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Resum o

Este trabalho propõe e avalia modelos estocásticos para descrever a dinâmica dos 
preços do Bitcoin em diferentes escalas temporais, utilizando dados diarios e intradiarios. 
Na análise diária, introduzem-se modelos dirigidos pelo Movimento Browniano Fracionario 
(fBm) para capturar memória longa, associados a especificacoes de volatilidade constante 
e estocastica via processo de Cox-Ingersoll-Ross. Para dados intraday, aplicam-se modelos 
de Duracão Condicional Autorregressiva (ACD) Exponencial, Weibull e Gamma Gene­
ralizado, com ajustes para padroes diurnos, para modelar o tempo entre transações. Os 
resultados dem onstraram  a capacidade dos modelos ACD em capturar o agrupamento 
das duracoes, com o modelo Gamma Generalizado apresentando melhor ajuste segundo 
a análise de resíduos de Cox-Snell. Esse estudo contribui ao aplicar e comparar modelos 
estocasticos em multiplas escalas temporais para o Bitcoin, confirmando a relevancia da 
memoria longa, da volatilidade estocastica e da dinamica intradiaria para a compreensao 
do ativo.

P a lav ra s-ch av e : Bitcoin. Modelagem estocastica. Movimento Browniano Fracionario. 
Volatilidade estocástica. Modelos ACD. Equacoes Diferenciais Estocásticas.
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A bstract

This study proposes and evaluates stochastic models to describe the dynamics of 
Bitcoin prices across different time scales, using both daily and intraday data. In the daily 
analysis, models driven by Fractional Brownian Motion (fBm) are introduced to capture 
long memory, combined with constant and stochastic volatility specifications via the Cox- 
Ingersoll-Ross process. For intraday data, Exponential, Weibull, and Generalized Gamma 
Autoregressive Conditional Duration (ACD) models are applied—adjusted for diurnal 
patterns—to model the time between transactions. The results dem onstrated the ability 
of ACD models to capture the clustering of durations, with the Generalized Gamma model 
showing the best fit according to the Cox-Snell residual analysis. This study contributes 
by applying and comparing stochastic models across multiple time scales for Bitcoin, 
confirming the relevance of long memory, stochastic volatility, and intraday dynamics for 
understanding the asset.

K ey w o rd s: Bitcoin; Stochastic modeling; Fractional Brownian Motion; Stochastic vola­
tility; ACD models; Stochastic differential equations.
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1 Introducao  j»

Nos ultimos anos, o Bitcoin tem  se destacado no cenario mundial como um dos 
ativos financeiros mais relevantes. Essa moeda digital foi criada em 2009 por Satoshi 
Nakamoto (NAKAMOTO, 2008), baseando-se na tecnologia blockchain, ou seja, um livro 
de registro digital onde todas as transações realizadas sao armazenadas de m aneira segura 
e transparente. Dessa forma, as transacoes sao feitas de modo descentralizado, isto e, sem 
meios intermediários, como bancos e governos, permitindo a transferencia direta de valores 
entre os usuarios atraves de carteiras digitais. Essas transacoes precisam ser confirmadas 
e registradas no blockchain, em um processo denominado mineracão, no qual cálculos 
matematicos complexos sao realizados por computadores para validar as transacães e 
adicionar novos blocos de forma sequencial ao blockchain, garantindo a segurançca e a 
integridade dos dados (ANTONOPOULOS, 2017).

Diferentemente das moedas tradicionais, o Bitcoin funciona de m aneira ininter­
rupta, 24 horas por dia, sete dias por semana, e possui um limite maíximo de 21 milhoães 
de unidades em circulacão, o que gera alta liquidez, volatilidade e escassez no mercado. 
Nesse sentido, sua limitacão e a ausencia de um ente regulador contribuem para sua ele­
vada volatilidade, tornando-o um ativo que atrai a atenção de investidores e pesquisadores 
(ANTONOPOULOS, 2014).

Assim, o Bitcoin e uma moeda que vai alem do mercado financeiro tradicional, 
um a vez que e influenciada por eventos globais, como crises econômicas ou mudancas re- 
gulatorias, sendo utilizada ate como alternativa para proteçao contra a inflacao em países 
com economias instaveis. Dessa forma, estudos apontam  que essa imprevisibilidade nos 
preçcos apresenta um padrãao complexo que se repete ao longo do tempo, indicando um 
comportamento chamado de memória longa, isto e, os preços atuais podem ser influenci­
ados por movimentos passados (GARNIER; SOLNA, 2019).

Compreender a volatilidade do Bitcoin e essencial para varias áreas do mercado 
financeiro, como a precificacao de investimentos, analise de gestão de risco e elaboracão 
de estrategias financeiras. No entanto, a previsão de medidas de risco para criptomoedas, 
como o Valor em Risco (do ingles Value-at-Risk) e o Defit Esperado (do ingles Expected 
Shortfall), e particularm ente desafiadora devido as suas características inerentes, como 
alta volatilidade, movimentos extremos de preços e períodos de comportamento tu rbu­
lento extremo (HOTTA et al., 2025). Para tal, modelos matematicos vem sendo utilizados 
para explicar o comportamento deste ativo e dentre eles destacam-se os modelos oriun­
dos do Movimento Browniano Fracionário (fBm, do ingles frational Brownian motion). 
Esse modelo perm ite um a descricão mais realista da variabilidade dos precos, levando em 
conta o comportamento anterior e a imprevisibilidade futura dessa moeda (ALHAGYAN;



10 In trodução

YASSEN, 2023).

Alem disso, a analise de dados financeiros de alta frequencia, tem  se mostrado fun­
damental para compreender a dinamica de mercado e formular estrategias de investimento 
mais efetivas. Nesse sentido, os modelos autorregressivos de duraçao condicional (ACD), 
propostos por Engle e Russell (1998), oferecem um a abordagem robusta para modelar o 
tempo entre transacoes, sobretudo em dados irregulares, como e o caso das criptomoedas. 
Embora utilizada no mercados financeiro para avaliar a intensidade das transaçcãoes e a 
evolucao das duracães, esses modelos ainda sao pouco explorados no contexto do Bitcoin, 
apesar de sua relevancia para analisar o risco de preço e a m icroestrutura do mercado 
(DIMPFL; ODELLI, 2020).

O presente estudo tem  como objetivo propor um a nova classe de processos diri­
gidos por movimento browniano fracionario (fBm), capazes de modelar os precos diarios 
do Bitcoin e sua volatilidade, e aplicar modelos (ACD) para analisar as duraçcãoes entre 
transaçcãoes intradiáarias do ativo, visando identificar padroães temporais e sazonais que con­
tribuam  para o comportamento de mercado do Bitcoin. Para isso, os seguintes objetivos 
específicos sao formulados:

• Identificar e descrever os padrães de memária longa presentes no historico de preços 
diáarios do Bitcoin.

• Incorporar a volatilidade estocástica nos modelos propostos por (QUINTINO; ME- 
DINO; DOREA, 2023), analisando o seu impacto na precisao das previsoes.

• Realizar um a analise comparativa de diferentes modelos estocásticos de precos.

• Realizar um a analise intradiaria dos preços do Bitcoin, atraves do modelo ACD.
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2 M etodologia

Neste capítulo, sera apresentado alguns conceitos basicos que serõo utilizados ao 
longo do trabalho.

2.1 Umá Classe de M odelos de Volatilidade Estocástica

2.1.1 M o v im en to  B ro w n ian o  e P ro ce sso s  D eriv ad o s

Um processo estocastico e um a coleçao de variaveis aleatórias {S(t); t E T } defi­
nidos num espaco de probabilidade (Q, F , P), onde T  e um conjunto de tempos, que pode 
ser enumeravel ou nao-enumerável. A variável S(t) depende do tempo t, mas tambem 
contem incerteza (por isso e um a variavel aleatoria). Segundo (ROSS, 2014), os processos 
estocasticos sao amplamente utilizados para modelar fenômenos dinamicos que apresen­
tam  comportamento incerto. Neste trabalho, consideraremos T  =  [0, ro). Neste caso, 
dizemos que {S(t); t >  0} e um processo a tempo contínuo.

Ademais, os processos estocasticos podem ser classificados como:

• M ark o v ian o s : O futuro do processo depende apenas do estado atual, nõo do pas­
sado.

• N ão  M ark o v ian o s : O futuro do processo pode depender de toda a historia pas­
sada, e nõao apenas do estado presente.

O Movimento Browniano e um processo estocastico amplamente utilizado, espe­
cialmente no mercado financeiro, para modelar o comportamento aleatorio dos precos de 
ativos.

D efln içao  1 Dizemos que um processo {B(t);  t >  0} e um Movimento Browniano se 
satisfaz:

1. B (0) =  0, quase certamente (q.c.).

2. B  possui incrementos independentes, i.e., dados 0 <  t0 <  ti  <  ■ ■ ■ < tn , as variaveis 
aleatórias

B  (t1) — B (t2) — B ( t1), . . . , B  (tn) — B (tn - 1)

■são independentes.

3. Para Vt, s > 0,
B (t) -  B (s) -  N (0, |t -  s|)
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4 . B  possui trajetórias continuas q.c.

Pode-se m ostrar que um movimento Browniano:

1. E um processo Gaussiano e Markoviano.

2. Não e diferenciável em nenhum ponto (q.c.).

(BACHELIER, 1900) foi um dos primeiros estudiosos a utilizar o movimento 
Browniano para prever precos de ativos financeiros. Na era moderna, (ROSS, 2002) 
tam bem  utilizou diretamente o movimento Browniano para modelar o preco de acoes. No 
entanto, essa aplicação direta do movimento Browniano enfrentou muitas críticas, pois 
esse processo permite que o preco seja negativo, assumindo que os precos das açoes seguem 
um a variavel aleatória normal.

Para lidar com essa situacao, um a variacao nao-negativa do movimento Browni­
ano, chamada de movimento Browniano geometrico (GBM, do ingles Geometric Brow- 
nian Motion), foi empregada para superar as limitações do movimento Browniano em 
aplicaçães financeiras. O GBM demonstrou que pode descrever melhor a situaçao real. 
Por isso, foi amplamente utilizado em muitas aplicacoes da m atem atica financeira, como 
o preco de índices, seguro de hipotecas, o modelo de Black-Scholes(HULL, 2009), preci- 
ficacão de opçoes e taxas de cambio (OKSENDAL, 2002; ROSS, 2014). Vale ressaltar 
que, o trabalho proposto por (ARA uJO , 2020) tambem aborda a aplicacão do GBM para 
simulaçao de preços de acães.

