
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Uma Abordagem Eficiente para Classificação de
Textos Baseada em Compressão

Bruno Vargas de Souza

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Orientador
Prof. Dr. Pedro Garcia Freitas

Brasília
2025

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Uma Abordagem Eficiente para Classificação de
Textos Baseada em Compressão

Bruno Vargas de Souza

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Prof. Dr. Pedro Garcia Freitas (Orientador)
CIC/UnB

Prof. Dr. Luís Paulo Faina Garcia Prof.a Dr.a Aletéia Patrícia Favacho de Araújo
CIC/UnB CIC/UnB

Prof. Dr. Marcelo Grandi Mandelli
Coordenador do Bacharelado em Ciência da Computação

Brasília, 08 de dezembro de 2025

Dedicatória

Dedico este trabalho aos meus pais e ao meu irmão. Vocês não foram apenas meus maiores
incentivadores, mas a base de quem sou hoje. Obrigado por oferecerem todo o suporte, o
amor e, muitas vezes, o sacrifício necessário para que eu pudesse priorizar os meus estudos.
Cada passo dessa caminhada tem a marca de vocês. Vocês fazem parte desta conquista!

iii

Agradecimentos

Agradeço ao meu orientador, Prof. Pedro Garcia Freitas, por conduzir este trabalho com
tanta dedicação. Obrigado por ser sempre atencioso, prestativo e paciente em cada etapa
da produção. Sua orientação foi fundamental não apenas para este texto, mas para o meu
amadurecimento acadêmico.

Ao Prof. Vinicius Borges, deixo um agradecimento especial por ter sido o grande
responsável por despertar meu interesse pelas áreas de Algoritmos, Processamento de
Linguagem Natural e Inteligência Artificial. Suas aulas inspiradoras e seu suporte con-
stante foram decisivos para que eu escolhesse trilhar este caminho.

Aos meus amigos e parceiros de pesquisa, Victor Hugo e Ana Sofia. Obrigado por me
acompanharem durante toda essa jornada, dividindo não apenas a autoria de estudos e
publicações, mas também as angústias e alegrias da vida acadêmica. O incentivo mútuo
durante a escrita deste trabalho tornou o processo muito mais leve.

Ao Enzo Yoshio e à Isabel Starling, meus eternos parceiros de time. Vocês foram
pilares fundamentais da minha vivência na UnB. As horas que passamos treinando juntos
ao UnBalloon e resolvendo problemas de programação competitiva criaram um laço que
vai muito além da universidade. Sou grato por cada desafio que superamos juntos e por
tudo o que aprendi ao lado de vocês

Estendo minha gratidão a todos os demais familiares e amigos que, de perto ou de
longe, se fizeram presentes, torceram por mim e me apoiaram durante essa caminhada.
O carinho de vocês foi indispensável.

À Universidade de Brasília (UnB) e ao Departamento de Ciência da Computação, pela
excelência no ensino e pelas oportunidades oferecidas.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periódicos.

iv

Resumo

Nos últimos anos, a comunidade de Aprendizado de Máquina tem desenvolvido modelos
cada vez mais complexos para classificação de textos, especialmente com o avanço dos
Large Language Models (LLMs), que apresentam bom desempenho, mas exigem alta
capacidade computacional e grandes volumes de dados rotulados, o que limita seu uso em
cenários com poucos recursos. Como alternativa, métodos baseados em compressão têm
sido estudados por seu baixo custo computacional, utilizando a Distância de Compressão
Normalizada (do inglês, Normalized Compression Distance) (NCD), que usa a compressão
para medir a similaridade entre textos, em conjunto com classificadores K-vizinhos mais
Próximos (do inglês, K-Nearest Neighbors) (KNN), embora a busca exaustiva por vizinhos
mais próximos represente um gargalo de desempenho. Este trabalho propõe um método
de classificação textual baseado em compressão que utiliza uma Burkhard-Keller Tree
(BKTree) para otimizar essa busca e compara diferentes algoritmos de compressão sem
perda no dataset Fake News Filipino. Os resultados experimentais mostram que o método
mantém desempenho preditivo semelhante ao de abordagens mais complexas, com ganhos
de eficiência expressivos, incluindo acelerações de 20×, 25×, 7×, 6,6×, 8×, 10×, 1,4×,
1,9×, 11× e 12× para os compressores Brotli, FSST, LZ4, LZAV, LZF, QuickLZ, Shoco,
Smaz, Snappy e ZLib, respectivamente, configurando uma alternativa eficiente e escalável
para cenários com recursos limitados.

Palavras-chave: Classificação de textos, Compressão, BK-Tree, KNN, Eficiência com-
putacional

v

Abstract

In recent years, the Machine Learning community has developed increasingly complex
models for text classification, especially with the advancement of Large Language Models
(LLMs), which demonstrate good performance but require high computational capacity
and large volumes of labeled data, limiting their use in low-resource scenarios. As an al-
ternative, compression-based methods have been studied for their low computational cost,
utilizing the Normalized Compression Distance (NCD), which uses compression to mea-
sure similarity between texts, in conjunction with K-Nearest Neighbors (KNN) classifiers,
although the exhaustive search for nearest neighbors represents a performance bottle-
neck. This work proposes a compression-based text classification method that utilizes a
Burkhard-Keller Tree (BK-Tree) to optimize this search and compares different lossless
compression algorithms on the Fake News Filipino dataset. Experimental results show
that the method maintains predictive performance similar to complex approaches, with
significant efficiency gains, including speedups of 20×, 25×, 7×, 6.6×, 8×, 10×, 1.4×,
1.9×, 11×, and 12× for Brotli, FSST, LZ4, LZAV, LZF, QuickLZ, Shoco, Smaz, Snappy,
and ZLib compressors, respectively, configuring an efficient and scalable alternative for
low-resource scenarios.

Keywords: Text classification, Compression, BK-Tree, KNN, Computational efficiency

vi

Sumário

1 Introdução 1
1.1 Justificativa . 2
1.2 Objetivos . 3
1.3 Hipótese de Pesquisa . 3
1.4 Organização da Monografia . 4

2 Fundamentação Teórica 5
2.1 Classificação de Textos . 5
2.2 Algoritmo dos K-vizinhos mais Próximos 6
2.3 Métricas de Similaridade para Strings . 8

2.3.1 Distâncias Empregadas e Breve Descrição 9
2.3.2 Distância de Compressão Normalizada (NCD) 10
2.3.3 Observações Comparativas e Critérios para Experimentos 10

2.4 Compressores . 11
2.4.1 Compressão sem Perdas . 11
2.4.2 Tipos de Compressores . 11
2.4.3 Impacto Prático . 12

2.5 BKTree e Buscas em Espaços Métricos Discretos 13
2.5.1 Construção da Árvore . 13
2.5.2 Processo de Busca . 14
2.5.3 Complexidade e Aplicabilidade . 16

2.6 Computação Paralela . 16
2.6.1 Taxonomia de Flynn . 17
2.6.2 Programação com OpenMP . 17

2.7 Métricas e Comparação de Eficiência . 17
2.7.1 Speedup Relativo . 18
2.7.2 Speedup Paralelo e Eficiência . 19

vii

3 Solução Proposta 20
3.1 Estruturação do Espaço de Busca . 21

3.1.1 Limitações de Árvores Espaciais Tradicionais 21
3.1.2 Adoção da BKTree para Espaços Métricos Discretos 22

3.2 Modelo de Processamento Paralelo . 22

4 Metodologia 23
4.1 Implementação e Construção da BKTree 23
4.2 Orquestração da Busca Paralela . 24

4.2.1 Mecanismos de Sincronização e Poda 25

5 Experimentos 26
5.1 Configuração Experimental . 27

5.1.1 Conjunto de Dados e Pré-processamento 27
5.1.2 Métodos e Compressores . 27
5.1.3 Ambiente e Reprodutibilidade . 28

5.2 Resultados Experimentais . 29
5.2.1 Desempenho de Predição . 29
5.2.2 Relação entre Desempenho e Eficiência 30
5.2.3 Speedup e Escalabilidade . 32
5.2.4 Observações por Compressor . 37
5.2.5 Sumário dos Resultados . 38

6 Conclusão 39
6.1 Síntese dos Resultados . 39
6.2 Limitações e Considerações . 40
6.3 Trabalhos Futuros . 40
6.4 Trabalhos Publicados . 41

Referências 42

viii

Lista de Figuras

2.1 Comparação visual da organização de dados utilizando a palavra “Casa”
como raíz. Para fins de clareza didática, utilizou-se neste exemplo a Dis-
tância de Levenshtein para demonstrar as relações de proximidade. (a)
No espaço métrico, observa-se o agrupamento por distância radial. (b)
Na BKTree, esse agrupamento é convertido em uma hierarquia, onde coli-
sões (como em “Cama”, “Rama”, “Mala” e “Toca”) são resolvidas criando
subníveis. 14

2.2 Exemplo de busca na BKTree com a consulta q = “Cama” e raio r = 1.
Observa-se a poda do ramo “Lona” na raiz e a filtragem do nó “Mala”. . . 15

3.1 Arquitetura da solução: indexação via BKTree e classificação hierárquica
baseada em NCD. 21

4.1 Fluxo de execução concorrente: consumo de nós, verificação de poda e
atualização sincronizada das estruturas globais. 24

5.1 Diagrama do fluxo experimental: do pré-processamento às diferentes estra-
tégias de classificação e análise. 26

5.2 Diagrama de dispersão da F1-score máxima versus tempo médio de execu-
ção (escala log) para todos os compressores avaliados. Os tipos de modelo
são distinguidos por cor: ingênuo (vermelho), BKTree (azul), baseado em
sequência (verde). 31

5.3 Curvas de speedup relativo e paralelo por compressor. 33

ix

Lista de Tabelas

5.1 Métricas de predição obtidas usando o método proposto baseado em BK-
Tree comparado com a abordagem ingênua de KNN quando o speedup
máximo foi alcançado. Smax representa o speedup relativo máximo alcan-
çado, e Topt é o número de threads que produziu esse speedup ótimo. Os
símbolos N e B representam, respectivamente, o método ingênuo (linha de
base) e o BKTree (proposto). 30

5.2 Comparação entre método Naive e BKTree sequencial (1 thread) 32
5.3 Eficiência de paralelização por compressor e número de threads (%) 37

x

Lista de Abreviaturas e Siglas

API Interface de Programação de Aplicações (do inglês, Application Programming Inter-
face).

BERT Bidirectional Encoder Representations from Transformers.

BKTree Burkhard-Keller Tree.

BTree Ball Tree.

BWT Transformada de Burrows-Wheeler (do inglês, Burrows-Wheeler Transform).

CDM Métrica de Distância de Compressão (do inglês, Compression Distance Metric).

CLM Modelos de Linguagem Baseados em Compressão (do inglês, Compression-based
Language Models).

CPU Unidade Central de Processamento (do inglês, Central Processing Unit).

DNN Redes Neurais Profundas (do inglês Deep Neural Networks).

GCC Coleção de Compiladores GNU (do inglês GNU Compiler Collection).

GRU Unidade Recorrente com Portas (do inglês, Gated Recurrent Unit).

KDTree K-Dimensional Tree.

KNN K-vizinhos mais Próximos (do inglês, K-Nearest Neighbors).

LLM Large Language Model.

LSTM Long Short-Term Memory.

MIMD Múltiplas Instruções, Múltiplos Dados (do inglês, Multiple Instruction Multiple
Data).

xi

NCD Distância de Compressão Normalizada (do inglês, Normalized Compression Dis-
tance).

OpenMP Open Multi-Processing.

PLN Processamento de Linguagem Natural.

PPM Predição por Correspondência Parcial (do inglês, Prediction by Partial Matching).

RNN Redes Neurais Recorrentes (do inglês, Recurrent Neural Networks).

SIMD Instrução Única, Múltiplos Dados (do inglês, Single Instruction Multiple Data).

TF-IDF Frequência do Termo-Inverso da Frequência nos Documentos (do inglês, Term
Frequency-Inverse Document Frequency).

VPTree Vantage-Point Tree.

xii

Capítulo 1

Introdução

A classificação automática de textos consolidou-se como uma tarefa central nas áreas
de Aprendizado de Máquina e Processamento de Linguagem Natural (PLN) [1]. Essa
relevância deve-se à capacidade desses sistemas de organizar e extrair valor de grandes
volumes de dados não estruturados de forma eficiente. Na prática, tais algoritmos sustentam
aplicações críticas para a sociedade moderna, como a filtragem de notícias falsas [2] e a
detecção de spam [3]. Além disso, são fundamentais em domínios analíticos e técnicos,
variando desde a análise de sentimentos [4] até a categorização automática de problemas
de programação [5, 6].

Atualmente, o estado da arte é dominado por Redes Neurais Profundas (do inglês Deep
Neural Networks) (DNN) e arquiteturas baseadas em Transformers, como o Bidirectional
Encoder Representations from Transformers (BERT) e LLM [7, 8]. Embora esses modelos
demonstrem desempenho superior impulsionado por vastos volumes de dados e mecanismos
de atenção, essa hegemonia cobra um preço elevado. Tais arquiteturas exigem treinamento
intensivo, hardware de alto desempenho (GPUs) e consomem quantidades significativas de
energia [9]. Esse custo computacional limita severamente a aplicabilidade desses modelos
em cenários de recursos escassos (low-resource), em dispositivos de borda ou em tarefas
onde a simplicidade e a interpretabilidade seriam preferíveis.

