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Resumo

Este trabalho propde e avalia modelos estocasticos para descrever a dindmica dos
precos do Bitcoin em diferentes escalas temporais, utilizando dados diarios e intradiarios.
Na anélise diéria, introduzem-se modelos dirigidos pelo Movimento Browniano Fracionario
(fBm) para capturar memoria longa, associados a especificacoes de volatilidade constante
e estocastica via processo de Cox-Ingersoll-Ross. Para dados intraday, aplicam-se modelos
de Duracdo Condicional Autorregressiva (ACD) Exponencial, Weibull e Gamma Gene-
ralizado, com ajustes para padroes diurnos, para modelar o tempo entre transacfes. Os
resultados demonstraram a capacidade dos modelos ACD em capturar o agrupamento
das duracoes, com o modelo Gamma Generalizado apresentando melhor ajuste segundo
a analise de residuos de Cox-Snell. Esse estudo contribui ao aplicar e comparar modelos
estocasticos em multiplas escalas temporais para o Bitcoin, confirmando a relevancia da
memoria longa, da volatilidade estocastica e da dinamica intradiaria para a compreensao
do ativo.

Palavras-chave: Bitcoin. Modelagem estocastica. Movimento Browniano Fracionario.
Volatilidade estocéstica. Modelos ACD. Equacoes Diferenciais Estocésticas.
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Abstract

This study proposes and evaluates stochastic models to describe the dynamics of
Bitcoin prices across different time scales, using both daily and intraday data. In the daily
analysis, models driven by Fractional Brownian Motion (fBm) are introduced to capture
long memory, combined with constant and stochastic volatility specifications via the Cox-
Ingersoll-Ross process. For intraday data, Exponential, Weibull, and Generalized Gamma
Autoregressive Conditional Duration (ACD) models are applied—adjusted for diurnal
patterns—to model the time between transactions. The results demonstrated the ability
of ACD models to capture the clustering of durations, with the Generalized Gamma model
showing the best fit according to the Cox-Snell residual analysis. This study contributes
by applying and comparing stochastic models across multiple time scales for Bitcoin,
confirming the relevance of long memory, stochastic volatility, and intraday dynamics for
understanding the asset.

Keywords: Bitcoin; Stochastic modeling; Fractional Brownian Motion; Stochastic vola-
tility; ACD models; Stochastic differential equations.
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1 Introdugao

Nos ultimos anos, o Bitcoin tem se destacado no cenario mundial como um dos
ativos financeiros mais relevantes. Essa moeda digital foi criada em 2009 por Satoshi
Nakamoto (NAKAMOTO, 2008), baseando-se na tecnologia blockchain, ou seja, um livro
de registro digital onde todas as transacGes realizadas sao armazenadas de maneira segura
e transparente. Dessa forma, as transacoes sao feitas de modo descentralizado, isto e, sem
meios intermediarios, como bancos e governos, permitindo a transferencia direta de valores
entre os usuarios atraves de carteiras digitais. Essas transacoes precisam ser confirmadas
e registradas no blockchain, em um processo denominado mineracdo, no qual calculos
matematicos complexos sao realizados por computadores para validar as transacdes e
adicionar novos blocos de forma sequencial ao blockchain, garantindo a segurancca e a
integridade dos dados (ANTONOPOULOS, 2017).

Diferentemente das moedas tradicionais, o Bitcoin funciona de maneira ininter-
rupta, 24 horas por dia, sete dias por semana, e possui um limite maiximo de 21 milhodes
de unidades em circulacdo, o que gera alta liquidez, volatilidade e escassez no mercado.
Nesse sentido, sua limitacdo e a ausencia de um ente regulador contribuem para sua ele-
vada volatilidade, tornando-o um ativo que atrai a atengdo de investidores e pesquisadores
(ANTONOPOULOS, 2014).

Assim, o Bitcoin e uma moeda que vai alem do mercado financeiro tradicional,
uma vez que e influenciada por eventos globais, como crises econdmicas ou mudancas re-
gulatorias, sendo utilizada ate como alternativa para protecao contra a inflacao em paises
com economias instaveis. Dessa forma, estudos apontam que essa imprevisibilidade nos
preccos apresenta um padrdao complexo que se repete ao longo do tempo, indicando um
comportamento chamado de memoria longa, isto e, 0os precos atuais podem ser influenci-
ados por movimentos passados (GARNIER; SOLNA, 2019).

Compreender a volatilidade do Bitcoin e essencial para varias areas do mercado
financeiro, como a precificacao de investimentos, analise de gestdo de risco e elaboracéo
de estrategias financeiras. No entanto, a previsdo de medidas de risco para criptomoedas,
como o Valor em Risco (do ingles Value-at-Risk) e o Defit Esperado (do ingles Expected
Shortfall), e particularmente desafiadora devido as suas caracteristicas inerentes, como
alta volatilidade, movimentos extremos de precos e periodos de comportamento turbu-
lento extremo (HOTTA et al., 2025). Para tal, modelos matematicos vem sendo utilizados
para explicar o comportamento deste ativo e dentre eles destacam-se os modelos oriun-
dos do Movimento Browniano Fracionario (fBm, do ingles frational Brownian motion).
Esse modelo permite uma descricdo mais realista da variabilidade dos precos, levando em
conta o comportamento anterior e a imprevisibilidade futura dessa moeda (ALHAGYAN;
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YASSEN, 2023).

Alem disso, a analise de dados financeiros de alta frequencia, tem se mostrado fun-
damental para compreender a dinamica de mercado e formular estrategias de investimento
mais efetivas. Nesse sentido, os modelos autorregressivos de duracao condicional (ACD),
propostos por Engle e Russell (1998), oferecem uma abordagem robusta para modelar o
tempo entre transacoes, sobretudo em dados irregulares, como e o caso das criptomoedas.
Embora utilizada no mercados financeiro para avaliar a intensidade das transagcdoes e a
evolucao das duracées, esses modelos ainda sao pouco explorados no contexto do Bitcoin,
apesar de sua relevancia para analisar o risco de preco e a microestrutura do mercado
(DIMPFL; ODELLI, 2020).

O presente estudo tem como objetivo propor uma nova classe de processos diri-
gidos por movimento browniano fracionario (fBm), capazes de modelar os precos diarios
do Bitcoin e sua volatilidade, e aplicar modelos (ACD) para analisar as duragcdoes entre
transagcdoes intradiaarias do ativo, visando identificar padrodes temporais e sazonais que con-
tribuam para o comportamento de mercado do Bitcoin. Para isso, 0s seguintes objetivos
especificos sao formulados:

* ldentificar e descrever os padrdes de memaria longa presentes no historico de precos
didarios do Bitcoin.

* Incorporar a volatilidade estocastica nos modelos propostos por (QUINTINO; ME-
DINO; DOREA, 2023), analisando o0 seu impacto na precisao das previsoes.

» Realizar uma analise comparativa de diferentes modelos estocasticos de precos.

» Realizar uma analise intradiaria dos precos do Bitcoin, atraves do modelo ACD.
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2 Metodologia

Neste capitulo, sera apresentado alguns conceitos basicos que serdo utilizados ao
longo do trabalho.

2.1 Uma Classe de Modelos de Volatilidade Estocastica

2.1.1 Movimento Browniano e Processos Derivados

Um processo estocastico e uma colegao de variaveis aleatorias {S(t);t E T} defi-
nidos num espaco de probabilidade (Q, F, P), onde T e um conjunto de tempos, que pode
ser enumeravel ou nao-enumeravel. A variavel S(t) depende do tempo t, mas tambem
contem incerteza (por isso e uma variavel aleatoria). Segundo (ROSS, 2014), 0s processos
estocasticos sao amplamente utilizados para modelar fendmenos dinamicos que apresen-
tam comportamento incerto. Neste trabalho, consideraremos T = [0,r0). Neste caso,
dizemos que {S(t);t > 0} e um processo a tempo continuo.

Ademais, 0s processos estocasticos podem ser classificados como:

» Markovianos: O futuro do processo depende apenas do estado atual, ndo do pas-
sado.

* Ndo Markovianos: O futuro do processo pode depender de toda a historia pas-
sada, e nGao apenas do estado presente.

O Movimento Browniano e um processo estocastico amplamente utilizado, espe-
cialmente no mercado financeiro, para modelar o comportamento aleatorio dos precos de

ativos.

Deflnicao 1 Dizemos que um processo {B(t);t > 0} e um Movimento Browniano se
satisfaz:
1. B (0) = 0, quase certamente (g.c.).

2. B possui incrementos independentes, i.e., dados 0 < t0 < ti < mmm< tn, as variaveis
aleatorias
B (t1) — B (t2) —B (t1), ..., B(tn) —B(tn-1)

20 independentes.

3. Para Vt,s > 0,
B(t) - B(s) - N(O,]t- s|)
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4. B possui trajetorias continuas g.c.

Pode-se mostrar que um movimento Browniano:

1. E um processo Gaussiano e Markoviano.

2. Nao e diferenciavel em nenhum ponto (g.c.).

(BACHELIER, 1900) foi um dos primeiros estudiosos a utilizar o movimento
Browniano para prever precos de ativos financeiros. Na era moderna, (ROSS, 2002)
tambem utilizou diretamente o movimento Browniano para modelar o preco de acoes. No
entanto, essa aplicagdo direta do movimento Browniano enfrentou muitas criticas, pois
esse processo permite que o preco seja negativo, assumindo que os precos das acoes seguem
uma variavel aleatéria normal.