D efin içao  2 Um processo estocástico {S(t); t > 0} segue um GBM  se satisfaz a seguinte 
equação diferencial estocástica:

d S (t) =  yS ( t)d t  +  a S ( t ) d B (t), t >  0, (2.1.1)

em que {B(t); t >  0} e um movimento Browniano, ^  e a taxa media de crescimento 
do processo ao longo do tempo (drift), enquanto a e a volatilidade, a qual quantifica a 
intensidade das flutuacoes aleatorias em torno dessa tendencia media. A Equacao (2.1.1) 
representa a seguinte equacao integral:

S(t) =  S0 +  í  y (S (u ) ,u )  du +  í  a (S (u ) ,u )  dB(u), (2.1.2)
J 0 J 0

em que a segunda integral e chamada de integral de Ito (para maiores detalhes, ver 
(KLEBANER, 2012). Nesse sentido, a solucao da Eq. (2.1.1) e de forma:

S(t) =  S0 exp j -  - a 2 j t +  a B (t) 1 , (2.1.3)
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em que S0 representa um valor inicial.

Apesar da evolução dessa abordagem, (AiT-SAHALIA; LO , 1998) observou o 
surgimento de memoria nos dados de series temporais, que e controlada pela estrutura 
dinamuca de (2.1.1). Isso implica o proximo passo: propor um modelo gBm que possa 
incorporar as propriedades de memoria longa. O Movimento Browniano Fracionário(fBm) 
íe um dos modelos que podem ser utilizados para lidar com essa questãao. Dessa forma, 
surge o Movimento Browniano Fracionario Geometrico (gfBm).

Nesse sentido, para compreender o gfBm, e fundamental entender o funciona­
mento do fBm. Para isso, adotou-se a representaçao de Riemann-Liouville como d e f in h o  
do Movimento Browniano Fracionario (BIAGINI et a l., 2008).

D efin icao  3 Seja H  E (0,1) o pammetro de Hurst e {B(t); t > 0} um movimento browni­
ano padrão em R. O Movimento Browniano Fracionário { B H(t); t >  0} via representação 
de Riemann-Liouville e definida por:

B h (t) =  r ^H 1+  i ^  (t -  s ) H -  d B (s), t >  0. (2.1.4)

E sta representacao define o fBm como um a integral ponderada do movimento browniano, 
com um nucleo (t — s )H-1/2 que introduz a dependencia de longo alcance característica 
do fBm.

Portanto, o parâm etro de Hurst e utilizado para capturar a dinamica de correlacao 
dos dados e, consequentemente, gerar melhores resultados em previsoes (HURST, 1951). 
Desse modo, existem três tipos diferentes de dependencia de memoria detectados de acordo 
com o valor de H  (MANDELBROT, 1983):

• Se 0.5 <  H  <  1, existe um a dependencia de memoria longa;

• Se 0 <  H  <  0.5, existe um a dependencia de memoria curta;

• Quando H  =  0.5, nao ha dependencia de memoria. Note que nesse caso, o fBm 
coincide com o Movimento Browniano.

D efin icao  4 Um processo estocastico {S(t); t >  0} segue um gfBm se a seguinte equacão 
diferencial estocastica for satisfeita:

d S (t) =  ^S (t) dt +  a S (t) dB H(t), (2.1.5)

em que {BH (t); t >  0} representa um fBm, e ^  e a representam, respectivamente, a media
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(drift) e a volatilidade. A solucao da Eq. (2.1.5) e da forma:

t +  a B H (t) (2.1.6)

em que, Sq representa um valor inicial arbitrário.

D efin ição  5 Um processo estocástico {S(t); t >  0} diz-se seguir um gfBm perturbado por 
volatilidade estocastica se satisfizer a seguinte equacão diferencial estocastica:

em que:

• { Y (t); t >  0} e um processo estocastico;

• ^  e o parâm etro de drift (media);

• {BHl (t); t >  0} e um movimento browniano fracionario (fBm) com índice de Hurst

• a(.) e um a funcao determinística.

2.1 .2  E sco lh a  do  M o d e lo  d e  V o la tilid ad e  E s to c ã s tic a

A volatilidade (a) pode ser calculada por funcoes constantes ou estocasticas. 
Algumas fírm ulas para estimar a volatilidade constante sao apresentadas na Tabela 1. 
Para maiores detalhes, veja (ALHAGYAN; YASSEN, 2023).

d S (t) =  ^  S (t) dt +  a ( Y  (t)) S(t) dB Hl (t), (2.1.7)

Tabela 1: Formulas para cálculo de volatilidade constante.

M etodo Formula

Volatilidade Simples 

Volatilidade Logarítmica

Volatilidade High-Low-Close a (n_1)Ãt E  0.5(log(Hi) -  log(Li))2 -  0.3(log(Si) -  log(Si-i))2

Para descrever melhor as condições reais do mercado, a volatilidade estocastica 
(a(Y (t))) pode ser introduzida no gfBm. Algumas funcoes determinísticas utilizadas sao 
m ostradas na Tabela 2.
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Tabela 2: Modelos de volatilidade estocastica

N o m e M o d elo

Log-normal d Y  (t) =  a Y  (t)dt +  f3Y (t)dB(t)2
Cox-Ingersoll-Ross d Y  (t) =  d(u — Y  (t))dt +  £ ^ Y  (t) d B ( t)2
Ornstein-Uhlenbeck dY (t) =  a (m  — Y (t))dt +  f id B (t)2
Sem reversao à media dY (t) =  a Y ( t)dB2(t)
Ornstein-Uhlenbeck Fracionário dY (t) =  a (m  — Y ( t) )d t  +  ftdB"H(t)

Para o estudo em questao, adotou-se o processo Cox-Ingersoll-Ross (CIR), con­
forme proposto originalmente por Cox, Ingersoll e Ross (1985). Este processo e caracte­
rizado pela seguinte Equacao Diferencial Estocastica (EDE):

dY(t) =  k (w — Y (t)) dt +  £ \ / Y (t) dB(t), t > 0, (2.1.8)

em que:

• k >  0 e a velocidade de reversao

• w > 0 e o nível de longo prazo;

• £ >  0 e a volatilidade;

• B  (t) e um Movimento Browniano padrâo.

Uma propriedade fundamental do processo CIR, para aplicacao em tempo dis­
creto, e a existencia de um a distribuiçao condicional exata para Y (t +  At) dado o valor 
Y (t) =  y0 em um intervalo de tempo At. Conforme demonstrado por Cox, Ingersoll 
e Ross (1985), essa distribuiçao condicional segue um a distribuicão qui-quadrado nao- 
central (x/2) escalonada:

Y (t +  At) | Y (t) =  yo ~  co x / (df, A), (2.1.9)

em que o fator de escala co, os graus de liberdade df e o parâm etro de não-centralidade A 
sao definidos em funcão dos parâm etros do modelo CIR e do valor inicial y0:

_ =  £2(1 — Ai) 4 k u  A = 4 Kyo A‘ (211n)
Co =  4K • d f ^ - ^ ^ • A =  £2(1 -  e - K ) • (2' 1' 10)

A utilizacçãao desta distribuiçcãao exata íe vantajosa, pois garante a naão-negatividade 
do processo (Y(t) >  0), sendo fundamental em muitas aplicações financeiras, e evita vieses 
que poderiam surgir de metodos de discretizacao aproximados. Sendo assim, a funcao
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de densidade de probabilidade p (Y ( t  +  A t) | Y (t;K, u, £)), calculável a partir da Equação 
(2.1.9), e essencial para a estimacao dos parâm etros do modelo por metodos como maxima 
verossimilhanca ou inferência Bayesiana, como discutido tam bem  por (GLASSERMAN, 
2004).

2 .1 .3  P ro c e sso  G O U —F E  com  R u íd o  M o v im en to  B ro w n ian o  F rac io n á rio

Estamos interessados em estimar o vetor de parâm etros 6 =  (91,92, @3) de um pro­
cesso G O U -FE (Generalized Ornstein-Uhlenbeck of Fluctuating Exponencial type) de três 
parâm etros com ruádo multiplicativo fBm. Tal processo foi introduzido em (QUINTINO; 
MEDINO; DOREA, 2023) para um ruádo Levy.

O processo {X(t); t >  0} e definido como solucao da seguinte equacao de Lange- 
vin generalizada (GLE):

d X (t) =  d1(1 — 93) X (t) — J  X ( s ) r ( t  — s) dsj  dt +  a ( X (t)) d B H(t), t >  0, (2.1.11)

com condicao inicial X  (0) =  X 0 independente do ruádo.

O kernel de memoria r  (t) estabelece a forma de autodependencia do processo e 
áe dado por:

k 1 cos(vt) +  k2,1 sin(vt), v >  0, 

r ( t )  =  e 2 k 1 cosh(vt) +  k2,-1 sinh(vt), v  <  0, (2.1.12)

 ̂k 1 +  k2,0 t,

em que as constantes sãao:

@1 @3
V0 =  —

v  =  — v0 +  @2 (1 — @3̂  

k 1 =  @2 @3 — 2 @1 (1 — @3) v0,
(2.2.3)

O espaco de parâm etros de drift pode ser definido como 0  =  (0 , to )2 x [0, 1].



M etodo log ia 17

2 .1 .4  M e to d o  de  E u le r-M a ru y a m a

O metodo de Euler-M aruyama e um a extensao do metodo de Euler classico, u ti­
lizado para aproximar solucoes de equacoes diferenciais ordinarias, para o contexto de 
equaçoes EDEs. Essas equaçoes sao fundamentais para modelar sistemas dinômicos sujei­
tos à aleatoriedade, como o comportamento dos precos de ativos financeiros (KLOEDEN; 
PLATEN, 1992).

Uma EDE pode ser escrita na forma:

d X  (t) =  ^ (X  (t) ,t)d t  +  a ( X  ( t) , t)dB  (t), (2.1.13)

em que:

• X (t) e o estado do sistema no tempo t;

•  ^ (X ( t) ,t)  representa o drift (tendencia media);

•  a ( X (t) ,t)  e a volatilidade;

• B  (t) e um movimento Browniano padrâo.