Em resposta a essas limitações, a comunidade científica tem revisitado métodos
parameter-free baseados em compressão. A fundamentação para tal alternativa reside na
NCD [10], uma métrica que opera sob o princípio da teoria da informação de que textos
semanticamente semelhantes compartilham redundância. O raciocínio intuitivo sugere que
a concatenação de textos similares resulta em uma compressão muito mais eficiente do
que o processamento isolado das partes, pois o algoritmo consegue reaproveitar padrões
comuns para reduzir o tamanho final. Essa estratégia funciona como uma estimativa
prática da Complexidade de Kolmogorov e permite classificar diretamente os dados brutos,
eliminando assim a necessidade de etapas custosas como a engenharia de atributos ou a

1

vetorização.
Recentemente, [11] demonstraram empiricamente a validade dessa abordagem com o

método NPC_Gzip, provando que a combinação simples de um compressor (como Gzip)
com um classificador KNN pode rivalizar com redes neurais modernas em precisão para
diversas tarefas. Contudo, a simplicidade desse método esbarra em um gargalo crítico de
escalabilidade. A implementação original depende de uma busca exaustiva por força bruta,
exigindo que cada nova consulta seja comprimida em conjunto com todas as instâncias do
treinamento. Isso torna o processo computacionalmente proibitivo à medida que o volume
de dados aumenta, dificultando sua adoção em larga escala.

O presente trabalho aborda diretamente essa lacuna, propondo uma reformulação
estrutural do algoritmo de classificação. A solução desenvolvida baseia-se na integração de
estruturas de dados métricas para indexação eficiente, combinada com o uso de computação
paralela para acelerar o processo de inferência.

1.1 Justificativa

Diante desse cenário, a limitação de escalabilidade impõe uma restrição severa ao uso prático
desses classificadores. Especificamente, a implementação ingênua do KNN com NCD exige
o cálculo da distância entre o texto de consulta e todas as m instâncias do conjunto de
treinamento. Considerando que a operação de compressão é computacionalmente custosa,
a complexidade resultante, descrita como O(m · r · n) para strings de tamanhos r e n,
torna o método inviável para bases de dados extensas ou aplicações que demandem tempo
de resposta rápido.

Além da questão de eficiência, existe uma necessidade clara de transparência nas
decisões dos modelos. Enquanto as DNN funcionam muitas vezes como "caixas pretas"[12],
dificultando a compreensão do motivo de uma classificação, o método proposto oferece
uma vantagem direta, que é o fato de ser possível identificar exatamente quais exemplos do
treinamento foram utilizados para classificar um novo texto. Essa capacidade de auditoria
é fundamental em domínios sensíveis, tais como o jurídico, o médico ou o educacional, nos
quais não basta apenas o resultado, mas também a justificativa por trás dele [12].

Portanto, este trabalho se justifica pela necessidade premente de transformar modelos
teóricos promissores, frequentemente restritos ao ambiente acadêmico, em ferramentas
tecnicamente aplicáveis no mundo real. A proposta preenche uma lacuna importante ao
atacar o gargalo de escalabilidade que atualmente impede a adoção massiva de classifica-
dores baseados em compressão. Ao mitigar o custo computacional excessivo sem sacrificar
a acurácia, valida-se uma alternativa robusta às redes neurais profundas. Consequente-
mente, abrem-se portas para o desenvolvimento de sistemas de classificação que sejam,

2

simultaneamente, eficientes, transparentes e capazes de operar com total independência de
vocabulário e idioma.

1.2 Objetivos

O objetivo geral deste trabalho consiste em desenvolver e validar uma abordagem computa-
cionalmente eficiente para a classificação de textos baseada em compressão, visando superar
os desafios de escalabilidade inerentes aos métodos atuais. Identifica-se que, apesar da
robustez teórica das métricas de compressão, a sua aplicabilidade prática é frequentemente
limitada pelo alto custo da busca exaustiva em grandes bases de dados. Nesse sentido,
a proposta central foca na otimização do tempo de inferência, substituindo a verificação
linear pela integração de estruturas de dados métricas e processamento paralelo. Com isso,
busca-se entregar uma solução que mantenha a acurácia dos modelos originais, tornando-os
viáveis para cenários que exigem respostas rápidas e uso racional de recursos.

Para alcançar este propósito, a pesquisa desdobra-se em objetivos específicos interconec-
tados. Inicialmente, visa-se implementar uma estrutura de indexação baseada em BKTree
[13], adaptando-a para organizar o espaço métrico gerado pela NCD e permitindo a poda
eficiente de ramos de busca por meio da desigualdade triangular. Concomitantemente,
busca-se desenvolver uma estratégia de busca paralela capaz de explorar a árvore de forma
concorrente, maximizando o uso de arquiteturas multi-core para acelerar a recuperação dos
vizinhos mais próximos. Adicionalmente, o trabalho propõe analisar comparativamente
diversos algoritmos de compressão lossless, como Zstd, LZ4, Brotli e Snappy [14], para
compreender o impacto de cada um no equilíbrio entre acurácia preditiva e velocidade.
Por fim, avalia-se empiricamente o desempenho da solução, mensurando os ganhos de
speedup e a manutenção das métricas de qualidade em relação à abordagem ingênua de
força bruta.

1.3 Hipótese de Pesquisa

A hipótese deste trabalho estipula que a integração da estrutura BKTree com o processa-
mento paralelo supera as limitações de escalabilidade da classificação baseada em NCD.
A premissa central defende que a poda eficiente do espaço de busca, somada à execução
concorrente, proporciona ganhos significativos de speedup e mantém a acurácia preditiva
equivalente à da abordagem de força bruta. A confirmação desta hipótese viabiliza a
aplicação prática de modelos baseados em compressão em cenários reais de classificação
textual.

3

1.4 Organização da Monografia

A estrutura do restante deste trabalho segue uma ordem progressiva de fundamentação,
proposição e validação. O Capítulo 2 estabelece a base teórica e revisa conceitos essenciais
como KNN, NCD e a estrutura BKTree. Na sequência, os Capítulos 3 e 4 detalham,
respectivamente, a arquitetura da solução para superar as limitações de escalabilidade e
os aspectos concretos da implementação e da orquestração paralela. A validação empírica
ocorre no Capítulo 5 através da análise de desempenho preditivo e curvas de speedup. Por
fim, o Capítulo 6 apresenta as considerações finais, limitações do estudo e perspectivas
para trabalhos futuros.

4

Capítulo 2

Fundamentação Teórica

Este capítulo tem como objetivo apresentar os conceitos teóricos fundamentais para o
entendimento da metodologia e dos experimentos realizados neste trabalho. Inicialmente,
é feita uma breve revisão sobre a tarefa de classificação de textos, mostrando como as
abordagens nessa área evoluíram ao longo do tempo. Na sequência, detalha-se o funciona-
mento do algoritmo KNN, destacando sua natureza não paramétrica e a importância da
escolha da métrica de distância. Além disso, são exploradas as métricas de similaridade
para strings, introduzindo a NCD e explicando como os compressores influenciam nesse
cálculo. Por fim, descreve-se a BKTree, estrutura de dados essencial para a otimização de
busca proposta neste estudo.

2.1 Classificação de Textos

A classificação de textos desempenha um papel central no Aprendizado de Máquina
Supervisionado e serve de base para muitas aplicações de processamento de linguagem
natural. A tarefa tem como meta a atribuição automática de categorias a documentos
através da análise de padrões no texto. O histórico da área mostra mudanças importantes
nas últimas décadas. O desenvolvimento começou com abordagens baseadas em regras
manuais e símbolos, avançou para modelos estatísticos e chegou ao cenário atual dominado
por representações distribuídas e arquiteturas de atenção [15].

Inicialmente, métodos baseados em contagem e modelos de linguagem simples foram
amplamente utilizados. A representação bag-of-words [16] e o uso de pesos Frequência
do Termo-Inverso da Frequência nos Documentos (do inglês, Term Frequency-Inverse
Document Frequency) (TF-IDF) tornaram-se padrões para transformar documentos em
vetores numéricos, facilitando a classificação e recuperação [17]. Nessa fase, algoritmos
clássicos de classificação, como o KNN, foram consolidados como linhas de base teóricas e
práticas, juntamente com classificadores probabilísticos simples (por exemplo, Naive Bayes),

5

que demonstraram bom desempenho na categorização textual com custo computacional
reduzido [18, 19].

Com o aumento de corpora e poder computacional, modelos de linguagem baseados em
n-gramas [20] e modelos probabilísticos mais robustos surgiram, seguidos por arquiteturas
neurais. Redes Neurais Recorrentes (do inglês, Recurrent Neural Networks) (RNN) [21] e
suas variantes Long Short-Term Memory (LSTM) [22] mostraram capacidade de capturar
dependências sequenciais em textos, superando técnicas baseadas em n-gramas em diversas
tarefas de PLN. A arquitetura LSTM, com seus mecanismos de portas (gates) para controlar
o fluxo de informação, resolveu problemas de gradientes desaparecentes presentes em RNNs
tradicionais, permitindo o aprendizado de dependências de longo prazo. Posteriormente, a
Unidade Recorrente com Portas (do inglês, Gated Recurrent Unit) (GRU) surgiu como uma
alternativa mais simples e eficiente, mantendo boa capacidade de modelagem sequencial [23].
Adicionalmente, abordagens convolucionais para texto revelaram eficácia na extração de
padrões locais e na classificação de sentenças e documentos, utilizando filtros convolucionais
para identificar n-gramas e estruturas sintáticas relevantes [24].

Uma segunda mudança importante aconteceu com a chegada das representações dis-
tribuídas (embeddings). Essa abordagem mapeia palavras e frases para espaços vetoriais
densos e permite medir a similaridade semântica através de operações geométricas [25].
O uso de técnicas como Word2Vec [25] transformou a engenharia de características ao
oferecer vetores pré-treinados que melhoraram a capacidade de generalização dos modelos.
Mais tarde, o mecanismo de atenção e a arquitetura de transformadores trouxeram grandes
progressos. Modelos baseados em atenção (p. ex. BERT) conseguem capturar relações de
contexto profundas entre tokens e definiram novos padrões de desempenho em classificação
de textos e tarefas afins [26, 7].

Mesmo com a popularidade das representações vetoriais, métodos focados na similari-
dade direta entre sequências continuam importantes. Eles são valiosos em situações com
poucos dados, quando é preciso explicar a classificação ou lidar com restrições de idioma.
Abordagens baseadas em distância (como Levenshtein [27]) mantêm seu valor prático em
problemas onde erros de edição ou variações locais trazem informação. Da mesma forma,
medidas baseadas em compressão (como a NCD) permitem comparar documentos sem
depender de vocabulário, pois medem a informação compartilhada entre as sequências
[10, 28, 29].

2.2 Algoritmo dos K-vizinhos mais Próximos

O algoritmo KNN representa uma das técnicas mais clássicas e intuitivas do aprendizado
supervisionado. Cover e Hart apresentaram o método na década de 1960 [18] sob a

6

premissa de que exemplos com características similares costumam fazer parte da mesma
classe. Ao contrário de modelos paramétricos [30, 31], que dependem de uma função de
decisão explícita, o KNN opera de maneira não paramétrica e usa as próprias amostras de
treinamento como referência para a classificação.

Na sua versão básica, o algoritmo trabalha com um conjunto de dados rotulados.
Diante de uma nova entrada, o sistema calcula a distância até todos os elementos do
conjunto de treinamento. Em seguida, seleciona os k vizinhos mais próximos e define a
categoria da nova instância através de uma regra de decisão. A estratégia mais comum
utiliza a moda, ou seja, a nova amostra recebe a classe mais frequente entre os vizinhos.
Outra possibilidade envolve ponderar a influência de cada vizinho pela distância e dar
mais peso aos exemplos mais próximos [32].

O valor de k exerce influência direta no desempenho do algoritmo. Valores pequenos
tornam o modelo mais sensível a ruídos e outliers, enquanto valores muito grandes podem
levar à perda de detalhes locais e à suavização excessiva do espaço de decisão. Assim, a
escolha de k envolve um equilíbrio entre estabilidade e sensibilidade local [18, 33].

Uma implementação direta do KNN para classificação de textos, proposta por [11] no
método NPC_Gzip, utiliza uma estratégia de força bruta. Nessa abordagem, para cada
consulta, calcula-se a distância entre o texto de entrada e todas as instâncias do conjunto
de treinamento, ordenando os resultados e selecionando os k vizinhos mais próximos
para determinar a classe por voto majoritário. O Algoritmo 1 descreve formalmente esse
procedimento.

Assim, embora essa implementação seja intuitiva e de fácil compreensão, sua comple-
xidade computacional é O(m) cálculos de distância por consulta, onde m é o tamanho
do conjunto de treinamento. Quando a métrica de distância envolve operações custosas,
como compressão no caso da NCD, esse custo pode tornar o método impraticável para
conjuntos de dados grandes. Por essa razão, estruturas de indexação como a BKTree, a
ser apresentada na Seção 2.5, oferecem alternativas mais eficientes para acelerar a busca
por vizinhos, reduzindo significativamente o número de comparações necessárias.

A principal vantagem do KNN está em sua simplicidade e facilidade de interpretação.
Como não há uma fase de treinamento propriamente dita, o algoritmo é classificado
como um método de aprendizado preguiçoso (lazy learning) [34], realizando o esforço
computacional apenas no momento da predição. Essa característica permite rastrear cada
decisão, identificando exatamente quais vizinhos influenciaram a classificação final. Além
disso, o KNN é flexível quanto ao tipo de dado analisado, podendo empregar diferentes
métricas de distância conforme o domínio, por exemplo, a distância Euclidiana para dados
contínuos, a distância de Hamming para dados binários, ou a distância de edição para
strings [35].