Para lidar com essa situacao, uma variacao nao-negativa do movimento Browni-
ano, chamada de movimento Browniano geometrico (GBM, do ingles Geometric Brow-
nian Motion), foi empregada para superar as limitacdes do movimento Browniano em
aplicacdes financeiras. O GBM demonstrou que pode descrever melhor a situagao real.
Por isso, foi amplamente utilizado em muitas aplicacoes da matematica financeira, como
0 preco de indices, seguro de hipotecas, o modelo de Black-Scholes(HULL, 2009), preci-
ficacdo de opgoes e taxas de cambio (OKSENDAL, 2002; ROSS, 2014). Vale ressaltar
que, o trabalho proposto por (ARAuUJO, 2020) tambem aborda a aplicacdo do GBM para
simulacao de precos de acaes.

Definicao 2 Um processo estocastico {S(t); t > 0} segue um GBM se satisfaz a seguinte
equacdo diferencial estocastica:

dS() = yS(t)dt + aS(t)dB (1), t> 0, (2.1.1)

em que {B(t);t > 0} e um movimento Browniano, » e a taxa media de crescimento
do processo ao longo do tempo (drift), enquanto a e a volatilidade, a qual quantifica a
intensidade das flutuacoes aleatorias em torno dessa tendencia media. A Equacao (2.1.1)
representa a seguinte equacao integral:

S(t) = SO+ i y(S(u),u)du+ i a(S(u),u) dB(u), (2.1.2)
JO JO

em que a segunda integral e chamada de integral de Ito (para maiores detalhes, ver
(KLEBANER, 2012). Nesse sentido, a solucao da Eq. (2.1.1) e de forma:

S(t) = S0exp ] - -a2jt+aB()l, (2.1.3)
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em que SO representa um valor inicial.

Apesar da evolugdo dessa abordagem, (AiT-SAHALIA; LO, 1998) observou o
surgimento de memoria nos dados de series temporais, que e controlada pela estrutura
dinamuca de (2.1.1). Isso implica o proximo passo: propor um modelo gBm que possa
incorporar as propriedades de memoria longa. O Movimento Browniano Fracionario(fBm)
jeum dos modelos que podem ser utilizados para lidar com essa questdao. Dessa forma,
surge o Movimento Browniano Fracionario Geometrico (gfBm).

Nesse sentido, para compreender o gfBm, e fundamental entender o funciona-
mento do fBm. Para isso, adotou-se a representacao de Riemann-Liouville como definho
do Movimento Browniano Fracionario (BIAGINI et al., 2008).

Definicao 3 SejaH E (0,1) opammetro de Hurst e {B(t); t > 0} um movimento browni-
ano padrdo em R. O Movimento Browniano Fracionario {BH(t); t > 0} via representacdo
de Riemann-Liouville e definida por:

Bh(t) = r H¥ i~ (t- s)H- dB(s), t> 0. (2.1.4)

Esta representacao define o fBm como uma integral ponderada do movimento browniano,
com um nucleo (t —s)H-1/2 que introduz a dependencia de longo alcance caracteristica
do fBm.

Portanto, o pardmetro de Hurst e utilizado para capturar a dinamica de correlacao
dos dados e, consequentemente, gerar melhores resultados em previsoes (HURST, 1951).
Desse modo, existem trés tipos diferentes de dependencia de memoria detectados de acordo
com o valor de H (MANDELBROT, 1983):

* Se 0.5 < H < 1 existe uma dependencia de memoria longa;
* Se 0 < H < 0.5, existe uma dependencia de memoria curta;

* Quando H = 0.5, nao ha dependencia de memoria. Note que nesse caso, o fBm
coincide com o Movimento Browniano.

Definicao 4 Um processo estocastico {S(t); t > 0} segue um gfBm se a seguinte equacéo
diferencial estocastica for satisfeita:

dS(t) = AS(t) dt + aS(t) dBH(Y), (2.1.5)

em que {BH(t); t > 0} representa um fBm, e * e a representam, respectivamente, a media
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(drift) e a volatilidade. A solucao da Eg. (2.1.5) e da forma:
t+ aBH(t) (2.1.6)
em que, Sqgrepresenta um valor inicial arbitrério.

Definicdo 5 Um processo estocastico {S(t);t > 0} diz-se seguir um gfBm perturbado por
volatilidade estocastica se satisfizer a seguinte equacéo diferencial estocastica:

dS(t) = A S(t)dt+ a(Y (t)) S(t) dBHI(t), (2.1.7)

em que:

{Y(t);t > 0} e um processo estocastico;

N e 0 parametro de drift (media);

{BHI(t); t > 0} e um movimento browniano fracionario (fBm) com indice de Hurst

* a(.) e uma funcao deterministica.
2.1.2 Escolha do Modelo de Volatilidade Estocastica

A volatilidade (a) pode ser calculada por funcoes constantes ou estocasticas.
Algumas firmulas para estimar a volatilidade constante sao apresentadas na Tabela 1
Para maiores detalhes, veja (ALHAGYAN; YASSEN, 2023).

Tabela 1: Formulas para calculo de volatilidade constante.

Metodo Formula

Volatilidade Simples

Volatilidade Logaritmica

Volatilidade High-Low-Close a (n_ 1At E 0.5(log(Hi) - log(Li))2- 0.3(log(Si) - log(Si-i))2

Para descrever melhor as condicdes reais do mercado, a volatilidade estocastica
(a(Y (1)) pode ser introduzida no gfBm. Algumas funcoes deterministicas utilizadas sao

mostradas na Tabela 2.
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Tabela 2: Modelos de volatilidade estocastica

Nome Modelo

Log-normal dy (t) = aY (t)dt + f3Y(t)dB(t)2
Cox-Ingersoll-Ross dy (t) = d(u —Y (t))dt+ £/2Y (t)dB(t)2
Ornstein-Uhlenbeck dY (t) = a(m —Y (t))dt + fidB(t)2

Sem reversao a media dY(t) = aY (t)dB2(t)

Ornstein-Uhlenbeck Fracionario dY(t) = a(m —Y(t))dt + ftdB"H(t)

Para o estudo em questao, adotou-se o processo Cox-Ingersoll-Ross (CIR), con-
forme proposto originalmente por Cox, Ingersoll e Ross (1985). Este processo e caracte-
rizado pela seguinte Equacao Diferencial Estocastica (EDE):

dY(t) = k (Ww—Y(t)) dt + £\/Y (t) dB(t), t >0, (2.1.8)
em que:
* k> 0e avelocidade de reversao
* w > 0 e o nivel de longo prazo;
« £> 0 e a volatilidade;

e B(t) e um Movimento Browniano padréo.

Uma propriedade fundamental do processo CIR, para aplicacao em tempo dis-
creto, e a existencia de uma distribuicao condicional exata para Y (t + At) dado o valor
Y(t) = yO em um intervalo de tempo At. Conforme demonstrado por Cox, Ingersoll
e Ross (1985), essa distribuicao condicional segue uma distribuicdo qui-quadrado nao-
central (x/2) escalonada:

Y(t+ At) |Y(t) = yo ~ cox/ (df, A), (2.1.9)

em que o fator de escala co, os graus de liberdade df e o parametro de ndo-centralidade A
sao definidos em funcdo dos parametros do modelo CIR e do valor inicial yO0:

£21 — A 4ku A= 4Kyo A (211n)
4K e dfr-AAe A= £2(1- e-K)e (2'1'10)

@

A utilizacgdao desta distribuiccdao exata ievantajosa, pois garante a nado-negatividade
do processo (Y (t) > 0), sendo fundamental em muitas aplica¢des financeiras, e evita vieses
que poderiam surgir de metodos de discretizacao aproximados. Sendo assim, a funcao
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de densidade de probabilidade p(Y(t + At) |Y (t;Ku, £)), calculavel a partir da Equacédo
(2.1.9), e essencial para a estimacao dos parametros do modelo por metodos como maxima
verossimilhanca ou inferéncia Bayesiana, como discutido tambem por (GLASSERMAN,
2004).

2.1.3 Processo GOU—FE com Ruido Movimento Browniano Fracionario

Estamos interessados em estimar o vetor de parametros 6 = (91,92, @) de um pro-
cesso GOU-FE (Generalized Ornstein-Uhlenbeck of Fluctuating Exponencial type) de trés
pardmetros com ruado multiplicativo fBm. Tal processo foi introduzido em (QUINTINO;
MEDINO; DOREA, 2023) para um ruado Levy.

O processo {X(t); t > 0} e definido como solucao da seguinte equacao de Lange-
vin generalizada (GLE):

dX(@®) =  dl1—93)X () —J X (s)r(t—s)dsj dt+a(X (1) dBH(), t> 0, (2.1.11)

com condicao inicial X (0) = X0 independente do ruado.

O kernel de memoria r (t) estabelece a forma de autodependencia do processo e
&dado por:

klcos(vt) + k21sin(vt), v> 0,
r(t) =e 2 k1lcosh(vt) + k2-1sinh(vt), v < 0, (2.1.12)
N1+ k20t,

em que as constantes sdao:

\0 = @-@

v —v0+ @(1 —@3®

Kl= @@—2@ (1 —@ vo,
(2.2.3)

O espaco de parametros de drift pode ser definido como 0 = (0,t0)2 x [0, 1].
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2.1.4 Metodo de Euler-Maruyama

@] metodo de Euler-Maruyama e uma extensao do metodo de Euler classico, uti-
lizado para aproximar solucoes de equacoes diferenciais ordinarias, para o contexto de
equacoes EDEs. Essas equacoes sao fundamentais para modelar sistemas dindmicos sujei-
tos a aleatoriedade, como o comportamento dos precos de ativos financeiros (KLOEDEN;
PLATEN, 1992).

Uma EDE pode ser escrita na forma:

dX () = (X (1),)dt + a(X (t),1)dB (t), (2.1.13)

em que:

X (t) e o estado do sistema no tempo t;

N(X(t),t) representa o drift (tendencia media);

a(X(t),t) e a volatilidade;

B (t) e um movimento Browniano padrdo.

