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Resum o

Este estudo investiga a sustentabilidade de aplicações em aprendizado profundo, 

com enfase na eficiencia computacional e especializacao de modelos, explorando a arquite­

tu ra  Transformer e tecnicas de otimizacao para aprimorar sua eficiencia e adaptabilidade, 

tornando essas tecnologias mais acessíveis e alinhadas as necessidades humanas e ambi­

entais. Destaca-se a im portancia de um ecossistema flexível, no qual modelos podem ser 

treinados, otimizados e compartilhados de forma sustentavel. Para isso, realizou-se um 

estudo de caso sobre a triagem de artigos relevantes, utilizando apenas oito exemplos 

por classe em 22 bases de dados de revisoes sistematicas da literatura. Foram avaliadas 

tecnicas de otimizacao, como poda, quantizacao e c o m p o s to  eficiente de habilidades 

ajustadas, aplicadas ao ajuste fino do modelo Transformer SPECTER, empregado para 

a representacõo semantica de trechos de textos científicos. O desempenho foi mensurado 

pela metrica quantitativa de trabalho salvo. Os desafios identificados ressaltam  a necessi­

dade de explorar novos regimes de treinam ento para aprimorar a adaptabilidade dos mo­

delos e desenvolver estrategias para m ensurar o impacto ambiental do uso contínuo dessas 

tecnologias. Alem disso, discute-se o papel da eficiencia computacional na promocao de 

avanços científicos, otimizando pipelines de uso contínuo para prototipagem  de soluçoes e 

integracõo de conhecimento interdisciplinar de soluçoes baseadas em revisões sistematicas 

da literatura.

Palavras-chave: aprendizado profundo. sustentabilidade. eficiencia computacio­

nal. Transformer. otimizacao de modelos. representacao semantica. revisõo sistematica.
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8 Introdução

1 Introdução  j»

1.1 C ontextualização

Em um momento em que a conscientizacao sobre as mudanças climáticas e a 

necessidade de reduzir as emissoes de gases de efeito estufa estao no centro das discussões 

globais, e crucial desenvolver estrategias que reduzam o impacto ambiental. Com algorit­

mos cada vez mais avançados e um poder computacional crescente, modelos de inteligencia 

artificial (IA) tem  se revelado um a ferramenta poderosa em alcancar feitos impressionan­

tes, seja na previsao de estruturas proteicas para o desenvolvimento de remedios ou ate 

metodos computacionais basicos como multiplicacões matriciais mais eficientes, revoluci­

onando diversas descobertas em áreas de pesquisa e aplicacoes (JUM PER et al., 2021; 

FAWZI et al., 2022). Mas a medida que a IA se torna mais presente em nosso cotidi­

ano, surgem preocupações sobre regulamentacoes adequadas, governanca etica, eficiencia 

energetica e sustentabilidade no desenvolvimento de aplicaçoes baseadas em IA.

Ao longo dos anos, as redes neurais profundas tem  desempenhado um papel fun­

damental como modelos básicos, dotados de habilidades específicas, e tem  contribuído 

para a criacao de um ecossistema que viabiliza a construcao de modelos mais complexos 

por meio da modulacao desses modelos. Tornaram-se indispensáveis para a inteligencia 

artificial (IA) moderna. No entanto, tais modelos demandam uma quantidade significa­

tiva de recursos computacionais, requerendo no mánimo trilhoes de operaçoes de ponto 

flutuante (FLOPs) para seu treinam ento e utilizaçao em tarefas de inferência (ROSER; 

RITCHIE; MATHIEU, 2023). O uso de GPUs (Unidades de Processamento Grafico) tem 

sido crucial para acelerar tanto  o treinamento quanto a inferência desses modelos de IA, 

devido a capacidade desses dispositivos de realizar calculos intensivos de forma paralela, 

atingindo grandes quantidades de FLOPs.

O uso destas GPUs desperta a preocupacoes quanto ao consumo de energia e 

emissõoes de CO2 no qual mediçcõoes precisas áe um a tarefa desafiadora devido a fatores 

como a infraestrutura eletrica local, hardware utilizado, tornando a comparaçao entre 

as pesquisas desses modelos difáceis (PATTERSON et a l., 2021; STRUBELL; GANESH; 

MCCALLUM, 2019; DODGE et a l., 2022). Um estudo publicado em 2022 (LUCCIONI; 

VIGUIER; LIGOZAT, 2022) estimou que o treinam ento do modelo GPT-3 (BROWN et 

a l., 2020) de 175 bilhões de parâm etros gerou aproximadamente 552 toneladas de emissoes 

de CO2, equivalente a quase dez vezes a vida util de um carro medio. O processo em 

questao ocorreu ao longo de aproximadamente 15 dias, empregando 10.000 GPUs V100 e
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envolvendo um a quantidade significativa de energia e calculos de ponto flutuante (FLOPs). 

Estima-se que tenham  sido consumidos cerca de 1,285 MWh de energia, juntam ente com 

um to tal de 3,14 x 1023 FLOPs, nao levando em conta a busca por hiperparametros 

e variacoes de tam anho do modelo. Tambem neste estudo, verificou-se que o modelo 

BLOOM (WORKSHOP et al., 2023) conseguiu gerar 10 vezes menos toneladas de CO2 em 

comparacao ao GPT-3. Esse resultado impressionante foi alcancado ao treinar o modelo 

por 118 dias, utilizando servidores com recursos inteligentes de economia de energia e o 

uso de energia renovóvel, mais precisamente energia nuclear. Essa escolha consciente de 

treinam ento ajudou a minimizar consideravelmente o impacto ambiental do treinamento 

do modelo, resultando em um a pegada de carbono substancialmente menor.