Para resolver numericamente essa equaçao, o metodo de Euler-Maruyama apro­
xima a soluçao pela formula:

X (t +  A t) «  X (t) +  ^ (X ( t) ,t)A t +  a (X (t) , t)A B (t), (2.1.14)

em que A B (t) ~  N (0, A t) e um  incremento do movimento Browniano (KLOEDEN; 
PLATEN, 1992).

Ao aplicar o metodo de Euler-M aruyama ao GBM, a aproximaçcaão numerica do 
preçco do ativo e dada por:

S (t  +  At) ~  S(t) (1 +  ^ A t  +  a A B ( t ) ) . (2.1.15)

Essa abordagem e particularm ente util para simulacçãoes de preçcos de ativos, pre- 
cificação de opcoes financeiras e analise de risco. Metodos como Monte Carlo utilizam 
essa tecnica para gerar trajetorias simuladas dos preços dos ativos, permitindo a avaliaçao 
de derivativos e estrategias de hedge (GLASSERMAN, 2003). Adaptaçoes desse metodo 
podem ser utilizadas na simulacao de EDEs dirigidas por outras classes de ruídos
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2.1.5 E s tim a c a o  dos P a râ m e tro s

Para a estimaçao dos parâmetros e dos estados latentes em modelos de espaco 
de estados nõao lineares e nõao gaussianos, como o proposto neste trabalho, empregou-se 
o metodo Sequencial de Monte Carlo (SMC), conhecido como Filtro de Partículas. Este 
metodo permite aproximar, de forma recorrente, a distribuicao a posteriori dos estados la­
tentes Y (t) condicionada as observacoes X (1), X (2), X (3),..., X (t) , sendo particularmente 
adequado para lidar com as naõo linearidades e distribuicçõoes nõao gaussianas inerentes ao 
modelo (DOUCET; FREITAS; GORDON, 2001)

A implementacõo do filtro de partículas baseia-se na representaçao da distribuiçao 
de interesse por um conjunto de amostras ponderadas (partículas) {Y (t)(i), w (t)(i)}N=1, 
em que Y (()(•> sao os estados das partículas e w(i) seus respectivos pesos normalizados 
( S i w (t)(i) =  1). O processo iterativo do filtro, conforme descrito por Gordon, Salmond 
e Smith (1993) e Arulampalam et al. (2002) , envolve três etapas principais: propagacao, 
ponderaçcõao e reamostragem.

Primeiramente, o modelo dinamico estocástico e formulado no espaco de estados, 
definindo a equacao de transiçao para o estado latente X (t) e a equacao de observaçao 
para os dados Y(t) (precos):

j X  (t) =  f o (X (t — 1)) +  et , (Equaçõo de Estado)

I Y (t) =  go (X (t)) +  nt , (Equacõo de Observaçao)

em que 6 representa o vetor de parâmetros a serem estimados, e et e n  sao os termos de 
ruído do processo e da observacao, respectivamente.

O algoritmo do filtro de partículas padrõo (Bootstrap Filter) pode ser sumarizado 
conforme o Algoritmo 1. Portanto, a etapa de inicializacao consiste em gerar N  partículas 
{X (0)(i)}N=1 a partir da distribuiçao a priori p (X (0)) e atribuir pesos uniformes w(0)(i) =  
1/N .

Subsequentemente, para cada instante de tem po t =  1, . . . , T, as etapas de pro- 
pagacao e ponderacao sõo executadas. Desse modo, na propagacõo, cada partícula e 
avançada no tempo de acordo com a dinamica do modelo, X ( t) (i) — po(X (t) | X (t — 1)(i)). 
Para o caso do modelo CIR, essa transicõo pode ser am ostrada exatamente (COX; IN- 
GERSOLL; ROSS, 1985).

Na ponderacao, os pesos sao atualizados proporcionalmente a verossimilhanca da 
observacõo Y  dada a partícula propagada, w (t)(i) a  w(t — 1)(i)p o (Y (t) | X  (t)(i)), e entõo 
normalizados.
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A lg o ritm o  1 Filtro de Partículas (Bootstrap Filter)
1: In ic ia lizaçao  (t =  0)
2: for i =  1 , . . .  , N  
3: Amostrar X (0 )(i) ~  p (X (0))
4: Definir w(0)(i) ^  1 /N  
5: e n d  for 
6: for t =  1,. . . , T  
7: P ro p a g a c a o  e P o n d e ra c a o  
8: for i =  1,. . . , N
9: Propagação: Amostrar X ( t) (i) ~  po(X (t) | X (t — 1)(i))

10: Ponderação: w (t)(i) ^  w(t — 1)(i) x p o (Y(t) | X ( t)(i))
11: en d  for
12: N o rm a lizacao

N
13: Calcular W (t) ^  w (t)(j)

j=i
14: for i =  1, . . . , N
15: Definir w (t)(i) ^  w (t)(i)/w ( t )
16: en d  for
17: R e a m o s tra g e m

N
18: Calcular ESS ^  1 / £ ( w ( í )(i)) 2

i=1
19: if  ESS <  Niimiar th e n
20: Reamostrar {X (t)(i), w (t)(i)}N= 1 a partir de {X (t)(i), w (t)(i)}N= 1 
21: Definir w (t)(i) ^  1 /N  Vi 
22: else
23: Para todo i: X ( t) (i) ^  X ( t) (i)
24: en d  if 
25: e n d  for

No contexto deste algoritmo, a reamostragem e empregada com o proposito de 
m itigar o fenômeno da degenerescencia dos pesos. Este fenomeno ocorre quando uma 
parcela reduzida das partículas concentra a maior parte da massa de probabilidade, com­
prometendo a representatividade da distribuicao. Para identificar a ocorrência da dege­
nerescencia, utiliza-se o Numero Efetivo de Partículas (ESS), calculado pela expressao 
ESS =  1 / £  N=1 (w (í)(i))2, em que cai abaixo de um limiar pré-definido, como, por exem­
plo N /2. Apos a execucao do processo de reamostragem, as partículas selecionadas sao 
reatribuídas com pesos uniformes, equivalentes a 1/ N .

O filtro de partículas fornece um a aproximaçcaão da funçcãao de verossimilhançca 
marginal p(Y  (1),Y  (2),Y  (3 ),...,Y  (T )) | 6 ), essencial para a estimacao dos parâm etros 6 .
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Desse modo, a verossimilhança pode ser calculada iterativam ente e sua aproximação no 
instante T  e dada por:

T T /  1 N \
L(0) =  p (Y i) n P (Y ( t)  I Y (!) ,Y (2 ) ,Y (3 ) ,... ,Y ( í-1 ))  «  n  N  E » (YW  I X(0<fl) ) ,

t=2 t=1 \  i=1 J
(2.1.16)

em que a aproximação mais comum utilizada na prática e:

T N

í ( » ) « n  e  w(t -  i ) <‘)p»(y («) i X'(í <‘>)
t=i V i=i

Esta aproximacão da verossimilhanca e então utilizada em um procedimento de 
otimizacao numerica para encontrar a estimativa de máxima verossimilhanca (MLE) dos 
parâmetros, 0 =  argmax# logL (0 ).

Neste trabalho, utilizou-se o metodo L-BFGS-B para a otimizacao, um a aborda­
gem quasi-Newton eficiente para problemas com restricoes nos parâm etros (LIU; W EST, 
2001) e tambem o metodo Nelder-Mead (NELDER; M EAD, 1965).

As principais vantagens do filtro de partículas incluem sua flexibilidade para 
acomodar modelos complexos, nao lineares e nao gaussianos, e sua convergencia assintática 
(quando N  ^  ro) para a distribuicao otima. A complexidade computacional e da ordem 
de O (N ) por passo de tempo.

2 .1 .6  T es tes  de  D iag n ó stico  e C o m p a ra ç ã o  de  M o d elo s

Após a estimacao dos modelos propostos, e fundamental realizar testes estatísticos 
para avaliar a adequaçao do ajuste aos dados e comparar o desempenho preditivo entre 
modelos concorrentes. Nesta secao, descrevem-se os testes utilizados para diagnostico dos 
resáduos e comparaçcãao da acuraácia das previsãoes.

O teste de Ljung-Box (LJUNG; BOX, 1978) verifica a presenca de autocorrelacão 
serial nos resíduos de um modelo de series temporais. A ausencia de autocorrelacao ga­
rante que o modelo capturou adequadamente a dependencia temporal dos dados originais.

Sejam {et}n=1 os resíduos padronizados de um modelo ajustado. Defina-se a 
autocorrelacao amostral no lag h como

E n
t=h+1 et et—h 7 1 0 ,Ph =  ---- ---------2---- , h =  1, 2, . . . , k ,
Z^t=i et

em que k e o numero máximo de defasagens a testar. A estatística de Ljung-Box e dada

(2.1.17)
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por:
k â 2

Q =  n(n  +  2) Y  Jâ ^ r  , ^  n -  h h= 1

em que n íe o tam anho da amostra.

As hipoteses do teste sao formuladas como:

ÍH 0 : p T =  p2 =  ■ ■ ■ =  pk =  0 (resíduos sao ruído branco) ,

H 1 : Existe pelo menos uma autocorrelaçao nao nula em algum lag h <  k .

Sob H0, a estatística Q segue assimptoticamente um a distribuicao x 2 com k graus de 
liberdade. Rejeita-se H0 ao nível de significância a  se

ou, equivalentemente, se o valor-p for inferior a a.

O teste de Shapiro-W ilk (SHAPIRO; W ILK, 1965) verifica a hip ítese de que 
um a am ostra {zi}™=1 foi extraída de um a populacao normalmente distribuída. Ordene 
a am ostra em ordem crescente, de modo que z(1) <  z(2) <  ••• <  z(n). Definem-se os 
coeficientes

em que {mi} são esperancas dos n estatísticos de ordem de uma distribuiçao normal 
padrão. A estatística de Shapiro-W ilk e dada por

Valores de W  proximos de 1 indicam normalidade. Rejeita-se H0 se o valor-p associado 
for menor que o nível de significancia a.

Para avaliar o risco associado as previsoes dos modelos em cenarios de perdas 
extremas, utiliza-se a medida de risco Expected Shortfall (ES), tambem conhecida como 
Valor Condicional de Risco (CVaR) ou Deficit Esperado. O ES quantifica a perda media 
esperada nos piores (1 -  a ) x 100% cenarios, em que a  e o nível de confianca.

