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1 Resumo

Este trabalho tem como objetivo investigar e aplicar métodos de estimacdo para
0 modelo autorregressivo com memoria variavel (AR-MV), que permite que a ordem do
modelo dependa do valor anterior da serie. A partir de uma formulacao geral do modelo
AR-MV (p), sdo propostas abordagens para a estimacao dos limiares e coeficientes por meio
de um algoritmo iterativo que combina o metodo de k-medias com minimos quadrados
condicionais. As propriedades do processo de estimagcdao sdao avaliadas por meio de estudos
de simulacao e medidas de desempenho, considerando criterios como AIC, BIC, MAE e
MAPE. Adicionalmente, realiza-se uma comparacao com modelos AR tradicionais. Por
fim, o metodo proposto e aplicado a uma serie temporal real de temperaturas medias
mensais de Brasilia (2001-2024), evidenciando sua capacidade de recuperar parametros
adequados. Os resultados mostram que os modelos AR-MV ajustados a partir do processo
de estimaccdao desenvolvido apresentam desempenho superior aos modelos AR tradicionais,
destacando a eficacia da metodologia proposta.

Palavras-chave: modelos autorregressivos; memoria variavel; estimacao de limiares;
series temporais; modelos de regime.



Abstract

Abstract

Resumo

This work aims to investigate and apply estimation methods for the autore-
gressive model with variable memory (AR-MV), which allows the model order to
depend on the previous value of the series. Based on a general formulation of the
AR-MV(p) model, we propose approaches for estimating thresholds and coefficients
through an iterative algorithm that combines the k-means method with conditi-
onal least squares. The estimation procedure’s properties are evaluated through
simulation studies and performance metrics, using criteria such as AIC, BIC, MAE,
and MAPE. Additionally, a comparison with traditional AR models is performed.
Finally, the proposed method is applied to a real monthly time series of average
temperatures in Brasilia (2001-2024), demonstrating its ability to recover suitable
parameters. The results show that AR-MV models fitted using the proposed esti-
mation process outperform traditional AR models, highlighting the effectiveness of
the proposed methodology.

Keywords: autoregressive models; variable memory; threshold estimation; time
series; regime-switching models.
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3 Introducéao

O estudo de séries temporais tem como principal objetivo modelar o comporta-
mento de uma variavel ao longo do tempo, diferenciando o que e aleatoriedade do que
constitui informacao util para o modelo. Isso permite realizar inferéncias sobre a variavel
em estudo.

Em 1970, o metodo de Box e Jenkins formalizou técnicas para modelar, diag-
nosticar e prever series temporais. Esse metodo introduziu os modelos autorregressivos
integrados de medias moveis (ARIMA), que sao lineares e deram origem a modelos deri-
vados, como o Autorregressivo (AR) e o de Medias Moveis (MA).

No entanto, com o tempo, percebeu-se que esses modelos lineares frequentemente
nao eram suficientes para descrever todos os comportamentos observados, especialmente
em series financeiras. Essas series apresentavam varidncia nao constante ao longo do
tempo (heterocedasticidade), o que comprometia os resultados obtidos pelos modelos li-
neares. Para lidar com essa limitacao, surgiram os modelos nao lineares ARCH e GARCH,
cujo objetivo e modelar dados considerando a varidancia condicional.

Com o avanco dos modelos nao lineares, surgiu o modelo TAR (Threshold Auto-
regressive), mencionado por Tong (1977) pela primeira vez. Esse modelo segmenta proble-
mas nao lineares em partes lineares, utilizando uma variavel indicadora chamada limiar.
A motivacao para o desenvolvimento do TAR veio da necessidade de modelar fendmenos
complexos que ainda ndo podiam ser descritos adequadamente por outros metodos, como
no caso estudado por Tong, envolvendo a quantidade de linces capturados no noroeste
do Canada. O modelo SETAR (Self-Exciting Threshold Autoregressive Model), derivado
dos modelos TAR, foi estudado por Tong e Lim (1980). Nesse modelo, a ideia central e
que a variavel que define o limiar seja uma funcdo da defasagem da prépria variavel.

Posteriormente, o modelo AR-MV (Autorregressivo de Memoria Variavel) foi
proposto por Fadel (2012) como um caso particular do modelo SETAR. Nesse modelo,
a ordem da cadeia autorregressiva depende do intervalo em que o primeiro antecessor
Yt-1 se encontra, de acordo com um pardmetro a que define esses intervalos. Em Fadel
(2012), a autora discute propriedades importantes, como a ergodicidade do modelo, a
estimacao de pardmetros, intervalos de confianga e metodos de previsao. Tais aspectos
foram avaliados por meio de estudos simulados, nos quais o0 modelo AR-MV foi comparado
a outros modelos da classe AR. O foco principal foi na analise dos modelos AR-MV(2) e
AR-MV(3).

Essa classe de modelos tambem foi estudada por Loureiro (2018), que analisou
0s aneis de crescimento de arvores como forma de estimar a idade das plantas. O autor
buscou avaliar a propriedade de ergodicidade identificada por Fadel (2012) e conduziu
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estudos simulados com os modelos AR-MV(4) e AR-MV(5).

Na dissertacao de Rangel (2020), o autor apresentar um estudo sistematico dos
modelos AR-MV de ordem 2 a 5. Alem disso ele calcula a log-verossimilhanga méxima
de cada ajuste e compara os criterios AIC e BIC, identificando o modelo que melhor se
ajusta aos dados.

Este trabalho tem como objetivo principal o estudo aprofundado dos modelos
autorregressivos com mudancas de regime (AR-MV), com enfase na estimacgao conjunta da
ordem do modelo, dos limiares que definem os regimes e dos coeficientes autorregressivos
associados, a partir exclusivamente dos dados observados. Alem disso, investiga-se a forma
de realizar essa estimacdo conjunta e a eficiencia do procedimento adotado.

Para validar a abordagem proposta, realizam-se estudos de simulacdo nos quais
0s parametros verdadeiros sao conhecidos, permitindo verificar a capacidade do metodo
de recupera-los adequadamente. Em seguida, os modelos sao aplicados a uma serie real
de temperatura media diaria registrada em Brasilia no periodo de 2001 a 2024, prove-
niente de dados meteorologicos do INMET (Instituto Nacional de Meteorologia). Essa
serie apresenta caracteristicas de variabilidade que tornam particularmente relevante a
consideracdo de mudancas de regime, como padroes sazonais, tendencias de longo prazo
e flutuacdes de curta duracao.

A motivacao para a aplicacdo dos modelos AR-MV em dados climaticos reside na
necessidade crescente de ferramentas estatisticas capazes de capturar e prever comporta-
mentos complexos e nao lineares, especialmente em um contexto de mudancas climaticas
globais. Compreender como diferentes regimes de variabilidade termica se estruturam ao
longo do tempo pode fornecer conhecimentos valiosos para tomada de decisdao em iareas
como agricultura, energia, saude e gestao de recursos hidricos. Assim, este trabalho visa
contribuir para o desenvolvimento metodoligico dos modelos AR-MV e para sua aplicacao
em contextos praticos de grande relevancia.
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4 Fundamentacgdo Teorica

4.1 Processos Estocasticos

Os modelos utilizados para descrever séries temporais sao processos estocasticos,
ou seja, processos controlados por leis probabilisticas, conforme descrito por Morettin e
Toloi (2006). A seguir, apresentamos a definicao de processos estocasticos proposta pelos

autores.

Definicao 1 Seja T um conjunto arbitrdario. Um processo estocastico e uma familia
Y = {Y(t), tET} tal que, para cadat E T, Y(t) e uma variavel aleatoria.

Um processo estocastico pode ser definido como uma familia de variaveis aleatorias
(v.a.) estabelecidas em um mesmo espaco de probabilidade (Q, A,P). O conjunto de
indices T geralmente e considerado como o conjunto dos inteiros T = {0,+1,+2,...} ou
0 subconjunto dos reais R. Para cadat E T, a variavel Y(t) e uma v.a. real, e 0o conjunto
de valores {Y(t), t E T} define o espaco dos estados S do processo, sendo os valores
individuais de Y(t) denominados estados. Alem disso, o processo Y = {Y(t), t ET}
esta completamente caracterizado quando sao conhecidas todas as distribuigdes finito-
dimensionais associadas, descritas por

F (yi,...,yn, ti,...,tn) = P {Y(ti) <yi,...,Y(tn)<yn}, comy ER, ti ET.
4.1.1 Processos Estacionarios

Os conceitos de estacionariedade estrita e estacionariedade fraca serGao apresen-
tados conforme a definicbo de Morettin e Toloi (2006).

Definicao 2 Um processo estocastico Y = {Y(t), t E T} diz-se estritamente estacionario
se todas as distribui¢fes finito-dimensionais permanecem as mesmas sob translacdes no
tempo, ou seja,

F (yi,... ,yn, ti + t,... tn+ t) = F (yi,...,yn ti,...,tn)
para quaisquer ti,...,tn,t ET eyi ER

Nesse contexto, o pardmetro t representa um deslocamento (ou translacao) no
eixo temporal. A defini¢cbo afirma que a distribuicao conjunta das variaveis Y (ti),..., Y (tn)
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ndo se altera quando todos os instantes de tempo ti sao deslocados por uma mesma quan-
tidade t. Isso implica, em particular, que todas as distribuicdes unidimensionais sao
invariantes sob translacdes no tempo. Consequentemente, a media |(t) e a variancia V(t)
sao constantes, isto e,

I(t) = |, V() =a2 paratodotET.

Definicdo 3 Um processo estocastico Y = {Y(t), t E T} diz-se fracamente estacionério,
ou estaciondrio de segunda ordem (ou em sentido amplo), se e somente se

(1) E[Y(®)] = |(t) =], constante, para todot ET;
(i) E[Y2(t)] < to, para todot ET;

(i) y(tL,t2) = Cov(Y(t1), Y (t2)) depende apenas da defasagem |t1—121para todoti ET
4.1.2 Ergodicidade

Conforme definido por Bueno (2011), um processo ergodico pode ser descrito da
seguinte forma:

Definicdo 4 Um processo fracamente estacionario e ergodico para o primeiro momento
se

t=1 s=1
em que Y () representa a media temporal da s-esima realizagcao do processo, ep lim indica
convergéncia em probabilidade.

Isso significa que a media amostral converge em probabilidade para o valor es-
perado populacional. Dessa forma, mesmo com apenas uma realizacao do processo, e
possivel obter uma estimativa consistente da miedia.

Definicdo 5 Um processo fracamente estacionario e ergodico para o segundo momento

S€ 10T
1

P
N— 2N (Y —)(Yt-) —IA Yj, para todo j,
j t=1

P
em que -~ denota convergencia em probabilidade.

A funcao Yj representa a autocovariancia tedrica do processo com defasagem j,
definida como Yj = Cov(Yt,Yt-j) = E[(Y —1)(Yt-j —|)]. Em um processo fracamente
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estacionario, essa funcao depende apenas da defasagem j e nao do tempo absoluto t, re-
fletindo a estrutura de dependencgia temporal do processo. A ergodicidade para o segundo
momento garante que essa autogovariancgia possa ser estimada de forma consistente ¢gom
base em uma &nica realizagao do procgesso.

4.1.3 Ruido Branco

Definicdo 6 (MORETTIN; TOLOI, 2006) Dizemos que {et, t GZ} & um ruido branco
discreto se as variaveis aleatérias et sdo ndo correlacionadas, isto e,

Cov(et,es) = 0, parat=s.