Para resolver numericamente essa equagao, o0 metodo de Euler-Maruyama apro-
xima a solucao pela formula:

X (t+ At) « X (1) + (X (1),D)At + a(X (1), )AB (1), (2.1.14)

em que AB(t) ~ N (0, At) e um incremento do movimento Browniano (KLOEDEN;
PLATEN, 1992).

Ao aplicar o metodo de Euler-Maruyama ao GBM, a aproximagcado numerica do
precco do ativo e dada por:

S(t+ At) ~ S(f) L+ "At + aAB(t)). (2.1.15)

Essa abordagem e particularmente util para simulaccioes de preccos de ativos, pre-
cificacdo de opcoes financeiras e analise de risco. Metodos como Monte Carlo utilizam
essa tecnica para gerar trajetorias simuladas dos pregos dos ativos, permitindo a avaliacao
de derivativos e estrategias de hedge (GLASSERMAN, 2003). Adaptacoes desse metodo
podem ser utilizadas na simulacao de EDEs dirigidas por outras classes de ruidos
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2.1.5 Estimacao dos Parametros

Para a estimacao dos pardmetros e dos estados latentes em modelos de espaco
de estados nbao lineares e ndao gaussianos, como o proposto neste trabalho, empregou-se
0 metodo Sequencial de Monte Carlo (SMC), conhecido como Filtro de Particulas. Este
metodo permite aproximar, de forma recorrente, a distribuicao a posteriori dos estados la-
tentes Y (t) condicionada as observacoes X (1), X (2), X (3),..., X(t), sendo particularmente
adequado para lidar com as nado linearidades e distribuiccBoes nGao gaussianas inerentes ao
modelo (DOUCET; FREITAS; GORDON, 2001)

A implementacdo do filtro de particulas baseia-se na representagao da distribuicao
de interesse por um conjunto de amostras ponderadas (particulas) {Y (t)(i), w (t)(i))}N1,
em que Y (O(=> sao os estados das particulas e w(i) seus respectivos pesos normalizados
(Siw(t)() = 1). O processo iterativo do filtro, conforme descrito por Gordon, Salmond
e Smith (1993) e Arulampalam et al. (2002), envolve trés etapas principais: propagacao,
ponderagcdao e reamostragem.

Primeiramente, o modelo dinamico estocastico e formulado no espaco de estados,
definindo a equacao de transicao para o estado latente X(t) e a equacao de observagao
para os dados Y (t) (precos):

] X (t) = fo(X(t —1)) + et, (Equacdo de Estado)
1Y (t) = go(X(t)) + nt, (Equacdo de Observacao)

em que 6 representa o vetor de pardmetros a serem estimados, e et e n sao os termos de
ruido do processo e da observacao, respectivamente.

O algoritmo do filtro de particulas padrdo (Bootstrap Filter) pode ser sumarizado
conforme o Algoritmo 1. Portanto, a etapa de inicializacao consiste em gerar N particulas
{X(0)())}N-1a partir da distribuicao a priori p(X (0)) e atribuir pesos uniformes w(0)(i) =
1/N .

Subsequentemente, para cada instante de tempo t = 1,...,T, as etapas de pro-
pagacao e ponderacao s6o executadas. Desse modo, na propagaco, cada particula e
avangada no tempo de acordo com a dinamica do modelo, X (t) (i) —po(X(t) | X (t —1)(i)).
Para o caso do modelo CIR, essa transicbo pode ser amostrada exatamente (COX; IN-
GERSOLL; ROSS, 1985).

Na ponderacao, os pesos sao atualizados proporcionalmente a verossimilhanca da
observacdo Y dada a particula propagada, w(t)()) a w(t —21)@)po(Y (t) | X (t)(i)), e entdo
normalizados.
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Algoritmo 1 Filtro de Particulas (Bootstrap Filter)
L Inicializagao (t = 0)
2 fori=1,... ,N
3 Amostrar X(0)@) ~ p(X(0))
4 Definir w(0)(@) ~ 1/N
5 end for
6. fort=1, .., T
7 Propagacao e Ponderacao
8 fori=1,...,N
o Propagagdo: Amostrar X (t) (i) ~ po(X(t) | X (t —1)(i))
10: Ponderacdo: w(t)@) ~ w(t —21)@) x po(Y(t) | X (t)(i)
11:  end for
12: Normalizacao

13 Calcular W(t) » w (1) ()

j=i
14: fori=1,...,N

15: Definir w(t)@)) ~ w(t)(i)/w (t)
16:  end for

17 Reamostragem

18:  Calcular ESS ~ 1/£ (w (i)(i)2

19: if ESS < Niimiar then

20: Reamostrar {X(t)(i), w(t)(i))}N1a partir de {X(t)(i), w(t)(i)}N1
21 Definir w(t)()) ~ 1/N Vi

22.  else

23: Para todo i X(t)@) ™ X ()@

24:  end if

25: end for

No contexto deste algoritmo, a reamostragem e empregada com o proposito de
mitigar o fendbmeno da degenerescencia dos pesos. Este fenomeno ocorre quando uma
parcela reduzida das particulas concentra a maior parte da massa de probabilidade, com-
prometendo a representatividade da distribuicao. Para identificar a ocorréncia da dege-
nerescencia, utiliza-se o Numero Efetivo de Particulas (ESS), calculado pela expressao
ESS = 1/£ N1(w(i)(i))2, em que cai abaixo de um limiar pré-definido, como, por exem-
plo N /2. Apos a execucao do processo de reamostragem, as particulas selecionadas sao
reatribuidas com pesos uniformes, equivalentes a 1/N .

O filtro de particulas fornece uma aproximagcado da fungcdao de verossimilhangca
marginal p(Y (1),Y (2),Y (3),...,Y (T)) | 6), essencial para a estimacao dos pardmetros 6.
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Desse modo, a verossimilhanca pode ser calculada iterativamente e sua aproximagao no
instante T e dada por:

T T /1N \

L(0) = p(YD)nP(Y (t) 1Y (),Y(2),Y(3),...Y(i-1)) « n N E » (YW IX(0<fl)),
t=2 t=1 \ =l J

(2.1.16)

em que a aproximagdo mais comum utilizada na pratica e:

T N
i(»)«n e W(t- i)Ip»(y («) i X'(i<y (2.1.17)

t=i Vi=i
Esta aproximacdo da verossimilhanca e entdo utilizada em um procedimento de
otimizacao numerica para encontrar a estimativa de maxima verossimilhanca (MLE) dos
parametros, 0 = argmax# logL (0).

Neste trabalho, utilizou-se o0 metodo L-BFGS-B para a otimizacao, uma aborda-
gem quasi-Newton eficiente para problemas com restricoes nos parametros (LIU; WEST,
2001) e tambem o metodo Nelder-Mead (NELDER; MEAD, 1965).

As principais vantagens do filtro de particulas incluem sua flexibilidade para
acomodar modelos complexos, nao lineares e nao gaussianos, e sua convergencia assintatica
(quando N " ro) para a distribuicao otima. A complexidade computacional e da ordem
de O(N) por passo de tempo.

2.1.6 Testes de Diagndstico e Comparacdo de Modelos

Apos a estimacao dos modelos propostos, e fundamental realizar testes estatisticos
para avaliar a adequacao do ajuste aos dados e comparar o desempenho preditivo entre
modelos concorrentes. Nesta secao, descrevem-se o0s testes utilizados para diagnostico dos
resaduos e comparagcdao da acuraacia das previsaoes.

) teste de Ljung-Box (LIJUNG; BOX, 1978) verifica a presenca de autocorrelacao
serial nos residuos de um modelo de series temporais. A ausencia de autocorrelacao ga-
rante que o modelo capturou adequadamente a dependencia temporal dos dados originais.

Sejam {et}=1 os residuos padronizados de um modelo ajustado. Defina-se a
autocorrelacao amostral no lag h como

Eliiietern 7
ph = —fleteh o ro 4D
ZM=i et

em que k e o numero maximo de defasagens a testar. A estatistica de Ljung-Box e dada
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por:
k a2
Q = n(n+2)Y Jarr ,
e D

em que n ieo tamanho da amostra.

As hipoteses do teste sao formuladas como:

ro: pT= p2= mmm= pk= 0 (residuos sao ruido branco) ,

H1: Existe pelo menos uma autocorrelacao nao nula em algum lag h < k.

Sob HO, a estatistica Q segue assimptoticamente uma distribuicao x2 com k graus de
liberdade. Rejeita-se HO ao nivel de significancia a se

Q > Xak,

ou, equivalentemente, se o valor-p for inferior a a.

@) teste de Shapiro-Wilk (SHAPIRO; WILK, 1965) verifica a hipitese de que
uma amostra {zi}™l foi extraida de uma populacao normalmente distribuida. Ordene
a amostra em ordem crescente, de modo que z(1) < z(2) < e < z(n). Definem-se 0s
coeficientes

em que {mi} sdo esperancas dos n estatisticos de ordem de uma distribuicao normal
padrdo. A estatistica de Shapiro-Wilk e dada por

As hipiteses do teste sao:

HO: {zi} segue distribuicdo N(”~,a2),

H1: {zi} ndo segue distribuicao normal.

Valores de W proximos de 1 indicam normalidade. Rejeita-se HO se o valor-p associado
for menor que o nivel de significancia a.

