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1 Resum o

Este trabalho tem  como objetivo investigar e aplicar métodos de estimação para 
o modelo autorregressivo com memória variavel (AR-MV), que permite que a ordem do 
modelo dependa do valor anterior da serie. A partir de um a formulacao geral do modelo 
AR-MV(p), são propostas abordagens para a estimacao dos limiares e coeficientes por meio 
de um algoritmo iterativo que combina o metodo de k-medias com mínimos quadrados 
condicionais. As propriedades do processo de estimaçcãao sãao avaliadas por meio de estudos 
de simulaçao e medidas de desempenho, considerando criterios como AIC, BIC, MAE e 
MAPE. Adicionalmente, realiza-se um a comparacao com modelos AR tradicionais. Por 
fim, o metodo proposto e aplicado a um a serie tem poral real de tem peraturas medias 
mensais de Brasília (2001-2024), evidenciando sua capacidade de recuperar parâmetros 
adequados. Os resultados m ostram  que os modelos AR-MV ajustados a partir do processo 
de estimacçãao desenvolvido apresentam desempenho superior aos modelos AR tradicionais, 
destacando a eficácia da metodologia proposta.

P a lav ra s-ch av e : modelos autorregressivos; memoria variavel; estimaçao de limiares; 
series temporais; modelos de regime.
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2 A bstract

Resumo

This work aims to investigate and apply estimation methods for the autore- 
gressive model with variable memory (AR-MV), which allows the model order to 
depend on the previous value of the series. Based on a general formulation of the 
AR-MV(p) model, we propose approaches for estimating thresholds and coefficients 
through an iterative algorithm that combines the k-means method with conditi- 
onal least squares. The estimation procedure’s properties are evaluated through 
simulation studies and performance metrics, using criteria such as AIC, BIC, MAE, 
and MAPE. Additionally, a comparison with traditional AR models is performed. 
Finally, the proposed method is applied to a real monthly time series of average 
temperatures in Brasília (2001-2024), demonstrating its ability to recover suitable 
parameters. The results show that AR-MV models fitted using the proposed esti­
mation process outperform traditional AR models, highlighting the effectiveness of 
the proposed methodology.

Keywords: autoregressive models; variable memory; threshold estimation; time 
series; regime-switching models.
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3 Introdução

O estudo de séries temporais tem  como principal objetivo modelar o com porta­
mento de um a variavel ao longo do tempo, diferenciando o que e aleatoriedade do que 
constitui informaçao util para o modelo. Isso perm ite realizar inferências sobre a variavel 
em estudo.

Em 1970, o metodo de Box e Jenkins formalizou técnicas para modelar, diag­
nosticar e prever series temporais. Esse metodo introduziu os modelos autorregressivos 
integrados de medias moveis (ARIMA), que sao lineares e deram origem a modelos deri­
vados, como o Autorregressivo (AR) e o de Medias Moveis (MA).

No entanto, com o tempo, percebeu-se que esses modelos lineares frequentemente 
nao eram suficientes para descrever todos os comportamentos observados, especialmente 
em series financeiras. Essas series apresentavam variância nao constante ao longo do 
tempo (heterocedasticidade), o que comprometia os resultados obtidos pelos modelos li­
neares. Para lidar com essa limitacao, surgiram os modelos nao lineares ARCH e GARCH, 
cujo objetivo e modelar dados considerando a variâancia condicional.

Com o avanco dos modelos nao lineares, surgiu o modelo TAR (Threshold Auto- 
regressive), mencionado por Tong (1977) pela primeira vez. Esse modelo segmenta proble­
mas nao lineares em partes lineares, utilizando um a variavel indicadora chamada limiar. 
A motivacao para o desenvolvimento do TAR veio da necessidade de modelar fenômenos 
complexos que ainda não podiam  ser descritos adequadamente por outros metodos, como 
no caso estudado por Tong, envolvendo a quantidade de linces capturados no noroeste 
do Canada. O modelo SETAR (Self-Exciting Threshold Autoregressive Model), derivado 
dos modelos TAR, foi estudado por Tong e Lim (1980). Nesse modelo, a ideia central e 
que a variavel que define o limiar seja uma função da defasagem da própria variavel.

Posteriormente, o modelo AR-MV (Autorregressivo de Memoria Variavel) foi 
proposto por Fadel (2012) como um caso particular do modelo SETAR. Nesse modelo, 
a ordem da cadeia autorregressiva depende do intervalo em que o primeiro antecessor 
Yt -1  se encontra, de acordo com um parâm etro a  que define esses intervalos. Em Fadel 
(2012), a autora discute propriedades im portantes, como a ergodicidade do modelo, a 
estimacao de parâmetros, intervalos de confiança e metodos de previsao. Tais aspectos 
foram avaliados por meio de estudos simulados, nos quais o modelo AR-MV foi comparado 
a outros modelos da classe AR. O foco principal foi na analise dos modelos AR-MV(2) e 
AR-MV(3).

Essa classe de modelos tam bem  foi estudada por Loureiro (2018), que analisou 
os aneis de crescimento de arvores como forma de estim ar a idade das plantas. O autor 
buscou avaliar a propriedade de ergodicidade identificada por Fadel (2012) e conduziu
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estudos simulados com os modelos AR-MV(4) e AR-MV(5).

Na dissertacao de Rangel (2020), o autor apresentar um estudo sistematico dos 
modelos AR-MV de ordem 2 a 5. Alem disso ele calcula a log-verossimilhança máxima 
de cada ajuste e compara os criterios AIC e BIC, identificando o modelo que melhor se 
ajusta  aos dados.

Este trabalho tem  como objetivo principal o estudo aprofundado dos modelos 
autorregressivos com mudancas de regime (AR-MV), com enfase na estimaçao conjunta da 
ordem do modelo, dos limiares que definem os regimes e dos coeficientes autorregressivos 
associados, a partir exclusivamente dos dados observados. Alem disso, investiga-se a forma 
de realizar essa estimacão conjunta e a eficiencia do procedimento adotado.

Para validar a abordagem proposta, realizam-se estudos de simulacão nos quais 
os parâm etros verdadeiros sao conhecidos, permitindo verificar a capacidade do metodo 
de recupera-los adequadamente. Em seguida, os modelos sao aplicados a um a serie real 
de tem peratura media diaria registrada em Brasília no período de 2001 a 2024, prove­
niente de dados meteorológicos do INMET (Instituto Nacional de Meteorologia). Essa 
serie apresenta características de variabilidade que tornam  particularm ente relevante a 
consideracão de mudancas de regime, como padroes sazonais, tendencias de longo prazo 
e flutuacães de curta duracao.

A motivacao para a aplicacão dos modelos AR-MV em dados climaticos reside na 
necessidade crescente de ferramentas estatísticas capazes de capturar e prever com porta­
mentos complexos e nao lineares, especialmente em um contexto de mudancas climaticas 
globais. Compreender como diferentes regimes de variabilidade termica se estruturam  ao 
longo do tempo pode fornecer conhecimentos valiosos para tom ada de decisãao em íareas 
como agricultura, energia, saude e gestao de recursos hídricos. Assim, este trabalho visa 
contribuir para o desenvolvimento m etodolígico dos modelos AR-MV e para sua aplicacao 
em contextos prâticos de grande relevância.
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4 Fundam entação Teórica
j»

4.1 Processos Estocasticos

Os modelos utilizados para descrever séries temporais sao processos estocásticos, 
ou seja, processos controlados por leis probabilísticas, conforme descrito por M orettin e 
Toloi (2006). A seguir, apresentamos a definiçao de processos estocasticos proposta pelos 
autores.

D efin icao  1 Seja T  um conjunto arbitrário. Um processo estocástico e uma família 
Y  =  {Y (t) ,  t E T } tal que, para cada t E T , Y ( t)  e uma variavel aleatória.

Um processo estocástico pode ser definido como um a família de variaveis aleatórias 
(v.a.) estabelecidas em um mesmo espaço de probabilidade (Q, A, P ). O conjunto de 
índices T  geralmente e considerado como o conjunto dos inteiros T  =  {0, ±1, ± 2 , . . .}  ou
o subconjunto dos reais R. Para cada t E T , a variavel Y(t) e um a v.a. real, e o conjunto 
de valores {Y(t), t E T } define o espaco dos estados S do processo, sendo os valores 
individuais de Y (t) denominados estados. Alem disso, o processo Y =  {Y(t), t E T } 
esta completamente caracterizado quando sao conhecidas todas as distribuições finito- 
dimensionais associadas, descritas por

F  (yi, . . . , y n ,  ti  , . . . , t n )  = P  {Y (ti) <  y i , . . . , Y  (tn) < yn} , com y  E R, ti E T.

4.1 .1  P ro ce sso s  E s ta c io n á rio s

Os conceitos de estacionariedade estrita  e estacionariedade fraca serõao apresen­
tados conforme a definicõo de M orettin e Toloi (2006).

D efin içao  2 Um processo estocastico Y  =  {Y(t), t E T } diz-se estritamente estacionario 
se todas as distribuições finito-dimensionais permanecem as mesmas sob translações no 
tempo, ou seja,

F  ( y i , . . .  , yn, ti  +  t , . . .  ,tn  +  t  ) =  F  ( y i , . . . , y n  t i , . . . , t n )

para quaisquer t i , . . . ,  tn , t  E T  e yi E R

Nesse contexto, o parâm etro t representa um deslocamento (ou translacao) no 
eixo temporal. A definiçõo afirma que a distribuicao conjunta das variaveis Y( t i ) , . . . ,  Y (tn)
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não se altera quando todos os instantes de tempo t i sao deslocados por um a mesma quan­
tidade t . Isso implica, em particular, que todas as distribuiçães unidimensionais sao 
invariantes sob translaçães no tempo. Consequentemente, a media | ( t )  e a variancia V(t) 
sao constantes, isto e,

l ( t )  =  | ,  V(t) =  a 2, para todo t E T.

D efin ição  3 Um processo estocastico Y  =  {Y (t), t E T } diz-se fracamente estacionário, 
ou estacionário de segunda ordem (ou em sentido amplo), se e somente se

(i) E[Y(t)] =  | ( t )  =  | ,  constante, para todo t E T ;

(ii) E[Y2(t)] <  to , para todo t E T ;

(iii) y ( t1, t 2) =  Cov(Y (t1), Y (t2)) depende apenas da defasagem |t1 —121 para todo t i E T

4 .1 .2  E rg o d ic id ad e

Conforme definido por Bueno (2011), um processo ergodico pode ser descrito da 
seguinte forma:

D efin icão  4 Um processo fracamente estacionario e ergodico para o primeiro momento  
se

t= 1 s=1

em que Y (s) representa a media temporal da s-esima realizaçao do processo, e p  lim indica 
convergência em probabilidade.

Isso significa que a media amostral converge em probabilidade para o valor es­
perado populacional. Dessa forma, mesmo com apenas um a realizacao do processo, e 
possível obter um a estimativa consistente da míedia.

D efin icão  5 Um processo fracamente estacionario e ergodico para o segundo momento  
se

1 T
1 P

^ — 2 ^ (Yt — l )(Yt- j  — lA Yj, para todo j, 
j  t= 1

P
em que - ^  denota convergencia em probabilidade.

A funcao Yj representa a autocovariância teárica do processo com defasagem j ,  
definida como Yj =  Cov(Yt , Yt - j ) =  E[(Y — l ) ( Y t - j — |) ] .  Em um processo fracamente
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estaçionário, essa funçao depende apenas da defasagem j  e nao do tem po absoluto t, re­
fletindo a estru tura de dependençia temporal do proçesso. A ergodiçidade para o segundo 
momento garante que essa autoçovariançia possa ser estim ada de forma çonsistente çom 
base em uma ániça realizaçao do proçesso.

4 .1 .3  R u íd o  B ra n co

D efin ição  6 (M ORETTIN; TOLOI, 2006) Dizemos que {et , t G Z} á um ruído branco 
discreto se as variáveis aleatórias et são não correlacionadas, isto e,

Cov(et , es) =  0, para t = s.

Um proçesso de ruído branço sera estaçionario se satisfizer 

E[et] =  e Var(et) =  a 2, para todo t G Z.