Um progesso de ruido brango sera estacgionario se satisfizer

Elet] = e Var(et) = a2, paratodot GZ.

Neste trabalho, assumiremos sem perda de generalidade que = 0. Assim,
indicamos brevemente

et ~ RB(0, aj).

Alem disso, se as variaveis et forem independentes e identicamente distribuidas
(i.i.d.), entao o progesso e denominado puramente aleatorio. Neste ¢aso, es¢revemos

et ~ i.i.d. (0, aj2.

4.2 Modelos de Series Temporais

Nesta secao, revisamos os pringipais modelos de series temporais ¢lassigos, gujas
definicbes e propriedades seguem de forma detalhada em Morettin e Toloi (2006). Ini-
cialmente, definimos o modelo AR(p), em que a observagcao presente e expressa ¢omo
combinagao linear de p defasagens do progesso mais um termo de erro nao ¢orrelacionado.
Na sequencia, introduzimos o modelo MA(q), no qual a serie e representada ¢omo soma
ponderada de q ¢choques passados. A ¢combinagao destes dois paradigmas da origem ao mo-
delo ARMA(p, q), que capta simultaneamente dependengias autorregressivas e de media
movel. Por fim, discutimos a generalizacao ARIMA(p, d, q), que ingorpora diferengiagéo
de ordem d para lidar com nao-estagionariedade na media. Em seguida, apresentam-se
as funcoes de autocorrelacao (FAC) e de autogorrelacao parcial (FACP), instrumentos
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fundamentais para identificar padroes de dependencia em series temporais, e introduz-
se 0 metodo Box-Jenkins, que estrutura em trés etapas — identificacao, estimacao e
diagnostico — o processo de modelagem ARIMA.

4.2.1 Modelos Auto-Regressivos (AR)

(MORETTIN; TOLOI, 2006) Considere a representacdo geral de um processo
auto-regressivo infinito, dada por

(4.2.1)

em que {at} e um ruido branco com media zero e variancia constante, e nj sdo os coefici-
entes da representaccdao auto-regressiva.

Dizemos que o processo e um modelo auto-regressivo de ordem p, denotado por

AR(p), quando nj = 0 para todo j > p. Nesse caso, a representacdo infinita se reduz a
uma forma finita

Yt= 01Yt-1+ 02Yt-2 + ''' + OpYt-p + at. (4.2.2)

em que renomeamos os coeficientes nj como 0j, paraj = 1,... ,p, segundo a notacéo
usual

0j, sel<j <P,

0, sej >p.

Se definirmos o operador auto-regressivo estacionario de ordem p como
0(B)= 1- 01B - 02B2 - 0pBp, (4.2.3)
entdao o0 modelo pode ser reescrito de forma compacta como
0(B)Yt = at, (4.2.4)

em que B e o operador defasagem (backshift), tal que BYt = Yt-1.

4.2.2 Modelos Auto-Regressivos de Medias Moveis (ARMA)

(MORETTIN; TOLOI, 2006) Para muitas series temporais encontradas na pratica,
0 uso exclusivo de modelos auto-regressivos ou de medias moveis pode exigir um numero
elevado de parédmetros. Nesse contexto, a combinacdo de ambos os componentes repre-
senta uma alternativa eficaz para modelagem, resultando nos chamados modelos ARMA(p, q).
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A forma geral de um modelo ARMA de ordem (p, g) e dada por

Yt = 01Yt-1 + """ + fipYt-p + & —O1Ct-1 — mem—OgOt-q, (4.2.5)
. ER, paraj = 1,... ,p: coeficientes auto-regressivos;
« ER, paraj = 1,..., g coeficientes de media movel;

» {ot} e um ruido branco com E(ot) = 0 e Var(ot) = a’.

Utilizando os operadores de defasagem, definimos

$(B)=1- 01B - 02B2 - OpBp, (4.2.6)
O@B)= 1- B - (B2 -mrmmmmr QB g. (4.2.7)

Dessa forma, o modelo ARMA(p, q) pode ser escrito de maneira compacta como

<>@B)Yt = O(B)ot. (4.2.8)

4.2.3 Modelos Auto-Regressivos Integrados de Médias Moveis (ARIMA)

Considere um processo {Yt} que nao seja estacionario. Definimos o operador de
diferengca como

AYt = Yt- Yt-1 e, de modo recursivo, AdYt = A(Ad-1Yt) (d > 1).

Se a d-esima diferenca do processo, denotada por Wt = A dYt, for estacionaria, entdo Wt
pode ser representado por um modelo ARMAC(p, q), isto e

0(B) Wt = O(B) O, (4.2.9)

com 0(B) e O(B) sendo os polinomios auto-regressivo e de medias moveis em B, e {ot} ~
RB(0,aa).

Como Wt = AdY;, o processo Yt pode ser descrito por um modelo autorregressivo
integrado de medias moveis, ou ARIMA(p, d, g), cuja equacao e€:

0(B)AdYt = O(B) O, (4.2.10)

ou, equivalentemente,
~(B)Yt = O(B) O, (4.2.11)



14 Fundamentacdo Tedrica

em que
p(B) = 0(B) (1- B)d

e um polinbmio auto-regressivo de ordem p + d com d raizes unitarias (no circulo unitario).
Diz-se que Yt segue um modelo ARIMA(p, d, ) se
* p e aordem da parte autorregressiva;
» d e onumero de diferenciacdes necessarias para tornar o processo estacionario;

* geaordem da parte de media movel.

Na pratica, costuma-se usar d = 0,1 ou 2, suficientes para capturar os principais
tipos de ndao-estacionariedade

(a) Nao-estacionariedade em nivel: oscilacoes em torno de niveis medios distintos ao
longo do tempo;

(b) N&o-estacionariedade em inclinacdo: presenca de tendencia persistente de alta ou

baixa.

Quando d = 0, o ARIMA(p, 0, g) reduz-se ao processo estacionario ARMA(p, q).

4.2.4 Funcdo de Autocovariancia (FAC)

Seja {Yt, t E Z} um processo estocastico real, discreto e estritamente estacionario,
com media nula, isto e, E[Yt] = 0 para todo t E Z. A funcdo de autocovarioncia (FACV)
e definida como

Yt = E[YtYt+r], t E Z.

A FACV mede o grau de dependencia linear entre valores do processo separados
por uma defasagem t, e satisfaz as seguintes propriedades

1 Yo> 0

2. y-t= Yr (simetria);

3. Vrl< Yo
4. e nao negativamente definida, no sentido de que, para quaisquer inteiros ti, ..., Th E
Z e quaisquer numeros reais al,..., an,n > 1, vale:

nn

j=1 k=1
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Alem disso, e comum que a FACV de um processo estacionario convirja para zero
quando [t| ™ ro, refletindo a perda de dependencia linear ao longo do tempo.

4.2.5 Funcao de Autocorrelacao

A funcao de autocorrelacao (FAC) do processo e obtida pela normalizacao da

autocovariancia pela variancia do processo, sendo definida como

A FAC possui as mesmas propriedades estruturais da FACV, com a diferenca de

que agora
p0=1 e |pT|< 1 paratodo t GZ.

4.2.6 Funcédo de Autocorrelacao do modelo AR(p)

Multiplicando ambos os lados da equacao do modelo AR(p) (4.2.2),
Yt = 0iYt-i + 02Yt- 2 + mmm+ OpYt-p + at,
por Yt-j e tomando a esperanga, obtemos
E (YtYt-j) = OiE (Yt-iYt-j) + 02E (Y -2Y— ) + eee + OpE (Y— Y -j) + E (aY—).
Como at e ruido branco e ndo esti correlacionado com Yt-j paraj > 0, tem-se

E (atYt-j) = 0.

Logo, a funcao de autocovaridncia Yj = Cov(Yt,Yt-j) satisfaz a equacao de re-
corraencia
Yj = 0iYj-i + 02Y)-2 +-—-—-- +0pYj-p, paraj > 0. (4.2.12)

Dividindo por y0 = Var(Yt), obtemos a funcdo de autocorrelacao

Pj = 0iPj-i + 02Pj-2 +--—---- +0pPj—p, paraj > 0. (4.2.13)

Paraj = 0, temos:

Yo = 0iYi + 02Y2 +------ +0pYp + cl,
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e como Y-j = Yj, resulta que:

L= 0IPI+ 022+ """+ 0pPp + 2 (4.2.14)

ou, equivalentemente:

a
Var(Yt) = Yo . (4.2.15)
1—O0iPi —m=m—O0pPp

As equacoes da FAC paraj = 1,2,... ,p, ¢onhegidas como equacoes de Yule-
Walker, sdo

Pi = 0i + 02Pi + mmm+ OpPp-1, (4.2.16)
P2 = 0iPi + 02+ mmm+ OpPp-2, (4.2.17)

(4.2.18)
Pp = 0iPp-i + 02Pp-2 + mmm+ Op. (4.2.19)

Em forma matricial, podemos es¢reve-las como

1 Pi ®mpp-i O0i Pi
Pi 1 ®mmpp2 02 _ P2

Po-i Pp-2 wem 1 4 Pp

Os coeficientes 0i,..., Op do modelo AR(p) podem ser estimados substituindo-se
as autocorrelacdes Pj por suas estimativas amostrais rj, conforme definido anteriormente.

4.2.7 Funcdo de Autocorrelacao do modelo ARMA

Multiplicando ambos os membros da equagao do modelo ARMA(p, q) (4.2.5)
= Q0iZt-i + =+ OpZt-p + &t —Oat-i —mw—Bgat-q,

por Zt-j e tomando a esperanca, obtemos

Yj = E(ZtZt-j) = E rnizt-i+at 'y |odtk izt
A=i k=i
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Desenvolvendo a expressdo, temos

Y] = 01Yj-1 + 02Yj—=2 + mmm+ OpYj-p + YZa(j) —#1YZa(j —1) —mm—9qYZa(j —q)

Sabemos que Zt— depende apenas de choques anteriores a at ate o tempo t —j .
Assim

Portanto, paraj > g, a equacao da fungao de autocovariancia se reduz a

Yj = 01Yj—2+ 02Yj-2+ mmm+ OpYj-p, j >q

0 que mostra que, a partir da defasagem j g+ 1, a funcao de autocovaridncia segue a

mesma estrutura de um modelo AR(p).

A funcao de autocorrelagdo (FAC) e entdo obtida como

Pj = Olpj-1 + 02pj-2 + wmm+ Oppj-p, j >q,

mostrando que as autocorrelacoes de defasagensj = 1,..., qsao diretamente influenciadas
pelos parametros de medias moveis. Para j > @, as autocorrelacdes comportam-se como
nos modelos auto-regressivos, caracterizando a natureza mista do modelo ARMA.

4.2.8 Funcdo de Autocorrelacao Parcial (FACP)

Box e Jenkins (1970) propdem a utilizacao de um instrumento adicional no pro-
cedimento de identificacdo de modelos de series temporais: a funcao de autocorrelacédo
parcial (FACP). Essa funcao e util para determinar a ordem apropriada de modelos au-
toregressivos (AR), de medias moveis (MA) ou ARMA, a partir do comportamento das
autocorrelagcodes observadas.