Q >  X a, k ,

As hipíteses do teste sao:

H0 : {zi} segue distribuicão N ( ^ , a 2) ,

H 1 : {zi} não segue distribuicao norm al.
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Formalmente, para um a variavel aleatória X  representando a perda (ou o negativo 
do retorno) de um ativo ou portfólio, o Value at Risk (VaR) ao nível de confianca a  
(VaRa (X )) e o quantil (1 — a ) da distribuição de X . O Expected Shortfall ao nível a , 
ESa (X ), e definido como a expectativa condicional da perda, dado que a perda excede o 
VaRa (X ):

E S a(X ) =  E [X  | X  >  V aRa(X )] (2.1.18)

Alternativamente, para distribuicoes contínuas, o ES pode ser calculado como:

1 f 1E S a(X ) =  -------  VaRu(X) du (2.1.19)
1 — a  a

O ES e considerado um a medida de risco superior ao VaR por diversas razoes. 
Primeiramente, ele informa sobre a m agnitude esperada das perdas nos cenarios de cauda, 
enquanto o VaR apenas indica o limiar da perda. Alem disso, o ES satisfaz as propriedades 
de um a medida de risco coerente (monotonicidade, invariancia por translacao, homoge­
neidade positiva e subaditividade), conforme definido por Artzner et al. (1999), o que nem 
sempre ocorre com o VaR. A coerência, especialmente a subaditividade (E S (X  +  Y ) < 
E S (X ) +  E S (Y )), garante que a diversificaçao nao aum enta o risco medido, um a propri­
edade desejavel em gestão de portfálios (ACERBI; TASCHE, 2002).

Neste trabalho, o ES sera calculado para os precos diarios previstos pelos dife­
rentes modelos a um nível de confiança de a  =  95%.

2.2 M odelo ACD

Para modelar as duraçcoães (tempo decorrido entre duas transaçcãoes financeiras 
consecutivas) da negociacao intradiária, Engle e Russell (1998) usam um a ideia semelhante 
à dos modelos autoregressivos de heterocedasticidade condicional generalizados (GARCH) 
para propor um modelo ACD. Dessa forma, temos a seguinte definiçao:

D efin icao  6 A duração X t e o intervalo de tempo entre a (t — 1) -esima e a t -ésima 
transação:

X t =  Tt — Tt-1 , para t =  1, 2 , . . . ,  N, (2.2.1)

em que:

• Tt : instante da trêsima transacão;

• N : numero to tal de transacoes no período.
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Diante disso, o modelo ACD (ENGLE; RUSSELL, 1998) assume que:

X t  =  Wt St, (2.2.2)

em que ei e uma variavel aleatória positiva com esperança unitária, e W e ei sao estocas- 
ticamente independentes, o que implica que:

E[Xi] =  E[^i] ■ E[sí]. (2.2.3)

Essa especificacão e naturalm ente motivada ao se considerar um processo de 
Poisson com dinamica GARCH para a media condicional das duracoes, na qual apenas a 
media esta disponível. Alem disso, Wt satisfaz:

p q
Wt =  ao +  'y '̂  a ,jX t-j  +  'y '̂  [3vWt-v. (2.2.4)

j=1 v=1

Nesta especificaçao, conhecida como ACD(p,q), a 0 > 0 e um termo constante, aj > 0 sao 
os coeficientes associados as duraçães passadas (termos autorregressivos), e 3v >  0 são os 
coeficientes associados as duraçães esperadas passadas (termos de media condicional).

As ordens p e q determinam quantas defasagens de X t e Wt influenciam a duracão 
esperada atual. As restricoes de nao negatividade nos coeficientes garantem  que Wt per- 
maneçca positivo.

2.2.1 M o d e lo  A C D  E x p o n e n c ia l

O modelo ACD Exponencial (EACD) e a versao mais simples dos modelos ACD, 
tendo um a distribuição exponencial padrâo com funçao de risco 1. Nesse sentido, a 
equação do modelo e dada por (ENGLE; RUSSELL, 1998):

X t =  ^tQj ^ t =  a o +  a iX t- i  +  3 i^t-i> a o >  °  a i ,3 1 >  0. (2.2.5)

A função de log-verossimilhanca condicional para um a am ostra {x1, . . . , x n} e
dada por:

l ( 0 |x i, . . . , x n )  = -  y
t=i

log (^ t ) +  W
Wt.

(2.2.6)

Desse modo, o modelo EACD e atrativo devido a sua simplicidade m atem ática e
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facilidade de estimaçao. Entretanto, um a limitacao fundamental do modelo exponencial 
e que ele assume um a funcao de risco constante, o que pode ser irrealista para aplicaçoes 
financeiras, em que frequentemente e possável observar clusters de volatilidade e padroes 
de duraçcãao mais complexos.

2 .2.2 M o d e lo  A C D  W eib u ll

O Modelo ACD com distribuição Weibull, proposto por (ENGLE; RUSSELL, 
1998) e um a extensao do modelo ACD exponencial, que perm ite maior flexibilidade na 
modelagem da forma da distribuiçcãao das duraçcãoes. A densidade de probabilidade de uma 
variável aleatoria Weibull, com parâm etro de forma @ e parâm etro de escala a, e dada 
por:

f  (x) =  @ ( X) " -1 exp ( — ( X) ' )  , x >  0, a  >  0,@> 0. (2.2.7)

Para garantir que a variavel de duracao condicional tenha media unitaria, uma 
transformacão e aplicada. A media de um a variável aleatária Weibull(@, a) e E[X ] =  
a r (1 +  @-1).

Assim, para obter uma PD F Weibull de media unitaria, realiza-se a mudançca de 
variável et =  X t/a r ( 1  +  @-1) .Dessa forma, a densidade de et e obtida utilizando a fármula 
da transformacao de variaveis:

U  (et) =  f Xt (xt)
dxt
dí±

(2.2.8)

onde
substi

dxt
dít - a r (1 +  @ 1) e o determ inante do jacobiano da transformaçao. Apás a 
uicão e simplificacao, a densidade de et e:

fet(et) r (1 +  @-^ ( r (1 +  @-1) )  exp (  ( r (1 +  @^ ) J  ^  (2.2.9)

Em seguida, para obter um a distribuiçcãao de X t param etrizada em termos da 
media condicional ^ t , aplica-se a transformacão et =  X t/ 0 t . A densidade de X t condicio­
nada a ^ t e então expressa como:

ú /  \  ®—l f /  \ @ Xt \  / /  Xt
fx t '* (x- W  =  v.-,r(1 +  @-i^ ^ ( 1  +  @ - i J  exp H ã r c T + f i - i ) . '  >• (2'2 ' 10)
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Este modelo permite um a maior flexibilidade na modelagem das durações, uma 
vez que o parâm etro de forma 9 pode assumir valores diferentes de 1, ao contrario do 
modelo exponencial onde 9 =  1 e fixo.

2 .2 .3  M o d e lo  A C D  G a m m a  G e n e ra liz a d o

O modelo ACD Gamma Generalizado(GG) permite maior flexibilidade na cap­
tu ra  da distribuição das durations. Dessa forma, a densidade da distribuiçao Gamma 
Generalizado e definida como (ZHANG; RUSSELL; TSAY, 2001):

f  (x) =  ÕT(k) ( X)  exp ( -  ( X)  )  , X >  0  ^  ^  9 >  0  (2.2.11)

em que:

• k e o parâm etro de forma.

• a  e o parâm etro de escala.

•  9 controla a taxa de decaimento da cauda.

Alem disso ela inclui alguns casos particulares:

•  A distribuicao exponencial (9 =  k = 1 ) ,

• A distribuicão Weibull (k =  1),

• A distribuicao Gamma (9 =  1).

Desse modo, seguindo os passos de transformacão usuais para ACD, obtemos a 
funcao de densidade condicional (ZHANG; RUSSELL; TSAY, 2001):

n /  \  kO—1 / /9 xt  \  f xt
fx t|^t(x t|^ t) ^ (K,9)^ t r(K) v̂ (k,9)̂ J exp ^  v̂ (k,9)̂ J (2.2.12)

em que a transformacao <̂ (k , 9) =  p^K+K-  ̂ garante que a duracao media condicional seja 
^ t . O modelo ACD-GG pode ser estimado por maxima verossimilhança, maximizando a 
seguinte função de log-verossimilhança condicional:

1(9 |x1, . . . , xn) =  ^  [log f Xt\ t̂ (xt |^ t )] . (2.2.13)
t=1

0
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A presença dos parâm etros adicionais k e 9 confere maior flexibilidade ao modelo, 
sendo um a alternativa mais robusta ao modelo ACD Exponencial.

2 .2 .4  D u ra c a o  e n tre  T ran saco es

D efin icão  7 Define-se a duração X t como o intervalo de tempo decorrido entre a ocorrência 
do (t — 1)-esimo e do t-esimo evento (neste caso, transações):

•  Tt e o instante de tem po exato em que a t-esima transaçao ocorre;

• N  e o numero to tal de transacoes no período.

Em intervalos de tem po mais curtos (duracoes menores) entre transacoes sucessi­
vas geralmente indicam períodos de alta atividade e liquidez, possivelmente associados à 
chegada de novas informaçcãoes relevantes ou a um maior volume de ordens. Por outro lado, 
duraçcãoes mais longas sugerem períodos de menor atividade ou inatividade no mercado. A 
modelagem da sequencia de duracoes {Xt} perm ite capturar padrães como o agrupamento 
de volatilidade observado tambem na frequencia das negociacães (PACURAR, 2008).

2 .2 .5  A ju s te  D iu rn o

Em dados financeiros de alta frequencia, como as duraçoes entre transaçoes, sao 
frequentes os padrães sazonais intradiarios. Dessa forma, e comum observar que a maior 
atividade de negociaçao (duraçoes menores) ocorrem no início e no final do dia, e menor 
atividade (duraçoes maiores) em outros horários. Para estudar a dinamica real dessas 
duraçoes sem que esses efeitos previsíveis do horário interfiram, aplica-se um procedimento 
chamado ajuste diurno (ENGLE; RUSSELL, 1998).