Para avaliar o risco associado as previsoes dos modelos em cenarios de perdas
extremas, utiliza-se a medida de risco Expected Shortfall (ES), tambem conhecida como
Valor Condicional de Risco (CVaR) ou Deficit Esperado. O ES quantifica a perda media
esperada nos piores (1 - a) x 100% cenarios, em que a e o nivel de confianca.
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Formalmente, para uma variavel aleatdria X representando a perda (ou o negativo
do retorno) de um ativo ou portfolio, o Value at Risk (VaR) ao nivel de confianca a
(VaRa (X)) e o quantil (1 —a) da distribuicdo de X . O Expected Shortfall ao nivel a,
ESa(X), e definido como a expectativa condicional da perda, dado que a perda excede o
VaRa (X):

ESa(X)= E[X |X > VaRa(X)] (2.1.18)

Alternativamente, para distribuicoes continuas, o ES pode ser calculado como:

Esa(X) = —— " lvaru(x)du (2.1.19)
l1—a a

O ES e considerado uma medida de risco superior ao VaR por diversas razoes.
Primeiramente, ele informa sobre a magnitude esperada das perdas nos cenarios de cauda,
enquanto o VaR apenas indica o limiar da perda. Alem disso, o ES satisfaz as propriedades
de uma medida de risco coerente (monotonicidade, invariancia por translacao, homoge-
neidade positiva e subaditividade), conforme definido por Artzner et al. (1999), o que nem
sempre ocorre com o VaR. A coeréncia, especialmente a subaditividade (ES(X + Y) <
ES(X)+ ES(Y)), garante que a diversificagao nao aumenta o risco medido, uma propri-

edade desejavel em gestdo de portfalios (ACERBI; TASCHE, 2002).

Neste trabalho, o ES sera calculado para os precos diarios previstos pelos dife-
rentes modelos a um nivel de confianca de a = 95%.

2.2 Modelo ACD

Para modelar as duragcodes (tempo decorrido entre duas transagcdoes financeiras
consecutivas) da negociacao intradiéaria, Engle e Russell (1998) usam uma ideia semelhante
a dos modelos autoregressivos de heterocedasticidade condicional generalizados (GARCH)
para propor um modelo ACD. Dessa forma, temos a seguinte definicao:

Definicao 6 A duragdo Xt e o intervalo de tempo entre a (t —1) -esima e at -ésima
transagao:
Xt=Tt—Tt-1, parat= 1,2,..., N, (2.2.1)

em que:

e Tt: instante da trésima transacao;

 N: numero total de transacoes no periodo.



Metodologia 23

Diante disso, 0o modelo ACD (ENGLE; RUSSELL, 1998) assume que:

Xt = WSt (2.2.2)

em que ei e uma variavel aleatdria positiva com esperanca unitaria, e W e ei sao estocas-
ticamente independentes, o que implica que:

E[Xi] = E[*i] wE[si]. (2.2.3)

Essa especificacdo e naturalmente motivada ao se considerar um processo de
Poisson com dinamica GARCH para a media condicional das duracoes, na qual apenas a
media esta disponivel. Alem disso, Wt satisfaz:

p q
Wt = ao + 'y "a,jXt-j + 'y "[3vWt-v. (2.2.4)
=1 v=1

Nesta especificacao, conhecida como ACD(p,q), a0 > 0 e um termo constante, aj > 0 sao
os coeficientes associados as duracdes passadas (termos autorregressivos), e 3v > 0 sdo 0s
coeficientes associados as duracdes esperadas passadas (termos de media condicional).

As ordens p e q determinam quantas defasagens de Xt e W influenciam a duracéo
esperada atual. As restricoes de nao negatividade nos coeficientes garantem que W per-
manecgca positivo.

2.2.1 Modelo ACD Exponencial

O modelo ACD Exponencial (EACD) e a versao mais simples dos modelos ACD,
tendo uma distribuicdo exponencial padrdo com funcao de risco 1. Nesse sentido, a
equacdo do modelo e dada por (ENGLE; RUSSELL, 1998):

Xt=™MQj ~t=ao+ aiXt-i +3i*-i> ao>° ai,31>0. (2.2.5)

A funcdo de log-verossimilhanca condicional para uma amostra {x1,...,xn} e
dada por:

1(0[xi, ...,xn) = -y log(*t) + W (2.2.6)
t=i W

Desse modo, o modelo EACD e atrativo devido a sua simplicidade matematica e
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facilidade de estimacao. Entretanto, uma limitacao fundamental do modelo exponencial
e que ele assume uma funcao de risco constante, o que pode ser irrealista para aplicagoes
financeiras, em que frequentemente e possavel observar clusters de volatilidade e padroes
de duragcdao mais complexos.

2.2.2 Modelo ACD Weibull

O Modelo ACD com distribuicdo Weibull, proposto por (ENGLE; RUSSELL,
1998) e uma extensao do modelo ACD exponencial, que permite maior flexibilidade na
modelagem da forma da distribuiccdao das duraccdoes. A densidade de probabilidade de uma
variavel aleatoria Weibull, com pardmetro de forma @e pardmetro de escala a, e dada
por:

fxX) = @(X)"-lexp(—(X)') , x> 0,a>0,@>0. (2.2.7)

Para garantir que a variavel de duracao condicional tenha media unitaria, uma
transformacdo e aplicada. A media de uma variavel aleataria Weibull(@, a) e E[X] =
ar(l+ @1).

Assim, para obter uma PDF Weibull de media unitaria, realiza-se a mudangca de
variavel et = Xt/ar(1 + @1) .Dessa forma, a densidade de et e obtida utilizando a farmula
da transformacao de variaveis:

dxt
U (et) = fXE(xt) ) (2.2.8)
onde %i(tt -ar(l+ @1 e o determinante do jacobiano da transformacao. Apéas a
substi uicdo e simplificacao, a densidade de et e:
fetet) r(l+ @" (r(1+ @-1)) exp ( (r(+@n)J ~ (2.2.9)

Em seguida, para obter uma distribuiccdao de Xt parametrizada em termos da
media condicional ~t, aplica-se a transformacéo et = Xt/0t. A densidade de Xt condicio-
nada a "t e entdo expressa como:

&) L e R A xt
FXE* (X-W = ver(L+ @r A (1 + @-i0 exp HArcT+fi-i)." > (2'2'10)
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Este modelo permite uma maior flexibilidade na modelagem das duragBes, uma
vez que o parametro de forma 9 pode assumir valores diferentes de 1, ao contrario do
modelo exponencial onde 9 = 1 e fixo.

2.2.3 Modelo ACD Gamma Generalizado

O modelo ACD Gamma Generalizado(GG) permite maior flexibilidade na cap-
tura da distribuicdo das durations. Dessa forma, a densidade da distribuicao Gamma
Generalizado e definida como (ZHANG; RUSSELL; TSAY, 2001):

f(x) = OT(k) (X) exp(- (X)), X>0""9>0 (2.2.11)
em que:
* ke oparametro de forma.
e a e 0 parametro de escala.

e 9 controla a taxa de decaimento da cauda.
Alem disso ela inclui alguns casos particulares:
» A distribuicao exponencial (9 = k=1),

* A distribuicdo Weibull (k = 1),

* A distribuicao Gamma (9 = 1).

Desse modo, seguindo os passos de transformacdo usuais para ACD, obtemos a
funcao de densidade condicional (ZHANG; RUSSELL; TSAY, 2001):

g . \\]kO—l / y 0
FxtAt(xt[M ) A(K,Q)Atr(K)\/W\ exp A (/WJ (2.2.12)

em que a transformacao <\(k,9) = p'K+K-" garante que a duracao media condicional seja
~t. O modelo ACD-GG pode ser estimado por maxima verossimilhanca, maximizando a
seguinte funcdo de log-verossimilhanca condicional:

1(9|x1,...,xn) = ~  [log FXtt (xt[*1)] . (2.2.13)
t=1
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A presenca dos parametros adicionais k e 9 confere maior flexibilidade ao modelo,
sendo uma alternativa mais robusta ao modelo ACD Exponencial.

2.2.4 Duracao entre Transacoes

Definicdo 7 Define-se a duracdo Xt como o intervalo de tempo decorrido entre a ocorréncia
do (t —1)-esimo e do t-esimo evento (neste caso, transages):

Xt= Tt—Tt-1, parat= 1,2,..., N, (2.2.14)

em que:

Tt e oinstante de tempo exato em que a t-esima transacao ocorre;

* N e o numero total de transacoes no periodo.

Em intervalos de tempo mais curtos (duracoes menores) entre transacoes sucessi-
vas geralmente indicam periodos de alta atividade e liquidez, possivelmente associados a
chegada de novas informagcéoes relevantes ou a um maior volume de ordens. Por outro lado,
duragcdoes mais longas sugerem periodos de menor atividade ou inatividade no mercado. A
modelagem da sequencia de duracoes {Xt} permite capturar padrdes como o agrupamento
de volatilidade observado tambem na frequencia das negociacdes (PACURAR, 2008).

2.2.5 Ajuste Diurno

Em dados financeiros de alta frequencia, como as duracoes entre transacoes, sao
frequentes os padrdes sazonais intradiarios. Dessa forma, e comum observar que a maior
atividade de negociagao (duragoes menores) ocorrem no inicio e no final do dia, e menor
atividade (duracoes maiores) em outros hordrios. Para estudar a dinamica real dessas
duracoes sem que esses efeitos previsiveis do horério interfiram, aplica-se um procedimento
chamado ajuste diurno (ENGLE; RUSSELL, 1998).

Nesse sentido, o ajuste diurno visa dessazonalizar a serie de duragoes observadas
Xt. Para isso, uma abordagem comum consiste em estimar o componente sazonal esperado
da duracao, 0(Tt), como uma fungao suave da hora do dia Tt em que a transacao t ocorre.
A serie de duracdes ajustadas, Xt+ e entdo obtida pela razao entre a duracdo observada
e 0 componente sazonal estimado:

(2.2.15)
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Para estimar a funcao sazonal 0(Tt), utiliza-se uma tecnica que suaviza a relacdo
entre as duracdes brutas Xt e o horario Tt. Neste trabalho, adota-se o metodo “Su-
per Smoother” (supsmu), proposto por Friedman (1984), conhecido por sua capacidade
adaptativa na escolha da largura de banda de suavizacao local.