Seja Okj o j-esimo coeficiente estimado por minimos quadrados de um modelo
AR(K), e Okk o ultimo coeficiente estimado. Entdo, a funcao de autocorrelacdo parcial e
definida como:
Okk = ultimo coeficiente do modelo AR(K).
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Sabemos que os coeficientes (kj satisfazem as equacdes de Yule-Walker:
P = (fkLPj-1 + (fkPj—2 + mm+ (fkkPj-k, j = 1, ...k,

das quais obtemos o seguinte sistema linear:

- HFL_ —
= d To T P1
=l = =l T o = P2
Pkl Pk-2 ''* P11 (fkk Pk
Resolvendo esse sistema sucessivamente para k = 1, 2, 3,..., obtemos
f1=P1,
11 P1
GZ IP1 P2 P2 .p1
1 pg 1--p2
PL 1
1 p1 P1
P1 1 P2
P2 p1 P3
S
1 p1 P2
P1 1 P1
P2 p1 1
De forma geral, tem-se
o= P

PKk|’
onde P ke a matriz de autocorrelacoes de ordem k e Pk e a matriz obtida substituindo a
ultima coluna de P k pelo vetor \pl,p2,..., pk|T.
A funcgdo (fkk, encarada como funcdo de k, e a chamada funcdo de autocorrelagéo

parcial.
4.2.9 Metodo de Box e Jenkins
Segundo Morettin e Toloi (2006) uma metodologia bastante utilizada na analise

de modelos parametricos e conhecida como abordagem de Box e Jenkins (1970). Tal
metodologia consiste em ajustar modelos auto-regressivos integrados de medias moveis,
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ARIMA(p, d,q), a um conjunto de dados.

A estrategia para a construcao do modelo sera baseada em um ciclo iterativo, no
qual a escolha da estrutura do modelo e baseada nos proprios dados. Os estagios do ciclo
iterativo sao

(a) uma classe geral de modelos e considerada para a analise (especificacdo);

(b) ha identificagao de um modelo, com base na andlise de autocorrelagfes, au-
tocorrelacoes parciais e outros criterios;

(c) a seguir vem a fase de estimac@o, na qual os parametros do modelo identificado
sao estimados;

(d) finalmente, ha a verificagcao ou diagnostico do modelo ajustado, atraves de
uma analise de residuos, para se saber se este e adequado para os fins em vista (previsao,
por exemplo).

Caso 0 modelo ndo seja adequado, o ciclo e repetido, voltando-se a fase de iden-
tificacao. Um procedimento que muitas vezes e utilizado e identificar nao so um unico
modelo, mas alguns modelos que serao entao estimados e verificados. Se o proposito e
previsdo, escolher-se-a entre 0s modelos ajustados o melhor, por exemplo, no sentido de
fornecer o menor erro quadratico medio de previsao.

4.3 Modelo TAR (Threshold Autoregressive)

Os modelos autorregressivos com limiar (TAR) surgiram da necessidade de des-
crever series temporais que exibem comportamentos nao lineares e mudancas de regime,
eventos em que a dinamica do processo muda de acordo com o nivel da propria serie. Essa
abordagem permite capturar assimetrias, ciclos limites e respostas distintas a inovacgodes
de acordo com a regifo do espaco de estados em que o sistema se encontra (TONG, 1978).

Seja {Yt}eZ uma serie temporal de variaveis aleatorias com valores em R. Defi-
nimos (TONG; LIM, 1980):

I EN, numero de regimes.

Limiares {aj}i=0 tais que

— =— a0 < ai < mm< ai-i < ai = +ro, aj ER.

e Atraso de transicdo d E N+, indicando que o regime em t e determinado por Yt-d.

» Ordens autorregressivas por regime pj E NO, paraj = 1,... ,l.
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» Coeficientes regime-dependentes 0j,0 E R (intercepto) ej ER,i=1,... ,pj.

* Ruido branco {et}teZ com E[et] = 0, Var(et) = g2 < w quando no regime j .

O modelo TAR com | regimes escreve-se, para todo t E Z, como (??):

i=1

Aqui cada regime j aplica-se sempre que Yt-d cai no intervalo (aj-1,aj].

4.4 Modelo SETAR (Self-Exciting Threshold Autoregressive)

O modelo SETAR constitui uma instancia particular de TAR em que a propria
serie determina automaticamente as transicoes de regime, tornando explicita a relagcao
entre inovacles passadas e mudancas na dindmica do processo. Gragas a sua formulacdo
simples e interpretavel, o SETAR e amplamente adotado para capturar regimes auto-
induzidos (TSAY, 1989).

Neste caso, consideramos um unico limiar a E R e dois regimes (I = 2). Defini-
mos:

» Serie {Yt}tez C R.

e Limiar unico a E R e atraso d E N+.

* Ordens pl,p2 E NO para regimes baixo (j = 1) e alto (j = 2).
» Coeficientes 0jjoERej ER,i=1,...,pj.

« Ruidos {£(j'} regime-dependentes, com E[£j '] = 0, Var(elj) = aj < w.

No SETAR de dois regimes e atraso d, para cada t (??):

pi
00‘+’_‘]Oi‘Yt-i+£I", se Yt-d < A

Yt 5

4.5 Modelo AR-MV(p)

@) modelo AR-MV (p), tambem conhecido como modelo autorregressivo com memoria
variavel, proposto por Fadel (2012) e uma extensao do modelo SETAR com profundidade
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de defasagem d = 1 e variacao de coeficientes dependente de estados definidos por limia-
res. Nesse modelo, os coeficientes autorregressivos variam conforme o valor da observagcdao
passada Yt-1, o que confere flexibilidade para capturar diferentes dindmicas em distintos
regimes.

A forma geral do modelo AR-MV (p) e dada por

Lt

Yt = <iYt-i + et,
i=1

em que {et} e uma sequencia de ruidos brancos independentes e identicamente distribuidos

com distribuicao Normal(0, a2), e et e independente de Yt-s para todo s > 1

A variavel Lt, que determina a quantidade de defasagens em cada instante t, e
definida conforme a seguinte regra

f

1 seal< Yt-l <al,

< Yt-l <
Lt= 2 seal Yt_l az,

b se ap-1 < Yt-1 < ap,
com os limiares {a0,a1,..., ap} obedecendo as condicdes
a0= —x>, ap=w.

Esses limiares definem uma particao do conjunto dos numeros reais

p-1
R=[™Aj, comAj= (aj,aj+l], j =0,1,... ,p—1
j=o

Esse modelo permite que a estrutura autorregressiva se adapte dinamicamente

ao comportamento da serie temporal, tornando-o particularmente util para capturar mu-
dangcas de regime.

4.5.1 Ergodiciddde do Modelo AR-MV

Segundo Fadel (2012), o modelo AR-MV(p) sera geometricamente ergodico sob a
seguinte condicdo

Proposicao 4.1 SeJ"P” |0i| < 1, entdo o modelo AR-MV(p) e geometricaAmente ergodico.
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A demonstracdo dessa proposigdo baseia-se na reescrita do modelo em fungédo de
uma transformacdo da equacdo (3.1) e na aplicagao de resultados classicos sobre processos
estocasticos com memaria. Para o desenvolvimento completo da prova e argumentos
formais, consulte Fadel (2012, Capitulo 3).

452 Estimacao do Modelo AR-MV com a conhecido

No caso em que a e conhecido, sob o modelo AR-MV(p), os estimadores de
minimos quadrados condicionais (CLS) e de maxima verossimilhanca para 0 = (0i,..., 0p)’
sdo equivalentes e dados por:

0(a) = (v;Tva)-iy;ty (4.5.1)
em que Ya e a matriz de defasagens ponderadas pelo limiar a, definida como

Yp Yp+i(ai) == Yp+i(ap-1)
(4.5.2)

Yn-1 Yn(ai) Yn(ap-i)

onde Yt(aj) = Yt-(j+i) m(Yt-i > aj), com !(m) representando a funcéo indicadora.

O modelo AR-MV tambem pode ser representado matricialmente da seguinte
forma
Yp+i' ep+i
Y = = vao + (4.5.3)

Yn M

453 Estimacao do Modelo AR-MV com a desconhecido

Quando os limiares a sao desconhecidos, a estimacao de a e feita via minimos
quadrados condicionais, minimizando a soma dos quadrados dos residuos

s(@)=yty - vTva (vaTva)-ivaTv (4.5.4)

Neste caso, 0(a) e substituido na funcao de erro, tornando S(a) uma fun¢do apenas dos
pardmetros limiares. A minimizacao de S(a) fornece os estimadores a.

A variancia dos residuos e estimada por

a2 = S(a)

e (4.5.5)
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A matriz de covariancia de <&(&) pode ser estimada por

V-(<&(<)) = 02 (YJTY J)-i (4.5.6)

Nos casos acima, assume-se que 0s estimadores a e <4 sao consistentes e que a
distribuigao assintotica continua valida. Para mais detalhes, ver Fadel (2012).

4.5.4 Algoritmo k-means

O algoritmo k-means, introduzido formalmente por MacQueen (1967), e um
metodo de particionamento que visa agrupar um conjunto de n observagdes multivariadas
{yi,y2,...,yn} C Rdem k grupos (ou clusters), de forma a minimizar a variabilidade
intra-cluster. O problema de otimizacao correspondente pode ser formulado como

E_ z - * »2-
=y
em que:
* yi E Rdrepresenta a i-esima observagoo;
 Cj C {yi,..., yn} e o conjunto de observacGes atribuddas ao j-esimo cluster;

e Nj = jCiVYly.eC.yie o centraide (media vetorial) do cluster Cj.

@) algoritmo segue um procedimento iterativo classico (tambem conhecido como
algoritmo de Lloyd-Forgy), descrito da seguinte forma

1 Inicializa-se aleatoriamente um conjunto de k centroides {"i,..., "k}
2. Enquanto nao houver convergencia

(@) Atribuicao: cada observacao yi e atribuida ao cluster Cj cujo centroide "]
minimiza |lyi - ~jII;

(b) Atualizacao: cada centroide "j e atualizado como a media das observacoes
pertencentes a Cj.

Esse processo garante uma reducao monotona da soma total dos quadrados intra-
cluster e converge para um ponto de manimo local em um nuamero finito de iteragcdoes. No
entanto, o resultado final pode depender da inicializagao dos centroides, néo havendo
garantia de que o manimo global seja atingido.
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4.6 Funcao de Verossimilhanca

A funcao de verossimilhanca e o nucleo da inferéncia estatistica parametrica, pois
expressa o grau de compatibilidade entre os dados observados e um valor do pardametro
do modelo. A partir dela, definem-se estimadores (como o de maxima verossimilhanca) e
procedimentos de teste.

Considere uma amostra de tamanho n,
Y1,Y2,....,¥Yn L= f(x|0),

onde:

Yi E R sao as observacées;

0e 0 C Rpeovetor de pardmetros do modelo;

f(y 10) e a funcao de massa (ou densidade) de X i sob O.

A funcdo de verossimilhanca e a fungao de probabilidade conjunta dos dados, vista como

fungcado de 0: N
L(0;Y,,...,Yn) = nf(Yi 10).
i=1
E comum trabalhar com a log-verossimilhanga
n
1(0; Yt,...,¥Yn) = logL(0; Yb...,Y») = ~ logf (Yi|O0).
i=1

Teste da Razao de Verossimilhanca

Seja L (6 | Y) a funcao de verossimilhanca baseada em uma amostra Y proveni-
ente de uma familia de distribuicdes parametrizada por 6 E 0. Suponha-se que se deseja
testar as hipoteses:

HO:6 EOo wversus H1:6 EO \ Oo,

em que 0o C 0, ou seja, trata-se de hipoteses aninhadas. A estatistica do teste
da razao de verossimilhanca (Likelihood Ratio Test, LRT) e definida por:

A(Y) = sup0€0gL (6 1Y)
sup#e© L(6 1Y) .
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Como A(Y) e [0,1], valores pequenos de A(Y) indicam maior evidencia contra
HO. Em geral, utiliza-se a estatistica transformada:

2log A(Y),

a qual, sob certas condicoes de regularidade e assumindo HOverdadeira, converge
em distribuicao assintotica para uma distribuicao qui-quadrado com k graus de liberdade,
onde k = dim(0) —dim (00), conforme estabelecido pelo Teorema de Wilks. (CASELLA;
BERGER, 2002)

4.7 Previsdo no Modelo AR-MV (p)

A previsdo no modelo AR-MV (p) e baseada na esperanga condicional y't(m) =
E[yt+m | Bt], onde Bt denota a a-algebra gerada pelos valores observados da serie ate o
instante t, ou seja, Bt = a(ys : s < t). Essa a-algebra representa formalmente toda a
informacdo disponivel no tempo t, incluindo o histérico completo da serie (y1,y2,... ,yt).