Neste trabalho, assumiremos sem perda de generalidade que =  0. Assim, 
indiçamos brevemente

et ~  RB(0, aj).

Alem disso, se as variaveis et forem independentes e identiçamente distribuídas 
(i.i.d.), entao o proçesso e denominado puramente aleatório. Neste çaso, esçrevemos

et ~  i.i.d. (0, aj2).

4.2 M odelos de Series Temporais

Nesta seçao, revisamos os prinçipais modelos de series temporais çlassiços, çujas 
definições e propriedades seguem de forma detalhada em M orettin e Toloi (2006). Ini- 
çialmente, definimos o modelo AR(p), em que a observaçao presente e expressa çomo 
çombinaçao linear de p defasagens do proçesso mais um termo de erro nao çorrelaçionado. 
Na sequençia, introduzimos o modelo MA(q), no qual a serie e representada çomo soma 
ponderada de q çhoques passados. A çombinaçao destes dois paradigmas da origem ao mo­
delo ARMA(p, q), que çapta simultaneamente dependençias autorregressivas e de media 
movel. Por fim, disçutimos a generalizaçao ARIMA(p, d, q), que inçorpora diferençiação 
de ordem d para lidar çom nao-estaçionariedade na media. Em seguida, apresentam-se 
as funçoes de autoçorrelaçao (FAC) e de autoçorrelaçao parçial (FACP), instrumentos
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fundamentais para identificar padroes de dependencia em series temporais, e introduz- 
se o metodo Box-Jenkins, que estru tura em três etapas — identificaçao, estimacao e 
diagnostico — o processo de modelagem ARIMA.

4.2 .1  M o d elo s  A u to -R e g re ss iv o s  (A R )

(MORETTIN; TO LO I, 2006) Considere a representacão geral de um processo 
auto-regressivo infinito, dada por

em que {at} e um ruído branco com media zero e variância constante, e nj são os coefici­
entes da representaçcãao auto-regressiva.

Dizemos que o processo e um modelo auto-regressivo de ordem p, denotado por 
AR(p), quando nj =  0 para todo j  > p. Nesse caso, a representação infinita se reduz a 
um a forma finita

em que renomeamos os coeficientes nj como 0 j , para j  =  1, . . .  ,p, segundo a notação 
usual

em que B  e o operador defasagem (backshift), ta l que B Y t =  Yt - 1 .

4 .2 .2  M o d elo s  A u to -R e g re ss iv o s  de  M ed ia s  M oveis (A R M A )

(MORETTIN; TO LO I, 2006) Para muitas series temporais encontradas na pratica,
o uso exclusivo de modelos auto-regressivos ou de medias moveis pode exigir um  numero 
elevado de parâmetros. Nesse contexto, a combinacão de ambos os componentes repre­
senta um a alternativa eficaz para modelagem, resultando nos chamados modelos ARMA(p, q).

(4.2.1)

Yt =  01 Yt- 1 +  0 2Yt-2 +  ' ' ' +  0pYt-p +  a t. (4.2.2)

0j , se 1 <  j  <  P , 

0 , se j  > p.

Se definirmos o operador auto-regressivo estacionário de ordem p  como

0 (B ) =  1 -  0 1B -  02B 2 --------- 0pB p, (4.2.3)

entãao o modelo pode ser reescrito de forma compacta como

0(B  )Yt =  at, (4.2.4)
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A forma geral de um modelo ARMA de ordem (p, q) e dada por

Yt =  01Yt-1 +  ' ' ' +  fipYt-p +  Ot — Ô1Ot-1 — ■ ■ ■ — ÔgOt-q, (4.2.5)

• E R, para j  = 1, . . .  ,p: coeficientes auto-regressivos;

• Ôj E R, para j  =  1 , . . . ,  q: coeficientes de media movel;

• {ot} e um ruído branco com E(ot) =  0 e Var(ot) =  a^.

Utilizando os operadores de defasagem, definimos

$ ( B ) =  1 -  0 1B -  0 2B 2 --------- 0pB p, (4.2.6)

Ô(B) =  1 -  Ô1B -  Ô2B 2 --------- ÔqB q. (4.2.7)

Dessa forma, o modelo ARMA(p, q) pode ser escrito de maneira compacta como

<j>(B)Yt =  Ô(B )ot. (4.2.8)

4 .2 .3  M o d elo s  A u to -R e g re ss iv o s  In te g ra d o s  de  M éd ia s  M oveis (A R IM A )

Considere um processo {Yt} que nao seja estacionario. Definimos o operador de 
diferençca como

AYt =  Yt -  Yt-1 e, de modo recursivo, A dYt =  A (A d-1Yt) (d > 1).

Se a d-esima diferença do processo, denotada por W t =  A dYt , for estacionaria, então W t 
pode ser representado por um modelo ARMA(p, q), isto e

0(B ) Wt =  Ô(B) Ot, (4.2.9)

com 0(B ) e Ô(B) sendo os polinomios auto-regressivo e de medias moveis em B, e {ot} ~
RB(0,aa).

Como Wt =  A dY;, o processo Yt pode ser descrito por um modelo autorregressivo 
integrado de medias moveis, ou ARIMA(p, d, q), cuja equacao e:

0 (B )A dYt =  Ô(B) Ot, (4.2.10)

ou, equivalentemente,
^ (B ) Yt =  Ô(B) Ot, (4.2.11)
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em que
p(B ) =  0(B ) (1 -  B )d

e um polinômio auto-regressivo de ordem p + d com d raízes unitarias (no círculo unitario). 

Diz-se que Yt segue um modelo ARIMA(p, d, q) se

• p e a ordem da parte autorregressiva;

• d e o numero de diferenciacães necessárias para tornar o processo estacionario;

• q e a ordem da parte de media móvel.

Na pratica, costuma-se usar d =  0,1 ou 2, suficientes para capturar os principais 
tipos de nãao-estacionariedade

(a) Náo-estácionáriedáde em nível: oscilacoes em torno de níveis medios distintos ao 
longo do tempo;

(b) Náo-estácionáriedáde em inclinação: presenca de tendencia persistente de alta ou

Quando d =  0, o ARIMA(p, 0, q) reduz-se ao processo estacionario ARMA(p, q).

4 .2 .4  F u n ção  de  A u to c o v a r iâ n c iá  (FA C )

Seja {Yt , t E Z} um processo estocastico real, discreto e estritam ente estacionario, 
com media nula, isto e, E[Yt] =  0 para todo t E Z. A função de autocovariôncia (FACV) 
e definida como

A FACV mede o grau de dependencia linear entre valores do processo separados 
por um a defasagem t , e satisfaz as seguintes propriedades

4. e nao negativamente definida, no sentido de que, para quaisquer inteiros t i ,  . . . ,  Tn E 
Z e quaisquer numeros reais a1, . . . ,  an , n > 1, vale:

baixa.

Yt =  E[YtYt+r], t  E Z.

1. Yo >  0;

2. y- t =  Yr (simetria);

3. 1 Yr 1 <  Yo;

n n

j = 1 k= 1



Fundam entação Teoricã 15

Alem disso, e comum que a FACV de um processo estacionario convirja para zero 
quando |t | ^  ro, refletindo a perda de dependencia linear ao longo do tempo.

4 .2 .5  F u n cao  de  A u to c o rre la c a o

A funcao de autocorrelacao (FAC) do processo e obtida pela normalizacao da 
autocovariancia pela variancia do processo, sendo definida como

pT =  — , t G Z.
Yo

A FAC possui as mesmas propriedades estruturais da FACV, com a diferença de 
que agora

p0 =  1, e |pT| <  1 para todo t G Z.

4 .2 .6  F u n cão  de  A u to c o rre la c a o  do  m o d e lo  A R (p )

M ultiplicando ambos os lados da equaçao do modelo AR(p) (4.2.2),

Yt =  0 iYt - i  +  0 2 Yt- 2 +  ■ ■ ■ +  0pYt-p +  at , 

por Yt- j e tomando a esperança, obtemos

E  (YtYt-j) =  0i E  (Yt-iYt- j ) +  02 E  ( Y - 2Y— ) +  ••• +  0p E  (Y— Y - j ) +  E  (a Y — ).

Como at e ruído branco e não e s tí  correlacionado com Yt- j para j  > 0, tem-se

E  (a tYt-j) =  0.

Logo, a funcao de autocovariância Yj =  Cov(Yt ,Y t - j ) satisfaz a equaçao de re- 
corrâencia

Yj =  0iY j-i +  02Yj-2 +------- + 0pYj-p, para j  >  0. (4.2.12)

Dividindo por y0 =  Var(Yt), obtemos a funcão de autocorrelacao

Pj =  0 iP j-i +  02Pj-2 +------- + 0pPj—p, para j  >  0. (4.2.13)

Para j  =  0, temos:

Yo =  0iYi +  02 Y2 +------- + 0pYp +  cl,
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e çomo Y- j =  Yj , resulta que:

1 =  0 lPl +  0 2P2 +  ' ' ' +  0pPp + a,
Yo

(4.2.14)

ou, equivalentemente:

Var(Yt) =  Yo
a

1 — 0 iPi — ■ ■ ■ — 0pPp
(4.2.15)

As equaçoes da FAC para j  =  1, 2 , . . .  ,p, çonheçidas çomo equaçoes de Yule- 
Walker, são

Pi =  0 i +  0 2Pi +  ■ ■ ■ +  0p Pp-1,

P2 =  0 iPi +  0 2 +  ■ ■ ■ +  0p Pp-2,

Pp =  0 iPp-i +  0 2Pp-2 +  ■ ■ ■ +  0p. 

Em forma matriçial, podemos esçreve-las çomo

(4.2.16)

(4.2.17)

(4.2.18)

(4.2.19)

1 Pi ■ ■ Pp-i 0 i Pi
Pi 1 ■ ■ Pp-2 0 2 = P2

Pp-i Pp- 2 ■■ ■ 1 _<Pp_ Pp

Os çoefiçientes 0 i , . . . ,  0p do modelo AR(p) podem ser estimados substituindo-se 
as autoçorrelaçães Pj por suas estimativas amostrais r j , çonforme definido anteriormente.

4 .2 .7  F u n ção  de  A u to ç o rre la ç a o  do  m o d e lo  A R M A

M ultipliçando ambos os membros da equaçao do modelo ARMA(p, q) (4.2.5)

=  0 iZ t - i  +  ■ ■ ■ +  0pZt-p +  ãt — Oiãt- i  — ■ ■ ■ — Bq ãt-q, 

por Z t- j e tomando a esperança, obtemos

Yj =  E ( Z tZ t - j ) =  E ^ i Z t - i + ãt 'y ]Okãt-k i Z t- j  
k=iA=i
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Desenvolvendo a expressão, temos

Yj =  0 1Yj-1 +  02Yj —2 +  ■ ■ ■ +  0pYj-p  +  YZa(j) — #1 YZa(j — 1) — ■ ■ ■ — 9q YZa(j — q )

Sabemos que Zt—j depende apenas de choques anteriores a at ate o tem po t — j .
Assim

Portanto, para j  >  q, a equaçao da funçao de autocovariancia se reduz a

Yj =  01 Yj —1 +  0 2Yj - 2 +  ■ ■ ■ +  0pYj -p , j  > q,

o que m ostra que, a partir da defasagem j  =  q +  1, a funçao de autocovariância segue a 
mesma estru tura de um modelo AR(p).

A funcao de autocorrelação (FAC) e então obtida como

Pj =  0 1pj-1 +  0 2pj-2 +  ■ ■ ■ +  0ppj - p , j  > q,

m ostrando que as autocorrelacoes de defasagens j  =  1 , . . . ,  q sao diretamente influenciadas 
pelos parâmetros de medias moveis. Para j  >  q, as autocorrelacães comportam-se como 
nos modelos auto-regressivos, caracterizando a natureza m ista do modelo ARMA.

4 .2 .8  F u n ção  de  A u to c o rre la c a o  P a rc ia l (F A C P )

Box e Jenkins (1970) propõem a utilizacao de um instrum ento adicional no pro­
cedimento de identificacão de modelos de series temporais: a funcao de autocorrelação 
parcial (FACP). Essa funçao e util para determ inar a ordem apropriada de modelos au- 
toregressivos (AR), de medias moveis (MA) ou ARMA, a partir do comportamento das 
autocorrelaçcoães observadas.