7

Algorithm 1 Algoritmo KNN por força bruta para classificação de textos
Require: Conjunto de treinamento D = {(s1, c1), . . . , (sm, cm)}
Require: Texto de consulta q
Require: Número de vizinhos k ∈ N+

Require: Métrica de distância d(·, ·)
Ensure: Classe prevista para q

1: Inicializar uma lista vazia de pares (distância, classe): L ← []
2: for cada (si, ci) em D do
3: Calcular a distância entre q e si: disti ← d(q, si)
4: Adicionar (disti, ci) à lista L
5: Ordenar L em ordem crescente de distância
6: Selecionar os k primeiros elementos: N ← {(distj, cj) | primeiros k elementos}
7: Extrair as classes dos vizinhos mais próximos: CNK

← {cj | (distj, cj) ∈ N}
8: Definir a classe prevista como a moda das classes vizinhas: c← Mode(CNK

)
9: return c

Entretanto, o desempenho do KNN depende fortemente da métrica de similaridade
adotada, pois ela define o que significa “ser semelhante”. Em domínios textuais, métricas
tradicionais como as distâncias Euclidiana ou Manhattan tendem a ser pouco informativas
devido à alta dimensionalidade e à esparsidade das representações. Por essa razão, este
trabalho dedica a próxima seção à discussão de métricas especializadas para sequências
textuais, incluindo medidas de edição e de compressão, que serão fundamentais para a
formulação do classificador proposto.

2.3 Métricas de Similaridade para Strings
As métricas de similaridade textual são funções matemáticas que expressam numericamente
o nível de parentesco ou distância entre duas cadeias de caracteres. Essas ferramentas
convertem a comparação entre textos em dados quantificáveis e permitem o tratamento
computacional da linguagem. Tais medidas assumem papel central em tarefas de classifi-
cação e recuperação de informação ao definir a vizinhança entre exemplos, onde valores
baixos de distância indicam alta similaridade semântica ou estrutural.

Historicamente, as medidas de edição (edit distances) surgiram inicialmente para
representar alterações básicas entre cadeias, incluindo inserções, remoções e substituições.
A natureza exata dessas métricas favoreceu o uso em corretores ortográficos e na comparação
de textos curtos. Ao mesmo tempo, a área progrediu com coeficientes que analisam
correspondências locais, como n-gramas, e regras que valorizam posições específicas, como
prefixos. Essas técnicas ganharam espaço em problemas pontuais, como o emparelhamento
de nomes e a eliminação de duplicatas em bancos de dados [36].

8

Mais recentemente, abordagens inspiradas em princípios de informação motivaram o
uso de medidas de similaridade baseadas em compressão, como a NCD. Essas métricas
quantificam a informação compartilhada entre duas sequências sem a necessidade de recorrer
a vocabulários fixos ou modelos pré-treinados [10, 28]. Nesse contexto, a eficiência do
processo de compressão conjunta reflete diretamente o quanto duas cadeias compartilham
padrões informacionais subjacentes. Essa característica fundamenta-se na teoria da
complexidade de Kolmogorov [28], oferecendo uma perspectiva universal para a comparação
de dados.

2.3.1 Distâncias Empregadas e Breve Descrição

Levenshtein. A distância de Levenshtein mede o número mínimo de operações atômicas
(inserção, deleção ou substituição de caracteres) necessárias para transformar uma cadeia
x em outra y [37]. É amplamente utilizada em busca aproximada e correção ortográfica.
O cálculo clássico, realizado por programação dinâmica, possui custo de tempo O(|x| · |y|)
e pode ter seu custo de espaço reduzido para O(min{|x|, |y|}) mediante otimizações
conhecidas [38].

Damerau–Levenshtein. Essa variação amplia o conjunto de operações permitidas ao
incluir transposições de caracteres adjacentes, além de inserção, deleção e substituição
[39]. Essa inclusão torna a métrica mais adequada para capturar erros humanos comuns
de digitação, como a troca de letras vizinhas. É frequentemente aplicada em deduplicação
e correção de entradas fornecidas por usuários [40].

Jaro–Winkler. O coeficiente de Jaro avalia a similaridade com base em correspondências
e transposições dentro de uma janela ajustável. O refinamento proposto por Winkler
adiciona um fator de bonificação para prefixos coincidentes (prefix scale), valorizando
cadeias que compartilham o mesmo início [41, 42]. Essa métrica é amplamente utilizada
em record linkage e emparelhamento de nomes, apresentando boa tolerância a pequenas
discrepâncias internas e dando ênfase a coincidências no início das palavras [43].

Coeficiente de Dice (Strike-a-Match) - Simon White. Frequentemente referida
como “Strike-a-Match” na literatura de desenvolvimento, essa heurística compara os
conjuntos de bigramas (ou n-gramas de ordem baixa) formados a partir de duas cadeias e
calcula uma similaridade baseada no coeficiente de Dice/Sørensen entre esses conjuntos.
Essa abordagem é eficiente e, em geral, robusta a pequenas reordenações e variações leves
de forma. Por depender de n-gramas, sua sensibilidade está relacionada ao comprimento
das cadeias e à granularidade adotada [44].

9

2.3.2 Distância de Compressão Normalizada (NCD)

A NCD [10] é uma medida de similaridade derivada de princípios de informação e com-
pressão. A relação entre compressão e similaridade textual decorre do princípio de que
textos semelhantes compartilham padrões internos. Quando duas sequências x e y possuem
trechos em comum, a compressão conjunta tende a ser mais eficiente que a compressão
individual, resultando em C(xy) < C(x) + C(y). Essa propriedade fundamenta o uso da
NCD para estimar a semelhança entre cadeias: valores menores indicam maior sobreposição
informacional entre os textos.

Proposta por Cilibrasi e Vitányi [10] como uma medida universal de similaridade
baseada em compressão, a NCD deriva dos princípios de complexidade de Kolmogorov
[28]. A sua definição formal é expressa pela Equação 2.1:

NCD(x, y) = C(xy)−min{C(x), C(y)}
max{C(x), C(y)} , (2.1)

em que C(·) representa o tamanho comprimido (um valor inteiro) retornado por um
compressor prático. Matematicamente, o resultado dessa equação pertence ao intervalo
real contínuo [0, 1]. No entanto, para adequar a métrica à estrutura de indexação proposta
neste trabalho, aplica-se uma discretização que mapeia esses valores para o intervalo de
inteiros [0, 100]. A NCD é atrativa por ser independente de vocabulário e aplicável a
qualquer sequência representável, mas sua eficácia depende fortemente do compressor
adotado e apresenta custo computacional elevado devido à necessidade de compressões
conjuntas para cada par comparado.

Além da NCD, a literatura apresenta outras métricas e abordagens baseadas em
compressão. A Métrica de Distância de Compressão (do inglês, Compression Distance
Metric) (CDM) utiliza formulações alternativas de normalização e oferece perspectivas
complementares sobre a similaridade entre sequências [29]. Por sua vez, as Modelos de
Linguagem Baseados em Compressão (do inglês, Compression-based Language Models)
(CLM) exploram a entropia cruzada entre um documento e modelos de linguagem cons-
truídos a partir de compressores, permitindo a classificação textual através da comparação
de probabilidades de compressão [45, 46]. Essas abordagens compartilham o princípio
fundamental de que a eficiência de compressão reflete padrões informacionais comuns, mas
diferem na forma como quantificam essa relação.

2.3.3 Observações Comparativas e Critérios para Experimentos

As medidas descritas apresentam vantagens e limitações distintas. As distâncias de
Levenshtein [27] e Damerau–Levenshtein [39] capturam com precisão alterações locais, o que

10

é essencial em tarefas como, por exemplo, correção ortográfica. A métrica Jaro–Winkler [41,
42] favorece correspondências com prefixos idênticos, característica útil na comparação
de nomes próprios. A heurística Strike-a-Match [44], também chamada de similaridade
de Simon–White [44], baseada em bigramas, é rápida e robusta a pequenas reordenações.
Já a NCD [47] oferece uma perspectiva mais ampla e independente de vocabulário, mas
exige maior custo computacional e depende da qualidade do compressor utilizado. Para
fins experimentais, essas métricas serão aplicadas como critérios comparativos, avaliando
acurácia, sensibilidade e custo computacional, tanto de forma isolada quanto combinadas
a estratégias de indexação (como BKTree).

2.4 Compressores

Os compressores são algoritmos que reduzem o volume de arquivos ou sequências de dados
através da identificação de repetições e redundâncias [14]. Na aplicação da NCD, esses
componentes assumem papel vital, pois definem os valores de C(x) e C(xy). Essas funções
retornam, invariavelmente, um valor inteiro que corresponde ao tamanho total (em bytes
ou bits) da versão comprimida da sequência isolada e da concatenação. Logo, a seleção do
algoritmo impacta diretamente a eficácia da métrica em representar a similaridade textual.

2.4.1 Compressão sem Perdas

Neste trabalho utiliza exclusivamente compressores sem perdas (do inglês, lossless) [14].
A categoria engloba métodos capazes de reduzir o tamanho de uma string e garantir a
recuperação exata do dado original, bit a bit, a partir da versão comprimida [48]. O
processo assegura a integridade total do conteúdo após a descompressão. Tal característica
é indispensável na análise de textos, já que pequenas alterações de caracteres podem mudar
completamente o sentido de uma sequência. O método difere da compressão com perdas
(lossy) [14], comum em áudio e imagem [48], que descarta dados menos perceptíveis para
aumentar a taxa de compactação, prática inviável em comparações de strings.

2.4.2 Tipos de Compressores

De maneira geral, os compressores lossless empregados para textos podem ser agrupados
em três categorias principais:

• Baseados em dicionário: identificam substrings recorrentes e as substituem por
referências a um "dicionário"de padrões previamente encontrados. Compressores
como LZ77, LZ78 e LZW são exemplos clássicos desse tipo [49, 50]. Eles apresentam
bom desempenho em textos com muitas repetições lexicais ou estruturas regulares;

11

• Por modelagem estatística: constroem modelos probabilísticos do contexto anterior
para prever o próximo símbolo, atribuindo códigos mais curtos a elementos mais
prováveis. Métodos como o Predição por Correspondência Parcial (do inglês, Pre-
diction by Partial Matching) (PPM) e a Transformada de Burrows-Wheeler (do
inglês, Burrows-Wheeler Transform) (BWT) pertencem a essa categoria [51, 52].
Esses algoritmos são mais sensíveis a dependências de longo alcance e capturam
características estilísticas do texto;

• Híbridos: combinam técnicas de dicionário e de modelagem estatística, buscando
equilibrar eficiência e profundidade de compressão. Um exemplo é o compressor
DEFLATE, que combina LZ77 com codificação de Huffman, sendo amplamente
utilizado em formatos como ZIP e GZIP [53].

2.4.3 Impacto Prático

A definição do algoritmo de compressão impacta diretamente a precisão e a eficiência do
cálculo da NCD. Compressores robustos, capazes de capturar dependências distantes e
contextos complexos, costumam gerar medidas de similaridade mais consistentes. Contudo,
tal sofisticação implica maior custo computacional e aumenta o tempo de resposta das
consultas. Em contrapartida, algoritmos mais simples garantem velocidade computacional
superior, embora apresentem risco de falha na detecção de semelhanças semânticas ou
estruturais sutis [10].

A eficácia da ferramenta depende também da natureza do algoritmo. Métodos baseados
em dicionário, por exemplo, demonstram maior aptidão para identificar repetições locais
e padrões lexicais exatos [14]. Já os modelos estatísticos sobressaem na percepção de
dependências de estilo e estruturas gramaticais abstratas [45]. Qualquer que seja o tipo,
o tamanho final do arquivo comprimido atua como indicador direto da complexidade
informacional: sequências redundantes geram arquivos compactos, enquanto textos ricos
produzem arquivos maiores [28].

Do ponto de vista da implementação, algumas estratégias podem ser adotadas para
mitigar o custo computacional sem prejudicar o resultado final. Técnicas como o pré-
cálculo de C(x) para o conjunto de treinamento e a limitação do comprimento máximo
das sequências são essenciais para reduzir o tempo de execução. Além disso, o uso
de amostragem controlada pode acelerar o processo sem comprometer drasticamente a
precisão da medida de distância. Dessa forma, o compressor não atua apenas como
um componente auxiliar da NCD, mas sim como uma variável experimental crítica que
influencia a capacidade do método de refletir a similaridade textual de maneira fiel e
eficiente.

12

2.5 BKTree e Buscas em Espaços Métricos Discretos

Burkhard e Keller [13] propuseram a BKTree como uma estrutura de dados para permitir
buscas eficientes em espaços métricos discretos. A sua compatibilidade com métricas de
edição (por exemplo, distância de Levenshtein [37]) ou informacionais (como a NCD [47])
a torna ideal para acelerar o processo de busca de vizinhos em algoritmos como o KNN,
reduzindo significativamente o número de comparações necessárias. O funcionamento
dessa estrutura baseia-se na propriedade fundamental da desigualdade triangular [54], que
define uma relação entre as distâncias de três elementos quaisquer a, b e c pertencentes a
um mesmo espaço métrico. Tal propriedade é expressa na Equação 2.2.

d(a, c) ≤ d(a, b) + d(b, c) (2.2)

ou, de forma equivalente, como apresentado na Equação 2.3,

|d(a, b)− d(b, c)| ≤ d(a, c) ≤ d(a, b) + d(b, c). (2.3)

Essa relação é essencial, pois permite restringir as regiões de busca, eliminando cálculos
desnecessários durante a procura por elementos semelhantes. Em outras palavras, a
estrutura se beneficia da geometria do espaço métrico para reduzir o número de comparações
e, consequentemente, o custo computacional.