A dindmica do processo depende do intervalo em que o valor passado yt-1 se
encontra. Para m = 1, a previsao e obtida aplicando a equacao do modelo no regime
identificado, ou seja, com os coeficientes correspondentes ao intervalo Aj tal que yt-1 e Aj:

i=1

Para horizontes de previsao maiores (m > 1), sao comumente utilizados dois
metodos

 Esqueleto deterministico (Skeleton): considera que os choques futuros et+h sdo
nulos. As previsoes sao obtidas de forma recursiva, substituindo valores passados
por previsdoes anteriores, sempre determinando o regime a partir do ultimo valor
disponivel (real ou previsto):

p
i=1

e Simulacdo Monte Carlo: incorpora a aleatoriedade dos choques et+h ~ N(0,a2),
gerando N trajetorias futuras da serie. A previsao final e dada pela media dessas
trajetorias simuladas
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1 N
ifC(h) =N E »ij)(k).
J=1
Ambas as abordagens permitem avaliar a tendencia e a ingerteza das previsoes,
sendo amplamente utilizadas em modelos ¢com regimes, ¢onforme discutido por Fadel
(2012).

5 Metodologia

O presente estudo foi conduzido integralmente no ambiente R (versédo 4.5.0)
utilizando-se sgripts desenvolvidos para implementar as funcoes basicas necessarias a
geracao de dados, estimativa e aplicacdo do modelo ARMV (p)

5.1 Geracao de Dados Simulados do Modelo ARMV (p)

Para fins de avaliacao e validagao dos metodos propostos, foi realizada a si-
mulacao de series temporais ¢com base na estrutura do modelo autorregressivo ¢om limiares
variaveis, denotado por ARMV(p). Esse modelo e uma extensao do modelo autorregres-
sivo classigo, permitindo que os coefigientes variem de agordo ¢om o regime identificado
por um c¢onjunto de limiares sobre os valores passados da serie.

O progesso de simulagao gonsiste nas seguintes etapas:

1. Definicao dos pardmetros do modelo: Define-se um vetor de limiares a =
(ai,a2,..., ap-i), que particiona a reta real em p regimes. Define-se tambem um
vetor de ¢oeficientes autorregressivos 0 = (0i,02,..., 0p), que determina o gompor-
tamento da serie em c¢ada regime.

2. Configuracdo da simulacdo: Especifica-se o numero total de observagbes a se-
rem geradas, ¢onsiderando um periodo de burn-in (aque¢imento), um c¢onjunto de
observagdes uteis para analise e, opgcionalmente, um numero de valores adigionais
reservados para previsdo. Denotamos o total como T = n + npred + burn-in.

3. Inicializagao da serie temporal: Os p primeiros valores da serie {Yt}p= sdo ge-
rados a partir de uma distribuicdo inicial, normalmente uma normal padrdo N (0,1)
ou uma normal com media zero e variancia pré-definida, a fim de fornecer condigoes
iniciais para o progesso. Na simulacdo utilizada usamos uma N (0, 4).

4. Geracao do termo de ruido: Uma sequencgia de erros {at¥{= e gerada de forma
independente e identicamente distribuida, usualmente a ~ N (0, a2), representando
0 componente estogastico do modelo. Novamente utilizamos uma N (0, 4).
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5. Simulacdo do processo AR-MV(p): A serie temporal e gerada iterativamente
parat=p+ 1,..., T, com base na seguinte logica:

* Determina-se o regime ativo no tempo t com base na observacao anterior Yt-1,
utilizando os limiares definidos. O regime Lt e tal que Yt-1 E (aLt-1,aLt], com
a convencao de que a0= —w e ap= w.

» Define-se que, neste regime Lt, serdo utilizados os Lt primeiros coeficientes de
0 para gerar Yt como uma combinagdo linear dos Gltimos Lt termos da serie:

Lt

Yt=  0jYt-j + at
1

Essa formulagcdao permite que o modelo capture diferentes dindamicas ao longo do
tempo, dependendo do regime em que a serie se encontra. Assim, o0 modelo ARMV(p) e
capaz de representar estruturas de dependencia nao lineares e adapta-se a mudancas no
comportamento da serie temporal.

5.2 Estimacao dos Parametros e Selecao da Ordem do Modelo
AR-MV(p)

A estimacao dos parametros do modelo AR-MV(p), com limiares a e coeficientes
autorregressivos 0, pode ser realizada por meio de um procedimento iterativo que alterna
entre a estimacdo de a e 0, ate atingir convergencia.

5.2.1 Iteracao Alternada entre a e O

Inicialmente, fixa-se um valor de p e seguem-se 0s seguintes passos:

1 Chute inicial de 0: estima-se um modelo autorregressivo tradicional AR(p), sem
intercepto, por maxima verossimilhanca, a fim de obter um vetor inicial de coefici-
entes 0 (0).

2. Chute inicial de a: aplica-se o algoritmo k-means com p centros a serie {yt},
desconsiderando os 5% valores mais extremos, e define-se os limiares como 0s pontos
medios entre 0s centroides consecutivos.

3. Iteracao: dados os vetores 0 (K) e a (k) da iteracao k:

» Estima-se a (fc+1), mantendo 0 (K) fixo, pela minimizacao da variancia dos residuos;
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» Estima-se 0 (fctl), mantendo a (fctl) fixo, via minimos quadrados condicionais;

» O processo e repetido ate que as variacoes em a e 0 entre iteracoes consecutivas
sejam menores que uma tolerdancia pre-definida.

* A funcéo optim do R, com o metodo BFGS, e utilizada para minimizar a funcéo

objetivo
4. Log-verossimilhdnca: com os valores finais <0 e a, estima-se a variancia dos
residuos 62 e calcula-se a log-verossimilhanca sob normalidade:

i = —n [log(2n62) + 1],

onde n representa o numero de observacdes utilizadas na estimacéo.

5.2.2 Selecdo d4a Ordem p via Teste de Razao de Verossimilhanca

A selegcado da ordem p do modelo AR-MV pode ser feita utilizando o teste da razdao
de verossimilhangca, comparando modelos com ordens consecutivas. O procedimento segue
0S seguintes passos:

1. Ajusta-se o modelo AR-MV(p) para um valor inicial pmin e calcula-se a log-verossimilhanga
| Arvin>

2. Para p = pmn+ 1,...,pmax, ajusta-se o modelo AR-MV(p) e calcula-se a log-
verossimilhanca Ip;

3. A estatistica de teste da razao de verossimilhanca e dada por:
LR = 2(lp —Ip-1),

que, sob a hipotese nula de que o0 modelo com ordem p —1 e suficiente, segue uma
distribuicao qui-quadrado com 2 graus de liberdade (um novo coeficiente 0 e um
novo limiar a);

4. Compara-se o valor-p com um nivel de significoncia a (geralmente, a = 0,05). Se o
valor-p for inferior a esse nivel, aceita-se 0 modelo de ordem maior e continua-se o
processo. Caso contrario, interrompe-se a selecdo e define-se a ordem 6tima como
sendo aquela do uiltimo modelo aceito.

Esse procedimento e especialmente util para evitar o superajuste, selecionando
automaticamente a complexidade adequada ao modelo com base em evidencia estatistica.
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5.3 Obtencao dos Dados Climaticos

Os dados foram obtidos diretamente no portal do INMET, onde e possivel escolher
as estacoes meteoroldgicas de interesse — tanto as convencionais quanto as automaticas.
Apis selecionar a estacao desejada, pode-se especificar quais variaveis serao extraidas
(por exemplo, temperaturas maxima, minima e media, indices pluviometricos etc.) e a
frequencia temporal das observacfes (diaria, mensal ou em intervalos de horas por dia,
disponibilizados pelas estagoes automaticas). Em seguida, o INMET processa a requisigao
e envia os arquivos de dados por e-mail.
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Simulacaes

Com o objetivo de avaliar a capacidade do procedimento de estimacgdao proposto

para o modelo AR-MV (p), conduzimos um estudo de simulagao em que series temporais

sao geradas a partir de configuragbes conhecidas de limiares a e coeficientes autorregres-

sivos 0. A ideia central e verificar se, a partir apenas dos dados simulados, o algoritmo de

estimacdo e capaz de recuperar adequadamente os pardmetros a e 0, bem como a ordem
p do modelo.

Para isso, procedemos da seguinte forma:

Geramos series temporais sinteticas sob a estrutura do modelo AR-MV(p), com
p=6ep=7, utilizando valores conhecidos de a, 0 e a2;

Aplicamos, sobre cada serie gerada, a funcao de estimacao descrita anteriormente, a
qual realiza a estimacao conjunta de a e 0 por meio de um procedimento iterativo;

Utilizamos tambem o teste de razao de verossimilhanca para avaliar a selegdo correta
da ordem p do modelo;

Comparamos os parametros estimados com os valores reais utilizados na geracdo
das series, analisando o erro de estimacdo, a estabilidade do processo e o ajuste do
modelo;

Por fim, coletamos medidas descritivas e representacdes graficas que permitam vi-
sualizar o comportamento da serie gerada e a aderéncia do modelo estimado.

Este estudo e fundamental para verificar a robustez do metodo proposto em

contextos controlados e compreender suas limitacdes e pontos fortes antes de aplica-lo em

dados reais.
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6.1 Simulacdo ARMYV (6)

Na simulagao do modelo ARMV(6) foi utilizado os vetores de parametros a =
(=2, —,0,1, 2 e P = (0,05, 0,10, 0,15, 0,20, 0,20, 0,25), alem de ruido aleatorio gerado
a partir de uma distribuicao Normal com media » = 0 e desvio-padrao a = 2. O seguinte
sistema de equacoes define nosso modelo.

0.05 Yt-i + et Yt-i < =2,
0.05Yt-i +0.10 Yt-2 + et —2< Yt-i < -,
0.05Yt-i + 0.10 Yt-2 + 0.15 Yt-3 + e, —1 < Yt-i <0,
0.05Yt-i + 0.10Yt-2 + 0.15Yt3 + 0.20 Yt-4 + e, 0<Yti <]
0.05Yt-1 + 0.10Yt- 2+ 0.15Yt- 3+ 0.20 Yt 4+ 0.20 Yt 5 + e, 1<Yt-1 <2

N.05Yt-i + 010 Yt-2 + 0.15Yt3 + 0.20 Yt-4 + 0.20 Yt-5 + 0.25Yt-6 + et, Yt-i > 2

Ao todo, serao produzidos 10110 valores, dos quais 100 sao descartados como
“burn-in” e os ultimos 10 ficam reservados para avaliar a capacidade preditiva do modelo,
resultando em uma serie final de 10000 observagcBes. Antes de iniciar a geracdo de dados,
criamos um vetor de ruidos aleatorios de comprimento 10110 e um vetor de observacdes
inicial contendo os 6 primeiros valores, sorteados aleatoriamente a partir de uma Normal;
com isso, obtemos os valores do modelo ARMV(6) representados abaixo.