Nesse sentido, o ajuste diurno visa dessazonalizar a serie de duraçoes observadas 
X t . Para isso, um a abordagem comum consiste em estim ar o componente sazonal esperado 
da duracao, 0(Tt), como uma funçao suave da hora do dia Tt em que a transacao t ocorre. 
A serie de duraçães ajustadas, X t*, e então obtida pela razao entre a duração observada 
e o componente sazonal estimado:

X t =  Tt — Tt-1 , para t =  1, 2 , . . . ,  N, (2.2.14)

em que:

(2.2.15)
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Para estimar a funçao sazonal 0(Tt), utiliza-se uma tecnica que suaviza a relação 
entre as duracães brutas X t e o horário Tt . Neste trabalho, adota-se o metodo “Su­
per Smoother” (supsmu), proposto por Friedman (1984), conhecido por sua capacidade 
adaptativa na escolha da largura de banda de suavizacao local.

Dessa forma, a serie ajustada X t* não contem mais o efeito previsível do horário, 
servindo como base para estimar os modelos ACD. Em outras palavras, ao eliminar a sazo- 
nalidade intradiaria, a analise posterior foca exclusivamente na dinômica autorregressiva 
condicional das duracoes (BHOGAL; TH EK K E, 2019).

2.3 Conjunto de dados

Para o estudo em questao, foram utilizados, para os precos diarios, dados do 
site CoinMarketCap, atraves do pacote c ry p to 2 do software R que realiza uma extracao 
au tom ítica  (scraping) do historico de varios ativos financeiros, incluindo o Bitcoin, foco 
desta pesquisa. O período analisado e datado do dia 1 de janeiro de 2019 a 31 de dezembro 
de 2024.

A seguir, apresenta-se as variíveis utilizadas na pesquisa e a serie historica dos 
precços do Bitcoin durante esse período:

Tabela 3: Descrição e Classificação das variáveis (Dados Diários)

V ariaveis D escricão Classificaçcaão

time_open D ata e hora de abertura Q uantitativa discreta
tim e_close D ata e hora de fechamento Q uantitativa discreta
tim e_high D ata e hora de alta Q uantitativa discreta
time_low D ata e hora de baixa Q uantitativa discreta
open Valor mais baixo registrado durante o dia Q uantitativa contínua
h igh Maior preçco do dia Q uantitativa contínua
low Menor precço do dia Q uantitativa contínua
c lo se Precço de fechamento do dia Q uantitativa contínua
volume Volume de transacçãao em 24 horas Q uantitativa contínua
market_cap Valor Total de Mercado Q uantitativa contínua

Fonte: CoinMarketCap ((https://coinm arketcap.com )).

Para a anílise intradiaria dos preços do Bitcoin foram utilizados dados do site 
da Dukascopy, correspondendo ao dia 20 de janeiro de 2025. A seguir, apresenta-se as 
variaveis utilizadas no estudo:

https://coinmarketcap.com
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Tabela 4: Descrição e Classificaçao das variáveis (Dados Intradiarios)

V ariaveis D escriçao C lassiflcacao

Local Time D ata e hora da transacao Qualitativa ordinal
Ask Precço de venda Q uantitativa contínua
Bid Precço de compra Q uantitativa contínua
Ask Volume Volume de ativos disponíveis para venda Q uantitativa discreta
Bid Volume Volume de ativos disponíveis par compra Q uantitativa discreta

Fonte: Dukascopy ((https://www.dukascopy.com /)).

https://www.dukascopy.com/
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3 R esultados

Nesta secão, são apresentadas as modelagens dos dados diarios e intradiarios, 
conforme os modelos detalhados na Secao 4. Os resultados foram obtidos utilizando o 
software R, versão 4.4.1. Para garantir a replicabilidade, os codigos-fonte estão disponíveis 
publicamente no repositório GitHub, acessóvel em: (h ttps://g ithub .com /A rthur-R P C / 
TCC---A rthur-Rodrigues.git).

3.1 Descricao dos Dados

E fundamental compreender a dinâmica dos precos do Bitcoin ao longo do tempo 
para ter um embasamento adequado antes de aplicar a modelagem estatóstica. Diante 
disso, a Figura abaixo, demonstra a trajetoria  dessa criptomoeda no peróodo de 1 de 
janeiro de 2019 a 31 de dezembro de 2024.

Figura 1: Preços do Bitcoin ao longo do tempo (01/01/2019 - 31/12/2024)

Data

Conforme m ostra a Figura 1, o peróodo analisado engloba diferentes condiçães de 
mercado. Entre janeiro de 2019 e o inócio de 2020, os preços do Bitcoin mantiveram-se 
relativamente estaveis, situando-se abaixo de US$ 15 000. Em 2021, observou-se uma 
forte alta no primeiro semestre, seguida de um a correcçaão acentuada. Esse movimento de 
valorizacao coincidiu em parte com a pandemia de COVID-19, quando muitos investidores 
passaram  a ver o Bitcoin como um a possóvel proteção contra a instabilidade econômica 
global (GOODELL; G O U TTE, 2021).

No intervalo entre 2023 e 2024, o Bitcoin voltou a se valorizar de forma signi­
ficativa, impulsionado por fatores macroeconâomicos e eventos especóficos do mercado de

https://github.com/Arthur-RPC/TCC---Arthur-Rodrigues.git
https://github.com/Arthur-RPC/TCC---Arthur-Rodrigues.git
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criptomoedas. Esse período culminou em um novo recorde de preços, acima de US$ 98 
000 em novembro de 2024, possivelmente influenciado por acontecimentos políticos, como 
as eleicoes nos Estados Unidos (BRASIL, 2024).

A presença dessas diferentes fases — da relativa calma a alta volatilidade, pas­
sando por fortes tendencias de alta e correcões bruscas — torna o intervalo 2019-2024 
ideal para testar os modelos estocasticos selecionados. Assim, podemos avaliar se esses 
modelos se adaptam  bem as mudancas drásticas na dispersao dos precos. Alem disso, a 
ocorrência de tendencias persistentes e reversões abruptas cria um cenario adequado para 
verificar a capacidade dos modelos baseados em Movimento Browniano Fracionário de 
capturar dependencia temporal.

Portanto, a escolha desse período nao busca evitar a influencia de fatores externos 
ou a instabilidade de precos, mas utiliza-los como um teste de estresse para os modelos.
A capacidade de um modelo estocaístico descrever e prever o comportamento do Bitcoin 
em um intervalo tõo heterogeneo — que inclui tanto  fases de calmaria quanto de grandes 
turbulencias — atesta  sua robustez e relevancia. Nesse contexto, a aleatoriedade e a 
memoria longa, características intrínsecas aos modelos estudados, serõo avaliadas diante 
de um histoírico de preçcos rico e desafiador.

3.2 Avaliação dos M odelos para Dados Diários (GFBM  e GOUFE)

Para avaliar qual dos modelos (GOUFE-CIR, GOUFE-CONST, GFBM -CIR e 
GFBM-CONST) teve o melhor ajuste, foram estimados os parâmetros desses modelos. 
Desssa foma, os resultados sao apresentados nas Tabelas 5 e 6.

Tabela 5: Estimativa dos Parâmetros do Modelos GOUFE

Modelo Log-verossimilhanca 9\ d2 d3 K W  í H

G O U FE-C IR
GOUFE-CONST

20.888,66 0,0149634 0,005039290 
31.871,26 0,0100000 0,001028255

0,9051001 2,790833 0,1454547 0,4370782 
0,8999774 -  -  0,3624386

0,5511263
0,5461502

Tabela 6: Estimativa dos Parâmetros do Modelos GFBM

Modelo Log-verossimilhança ^ K W í H

GFBM -CIR 21.170,86 0,0009889554 
GFBM-CONST 25.599,41 0,0035963469

2,785846 0,1000000 0,3624460 0,5461402 
-  - 0.7000000 0,5413182

A partir das Tabelas 5 e 6 , observa-se que observa-se que os modelos com vola­
tilidade constante (GOUFE-CONST e GFBM-CONST) apresentam log-verossimilhancas 
mais elevadas do que suas respectivas versoes com volatilidade do tipo CIR. Essa analise
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inicial insinua que, para os preços diários do Bitcoin, a complexidade adicional introduzida 
pela modelagem da volatilidade via processo CIR pode nao ser justificada, e um a suposicao 
de volatilidade constante proporciona um ajuste mais eficiente aos dados. Entre todos 
os modelos analisados, o GOUFE-CONST se destaca com a maior log-verossimilhanca 
(31.871,26), indicando o melhor ajuste geral.

Alem disso, o expoente de Hurst (H ) estimado em todos os modelos permanece 
consistentemente na faixa de 0,54 a 0,55, trazendo a tona a ideia de que os precos diarios 
do Bitcoin exibem um a memória longa.

Após a avaliacao dos parâm etros estimados, foram analisados a capacidade predi- 
tiva por meio de metricas de erro que quantificam o desvio entre os valores observados e os 
valores previstos pelos modelos. Dessa forma, a Figura 2 apresenta a comparacão entre os 
preços diários observados do Bitcoin e as previsães geradas pelos quatro modelos ao longo 
do peráodo de analise, enquanto a Tabela 7 demonstra essa comparacão na perspectiva 
dos erros.

Figura 2: Precos observados x Preditos do Bitcoin ao longo do tempo (01/01/2019 - 31/12/2024)

-  ■ GFBM-CIR — ■ GFBM-CONST — ■ GOUFE-CIR -  ■ GOUFE-CONST —  Observado

Data

Tabela 7: Comparacão de RMSE, MAE, MAPE, R 2 e Vies dos Modelos

M o d elo R M S E M A E M A P E R2 V ies

GFBM -CIR 1.201,802 716,3009 0,0225726 0,9969002 9,7625
GOUFE-CONST 1.213,196 716,2269 0,0225984 0,9969822 34,0668
GFBM -CONST 1.217,385 722,6033 0,0227552 0,9967674 -72,3004
G O U FE-CIR 1.235,990 742,0912 0,0236312 0,9968740 215,2351

Ao analisar a Figura 2, observa-se, que todos os modelos conseguem acompanhar
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a trajetoria  geral dos precos observados, capturando as principais tendencias e movimentos 
do mercado. Porem, na Tabela 7, fica evidente que na perspectiva dos erros e do coeficinete 
de determinacao, o modelo GFBM -CIR teve o melhor desempenho, tendo o menor RMSE 
(US$ 1.201,802 e o menor M APE 2,25%, enquanto o GOUFE-CONST apresentou o menor 
MAE (US$ 716,2269).