2.5.1 Construção da Árvore

Para construir a BKTree, parte-se de um conjunto de elementos S = {x1, x2, . . . , xn} e de
uma função de distância d : S × S → R+. O primeiro elemento do conjunto é escolhido
como raiz, e os demais são inseridos recursivamente. Para cada novo elemento xi, calcula-se
a distância d(xi, xj) em relação ao nó atual xj, sendo essa distância utilizada como rótulo
da aresta que conecta o novo nó ao nó pai. Cada nó, portanto, mantém um conjunto de
filhos indexados pelas distâncias inteiras resultantes, conforme o mapeamento apresentado
na Equação 2.4:

children(xj) = {(d(xj, xk), xk) | xk é filho de xj} (2.4)

Essa organização hierárquica permite que a árvore seja explorada seletivamente durante
a busca, evitando o cálculo redundante de distâncias entre elementos que não podem
satisfazer os critérios de similaridade definidos. Para ilustrar esse processo, a Figura 2.1
demonstra como o agrupamento por distância radial no espaço métrico (Figura 2.1a) é

13

Casa

Lama

Caso

Cama
Lona

Rama

Toca

Mala

d = 1

d = 2

d = 3

(a) Visualização do Espaço Métrico

Casa

Caso

Cama

Lama Lona

Rama Mala Toca

1

2

2

1

3

2 2

(b) Estrutura Hierárquica BKTree

Figura 2.1: Comparação visual da organização de dados utilizando a palavra “Casa” como
raíz. Para fins de clareza didática, utilizou-se neste exemplo a Distância de Levenshtein para
demonstrar as relações de proximidade. (a) No espaço métrico, observa-se o agrupamento
por distância radial. (b) Na BKTree, esse agrupamento é convertido em uma hierarquia,
onde colisões (como em “Cama”, “Rama”, “Mala” e “Toca”) são resolvidas criando
subníveis.

convertido diretamente na estrutura hierárquica de nós e arestas da BKTree (Figura 2.1b),
utilizando a palavra “Casa” como exemplo de raiz.

2.5.2 Processo de Busca

No processo de busca, dada uma consulta q e um raio máximo r, calcula-se a distância
d(q, xj) em relação ao nó atual xj. Com base na desigualdade triangular, apenas são
explorados aqueles nós cujas arestas d(xj, xk) satisfazem a Equação 2.5.

d(q, xj)− r ≤ d(xj, xk) ≤ d(q, xj) + r. (2.5)

Dessa forma, é possível eliminar subárvores inteiras que não contenham elementos dentro
do raio de busca, reduzindo significativamente o número de comparações necessárias. Esse
mecanismo de poda faz com que a BKTree seja especialmente eficiente em espaços nos
quais a função de distância apresenta distribuição desigual de valores, como ocorre com
distâncias de edição entre cadeias de caracteres.

A Figura 2.2 ilustra uma simulação de busca pela palavra q = “Cama” com um raio de
tolerância fixo r = 1. Na raiz (“Casa”), a distância para a consulta é d(Casa, Cama) = 1.

14

2

Casa

Caso Lama Lona

Rama Mala TocaCama

1 2 3

2 1

2

Busca: 'Cama' (r = 1)
d(Casa, Cama)=1

Intervalo: [0,2]

d(Lama, Cama)=1
[Candidato]

Intervalo: [0,2]

d(Caso, Cama)=2
[Não-Candidato]
Intervalo: [1,3]

d(Cama, Cama)=0
[Candidato]

d(Rama, Cama)=1
[Candidato]

d(Mala, Cama)=2
[Não-Candidato]

Aresta=3 vs Intervalo[0,2]
PODADO (Lona)

Candidato

Visitado(não-candidato)

Nó podado

Aresta
Aresta podada

Figura 2.2: Exemplo de busca na BKTree com a consulta q = “Cama” e raio r = 1.
Observa-se a poda do ramo “Lona” na raiz e a filtragem do nó “Mala”.

Aplicando a inequação do intervalo de busca, temos [1− 1, 1 + 1], ou seja, apenas filhos
conectados por arestas de peso entre 0 e 2 devem ser visitados. Consequentemente, a aresta
para o nó “Lona” (peso 3) é imediatamente podada, descartando toda a sua subárvore
sem a necessidade de comparar “Cama” com “Lona” ou seus descendentes. Por outro lado,
ao visitar o nó “Lama” (onde d = 1, intervalo [0, 2]), o nó filho “Mala” é acessado pois sua
aresta (peso 2) está no intervalo, mas é descartado do resultado final pois sua distância
real para a consulta excede o raio r (d(Mala, Cama) = 2 > 1).

É importante ressaltar que, no exemplo acima, o valor de r foi mantido fixo por questões
didáticas. Entretanto, na aplicação do algoritmo combinada com o método do KNN, o
raio de busca r torna-se dinâmico. O processo inicia-se com r =∞ (ou um valor máximo

15

arbitrário) até que os primeiros K candidatos sejam encontrados (por exemplo, K = 5).
Uma vez preenchida a lista com K vizinhos, r é atualizado para a distância do candidato
mais distante dessa lista (o k-ésimo vizinho). À medida que a busca progride e novos nós
com distâncias menores são encontrados, a lista de melhores candidatos é atualizada e o
valor de r é reduzido. Esse ajuste contínuo torna o critério de poda progressivamente mais
restritivo, otimizando o desempenho ao descartar ramos que, com certeza, não contêm
candidatos melhores que os já encontrados.

2.5.3 Complexidade e Aplicabilidade

A complexidade de construção da BKTree, no pior caso, é O(n2), uma vez que cada
elemento pode ser comparado com todos os demais já inseridos. Entretanto, na prática, a
estrutura tende a apresentar comportamento próximo de O(n log n), devido à natureza
hierárquica da inserção e à eficiência da poda durante o processo. As buscas também
possuem custo O(n) no pior cenário, mas geralmente são sublineares, especialmente quando
o espaço métrico possui boa separabilidade [55].

Diferentemente de estruturas como K-Dimensional Tree (KDTree) ou Ball Tree (BTree),
que são projetadas para espaços vetoriais contínuos e métricas euclidianas, a BKTree é
adequada para espaços discretos. Por essa razão, tem sido amplamente empregada em
aplicações que envolvem comparação de cadeias de caracteres, como correção ortográfica
[56], recuperação de informações e classificação de textos. Sua compatibilidade com
métricas de edição, como Levenshtein e Damerau-Levenshtein, e também com medidas de
similaridade informacional, como a NCD, torna-a uma estrutura versátil para tarefas de
busca aproximada em grandes coleções de dados textuais.

2.6 Computação Paralela

A eficiência na busca pelos vizinhos mais próximos dentro de uma BKTree é o fator
determinante para a viabilidade do classificador proposto. Embora a estrutura da árvore
permita uma redução drástica no espaço de busca por meio da desigualdade triangular, o
custo acumulado de múltiplas computações da NCD pode tornar a inferência lenta em
bases de dados extensas. Nesse cenário, a computação paralela é aplicada para acelerar
a travessia dos ramos da árvore, permitindo que múltiplos núcleos de processamento
colaborem na identificação dos candidatos de forma simultânea e independente [57].

16

2.6.1 Taxonomia de Flynn

A organização desse processamento paralelo fundamenta-se na Taxonomia de Flynn [58],
que classifica as arquiteturas conforme o fluxo de instruções e dados. A arquitetura
Múltiplas Instruções, Múltiplos Dados (do inglês, Multiple Instruction Multiple Data)
(MIMD) é a que melhor descreve o funcionamento dos processadores multinúcleo modernos.
Em sistemas MIMD, cada núcleo possui autonomia para executar fluxos de instruções
distintos sobre subárvores variadas da BKTree. Adicionalmente, o conceito de Instrução
Única, Múltiplos Dados (do inglês, Single Instruction Multiple Data) (SIMD) é relevante no
nível de instrução, permitindo que o hardware processe vetores de dados simultaneamente
para otimizar operações de baixo nível dentro de cada thread de execução [59].

2.6.2 Programação com OpenMP

A implementação da busca paralela foi realizada utilizando o padrão Open Multi-Processing
(OpenMP) [60], uma interface baseada em diretivas de compilador amplamente adotada
em computação de alto desempenho [61]. O funcionamento do OpenMP segue o modelo
fork-join, onde uma thread mestre coordena a execução e, ao encontrar uma região paralela,
cria threads trabalhadoras para processar os nós da árvore de forma concorrente. Ao
término da exploração dos ramos, as threads são sincronizadas e o controle retorna à
thread mestre para a finalização da consulta.

A gestão de memória no OpenMP é crucial para assegurar que a busca pelos vizinhos
mais próximos ocorra de forma correta. O modelo permite definir variáveis como privadas
a cada thread ou compartilhadas entre o grupo de execução. Na BKTree, a estrutura da
árvore e os parâmetros de busca são compartilhados, enquanto os buffers de cálculo locais
são privados para evitar condições de corrida [61]. Para garantir a integridade da fila de
vizinhos e a atualização segura do limite de corte, utilizam-se seções críticas e operações
atômicas, permitindo que o acesso concorrente aos dados globais não comprometa o
resultado final.

2.7 Métricas e Comparação de Eficiência

A avaliação do desempenho preditivo dos modelos utilizou métricas amplamente consoli-
dadas em tarefas de classificação [62], como acurácia, precisão, recall e F1-score (macro).
O cálculo dessas medidas fundamenta-se nos quatro possíveis desfechos de uma classi-
ficação binária derivados da matriz de confusão. Esses desfechos incluem o Verdadeiro
Positivo (VP) e o Verdadeiro Negativo (VN), que representam os acertos do modelo
para as classes positiva e negativa, respectivamente. Em contrapartida, os erros recebem

17

mapeamento como Falso Positivo (FP), quando a classe positiva é predita incorretamente,
e Falso Negativo (FN), quando o modelo falha ao identificar uma instância que era de fato
positiva.

A acurácia é a métrica mais intuitiva para avaliar um classificador, pois indica a
proporção global de acertos do sistema, conforme expresso pela Equação 2.6:

Acurácia = V P + V N

V P + V N + FP + FN
(2.6)

A precisão foca na qualidade das predições positivas, expressando a fração de instâncias
classificadas como positivas que realmente pertencem a essa classe (Equação 2.7), enquanto
o recall avalia a completude, quantificando a capacidade do modelo de recuperar as
instâncias positivas reais (Equação 2.8):

Precisão = V P

V P + FP
(2.7)

Recall = V P

V P + FN
(2.8)

O F1-score macro, apresentado na Equação 2.9, surge como uma medida agregadora
que estabelece a média harmônica entre precisão e recall, garantindo um equilíbrio na
avaliação de todas as classes independentemente do volume de amostras.

F1-score = 2× Precisão× Recall
Precisão + Recall (2.9)

Este trabalho dedica especial atenção à avaliação do custo computacional das soluções.
Para quantificar os ganhos de eficiência introduzidos pela proposta paralela discutida na
Seção anterior, utilizam-se as métricas de speedup e eficiência, que permitem isolar os
ganhos advindos da estrutura de dados daqueles provenientes da execução concorrente.

2.7.1 Speedup Relativo

O speedup relativo [59] é a métrica utilizada para comparar o desempenho do método
proposto paralelizado diretamente com a implementação ingênua de referência. Esse valor
indica quantas vezes a versão otimizada com BKTree é mais rápida que a abordagem de
força bruta ao empregar o mesmo algoritmo de compressão. O cálculo segue a Equação
2.10:

Speedup Relativo(p) = Tempo do método Naive
Tempo da BKTree com p threads (2.10)

18

2.7.2 Speedup Paralelo e Eficiência

O speedup paralelo mede o ganho de escalabilidade obtido ao migrar o método proposto
de uma execução serial para uma execução com múltiplas threads, conforme a Equação
2.11. Essa métrica revela o quanto o algoritmo consegue se beneficiar do uso de múltiplos
núcleos de processamento.

Speedup Paralelo(p) = Tempo da BKTree com 1 thread
Tempo da BKTree com p threads (2.11)

Complementarmente, a eficiência (Ep) é calculada para observar o aproveitamento real
do hardware. Dessa forma, ela relaciona o speedup alcançado com o número de recursos
empregados (p), sendo definida pela Equação 2.12:

Ep = Speedup Paralelo(p)
p

(2.12)

19

Capítulo 3

Solução Proposta

Este capítulo detalha a arquitetura desenvolvida para mitigar as limitações de desempenho
identificadas no método NPC_Gzip. A solução concebida tem como base a substituição da
busca exaustiva linear por uma abordagem hierárquica e concorrente. O modelo integra a
estrutura de dados BKTree a um sistema de processamento paralelo. O objetivo central
é viabilizar a escalabilidade da classificação baseada em compressão sem comprometer a
acurácia da métrica NCD.

A Figura 3.1 apresenta a visão geral da solução e ilustra o fluxo desde a organização
dos dados até a estratégia de consulta.

20

Construção

Métrica de
Distância

Consulta

Classificação
KNN

Texto
Comprimido

BKTree

Dados
Compressor

Acha o mais
próximo

Figura 3.1: Arquitetura da solução: indexação via BKTree e classificação hierárquica
baseada em NCD.

3.1 Estruturação do Espaço de Busca

A otimização do algoritmo KNN em cenários de alto custo computacional exige o abandono
da força bruta em favor de estruturas de indexação eficientes. O uso de compressores
impõe esse cenário. A premissa da solução consiste em reduzir a complexidade da consulta
de linear O(m) para sublinear ou logarítmica O(log m) [63]. No entanto, a natureza da
métrica NCD impõe restrições específicas sobre qual estrutura de dados é adequada.

3.1.1 Limitações de Árvores Espaciais Tradicionais

Diversas estruturas de indexação consolidadas na literatura partem do pressuposto de
que os dados residem em um espaço vetorial euclidiano. Exemplos incluem KDTree [64],
BTree [65] e Vantage-Point Tree (VPTree) [63]. Tais métodos dependem de operações
geométricas como o cálculo de centróides, divisões de eixos ou projeções ortogonais.

Essas premissas são inadequadas para a extensão do trabalho de [11]. A métrica
NCD e as operações sobre strings não possuem representação vetorial nativa nem eixos
coordenados explícitos. A tentativa de forçar uma representação vetorial (embedding) para
utilizar árvores espaciais adicionaria uma camada de complexidade indesejada. Além disso,

21

causaria perda de informação e contradição com a proposta parameter-free da classificação
por compressão.

3.1.2 Adoção da BKTree para Espaços Métricos Discretos

Diante da ausência de geometria euclidiana, a solução adota a BKTree [13]. O desenho
desta estrutura contempla especificamente espaços métricos discretos. A justificativa para
a escolha reside no fato de a BKTree não requerer coordenadas e exigir apenas que a
função de distância respeite a desigualdade triangular.