Figura 1 Serie temporal dos dados simulados para um ARMV(6)

Podemos observar que a serie apresenta alguns picos nos quais os valores se
mantem elevados por determinados periodos. Nota-se um pico acentuado no inicio da
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série, seguido por outros dois, de menor duracao, localizados mais ao final da série.

Tabela 1 Resumo dos resultados da simulagdo ARMV/(6)

E statistica

Media
Variancia
Namero de observacaes

Teste ADF
Estatistica Dickey-Fuller
p-valor

Teste PP
Z(a) de Dickey-Fuller
p-valor

Valor

0,2971
5,4233
10000

-11,643
0,01

-14368
0,01

Detalhes

Lag = 21
Hipotese alternativa: estacionaria

Lag truncado = 12
Hipotese alternativa: estacionaria

A Tabela 1 apresenta um resumo estatistico da serie simulada sob o modelo
ARMV(6). Os resultados dos testes de raiz unitaria — ADF (Augmented Dickey-Fuller)
e PP (Phillips-Perron) — indicam, com forte evidencia, a rejeicao da hipatese nula de ndo

estacionariedade, dado que ambos os testes apresentam estatisticas significativamente

negativas e valores-p inferiores a 0,01. Esses resultados reforcam a hip6tese de que a serie

simulada e estacionaria, como esperado pelo fato da soma dos coeficientes ser menor que

1

Figura 2 Graficos de diagnostico da serie simulada AR-MV(6): FAC, FACP, histograma e Q-Q plot

A Figura 2 mostra os principais diagnasticos da serie simulada ARMV(6). A FAC
apresenta um decaimento gradual, indicando persistencia temporal, enquanto a FACP
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exibe um corte claro ap6s a sexta defasagem, confirmando a ordem do modelo. O histo-
grama sugere distribuicao aproximadamente normal, e 0 Q-Q plot indica boa aderéncia a
normalidade, com desvios leves nas caudas. Esses resultados reforcam a estacionariedade
da serie, a ordem autoregressiva e a adequacdo da hipotese de erro gaussiano.

6.1.1 Estimacdo dos parametros

Nesta etapa, buscamos estimar os parametros do modelo AR-MV — limiares a
e coeficientes autorregressivos 0 — a partir da serie simulada.

0] procedimento de estimacao, baseado em iteracao alternada entre a e 0, con-
vergiu em apenas duas iteracoes. O valor final selecionado para a ordem do modelo foi
p = 6, conforme definido pelo critério da razdo de verossimilhanca.

Tabela 22 Comparagdo entre Pardmetros Estimados e Verdadeiros

Pardmetro Valor Verdadeiro Valor Estimado

ai -2.0000 -1.9323
a2 -1.0000 -0.7620
a3 0.0000 -0.1347
ad 1.0000 1.3053
a5 2.0000 2.0113
0i 0.0500 0.0298
02 0.1000 0.1020
03 0.1500 0.1455
04 0.2000 0.1961
05 0.2000 0.1720
06 0.2500 0.3099

Os resultados da Tabela 9 mostram que os parametros estimados para o modelo
AR-MV (6) apresentam boa proximidade em relacao aos valores verdadeiros utilizados
na simulacao. Os limiares aj foram recuperados com pequenas variacdes, e a separagao
entre regimes. Os coeficientes autorregressivos 0j tambem foram bem estimados, com
desvios modestos, especialmente para os primeiros lags. A maior diferenca foi observada
em 06, cuja estimativa foi ligeiramente superior ao valor real, o que pode ser atribuido
a variabilidade amostral. De forma geral, os resultados indicam que o procedimento de
estimaccado adotado foi eficaz para recuperar a estrutura do modelo simulado.
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Tabela 3: Estimativas dos Coeficientes 0, Erros Padrédo e Intervalos de Confianca

Coef. Valor Verdadeiro Estimativa Erro Padréo IC 95% Cobertura
0i 0,05 0,0298 0,0098 0,0106 - 0,0490 Nao
02 0,10 0,1020 0,0106 0,0812 - 0,1228 Sim
03 0,15 0,1455 0,0115 0,1230 - 0,1679 Sim
04 0,20 0,1961 0,0127 0,1711 - 0,2210 Sim
05 0,20 0,1720 0,0162 0,1403 - 0,2037 Sim
06 0,25 0,3099 0,0183 0,2741 - 0,3458 Nao

Os resultados apresentados na Tabela 17 indicam boa acuracia na recuperacdo dos
coeficientes 0 do modelo, com cinco dos seis valores verdadeiros contidos nos respectivos
intervalos de confianca de 95%. Observa-se, no entanto, subestimacao de 01 e superes-
timacao de 06, ambos fora dos intervalos de cobertura, o que sugere maior incerteza nas
extremidades da estrutura autorregressiva.

Uma possivel explicacao para a discrepancia em 06 estd relacionada a prépria
dindmica da serie simulada: como observamos anteriormente, ha trechos em que a serie
permanece por longos periodos em um mesmo regime, especialmente no regime associ-
ado ao altimo limiar. Esse padrdo implica um namero desproporcionalmente maior de
observacoes nesse regime, o que pode enviesar as estimativas dos coeficientes correspon-
dentes.

Para uma analise mais clara da segmentacao induzida pelos limiares estimados,
serd apresentada, a seguir, a decomposicao da serie conforme os regimes identificados.

Série ARMV(6) com Regimes Representados por Cores

+ Regime 1 + Regime3 + Regime5

Regimes
+ Regime2 + Regime4 Regime 6

Figura 3 Serie simulada de um modelo AR-MV/(6), com observacdes representadas por cores conforme
0s regimes estimados.



Simulacoes 35

Na Figura 3, e possivel observar quatro picos distintos na serie simulada: um
mais prolongado em torno do tempo 2500 e trés menores entre aos tempos 7500 e 10000
Esses episodios prolongados em niveis elevados fazem com que haja uma concentracao
maior de observacoes no regime associado ao ultimo limiar (a5), o que pode explicar a
superestimacao de 06. Por outro lado, a menor frequencia de permanencia em valores
baixos reduz o numero de observacfes no regime do primeiro limiar (al), o que pode
justificar a subestimacao de 01 Essa assimetria na distribuicdo das observacdes entre os
regimes afeta diretamente a qualidade das estimativas nos extremos do modelo.

Tabela 4: Resumo Estatistico por Regime do AR-MV/(6)

Regime N de Observacoes Medid Medidnd Variancia

1 1557 -3,0612 -2,8011 0,9423
2 1712 -1,3213 -1,3111 0,1117
3 1139 -0,4423 -0,4436 0,0329
4 2528 0,5486 0,5294 0,1651
) 956 1,6462 1,6303 0,0411
6 2108 3,5780 3,1380 2,2871

A Tabela 4 mostra que o Regime 6 concentra um numero significativamente maior
de observacoes do que 0s regimes mais extremos, como 0 1, 2 e 5. Esse desequilibrio
pode ter impactado a qualidade das estimativas nos limites do modelo, contribuindo para
desvios maiores em alguns paradbmetros em relagcdao aos seus valores verdadeiros.

6.1.2 Estudo do &juste do modelo ARMV (6)

Tabela 5: Metricas de Ajuste — ARMV(6) vs AR

Modelo AlC AlCc BIC MAE MSE RMSE MAPE

ARMV  42107,03 42107,05 4215750 1,59 3,95 1,99 187,41
ARG6C 42851,32 42851,33 42909,00 4,25 19,11 4,37 93,73

ARG 4286542 4286542 4291589 4,33 19,83 4,45 95,50
ART7c 42829,99 42830,00 42894,88 4,25 19,12 4,37 93,77
ART 42842,61 42842,63 42900,30 4,32 19,80 4,45 95,45

A Tabela 19 apresenta as metricas de ajuste dos diferentes modelos aos dados
simulados. Observa-se que o0 modelo ARMV(6), que corresponde ao verdadeiro gerador
da serie, atinge os melhores resultados em todas as metricas de ajuste (menores valores
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Comparacdo entre Valores Observados e Ajustados

Modelos -e- AR6c -B- AR6 -1- AR7c -A- AR7 ARMV

Tempo

Figura 4. Ajuste dos modelos AR-MV(6), AR(6) e AR(7) as Ultimas 60 observacOes da serie simulada.

de variancia residual, MAE, MSE, RMSE, AIC, AlCc, BIC e MAPE) em comparacao
com os modelos AR tradicionais. Esse desempenho superior era esperado, ja que os dados
foram simulados a partir de um processo ARMV (6).

6.1.3 Estudo dos residuos do modelo ARMV (6)

Figura 5. Graficos de diagnostico dos residuos do modelo AR-MV(6): FAC, FACP, histograma e Q-Q
plot

A Figura 5 exibe os diagnéasticos dos residuos do modelo AR-MV(6). Os graficos
de FAC e FACP indicam ausencia de autocorrelacao significativa, sugerindo que os residuos
s6o essencialmente ruado branco. O histograma apresenta uma distribuicao simetrica e em
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forma de sino, enquanto o Q-Q plot mostra boa aderéncia a linha te6rica, com pequenos
desvios apenas nas caudas. Esses resultados confirmam que o modelo ajustado captu-
rou bem a estrutura da serie, gerando residuos nao correlacionados e aproximadamente
normais.

6.1.4 Estudo preditivo do modelo ARMV (6)

Comparacdo dos Valores Reais aos Previstos pelos Modelos ARMV e AR

—— ARG6 AR7 ARMV Esqueleto Valores Reais
Modelos
»-  AR6C ART7c ARMV MC-mean

1 2 3 4 5 6 7 8 9 10
Passos a Frente

Figura 6. Previsdo a 10 passos dos modelos AR-MV(6), AR(6) e AR(7) aplicada a série simulada.

Tabela 6: Metricas de Previsao a 1-10 Passos a Frente

Modelo MAE MSE RMSE MAPE

ARMYV Esqueleto 11,9764 5,2331 2,2876 58,58
ARMYV MC-mean 1,9221 5,0731 2,2524 53,66

ARG 1,8804 5,0690 2,2515 51,14
ARGC 1,7753 4,7106 2,1704 46,70
AR7 1,8384 15,0112 2,2386 48,99
ART7c 1,7413 4,6859 2,1647 44,90

Na Figura 6 sdo apresentadas as previsfes a 1-10 passos a frente de seis modelos
(ARMV Esqueleto, ARMV MC-mean, AR6, AR6c, AR7 e AR7c) em comparacao aos
valores reais (linha preta). Nota-se que todos os modelos geram previsdes estaveis e
proximas entre si, com pouca sensibilidade aos grandes picos e oscilacbes presentes na
serie real, especialmente para horizontes mais longos. Entre os modelos avaliados, AR7c
e ARG6c apresentaram o melhor desempenho preditivo, registrando os menores valores
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de MAE, MSE, RMSE e MAPE. No geral, os modelos AR com media (indicados por
“c”) superaram os demais em todas as metricas de erro, indicando maior acurada para
previsdes nesse cenario simulado.