Alem disso, o modelo GOUFE-CONST tam bem  obteve o maior R 2 (0,9969822), 
indicando que explica aproximadamente 99,70% da variabilidade dos precços observados, 
apesar dos demais modelos apresentarem valores muito proximos. Em relacao ao vies, 
o modelo GFBM-CIR demonstrou o menor valor absoluto (US$ 9,7625), sugerindo uma 
tendencia muito pequena de superestimacao, enquanto o GOUFE-CIR apresentou o maior 
vies (US$ 215,2351).

De modo geral, as míetricas de erro, sugerem que, em termos de precisãao, os 
modelos GFBM-CIR e GOUFE-CONST tiveram melhor desempenho, apesar dos outros 
modelos estarem bem proximos. Vale ressaltar que, no modelo GOUFE, a adoçao da vola­
tilidade estocística (CIR) nao trouxe ganho significativo na precisao, apesar do acréscimo 
de parâmetros. Ja  no modelo GFBM, com a volatilidade CIR houve um ganho significa­
tivo, visto que o modelo teve um vies de apenas US$ 9,7625 enquanto que com volatilidade 
constante o vies foi de US$ -72,3004.

Entretanto, para ter uma assertividade melhor em qual modelo esta mais preciso 
em termos de desempenho e preciso analisar outros fatores e dentre eles e s tí  os Critérios 
de Informacao (AIC, BIC e EDC), onde os menores valores indicam melhor ajuste, pena­
lizando a complexidade do modelo.

Tabela 8: Comparacao dos Modelos em relacao aos Criterios de Informacao (AIC, BIC e EDC)

M o d elo A IC B IC E D C

G O U FE-CIR 46.161,33 58.638,44 46.249,44
GFBM -CIR 46.725,71 59.202,82 46.813,82
GFBM -CONST 55.582,82 68.059,94 55.670,93
GOUFE-CONST 68.126,51 80.603,62 68.214,62

De acordo com os resultados da Tabela 8 , o modelo GOUFE-CIR apresentou 
os menores valores para os três criterios, indicando ser o modelo com melhor ajuste aos 
dados, considerando o equilíbrio entre complexidade e verossimilhanca, enquanto que o 
modelo GFBM-CIR aparece como o segundo melhor.

Ademais, os modelos com volatilidade constante (GFBM-CONST e GOUFE- 
CONST) apresentaram  valores de AIC, BIC e EDC mais altos, sugerindo que a incor­
poração da volatilidade estocastica via processo CIR (Cox-Ingersoll-Ross) trouxe um ga­
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nho de ajuste que compensou o aumento no número de parâmetros para os modelos 
GOUFE e GFBM, constrastando com os resultados das tabelas 5 e 6.

Ao comparar esses resultados com as metricas de erro (Tabela 7), nota-se uma 
divergencia entre os modelos, visto que os modelos GFBM -CIR e GOUFE-CONST mos­
traram  um melhor desempenho em termo dos erros, enquanto o GOUFE-CIR demonstrou 
o melhor ajuste geral segundo AIC, BIC e EDC.

3.2.1 A n á lise  dos re s íd u o s

Para avaliar a adequaçao dos modelos, procedeu-se a analise de resíduos, onde 
e possível visualizar a distribuicao dos resíduos, incluindo mediana, quartis e outliers, 
conforme apresentado na Figura 3 e Tabela 9.

Figura 3: Gráfico Boxplot dos Resíduos por Modelo

Modelo

Tabela 9: Estatísticas descritivas dos resíduos por modelo

M o d elo M ín Q1 M ed Q3 M áx D P

GOUFE-CONST -8.223,34 -355,14 -5,84 311,58 7.544,64 1.212,72
GFBM -CIR -8.147,72 -341,43 2,81 325,76 7.610,12 1.212,76
GFBM -CONST -7.937,89 -273,95 42,36 397,36 7.757,97 1.215,24
G O U FE-CIR -8.620,95 -558,77 -116,96 139,57 7.359,55 1.271,11

A partir da Figura 3 e da Tabela 9, conclui-se que os modelos GFBM-CIR e
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GOUFE-CONST apresentam baixo viés na previsão da tendência central dos preços do 
Bitcoin, visto que apresentaram  medianas muito próximas de zero 2,81 e -5,84, respecti­
vamente.

Em relacão a dispersão dos resíduos, o Intervalo Interquartil (IQR =  Q3 - Q1), 
sao bem semelhantes entre os modelos, variando de de 666,72 (GOUFE-CONST) a 698,34 
(GOUFE-CIR). Nesse aspecto, o modelo GOUFE-CIR apresenta o maior IQR e tam bem  o 
maior Desvio Padrão (DP =  1.271,11), indicando a maior variabilidade nos seus resíduos. 
Ja  os modelos GFBM -CIR (DP =  1.212,76) e GOUFE-CONST (DP =  1.212,72) apre­
sentam os menores desvios padrão, tendo um a menor dispersao.

A respeito da simetria da distribuicao dos resóduos o modelo GFBM-CIR aparenta 
ser o mais simetrico em torno da sua mediana, com distancias semelhantes entre a m ediana 
e os quartis (M ed — Q1 ~  344, 24; Q3 — M ed  ~  322, 95). Jó o modelo GFBM-CONST 
demonstra um a leve assimetria a direita, enquanto o modelo GOUFE-CIR exibe uma 
assimetria a esquerda mais acentuada, consistente com sua mediana negativa.

Um aspecto comum em todos os quatro modelos e o grande presenca de numerosos 
outliers, ocasionando que erros de previsao. A amplitude to tal dos resíduos (Móx - Mín) e 
bem semelhante entre os modelos, variando de aproximadamente 15.694 (GFBM-CONST) 
a 15.979 (GOUFE-CIR).

A seguir, apresenta-se os graficos de dispersao dos resíduos em relaçao aos precos 
observados do Bitcoin para os quatro modelos ajustados aos dados diarios: GFBM-CIR, 
GFBM-CONST, GOUFE-CIR e GOUFE-CONST.

Figura 4: Gráfico de Dispersao dos Resíduos Padronizados por Modelo
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De acordo com a Figura 4, observa-se que nos quatro modelos a dispersão dos 
resíduos nao e constante ao longo da faixa de precos observados. Assim, para precos 
mais baixos (aproximadamente abaixo de US$ 25.000), os resíduos concentram-se mais 
próximos de zero, indicando erros menores. Contudo, a medida que o preco aumenta, a 
variabilidade dos resíduos tam bem  cresce consideravelmente, formando um padrão que se 
assemelha a um cone ou leque.

Este comportamento evidencia a presença de heterocedasticidade, ou seja, a 
variancia dos erros do modelo nao e homogenea, sendo maior para níveis de preco mais 
elevados. Dessa forma, os erros de previsãao dos modelos tende a aum entar conforme o 
preco do Bitcoin se eleva.

Para um visao ainda mais clara acerca da distribuicão dos resíduos, dispõe-se os 
gráficos QQ-Plot dos resíduos, comparando os quantis da distribuicao dos resíduos com 
os quantis de um a distribuicao normal padrão N (0, 1).

Figura 5: Gráfico QQ-Plot dos Resíduos Padronizados por Modelo

-2  0 2 -2  0 2 
Quantis Teóricos N(0,1)

De acordo com a Figura 5, os quatros modelos possuem desvios significativos da 
linha de referencia, com um a grande quantidade de outliers e caldas pesadas, sugerindo 
que os resíduos nao seguem distribuicão normal.

Esse comportamento de caudas pesadas significa que, em certos momentos, os 
erros de previsao podem ser muito maiores do que indicam medidas como RMSE ou 
MAE, que se baseiam em valores medios. Para medir melhor o risco associado a esses 
eventos uitiliza-se o Expected Shortfall (ES), tambem chamado de Deficit Esperado. O 
ES1-a mensura a perda media esperada nos piores a%  dos cenírios.
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A Tabela a seguir exibe os valores do Deficit Esperado calculados a um nível de 
confianca de 95% (ES95) para cada modelo ajustado.

Tabela 10: Deficit Esperado por Modelo a um nível de confiança de 95%.

M o d elo D efic it E sp e ra d o  (ESg5)

G O U FE-CIR -2.764,197
GOUFE-CONST -3.020,207
GFBM -CIR -3.070,517
GFBM -CONST -3.212,101

Analisando os resultados da Tabela 10, conclui-se que o modelo GOUFE-CIR 
apresentou o menor deficit esperado (US$-2.764,197),considerendo as perdas medias nos 
5% piores cenírios. Em seguida, aparecem os modelos GOUFE-CONST (US$-3.020,207) 
e GFBM -CIR (US$-3.070,517), com valores bem semelhantes.

Alem disso, o modelo GFBM-CONST registrou o maior deficit esperado (US$- 
3.212,101), sendo o modelo menos conservador.

3.2 .2  T es te  d e  N o rm a lid a d e  e A u to c o rre la c a o  dos re s íd u o s

Para confirmar formalmente a hipótese de normalidade sugerida na analise da 
Figura 5 , aplicou-se o teste de Shapiro Wilk, cuja hipíteses nula (H0) e de que os dados 
seguem um a distribuiçcõao normal.

Tabela 11: Teste de Shapiro-W ilk nos Resíduos Padronizados por Modelo

M o d elo W p-v a lo r

GFBM -CONST 0,8615 2, 86 x 10-40
G O U FE-CIR 0,8605 2, 24 x 10-40
GFBM -CIR 0,8597 1, 87 x 10-40
GOUFE-CONST 0,8593 1, 70 x 10-40

Conforme a Tabela 11, os p-valores obtidos nos quatro modelos sao extremamente 
baixos, levando a rejeicõo da hipotese nula de normalidade em todos os casos, ou seja, a 
qualquer nível de significancia usual.

Para avaliar se ha presença de autocorrelacao nos resíduos dos modelos ajustados, 
apresenta-se o grafico da Funcõo de Autocorrelacõo (ACF) que exibe as autocorrelacôes 
estimadas dos resíduos para diferentes defasagens (lags), para cada um dos quatro mo­
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delos. Nesse sentido, as linhas tracejadas azuis representam os limites de significancia 
aproximados (geralmente 1 .96/N , onde N e o numero de observacães). Dessa forma, as 
barras que ultrapassam  esses limites indicam autocorrelaçcoães estatisticam ente significati­
vas naquela defasagem específica.