Compressores reais podem apresentar leves desvios teóricos. Mesmo assim, a literatura
demonstra que a NCD aproxima a desigualdade triangular de forma robusta o suficiente para
permitir indexação métrica [10]. A BKTree permite organizar o conjunto de treinamento
com base puramente na informatividade relativa entre os textos. A estrutura cria ramos
para agrupar instâncias com taxas de compressão similares. Isso viabiliza a poda eficiente
de subárvores inteiras durante a busca.

3.2 Modelo de Processamento Paralelo

A segunda vertente da solução proposta ataca o custo de Unidade Central de Processamento
(do inglês, Central Processing Unit) (CPU) individual de cada operação de compressão.
Mesmo com a poda eficiente da árvore, percorrer os ramos restantes de forma sequencial
subutilizaria a capacidade dos processadores modernos.

O modelo arquitetural desenhado tem como princípio a decomposição da busca em
tarefas granulares e independentes. Ao contrário da recursão tradicional onde cada passo
bloqueia o anterior, a solução propõe um sistema produtor-consumidor dinâmico. A
exploração de um nó da árvore gera novas tarefas para distribuição entre múltiplos núcleos
de processamento.

Essa estratégia visa amortizar o custo de latência da compressão através do throughput
elevado do paralelismo. O modelo prevê o uso de estruturas de sincronização globais para
manter a consistência dos resultados. Isso garante que a versão paralela produza resultados
determinísticos e idênticos à versão sequencial. O ganho de desempenho (speedup) em
ambientes multi-core passa a ser significativo com essa abordagem.

22

Capítulo 4

Metodologia

Este capítulo descreve os procedimentos de implementação da solução arquitetural proposta.
O texto detalha os algoritmos desenvolvidos para a construção da estrutura de dados.
Também apresenta a adaptação da métrica NCD para o domínio discreto e os mecanismos
de sincronização utilizados na orquestração da busca paralela.

4.1 Implementação e Construção da BKTree

A implementação da BKTree neste trabalho difere da versão clássica utilizada para distância
de Levenshtein devido à natureza contínua da NCD. Para adequar a métrica à estrutura
o projeto introduziu uma etapa de discretização. A estrutura opera eficientemente com
arestas rotuladas por inteiros e a discretização viabiliza esse funcionamento.

Os valores de NCD estão originalmente no intervalo contínuo [0, 1]. O algoritmo
submete esses valores a um fator de escala de 100 e realiza o arredondamento. Isso resulta
em distâncias operacionais inteiras no intervalo [0, 100]. O valor 0 representa identidade
informacional e o valor 100 denota máxima dissimilaridade. Essa transformação permite
mapear os vizinhos em buckets discretos na árvore e otimiza a dispersão dos nós.

O procedimento de construção consta no Algoritmo 2. A execução ocorre de forma
sequencial como uma etapa de pré-processamento. A inserção de cada nó respeita a
hierarquia métrica e garante a organização necessária para a poda futura.

23

Algorithm 2 Construção de BKTree com Discretização de NCD
Require: Conjunto de treinamento D.
Require: Função de NCD d(·, ·).
Ensure: Raiz da BKTree Troot.

1: Troot ← null
2: for cada (xi, yi) em D do
3: if Troot = null then
4: Troot ← create_node(xi, yi)
5: else
6: InsertNode(Troot, xi, yi, d)
7: return Troot
8: procedure InsertNode(node, x, y, d)
9: raw_dist← d(node.string, x)

10: dist← round(raw_dist× 100) ▷ Discretização
11: if não existe chave dist em node.children then
12: node.children[dist]← create_node(x, y)
13: else
14: InsertNode(node.children[dist], x, y, d)

4.2 Orquestração da Busca Paralela

A metodologia de busca implementada substitui a recursão em profundidade tradicional.
O sistema utiliza uma abordagem baseada em fila de tarefas (Task Queue) executada por
um pool de worker threads.

A Figura 4.1 ilustra o fluxo de dados implementado. O funcionamento ocorre através
de um ciclo de realimentação. O processo consome tarefas e pode gerar novas tarefas que
retornam à fila caso satisfaçam os critérios de poda.

Nó
Raíz

Desenfileira
Worker

Worker
Worker

Worker Threads Estado Compartilhado

Fila de Prioridade (Top-K)

Delta (Raio de Poda)

Poda?
Não Sim

Fila de
Tarefas

Leitura/
Escrita

Retorna

Figura 4.1: Fluxo de execução concorrente: consumo de nós, verificação de poda e
atualização sincronizada das estruturas globais.

24

4.2.1 Mecanismos de Sincronização e Poda

O sistema possui duas estruturas globais protegidas por mecanismos de exclusão mútua
(mutex/locks) para garantir a consistência dos dados em um ambiente concorrente. A
primeira estrutura fundamental é a Fila Prioritária Compartilhada (PQshared), responsável
por armazenar os k vizinhos mais próximos encontrados até o momento por qualquer thread.
O acesso de escrita a esta fila é bloqueante para evitar condições de corrida. A segunda
estrutura é o Limite Global de Corte (δshared), uma variável atômica ou protegida que
armazena a pior distância presente na fila prioritária. Ela atua como um limiar dinâmico
e qualquer thread pode ler esse valor instantaneamente para decidir sobre a poda de um
ramo sem necessidade de bloqueio constante.

O Algoritmo 3 detalha a lógica de execução. A poda utiliza a desigualdade triangular.
Um ramo com distância de aresta dedge só recebe exploração se |dnode_query−dedge| ≤ δshared.
A atualização contínua de δshared permite que a descoberta de um bom vizinho por uma
thread acelere a poda em todas as outras threads imediatamente.

Algorithm 3 Algoritmo de Busca Paralela na BKTree
Require: Raiz Troot, Consulta q, k, Função d(·, ·).
Ensure: Classe prevista ypred.

1: PQshared ← PriorityQueue(k)
2: δshared ←∞
3: TaskQueue.add(Troot)
4: while existem tarefas ou workers ativos do
5: node← TaskQueue.pop()
6: ProcessNode(node) em Thread disponível
7: procedure ProcessNode(node)
8: dcurr ← d(node.string, q)
9: Lock(PQshared)

10: if dcurr qualifica para top-k then
11: PQshared.update(dcurr, node.class)
12: δshared ← PQshared.max_dist()
13: Unlock(PQshared)
14: for cada (dedge, child) em node.children do
15: if |dcurr − dedge| ≤ δshared then ▷ Critério de Poda
16: TaskQueue.add(child)
17: return Moda(PQshared)

25

Capítulo 5

Experimentos

Neste capítulo, o texto avalia empiricamente a eficácia e a eficiência da abordagem proposta.
O objetivo central dos experimentos consiste em validar a hipótese de que a integração da
estrutura BKTree com a busca paralelizada reduz drasticamente o custo computacional
da classificação baseada em compressão sem degradar a qualidade das predições. Para
isso, o estudo conduziu uma bateria de testes comparativos entre o método proposto, a
implementação ingênua de força bruta e abordagens baseadas em distâncias de edição
clássicas utilizando um corpus de detecção de fake news e uma variedade de algoritmos de
compressão.

Dataset
Pré-processamento Classificação

Sequencial

Classificação
Ingênua

(Força-Bruta)

Classificação
BKTree

Variação de
Compressores

Análise de
Resultados

Figura 5.1: Diagrama do fluxo experimental: do pré-processamento às diferentes estratégias
de classificação e análise.

A estrutura dos experimentos ilustrada na Figura 5.1 inicia a execução com a ingestão
do dataset e segue para uma etapa de pré-processamento padronizada. A partir deste
ponto, o fluxo bifurca em duas vertentes principais. A primeira encaminha os dados para
a classificação sequencial baseada em métricas de edição. A segunda vertente submete

26

os dados a uma variação de compressores cujos resultados alimentam duas estratégias
distintas: a classificação ingênua (força-bruta) e a classificação otimizada via BKTree.
Por fim, as saídas das três estratégias (sequencial, ingênua e BKTree) convergem para a
etapa de análise de resultados na qual ocorre a consolidação das métricas de desempenho
e eficiência.

5.1 Configuração Experimental

Esta seção descreve de forma detalhada o protocolo experimental estabelecido para a
validação desta pesquisa. O foco central consiste em avaliar a eficácia e a eficiência
do método proposto através do confronto direto com as linhas de base comparativas
selecionadas na literatura. Esse nível de detalhamento objetiva não apenas fundamentar
a análise dos dados subsequente mas também garantir a total reprodutibilidade dos
experimentos e assegurar uma comparação justa entre todas as abordagens analisadas.

5.1.1 Conjunto de Dados e Pré-processamento

Para os experimentos o projeto utilizou o corpus Low-Resource Fake News Detection Cor-
pora in Filipino [66] que contém 3.206 notícias rotuladas por especialistas com distribuição
balanceada entre classes verdadeira e falsa. O material é majoritariamente em filipino e
apresenta inserções ocasionais de termos em inglês presentes no uso coloquial. O protocolo
aplicou apenas uma limpeza textual mínima para manter condições experimentais consis-
tentes e reduzir vieses introduzidos por etapas complexas de normalização. Essa limpeza
envolveu especificamente a remoção de espaços extremos e normalização básica de tokens
por meio da Interface de Programação de Aplicações (do inglês, Application Program-
ming Interface) (API) do HuggingFace [67]. Essa escolha visa preservar as características
originais das sequências textuais relevantes para métodos baseados em compressão.

A divisão dos dados adotou uma partição fixa de 80% dos exemplos para treino e
20% para teste. O código fixou todas as sementes e parâmetros randômicos de modo que
cada execução observasse exatamente as mesmas partições e assegurasse comparações
determinísticas entre os diferentes métodos e compressores. Os tempos de execução
reportados correspondem à média observada em múltiplas repetições experimentais com o
intuito de reduzir a variabilidade introduzida por ruído no sistema.

5.1.2 Métodos e Compressores

A avaliação ampliou o escopo para além do GZip utilizado originalmente em [11] e incluiu
um conjunto representativo de algoritmos de compressão sem perda agrupados conforme

27

sua natureza. A seleção incluiu compressores estatísticos representados pelo Brotli [68]
e Bz2 [69] bem como métodos baseados em dicionário, categoria que engloba GZip [70],
ZLib [71], Zstd [72], LZAV [73] e LZF [74]. Adicionalmente, o estudo avaliou compressores
leves com foco em velocidade tais como QuickLZ [75], Shoco [76], Snappy [77], FSST [78]
e Smaz [79]. A motivação para a escolha desses algoritmos reside no compromisso entre
razão de compressão e velocidade uma vez que compressores distintos tendem a inverter
esse compromisso e impactar diretamente a NCD utilizada na classificação.

Três categorias distintas de estratégias de classificação foram implementadas e confron-
tadas. A primeira estabelecida como linha de base ingênua consiste na implementação
por força bruta de KNN empregando NCD como métrica conforme a formulação de [11].
A segunda categoria refere-se à abordagem proposta (BKTree) que aplica o KNN sobre
representações compactadas indexadas em uma estrutura adaptada para compressão com
busca paralela conforme descrito no Capítulo 4. A terceira categoria abrange as versões
baseadas em sequência que utilizam KNN de força bruta sem compressão e empregam
métricas de distância entre strings clássicas como Levenshtein [37], Damerau-Levenshtein
[39], Jaro-Winkler [41, 42] e Simon-White [44] como linhas de base complementares. Todas
as variações que utilizam KNN fixaram k = 5 (cinco vizinhos) para a votação majoritária.

5.1.3 Ambiente e Reprodutibilidade

A implementação optou por uma arquitetura híbrida que equilibra desempenho e facilidade
de orquestração. O núcleo crítico do sistema engloba os compressores e as estruturas
de dados e teve seu desenvolvimento em linguagem C/C++. A compilação utilizou a
Coleção de Compiladores GNU (do inglês GNU Compiler Collection) (GCC) 13.2 para
garantir máxima eficiência enquanto a biblioteca OpenMP viabilizou a execução paralela
em memória compartilhada. A integração eficiente entre esse núcleo de baixo nível e a
camada de orquestração em Python 3.10 ocorreu por meio da ferramenta Cython. Essa
abordagem permitiu a interoperabilidade direta entre as linguagens e eliminou gargalos de
comunicação. A manipulação numérica e as rotinas de avaliação estatística em Python
empregaram a biblioteca SciPy. Todas as execuções ocorreram em uma estação de trabalho
equipada com um processador AMD Ryzen Threadripper 1950X de 16 núcleos físicos onde
o protocolo buscou minimizar cargas concorrentes para assegurar a estabilidade das
medições temporais.

A transparência científica e a possibilidade de verificação independente constituem
requisitos fundamentais nesta pesquisa. O projeto optou pela abertura total dos artefatos
produzidos com o objetivo de facilitar a reprodução exata dos resultados obtidos e encorajar
a extensão do estudo pela comunidade. O conjunto completo engloba o código-fonte da

28

aplicação e os scripts de automação experimental e encontra-se disponível publicamente
em repositório de controle de versão1.

5.2 Resultados Experimentais

Esta seção apresenta e discute os resultados obtidos com a aplicação da metodologia
proposta e estabelece um confronto direto entre o desempenho preditivo e os ganhos de
eficiência computacional. A análise detalha as métricas de F1-score, acurácia, precisão e
recall para fornecer uma visão abrangente. Os experimentos abrangeram três categorias
distintas de modelos para garantir uma base comparativa sólida. As categorias avaliadas
incluem a linha de base ingênua (força bruta com NCD), a abordagem proposta otimizada
com BKTree e busca paralelizada e uma versão de controle baseada em métricas clássicas
de similaridade de sequências.