Tabela 7: Coeficientes Estimados — ARMV vs AR

Modelo 0i 02 03 04 05 06 07
ARG 0,08518 0,14396 0,14477 0,14819 0,09822 0,10948 —
ARGC 0,08342 0,14217 0,14298 0,14639 0,09644 0,10774 —
AR7 0,07974 0,13909 0,13740 0,14097 0,09102 0,10524 0,04979

ART7c 0,07822 0,13753 0,13592 0,13948 0,08955 0,10371 0,04830
ARMV 0,02980 0,10198 0,14545 0,19606 0,17201 0,30993 —

A Tabela 7 permite comparar os coeficientes autorregressivos estimados entre
0os modelos AR tradicionais e o modelo AR-MV(6). Nota-se que os modelos AR (ARG,
AR7 e suas versGes com intercepto) apresentam um padrdo decrescente e suavemente
distribuido entre os lags, com coeficientes em torno de 0,08 a 0,14. Por outro lado, o
modelo AR-MV(6) exibe um padrdo mais assimetrico: os coeficientes iniciais s&o menores
(especialmente 01 = 0,0298), enquanto os de ordem mais alta, como 06 = 0,3099, séo
substancialmente maiores.

Esse comportamento reflete a natureza do modelo AR-MV, que permite regimes
distintos e, portanto, capta dinamicas mais complexas. Em contraste, os modelos AR
impéem estrutura homogenea, o que pode limitar a capacidade de modelar variacoes
bruscas ou nao lineares. A presenca de coeficientes mais elevados nos dltimos lags do
ARMYV sugere que esses termos sao mais relevantes em regimes especificos, o que e coerente
com os picos e mudancas de comportamento observados na serie simulada.
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6.2 Simulacdo ARMV (7)

Na simulagcdao do modelo AR-MV (7) foram usados os limiares
a = (—25, —15, —0.5, 05, 1.5, 2.5)
e 0 vetor de coeficientes autorregressivos
0 = (0.05, 0.05, 0.10, 0.10, 0.20, 0.20, 0.25),

alem de um termo de erro et ~ N (0, 22). Geraram-se 10.110 observacdes no total, sendo
as primeiras 100 destinadas ao burn-in e as 10 finais reservadas para teste da capacidade
preditiva. O sistema de equacoes que define 0 modelo AR-MV(7) e

01Yt-1 + £t Yi-1 < 2.5,

01vt-1 + 02Yt-2 + £t, —25 < Yt-1 < 5,

01vi-1 + 02Yt-2 + 03vt-3 + £, —15< Yt1l < 05,
Yt= 0IMi-1 + 02Yt-2 + g3Yt-3 + 047-4 + £f, —0.5 < Yt-1 < 05,

01Yt-1 + 02Yt-2+ 03Yt-3+ 04Yt-4+ 05Y-5 + £t, 0.5 < Yt-1 < 15

O1Yt-1 + 02Yt-2+ 03Yt-3+ 04Yt-4+ 05Yt-5 + 06Yt-6 + £t, 15 < Yt-1 < 25,

01Yt-1 + 02Yt-2+ 03Yt-3+ 04Wt-4+ 05vt-5+ 06Yt-6 + O7Yt-7 + Qo "~-1 > 2.5,

A seguir, apresentamos a serie gerada juntamente com as estatisticas descritivas
e os resultados dos testes ADF e PP.



40

Simulacgdes

Série Temporal Simulada sob o Modelo ARMV(7)

10

Figura 7. Serie temporal dos dados simulados para um ARMV(7)

Tabela 8 Resumo dos resultados da simulacdo ARMV/(7)

E statistica

Media
Variancia
NUmero de observacdes

Teste ADF
Estatistica Dickey-Fuller
p-valor

Teste PP
Z(a) de Dickey-Fuller
p-valor

Valor

0,0988
4,4621
10000

-15,139
0,01

-13559
0,01

Detalhes

Lag = 21
Hipotese alternativa: estacionaria

Lag truncado = 12
Hipotese alternativa: estacionaria

A Tabela 8 apresenta as estatisticas descritivas e os testes de raiz unitaria apli-

cados a serie simulada do modelo ARMV(7). A media proxima de zero e a variancia

moderada indicam uma serie centrada e com dispersao compativel com 0 processo gera-

dor. Os testes ADF e PP rejeitam a hipotese nula de nao estacionariedade com elevada

margem (p-valor < 0,01), confirmando que a serie simulada e estacionaria, como esperado

pelo modelo. Esses resultados reforgam a validade do processo ARMV gerado e indicam

adequacao para analises subsequentes de estimacdo e previsao.
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Figura 8 Gréficos de diagndstico da serie simulada AR-MV(7): FAC, FACP, histograma e Q-Q plot

A Figura 8 apresenta os diagnosticos da série simulada para o modelo ARMV (7).
Os graficos de FAC e FACP indicam ausencia de autocorrelacao significativa, sugerindo
que a serie gerada e estacionaria. O histograma na figura 8 revela uma distribuicdo aproxi-
madamente simetrica e com formato semelhante ao de uma Normal, o que esta de acordo
com os pressupostos do modelo gerador. Ja o grafico Q-Q reforca essa interpretacdo, mos-
trando boa aderéncia dos quantis amostrais a reta teorica. Esses resultados indicam que a

serie simulada apresenta propriedades compativeis com um processo ARMYV estacionario
com erros gaussianos.
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6.2.1 Estimacao dos pardmetros

Nesta etapa, nosso objetivo e estimar, a partir da serie simulada, os limiares a
e os coeficientes autorregressivos 0. O algoritmo de estimacao convergiu em apenas duas
iteracoes, fornecendo os seguintes valores estimados para a:

Tabela 9: Comparagéo entre Parametros Estimados e Verdadeiros — ARMV/(7)

Paradmetro Valor Verdadeiro Valor Estimado

ai -2,5 -1,9451
a2 -1,5 -1,2640
a3 -0,5 -0,3448
a4 05 0,4313
a5 15 1,3308
a6 2,5 2,4719
0i 0,0500 0,0304
02 0,0500 0,0510
03 0,1000 0,0972
04 0,1000 0,0998
05 0,2000 0,1800
06 0,2000 0,2185
07 0,2500 0,2467

Os resultados apresentados na Tabela 9 mostram que os limiares estimados aj e 0s
coeficientes autorregressivos 0j se aproximam dos valores verdadeiros utilizados na geragdo
da serie ARMV(7). Apesar de pequenas discrepancias, principalmente nos primeiros
limiares, os valores estimados mantem a ordem e espacamento aproximado em relacao aos
verdadeiros, 0 que sugere uma boa recuperacao da estrutura de mudanca de regime do
modelo.

No que se refere aos coeficientes 0j, nota-se que os valores estimados seguem de
forma bastante proxima os coeficientes verdadeiros, com desvios pequenos e sem inversaoes
de magnitude, o que indica que o procedimento de estimaccdao foi eficaz em identificar a
estrutura de dependencia temporal.

Esses resultados corroboram a capacidade do estimador em recuperar os pardmetros
de um processo ARMV(7) a partir dos dados simulados, reforgando a consistencia do
metodo aplicado mesmo em modelos com maior numero de defasagens e multiplos limia-
res.
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Tabela 10: Estimativas dos Coeficientes  Erros Padréo e Intervalos de Confianga

Coef. Valor Verdadeiro Estimativa Erro Padrao IC 95% Cobertura
0i 0,05 0,0304 0,0099 0,0111 - 0,0497 Nao
02 0,05 0,0510 0,0108 0,0299 - 0,0721 Sim
03 0,10 0,0972 0,0112 0,0752 - 0,1192 Sim
04 0,10 0,0998 0,0128 0,0748 - 0,1249 Sim
05 0,20 0,1800 0,0146 0,1514 - 0,2086 Sim
06 0,20 0,2185 0,0179 0,1834 - 0,2537 Sim
07 0,25 0,2467 0,0247 0,1984 - 0,2950 Sim

A Tabela 10 apresenta as estimativas dos coeficientes 0j do modelo ARMV(7),
juntamente com seus erros padrao, intervalos de confianca de 95% e a indicacdo de cober-
tura, isto e, se o valor verdadeiro encontra-se dentro do respectivo intervalo.

Observa-se que 6 dos 7 coeficientes tiveram seus valores verdadeiros contidos nos
intervalos de confianca, o que indica boa precisédo das estimativas obtidas pelo metodo
de estimacao. A unica excecao e o coeficiente 01, cuja estimativa foi subestimada e cujo
intervalo [0,0111, 0,0497] nao inclui o valor verdadeiro de 0,05. Isso pode estar associado
a menor influencia ou menor frequencia do regime correspondente nos dados simulados,
especialmente considerando que coeficientes iniciais tendem a ser mais dificeis de estimar
em modelos com miltiplos regimes e ordem elevada.

No geral, os coeficientes mais centrais e dominantes (03 a 07) foram bem esti-
mados, com valores proximos aos verdadeiros e intervalos estreitos, refletindo a eficiencia
do estimador no contexto simulado. Esse resultado sugere que o modelo foi capaz de
capturar adequadamente a estrutura autoregressiva da serie ARMV(7) simulada.
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Série ARMV(7) com Regimes Representados por Cores

+ Regime 1 - Regime3 - Regime5 + Regime 7
Regimes
+ Regime2 - Regime 4 Regime 6

Figura & Serie simulada de um modelo AR-MV/(7), com observacdes representadas por cores conforme
0s regimes estimados.

Tabela 11: Resumo Estatistico por Regime do AR-MV/(7)

Regime N de Observacoes Medid Medidnd Varidncia

1 1623 -3,0317 -2,7799 0,8994
2 1023 -1,5822 -1,5746 0,0381
3 1520 -0,7882 -0,7819 0,0683
4 1556 0,0413 0,0431 0,0504
5 1543 0,8555 0,8419 0,0678
6 1450 1,8579 1,8486 0,1060
7 1285 3,6161 3,3078 1,1009

A Tabela 11 apresenta um resumo estatistico das observacoes segmentadas por
regime na serie simulada a partir do modelo AR-MV(7). Observa-se que 0s regimes 1
e 7 concentram os valores mais extremos da serie, com medias de —3,03 e 3,62, res-
pectivamente, e tambem maiores variancias, o que reflete maior dispersdo nos extremos.
Ja 0s regimes centrais, especialmente o 4, apresentam medias proximas de zero e baixa
variabilidade, compativeis com um comportamento mais estavel.

A mediana proxima a media em todos os regimes indica simetria nas distribuicGes
dentro de cada faixa. Essa segmentacao ajuda a explicar a natureza da serie simulada, pois
cada regime contribui com caracteristicas distintas a dinamica geral do processo. Alem
disso, a distribuicao relativamente equilibrada de observacoes entre o0s regimes garante
diversidade suficiente para uma estimacao robusta dos parametros.
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6.2.2 Estudo do ajuste do modelo

9940

Modelos

9960

Tempo

AR7c -B- AR7 H- ARS8c

Comparacédo entre Valores Observados e Ajustados

ARMV

9980

45

10000

Figura 10: Ajuste dos modelos AR-MV(7), AR(7) e AR(8) as ultimas 60 observagdes da série simulada.

Tabela 122 Metricas de Ajuste — ARMV(7) vs AR

Modelo AlC

ARMYV  42096,88

ARG 42632,99
ARG6C 42628,96
AR7 42597,07
ART7c 42593,71
ARS8 42597,22

ARS8c 42594,00

AlCc

42096,89
42633,00
42628,97
42597,08
42593,73
42597,24
42594,02

BIC

42154,56
42683,47
42686,64
42654,76
42658,61
42662,12
42666,10

MAE

1,5894
4,6794
4,6302
4,6765
4,6303
4,6759
4,6303

MSE

3,9478
22,2123
21,7491
22,1999
21,7651
22,1949
21,7659

RMSE

1,9869
4,7130
4,6636
4,7117
4,6653
4,7111
4,6654

MAPE

167,88
98,96
97,92
98,90
97,92
98,89
97,92

A Tabela 12 apresenta as métricas de ajuste calculadas sobre uma série simu-

lada a partir de um modelo AR-MV/(7).