Seja 0 kj o j-esimo coeficiente estimado por mínimos quadrados de um modelo 
AR(k), e 0 kk o ultimo coeficiente estimado. Então, a funçao de autocorrelação parcial e 
definida como:

0 kk =  ultimo coeficiente do modelo AR(k).
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Sabemos que os coeficientes (f)kj satisfazem as equações de Yule-Walker:

Pj =  (fk1 Pj - 1  +  (fk2 Pj—2 +  ■ ■ ■ +  (fkk Pj -k, j  = 1, . . . , k , 

das quais obtemos o seguinte sistema linear:

1
-1kP2PP11

1 1 f 1
1

P1

2 - k P P1 
. 

1 P1 2kf(

= P2

_Pk-1 Pk-2 ' ' ' P1 1 (f kk Pk

Resolvendo esse sistema sucessivamente para k =  1, 2, 3 , . . . ,  obtemos

(f 11 =  P1 ,

(f 22

(f 33

II 1 P1
III P1 P2 P2 -P 1
III 1 P1 1 -~P21

II P1 1

III 1 P1 P1

III P1 1 P2
I P2 P1 P3

III 1 P1 P2

III P1 1 P1
I P2 P1 1

De forma geral, tem-se
T>* IP k |
P k | ’

onde P k e a matriz de autocorrelacoes de ordem k e Pk e a matriz obtida substituindo a 
ultim a coluna de P k pelo vetor \p1, p2, . . . ,  pk] T.

A função (fkk, encarada como função de k, e a chamada função de autocorrelação
parcial.

(f kk =

4 .2 .9  M e to d o  d e  B ox  e J e n k in s

Segundo M orettin e Toloi (2006) um a metodologia bastante utilizada na analise 
de modelos parametricos e conhecida como abordagem de Box e Jenkins (1970). Tal 
metodologia consiste em ajustar modelos auto-regressivos integrados de medias moveis,
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ARIMA(p, d,q),  a um conjunto de dados.

A estrategia para a construcao do modelo sera baseada em um ciclo iterativo, no 
qual a escolha da estru tura do modelo e baseada nos proprios dados. Os estágios do ciclo 
iterativo sao

(a) um a classe geral de modelos e considerada para a análise (especificacõo);

(b) ha identificaçao de um modelo, com base na análise de autocorrelações, au- 
tocorrelaçoes parciais e outros criterios;

(c) a seguir vem a fase de estimacõo, na qual os parâm etros do modelo identificado 
sao estimados;

(d) finalmente, ha a verificaçao ou diagnostico do modelo ajustado, atraves de 
um a analise de resíduos, para se saber se este e adequado para os fins em vista (previsao, 
por exemplo).

Caso o modelo nõo seja adequado, o ciclo e repetido, voltando-se a fase de iden- 
tificacao. Um procedimento que muitas vezes e utilizado e identificar nao so um unico 
modelo, mas alguns modelos que serao entao estimados e verificados. Se o proposito e 
previsõo, escolher-se-a entre os modelos ajustados o melhor, por exemplo, no sentido de 
fornecer o menor erro quadratico medio de previsao.

4.3 M odelo TAR (Threshold Autoregressive)

Os modelos autorregressivos com limiar (TAR) surgiram da necessidade de des­
crever series temporais que exibem comportamentos nao lineares e mudancas de regime, 
eventos em que a dinamica do processo muda de acordo com o nível da propria serie. Essa 
abordagem perm ite capturar assimetrias, ciclos limites e respostas distintas a inovacçoões 
de acordo com a regiõo do espaco de estados em que o sistema se encontra (TONG, 1978).

Seja {Yt}teZ um a serie tem poral de variáveis aleatorias com valores em R. Defi­
nimos (TONG; LIM , 1980):

•  l  E N, numero de regimes.

•  Limiares { a j }i=0 tais que

— ̂  =  ao <  a i <  ■ ■ ■ <  a i - i  <  ai  =  + ro , a j  E R.

• Atraso de transiçõo d E N+, indicando que o regime em t e determinado por Yt-d.

•  Ordens autorregressivas por regime pj E N0, para j  = 1, . . .  ,l.
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•  Coeficientes regime-dependentes 0j,o E R (intercepto) e j  E R, i =  1 , . . .  , pj .

•  Ruído branco {et }teZ com E[et] =  0, Var(et) =  aj2 <  w  quando no regime j .

O modelo TAR com l  regimes escreve-se, para todo t E Z, como (??):

Aqui cada regime j  aplica-se sempre que Yt-d cai no intervalo (a j-1 , a j ].

4.4 M odelo SETAR (Self-Exciting Threshold Autoregressive)

O modelo SETAR constitui um a instancia particular de TAR em que a própria 
serie determ ina autom aticam ente as transicoes de regime, tornando explícita a relaçao 
entre inovações passadas e mudancas na dinâmica do processo. Graças à sua formulacão 
simples e interpretavel, o SETAR e amplamente adotado para capturar regimes auto- 
induzidos (TSAY, 1989).

Neste caso, consideramos um único limiar a  E R e dois regimes (l =  2). Defini­
mos:

i=1

• Serie {Yt}tez C R.

• Limiar único a  E R e atraso d E N+.

• Ordens p 1,p2 E N0 para regimes baixo (j =  1) e alto (j =  2).

• Coeficientes 0j,o E R e j  E R, i =  1 , . . .  ,p j .

•  Ruídos {£(j'}  regime-dependentes, com E[£j '] =  0, Var(eÍj') =  a j  <  w .

No SETAR de dois regimes e atraso d, para cada t (??):

p i
00 ' +  ^  ] 0Í ' Yt-i +  £Í ' , se Yt-d < ^

Yt i=1 P 2

4.5 M odelo AR-M V(p)

O modelo AR-MV(p), tambem conhecido como modelo autorregressivo com memoria 
variavel, proposto por Fadel (2012) e um a extensao do modelo SETAR com profundidade
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de defasagem d =  1 e variaçao de coeficientes dependente de estados definidos por limia­
res. Nesse modelo, os coeficientes autorregressivos variam conforme o valor da observaçcãao 
passada Yt-1 , o que confere flexibilidade para capturar diferentes dinômicas em distintos 
regimes.

A forma geral do modelo AR-MV(p) e dada por

Lt
Yt =  <fiiYt-i +  et,

i= 1

em que {et} e uma sequencia de ruídos brancos independentes e identicamente distribuídos 
com distribuiçao Normal(0, a 2), e et e independente de Yt-s para todo s > 1.

A variavel Lt , que determ ina a quantidade de defasagens em cada instante t, e 
definida conforme a seguinte regra

f

1 se a 0 <  Yt -1  < a 1,

2 se a 1 <  Yt -1  < a 2,L t =  -

p  se a p -1  < Yt -1  < ap,<

com os limiares {a 0, a 1, . . . ,  a p} obedecendo as condições

a 0 =  — x>, ap =  w .

Esses limiares definem uma partiçao do conjunto dos numeros reais 

p-1
R =  |^J A j , com Aj  =  ( a j , a j+1], j  =  0 , 1 , . . .  ,p — 1. 

j=o

Esse modelo permite que a estru tura autorregressiva se adapte dinamicamente 
ao comportamento da serie temporal, tornando-o particularm ente util para capturar mu- 
dançcas de regime.

4 .5 .1  E rg o d ic id á d e  do  M o d e lo  A R -M V

Segundo Fadel (2012), o modelo AR-MV(p) sera geometricamente ergodico sob a 
seguinte condicão

P ro p o s ic á o  4.1 S e J^P ^  |0i | <  1, então o modelo AR-MV(p) e geometricámente ergodico.
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A demonstração dessa proposição baseia-se na reescrita do modelo em função de 
um a transformação da equação (3.1) e na aplicaçao de resultados clássicos sobre processos 
estocasticos com memária. Para o desenvolvimento completo da prova e argumentos 
formais, consulte Fadel (2012, Capitulo 3).

4 .5 .2  E s tim a c a o  do  M o d e lo  A R -M V  com  a  co n h ec id o

No caso em que a  e conhecido, sob o modelo AR-MV(p), os estimadores de 
mínimos quadrados condicionais (CLS) e de maxima verossimilhança para 0  =  (0i , . . . ,  0p) 
são equivalentes e dados por:

0 (a )  =  ( v ; Tv a ) - i  y ; t y  (4.5.1)

em que Y a e a matriz de defasagens ponderadas pelo limiar a , definida como

Yp Yp+i(a i ) ■ ■ ■ Yp+i(ap -1)

T

Y *

Yn-1 Yn(a i ) Yn(ap - i )

(4.5.2)

onde Yt (a j) =  Yt - (j+i) ■ I(Yt- i  >  a j ), com !(■) representando a função indicadora.

forma
O modelo AR-MV tambem pode ser representado matricialmente da seguinte

(4.5.3)
Yp+i' ep+i

Y  = =  v a  0 +

Yn ^n

4 .5 .3  E s tim a c a o  do  M o d e lo  A R -M V  com  a  d e sco n h ec id o

Quando os limiares a  sao desconhecidos, a estimaçao de a  e feita via mínimos 
quadrados condicionais, minimizando a soma dos quadrados dos resíduos

s  (a) =  y t y  -  v Tv a  (v a Tv a ) - i  v a Tv  (4 .5 .4)

Neste caso, 0 (a )  e substituído na funçao de erro, tornando S (a) um a função apenas dos 
parâm etros limiares. A minimizaçao de S (a) fornece os estimadores a.

A variancia dos resíduos e estimada por

â 2 =  S (a) 
n — p

(4.5.5)
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A matriz de covariância de <â(â) pode ser estim ada por

V-(<â(<â)) =  O2 (Y JTY J ) - i  (4.5.6)

Nos casos acima, assume-se que os estimadores a  e <â sao consistentes e que a 
distribuiçao assintotica continua válida. Para mais detalhes, ver Fadel (2012).

4 .5 .4  A lg o ritm o  k -m ean s

O algoritmo k -means, introduzido formalmente por MacQueen (1967), e um 
metodo de particionamento que visa agrupar um conjunto de n observações multivariadas 
{yi , y 2, . . . ,  y n} C R d em k grupos (ou clusters), de forma a minimizar a variabilidade 
intra-cluster. O problema de otimizacao correspondente pode ser formulado como

Ê  z  -  *  »2-
j=i y

em que:

• y i E Rd representa a i-esima observaçõo;

• Cj C {yi , . . . ,  y n} e o conjunto de observacões atribuádas ao j-esim o cluster;

• ^ j  =  jCi YIy .eC. y i e o centráide (media vetorial) do cluster C j.

O algoritmo segue um  procedimento iterativo clássico (tambem conhecido como 
algoritmo de Lloyd-Forgy), descrito da seguinte forma

1. Inicializa-se aleatoriamente um conjunto de k centroides { ^ i , . . . ,  ^ k};

2. Enquanto nao houver convergencia

(a) A trib u ica o : cada observaçao y i e atribuída ao cluster Cj cujo centroide ^ j  

minimiza ||yi -  ^ j  II;

(b) A tu a lizacao : cada centroide ^ j  e atualizado como a media das observacões 
pertencentes a C j.

Esse processo garante um a reducao monotona da soma to tal dos quadrados intra- 
cluster e converge para um  ponto de mánimo local em um  nuámero finito de iteraçcõoes. No 
entanto, o resultado final pode depender da inicializaçao dos centroides, nõo havendo 
garantia de que o mánimo global seja atingido.
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4.6 Funcão de Verossimilhança

A funcao de verossimilhanca e o nucleo da inferência estatística param etrica, pois 
expressa o grau de compatibilidade entre os dados observados e um valor do parâametro 
do modelo. A partir dela, definem-se estimadores (como o de maxima verossimilhanca) e 
procedimentos de teste.

Considere uma am ostra de tam anho n,

Y1,Y2,. . . ,Yn L~  f (x | 0),

onde:

• Yi E R sao as observaçães;

• 0 e  0  Ç Rp e o vetor de parâmetros do modelo;

• f  (y I 0) e a funcao de massa (ou densidade) de X i sob 0.