Dessa forma, a serie ajustada Xt ndo contem mais o efeito previsivel do horario,
servindo como base para estimar os modelos ACD. Em outras palavras, ao eliminar a sazo-
nalidade intradiaria, a analise posterior foca exclusivamente na dindmica autorregressiva
condicional das duracoes (BHOGAL; THEKKE, 2019).

2.3 Conjunto de dados

Para o estudo em questao, foram utilizados, para os precos diarios, dados do
site CoinMarketCap, atraves do pacote crypto2 do software R que realiza uma extracao
automitica (scraping) do historico de varios ativos financeiros, incluindo o Bitcoin, foco
desta pesquisa. O periodo analisado e datado do dia 1de janeiro de 2019 a 31 de dezembro
de 2024.

A seguir, apresenta-se as variiveis utilizadas na pesquisa e a serie historica dos
preccos do Bitcoin durante esse periodo:

Tabela 3: Descrigdo e Classificacdo das varidveis (Dados Diérios)

Variaveis Descricdo Classificagcado

time_open Data e hora de abertura Quantitativa discreta
time_close Data e hora de fechamento Quantitativa discreta
time_high Data e hora de alta Quantitativa discreta
time_low Data e hora de baixa Quantitativa discreta
open Valor mais baixo registrado durante o dia Quantitativa continua
high Maior pregco do dia Quantitativa continua
low Menor precgo do dia Quantitativa continua
close Precco de fechamento do dia Quantitativa continua
volume Volume de transaccdao em 24 horas Quantitativa continua
market_cap Valor Total de Mercado Quantitativa continua

Fonte: CoinMarketCap ((https://coinmarketcap.com)).

Para a anilise intradiaria dos precos do Bitcoin foram utilizados dados do site
da Dukascopy, correspondendo ao dia 20 de janeiro de 2025. A seguir, apresenta-se as
variaveis utilizadas no estudo:


https://coinmarketcap.com
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Variaveis

Local Time
Ask
Bid
Ask Volume
Bid Volume

Metodologia

Tabela 4: Descricdo e Classificacao das variaveis (Dados Intradiarios)

Descricao Classiflcacao

Data e hora da transacao Qualitativa ordinal
Precco de venda Quantitativa continua
Precco de compra Quantitativa continua
Volume de ativos disponiveis para venda Quantitativa discreta
Volume de ativos disponiveis par compra Quantitativa discreta

Fonte: Dukascopy ((https://www.dukascopy.com/)).


https://www.dukascopy.com/
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3 Resultados

Nesta secdo, sdo apresentadas as modelagens dos dados diarios e intradiarios,
conforme os modelos detalhados na Secao 4. Os resultados foram obtidos utilizando o
software R, versdo 4.4.1. Para garantir a replicabilidade, os codigos-fonte estdo disponiveis
publicamente no repositério GitHub, acessovel em: (https://github.com/Arthur-RPC/
TCC---Arthur-Rodrigues.git).

3.1 Descricao dos Dados

E fundamental compreender a dindmica dos precos do Bitcoin ao longo do tempo
para ter um embasamento adequado antes de aplicar a modelagem estatostica. Diante
disso, a Figura abaixo, demonstra a trajetoria dessa criptomoeda no peréodo de 1 de
janeiro de 2019 a 31 de dezembro de 2024.

Figura 1 Precos do Bitcoin ao longo do tempo (01/01/2019 - 31/12/2024)

Data

Conforme mostra a Figura 1, o peréodo analisado engloba diferentes condicdes de
mercado. Entre janeiro de 2019 e o indcio de 2020, os precos do Bitcoin mantiveram-se
relativamente estaveis, situando-se abaixo de US$ 15 000. Em 2021, observou-se uma
forte alta no primeiro semestre, seguida de uma correcgado acentuada. Esse movimento de
valorizacao coincidiu em parte com a pandemia de COVID-19, quando muitos investidores
passaram a ver o Bitcoin como uma possdvel protecdo contra a instabilidade econdmica
global (GOODELL; GOUTTE, 2021).

No intervalo entre 2023 e 2024, o Bitcoin voltou a se valorizar de forma signi-
ficativa, impulsionado por fatores macroecondomicos e eventos especdficos do mercado de
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criptomoedas. Esse periodo culminou em um novo recorde de pregos, acima de US$ 98
000 em novembro de 2024, possivelmente influenciado por acontecimentos politicos, como
as eleicoes nos Estados Unidos (BRASIL, 2024).

A presenca dessas diferentes fases — da relativa calma a alta volatilidade, pas-
sando por fortes tendencias de alta e correcBes bruscas — torna o intervalo 2019-2024
ideal para testar os modelos estocasticos selecionados. Assim, podemos avaliar se esses
modelos se adaptam bem as mudancas drasticas na dispersao dos precos. Alem disso, a
ocorréncia de tendencias persistentes e reversdes abruptas cria um cenario adequado para
verificar a capacidade dos modelos baseados em Movimento Browniano Fracionario de
capturar dependencia temporal.

Portanto, a escolha desse periodo nao busca evitar a influencia de fatores externos
ou a instabilidade de precos, mas utiliza-los como um teste de estresse para os modelos.
A capacidade de um modelo estocaistico descrever e prever o comportamento do Bitcoin
em um intervalo t6o heterogeneo — que inclui tanto fases de calmaria quanto de grandes
turbulencias — atesta sua robustez e relevancia. Nesse contexto, a aleatoriedade e a
memoria longa, caracteristicas intrinsecas aos modelos estudados, ser6o avaliadas diante
de um histoirico de pregcos rico e desafiador.

3.2 Avaliacdo dos Modelos para Dados Diarios (GFBM e GOUFE)

Para avaliar qual dos modelos (GOUFE-CIR, GOUFE-CONST, GFBM-CIR ¢
GFBM-CONST) teve o melhor ajuste, foram estimados os pardmetros desses modelos.
Desssa foma, os resultados sao apresentados nas Tabelas 5 e 6.

Tabela 5: Estimativa dos Parametros do Modelos GOUFE

Modelo Log-verossimilhanca 9\ d2 d3 K W i H
GOUFE-CIR 20.888,66 0,0149634 0,005039290 0,9051001 2,790833 0,1454547 0,4370782 0,5511263
GOUFE-CONST 31.871,26 0,0100000 0,001028255 0,8999774 - - 0,3624386 0,5461502

Tabela 6: Estimativa dos Pardmetros do Modelos GFBM

Modelo Log-verossimilhanca n K W i H
GFBM-CIR 21.170,86 0,0009889554 2,785846 0,1000000 0,3624460 0,5461402
GFBM-CONST 25.599,41 0,0035963469 - - 0.7000000 0,5413182

A partir das Tabelas 5 e 6, observa-se que observa-se que 0s modelos com vola-
tilidade constante (GOUFE-CONST e GFBM-CONST) apresentam log-verossimilhancas
mais elevadas do que suas respectivas versoes com volatilidade do tipo CIR. Essa analise
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inicial insinua que, para os precos diarios do Bitcoin, a complexidade adicional introduzida
pela modelagem da volatilidade via processo CIR pode nao ser justificada, e uma suposicao
de volatilidade constante proporciona um ajuste mais eficiente aos dados. Entre todos
os modelos analisados, 0 GOUFE-CONST se destaca com a maior log-verossimilhanca
(31.871,26), indicando o melhor ajuste geral.

Alem disso, o expoente de Hurst (H) estimado em todos os modelos permanece
consistentemente na faixa de 0,54 a 0,55, trazendo a tona a ideia de que os precos diarios
do Bitcoin exibem uma memoria longa.

ApoOs a avaliacao dos pardmetros estimados, foram analisados a capacidade predi-
tiva por meio de metricas de erro que quantificam o desvio entre os valores observados e os
valores previstos pelos modelos. Dessa forma, a Figura 2 apresenta a comparacao entre os
precos diarios observados do Bitcoin e as previsdes geradas pelos quatro modelos ao longo
do perdodo de analise, enquanto a Tabela 7 demonstra essa comparacdo na perspectiva
dos erros.

Figura 2: Precos observados x Preditos do Bitcoin ao longo do tempo (01/01/2019 - 31/12/2024)

- mGFBM-CIR — mGFBM-CONST — mGOUFE-CIR - mGOUFE-CONST — Observado

Data

Tabela 7: Comparacdo de RMSE, MAE, MAPE, R2 e Vies dos Modelos

Modelo RMSE MAE MAPE R2 Vies

GFBM-CIR 1.201,802 716,3009 0,0225726 0,9969002  9,7625

GOUFE-CONST 1.213,196 716,2269 0,0225984 0,9969822 34,0668
GFBM-CONST 1.217,385 722,6033 0,0227552 0,9967674 -72,3004
GOUFE-CIR 1.235,990 742,0912 0,0236312 0,9968740 215,2351

Ao analisar a Figura 2, observa-se, que todos os modelos conseguem acompanhar
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a trajetoria geral dos precos observados, capturando as principais tendencias e movimentos
do mercado. Porem, na Tabela 7, fica evidente que na perspectiva dos erros e do coeficinete
de determinacao, o modelo GFBM-CIR teve o melhor desempenho, tendo o menor RMSE
(US$ 1.201,802 e 0 menor MAPE 2,25%, enquanto o GOUFE-CONST apresentou o menor
MAE (US$ 716,2269).

Alem disso, o0 modelo GOUFE-CONST tambem obteve o maior R2 (0,9969822),
indicando que explica aproximadamente 99,70% da variabilidade dos preccos observados,
apesar dos demais modelos apresentarem valores muito proximos. Em relacao ao vies,
0 modelo GFBM-CIR demonstrou o menor valor absoluto (US$ 9,7625), sugerindo uma
tendencia muito pequena de superestimacao, enquanto o GOUFE-CIR apresentou o maior
vies (US$ 215,2351).