Observa-se que o proprio modelo AR-MV(7)

apresenta desempenho superior em todas as metricas consideradas, como era esperado.

Especificamente, obteve a menor varidncia residual (42 = 3,9478) e os menores valores de

AIC, AICc e BIC, indicando melhor ajuste segundo os criterios de informacao.
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6.2.3 Estudo dos residuos do modelo ARMV (7)

Diagndéstico Grafico dos residuos da Série ARMV(7)

ACF dos residuos PACF dos residuos
10 10

-4 0 4 8 - 4 2 0 2 4
Valores X

Figura 11 Graficos de diagndstico dos residuos do modelo AR-MV/(7): FAC, FACP, histograma e Q-Q
plot

A Figura 11 apresenta os diagnoésticos graficos dos residuos do modelo AR-MV(7).
Os graficos de autocorrelacao (FAC) e autocorrelacao parcial (FACP) mostram que nao
ha valores significativos fora dos limites de confianca, sugerindo ausencia de dependencia
serial nos residuos. O histograma indica que os residuos seguem uma distribuicao aproxi-
madamente simetrica e semelhante a normal. Essa suposicdo e reforcada pelo grafico Q-Q,
no qual os quantis empiricos aderem bem a linha de referencia teorica. No conjunto, os re-
sultados apontam para residuos nao autocorrelacionados e aproximadamente gaussianos,
confirmando a adequacdo do modelo estimado a estrutura dos dados simulados.
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6.2.4 Estudo preditivo do modelo ARMYV (7)

Comparacédo dos Valores Reais aos Previstos pelos Modelos ARMV e AR

—— AR7
Modelos
ART7c

1 2 3 4 5

AR8 ARMV Esqueleto Valores Reais

AR8c ARMV MC-mean

6
Passos a Frente

10

47

Figura 12: Previsdo a 10 passos dos modelos AR-MV/(7), AR(7) e AR(8) aplicada a série simulada.

A Figura 12 apresenta as previsfes a 1-10 passos a frente dos modelos AR7,
ARS8, AR7 com constante (AR7c), AR8 com constante (AR8c), bem como dos metodos
ARMYV Esqueleto e media de Monte Carlo (ARMV MC-mean), em comparacaoc com 0s

valores reais da serie simulada (linha preta).

Observa-se que, embora todos os modelos

apresentem series de previsoes suavizadas, os metodos baseados em ARMY foram capazes

de captar parte da estrutura de oscilacao da serie original, sobretudo o modelo ARMV
Esqueleto, que reproduz com mais fidelidade os picos e vales.

Tabela 13: Metricas de Previsdo a 1-10 Passos a Frente

Modelo MAE

ARMYV Esqueleto 1,00473
ARMY MC-mean 1,18476

ARTcC 1,28441
AR7 1,31686
AR8c 1,28074
ARS8 1,30876

MSE

1,49483
1,89232
2,31409
2,43379
2,27535
2,38935

RMSE MAPE (%)

1,22263
1,37561
1,52121
1,56006
1,50843
1,54575

67,17015
76,40377
65,71092
64,99339
67,37590
66,11036

Essa impressao e corroborada pelos resultados quantitativos. O modelo ARMV
Esqueleto obteve os melhores desempenhos em termos de MAE (1,00473), MSE (1,49483)
e RMSE (1,22263), destacando-se como 0 mais preciso nos erros absolutos e quadraticos
medios. No entanto, o modelo AR7 apresentou o menor erro percentual medio (MAPE =
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64,99%), seguido de AR7c (65,71%) e ARS8 (66,11%), indicando que os modelos lineares
com constante tambem oferecem boa capacidade preditiva em termos relativos.

Por outro lado, o metodo ARMV MC-mean, embora ainda tenha tido um de-
sempenho superior aos modelos AR nas outras metricas, apresentou desempenho inferior,
especialmente no MAPE (76,40%), sugerindo que, neste cenario, a variabilidade introdu-
zida pelas simulacoes nao resultou em ganho preditivo.

Tabela 14: Coeficientes Estimados — ARMV vs AR

Modelo < <3 <4 <5 <6 <7 <8
AR7 0,06082 0,07740 0,08617 0,07891 0,08376 0,08387 0,06157
ART7cC 0,06026 0,07683 0,08560 0,07835 0,08320 0,08330 0,06102
ARS8 0,05998 0,07626 0,08503 0,07784 0,08259 0,08281 0,06075 0,01361

AR8c 0,05945 0,07574 0,08451 0,07733 0,08208 0,08230 0,06025 0,01310
ARMV  0,03039 0,05097 0,09716 0,09984 0,17999 0,21852 0,24670 -

A Tabela 14 apresenta os coeficientes estimados para os modelos ARMV(7) e
AR de ordens 7 e 8, com e sem constante. Observa-se que os modelos AR apresentam
coeficientes de menor magnitude e relativamente estaveis entre si, refletindo a estrutura
linear e homogenea tipica desses modelos. Em contrapartida, os coeficientes estimados
para o modelo ARMV/(7) variam significativamente em magnitude, com destaque para 0s
valores mais elevados associados aos defasagens superiores (<5, <6e <7).
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7 Aplicacao do Modelo

7.1 Banco de Dados

O conjunto de dados utilizado foi obtido no portal do Instituto Nacional de
Meteorologia (INMET) (2024) para a regiao de Brasilia . Escolheu-se a estacao OM-
BRA (Observatorio Meteorologico de Brasilia), mantida pelo INMET, e foram extraidas
medicdes diarias no periodo de 01/01/2001 a 31/12/2024. Ao todo, a serie contem 8 767
observacoes em quatro variaveis: data, temperatura minima, temperatura media e tempe-
ratura maxima. O objetivo desta base e servir como exemplo para a aplicacao do metodo
proposto, visando a obtencéo de estimativas consistentes dos pardmetros e a construcéo
de um modelo com desempenho competitivo em relagcdao aos modelos autorregressivos
tradicionais (AR).

7.2 Serie de dados climaticos

Temperatura Média em Brasilia (2001-2024) com Dados do INMET

0 2500 5000 7500
Tempo

Figura 13 Serie temporal dos dados simulados para um ARMV(6)

A Figura 13 apresenta a serie temporal da temperatura media diaria registrada
em Brasilia entre 2001 e 2024. Visualmente, demonstra comportamento estacionirio, osci-
lando em torno de uma media estavel ao longo dos anos, sem indicacao clara de tendencia
de aumento ou queda. Observa-se um padrdo de flutuacdo recorrente, compativel com a
presenca de sazonalidade anual (tipica em series climiticas) com picos e vales ao longo do
tempo, refletindo as variacoes entre estacdes do ano.
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Tabela 15: Resumo dos resultados da serie de dados climéticos

Estatistica Valor Detalhes
Media 21,5861 -
Variancia 3,9395 -
Numero de observacgdes 8719 -

Teste Augmented Dickey-Fuller
Estatistica Dickey-Fuller -9,8365 Lag = 20
p-valor 0,01 Hipaotese alternativa: estacionaaria

Teste Phillips-Perron
Z(a) de Dickey-Fuller -1409,8 Lag truncado =12
p-valor 0,01 Hipaotese alternativa: estacionaaria

Teste KPSS (nivel)
Estatistica KPSS 1,2454 Lag truncado =12
p-valor 0,01 Hipotese nula: estacionariedade em navel

A Tabela 15 apresenta um resumo estatistico da serie de temperatura media
diaria em Brasilia no periodo de 2001 a 2024. A media observada foi de aproximadamente
21,59°C, com variancia de 3,94, indicando uma dispersdo moderada em torno da media
ao longo do tempo. O numero total de observacdes foi de 8.719, caracterizando uma serie
extensa e adequada para andalise de series temporais.

Para avaliar a estacionariedade da serie, foram aplicados trés testes formais: o
teste de Dickey-Fuller Aumentado (ADF), o teste de Phillips-Perron (PP) e o teste KPSS
(navel). Tanto o ADF quanto o PP apresentaram estatisticas de teste significativamente
negativas (ADF = -9,84; PP = -1409,8), com p-valores iguais a 0,01, rejeitando a
hipatese nula de raiz unitaria. Esses resultados sugerem que a serie e estacionaria.

Entretanto, o teste KPSS, que adota a hipdotese nula oposta, apresentou um
valor estatistico elevado (KPSS = 1,25) com p-valor tambem igual a 0,01, rejeitando essa
hipatese. Esse resultado indica possiVel nao estacionariedade em navel, revelando um
aparente conflito com os testes ADF e PP.

Essa divergencia pode indicar a presenca de uma tendencia leve ou de uma es-
trutura quase integrada na saerie, 0 que & comum em dados climaaticos. Ainda assim,
prosseguiremos com a analise para ilustrar a aplicacao do metodo proposto.
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Figura 14: Serie temporal dos dados simulados para um ARMV(6)

A Figura 14 exibe os diagndsticos da série climatica, evidenciando uma forte de-
pendéncia temporal, com a FAC apresentando decaimento lento e a FACP sinalizando
corte no primeiro defasagem, caracteristica tipica de processos autoregressivos. O his-
tograma revela uma distribuicao aproximadamente simetrica, com leve assimetria a es-
querda, enquanto o grafico Q-Q indica aderéncia moderada a normalidade, com desvios
nas extremidades. Esses indicios, em conjunto, reforcam a hipotese de que a serie seja
estacionaria.
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7.2.1 Estimacao dos pardmetros

Aplicacdo do Modelo

Nessa etapa utilizamos a funcao que foi descrita na etapa da metodologia e os

resultados obtidos indicam que o modelo de ordem p = 6 fornece o melhor ajuste.

seguir, apresenta-se o resumo do modelo obtido:

Tabela 16: Pardmetros Estimados do Modelo ARMV/(6) para os Dados Climéaticos

(@ Limiares Estimados

Limiares
ai
&2
a3

a4
as

Estimativa

19,5592
20,5775
21,5777
22,6182
23,7281

(b) Coeficientes Estimados

Coef. Estimativa

0i 1,0227
02 -0,0091
03 -0,0053
04 -0,0141
05 -0,0091
06 -0,0079

A

A andlise dos parametros estimados do modelo AR-MV(6) aplicado a serie de
dados climaticos revela uma segmentacao bem distribuida dos limiares &j, com valores

crescentes entre aproximadamente 19,56 e 23,73.

guadamente identificados ao longo da faixa de variacdo da temperatura.