A funcão de verossimilhanca e a funçao de probabilidade conjunta dos dados, vista como 
funçcaão de 0:

n
L(0;Y, , . . . ,Yn)  =  n f ( Y i  I 0).

i=1

E comum trabalhar com a log-verossimilhança

n
1(0; Y1 , . . . ,Yn)  =  log L(0; Yb . . . ,Y»)  =  ^  log f  (Yi | 0).

i=1

T es te  d a  R azao  de  V e ro ss im ilh an ca

Seja L (6 | Y ) a funcao de verossimilhanca baseada em uma am ostra Y  proveni­
ente de um a família de distribuiçães param etrizada por 6  E 0 . Suponha-se que se deseja 
testar as hipoteses:

H0 : 6 E 0o versus H 1 : 6 E 0  \  0o,

em que 0 o C 0 , ou seja, trata-se de hipóteses aninhadas. A estatística do teste 
da razao de verossimilhança (Likelihood Ratio Test, LRT) e definida por:

A(Y) =  sup 0€0q L (6 1 Y )
sup#e© L(6 1 Y ) .
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Como A(Y) e  [0,1], valores pequenos de A(Y) indicam maior evidencia contra 
H 0. Em geral, utiliza-se a estatística transformada:

a qual, sob certas condicoes de regularidade e assumindo H 0 verdadeira, converge 
em distribuicao assintotica para um a distribuicao qui-quadrado com k graus de liberdade, 
onde k =  d im (0) — d im (0o), conforme estabelecido pelo Teorema de Wilks. (CASELLA; 
BERG ER, 2002)

4.7 Previsão no M odelo A R -M V (p)

A previsão no modelo AR-MV(p) e baseada na esperança condicional y't(m) =  
E[yt+m | Bt], onde Bt denota a a-algebra gerada pelos valores observados da serie ate o 
instante t, ou seja, Bt =  a(ys : s < t). Essa a-algebra representa formalmente toda a 
informação disponível no tempo t, incluindo o histórico completo da serie (y1 , y2, . . .  , y t).

A dinâmica do processo depende do intervalo em que o valor passado yt-1 se 
encontra. Para m  =  1, a previsao e obtida aplicando a equacao do modelo no regime 
identificado, ou seja, com os coeficientes correspondentes ao intervalo Aj  tal que yt-1 e  A j :

i= 1

Para horizontes de previsao maiores (m >  1), sao comumente utilizados dois
metodos

• E sq u e le to  d e te rm in ís tic o  (S k e le to n ): considera que os choques futuros et+h são 
nulos. As previsoes sao obtidas de forma recursiva, substituindo valores passados 
por previsãoes anteriores, sempre determinando o regime a partir do ultimo valor 
disponível (real ou previsto):

•  S im u lação  M o n te  C arlo : incorpora a aleatoriedade dos choques et+h ~  N ( 0 , a 2), 
gerando N  trajetorias futuras da serie. A previsao final e dada pela media dessas 
trajetorias simuladas

2log A(Y),

p

p

i=1
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1 N
í f C (h) =  N  E  »íj)(k ).

j=i

Ambas as abordagens perm item  avaliar a tendençia e a inçerteza das previsoes, 
sendo amplamente utilizadas em modelos çom regimes, çonforme disçutido por Fadel 
(2012).

5 M etodologia

O presente estudo foi çonduzido integralmente no ambiente R (versão 4.5.0) 
utilizando-se sçripts desenvolvidos para implementar as funçoes básiças neçessarias à 
geraçao de dados, estimativa e apliçação do modelo ARMV(p)

5.1 Geração de Dados Simulados do M odelo ARM V(p)

Para fins de avaliaçao e validaçao dos metodos propostos, foi realizada a si- 
mulaçao de series temporais çom base na estru tura do modelo autorregressivo çom limiares 
variaveis, denotado por ARMV(p). Esse modelo e um a extensao do modelo autorregres­
sivo çlassiço, permitindo que os çoefiçientes variem de açordo çom o regime identifiçado 
por um çonjunto de limiares sobre os valores passados da serie.

O proçesso de simulaçao çonsiste nas seguintes etapas:

1. D efin içao  dos p a râ m e tro s  do  m odelo : Define-se um vetor de limiares a  =  
( a i , a 2, . . . ,  a p - i ), que partiçiona a reta real em p regimes. Define-se tam bem  um 
vetor de çoefiçientes autorregressivos 0  =  (0 i , 0 2, . . . ,  0p), que determ ina o çompor- 
tam ento da serie em çada regime.

2. C o n fig u ração  d a  sim u lação : Espeçifiça-se o numero to tal de observações a se­
rem geradas, çonsiderando um período de burn-in (aqueçimento), um çonjunto de 
observações uteis para análise e, opçionalmente, um numero de valores adiçionais 
reservados para previsão. Denotamos o to tal çomo T  =  n +  n pred +  burn-in.

3. In iç ia lizaçao  d a  se rie  te m p o ra l:  Os p primeiros valores da serie {Yt }ip=i são ge­
rados a partir de um a distribuição iniçial, normalmente um a normal padrão N (0,1) 
ou um a normal çom media zero e variançia pré-definida, a fim de forneçer çondiçoes 
iniçiais para o proçesso. Na simulação utilizada usamos um a N (0, 4).

4. G e raç a o  do  te rm o  de  ru íd o : Uma sequençia de erros {ãt }̂ ['=i e gerada de forma 
independente e identiçamente distribuída, usualmente ãt ~  N (0, a 2), representando
o çomponente estoçástiço do modelo. Novamente utilizamos um a N (0, 4).
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5. S im u lacão  do  p ro cesso  A R -M V (p ): A serie temporal e gerada iterativamente 
para t =  p +  1 , . . . ,  T , com base na seguinte logica:

• Determina-se o regime ativo no tempo t com base na observacao anterior Yt-1 , 
utilizando os limiares definidos. O regime L t e ta l que Yt-1 E (a Lt-1, a Lt], com 
a convençao de que a 0 =  — w  e a p =  w .

• Define-se que, neste regime Lt , serão utilizados os Lt primeiros coeficientes de
0  para gerar Yt como um a combinação linear dos últimos Lt termos da serie:

Lt
Yt =  0j Yt- j  +  at 

j=1

Essa formulaçcãao permite que o modelo capture diferentes dinâamicas ao longo do 
tempo, dependendo do regime em que a serie se encontra. Assim, o modelo ARMV(p) e 
capaz de representar estruturas de dependencia nao lineares e adapta-se a mudanças no 
comportamento da serie temporal.

5.2 Estimacão dos Parâmetros e Selecao da Ordem do M odelo 
AR-M V(p)

A estimaçao dos parâm etros do modelo AR-MV(p), com limiares a  e coeficientes 
autorregressivos 0 , pode ser realizada por meio de um procedimento iterativo que alterna 
entre a estimacão de a  e 0 , ate atingir convergencia.

5 .2 .1  I te ra c a o  A lte rn a d a  e n tre  a  e 0

Inicialmente, fixa-se um valor de p e seguem-se os seguintes passos:

1. C h u te  in ic ia l de  0 : estima-se um modelo autorregressivo tradicional AR(p), sem 
intercepto, por múxima verossimilhanca, a fim de obter um vetor inicial de coefici­
entes 0 (o).

2. C h u te  in ic ia l de  a :  aplica-se o algoritmo k-means com p centros à serie {yt}, 
desconsiderando os 5% valores mais extremos, e define-se os limiares como os pontos 
medios entre os centroides consecutivos.

3. I te ra c a o : dados os vetores 0 (k) e a (k) da iteracao k:

•  Estima-se a (fc+1), mantendo 0 (k) fixo, pela minimizacao da variancia dos resíduos;



28 M etodologia

•  Estima-se 0 (fc+1), m antendo a (fc+1) fixo, via mínimos quadrados condicionais;

• O processo e repetido ate que as variacoes em a  e 0  entre iteracoes consecutivas 
sejam menores que um a tolerôancia pre-definida.

• A funcão optim  do R, com o metodo BFGS, e utilizada para minimizar a funcão 
objetivo

4. L o g -v ero ssim ilh án çá : com os valores finais <ô e a ,  estima-se a variancia dos 
resíduos ô 2 e calcula-se a log-verossimilhanca sob normalidade:

í  =  — n  [log (2nô2) +  1] ,

onde n  representa o numero de observacães utilizadas na estimacão.

5 .2.2 Selecão  d á  O rd e m  p v iá  T es te  d e  R ázáo  de  V e ro ss im ilh án cá

A seleçcaão da ordem p do modelo AR-MV pode ser feita utilizando o teste da razãao 
de verossimilhançca, comparando modelos com ordens consecutivas. O procedimento segue 
os seguintes passos:

1. Ajusta-se o modelo AR-MV(p) para um valor inicial p min e calcula-se a log-verossimilhança
l  ;Pmin >

2. Para p =  pmin +  1 , . . . , p max, ajusta-se o modelo AR-MV(p) e calcula-se a log- 
verossimilhança l p;

3. A estatística de teste da razao de verossimilhanca e dada por:

L R  =  2(lp — lp - 1 ),

que, sob a hipotese nula de que o modelo com ordem p — 1 e suficiente, segue uma 
distribuicao qui-quadrado com 2 graus de liberdade (um novo coeficiente 0 e um 
novo limiar a);

4. Compara-se o valor-p com um nível de significôncia a  (geralmente, a  =  0,05). Se o 
valor-p for inferior a esse nível, aceita-se o modelo de ordem maior e continua-se o 
processo. Caso contrário, interrompe-se a selecão e define-se a ordem ótim a como 
sendo aquela do uíltimo modelo aceito.

Esse procedimento e especialmente util para evitar o superajuste, selecionando 
autom aticam ente a complexidade adequada ao modelo com base em evidencia estatística.
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5.3 Obtencao dos Dados Climáticos

Os dados foram obtidos diretamente no portal do INMET, onde e possível escolher 
as estaçoes meteorológicas de interesse — tanto  as convencionais quanto as automaticas. 
A pís selecionar a estaçao desejada, pode-se especificar quais variaveis serao extraídas 
(por exemplo, tem peraturas maxima, mínima e media, índices pluviometricos etc.) e a 
frequencia temporal das observações (diaria, mensal ou em intervalos de horas por dia, 
disponibilizados pelas estaçoes automaticas). Em seguida, o INMET processa a requisiçao 
e envia os arquivos de dados por e-mail.
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6 Simulacães

Com o objetivo de avaliar a capacidade do procedimento de estimacçãao proposto 
para o modelo AR-MV(p), conduzimos um estudo de simulaçao em que series temporais 
sao geradas a partir de configurações conhecidas de limiares a  e coeficientes autorregres- 
sivos 0 . A ideia central e verificar se, a partir apenas dos dados simulados, o algoritmo de 
estimacão e capaz de recuperar adequadamente os parâm etros a  e 0 , bem como a ordem 
p do modelo.

Para isso, procedemos da seguinte forma:

• Geramos series temporais sinteticas sob a estru tura do modelo AR-MV(p), com 
p =  6 e p = 7 ,  utilizando valores conhecidos de a ,  0  e a 2;

• Aplicamos, sobre cada serie gerada, a funcao de estimacão descrita anteriormente, a 
qual realiza a estimaçao conjunta de a  e 0  por meio de um procedimento iterativo;

• Utilizamos tambem o teste de razao de verossimilhanca para avaliar a seleção correta 
da ordem p do modelo;

• Comparamos os parâmetros estimados com os valores reais utilizados na geracão 
das series, analisando o erro de estimacão, a estabilidade do processo e o ajuste do 
modelo;

• Por fim, coletamos medidas descritivas e representacães grâficas que perm itam  vi­
sualizar o comportamento da serie gerada e a aderência do modelo estimado.

Este estudo e fundamental para verificar a robustez do metodo proposto em 
contextos controlados e compreender suas limitacães e pontos fortes antes de aplica-lo em 
dados reais.
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6.1 Simulação ARM V(6)

Na simulaçao do modelo ARMV(6) foi utilizado os vetores de parâmetros a  =  
(—2, —1, 0,1, 2) e P =  (0,05, 0,10, 0,15, 0,20, 0,20, 0,25), alem de ruído aleatorio gerado 
a partir de uma distribuiçao Normal com media ^  =  0 e desvio-padrao a  =  2. O seguinte 
sistema de equaçoes define nosso modelo.