De modo geral, as mietricas de erro, sugerem que, em termos de precisdao, 0S
modelos GFBM-CIR e GOUFE-CONST tiveram melhor desempenho, apesar dos outros
modelos estarem bem proximos. Vale ressaltar que, no modelo GOUFE, a adogao da vola-
tilidade estocistica (CIR) nao trouxe ganho significativo na precisao, apesar do acréscimo
de pardmetros. Ja no modelo GFBM, com a volatilidade CIR houve um ganho significa-
tivo, visto que o modelo teve um vies de apenas US$ 9,7625 enquanto que com volatilidade
constante o vies foi de US$ -72,3004.

Entretanto, para ter uma assertividade melhor em qual modelo esta mais preciso
em termos de desempenho e preciso analisar outros fatores e dentre eles esti os Critérios
de Informacao (AIC, BIC e EDC), onde os menores valores indicam melhor ajuste, pena-
lizando a complexidade do modelo.

Tabela 8: Comparacao dos Modelos em relacao aos Criterios de Informacao (AIC, BIC e EDC)

Modelo AIC BIC EDC
GOUFE-CIR 46.161,33 58.638,44 46.249,44
GFBM-CIR 46.725,71 59.202,82 46.813,82

GFBM-CONST 55.582,82 68.059,94 55.670,93
GOUFE-CONST 68.126,51 80.603,62 68.214,62

De acordo com os resultados da Tabela 8, 0 modelo GOUFE-CIR apresentou
0s menores valores para os trés criterios, indicando ser o modelo com melhor ajuste aos
dados, considerando o equilibrio entre complexidade e verossimilhanca, enquanto que o
modelo GFBM-CIR aparece como o segundo melhor.

Ademais, os modelos com volatilidade constante (GFBM-CONST e GOUFE-
CONST) apresentaram valores de AIC, BIC e EDC mais altos, sugerindo que a incor-
poracdo da volatilidade estocastica via processo CIR (Cox-Ingersoll-Ross) trouxe um ga-
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nho de ajuste que compensou 0 aumento no nimero de parametros para 0s modelos
GOUFE e GFBM, constrastando com os resultados das tabelas 5 e 6.

Ao comparar esses resultados com as metricas de erro (Tabela 7), nota-se uma
divergencia entre os modelos, visto que 0os modelos GFBM-CIR e GOUFE-CONST mos-
traram um melhor desempenho em termo dos erros, enquanto o GOUFE-CIR demonstrou
o melhor ajuste geral segundo AIC, BIC e EDC.

3.2.1 Analise dos residuos

Para avaliar a adequagao dos modelos, procedeu-se a analise de residuos, onde
e possivel visualizar a distribuicao dos residuos, incluindo mediana, quartis e outliers,
conforme apresentado na Figura 3 e Tabela 9.

Figura 3: Grafico Boxplot dos Residuos por Modelo

Modelo

Tabela 9: Estatisticas descritivas dos residuos por modelo

Modelo Min Q1 Med Q3 M ax DP

GOUFE-CONST -8.223,34 -355,14 -584 311558 7.544,64 1.212,72
GFBM-CIR -8.147,72 -341,43 281 32576 7.610,12 1.212,76
GFBM-CONST  -7.937,89 -27395 4236 397,36 7.757,97 1.21524
GOUFE-CIR -8.620,95 -558,77 -116,96 139,57 7.359,55 1.271,11

A partir da Figura 3 e da Tabela 9, conclui-se que os modelos GFBM-CIR e
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GOUFE-CONST apresentam baixo viés na previsdo da tendéncia central dos precos do
Bitcoin, visto que apresentaram medianas muito proximas de zero 2,81 e -5,84, respecti-

vamente.

Em relacdo a dispersdo dos residuos, o Intervalo Interquartil (IQR = Q3 - Q1),
sao bem semelhantes entre os modelos, variando de de 666,72 (GOUFE-CONST) a 698,34
(GOUFE-CIR). Nesse aspecto, o modelo GOUFE-CIR apresenta o maior IQR e tambem o
maior Desvio Padrdo (DP = 1.271,11), indicando a maior variabilidade nos seus residuos.
Ja 0s modelos GFBM-CIR (DP = 1.212,76) e GOUFE-CONST (DP = 1.212,72) apre-
sentam 0s menores desvios padrdo, tendo uma menor dispersao.

A respeito da simetria da distribuicao dos reséduos o modelo GFBM-CIR aparenta
ser o mais simetrico em torno da sua mediana, com distancias semelhantes entre a mediana
e 0s quartis (Med —Q1 ~ 344,24; Q3 —Med ~ 322, 95). J6 0 modelo GFBM-CONST
demonstra uma leve assimetria a direita, enquanto o modelo GOUFE-CIR exibe uma
assimetria a esquerda mais acentuada, consistente com sua mediana negativa.

Um aspecto comum em todos os quatro modelos e o grande presenca de numerosos
outliers, ocasionando que erros de previsao. A amplitude total dos residuos (Mdx - Min) e
bem semelhante entre os modelos, variando de aproximadamente 15.694 (GFBM-CONST)
a 15.979 (GOUFE-CIR).

A seguir, apresenta-se os graficos de dispersao dos residuos em relagao aos precos
observados do Bitcoin para os quatro modelos ajustados aos dados diarios: GFBM-CIR,
GFBM-CONST, GOUFE-CIR e GOUFE-CONST.

Figura 4: Gréafico de Dispersao dos Residuos Padronizados por Modelo
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De acordo com a Figura 4, observa-se que nos quatro modelos a dispersdo dos
residuos nao e constante ao longo da faixa de precos observados. Assim, para precos
mais baixos (aproximadamente abaixo de US$ 25.000), os residuos concentram-se mais
préximos de zero, indicando erros menores. Contudo, a medida que o preco aumenta, a
variabilidade dos residuos tambem cresce consideravelmente, formando um padrdo que se
assemelha a um cone ou leque.

Este comportamento evidencia a presenca de heterocedasticidade, ou seja, a
variancia dos erros do modelo nao e homogenea, sendo maior para niveis de preco mais
elevados. Dessa forma, os erros de previsdao dos modelos tende a aumentar conforme o
preco do Bitcoin se eleva.

Para um visao ainda mais clara acerca da distribuicdo dos residuos, dispde-se 0s
graficos QQ-Plot dos residuos, comparando os quantis da distribuicao dos residuos com
0s quantis de uma distribuicao normal padrédo N (0, 1).

Figura 5: Grafico QQ-Plot dos Residuos Padronizados por Modelo

-2 0 2 -2 0 2
Quantis Tedricos N(0,1)

De acordo com a Figura 5, os quatros modelos possuem desvios significativos da
linha de referencia, com uma grande quantidade de outliers e caldas pesadas, sugerindo
que os residuos nao seguem distribuicdo normal.

Esse comportamento de caudas pesadas significa que, em certos momentos, 0s
erros de previsao podem ser muito maiores do que indicam medidas como RMSE ou
MAE, que se baseiam em valores medios. Para medir melhor o risco associado a esses
eventos uitiliza-se o Expected Shortfall (ES), tambem chamado de Deficit Esperado. O
ES1-a mensura a perda media esperada nos piores a% dos cenirios.
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A Tabela a seguir exibe os valores do Deficit Esperado calculados a um nivel de
confianca de 95% (ES95) para cada modelo ajustado.

Tabela 10: Deficit Esperado por Modelo a um nivel de confianca de 95%.

Modelo Deficit Esperado (ESg5)
GOUFE-CIR -2.764,197
GOUFE-CONST -3.020,207
GFBM-CIR -3.070,517
GFBM-CONST -3.212,101

Analisando os resultados da Tabela 10, conclui-se que o modelo GOUFE-CIR
apresentou o menor deficit esperado (US$-2.764,197),considerendo as perdas medias nos
5% piores cenirios. Em seguida, aparecem os modelos GOUFE-CONST (US$-3.020,207)
e GFBM-CIR (US$-3.070,517), com valores bem semelhantes.

Alem disso, o0 modelo GFBM-CONST registrou o maior deficit esperado (US$-
3.212,101), sendo o modelo menos conservador.

3.2.2 Teste de Normalidade e Autocorrelacao dos residuos

Para confirmar formalmente a hipdtese de normalidade sugerida na analise da
Figura 5, aplicou-se o teste de Shapiro Wilk, cuja hipiteses nula (H0) e de que os dados
seguem uma distribuigcbao normal.

Tabela 11: Teste de Shapiro-Wilk nos Residuos Padronizados por Modelo

Modelo w p-valor

GFBM-CONST 0,8615 2,86 x 10-40
GOUFE-CIR 0,8605 2,24 x 10-40
GFBM-CIR 0,8597 1,87 x 10-40
GOUFE-CONST 10,8593 1,70 x 10-40

Conforme a Tabela 11, os p-valores obtidos nos quatro modelos sao extremamente
baixos, levando a rejeicbo da hipotese nula de normalidade em todos os casos, ou seja, a
qualquer nivel de significancia usual.

Para avaliar se ha presenca de autocorrelacao nos residuos dos modelos ajustados,
apresenta-se o grafico da Func6o de Autocorrelaco (ACF) que exibe as autocorrelacbes
estimadas dos residuos para diferentes defasagens (lags), para cada um dos quatro mo-
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delos. Nesse sentido, as linhas tracejadas azuis representam os limites de significancia
aproximados (geralmente 1.96/N, onde N e o numero de observacdes). Dessa forma, as
barras que ultrapassam esses limites indicam autocorrelagcodes estatisticamente significati-
vas naquela defasagem especifica.

Figura 6: Grafico ACF dos Residuos por Modelo

Lag

Na Figura 6, e notorio que para todos os quatro modelos existem algumas barras
gue excedem os limites de significAancia. Isso sugere, preliminarmente, que pode haver
alguma estrutura de autocorrelagcdao nado capturada pelos modelos nos residuos.