Isso sugere que os regimes foram ade-

Quanto aos coeficientes 0j, observa-se que apenas 0 primeiro apresenta valor

expressivo (1,0227), indicando forte dependencia com a defasagem imediata, enquanto os

demais coeficientes sao proximos de zero, 0 que aponta para uma estrutura autoregressiva

essencialmente de ordem 1

Tabela 17: Estimativas dos Coeficientes

Coef. Estimativa
01 1,0227
02 -0,0091
03 -0,0053
04 -0,0141
05 -0,0091
06 -0,0079

Erro Padrao

0,0016
0,0022
0,0019
0,0016
0,0018
0,0020

Erros Padrao e Intervalos de Confianca

IC 95%

[1,0195 ; 1,0259]
[-0,0133 ; -0,0048]
[-0,0090 ; -0,0016]
[-0,0173 ; -0,0109]
[-0,0126 ; -0,0056]
[-0,0118 ; -0,0041]

Os resultados apresentados na Tabela 17 mostram as estimativas dos coeficientes

0j para o modelo ajustado aos dados climaaticos, juntamente com seus respectivos erros
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padrao e intervalos de confianca de 95%. Observa-se que o primeiro coeficiente e signifi-
cativamente diferente de zero e assume valor proximo de 1, sugerindo forte persistencia
na serie. Os demais coeficientes apresentam magnitudes reduzidas e negativas, embora
estatisticamente significativas, o que pode indicar corre¢bes de curto prazo em relacao ao
valor anterior. O conjunto das estimativas sugere uma dinamica autoregressiva com forte
dependencia temporal e componentes de ajustamento finos nos ”lags”subsequentes.

Série de Dados Climaticos de Brasilia com Regimes Representados por Cores

+ Regime 1 « Regime3 + Regime5
Regimes
+ Regime2 - Regime 4 Regime 6

Figura 15: Serie temporal dos dados simulados para um ARMV(6)

A Figura 15 apresenta a serie de temperatura media diaria em Brasilia segmen-
tada em regimes distintos, identificados por diferentes cores, com base nos limiares esti-
mados pelo modelo AR-MV(6). Observa-se que os regimes capturam variacoes sazonais
e oscilacoes de amplitude ao longo do tempo.

Tabela 18: Resumo Estatistico por Regime da Serie Climéatica com Segmentacdo AR-MV(6)

Regime N de Observagcbes Media Mediana Variancia

1 1276 18,5593 18,8 0,8753
2 1297 20,0744 20,1 0,0801
3 1803 21,0806 21,1 0,0807
4 1974 22,0748 22,1 0,1025
5 1221 23,1616 23,2 0,0974
6 1148 24,9362 24,7 1,0080

A Tabela 18 apresenta um resumo estatistico da serie climatica segmentada pelos
regimes identificados via modelo AR-MV(6). Observa-se uma clara ordenacdo crescente
nos valores medios e medianos conforme o regime, indicando que os limiares estimados
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conseguiram identificar faixas distintas de temperatura.

7.2.2 Avaliacdo de ajuste do modelo

Comparacdo entre Valores Observados e Ajustados

Modelos AR6c -B- AR6 AR7c -A- AR7 ARMV

8660 8680 8700 8720
Tempo

Figura 16. Serie temporal dos dados simulados para um ARMV(6)

Tabela 19: Metricas de Ajuste — ARMV vs AR

Modelo AlIC AlCg¢ BIC MAE MSE RMSE MAPE
ARMV 26262,74 26262,75 26312,25 0,83 1,19 1,09 3,90
ARGC 26046,41 26046,42 26102,99 1,30 2,81 1,67 6,09
ARG 26349,79 26349,80 26399,30 1,44 3,45 1,85 6,75
ARTcC 26030,82 26030,84 26094,48 1,30 2,81 1,67 6,10
AR7 26299,78 26299,79 26356,36 1,43 3,40 1,84 6,71

A Tabela 19 apresenta as metricas de ajuste dos modelos AR e ARMYV aplicados
a serie climatica. Observa-se que o modelo ARMYV obteve o menor valor de <2, menor erro
medio absoluto (MAE), menor erro quadratico medio (MSE) e o menor erro percentual
medio absoluto (MAPE), evidenciando melhor desempenho geral na modelagem da serie.

Apesar de os modelos AR com constante (AR6c e AR7c) apresentarem valores
ligeiramente menores de AIC, o ARMYV se destaca por capturar mais eficientemente a
estrutura dos dados, entregando previsdes com menor erro absoluto e percentual. Isso
sugere que a modelagem por regimes com limiares oferece uma representagao mais precisa
para a saerie de temperatura.
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Tabela 20: Coeficientes Estimados — ARMV vs AR

Modelo 01 02 03 04 05 06 07
ARG 0,81729 0,00361 0,03065 0,00866 0,04458 0,09448
ARG6C 0,78023 -0,00728 0,01958 -0,00239 0,03370 0,05751
AR7 0,81001 0,00014 0,02997 0,00631 0,04429 0,03144 0,07714

ARTc 0,77766 -0,00881 0,01969 -0,00326 0,03402 0,02249 0,04489
ARMV 1,02271 -0,00909 -0,00529 -0,01409 -0,00914 -0,00792 -

A Tabela 20 apresenta os coeficientes estimados para os modelos AR e ARMV
aplicados a serie de dados climaticos. Observa-se que, no modelo ARMYV, o coeficiente
associado ao primeiro defasado (01) e significativamente maior do que os demais, 0S quais
apresentam valores bastante reduzidos. Isso sugere que o modelo ARMV da maior peso
ao valor imediatamente anterior da serie, 0o que tende a estabilizar as previsdes em torno
do ultimo valor observado.

Por outro lado, os modelos AR tradicionais apresentam coeficientes mais dis-
tribuidos a partir de 02, indicando que esses modelos incorporam de maneira mais ativa
informacdes de multiplas defasagens no processo preditivo, o que pode tornd-los mais
flexiveis, porem potencialmente mais sensiveis a variacoes na serie.

7.2.3 Estudo dos residuos do modelo ARMYV (6) aplicado aos Dados Climaticos

Diagnoéstico Grafico dos residuos da Série de Dados Climaticos

ACF dos residuos PACF dos residuos
10 10

Valores

Figura 17: Serie temporal dos dados simulados para um ARMV(6)

Na Figura 17, sao apresentados quatro gruficos de diagnostico dos residuos do
modelo AR-MV(6) ajustado a serie climatica. A funcao de autocorrelacao (FAC) e a
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funcdo de autocorrelacdo parcial (FACP) mostram que todos os coeficientes se mantem
dentro dos limites de significancia, indicando ausencia de dependencia serial nos residuos.
O histograma revela uma distribuicdo aproximadamente simetrica e centrada em zero,
sugerindo normalidade. J& o grafico Q-Q exibe alinhamento satisfatirio dos residuos a
reta teirica, com pequenas discrepancias nas caudas. Esses resultados atestam a ade-
quaccdao do modelo ajustado, uma vez que os residuos se comportam como ruido branco,
nao autocorrelacionados e aproximadamente gaussianos.
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7.2.4

Estudo preditivo do modelo

Comparacdo dos Valores Reais aos Previstos pelos Modelos ARMV e AR

-1- ARG AR7 ARMV Esqueleto Valores Reais
Modelos
hh AR6c -X- AR7c ARMV MC-mean

2 3 4 5 6 7 8 9
Passos a Frente

Figura 18 Serie temporal dos dados simulados para um ARMV(6)
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O Gréfico 18 apresenta a comparagdo entre os valores reais da série de tempera-

tura media (linha preta) e as previsdes geradas por diferentes modelos para os 10 passos

a frente.

Observa-se que os modelos ARMV Esqueleto e MC-mean mantem previsoes

mais estaveis e proximas da media da serie, ajustando-se melhor aos valores reais nesse

horizonte.

Em contraste, os modelos AR tendem a se afastar dos dados observados, es-

pecialmente nos tempos 3 a 6. Esse bom desempenho do ARMV esta associado a maior
influencia do coeficiente associado ao primeiro defasado (AR1), o que contribui para a

preservacao da tendencia local recente da serie, promovendo maior estabilidade nas pre-

visoes.

dos.

Tabela 21; Metricas de Previsao a 1-10 Passos a Frente

Modelo MAE MSE RMSE MAPE

ARMYV Esqueleto 0,42871 0,25302 0,50301 1,99914
ARMV MC-mean 0,40637 0,23678 0,48660 1,88378

ARGC 0,46183 0,29076 0,53922 2,15764
ARG 0,53167 0,38732 0,62235 2,49304
ART7c 0,45296 0,28291 0,53189 2,11673
AR7 0,50731 0,36183 0,60152 2,37869

A Tabela 21 apresenta metricas sobre a qualidade preditiva dos modelos analisa-
Os dois modelos baseados na estrutura ARMYV obtiveram os menores erros MAE,
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MSE,RMSE e MAPE. O modelo ARMV MC-mean apresentou o melhor desempenho ge-
ral, com MAE = 0,40637 e MAPE = 1,88%, indicando uma boa capacidade preditiva.
Por outro lado, os modelos AR6 e AR7, que ndao consideram regimes, apresentaram o0s

maiores erros .
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8 Conclusao

Para desenvolver este trabalho, foi necessario elaborar uma nova estrategia de
estimacao de todos os pardmetros do modelo AR-MV(p) exclusivamente a partir dos dados
observados. Embora Fadel (2012) j& tenha proposto metodos para estimar os limiares a
e os coeficientes 0, a minimizacao direta da funcao de residuos mostrava-se altamente
dependente dos chutes iniciais, devido a complexidade de sua superficie de otimizacao
Fadel (2012). Para superar esse desafio e garantir consistencia e escalabilidade, adotamos
o algoritmo k-means na etapa de identificacao dos limiares: sua simplicidade e eficiencia
facilitam a replicacao do procedimento, um dos objetivos centrais desta pesquisa.

Alem disso, desenvolvemos em R um conjunto de funcdes modulares e dinamicas
gue automatizam todo o fluxo de trabalho com modelos AR-MV(p): desde a simulacao
de series, passando pelo ajuste completo, tanto pelo procedimento “esqueleto” quanto por
Monte Carlo, ate a geracao de previsdes e o calculo de metricas de desempenho. Dentre
essas funcoes, destacam-se uma funcao generica que estima simultaneamente a ordem p, 0s
limiares a e os coeficientes 0 de qualgquer AR-MV(p), e uma fungao de selecao de modelo
qgue, com base no teste da razao de verossimilhanca, escolhe automaticamente o modelo
mais adequado.

Nos estudos de simulacao com AR-MV(6) e AR-MV(7), simulamos series com
pardmetros conhecidos e estimamos simultaneamente a ordem, os limiares e os coeficientes.
Os resultados mostraram que o procedimento proposto recupera com boa precisfao 0s
valores verdadeiros e geram modelos com desempenho igual ou melhor na maior parte das
metricas, validando a combinacdo de agrupamento e criterios de informagdo para definir
a estrutura do modelo unicamente a partir dos dados.

Na aplicagao empirica a serie diaria de temperatura media de Brasilia (2001-2024),
o modelo AR-MV apresentou melhor desempenho de ajuste e previsao comparado aos mo-
delos AR lineares tradicionais. Observou-se ainda que, no AR-MV(6), apenas o primeiro
coeficiente teve impacto relevante na previsao, enquanto os demais atuaram como ajustes
finos, sem prejudicar a acuriacia global.

Reconhecem-se, porem, limitacoes importantes. A estimacao conjunta continua
sensivel aos valores iniciais: chutes mal calibrados podem comprometer a convergaencia e
gerar limiares distantes dos reais, especialmente quando os regimes tem tamanhos muito
desiguais. Ademais, o0 metodo ainda ndo dispoe de instrumentos formais de inferéncia
para os limiares, restringindo a quantificacao de sua incerteza.

Em suma, este trabalho avanca a metodologia de estimacao de modelos AR-MV,
oferecendo uma abordagem pratica, replicavel e eficiente para parametrizac6o completa
a partir de dados. Pesquisas futuras podem focar em otimizaccdoes computacionais dos
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algoritmos, extensdo & componentes sazonais e desenvolvimento de metodos de inferéncia
formal para os limiares.
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