0.05 Yt-i +  et,

0.05 Yt-i +0.10 Yt- 2  +  et,

0.05 Yt-i +  0.10 Yt- 2  +  0.15 Yt- 3  +  et,

0.05 Yt-i +  0.10 Yt- 2  +  0.15 Yt- 3  +  0.20 Yt- 4  +  et,

0.05 Yt- 1  +  0.10 Yt- 2 +  0.15 Yt- 3 +  0.20 Yt_ 4 +  0.20 Yt_ 5 +  et,

Yt-i < —2,

—2 < Yt-i < —1, 

— 1 < Yt-i < 0,

0 < Yt-i < 1,

1 < Yt-1 < 2,

 ̂0.05 Yt-i +  0.10 Yt- 2  +  0.15 Yt- 3  +  0.20 Yt- 4  +  0.20 Yt- 5  +  0.25 Yt-6 +  et, Yt-i > 2.

Ao todo, serao produzidos 10110 valores, dos quais 100 sao descartados como 
“burn-in” e os ultimos 10 ficam reservados para avaliar a capacidade preditiva do modelo, 
resultando em um a serie final de 10000 observações. Antes de iniciar a geração de dados, 
criamos um vetor de ruídos aleatorios de comprimento 10110 e um vetor de observações 
inicial contendo os 6 primeiros valores, sorteados aleatoriamente a partir de uma Normal; 
com isso, obtemos os valores do modelo ARMV(6) representados abaixo.

Figura 1: Serie temporal dos dados simulados para um ARMV(6)

Podemos observar que a serie apresenta alguns picos nos quais os valores se 
mantem elevados por determinados períodos. Nota-se um pico acentuado no início da
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série, seguido por outros dois, de menor duraçao, localizados mais ao final da série.

Tabela 1: Resumo dos resultados da simulação ARMV(6)

E s ta t ís t ic a V alor D e ta lh e s

Media 0,2971 —
Variancia 5,4233 —

Námero de observaçães 10000 —

T este  A D F
Estatística Dickey-Fuller -11,643 Lag =  21
p-valor 0,01 Hipotese alternativa: estacionaria

T es te  P P
Z(a) de Dickey-Fuller -14368 Lag truncado =  12
p-valor 0,01 Hipotese alternativa: estacionaria

A Tabela 1 apresenta um resumo estatístico da serie simulada sob o modelo 
ARMV(6). Os resultados dos testes de raiz unitária — ADF (Augmented Dickey-Fuller) 
e P P  (Phillips-Perron) — indicam, com forte evidencia, a rejeiçao da hipátese nula de não 
estacionariedade, dado que ambos os testes apresentam estatísticas significativamente 
negativas e valores-p inferiores a 0,01. Esses resultados reforçam a hipótese de que a serie 
simulada e estacionária, como esperado pelo fato da soma dos coeficientes ser menor que
1.

Figura 2: Graficos de diagnostico da serie simulada AR-MV(6): FAC, FACP, histograma e Q-Q plot

A Figura 2 m ostra os principais diagnásticos da serie simulada ARMV(6). A FAC 
apresenta um decaimento gradual, indicando persistencia temporal, enquanto a FACP
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exibe um  corte claro após a sexta defasagem, confirmando a ordem do modelo. O histo- 
grama sugere distribuicao aproximadamente normal, e o Q-Q plot indica boa aderência a 
normalidade, com desvios leves nas caudas. Esses resultados reforçam a estacionariedade 
da serie, a ordem autoregressiva e a adequacão da hipotese de erro gaussiano.

6 .1 .1  E s tim a ç ã o  dos p a râ m e tro s

Nesta etapa, buscamos estimar os parâm etros do modelo AR-MV — limiares a  
e coeficientes autorregressivos 0  — a partir da serie simulada.

O procedimento de estimacao, baseado em iteracao alternada entre a  e 0 , con­
vergiu em apenas duas iteracoes. O valor final selecionado para a ordem do modelo foi 
p =  6, conforme definido pelo critério da razão de verossimilhanca.

Tabela 2: Comparação entre Parâmetros Estimados e Verdadeiros

P a râ m e tro V alo r V e rd ad e iro V alo r E s tim a d o

a i -2.0000 -1.9323

a 2 -1.0000 -0.7620

a 3 0.0000 -0.1347
a 4 1.0000 1.3053

a 5 2.0000 2.0113

0 i 0.0500 0.0298

02 0.1000 0.1020

03 0.1500 0.1455

04 0.2000 0.1961

05 0.2000 0.1720

06 0.2500 0.3099

Os resultados da Tabela 9 m ostram  que os parâmetros estimados para o modelo 
AR-MV(6) apresentam boa proximidade em relacao aos valores verdadeiros utilizados 
na simulacao. Os limiares aj  foram recuperados com pequenas variaçães, e a separação 
entre regimes. Os coeficientes autorregressivos 0j tambem foram bem estimados, com 
desvios modestos, especialmente para os primeiros lags. A maior diferença foi observada 
em 0 6, cuja estimativa foi ligeiramente superior ao valor real, o que pode ser atribuído 
a variabilidade amostral. De forma geral, os resultados indicam que o procedimento de 
estimaçcaão adotado foi eficaz para recuperar a estru tura do modelo simulado.
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Tabela 3: Estimativas dos Coeficientes 0, Erros Padrão e Intervalos de Confiança

C oef. V alo r V e rd ad e iro E s tim a tiv a E rro  P a d rã o IC  95% C o b e r tu ra

0 i 0,05 0,0298 0,0098 0,0106 -  0,0490 N ao

02 0,10 0,1020 0,0106 0,0812 -  0,1228 Sim

03 0,15 0,1455 0,0115 0,1230 -  0,1679 Sim

04 0,20 0,1961 0,0127 0,1711 -  0,2210 Sim

05 0,20 0,1720 0,0162 0,1403 -  0,2037 Sim

06 0,25 0,3099 0,0183 0,2741 -  0,3458 N ao

Os resultados apresentados na Tabela 17 indicam boa acurácia na recuperação dos 
coeficientes 0 do modelo, com cinco dos seis valores verdadeiros contidos nos respectivos 
intervalos de confiança de 95%. Observa-se, no entanto, subestimacao de 0 1 e superes- 
timaçao de 06, ambos fora dos intervalos de cobertura, o que sugere maior incerteza nas 
extremidades da estru tura autorregressiva.

Uma possível explicacao para a discrepancia em 06 está relacionada a própria 
dinâmica da serie simulada: como observamos anteriormente, ha trechos em que a serie 
permanece por longos períodos em um mesmo regime, especialmente no regime associ­
ado ao áltimo limiar. Esse padrão implica um námero desproporcionalmente maior de 
observacoes nesse regime, o que pode enviesar as estimativas dos coeficientes correspon­
dentes.

Para um a analise mais clara da segmentaçao induzida pelos limiares estimados, 
será apresentada, a seguir, a decomposiçao da serie conforme os regimes identificados.

Série ARMV(6) com Regimes Representados por Cores

•  Regime 1 •  Regime 3 •  Regime 5
Regimes

•  Regime 2 •  Regime 4 Regime 6

li

Figura 3: Serie simulada de um modelo AR-MV(6), com observações representadas por cores conforme
os regimes estimados.
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Na Figura 3, e possível observar quatro picos distintos na serie simulada: um 
mais prolongado em torno do tempo 2500 e três menores entre aos tempos 7500 e 10000 
Esses episodios prolongados em níveis elevados fazem com que haja um a concentracao 
maior de observacoes no regime associado ao ultimo limiar (a 5), o que pode explicar a 
superestimacao de 0 6. Por outro lado, a menor frequencia de permanencia em valores 
baixos reduz o numero de observações no regime do primeiro limiar ( a 1), o que pode 
justificar a subestimaçao de 0 1. Essa assimetria na distribuição das observacães entre os 
regimes afeta diretamente a qualidade das estimativas nos extremos do modelo.

Tabela 4: Resumo Estatístico por Regime do AR-MV(6)

R eg im e N  de  O bserv áco es M ed iá M e d iá n á V á riân c iá

1 1557 -3,0612 -2,8011 0,9423
2 1712 -1,3213 -1,3111 0,1117
3 1139 -0,4423 -0,4436 0,0329
4 2528 0,5486 0,5294 0,1651
5 956 1,6462 1,6303 0,0411
6 2108 3,5780 3,1380 2,2871

A Tabela 4 m ostra que o Regime 6 concentra um numero significativamente maior 
de observacoes do que os regimes mais extremos, como o 1, 2 e 5. Esse desequilíbrio 
pode ter im pactado a qualidade das estimativas nos limites do modelo, contribuindo para 
desvios maiores em alguns paraômetros em relaçcãao aos seus valores verdadeiros.

6 .1 .2  E s tu d o  do  á ju s te  do  m od e lo  A R M V (6 )

Tabela 5: Metricas de Ajuste — ARMV(6) vs AR

M o d elo A IC A IC c B IC M A E M S E R M S E M A P E

ARMV 42107,03 42107,05 42157,50 1,59 3,95 1,99 187,41
AR6c 42851,32 42851,33 42909,00 4,25 19,11 4,37 93,73
AR6 42865,42 42865,42 42915,89 4,33 19,83 4,45 95,50
AR7c 42829,99 42830,00 42894,88 4,25 19,12 4,37 93,77
AR7 42842,61 42842,63 42900,30 4,32 19,80 4,45 95,45

A Tabela 19 apresenta as metricas de ajuste dos diferentes modelos aos dados 
simulados. Observa-se que o modelo ARMV(6), que corresponde ao verdadeiro gerador 
da serie, atinge os melhores resultados em todas as metricas de ajuste (menores valores
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Com paração entre Valores Observados e Ajustados

M ode los  -e -  AR6c -B - AR6 - I -  AR7c -A - AR7 ARMV

6

Tem po

Figura 4: Ajuste dos modelos AR-MV(6), AR(6) e AR(7) às últimas 60 observacões da serie simulada.

de variancia residual, MAE, MSE, RMSE, AIC, AlCc, BIC e MAPE) em comparacao 
com os modelos AR tradicionais. Esse desempenho superior era esperado, ja  que os dados 
foram simulados a partir de um processo ARMV(6).

6 .1 .3  E s tu d o  dos re s íd u o s  do  m o d e lo  A R M V (6 )

Figura 5: Gráficos de diagnostico dos resíduos do modelo AR-MV(6): FAC, FACP, histograma e Q-Q
plot

A Figura 5 exibe os diagnásticos dos resíduos do modelo AR-MV(6). Os graficos 
de FAC e FACP indicam ausencia de autocorrelaçao significativa, sugerindo que os resíduos 
sõo essencialmente ruádo branco. O histograma apresenta uma distribuicao simetrica e em
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forma de sino, enquanto o Q -Q  plot m ostra boa aderência a linha teórica, com pequenos 
desvios apenas nas caudas. Esses resultados confirmam que o modelo ajustado captu­
rou bem a estru tura da serie, gerando resíduos nao correlacionados e aproximadamente 
normais.

6 .1 .4  E s tu d o  p re d itiv o  do  m o d e lo  A R M V (6 )

Com paração dos Valores Reais aos Previstos pelos Modelos ARM V e AR

—I— AR6 AR7 ARMV Esqueleto Valores Reais
Modelos

- »-  AR6c AR7c ARMV MC-mean

1 2 3 4 5 6 7 8 9  10
Passos à Frente

Figura 6: Previsão a 10 passos dos modelos AR-MV(6), AR(6) e AR(7) aplicada à série simulada.

