1lzav,
with performance around 480 MB/s compression and 2800 MB/s decompression
:contentReference[oaicite:1]index=1. 28

Lehmann, Marc A.: LibLZF: A very small and fast 1277-based compression library.
Project homepage, 2008. Last updated August 25, 2008; BSD-style license; official
site: https://oldhome.schmorp.de/marc/1iblzf .html. 28

Reinhold, Lasse Mikkel: QuickLZ: A very fast lz compression library. Official website
and source code, 2011. Described as the world’s fastest compression library (308
MB/s); original C version v1.5.0 available at http://www.quicklz.com/, and ports
in Go and Rust exist :contentReference[oaicite:1]index=1. 28

Schramm, Christian: shoco: A fast compressor for short strings. GitHub repository,
2015. C library optimized for very short strings; MIT license; https://github.com/
Ed-von-Schleck/shoco. 28

Dean, Jeff, Sanjay Ghemawat e Steinar H. Gunderson: Snappy: A fast com-
pressor/decompressor. Software library, 2011. Open-sourced by Google; C++
implementation with 250MB/s compression, 500MB/s decompression; https:
//google.github.io/snappy/. 28

Boncz, Peter, Thomas Neumann e Viktor Leis: FSST: Fast static symbol table
string compression. CWI / research publication and GitHub, 2019. Lightweight
random-access string compression; https://github.com/cwida/fsst. 28

Sanfilippo, Salvatore: Smaz: Small string compression library. GitHub repository,
2012. Compresses very short strings (e.g. the — 1 byte); BSD-3; https://github.
com/antirez/smaz. 28

47

https://www.bzip.org/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://zlib.net/
https://zlib.net/
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://github.com/avaneev/lzav
https://oldhome.schmorp.de/marc/liblzf.html
http://www.quicklz.com/
https://github.com/Ed-von-Schleck/shoco
https://github.com/Ed-von-Schleck/shoco
https://google.github.io/snappy/
https://google.github.io/snappy/
https://github.com/cwida/fsst
https://github.com/antirez/smaz
https://github.com/antirez/smaz

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Justificativa
	Objetivos
	Hipótese de Pesquisa
	Organização da Monografia

	Fundamentação Teórica
	Classificação de Textos
	Algoritmo dos K-vizinhos mais Próximos
	Métricas de Similaridade para Strings
	Distâncias Empregadas e Breve Descrição
	Distância de Compressão Normalizada (NCD)
	Observações Comparativas e Critérios para Experimentos

	Compressores
	Compressão sem Perdas
	Tipos de Compressores
	Impacto Prático

	BKTree e Buscas em Espaços Métricos Discretos
	Construção da Árvore
	Processo de Busca
	Complexidade e Aplicabilidade

	Computação Paralela
	Taxonomia de Flynn
	Programação com OpenMP

	Métricas e Comparação de Eficiência
	Speedup Relativo
	Speedup Paralelo e Eficiência

	Solução Proposta
	Estruturação do Espaço de Busca
	Limitações de Árvores Espaciais Tradicionais
	Adoção da BKTree para Espaços Métricos Discretos

	Modelo de Processamento Paralelo

	Metodologia
	Implementação e Construção da BKTree
	Orquestração da Busca Paralela
	Mecanismos de Sincronização e Poda

	Experimentos
	Configuração Experimental
	Conjunto de Dados e Pré-processamento
	Métodos e Compressores
	Ambiente e Reprodutibilidade

	Resultados Experimentais
	Desempenho de Predição
	Relação entre Desempenho e Eficiência
	Speedup e Escalabilidade
	Observações por Compressor
	Sumário dos Resultados

	Conclusão
	Síntese dos Resultados
	Limitações e Considerações
	Trabalhos Futuros
	Trabalhos Publicados

	Referências