Para uma avaliacao formal e global da presenga de autocorrelacao, utiliza-se o
teste de Ljung-Box, cuja hipitese nula (H0) e de que as autocorrelacoes dos residuos ate
uma determinada defasagem sao conjuntamente iguais a zero, ou seja, 0s residuos sao
independentes.

Nesse sentido, de acordo com Burns (2002) a escolha da defasagem ndo deve exce-
der 5% do tamanho da amostra Dessa forma, para o estudo em questado, foi utilizado uma
defasegem de 60 dias, que esta dentro do limite maximo estabelecido (109). Diante disso,
a tabela a seguir mostra os valores da estatistica de teste e os p-valores correspondentes
para cada modelo.
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Tabela 12: Teste de Ljung-Box nos Residuos Padronizados (lag=60)

Modelo Estatistica DF p-valor

GFBM-CIR 160,651 60 4,65 X 10- 1
GFBM-CONST 160,8942 60 3,67 X 10-1
GOUFE-CONST 1612322 60 329 X 10-
GOUFE-CIR 1756447 60 2,80 X 10- B

Portanto, fica evidente na Tabela 12 que em todos os quatros modelos a hipotese
nula (HO) foi fortemente rejeitada, pois os p-valores sdo significativamente inferiores a
qualquer novel de significancia convencional. Desse modo, ha dependencia dos reséduos
para uma defasagem de 60 dias, o que confirma a suspeita inicial de que essses modelos
possuem dependencia temporal de longo prazo.

3.3 Resultados do modelo ACD para dados intradiarios

A escolha do pardametro de diferengca de pre¢ccos no modelo ACD & fundamental
para determinar quais variagcdoes de precco devem ser consideradas significativas para a
geragao das duragoes (intervalos entre mudancas significativas no preco). Nesse sentido,
se o limite for muito pequeno, o modelo pode capturar muitos ruédos, aumentando ex-
cessivamente o nomero de duragoes. Por outro lado, se for muito grande, pode acabar
ignorando movimentos importantes do mercado.

Assim, foram realizados testes variando o preco entre 0,05% , 0,075%, 0,10% e
0,15% do preco medio do Bitcoin no dia 20/01/2025 para avaliar o impacto na distribuicao
das duracoes. Nesse contexto, a Figura e a Tabela a seguir, apresentam os resultados
obtidos.
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Figura 7: Boxplot da duracdo pela diferenga do preco relativo

Diferenca de Pre¢o Relativo (%)

Tabela 13: Resultados da sensibilidade da diferenca de precos relativos

E statistica 0,05% 0,075% 0,10% 0,15%

N° de Duragdes  8.893 4.983 3.114 1.579

Minimo 1 1 1 1
1° Quartil (Q1) 1 2 3 6
Mediana 4 7 10 21
Media 9,31 16,61 26,58 52,44
3° Quartil (Q3) 1 19 31 61
Maximo 234 362 639 980

Desvio Padrado 14,52 26,54 45,04 86,94

De acordo com a Figura 7 e a Tabela 13, para uma diferenca de pregos de 0,05%
obteve-se 8.893 duragdes, uma mediana de 4 segundos e primeiro quartil igual a 1 segundo,
sendo sensivel a pequenas oscilagBes de preco.

Por outro lado, aumentar o limite para 0,15% reduziu drasticamente o numero
de duragoes (1.579), aumentando a mediana para 21 segundos e o terceiro quartil para 61
segundos. Alem disso, o limite de 0,10% possui uma boa quantidade de duracfes (3.114),
tendo uma mediana de 10 segundos, evitando um excesso de eventos curtos e uma perda
de movimentos relevantes.

Com base nesses resultados, foram adotados para o restante do estudo, um limite
de 0,10% que representa transacdes em torno de US$ 104,74 ddlares.
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3.3.1 Analise das duragfes ao longo do tempo

Para entender a variacdo da frequéncia dos eventos ao longo do dia foram feitas
as analises das duracdes. Dessa forma, em modelos ACD, as dura¢des mais curtas indicam
periodos de maior atividade de mercado, enquanto duragcoes mais longas podem sinalizar
momentos de menor liquidez ou de baixa volatilidade.

Com base nisso, a Figura abaixo apresenta a evolugao das duracoes durante o
dia, destacando os periodos de maior e menor intensidade das variacoes de preco.

Figura 8: Evolucdo das duragdes ao longo do dia (Brasil)
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A partir da Figura 8, conclui-se que ha uma variacao significativa nas duracoes
ao longo do tempo, onde os picos mais elevados de dura¢des ocorrem em horarios como
3h, 7h, 9h e 19h, indicando que nesses horérios o preco ficou estavel por um periodo de
mais de 6 minutos.

Para capturar os padrbes diurnos das durac6es, aplicamos um metodo de sua-
vizac6o conhecido como Super Smoother proposto por Friedman (1984). Esse metodo
permite identificar tendencias de longo prazo na variagbo das duracoes ao longo do dia.
Nesse sentido, apresenta a Figura abaixo:
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Figura 9: Padrao diurno das duracGes estimado pelo método ”Super Smoother”.

Diurnal pattern estimated by "super smoother"
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time of the day

A partir da Figura 9, nota-se padrdo intradiario ciclico nas duracdes entre eventos,
com oscilagcdes que refletem variagdes na atividade do mercado. Inicialmente, observa-se
duragbes elevadas, seguidas de uma queda acentuada por volta de 5h, sugerindo um
aumento na frequencia dos eventos com o inicio da sessdo de negociacao.

Alem disso, entre as 5h e 15h ha sucessivos picos e vales, indicando periodos de
alta e baixa volatilidade, possivelmente influenciados por janelas de liquidez e sobreposicao
de mercados. J& no final do dia (ap6s as 15h) as duragdes voltam a subir, propondo uma
reducgbao na atividade do mercado.

Figura 10: Histograma das duragoes ajustadas.

Duracéo Ajustada

Analisando a Figura 10, fica evidente que a maioria das duracdes ajustadas Xt~
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esta concentrada em valores préximos de zero, indicando que a maioria das transagfes
ocorre em intervalos muito curtos. A frequencia diminui gradualmente conforme as
duragoes aumentam ate aproximadamente 2, mas existe uma pequena parcela de ob-
servacOes que se distribui em valores superiores a 5, com registros isolados acima de 15.

Essa distribuicao assimetrica, com uma cauda longa a direita, revela que, mesmo
apos remover o efeito do horario do dia, persistem intervalos esporadicos maiores entre
transacgoes.

A Tabela a seguir fornece informacGes sobre a centralidade, dispersdo e forma da
distribuicao, auxiliando na modelagem do processo subjacente e na escolha dos pardmetros
do modelo ACD.

Tabela 14: Estatisticas Descritivas das duracdes Ajustadas

Estatistica Valor
Minimo 0,012
Mediana 0,704
Media 1,055
Maximo 15,506
Desvio Padrao 1,168
Coeficiente de Variacao (%) 110,618
Coeficiente de Assimetria (Skewness) 3,877
Coeficiente de Curtose (Kurtosis) 26,698
Amplitude 15,494

Os resultados da Tabela 14 indicam que a distribuicdo das duracGes ajustadas
apresenta uma forte assimetria a direita (3.877), o que significa que ha uma maior concen-
tracao de duragoes curtas, mas com a presenca de algumas duracdes longas. Alem disso,
o0 alto valor do coeficiente de curtose (26,698) sugere que a distribuicao possui caudas lon-
gas, indicando a presenca de valores extremos mais frequentes do que em uma distribuicao
normal.

Ademais, a media das duracoes ajustadas e 1,055 segundos, enquanto a mediana
e 0,704 segundos, evidenciando que a maioria das duracoes tende a ser menor que a
media, devido a assimetria da distribui¢cao. O coeficiente de variacao, de aproximadamente
110,62%, demonstra uma grande dispersao relativa dos dados em relacao a media.
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3.3.2 Analise de Ajuste do Modelos para as duracgdes

Para avaliar qual dos modelos (Exponencial, Weibull e Gamma Generalizado)
teve o melhor ajuste, foram estimados os parametros do ACD(1,1). Desssa foma, os
resultados sao apresentados nas Tabelas a sequir.

Tabela 15: Parametros Estimados do Modelo Exponencial ACD(1,1)

Parametro Estimativa Erro Padrao P-valor

u 0,0405 0,00519 0,000
al 0,1063 0,01184 0,000
0,9626 0,01004 0,000

Tabela 16: Pardmetros Estimados do Modelo Weibull ACD(1,1)

Parametro Estimativa Erro Padrao P-valor

u 0,0402 0,00440 0,000
al 0,1035 0,00989 0,000
o1 0,9655 0,00821 0,000
v 1,1722 0,01528 0,000

Tabela 17: Parametros Estimados do Modelo Generalized Gamma ACD(1,1)

Parametro Estimativa Erro Padrao P-valor

u 0,0469 0,00557 0,000
al 0,1226 0,01194 0,000
01 0,9473 0,01107 0,000
K 20,7112 8,20236 0,016
Y 0,2464 0,04950 0,000

De acordo com as Tabelas 15, 16 e 17, observa-se que, nos trés modelos, os
pardmetros ale 01sao estatisticamente significativos (valor-p = 0,000), o que indica uma
forte influencia das duracoes passadas na duracao atual e uma alta persisréncia temporal
da volatilidade das duragdes.

No modelo Exponencial, os pardmetros estimados 01 = 0,9626 e u = 0, 0405
evidenciam que a componente autorregressiva condicional explica a maior parte da vari-
abilidade das duracoes, refletindo a persisréncia observada nos dados. A soma de ale 01
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proxima de 1 (0,1063 + 0,9626 = 1,0689) sugere uma persistencia elevada.