Tabela 6: Metricas de Previsao a 1-10 Passos a Frente

M o d elo M A E M S E R M S E M A P E

ARMV Esqueleto 1,9764 5,2331 2,2876 58,58
ARMV MC-mean 1,9221 5,0731 2,2524 53,66
AR6 1,8804 5,0690 2,2515 51,14
AR6c 1,7753 4,7106 2,1704 46,70
AR7 1,8384 5,0112 2,2386 48,99
AR7c 1,7413 4,6859 2,1647 44,90

Na Figura 6 são apresentadas as previsões a 1-10 passos a frente de seis modelos 
(ARMV Esqueleto, ARMV MC-mean, AR6, AR6c, AR7 e AR7c) em comparacao aos 
valores reais (linha preta). Nota-se que todos os modelos geram previsões estaveis e 
proximas entre si, com pouca sensibilidade aos grandes picos e oscilacões presentes na 
serie real, especialmente para horizontes mais longos. Entre os modelos avaliados, AR7c 
e AR6c apresentaram  o melhor desempenho preditivo, registrando os menores valores
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de MAE, MSE, RMSE e MAPE. No geral, os modelos AR com media (indicados por 
“c” ) superaram  os demais em todas as metricas de erro, indicando maior acurada para 
previsães nesse cenario simulado.

Tabela 7: Coeficientes Estimados — ARMV vs AR

M o d elo 0 i 0 2 03 04 0 5 06 0 7

AR6 0,08518 0,14396 0,14477 0,14819 0,09822 0,10948 —

AR6c 0,08342 0,14217 0,14298 0,14639 0,09644 0,10774 —

AR7 0,07974 0,13909 0,13740 0,14097 0,09102 0,10524 0,04979
AR7c 0,07822 0,13753 0,13592 0,13948 0,08955 0,10371 0,04830
ARMV 0,02980 0,10198 0,14545 0,19606 0,17201 0,30993 —

A Tabela 7 perm ite comparar os coeficientes autorregressivos estimados entre 
os modelos AR tradicionais e o modelo AR-MV(6). Nota-se que os modelos AR (AR6, 
AR7 e suas versões com intercepto) apresentam um padrâo decrescente e suavemente 
distribuído entre os lags, com coeficientes em torno de 0,08 a 0,14. Por outro lado, o 
modelo AR-MV(6) exibe um padrâo mais assimetrico: os coeficientes iniciais são menores 
(especialmente 0 1 =  0,0298), enquanto os de ordem mais alta, como 0 6 =  0,3099, são 
substancialmente maiores.

Esse comportamento reflete a natureza do modelo AR-MV, que permite regimes 
distintos e, portanto, capta dinamicas mais complexas. Em contraste, os modelos AR 
impãem estru tura homogenea, o que pode lim itar a capacidade de modelar variacoes 
bruscas ou nao lineares. A presença de coeficientes mais elevados nos últimos lags do 
ARMV sugere que esses termos sao mais relevantes em regimes específicos, o que e coerente 
com os picos e mudancas de comportamento observados na serie simulada.
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6.2 Simuláção ARM V(7)

Na simulaçcãao do modelo AR-MV(7) foram usados os limiares

a =  (—2.5, —1.5, —0.5, 0.5, 1.5, 2.5)

e o vetor de coeficientes autorregressivos

0 =  (0.05, 0.05, 0.10, 0.10, 0.20, 0.20, 0.25),

alem de um  termo de erro et ~  N (0, 22). Geraram-se 10.110 observaçães no total, sendo 
as primeiras 100 destinadas ao burn-in e as 10 finais reservadas para teste da capacidade 
preditiva. O sistema de equacoes que define o modelo AR-MV(7) e

01 Yt-1 +  £t,

0 1Yt-1 +  02Yt-2  +  £t,

0 1Yt-1 +  02Yt-2 +  03Yt-3 +  £t,

Yt =  0 1Yt-1 +  02Yt-2  +  <p3Yt-3 +  04^-4  +  £t,

Yt- 1  < —2.5,

—2.5 < Yt-1 < —1.5, 

—1.5 < Yt-1 < —0.5, 

—0.5 < Yt-1 < 0.5,

01 Yt-1 +  02Yt-2 +  03Yt-3 +  04Yt-4 +  05Y-5 +  £t, 0.5 < Yt-1 < 1.5,

01 Yt-1 +  02Yt-2 +  03Yt-3 +  04Yt-4 +  05Yt-5 +  06Yt-6 +  £t, 1.5 < Yt-1 < 2.5,

0 1Yt-1 +  02Yt - 2 +  03Yt - 3 +  04Yt - 4 +  05Yt - 5 +  06Yt-6 +  07Yt-7 +  Qo ^ -1  > 2.5.

A seguir, apresentamos a serie gerada juntam ente com as estatísticas descritivas 
e os resultados dos testes ADF e PP.
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Série Temporal Simulada sob o Modelo ARMV(7)

10

Figura 7: Serie temporal dos dados simulados para um ARMV(7)

Tabela 8: Resumo dos resultados da simulacão ARMV(7)

E s ta t ís t ic a V alor D e ta lh e s

Media 0,0988 —

Variancia 4,4621 —

Número de observações 10000 —

T este  A D F
Estatística Dickey-Fuller -15,139 Lag =  21
p-valor 0,01 Hipotese alternativa: estacionaria

T es te  P P
Z(a) de Dickey-Fuller -13559 Lag truncado =  12
p-valor 0,01 Hipotese alternativa: estacionaria

A Tabela 8 apresenta as estatísticas descritivas e os testes de raiz unitária apli­
cados a serie simulada do modelo ARMV(7). A media proxima de zero e a variancia 
m oderada indicam uma serie centrada e com dispersao compatível com o processo gera­
dor. Os testes ADF e P P  rejeitam a hipotese nula de nao estacionariedade com elevada 
margem (p-valor < 0,01), confirmando que a serie simulada e estacionária, como esperado 
pelo modelo. Esses resultados reforçam a validade do processo ARMV gerado e indicam 
adequaçao para analises subsequentes de estimação e previsao.
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Figura 8: Gráficos de diagnóstico da serie simulada AR-MV(7): FAC, FACP, histograma e Q-Q plot

A Figura 8 apresenta os diagnósticos da série simulada para o modelo ARMV(7). 
Os graficos de FAC e FACP indicam ausencia de autocorrelacao significativa, sugerindo 
que a serie gerada e estacionaria. O histograma na figura 8 revela um a distribuicão aproxi­
madamente simetrica e com formato semelhante ao de uma Normal, o que esta de acordo 
com os pressupostos do modelo gerador. Ja  o grafico Q -Q  reforça essa interpretacão, mos­
trando boa aderência dos quantis amostrais a reta teorica. Esses resultados indicam que a 
serie simulada apresenta propriedades compatíveis com um processo ARMV estacionario 
com erros gaussianos.
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6.2.1 E s tim a c a o  dos p a râ m e tro s

Nesta etapa, nosso objetivo e estimar, a partir da serie simulada, os limiares a  
e os coeficientes autorregressivos 0. O algoritmo de estimacao convergiu em apenas duas 
iteraçoes, fornecendo os seguintes valores estimados para a:

Tabela 9: Comparação entre Parâmetros Estimados e Verdadeiros — ARMV(7)

Paraâm etro V alo r V e rd ad e iro V alo r E s tim a d o

a i -2,5 -1,9451

a 2 -1,5 -1,2640

a 3 -0,5 -0,3448

a 4 0,5 0,4313

a 5 1,5 1,3308

a 6 2,5 2,4719

0 i 0,0500 0,0304

0 2 0,0500 0,0510

0 3 0,1000 0,0972

04 0,1000 0,0998

0 5 0,2000 0,1800

0 6 0,2000 0,2185

0 7 0,2500 0,2467

Os resultados apresentados na Tabela 9 m ostram  que os limiares estimados a j  e os 
coeficientes autorregressivos 0j se aproximam dos valores verdadeiros utilizados na geração 
da serie ARMV(7). Apesar de pequenas discrepancias, principalmente nos primeiros 
limiares, os valores estimados m antem  a ordem e espacamento aproximado em relacao aos 
verdadeiros, o que sugere um a boa recuperaçao da estru tura de mudanca de regime do 
modelo.

No que se refere aos coeficientes 0 j , nota-se que os valores estimados seguem de 
forma bastante proxima os coeficientes verdadeiros, com desvios pequenos e sem inversãoes 
de magnitude, o que indica que o procedimento de estimaçcãao foi eficaz em identificar a 
estru tura de dependencia temporal.

Esses resultados corroboram a capacidade do estimador em recuperar os parâmetros 
de um processo ARMV(7) a partir dos dados simulados, reforçando a consistencia do 
metodo aplicado mesmo em modelos com maior numero de defasagens e multiplos limia­
res.
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Tabela 10: Estimativas dos Coeficientes Erros Padrão e Intervalos de Confiança

C oef. V alo r V e rd ad e iro E s tim a tiv a E rro  P a d ra o IC  95% C o b e r tu ra

0i 0,05 0,0304 0,0099 0,0111 -  0,0497 N ao

02 0,05 0,0510 0,0108 0,0299 -  0,0721 Sim

03 0,10 0,0972 0,0112 0,0752 -  0,1192 Sim

04 0,10 0,0998 0,0128 0,0748 -  0,1249 Sim

0 5 0,20 0,1800 0,0146 0,1514 -  0,2086 Sim

0 6 0,20 0,2185 0,0179 0,1834 -  0,2537 Sim

0 7 0,25 0,2467 0,0247 0,1984 -  0,2950 Sim

A Tabela 10 apresenta as estimativas dos coeficientes 0j do modelo ARMV(7), 
juntam ente com seus erros padrao, intervalos de confiança de 95% e a indicação de cober­
tura, isto e, se o valor verdadeiro encontra-se dentro do respectivo intervalo.

Observa-se que 6 dos 7 coeficientes tiveram seus valores verdadeiros contidos nos 
intervalos de confiança, o que indica boa precisão das estimativas obtidas pelo metodo 
de estimaçao. A unica exceçao e o coeficiente 0 1, cuja estimativa foi subestim ada e cujo 
intervalo [0,0111, 0,0497] nao inclui o valor verdadeiro de 0,05. Isso pode estar associado 
a menor influencia ou menor frequencia do regime correspondente nos dados simulados, 
especialmente considerando que coeficientes iniciais tendem a ser mais difíceis de estimar 
em modelos com m íltiplos regimes e ordem elevada.

No geral, os coeficientes mais centrais e dominantes (03 a 0 7) foram bem esti­
mados, com valores proximos aos verdadeiros e intervalos estreitos, refletindo a eficiencia 
do estimador no contexto simulado. Esse resultado sugere que o modelo foi capaz de 
capturar adequadamente a estru tura autoregressiva da serie ARMV(7) simulada.
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Série ARMV(7) com Regimes Representados por Cores

•  Regime 1 •  Regime 3 •  Regime 5 •  Regime 7
Regimes

•  Regime 2 •  Regime 4 Regime 6

Figura 9: Serie simulada de um modelo AR-MV(7), com observações representadas por cores conforme
os regimes estimados.

Tabela 11: Resumo Estatístico por Regime do AR-MV(7)

R eg im e N  de O b serváçoes M ed iá M e d iá n á V á riá n c iá

1 1623 -3,0317 -2,7799 0,8994
2 1023 -1,5822 -1,5746 0,0381
3 1520 -0,7882 -0,7819 0,0683
4 1556 0,0413 0,0431 0,0504
5 1543 0,8555 0,8419 0,0678
6 1450 1,8579 1,8486 0,1060
7 1285 3,6161 3,3078 1,1009

A Tabela 11 apresenta um resumo estatístico das observacoes segmentadas por 
regime na serie simulada a partir do modelo AR-MV(7). Observa-se que os regimes 1 
e 7 concentram os valores mais extremos da serie, com medias de —3,03 e 3,62, res­
pectivamente, e tambem maiores variancias, o que reflete maior dispersão nos extremos. 
Ja  os regimes centrais, especialmente o 4, apresentam medias proximas de zero e baixa 
variabilidade, compatíveis com um comportamento mais estavel.

A mediana proxima a media em todos os regimes indica simetria nas distribuições 
dentro de cada faixa. Essa segmentacao ajuda a explicar a natureza da serie simulada, pois 
cada regime contribui com características distintas a dinamica geral do processo. Alem 
disso, a distribuicao relativamente equilibrada de observacoes entre os regimes garante 
diversidade suficiente para uma estimacao robusta dos parâmetros.
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6 .2 .2  E s tu d o  do  a ju s te  do  m odelo

Com paração entre Valores Observados e A justados

Modelos AR7c -B- AR7 H -  AR8c AR8 ARMV

-6
9940 9960 9980 10000

Tempo

Figura 10: Ajuste dos modelos AR-MV(7), AR(7) e AR(8) às últimas 60 observações da série simulada.