O foco central da análise reside em demonstrar a viabilidade técnica da integração da
BKTree com a NCD. O objetivo primário consiste em comprovar que essa nova arquitetura
é capaz de manter a qualidade de classificação do método original e preservar sua robustez
teórica. Simultaneamente, busca-se evidenciar que a mudança estrutural introduz ganhos
significativos de speedup em relação à abordagem ingênua. Assim, os dados apresentados a
seguir visam validar a hipótese de que a eficiência de execução pode aumentar drasticamente
sem o sacrifício da acurácia preditiva.

5.2.1 Desempenho de Predição

A Tabela 5.1 permite observar que o método baseado em BKTree apresenta desempenho
semelhante à implementação ingênua, produz resultados praticamente idênticos e demonstra
equivalência estatística na maioria dos casos. O método baseado em BKTree obteve
pontuações iguais ou ligeiramente superiores às da implementação ingênua para a maioria
dos compressores. Isso demonstra que a estratégia de busca otimizada proporciona ganhos
de eficiência sem sacrificar a acurácia de classificação. Conforme indicado na tabela 5.1, os
resultados do método proposto são referidos como “BKTree” (símbolo B) e o método de
[11] é denominado “ingênuo” (símbolo N). Além disso, as colunas Topt e Smax especificam
os hiperparâmetros de paralelização utilizados para obter os valores de F1-score, acurácia,
precisão e recall por se tratar de uma estrutura implementada de forma paralela. Mais
especificamente, Topt indica o número de threads que proporcionou o melhor speedup relativo
enquanto Smax revela o speedup relativo alcançado com esse número de threads.

1https://gitlab.com/lisa-unb/comtext/

29

https://gitlab.com/lisa-unb/comtext/

Tabela 5.1: Métricas de predição obtidas usando o método proposto baseado em BKTree
comparado com a abordagem ingênua de KNN quando o speedup máximo foi alcançado.
Smax representa o speedup relativo máximo alcançado, e Topt é o número de threads que
produziu esse speedup ótimo. Os símbolos N e B representam, respectivamente, o método
ingênuo (linha de base) e o BKTree (proposto).

C F1-Score Acurácia Precisão Recall Topt Smax

N B N B N B N B

Brotli 0.90 0.92 0.90 0.92 0.91 0.92 0.90 0.92 12 19.74
FSST 0.89 0.88 0.89 0.88 0.89 0.88 0.89 0.88 24 24.73
LZ4 0.92 0.92 0.92 0.92 0.92 0.93 0.92 0.92 8 6.8
LZAV 0.88 0.89 0.88 0.89 0.89 0.90 0.88 0.89 8 6.36
LZF 0.90 0.91 0.90 0.91 0.90 0.91 0.90 0.91 16 8.03
Quicklz 0.81 0.92 0.81 0.92 0.83 0.92 0.81 0.92 12 9.93
Shoco 0.56 0.33 0.61 0.50 0.68 0.25 0.61 0.5 12 1.31
Smaz 0.43 0.54 0.52 0.55 0.57 0.56 0.52 0.55 8 1.89
Snappy 0.49 0.91 0.58 0.91 0.75 0.91 0.58 0.91 16 11.38
ZLib 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 12 11.83
ZStd 0.95 0.94 0.95 0.94 0.95 0.94 0.95 0.94 24 6.1

5.2.2 Relação entre Desempenho e Eficiência

A relação entre desempenho e eficiência aparece ilustrada na Figura 5.2 que apresenta um
diagrama de dispersão comparando a F1-score máxima com o tempo médio de execução
de cada modelo. Na visualização, as implementações ingênuas aparecem em vermelho, as
abordagens baseadas em BKTree em azul e os métodos sem compressão (baseados em
sequência) em verde. Um modelo ideal situa-se no quadrante superior esquerdo (maior F1 e
menor tempo). Nesse quadrante os modelos baseados em BKTree predominam e evidenciam
melhor compromisso entre eficiência e acurácia. Em contrapartida, as implementações
ingênuas tendem a apresentar maiores tempos de execução e posicionam-se à direita do
gráfico. Os métodos sem compressão exibem características temporais semelhantes às das
implementações ingênuas.

Eficiência da BKTree Sequencial vs. Método Naive

Para validar o impacto da estrutura de dados na redução do esforço computacional, realizou-
se uma comparação direta entre a busca exaustiva (Naive) e a busca fundamentada na
BKTree, ambas executadas em uma única thread. O objetivo desta etapa é isolar o ganho
proporcionado exclusivamente pela aplicação da desigualdade triangular na poda de ramos
da árvore. Os resultados consolidados na Tabela 5.2 demonstram que a utilização da

30

101 102 103 104

Tempo Médio (s) - Escala Logarítmica

0.0

0.2

0.4

0.6

0.8

1.0
F1

 (m
ac

ro
)

Tempo vs F1: FakeNewsFilipinoDataset

Algoritmo (Tipo)
Brotli (Naive)
Bz2 (Naive)
Fsst (Naive)
GZip (Naive)
Lz4 (Naive)
Lzav (Naive)
Lzf (Naive)
Lzma (Naive)
Quicklz (Naive)
Shoco (Naive)

Smaz (Naive)
Snappy (Naive)
ZLib (Naive)
Zstd (Naive)
Brotli (BKTree)
Fsst (BKTree)
Lz4 (BKTree)
Lzav (BKTree)
Lzf (BKTree)
Quicklz (BKTree)

Shoco (BKTree)
Smaz (BKTree)
Snappy (BKTree)
ZLib (BKTree)
Zstd (BKTree)
DamerauLevenshtein (BS)
JaroWinkler (BS)
Levenshtein (BS)
SimonWhite (BS)

Figura 5.2: Diagrama de dispersão da F1-score máxima versus tempo médio de execução
(escala log) para todos os compressores avaliados. Os tipos de modelo são distinguidos por
cor: ingênuo (vermelho), BKTree (azul), baseado em sequência (verde).

BKTree resultou em reduções significativas no tempo de treinamento e inferência total
para a maioria dos compressores.

A análise dos dados revela que compressores como o FSST e o Brotli obtiveram os
maiores índices de aceleração, com speedups de 14,70× e 4,78×, respectivamente. Esse
comportamento sugere que a distribuição das distâncias NCD gerada por esses algoritmos
permitiu uma poda eficaz da árvore. Por outro lado, observou-se que compressores
otimizados para strings muito curtas, como o Shoco, apresentaram um speedup ligeiramente
inferior à unidade (0,92×). Esse fenômeno ocorre quando o custo fixo de percorrer a
estrutura da árvore e gerenciar a fila de busca supera a economia gerada pela redução no
número de cálculos de distância, indicando que a eficiência da BKTree é sensível ao tempo
de execução intrínseco de cada compressor. Esses resultados sequenciais definem o ponto
de partida para a avaliação do processamento paralelo via OpenMP, discutida a seguir.

31

Tabela 5.2: Comparação entre método Naive e BKTree sequencial (1 thread)

Compressor Tempo Total Naive (s) Tempo Total BKTree (s) Speedup
Brotli 11.003,00 2.303,43 4,78×
Fsst 52.098,00 3.544,00 14,70×
Lz4 169,56 71,31 2,38×
Lzav 182,23 74,43 2,45×
Lzf 175,50 68,49 2,56×
Quicklz 50,67 14,82 3,42×
Shoco 217,56 236,48 0,92×
Smaz 340,87 287,58 1,19×
Snappy 44,29 10,14 4,37×
ZLib 226,15 62,85 3,60×
Zstd 95,45 77,12 1,24×

5.2.3 Speedup e Escalabilidade

Os hiperparâmetros de paralelização Topt e Smax apresentados na Tabela 5.1 correspondem
aos pontos máximos nas curvas laranja exibidas na Figura 5.3. Essa figura apresenta a
curva número de threads versus speedup para cada compressor: as curvas azuis representam
o speedup paralelo (comparação entre BKTree paralelo e BKTree serial) e as laranjas
representam o speedup relativo (comparação entre BKTree paralelo e a implementação
ingênua). Observa-se que a escalabilidade obtida pela paralelização tende a saturar
rapidamente, isto é, o speedup deixa de aumentar apesar do incremento no número de
threads, porém a curva laranja permanece assintoticamente acima da curva azul na maioria
dos casos. Esse comportamento indica que a vantagem principal do método proposto
advém da estrutura em BKTree que reduz a complexidade computacional da busca e não
apenas da paralelização. Como exemplo, o compressor Zstd atingiu speedup relativo de 6×
em relação à linha de base ingênua e cerca de 5× de speedup paralelo em relação à execução
com thread única, o que evidencia que o uso de múltiplas threads reduz substancialmente
o tempo de execução. Outros compressores também se beneficiaram do processamento
paralelo, mesmo quando sua escalabilidade é menor, e apresentaram ganhos relevantes de
taxa de processamento.

A eficiência de paralelização, calculada conforme a Equação ??, permite avaliar o
grau de aproveitamento dos recursos computacionais à medida que a carga de trabalho
é distribuída entre múltiplos núcleos de processamento. Os resultados apresentados na
Tabela 5.3 revelam uma tendência comum de declínio na eficiência com o aumento do
número de threads, fenômeno atribuído à sobrecarga (overhead) de sincronização e à
contenção de recursos na gestão da fila de tarefas da BKTree.

32

0 5 10 15 20 25 30
Número de Threads

5

10

15

20
Sp

ee
du

p

Comparação de Speedup (BKTreeBrotli)

Paralelo Relativo vs Naive

(a) Brotli

0 5 10 15 20 25 30
Número de Threads

0

5

10

15

20

25

Sp
ee

du
p

Comparação de Speedup (BKTreeFsst)

Paralelo Relativo vs Naive

(b) FSST

0 5 10 15 20 25 30
Número de Threads

2

4

6

Sp
ee

du
p

Comparação de Speedup (BKTreeLz4)

Paralelo Relativo vs Naive

(c) Lz4

Figura 5.3: Curvas de speedup relativo e paralelo por compressor.

33

0 5 10 15 20 25 30
Número de Threads

1
2
3
4
5
6

Sp
ee

du
p

Comparação de Speedup (BKTreeLzav)

Paralelo Relativo vs Naive

(d) LZAV

0 5 10 15 20 25 30
Número de Threads

2

4

6

8

Sp
ee

du
p

Comparação de Speedup (BKTreeLzf)

Paralelo Relativo vs Naive

(e) LZF

0 5 10 15 20 25 30
Número de Threads

2

4

6

8

10

Sp
ee

du
p

Comparação de Speedup (BKTreeQuicklz)

Paralelo Relativo vs Naive

(f) QuickLZ

Figura 5.3: Curvas de speedup relativo e paralelo por compressor (continuação).

34

0 5 10 15 20 25 30
Número de Threads

0.9

1.0

1.1

1.2

1.3

1.4
Sp

ee
du

p

Comparação de Speedup (BKTreeShoco)

Paralelo Relativo vs Naive

(g) Shoco

0 5 10 15 20 25 30
Número de Threads

1.0

1.2

1.4

1.6

1.8

Sp
ee

du
p

Comparação de Speedup (BKTreeSmaz)

Paralelo Relativo vs Naive

(h) Smaz

0 5 10 15 20 25 30
Número de Threads

2

4

6

8

10

Sp
ee

du
p

Comparação de Speedup (BKTreeSnappy)

Paralelo Relativo vs Naive

(i) Snappy

Figura 5.3: Curvas de speedup relativo e paralelo por compressor (continuação).

35

0 5 10 15 20 25 30
Número de Threads

2
4
6
8

10
12

Sp
ee

du
p

Comparação de Speedup (BKTreeZLib)

Paralelo Relativo vs Naive

(j) ZLib

0 5 10 15 20 25 30
Número de Threads

1

2

3

4

5

6

Sp
ee

du
p

Comparação de Speedup (BKTreeZstd)

Paralelo Relativo vs Naive

(k) Zstd

Figura 5.3: Curvas de speedup relativo e paralelo por compressor (continuação).

36

Tabela 5.3: Eficiência de paralelização por compressor e número de threads (%)

Compressor 1 2 4 8 12 16 24 32
Brotli 100 85,0 61,0 40,9 34,4 25,8 17,1 12,9
Fsst 100 59,2 36,6 20,9 13,3 10,5 7,0 5,1
Lz4 100 59,5 44,0 35,8 23,5 17,5 11,6 8,7
Lzav 100 67,4 51,6 32,5 21,2 16,2 10,7 7,8
Lzf 100 67,9 47,3 27,2 26,0 19,6 13,0 9,6
Quicklz 100 76,4 48,8 33,0 24,2 18,1 11,8 8,9
Shoco 100 56,1 35,6 17,7 11,9 8,7 5,9 4,4
Smaz 100 50,5 38,2 20,0 13,2 9,9 6,6 4,9
Snappy 100 59,5 36,1 22,2 21,6 16,3 10,7 7,9
ZLib 100 73,9 57,3 32,5 27,4 20,5 13,6 9,4
Zstd 100 99,3 79,1 40,4 36,2 28,4 20,6 15,0

5.2.4 Observações por Compressor

Quanto às características individuais, a análise demonstrou que diferentes compressores se
destacaram por propriedades específicas e evidenciaram o compromisso entre a precisão
da métrica NCD e a eficiência computacional. Os compressores Snappy e QuickLZ
destacaram-se por apresentar eficiência temporal elevada com comprometimento mínimo
da acurácia e, portanto, constituem boas escolhas quando o tempo de resposta é crítico.
Em contrapartida, ZLib e Zstd forneceram a acurácia superior (F1-scores de até 0,95) em
velocidades competitivas e posicionam-se como alternativas mais equilibradas quando a
prioridade for a máxima precisão de predição.

Outros algoritmos como LZ4, LZF e LZAV também demonstraram excelente perfor-
mance e alcançaram F1-scores consistentemente próximos ou superiores a 0,90 (variando
de 0,88 a 0,92) além de apresentar ganhos de speedup relativo notáveis que variaram entre
6,36x e 8,03x em relação à linha de base ingênua. Isso os consolida como alternativas
sólidas que conseguem manter um bom balanceamento entre a qualidade preditiva e a
eficiência temporal. Por outro lado, o FSST e o Brotli demonstraram maior sensibilidade à
complexidade computacional da compressão e impactaram o tempo de execução. Embora
o FSST tenha alcançado o maior speedup relativo (24,73x), o tempo de execução absoluto
de ambos foi mais elevado, o que indica um custo maior por consulta.