O modelo Weibull, por sua vez, apresenta estimativas de al = 0,1035 e "1
0,9655, que tambem demonstram a significativa dependencia temporal e persistencia. A

inclusao do parametro de forma y = 1,1722, que e altamente significativo (valor-p
0,000), permite ao modelo Weibull capturar assimetrias e curtoses nas duracgBoes que 0
modelo Exponencial, com seu parametro de forma fixo em 1, nao consegue. Um valor de
Y > 1indica que a distribuicao das duracoes e mais concentrada em torno da media e
possui caudas mais pesadas do que a distribuiccfao exponencial.

J& no modelo Gamma Generalizado, os parametros al= 0,1226 e *1= 0,9473
mantem a dependencia temporal e a persistencia. Alem disso, a inclusao dos parametros
k = 20,7112 e y = 0, 2464 (ambos significativos) permitem ajustar assimetria e curtose
adicionais nas duragcoes

Nesse sentido, para ter uma analise mais precisa acerca do ajuste dos modelos,
dispboe-se a tabela a seguir.

Tabela 18: Metricas de Ajuste dos Modelos ACD(1,1)

Modelo Log-verossimilhanca AlC BIC MSE
Exponencial -3.102,44 6.210,88 6.229,01 11,2376
Weibull -3.034,89 6.077,78 6.101,95 11,2377
Gamma Generalizado -2.885,06 5.780,13 5.810,35 11,2381

A partir dos resultados da Tabela 18, conclui-se que em termos de log-verossimilhancga,

o0 modelo Gamma Generalizado (-2.885,06) apresenta o maior valor, superando tanto o
modelo Weibull (-3.034,89) quanto o Exponencial (-3.102,44). lIsso sugere que o modelo
Gamma Generalizado e o que melhor captura a distribuicao das duracoes observadas.
Essa analise e corroborada pelos criterios de informacao de Akaike (AIC) e Bayesiano
(BIC), onde o modelo Gamma Generalizado apresenta penalizagGes mais baixas (AIC e
BIC inferiores), o que sugere maior eficiencia no equilibrio entre qualidade do ajuste e
complexidade do modelo.

No que tange ao Erro Quadratico Medio (MSE), observa-se que todos os modelos
apresentam valores muito praximos. Essa pequena variacao entre eles indica que, apesar
das diferencas no ajuste (conforme log-verossimilhanca, AIC e BIC), a capacidade predi-
tiva dos modelos e similar. Desse modo, a maior flexibilidade e o melhor ajuste alcancados
por modelos como o Gamma Generalizado nado implicam em uma redugcBao significativa do
erro de previsao, mantendo a performance preditiva em patamares similares.

Por fim, para verificar se os residuos dos modelos (Exponencial, Weibull e Gamma
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Generalizado) ACD(1,1) seguem uma distribuicdo exponencial padrdo Exp(1), apresenta-
se o grafico a seguir.

Figura 11: QQ plot dos residuos de Cox-Snell dos Modelos.

Quantis Exp(1)

Analisando a Figura 11, constata-que, no modelo Exponencial, observa-se um
desvio significativo dos pontos em relagao a reta de referencia, especialmente nos quantis
superiores. Esse comportamento indica que o modelo Exponencial subestima as duracdes
extremas, falhando em capturar adequadamente a cauda da distribuic6o dos dados.

O modelo Weibull, por sua vez, tambem apresenta um desvio maior na reta de
referencia, especialmente nos quantis superiores, se comparado ao modelo Exponencial.
Isso sugere que, apesar de sua flexibilidade adicional, o modelo Weibull ainda n6o consegue
capturar de forma satisfatéria a distribuicbo das duracoes extremas, indicando que a
distribuicao exponencial se ajusta melhor que a Weibull.

Por fim, o modelo Gamma Generalizado exibe os pontos mais proximos a reta
de referencia em toda a extensdo do grafico. Essa proximidade indica uma excelente
conformidade dos residuos padronizados com a distribuicdo Exp(1l), sinalizando que o
modelo Gamma Generalizado &0 que melhor captura a heterocedasticidade, a assimetria
e a curtose presentes nas duracdes ajustadas. Portanto, em termos de ajuste dos residuos,
0 modelo Gamma Generalizado se destaca como o mais adequado, seguido pelo modelo
Exponencial e, por uiltimo, pelo modelo Weibull.

A Tabela a seqguir exibe os valores do Expected Shortfall (ES) ou Deficit Esperado,
calculados a um nivel de confianca de 95% (ES9), que corresponde a media dos 5 %
maiores residuos normalizados (cauda da distribuicdo) para cada modelo ajustado.
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Tabela 19: Deficit Esperado por Modelo a um nivel de confianca de 95%.

Modelo Deficit Esperado (ES9)
Gamma Generalizado 3,975315
Exponencial 4,075854
Weibull 4,881840

Conforme Tabela 19,0bserva-se que o modelo Gamma Generalizado obteve ESg5%
igual a 3,9753, valor inferior ao ES9%% do modelo Exponencial (4,0759) e do modelo
Weibull (4,882). Esse resultado indica que o ajuste do modelo Gamma Generalizado e

mais aderente ao comportamento esperado de uma Exp(1).

Para verificar se ha de autocorrelacao nos residuos de Cox-Snell obtidos pelos
modelos ACD, dispoe-se a Figura 12 e teste de Ljung-Box (Tabela 20), onde a hipdtese
nula (HO) assume que ndo ha autocorrelagao ate a defasagem k.

Figura 12: Grafico ACF dos Residuos Cox-Snell por Modelo (lag = 35)

Lag

Tabela 20: Resultados do teste de Ljung-Box para residuos de Cox-Snell (lag = 35)

Modelo Estatistica DF P-valor

Gamma Generalizado 35,16990 33 0,3657253
Exponencial 36,02138 33 0,3289920
Weibull 41,00386 33 0,1596591

Analisando a Tabela 20, conclui-se que para um nivel de significancia de 5%,
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a hipétese nula de que os residuos sao ruido branco nao e rejeitada para nenhum dos
modelos, uma vez que todos os p-valores s6o superiores a 0,05. Dessa forma, os trés
modelos conseguem capturar a dependencia temporal presente nas duracoes, resultando
em residuos que se comportam como ruido branco, ou seja, os residuos sao independentes.

A Figura 12 corrobora com essa analise, visto que a maioria dos coeficientes
de autocorrelagao se encontra dentro das bandas de confianca (linhas tracejadas azuis),
indicando a ausencia de autocorrelacdo significativa em qualquer defasagem para os trés
modelos. Embora existam alguns poucos picos que ultrapassam as bandas em defasagens
especificas, o teste de Ljung-Box, que considera a autocorrelacdo conjunta, indica que
esses desvios pontuais nao sdo estatisticamente significativos para rejeitar a hipotese de
ruido branco.
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4 Conclusao

Este trabalho dedicou-se a modelagem estocastica dos precos do Bitcoin, abor-
dando tanto a dindmica diiria quanto a intradiiria, com o objetivo de capturar carac-
teristicas complexas como memoria longa, volatilidade estocastica e padrbes de duracao
entre transaccOoes. Buscou-se propor e avaliar modelos baseados em EDEs dirigidas pelo
fBm para os dados diarios, e modelos ACD para a analise intradiaria.

Na analise diiria, foram comparados modelos GFBM e GOUFE, com especi-
ficacBes de volatilidade constante e estocistica (CIR). A avaliacdo, baseada em metricas
de erro (Tabela 7), criterios de informagao (Tabela 8) e analise de risco (Tabelal0), in-
dicaram que os modelos com volatilidade estocistica (GOUFE-CIR e GFBM-CIR) apre-
sentaram melhor ajuste segundo os criterios AIC e BIC, sugerindo que a incorporacao
da dinamica da volatilidade e relevante. Em termos de erro de previsao (RMSE, MAE,
MAPE), os resultados foram muito préximos entre os quatro modelos, tendo o modelo
GFBM-CIR como o melhor. Contudo, sob a perspectiva dos criterios de informacdo, o
modelo GOUFE-CIR apresentou o melhor equilibrio entre ajuste e complexidade, sendo
0 mais eficiente em termos de parciménia. Alem disso, o0 modelo GOUFE-CIR tambem
teve o menor deficit esperado (US$-2.764,197) (Tabela 10).

A analise dos residuos (Figuras 3-6, Tabelas 7, 9, 10), no entanto, revelou a pre-
senca de heterocedasticidade (variancia crescente com o preco, Figura 4) e forte rejeic6o
da hipotese de normalidade (Teste de Shapiro-Wilk, Tabela 11) para todos os modelos.
Embora a autocorrelacao tenha sido mitigada (Teste de Ljung-Box, Tabela 12), esses re-
sultados sugerem que, apesar dos avancos, os modelos ainda nao capturam completamente
toda a complexidade da distribuicdo dos retornos diarios do Bitcoin.

Ja anilise intradiaria, os modelos ACD Exponencial, Weibull e Gamma Gene-
ralizado foram aplicados as duraces entre transacoes, apos ajuste para padrdes diurnos
(Figuras 8-10). Nesse sentido, os resultados (Tabelas 13-17) demonstraram a capacidade
dos modelos ACD em capturar o agrupamento das duracoes. Diante disso, a anilise dos
residuos de Cox-Snell (Figura 11 e Tabela 19) indicaram um melhor ajuste do modelo
Gamma Generalizado e menor deficit esperado, em comparacao aos modelo Exponencial
e Weibull.

As principais contribuiccBoes deste trabalho residem na aplicagcdao e comparagcado de
modelos estocasticos avangados (GFBM, GOUFE com volatilidade estocastica) a serie de
precos diirios do Bitcoin, e na exploracao dos modelos ACD para a dinamica intradiaria
deste ativo. A anilise conjunta em diferentes escalas temporais oferece uma perspectiva
mais completa sobre o comportamento complexo do Bitcoin, confirmando a presenca de
memoria longa e a relevancia da volatilidade estocistica na escala diaria, e 0 agrupamento
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de duracoes na escala intradiaria.
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