Tabela 12: Metricas de Ajuste — ARMV(7) vs AR

M o d elo A IC A IC c B IC M A E M S E R M S E M A P E

ARMV 42096,88 42096,89 42154,56 1,5894 3,9478 1,9869 167,88
AR6 42632,99 42633,00 42683,47 4,6794 22,2123 4,7130 98,96
AR6c 42628,96 42628,97 42686,64 4,6302 21,7491 4,6636 97,92
AR7 42597,07 42597,08 42654,76 4,6765 22,1999 4,7117 98,90
AR7c 42593,71 42593,73 42658,61 4,6303 21,7651 4,6653 97,92
AR8 42597,22 42597,24 42662,12 4,6759 22,1949 4,7111 98,89
AR8c 42594,00 42594,02 42666,10 4,6303 21,7659 4,6654 97,92

A Tabela 12 apresenta as métricas de ajuste calculadas sobre uma série simu­
lada a partir de um modelo AR-MV(7). Observa-se que o proprio modelo AR-MV(7) 
apresenta desempenho superior em todas as metricas consideradas, como era esperado. 
Especificamente, obteve a menor variância residual (â2 =  3,9478) e os menores valores de 
AIC, AlCc e BIC, indicando melhor ajuste segundo os criterios de informacao.
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6.2 .3  E s tu d o  dos re s íd u o s  do m o d e lo  A R M V (7 )

Diagnóstico  G ráfico  dos resíduos da Série A R M V(7)

ACF dos resíduos PACF dos resíduos
1.0 1.0

-4 0 4 8 - 4  -2 0 2 4
Valores x

Figura 11: Gráficos de diagnóstico dos resíduos do modelo AR-MV(7): FAC, FACP, histograma e Q-Q
plot

A Figura 11 apresenta os diagnósticos gráficos dos resíduos do modelo AR-MV(7). 
Os graficos de autocorrelacao (FAC) e autocorrelaçao parcial (FACP) mostram que nao 
ha valores significativos fora dos limites de confianca, sugerindo ausencia de dependencia 
serial nos resíduos. O histograma indica que os resíduos seguem um a distribuicao aproxi­
madamente simetrica e semelhante à normal. Essa suposicão e reforçada pelo grafico Q-Q, 
no qual os quantis empíricos aderem bem à linha de referencia teorica. No conjunto, os re­
sultados apontam  para resíduos nao autocorrelacionados e aproximadamente gaussianos, 
confirmando a adequacão do modelo estimado a estrutura dos dados simulados.
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6 .2 .4  E s tu d o  p re d itiv o  do  m o d e lo  A R M V (7 )

Com paração dos Valores Reais aos Previstos pelos Modelos ARM V e AR

—I— AR7 AR8 ARMV Esqueleto Valores Reais
Modelos

AR7c AR8c ARMV MC-mean

1 2 3 4 5 6 7 8 9  10
Passos à Frente

Figura 12: Previsão a 10 passos dos modelos AR-MV(7), AR(7) e AR(8) aplicada à série simulada.

A Figura 12 apresenta as previsões a 1-10 passos à frente dos modelos AR7, 
AR8, AR7 com constante (AR7c), AR8 com constante (AR8c), bem como dos metodos 
ARMV Esqueleto e media de Monte Carlo (ARMV MC-mean), em comparacao com os 
valores reais da serie simulada (linha preta). Observa-se que, embora todos os modelos 
apresentem series de previsoes suavizadas, os metodos baseados em ARMV foram capazes 
de captar parte da estru tura de oscilacao da serie original, sobretudo o modelo ARMV 
Esqueleto, que reproduz com mais fidelidade os picos e vales.

Tabela 13: Metricas de Previsão a 1-10 Passos a Frente

M o d elo M A E M S E R M S E M A P E  (% )

ARMV Esqueleto 1,00473 1,49483 1,22263 67,17015
ARMV MC-mean 1,18476 1,89232 1,37561 76,40377
AR7c 1,28441 2,31409 1,52121 65,71092
AR7 1,31686 2,43379 1,56006 64,99339
AR8c 1,28074 2,27535 1,50843 67,37590
AR8 1,30876 2,38935 1,54575 66,11036

Essa impressao e corroborada pelos resultados quantitativos. O modelo ARMV 
Esqueleto obteve os melhores desempenhos em termos de MAE (1,00473), MSE (1,49483) 
e RMSE (1,22263), destacando-se como o mais preciso nos erros absolutos e quadraticos 
medios. No entanto, o modelo AR7 apresentou o menor erro percentual medio (MAPE =
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64,99%), seguido de AR7c (65,71%) e AR8 (66,11%), indicando que os modelos lineares 
com constante tambem oferecem boa capacidade preditiva em termos relativos.

Por outro lado, o metodo ARMV MC-mean, embora ainda tenha tido um  de­
sempenho superior aos modelos AR nas outras metricas, apresentou desempenho inferior, 
especialmente no M APE (76,40%), sugerindo que, neste cenario, a variabilidade introdu­
zida pelas simulacoes nao resultou em ganho preditivo.

Tabela 14: Coeficientes Estimados — ARMV vs AR

M o d elo <2 <3 <4 <5 <6 <7 <8

AR7 0,06082 0,07740 0,08617 0,07891 0,08376 0,08387 0,06157 ---

AR7c 0,06026 0,07683 0,08560 0,07835 0,08320 0,08330 0,06102 ---

AR8 0,05998 0,07626 0,08503 0,07784 0,08259 0,08281 0,06075 0,01361
AR8c 0,05945 0,07574 0,08451 0,07733 0,08208 0,08230 0,06025 0,01310
ARMV 0,03039 0,05097 0,09716 0,09984 0,17999 0,21852 0,24670 -

A Tabela 14 apresenta os coeficientes estimados para os modelos ARMV(7) e 
AR de ordens 7 e 8, com e sem constante. Observa-se que os modelos AR apresentam 
coeficientes de menor magnitude e relativamente estaveis entre si, refletindo a estrutura 
linear e homogenea típica desses modelos. Em contrapartida, os coeficientes estimados 
para o modelo ARMV(7) variam significativamente em magnitude, com destaque para os 
valores mais elevados associados aos defasagens superiores (<5, <6 e <7).
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7 Aplicaçao do M odelo

7.1 Banco de Dados

O conjunto de dados utilizado foi obtido no portal do Instituto Nacional de 
Meteorologia (INMET) (2024) para a regiao de Brasília . Escolheu-se a estacao OM- 
BRA (Observatorio Meteorologico de Brasília), m antida pelo INMET, e foram extraídas 
medicães diarias no período de 01/01/2001 a 31/12/2024. Ao todo, a serie contem 8 767 
observacoes em quatro variaveis: data, tem peratura mínima, tem peratura media e tem pe­
ra tu ra  maxima. O objetivo desta base e servir como exemplo para a aplicaçao do metodo 
proposto, visando a obtencão de estimativas consistentes dos parâmetros e a construcão 
de um modelo com desempenho competitivo em relaçcãao aos modelos autorregressivos 
tradicionais (AR).

7.2 Serie de dados climaticos

Temperatura Média em Brasília (2001-2024) com Dados do INMET

0 2500 5000 7500
Tempo

Figura 13: Serie temporal dos dados simulados para um ARMV(6)

A Figura 13 apresenta a serie tem poral da tem peratura media diaria registrada 
em Brasília entre 2001 e 2024. Visualmente, dem onstra comportamento estacionírio, osci­
lando em torno de um a media estavel ao longo dos anos, sem indicacao clara de tendencia 
de aumento ou queda. Observa-se um padrâo de flutuacão recorrente, compatível com a 
presenca de sazonalidade anual (típica em series clim íticas) com picos e vales ao longo do 
tempo, refletindo as variacoes entre estacães do ano.
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Tabela 15: Resumo dos resultados da serie de dados climáticos

E s ta t ís t ic a V alor D e ta lh e s

Media 21,5861 —

Variancia 3,9395 —

Numero de observações 8719 —

T es te  A u g m e n te d  D ickey -F u lle r
Estatística Dickey-Fuller -9,8365 Lag =  20
p-valor 0,01 Hipáotese alternativa: estacionáaria

T es te  P h il l ip s -P e rro n
Z(a) de Dickey-Fuller -1409,8 Lag truncado = 1 2
p-valor 0,01 Hipáotese alternativa: estacionáaria

T es te  K P S S  (n ível)
Estatística KPSS 1,2454 Lag truncado = 1 2
p-valor 0,01 Hipotese nula: estacionariedade em nável

A Tabela 15 apresenta um resumo estatístico da serie de tem peratura media 
diaria em Brasília no período de 2001 a 2024. A media observada foi de aproximadamente 
21,59°C, com variancia de 3,94, indicando um a dispersão m oderada em torno da media 
ao longo do tempo. O número total de observações foi de 8.719, caracterizando um a serie 
extensa e adequada para análise de series temporais.

Para avaliar a estacionariedade da serie, foram aplicados três testes formais: o 
teste de Dickey-Fuller Aumentado (ADF), o teste de Phillips-Perron (PP) e o teste KPSS 
(nável). Tanto o ADF quanto o P P  apresentaram  estatísticas de teste significativamente 
negativas (ADF =  -9 ,84; PP  =  -1409,8), com p-valores iguais a 0,01, rejeitando a 
hipátese nula de raiz unitária. Esses resultados sugerem que a serie e estacionaria.

Entretanto, o teste KPSS, que adota a hipáotese nula oposta, apresentou um 
valor estatístico elevado (KPSS =  1,25) com p-valor tambem igual a 0,01, rejeitando essa 
hipátese. Esse resultado indica possiVel nao estacionariedade em nável, revelando um 
aparente conflito com os testes ADF e PP.

Essa divergencia pode indicar a presenca de um a tendencia leve ou de uma es­
tru tu ra  quase integrada na sáerie, o que áe comum em dados climaáticos. Ainda assim, 
prosseguiremos com a analise para ilustrar a aplicacao do metodo proposto.
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Figura 14: Serie temporal dos dados simulados para um ARMV(6)

A Figura 14 exibe os diagnósticos da série climática, evidenciando um a forte de­
pendência temporal, com a FAC apresentando decaimento lento e a FACP sinalizando 
corte no primeiro defasagem, característica típica de processos autoregressivos. O his­
togram a revela uma distribuiçao aproximadamente simetrica, com leve assimetria a es­
querda, enquanto o grafico Q -Q  indica aderência m oderada a normalidade, com desvios 
nas extremidades. Esses indícios, em conjunto, reforçam a hipotese de que a serie seja 
estacionaria.
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7.2.1 E s tim a c a o  dos p a râ m e tro s

Nessa etapa utilizamos a funçao que foi descrita na etapa da metodologia e os 
resultados obtidos indicam que o modelo de ordem p =  6 fornece o melhor ajuste. A 
seguir, apresenta-se o resumo do modelo obtido:

Tabela 16: Parâmetros Estimados do Modelo ARMV(6) para os Dados Climáticos

(b) Coeficientes Estimados
(a) Limiares Estimados

L im iares E s tim a tiv a

â i 19,5592
&2 20,5775
a 3 21,5777
OI4 22,6182
a 5 23,7281

C oef. E s tim a tiv a

0 i
02
03
04
0 5
0 6

1,0227
-0,0091
-0,0053
-0,0141
-0,0091
-0,0079

A análise dos parâmetros estimados do modelo AR-MV(6) aplicado a serie de 
dados climaticos revela um a segmentaçao bem distribuída dos limiares â j , com valores 
crescentes entre aproximadamente 19,56 e 23,73. Isso sugere que os regimes foram ade­
quadamente identificados ao longo da faixa de variacão da tem peratura.

Quanto aos coeficientes 0j, observa-se que apenas o primeiro apresenta valor 
expressivo (1,0227), indicando forte dependencia com a defasagem imediata, enquanto os 
demais coeficientes sao proximos de zero, o que aponta para um a estru tura autoregressiva 
essencialmente de ordem 1.