No extremo de desempenho, os algoritmos Smaz e Shoco exibiram as maiores dificulda-
des em termos de acurácia e eficiência. O baixo desempenho do Shoco se explica pelo fato
de ser um compressor otimizado especificamente para strings curtas em inglês enquanto o
conjunto de dados foi testado em um corpus de notícias em filipino, o que resultou em uma
identificação de padrões insuficiente para textos maiores. O Smaz também é voltado para

37

strings muito curtas e isso limita sua capacidade de capturar os padrões informacionais
necessários para a métrica NCD em documentos textuais de maior extensão.

Em síntese, as evidências indicam que a seleção de compressores não deve ser arbitrária
mas sim estritamente orientada pelos requisitos da aplicação. É fundamental buscar um
equilíbrio criterioso entre a eficiência da taxa de compressão, que afeta a sensibilidade
da NCD, e o custo temporal de execução do algoritmo em si. Para cenários que exigem
máxima acurácia, deve-se optar por ZLib ou Zstd ao passo que Snappy ou QuickLZ
tornam-se preferíveis quando a prioridade é a latência mínima. Por fim, vale ressaltar que
compressores como LZ4 e LZF oferecem um excelente meio-termo e consolidam-se como
opções versáteis para casos de uso gerais.

5.2.5 Sumário dos Resultados

Os resultados experimentais demonstram inequivocamente a eficácia da abordagem pro-
posta para otimizar a classificação de textos baseada na NCD. A estrutura de dados
baseada na BKTree mostrou-se crucial pois não apenas preservou mas em alguns ce-
nários de compressores chegou a melhorar marginalmente as métricas de classificação
em comparação com a custosa implementação ingênua de força bruta. Este sucesso em
manter a qualidade preditiva reside na capacidade da BKTree de restringir eficientemente
o espaço de busca a vizinhos próximos sem comprometer significativamente a identificação
do vizinho mais próximo com base na NCD.

A principal contribuição prática e o ganho mais substancial residem na eficiência.
A organização dos dados em BKTree atua diretamente na redução da complexidade
computacional da fase de busca e transforma uma operação de tempo O(N) em uma busca
com complexidade esperada muito menor. Esta otimização estrutural combinada com o
uso estratégico da paralelização em múltiplos núcleos permitiu a obtenção de speed-ups
relativos significativos e substanciais em relação à linha de base ingênua. A capacidade de
processar consultas em uma fração do tempo do método ingênuo valida o uso da BKTree
como um acelerador fundamental para a NCD em grandes coleções de texto e torna o
método aplicável em ambientes onde o tempo de resposta é uma limitação crítica.

Para aplicações práticas a seleção do compressor deve ser uma decisão de engenharia
baseada no compromisso desejado entre precisão e velocidade. Compressores como ZLib e
Zstd são a escolha ideal quando a prioridade inegociável é maximizar a acurácia devido à
sua capacidade superior de capturar estruturas complexas do texto e gerar uma NCD mais
informativa. Por outro lado, para cenários de tempo real ou onde o volume de consultas
exige a máxima velocidade, compressores como Snappy e QuickLZ, juntamente com LZ4
e LZF, representam a melhor alternativa pois oferecem ganhos massivos de eficiência
temporal com uma degradação de acurácia que se mostrou aceitável na maioria dos casos.

38

Capítulo 6

Conclusão

Este trabalho apresentou uma reformulação estrutural do método NPC_Gzip, originalmente
proposto por [11], visando superar suas limitações de escalabilidade. A abordagem
desenvolvida substituiu a busca exaustiva por uma estrutura hierárquica de dados baseada
em BKTree, além de incorporar estratégias modernas de paralelização. Como resultado,
obteve-se uma arquitetura robusta que preserva a simplicidade e a interpretabilidade
inerentes ao método original. Simultaneamente, essa nova estrutura proporcionou ganhos
substanciais e mensuráveis em termos de desempenho computacional e capacidade de
processamento.

6.1 Síntese dos Resultados

Os experimentos realizados validaram a hipótese central da pesquisa, demonstrando que a
abordagem proposta alcança acurácia equivalente ou até superior à implementação ingênua.
Com F1-scores atingindo marcas de até 0,95, confirmou-se que a otimização estrutural via
árvores métricas não compromete a qualidade das predições finais. A principal contribuição
deste estudo reside, contudo, nos ganhos de eficiência operacional. Foram obtidos speedups
relativos de até 25× em comparação à linha de base de força bruta, o que evidencia o
enorme potencial da combinação entre BKTree e paralelização para acelerar a classificação
baseada em compressão.

Quanto à diversidade de algoritmos, a avaliação comparativa de onze compressores
distintos revelou padrões importantes sobre o compromisso entre precisão e velocidade.
Compressores focados em rapidez, como Snappy e QuickLZ, destacaram-se pelo excelente
desempenho em tempo de execução, sendo ideais para aplicações de baixa latência. Por
outro lado, algoritmos como ZLib e Zstd alcançaram as maiores taxas de acurácia mantendo
uma eficiência temporal competitiva. Esses resultados oferecem subsídios práticos valiosos,

39

permitindo a escolha informada de compressores conforme as restrições específicas de cada
aplicação.

No que se refere à escalabilidade, a análise aprofundada indicou que a vantagem principal
do método advém da organização dos dados na estrutura BKTree, que reduz drasticamente
a complexidade computacional da busca. Embora a paralelização seja benéfica, observou-se
que a escalabilidade tende a saturar com o aumento excessivo do número de threads. Ainda
assim, os ganhos obtidos pela execução concorrente são substanciais quando comparados à
execução serial. Isso torna o método viável e eficiente para o processamento de conjuntos
de dados de grande porte.

6.2 Limitações e Considerações

Embora os resultados obtidos sejam promissores, é necessário reconhecer algumas limitações
inerentes à abordagem proposta. A construção da BKTree exige uma etapa de pré-
processamento computacionalmente intensiva, o que pode representar um custo inicial
elevado. Por essa razão, o método se mostra mais adequado para cenários caracterizados
por um alto volume de consultas sobre um mesmo conjunto de treinamento estático, onde
esse investimento inicial é amortizado ao longo do tempo. Além disso, a eficácia da poda
depende estritamente da adequação da métrica de distância ao espaço métrico, sendo
imperativo verificar se a desigualdade triangular é satisfeita para garantir a corretude dos
resultados.

No que tange à generalização dos achados, os experimentos foram conduzidos sobre
um corpus específico de detecção de fake news no idioma filipino. Consequentemente, a
extensão e a validação desses resultados para outros domínios textuais e línguas diferentes
ainda precisam ser investigadas em profundidade. Outro ponto de atenção é a influência
direta da escolha do compressor tanto na precisão quanto na eficiência do sistema. Isso
exige que o usuário possua conhecimento prévio sobre as características do domínio dos
dados para realizar uma seleção adequada do algoritmo de compressão.

6.3 Trabalhos Futuros

Como direções para pesquisas futuras, pretende-se expandir as avaliações experimentais
para uma variedade maior de domínios textuais e idiomas. O objetivo é investigar a
capacidade de generalização do método proposto e identificar padrões de comportamento
em contextos linguísticos diversos. Além disso, a exploração de estratégias alternativas de
paralelização para a BKTree permanece como um campo aberto. Isso inclui, especifica-

40

mente, a investigação de técnicas para paralelizar também a fase de construção da árvore,
o que representa uma oportunidade significativa de otimização adicional.

Adicionalmente, vislumbra-se a integração de técnicas leves de aprendizado supervisio-
nado ao fluxo de classificação. Abordagens como o ajuste fino de hiperparâmetros baseado
em validação cruzada ou a ponderação adaptativa de vizinhos podem aprimorar ainda mais
a aplicabilidade prática dos métodos baseados em compressão. Por fim, a investigação
de compressores especializados para domínios textuais específicos, bem como a análise de
métodos híbridos que combinem diferentes métricas de similaridade, constituem direções
promissoras para a continuidade deste trabalho.

6.4 Trabalhos Publicados

Conferências Internacionais

• SILVESTRE, A. S. S.; DE SOUZA, B. V.; LISBOA, V. H. F.; BORGES, V. R. P. A
Multi-Label Classification Approach for Categorizing Beginner Program-
ming Problems from Online Judges. In: 2024 IEEE Frontiers in Education
Conference (FIE). IEEE, 2024. p. 1-8. DOI: 10.1109/FIE61694.2024.10893153.

Conferências Nacionais

• SOUZA, B.; FREITAS, P. Efficient Compression-Based Low-resource Text
Classification. In: Anais do XXII Encontro Nacional de Inteligência Artifi-
cial e Computacional (ENIAC). Porto Alegre: SBC, 2025. p. 1797–1808. DOI:
10.5753/eniac.2025.13966.

• SOUZA, B.; SILVESTRE, A.; LISBOA, V.; BORGES, V. Pre-trained Lan-
guage Models for Multi-Label Text Classification of Competitive Pro-
gramming Problems. In: Anais do XXI Encontro Nacional de Inteligência
Artificial e Computacional (ENIAC). Porto Alegre: SBC, 2024. p. 73–84. DOI:
10.5753/eniac.2024.245222.

41

Referências

[1] Sebastiani, Fabrizio: Machine learning in automated text categorization. ACM Com-
puting Surveys, 34(1):1–47, 2002. 1

[2] Shu, Kai, Amy Silva, Suhang Wang, Jiliang Tang e Huan Liu: Fake news detection
on social media: A data mining perspective. ACM SIGKDD Explorations Newsletter,
19(1):22–36, 2017. 1

[3] Sahami, Mehran, Susan Dumais, David Heckerman e Eric Horvitz: A bayesian approach
to filtering junk e-mail. Em Learning for Text Categorization: Papers from the 1998
Workshop, páginas 98–105, Madison, Wisconsin, 1998. AAAI Press. 1

[4] Pang, Bo e Lillian Lee: Opinion mining and sentiment analysis. Foundations and
Trends in Information Retrieval, 2(1–2):1–135, 2008. 1

[5] Vargas, Bruno, Ana Silvestre, Victor Lisboa e Vinicius Borges: Pre-trained language
models for multi-label text classification of competitive programming problems. Em
Anais do XXI Encontro Nacional de Inteligência Artificial e Computacional, páginas
73–84, Porto Alegre, RS, Brasil, 2024. SBC. https://sol.sbc.org.br/index.php/
eniac/article/view/33783. 1

[6] Silvestre, Ana Sofia S., Bruno Vargas De Souza, Victor Hugo F. Lisboa e Vinicius R.
P. Borges: A multi-label classification approach for categorizing beginner programming
problems from online judges. Em 2024 IEEE Frontiers in Education Conference (FIE),
páginas 1–8, 2024. 1

[7] Devlin, Jacob, Ming Wei Chang, Kenton Lee e Kristina Toutanova: Bert: Pre-training
of deep bidirectional transformers for language understanding. Em Proceedings of
NAACL-HLT, páginas 4171–4186, 2019. 1, 6

[8] LeCun, Yann, Yoshua Bengio e Geoffrey Hinton: Deep learning. Nature, 521(7553):436–
444, 2015. 1

[9] Strubell, Emma, Ananya Ganesh e Andrew McCallum: Energy and policy considera-
tions for deep learning in NLP. Em Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, páginas 3645–3650, Florence, Italy, 2019.
Association for Computational Linguistics. 1

[10] Cilibrasi, Rudi e Paul M. B. Vitányi: Clustering by compression. IEEE Transactions
on Information Theory, 51(4):1523–1545, 2005. 1, 6, 9, 10, 12, 22

42

https://sol.sbc.org.br/index.php/eniac/article/view/33783
https://sol.sbc.org.br/index.php/eniac/article/view/33783

[11] Jiang, Zhiying, Matthew Y. R. Yang, Mikhail Tsirlin, Raphael Tang, Yiqin Dai e
Jimmy Lin: "low-resource" text classification: A parameter-free classification method
with compressors. Em Rogers, Anna, Jordan L. Boyd-Graber e Naoaki Okazaki
(editores): Findings of the Association for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, páginas 6810–6828. Association for Computational
Linguistics, 2023. https://doi.org/10.18653/v1/2023.findings-acl.426. 2, 7,
21, 27, 28, 29, 39

[12] Rudin, Cynthia: Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nature Machine Intelligence, 1(5):206–
215, 2019. 2

[13] Burkhard, Walter A. e Robert M. Keller: Some approaches to best-match file searching.
Communications of the ACM, 16(4):230–236, 1973. 3, 13, 22

[14] Salomon, David: Data Compression: The Complete Reference. Springer Science &
Business Media, 4a edição, 2007. 3, 11, 12

[15] Minaee, Shervin, Nal Kalchbrenner, Erik Cambria, Narjes Nikzad, Meysam Chenaghlu
e Jianfeng Gao: Deep learning-based text classification: A comprehensive review. ACM
Computing Surveys (CSUR), 54(3):1–40, 2021. 5

[16] Salton, Gerard, Anita Wong e Chung Shu Yang: A vector space model for automatic
indexing. Communications of the ACM, 18(11):613–620, 1975. 5

[17] Salton, G. e C. Buckley: Term-weighting approaches in automatic text retrieval.
Information Processing & Management, 24(5):513–523, 1988. 5

[18] Cover, T. M. e P. E. Hart: Nearest neighbor pattern classification. IEEE Transactions
on Information Theory, 13(1):21–27, 1967. 6, 7

[19] McCallum, A. e K. Nigam: A comparison of event models for naive bayes text
classification. 1998. Também disponível como technical report; referência clássica
sobre Naive Bayes em texto. 6