Figura 6: Grafico ACF dos Resíduos por Modelo

Lag

Na Figura 6, e notorio que para todos os quatro modelos existem algumas barras 
que excedem os limites de significâancia. Isso sugere, preliminarmente, que pode haver 
alguma estru tura de autocorrelaçcãao naão capturada pelos modelos nos resíduos.

Para um a avaliacao formal e global da presença de autocorrelacao, utiliza-se o 
teste de Ljung-Box, cuja h ipítese nula (H0) e de que as autocorrelacoes dos resíduos ate 
um a determ inada defasagem sao conjuntamente iguais a zero, ou seja, os resíduos sao 
independentes.

Nesse sentido, de acordo com Burns (2002) a escolha da defasagem não deve exce­
der 5% do tam anho da am ostra Dessa forma, para o estudo em questaão, foi utilizado uma 
defasegem de 60 dias, que esta dentro do limite maximo estabelecido (109). Diante disso, 
a tabela a seguir m ostra os valores da estatística de teste e os p-valores correspondentes 
para cada modelo.
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Tabela 12: Teste de Ljung-Box nos Resíduos Padronizados (lag=60)

M o d elo E s ta t ís t ic a D F P-v a lo r

GFBM-CIR 160,651 60 4,65 X 10- 11

GFBM-CONST 160,8942 60 3,67 X 10- 11

GOUFE-CONST 161,2322 60 3,29 X 10- 11

GOUFE-CIR 175,6447 60 2,80 X 10- 13

Portanto, fica evidente na Tabela 12 que em todos os quatros modelos a hipotese 
nula (H0) foi fortemente rejeitada, pois os p-valores são significativamente inferiores a 
qualquer nóvel de significancia convencional. Desse modo, há dependencia dos resóduos 
para uma defasagem de 60 dias, o que confirma a suspeita inicial de que essses modelos 
possuem dependencia temporal de longo prazo.

3.3 Resultados do modelo ACD para dados intradiarios

A escolha do parâametro de diferençca de preçcos no modelo ACD áe fundamental 
para determ inar quais variaçcãoes de precço devem ser consideradas significativas para a 
geraçao das duraçoes (intervalos entre mudancas significativas no preco). Nesse sentido, 
se o limite for muito pequeno, o modelo pode capturar muitos ruódos, aumentando ex­
cessivamente o nómero de duraçoes. Por outro lado, se for muito grande, pode acabar 
ignorando movimentos im portantes do mercado.

Assim, foram realizados testes variando o preco entre 0,05% , 0,075%, 0,10% e 
0,15% do preco medio do Bitcoin no dia 20/01/2025 para avaliar o impacto na distribuicao 
das duracoes. Nesse contexto, a Figura e a Tabela a seguir, apresentam os resultados 
obtidos.
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Figura 7: Boxplot da duração pela diferença do preço relativo

Diferença de Preço Relativo (%)

Tabela 13: Resultados da sensibilidade da diferença de preços relativos

E s ta t ís t ic a 0,05% 0,075% 0 ,10% 0,15%

N° de Durações 8.893 4.983 3.114 1.579
Mínimo 1 1 1 1
1° Quartil (Q1) 1 2 3 6
Mediana 4 7 10 21
Media 9,31 16,61 26,58 52,44
3° Quartil (Q3) 11 19 31 61
Maximo 234 362 639 980
Desvio Padraõo 14,52 26,54 45,04 86,94

De acordo com a Figura 7 e a Tabela 13, para um a diferença de preços de 0,05% 
obteve-se 8.893 durações, um a mediana de 4 segundos e primeiro quartil igual a 1 segundo, 
sendo sensível a pequenas oscilações de preço.

Por outro lado, aum entar o limite para 0,15% reduziu drasticamente o numero 
de duraçoes (1.579), aumentando a mediana para 21 segundos e o terceiro quartil para 61 
segundos. Alem disso, o limite de 0,10% possui um a boa quantidade de durações (3.114), 
tendo uma mediana de 10 segundos, evitando um excesso de eventos curtos e um a perda 
de movimentos relevantes.

Com base nesses resultados, foram adotados para o restante do estudo, um limite 
de 0,10% que representa transacões em torno de US$ 104,74 dólares.
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3.3.1 A n á lise  d as  d u ra ç õ es  ao  longo do  te m p o

Para entender a variação da frequência dos eventos ao longo do dia foram feitas 
as analises das durações. Dessa forma, em modelos ACD, as durações mais curtas indicam 
períodos de maior atividade de mercado, enquanto duraçoes mais longas podem sinalizar 
momentos de menor liquidez ou de baixa volatilidade.

Com base nisso, a Figura abaixo apresenta a evoluçao das duracoes durante o 
dia, destacando os períodos de maior e menor intensidade das variacoes de preco.

Figura 8: Evolução das durações ao longo do dia (Brasil)
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A partir da Figura 8 , conclui-se que há um a variacao significativa nas duracoes 
ao longo do tempo, onde os picos mais elevados de durações ocorrem em horários como 
3h, 7h, 9h e 19h, indicando que nesses horários o preço ficou estável por um período de 
mais de 6 minutos.

Para capturar os padrões diurnos das duracões, aplicamos um metodo de sua- 
vizacõo conhecido como Super Smoother proposto por Friedman (1984). Esse metodo 
permite identificar tendencias de longo prazo na variaçõo das duraçoes ao longo do dia. 
Nesse sentido, apresenta a Figura abaixo:

0
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Figura 9: Padrao diurno das durações estimado pelo método ”Super Smoother” . 

Diurnal pattern estimated by "super smoother"
2025 - 0 1 -2 0

time of the day

A partir da Figura 9 , nota-se padrão intradiário cíclico nas durações entre eventos, 
com oscilações que refletem variações na atividade do mercado. Inicialmente, observa-se 
durações elevadas, seguidas de um a queda acentuada por volta de 5h, sugerindo um 
aumento na frequencia dos eventos com o início da sessão de negociacao.

Alem disso, entre as 5h e 15h ha sucessivos picos e vales, indicando períodos de 
alta e baixa volatilidade, possivelmente influenciados por janelas de liquidez e sobreposiçao 
de mercados. Já  no final do dia (após as 15h) as durações voltam a subir, propondo uma 
reducçõao na atividade do mercado.

Figura 10: Histograma das duraçoes ajustadas.

Duração Ajustada

Analisando a Figura 10, fica evidente que a maioria das duracões ajustadas X t*
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está concentrada em valores próximos de zero, indicando que a maioria das transações 
ocorre em intervalos muito curtos. A frequencia diminui gradualmente conforme as 
duraçoes aum entam  ate aproximadamente 2, mas existe um a pequena parcela de ob­
servações que se distribui em valores superiores a 5, com registros isolados acima de 15.

Essa distribuicao assimetrica, com um a cauda longa a direita, revela que, mesmo 
apos remover o efeito do horário do dia, persistem intervalos esporádicos maiores entre 
transaçoes.

A Tabela a seguir fornece informacões sobre a centralidade, dispersão e forma da 
distribuiçao, auxiliando na modelagem do processo subjacente e na escolha dos parâmetros 
do modelo ACD.

Tabela 14: Estatísticas Descritivas das durações Ajustadas

E s ta t ís t ic a V alor

Mínimo 0,012
Mediana 0,704
Media 1,055
Maximo 15,506
Desvio Padrâo 1,168
Coeficiente de Variaçao (%) 110,618
Coeficiente de Assimetria (Skewness) 3,877
Coeficiente de Curtose (Kurtosis) 26,698
Amplitude 15,494

Os resultados da Tabela 14 indicam que a distribuição das duracões ajustadas 
apresenta uma forte assimetria a direita (3.877), o que significa que ha um a maior concen- 
traçao de duraçoes curtas, mas com a presenca de algumas duracões longas. Alem disso, 
o alto valor do coeficiente de curtose (26,698) sugere que a distribuiçao possui caudas lon­
gas, indicando a presenca de valores extremos mais frequentes do que em um a distribuicao 
normal.

Ademais, a media das duracoes ajustadas e 1,055 segundos, enquanto a mediana 
e 0,704 segundos, evidenciando que a maioria das duracoes tende a ser menor que a 
media, devido a assimetria da distribuiçao. O coeficiente de variacao, de aproximadamente 
110,62%, demonstra um a grande dispersao relativa dos dados em relaçao a media.
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3.3 .2  A n á lise  de  A ju s te  do  M o d elo s  p a ra  as d u ra ç õ es

Para avaliar qual dos modelos (Exponencial, Weibull e Gamma Generalizado) 
teve o melhor ajuste, foram estimados os parâmetros do ACD(1,1). Desssa foma, os 
resultados sao apresentados nas Tabelas a seguir.

Tabela 15: Parâmetros Estimados do Modelo Exponencial ACD(1,1)

P a ra m e tro E s tim a tiv a E rro  P a d ra o P -v a lo r

u 0,0405 0,00519 0,000
a 1 0,1063 0,01184 0,000

0,9626 0,01004 0,000

Tabela 16: Parâmetros Estimados do Modelo Weibull ACD(1,1)

P a ra m e tro E s tim a tiv a E rro  P a d ra o P -v a lo r

u 0,0402 0,00440 0,000
a 1 0,1035 0,00989 0,000

01 0,9655 0,00821 0,000

Y 1,1722 0,01528 0,000

Tabela 17: Parâmetros Estimados do Modelo Generalized Gamma ACD(1,1)

P a ra m e tro E s tim a tiv a E rro  P a d ra o P -v a lo r

u 0,0469 0,00557 0,000
a 1 0,1226 0,01194 0,000

01 0,9473 0,01107 0,000
K 20,7112 8,20236 0,016

Y 0,2464 0,04950 0,000

De acordo com as Tabelas 15, 16 e 17, observa-se que, nos três modelos, os 
parâm etros a 1 e 0 1 sao estatisticam ente significativos (valor-p =  0,000), o que indica uma 
forte influencia das duracoes passadas na duracao atual e um a alta persisrência temporal 
da volatilidade das durações.

No modelo Exponencial, os parâmetros estimados 0 1 =  0, 9626 e u  =  0, 0405 
evidenciam que a componente autorregressiva condicional explica a maior parte da vari­
abilidade das duracoes, refletindo a persisrência observada nos dados. A soma de a 1 e 0 1
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proxima de 1 (0,1063 +  0,9626 =  1,0689) sugere um a persistencia elevada.