Tabela 17: Estimativas dos Coeficientes Erros Padrào e Intervalos de Confiança

C oef. E s tim a tiv a E rro  P a d ra o IC  95%

0 1 1,0227 0,0016 [1,0195 ; 1,0259]

0 2 -0,0091 0,0022 [-0,0133 ; -0,0048]

0 3 -0,0053 0,0019 [-0,0090 ; -0,0016]

04 -0,0141 0,0016 [-0,0173 ; -0,0109]

0 5 -0,0091 0,0018 [-0,0126 ; -0,0056]

0 6 -0,0079 0,0020 [-0,0118 ; -0,0041]

Os resultados apresentados na Tabela 17 mostram as estimativas dos coeficientes 
0j para o modelo ajustado aos dados climaáticos, juntam ente com seus respectivos erros
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padrao e intervalos de confiança de 95%. Observa-se que o primeiro coeficiente e signifi­
cativamente diferente de zero e assume valor próximo de 1, sugerindo forte persistencia 
na serie. Os demais coeficientes apresentam magnitudes reduzidas e negativas, embora 
estatisticam ente significativas, o que pode indicar correções de curto prazo em relacao ao 
valor anterior. O conjunto das estimativas sugere uma dinamica autoregressiva com forte 
dependencia tem poral e componentes de ajustam ento finos nos ”lags”subsequentes.

Série de Dados Climáticos de Brasília com Regimes Representados por Cores

•  Regime 1 •  Regime 3 •  Regime 5
Regimes

•  Regime 2 •  Regime 4 Regime 6

Figura 15: Serie temporal dos dados simulados para um ARMV(6)

A Figura 15 apresenta a serie de tem peratura media diaria em Brasília segmen­
tada  em regimes distintos, identificados por diferentes cores, com base nos limiares esti­
mados pelo modelo AR-MV(6). Observa-se que os regimes capturam  variacoes sazonais 
e oscilaçoes de amplitude ao longo do tempo.

Tabela 18: Resumo Estatístico por Regime da Serie Climática com Segmentação AR-MV(6)

R eg im e N  de O b serv açõ es M ed ia M e d ia n a V a ria n c ia

1 1276 18,5593 18,8 0,8753
2 1297 20,0744 20,1 0,0801
3 1803 21,0806 21,1 0,0807
4 1974 22,0748 22,1 0,1025
5 1221 23,1616 23,2 0,0974
6 1148 24,9362 24,7 1,0080

A Tabela 18 apresenta um resumo estatístico da serie climatica segmentada pelos 
regimes identificados via modelo AR-MV(6). Observa-se uma clara ordenacão crescente 
nos valores medios e medianos conforme o regime, indicando que os limiares estimados
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conseguiram identificar faixas distintas de tem peratura.

7.2.2 A v aliação  de  a ju s te  do  m odelo

Com paração entre Valores Observados e Ajustados

Modelos AR6c -B -  AR6 AR7c -A - AR7 ARMV

8660 8680 8700 8720
Tempo

Figura 16: Serie temporal dos dados simulados para um ARMV(6)

Tabela 19: Metricas de Ajuste — ARMV vs AR

M o d elo A IC A IC ç B IC M A E M S E R M S E M A P E

ARMV 26262,74 26262,75 26312,25 0,83 1,19 1,09 3,90
AR6c 26046,41 26046,42 26102,99 1,30 2,81 1,67 6,09
AR6 26349,79 26349,80 26399,30 1,44 3,45 1,85 6,75
AR7c 26030,82 26030,84 26094,48 1,30 2,81 1,67 6,10
AR7 26299,78 26299,79 26356,36 1,43 3,40 1,84 6,71

A Tabela 19 apresenta as metricas de ajuste dos modelos AR e ARMV aplicados 
à serie climática. Observa-se que o modelo ARMV obteve o menor valor de <r2, menor erro 
medio absoluto (MAE), menor erro quadrático medio (MSE) e o menor erro percentual 
medio absoluto (MAPE), evidenciando melhor desempenho geral na modelagem da serie.

Apesar de os modelos AR com constante (AR6c e AR7c) apresentarem valores 
ligeiramente menores de AIC, o ARMV se destaca por capturar mais eficientemente a 
estru tura dos dados, entregando previsões com menor erro absoluto e percentual. Isso 
sugere que a modelagem por regimes com limiares oferece uma representaçao mais precisa 
para a sáerie de tem peratura.
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Tabela 20: Coeficientes Estimados — ARMV vs AR

M o d elo 01 02 03 04 05 06 07

AR6 0,81729 0,00361 0,03065 0,00866 0,04458 0,09448 ---

AR6c 0,78023 -0,00728 0,01958 -0,00239 0,03370 0,05751 ---

AR7 0,81001 0,00014 0,02997 0,00631 0,04429 0,03144 0,07714
AR7c 0,77766 -0,00881 0,01969 -0,00326 0,03402 0,02249 0,04489
ARMV 1,02271 -0,00909 -0,00529 -0,01409 -0,00914 -0,00792 -

A Tabela 20 apresenta os coeficientes estimados para os modelos AR e ARMV 
aplicados a serie de dados climaticos. Observa-se que, no modelo ARMV, o coeficiente 
associado ao primeiro defasado (0 1) e significativamente maior do que os demais, os quais 
apresentam valores bastante reduzidos. Isso sugere que o modelo ARMV da maior peso 
ao valor imediatamente anterior da serie, o que tende a estabilizar as previsões em torno 
do último valor observado.

Por outro lado, os modelos AR tradicionais apresentam coeficientes mais dis­
tribuídos a partir de 02, indicando que esses modelos incorporam de maneira mais ativa 
informações de múltiplas defasagens no processo preditivo, o que pode tornú-los mais 
flexíveis, porem potencialmente mais sensíveis a variacoes na serie.

7.2.3 E s tu d o  dos re s íd u o s  do m o d e lo  A R M V (6 ) ap lic ad o  aos D ad o s  C lim á tico s

Diagnóstico  G ráfico  dos resíduos da Série de Dados C lim aticos

ACF dos resíduos PACF dos resíduos
1.0 1.0

Valores x

Figura 17: Serie temporal dos dados simulados para um ARMV(6)

Na Figura 17, sao apresentados quatro grúficos de diagnostico dos resíduos do 
modelo AR-MV(6) ajustado a serie climatica. A funçao de autocorrelacao (FAC) e a
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funcáo de autocorrelacão parcial (FACP) m ostram  que todos os coeficientes se mantem 
dentro dos limites de significánciá, indicando ausenciá de dependenciá serial nos resíduos. 
O histograma revela um a distribuicáo aproximadamente simetrica e centrada em zero, 
sugerindo normalidade. Já  o grafico Q -Q  exibe alinhamento sátisfátírio  dos resíduos a 
re ta  teírica , com pequenas discrepâncias nas caudas. Esses resultados atestam  a áde- 
quacçãao do modelo ajustado, um a vez que os resíduos se comportam como ruído branco, 
náo áutocorrelácionádos e aproximadamente gaussianos.



Aplicação do M odelo 57

7.2 .4  E s tu d o  p re d itiv o  do  m o d e lo

Com paração dos Valores Reais aos Previstos pelos Modelos ARM V e AR

- I -  AR6 AR7 ARMV Esqueleto Valores Reais
Modelos

h h  AR6c -X - AR7c ARMV MC-mean

1 2 3 4 5 6 7 8 9  10
Passos à Frente

Figura 18: Serie temporal dos dados simulados para um ARMV(6)

O Gráfico 18 apresenta a comparação entre os valores reais da série de tem pera­
tu ra  media (linha preta) e as previsões geradas por diferentes modelos para os 10 passos 
a frente. Observa-se que os modelos ARMV Esqueleto e MC-mean m antem previsoes 
mais estaveis e próximas da media da serie, ajustando-se melhor aos valores reais nesse 
horizonte. Em contraste, os modelos AR tendem  a se afastar dos dados observados, es­
pecialmente nos tempos 3 a 6. Esse bom desempenho do ARMV está associado à maior 
influencia do coeficiente associado ao primeiro defasado (AR1), o que contribui para a 
preservacao da tendencia local recente da serie, promovendo maior estabilidade nas pre­
visões.

Tabela 21: Metricas de Previsao a 1-10 Passos a Frente

M o d elo M A E M S E R M S E M A P E

ARMV Esqueleto 0,42871 0,25302 0,50301 1,99914
ARMV MC-mean 0,40637 0,23678 0,48660 1,88378
AR6c 0,46183 0,29076 0,53922 2,15764
AR6 0,53167 0,38732 0,62235 2,49304
AR7c 0,45296 0,28291 0,53189 2,11673
AR7 0,50731 0,36183 0,60152 2,37869

A Tabela 21 apresenta metricas sobre a qualidade preditiva dos modelos analisa­
dos. Os dois modelos baseados na estru tura ARMV obtiveram os menores erros MAE,
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MSE,RMSE e MAPE. O modelo ARMV MC-mean apresentou o melhor desempenho ge­
ral, com MAE =  0,40637 e M APE =  1,88%, indicando uma boa capacidade preditiva. 
Por outro lado, os modelos AR6 e AR7, que nãao consideram regimes, apresentaram  os 
maiores erros .
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8 Conclusão

Para desenvolver este trabalho, foi necessario elaborar um a nova estrategia de 
estimacao de todos os parâmetros do modelo AR-MV(p) exclusivamente a partir dos dados 
observados. Embora Fadel (2012) já  tenha proposto metodos para estimar os limiares a  
e os coeficientes 0, a minimizacao direta da funçao de resíduos mostrava-se altamente 
dependente dos chutes iniciais, devido a complexidade de sua superfície de otimizacao 
Fadel (2012). Para superar esse desafio e garantir consistencia e escalabilidade, adotamos 
o algoritmo k-means na etapa de identificaçao dos limiares: sua simplicidade e eficiencia 
facilitam a replicaçao do procedimento, um dos objetivos centrais desta pesquisa.

Alem disso, desenvolvemos em R um conjunto de funções modulares e dinamicas 
que autom atizam  todo o fluxo de trabalho com modelos AR-MV(p): desde a simulacao 
de series, passando pelo ajuste completo, tan to  pelo procedimento “esqueleto” quanto por 
Monte Carlo, ate a geracao de previsões e o calculo de metricas de desempenho. Dentre 
essas funcoes, destacam-se um a funcao generica que estima simultaneamente a ordem p, os 
limiares a  e os coeficientes 0 de qualquer AR-MV(p), e um a funçao de selecao de modelo 
que, com base no teste da razao de verossimilhança, escolhe autom aticam ente o modelo 
mais adequado.

Nos estudos de simulacao com AR-MV(6) e AR-MV(7), simulamos series com 
parâm etros conhecidos e estimamos simultaneamente a ordem, os limiares e os coeficientes. 
Os resultados m ostraram  que o procedimento proposto recupera com boa precisõao os 
valores verdadeiros e geram modelos com desempenho igual ou melhor na maior parte das 
metricas, validando a combinacõo de agrupamento e criterios de informaçõo para definir 
a estru tura do modelo unicamente a partir dos dados.

Na aplicaçao empírica a serie diaria de tem peratura media de Brasília (2001-2024), 
o modelo AR-MV apresentou melhor desempenho de ajuste e previsao comparado aos mo­
delos AR lineares tradicionais. Observou-se ainda que, no AR-MV(6), apenas o primeiro 
coeficiente teve impacto relevante na previsao, enquanto os demais atuaram  como ajustes 
finos, sem prejudicar a acuríacia global.

Reconhecem-se, porem, limitacoes importantes. A estimacao conjunta continua 
sensível aos valores iniciais: chutes mal calibrados podem comprometer a convergâencia e 
gerar limiares distantes dos reais, especialmente quando os regimes tem  tamanhos muito 
desiguais. Ademais, o metodo ainda nõo dispoe de instrumentos formais de inferência 
para os limiares, restringindo a quantificaçao de sua incerteza.

Em suma, este trabalho avanca a metodologia de estimacao de modelos AR-MV, 
oferecendo uma abordagem pratica, replicavel e eficiente para parametrizacõo completa 
a partir de dados. Pesquisas futuras podem focar em otimizaçcõoes computacionais dos
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algoritmos, extensáo á componentes sazonais e desenvolvimento de metodos de inferência 
formal para os limiares.
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