[20] Shannon, Claude E.: A mathematical theory of communication. The Bell System
Technical Journal, 27(3):379–423, 1948. 6

[21] Elman, Jeffrey L.: Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
6

[22] Hochreiter, S. e J. Schmidhuber: Long short-term memory. Neural Computation,
9(8):1735–1780, 1997. 6

[23] Cho, Kyunghyun, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi
Bougares, Holger Schwenk e Yoshua Bengio: Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078,
2014. 6

43

https://doi.org/10.18653/v1/2023.findings-acl.426

[24] Kim, Yoon: Convolutional neural networks for sentence classification. Em Proceed-
ings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP), páginas 1746–1751, 2014. 6

[25] Mikolov, Tomas, Kai Chen, Greg Corrado e Jeffrey Dean: Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013. 6

[26] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Łukasz Kaiser e Illia Polosukhin: Attention is all you need. Em Advances
in Neural Information Processing Systems (NeurIPS) / Proceedings, 2017. 6

[27] Levenshtein, V. I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707–710, 1966. 6, 10

[28] Li, Ming e Paul M. B. Vitányi: An Introduction to Kolmogorov Complexity and Its
Applications. Springer, 2nd edição, 1997. 6, 9, 10, 12

[29] Li, M., X. Chen, X. Li, B. Ma e P. M. B. Vitányi: The similarity metric. arXiv
preprint (cs/0111054), 2001. 6, 10

[30] Nala, Vinicius: Modelos ML: Paramétricos x Não-
paramétricos. https://medium.com/@viniciusnala/
modelos-ml-paramÃľtricos-x-nÃčo-paramÃľtricos-0cc68e1a82aa, fev 2024.
Artigo publicado no Medium. Acessado em: 21 de novembro de 2025. 7

[31] Izbicki, Rafael e Tiago Mendonça dos Santos: Aprendizado de máquina: uma abor-
dagem estatística. Publicação Independente, 1a edição, 2020, ISBN 978-65-00-02410-4.
https://rafaelizbicki.com/ame/, Disponível para download gratuito. Acessado
em: 21 de novembro de 2025. 7

[32] Dudani, S. A.: The distance-weighted k-nearest-neighbor rule. IEEE Transactions on
Systems, Man, and Cybernetics, 6(4):325–327, 1976. 7

[33] Fix, Evelyn e Joseph L. Hodges: Discriminatory analysis: Nonparametric discrimina-
tion, consistency properties. Technical Report 21-49-004, USAF School of Aviation
Medicine, 1951. 7

[34] Aha, David W, Dennis Kibler e Marc K Albert: Instance-based learning algorithms.
Machine learning, 6(1):37–66, 1991. 7

[35] Duda, Richard O., Peter E. Hart e David G. Stork: Pattern Classification. Wiley-
Interscience, 2nd edição, 2000. 7

[36] Cohen, William W., Pradeep Ravikumar e Stephen E. Fienberg: A comparison of
string metrics for matching names and records. Em KDD Workshop on Data Cleaning
and Object Consolidation, volume 3, páginas 73–78, Washington, DC, 2003. 8

[37] Levenshtein, Vladimir I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10:707–710, 1966. 9, 13, 28

44

https://medium.com/@viniciusnala/modelos-ml-paramétricos-x-não-paramétricos-0cc68e1a82aa
https://medium.com/@viniciusnala/modelos-ml-paramétricos-x-não-paramétricos-0cc68e1a82aa
https://rafaelizbicki.com/ame/

[38] Wagner, Robert A. e Michael J. Fischer: The string-to-string correction problem.
J. ACM, 21(1):168–173, janeiro 1974, ISSN 0004-5411. https://doi.org/10.1145/
321796.321811. 9

[39] Damerau, Fred J.: A technique for computer detection and correction of spelling errors.
Communications of the ACM, 7(3):171–176, 1964. 9, 10, 28

[40] Christen, Peter: A comparison of personal name matching: techniques and practical
issues. Em Sixth IEEE International Conference on Data Mining - Workshops
(ICDMW’06), páginas 290–294. IEEE, 2006. 9

[41] Jaro, Matthew A.: Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Em JSM Proceedings, Social Statistics Section, 1989.
9, 11, 28

[42] Winkler, William E.: String comparator metrics and enhanced decision rules in the
fellegi–sunter model of record linkage. Relatório Técnico, U.S. Bureau of Census, 1990.
9, 11, 28

[43] Elmagarmid, Ahmed K, Panagiotis G Ipeirotis e Vassilios S Verykios: Duplicate
record detection: A survey. IEEE Transactions on Knowledge and Data Engineering,
19(1):1–16, 2007. 9

[44] White, Simon: How to strike a match: A simple algorithm for string similarity.
http://www.catalysoft.com/articles/StrikeAMatch.html, 2000. Accessed 2025-
05-20. 9, 11, 28

[45] Teahan, William J e David J Harper: Using compression-based language models for
text categorization. Language modeling for information retrieval, páginas 141–165,
2003. 10, 12

[46] Frank, Eibe, Chang Chui e Ian H Witten: Text categorization using compression
models. Em Proceedings of the Conference on Data Compression, página 555, 2000.
10

[47] Cebrian, Manuel, Manuel Alfonseca e Alfonso Ortega: The normalized compression
distance is resistant to noise. IEEE Transactions on Information Theory, 53(5):1895–
1900, 2007. 11, 13

[48] Sayood, Khalid: Introduction to data compression. Morgan Kaufmann, 2017. 11

[49] Ziv, Jacob e Abraham Lempel: A universal algorithm for sequential data compression.
IEEE Transactions on Information Theory, 23(3):337–343, 1977. 11

[50] Welch, Terry A.: A technique for high-performance data compression. Computer,
17(6):8–19, 1984. 11

[51] Cleary, John G. e Ian H. Witten: Data compression using adaptive coding and partial
string matching. IEEE Transactions on Communications, 32(4):396–402, 1984. 12

45

https://doi.org/10.1145/321796.321811
https://doi.org/10.1145/321796.321811
http://www.catalysoft.com/articles/StrikeAMatch.html

[52] Burrows, Michael e David J. Wheeler: A block-sorting lossless data compression
algorithm. Relatório Técnico, Digital Equipment Corporation, 1994. 12

[53] Deutsch, P.: Deflate compressed data format specification version 1.3. Relatório
Técnico, IETF RFC 1951, 1996. 12

[54] Zezula, Pavel, Giuseppe Amato, Vlastislav Dohnal e Michal Batko: Similarity Search:
The Metric Space Approach. Springer Science & Business Media, New York, 2006. 13

[55] Chávez, Edgar, Gonzalo Navarro, Ricardo Baeza-Yates e José Luis Marroquín: Search-
ing in metric spaces. ACM Computing Surveys (CSUR), 33(3):273–321, 2001. 16

[56] Zobel, Justin e Alistair Moffat: Inverted files for text search engines. ACM Computing
Surveys, 38(2):6–56, 2004. 16

[57] Pacheco, Peter S.: An Introduction to Parallel Programming. Morgan Kaufmann,
2011. 16

[58] Flynn, Michael J.: Some computer organizations and their effectiveness. IEEE
Transactions on Computers, C-21(9):948–960, 1972. 17

[59] Hennessy, John L. e David A. Patterson: Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, 6th edição, 2017. 17, 18

[60] OpenMP Architecture Review Board: OpenMP Application Program Interface Version
6.0, November 2024. https://www.openmp.org/specifications/. 17

[61] Chapman, Barbara, Gabriele Jost e Ruud Van Der Pas: Using OpenMP: Portable
Shared Memory Parallel Programming. MIT Press, 2007. 17

[62] Sokolova, Marina e Guy Lapalme: A systematic analysis of performance measures for
classification tasks. Information Processing & Management, 45(4):427–437, 2009. 17

[63] Yianilos, Peter N.: Data structures and algorithms for nearest neighbor search in
general metric spaces. Em Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’93, página 311–321, USA, 1993. Society for Industrial
and Applied Mathematics, ISBN 0898713137. 21

[64] Bentley, J. L.: Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, 1975. 21

[65] Omohundro, Stephen M.: Five balltree construction algorithms. Em International
Computer Science Institute Technical Report, número ICSI TR-89-063, 1989. 21

[66] Cruz, Jan Christian Blaise, Julianne Agatha Tan e Charibeth Cheng: Localization
of fake news detection via multitask transfer learning. Em Proceedings of the 12th
Language Resources and Evaluation Conference, páginas 2596–2604, 2020. 27

[67] Huggingface: Fake news filipino (jcblaise/fake_news_filipino). https://
huggingface.co/datasets/jcblaise/fake_news_filipino, 2020. Accessed: 2025-
05-20. 27

46

https://www.openmp.org/specifications/
https://huggingface.co/datasets/jcblaise/fake_news_filipino
https://huggingface.co/datasets/jcblaise/fake_news_filipino

[68] Alakuijala, Jyrki, Andrea Farruggia, Paolo Ferragina, Eugene Kliuchnikov, Robert
Obryk, Zoltan Szabadka e Lode Vandevenne: Brotli: A general-purpose data compres-
sor. ACM Transactions on Information Systems, 37:1–30, dezembro 2018. 28

[69] Seward, Julian: bzip2: A block-sorting file compressor. Source code and documentation,
1996. Released July 1996; official site: https://www.bzip.org/. 28

[70] Gailly, Jean-loup e Mark Adler: gzip: Gnu file compression utility. Software and
format specification, 1992. Initial release 31 October 1992; official site: https:
//www.gnu.org/software/gzip/. 28

[71] Gailly, Jean-loup e Mark Adler: zlib: A lossless data compression library. Software
library and documentation, 1995. First released May 1, 1995; official site: https:
//zlib.net/. 28

[72] Collet, Yann: Zstandard (zstd): A fast lossless compression algorithm. Reference
C implementation and specification, 2016. First released August 31, 2016; format
standardized in IETF RFC 8878 (February 2021); official site: https://facebook.
github.io/zstd/. 28

[73] Avaneev, Dmitry: LZAV: Fast in-memory lz77-based data compressor (header-only
c/c++). GitHub repository, 2023. Available at https://github.com/avaneev/lzav,
with performance around 480 MB/s compression and 2800 MB/s decompression
:contentReference[oaicite:1]index=1. 28

[74] Lehmann, Marc A.: LibLZF: A very small and fast lz77-based compression library.
Project homepage, 2008. Last updated August 25, 2008; BSD-style license; official
site: https://oldhome.schmorp.de/marc/liblzf.html. 28

[75] Reinhold, Lasse Mikkel: QuickLZ: A very fast lz compression library. Official website
and source code, 2011. Described as the world’s fastest compression library (308
MB/s); original C version v1.5.0 available at http://www.quicklz.com/, and ports
in Go and Rust exist :contentReference[oaicite:1]index=1. 28

[76] Schramm, Christian: shoco: A fast compressor for short strings. GitHub repository,
2015. C library optimized for very short strings; MIT license; https://github.com/
Ed-von-Schleck/shoco. 28

[77] Dean, Jeff, Sanjay Ghemawat e Steinar H. Gunderson: Snappy: A fast com-
pressor/decompressor. Software library, 2011. Open-sourced by Google; C++
implementation with 250MB/s compression, 500MB/s decompression; https:
//google.github.io/snappy/. 28

[78] Boncz, Peter, Thomas Neumann e Viktor Leis: FSST: Fast static symbol table
string compression. CWI / research publication and GitHub, 2019. Lightweight
random-access string compression; https://github.com/cwida/fsst. 28

[79] Sanfilippo, Salvatore: Smaz: Small string compression library. GitHub repository,
2012. Compresses very short strings (e.g. the → 1 byte); BSD-3; https://github.
com/antirez/smaz. 28

47

https://www.bzip.org/
https://www.gnu.org/software/gzip/
https://www.gnu.org/software/gzip/
https://zlib.net/
https://zlib.net/
https://facebook.github.io/zstd/
https://facebook.github.io/zstd/
https://github.com/avaneev/lzav
https://oldhome.schmorp.de/marc/liblzf.html
http://www.quicklz.com/
https://github.com/Ed-von-Schleck/shoco
https://github.com/Ed-von-Schleck/shoco
https://google.github.io/snappy/
https://google.github.io/snappy/
https://github.com/cwida/fsst
https://github.com/antirez/smaz
https://github.com/antirez/smaz

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Justificativa
	Objetivos
	Hipótese de Pesquisa
	Organização da Monografia

	Fundamentação Teórica
	Classificação de Textos
	Algoritmo dos K-vizinhos mais Próximos
	Métricas de Similaridade para Strings
	Distâncias Empregadas e Breve Descrição
	Distância de Compressão Normalizada (NCD)
	Observações Comparativas e Critérios para Experimentos

	Compressores
	Compressão sem Perdas
	Tipos de Compressores
	Impacto Prático

	BKTree e Buscas em Espaços Métricos Discretos
	Construção da Árvore
	Processo de Busca
	Complexidade e Aplicabilidade

	Computação Paralela
	Taxonomia de Flynn
	Programação com OpenMP

	Métricas e Comparação de Eficiência
	Speedup Relativo
	Speedup Paralelo e Eficiência

	Solução Proposta
	Estruturação do Espaço de Busca
	Limitações de Árvores Espaciais Tradicionais
	Adoção da BKTree para Espaços Métricos Discretos

	Modelo de Processamento Paralelo

	Metodologia
	Implementação e Construção da BKTree
	Orquestração da Busca Paralela
	Mecanismos de Sincronização e Poda

	Experimentos
	Configuração Experimental
	Conjunto de Dados e Pré-processamento
	Métodos e Compressores
	Ambiente e Reprodutibilidade

	Resultados Experimentais
	Desempenho de Predição
	Relação entre Desempenho e Eficiência
	Speedup e Escalabilidade
	Observações por Compressor
	Sumário dos Resultados

	Conclusão
	Síntese dos Resultados
	Limitações e Considerações
	Trabalhos Futuros
	Trabalhos Publicados

	Referências