O modelo Weibull, por sua vez, apresenta estimativas de a 1 =  0,1035 e ^ 1 =  
0,9655, que tambem demonstram a significativa dependencia temporal e persistencia. A 
inclusao do parâm etro de forma y =  1,1722, que e altam ente significativo (valor-p =  
0,000), perm ite ao modelo Weibull capturar assimetrias e curtoses nas duracçõoes que o 
modelo Exponencial, com seu parâm etro de forma fixo em 1, nao consegue. Um valor de 
Y >  1 indica que a distribuicao das duracoes e mais concentrada em torno da media e 
possui caudas mais pesadas do que a distribuiçcõao exponencial.

Já  no modelo Gamma Generalizado, os parâmetros a 1 =  0,1226 e ^ 1 =  0,9473 
m antem  a dependencia tem poral e a persistencia. Alem disso, a inclusao dos parâmetros 
k =  20, 7112 e y =  0, 2464 (ambos significativos) perm item  ajustar assimetria e curtose 
adicionais nas duraçcõoes

Nesse sentido, para ter um a analise mais precisa acerca do ajuste dos modelos, 
dispõoe-se a tabela a seguir.

Tabela 18: Metricas de Ajuste dos Modelos ACD(1,1)

M o d elo L o g -v ero ss im ilh an ca A IC B IC M S E

Exponencial -3.102,44 6.210,88 6.229,01 1,2376
Weibull -3.034,89 6.077,78 6.101,95 1,2377
Gamma Generalizado -2.885,06 5.780,13 5.810,35 1,2381

A partir dos resultados da Tabela 18, conclui-se que em termos de log-verossimilhancça, 
o modelo Gamma Generalizado (-2.885,06) apresenta o maior valor, superando tanto  o 
modelo Weibull (-3.034,89) quanto o Exponencial (-3.102,44). Isso sugere que o modelo 
Gamma Generalizado e o que melhor captura a distribuiçao das duracoes observadas. 
Essa analise e corroborada pelos criterios de informacao de Akaike (AIC) e Bayesiano 
(BIC), onde o modelo Gamma Generalizado apresenta penalizações mais baixas (AIC e 
BIC inferiores), o que sugere maior eficiencia no equilíbrio entre qualidade do ajuste e 
complexidade do modelo.

No que tange ao Erro Quadrâtico Medio (MSE), observa-se que todos os modelos 
apresentam valores muito práximos. Essa pequena variaçao entre eles indica que, apesar 
das diferencas no ajuste (conforme log-verossimilhança, AIC e BIC), a capacidade predi- 
tiva dos modelos e similar. Desse modo, a maior flexibilidade e o melhor ajuste alcancados 
por modelos como o Gamma Generalizado naõo implicam em um a reduçcõao significativa do 
erro de previsao, m antendo a performance preditiva em patam ares similares.

Por fim, para verificar se os resíduos dos modelos (Exponencial, Weibull e Gamma
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Generalizado) ACD(1,1) seguem um a distribuição exponencial padrão Exp(1), apresenta- 
se o grafico a seguir.

Figura 11: QQ plot dos resíduos de Cox-Snell dos Modelos.

Quantis Exp(1)

Analisando a Figura 11, constata-que, no modelo Exponencial, observa-se um 
desvio significativo dos pontos em relaçao à re ta  de referencia, especialmente nos quantis 
superiores. Esse comportamento indica que o modelo Exponencial subestima as durações 
extremas, falhando em capturar adequadamente a cauda da distribuiçõo dos dados.

O modelo Weibull, por sua vez, tambem apresenta um desvio maior na reta de 
referencia, especialmente nos quantis superiores, se comparado ao modelo Exponencial. 
Isso sugere que, apesar de sua flexibilidade adicional, o modelo Weibull ainda nõo consegue 
capturar de forma satisfatória a distribuicõo das duracoes extremas, indicando que a 
distribuicao exponencial se ajusta  melhor que a Weibull.

Por fim, o modelo Gamma Generalizado exibe os pontos mais proximos a reta 
de referencia em toda a extensõo do gráfico. Essa proximidade indica uma excelente 
conformidade dos resíduos padronizados com a distribuiçõo Exp(1), sinalizando que o 
modelo Gamma Generalizado áe o que melhor captura a heterocedasticidade, a assimetria 
e a curtose presentes nas durações ajustadas. Portanto, em termos de ajuste dos resíduos, 
o modelo Gamma Generalizado se destaca como o mais adequado, seguido pelo modelo 
Exponencial e, por uíltimo, pelo modelo Weibull.

A Tabela a seguir exibe os valores do Expected Shortfall (ES) ou Deficit Esperado, 
calculados a um nível de confiança de 95% (ES95), que corresponde à media dos 5 % 
maiores resíduos normalizados (cauda da distribuicõo) para cada modelo ajustado.
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Tabela 19: Deficit Esperado por Modelo a um nível de confianca de 95%.

M o d elo D efic it E sp e ra d o  (E S 95)

Gamma Generalizado 3,975315
Exponencial 4,075854
Weibull 4,881840

Conforme Tabela 19,observa-se que o modelo Gamma Generalizado obteve ESg5% 
igual a 3,9753, valor inferior ao ES95% do modelo Exponencial (4,0759) e do modelo 
Weibull (4,882). Esse resultado indica que o ajuste do modelo Gamma Generalizado e 
mais aderente ao comportamento esperado de uma Exp(1).

Para verificar se ha de autocorrelacao nos resíduos de Cox-Snell obtidos pelos 
modelos ACD, dispoe-se a Figura 12 e teste de Ljung-Box (Tabela 20), onde a hipótese 
nula (H0) assume que não ha autocorrelaçao ate a defasagem k.

Figura 12: Grafico ACF dos Resíduos Cox-Snell por Modelo (lag =  35)

Lag

Tabela 20: Resultados do teste de Ljung-Box para resíduos de Cox-Snell (lag =  35)

M o d elo E s ta t ís t ic a D F P -v a lo r

Gamma Generalizado 35,16990 33 0,3657253
Exponencial 36,02138 33 0,3289920
Weibull 41,00386 33 0,1596591

Analisando a Tabela 20, conclui-se que para um nível de significância de 5%,
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a hipótese nula de que os resíduos sao ruído branco nao e rejeitada para nenhum dos 
modelos, um a vez que todos os p-valores sõo superiores a 0,05. Dessa forma, os três 
modelos conseguem capturar a dependencia tem poral presente nas duracoes, resultando 
em resíduos que se comportam como ruído branco, ou seja, os resíduos sao independentes.

A Figura 12 corrobora com essa analise, visto que a maioria dos coeficientes 
de autocorrelaçao se encontra dentro das bandas de confianca (linhas tracejadas azuis), 
indicando a ausencia de autocorrelacõo significativa em qualquer defasagem para os três 
modelos. Em bora existam alguns poucos picos que ultrapassam  as bandas em defasagens 
específicas, o teste de Ljung-Box, que considera a autocorrelacõo conjunta, indica que 
esses desvios pontuais nao sõo estatisticam ente significativos para rejeitar a hipotese de 
ruído branco.
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4 Conclusão

Este trabalho dedicou-se a modelagem estocastica dos precos do Bitcoin, abor­
dando tanto  a dinâmica d iíria  quanto a in trad iíria, com o objetivo de capturar carac­
terísticas complexas como memoria longa, volatilidade estocastica e padrões de duracao 
entre transaçcõoes. Buscou-se propor e avaliar modelos baseados em EDEs dirigidas pelo 
fBm para os dados diarios, e modelos ACD para a analise intradiaria.

Na analise diíria, foram comparados modelos GFBM e GOUFE, com especi­
ficações de volatilidade constante e estocística (CIR). A avaliaçõo, baseada em metricas 
de erro (Tabela 7), criterios de informaçao (Tabela 8) e analise de risco (Tabela10), in­
dicaram que os modelos com volatilidade estocística (GOUFE-CIR e GFBM-CIR) apre­
sentaram  melhor ajuste segundo os criterios AIC e BIC, sugerindo que a incorporacao 
da dinamica da volatilidade e relevante. Em termos de erro de previsao (RMSE, MAE, 
M APE), os resultados foram muito próximos entre os quatro modelos, tendo o modelo 
GFBM -CIR como o melhor. Contudo, sob a perspectiva dos criterios de informacõo, o 
modelo GOUFE-CIR apresentou o melhor equilíbrio entre ajuste e complexidade, sendo 
o mais eficiente em termos de parcimânia. Alem disso, o modelo GOUFE-CIR tambem 
teve o menor deficit esperado (US$-2.764,197) (Tabela 10).

A analise dos resíduos (Figuras 3-6, Tabelas 7, 9, 10), no entanto, revelou a pre- 
senca de heterocedasticidade (variancia crescente com o preço, Figura 4) e forte rejeicõo 
da hipotese de normalidade (Teste de Shapiro-Wilk, Tabela 11) para todos os modelos. 
Em bora a autocorrelacao tenha sido m itigada (Teste de Ljung-Box, Tabela 12), esses re­
sultados sugerem que, apesar dos avancos, os modelos ainda nao capturam  completamente 
toda a complexidade da distribuicõo dos retornos diarios do Bitcoin.

Ja  anílise intradiaria, os modelos ACD Exponencial, Weibull e Gamma Gene­
ralizado foram aplicados às duracões entre transacoes, apos ajuste para padrões diurnos 
(Figuras 8-10). Nesse sentido, os resultados (Tabelas 13-17) dem onstraram  a capacidade 
dos modelos ACD em capturar o agrupamento das duracoes. Diante disso, a anílise dos 
resíduos de Cox-Snell (Figura 11 e Tabela 19) indicaram um melhor ajuste do modelo 
Gamma Generalizado e menor deficit esperado, em comparacao aos modelo Exponencial 
e Weibull.

As principais contribuicçõoes deste trabalho residem na aplicaçcõao e comparaçcaõo de 
modelos estocasticos avançados (GFBM, GOUFE com volatilidade estocastica) a serie de 
preços diírios do Bitcoin, e na exploracao dos modelos ACD para a dinamica intradiaria 
deste ativo. A anílise conjunta em diferentes escalas temporais oferece um a perspectiva 
mais completa sobre o comportamento complexo do Bitcoin, confirmando a presenca de 
memoria longa e a relevancia da volatilidade estocística na escala diaria, e o agrupamento
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de duracoes na escala intradiária.
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