Mesmo que seja relativamente substancial as emissõoes de carbono do treino de 

modelos de fundacao proveniente de GPUs, como no exemplo para o G PT e BLOOM, 

um a iniciativa financiada pela National Science Foundation (NSF) do EUA, demonstra 

que para estes mesmos modelos, ao comparar um escritor humano que utiliza desktop ou 

laptops contra IAs geradoras de texto usada em escala, produzem 130 a 1400 vezes menos 

CO2 por um a pagina escrita. Este mesmo estudo tambem faz referencia a IA geradora de 

imagens em escala que resulta em 310 a 2900 vezes menos CO2 por imagem criada. Assim, 

este estudo demonstra que para concretizar o potencial transform ador de tecnologias 

baseadas na IA moderna, existe a necessidade de desenvolver novas narrativas culturais 

e tecnológicas em escala para que se alinhem em um futuro sustentavel juntam ente com 

o desenvolvimento de novas abordagem de energia limpa (TOMLINSON et al., 2023; 

TOMLINSON; TORRANCE; R IPP L E , 2023).

1.2 M otivacao  
_»

Uma potencial aplicacao de IA se baseia em modelos de fundacao em linguagem 

natural de grande porte (Large Language Models - LLMs) como um componente basico na 

construçõo de softwares generalizaveis e adaptóveis. A escolha destes modelos se justifica 

pela interpretabilidade e riqueza da linguagem hum ana em descrever tarefas complexas e 

abstratas por meio das palavras ou programas, facilitando a comunicaçcõao do usuóario entre 

diversas aplicaçcõoes sob a mesma interface no qual o LLM atua como orquestrador. Alguns 

estudos tem  demonstrado que estes modelos tem  fortes habilidades em adaptaçao para a 

inicializacao em diversos domínios, dentre os quais implementacoes como no controle de 

tomadas de decisoes de tarefas roboticas em sistemas físicos ou virtuais (BROHAN et a l., 

2023; DING et al., 2023; XIE et al., 2023b). Dessa forma, essas aplicações potencializam a
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criacao de Agentes de Inteligencia Artificial que se aproximam cada vez mais da chamada 

Inteligencia Artificial Geral (Artificial General Intelligence - AGI), promovendo avancos 

significativos em varias areas de pesquisa e de aplicacao.

A compreensõao profunda das representaçcõoes da linguagem hum ana por esses mo­

delos emerge como um fator essencial para impulsionar o desenvolvimento de sistemas de 

IA mais avancados. Nesse contexto, o GPT-4 da OpenAI (OPENAI, 2023) demonstra ha­

bilidades impressionantes, comparáveis as humanas em jogos interpretativos, incluindo a 

teoria da mente. Essa teoria avalia a capacidade do ser humano de atribuir representacçõoes 

independentes a si mesmo e aos outros, o que implica na habilidade de compreender e 

atribuir estados mentais, como crencas, emocões e intencões. Essa capacidade, por sua 

vez, contribui para a previsao de comportamentos sociais mais complexos (GANDHI et 

a l., 2023; BUBECK et al., 2023).

No entanto, a medida que os sistemas baseados em inteligencia artificial (IA) 

ganham espaco, com os LLMs atuando como os orquestradores entre a tarefa e o usuario, 

surge um desafio: o aumento das interações necessarias para produzir um a resposta de­

sejada. Isso pode ocorrer por meio de scripts complexos ou chamadas a outros modelos, 

muitas vezes de maneira recursiva, com o objetivo de adquirir novas capacidades para 

a execuçao de um a tarefa (PACKER et a l., 2023; SHEN et al., 2023; XI et a l., 2023b). 

Diante desse cenírio, tornou-se crucial explorar estrategias de otimizacõo para minimizar 

tanto  a quantidade de operacoes de ponto flutuante (FLOPs) quanto as emissoes de CO2 

associadas, visando à escalabilidade desses sistemas. Essa abordagem e essencial desde 

dispositivos cotidianos ate servidores especializados, promovendo a sustentabilidade e, 

consequentemente, impulsionando um a revolucao tecnológica.

Ao enfrentarmos os desafios da sustentabilidade na era da IA, íe essencial garantir 

que os avancos dessa tecnologia sejam utilizados de forma responsível. A implementacao 

de regulamentações adequadas e a adoçao de uma governanca etica sõo fundamentais 

para assegurar que os benefícios da IA sejam acessíveis a todos. Este trabalho propoe 

um a abordagem mais sustentavel para o desenvolvimento de sistemas de IA avancados, 

aplicando míetodos de otimizaçcõao em redes neurais profundas para reduzir o consumo de 

recursos computacionais e mitigar os impactos ambientais, promovendo a disseminaçcõao 

responsavel dessa tecnologia emergente e gerando benefícios para a sociedade. Dessa 

forma, busca-se maximizar as capacidades dos modelos de IA disponíveis, equilibrando 

inovaçcõao com preocupaçcõoes ambientais e sociais.
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1.3 O bjetivos do Trabalho

Este trabalho tem  como objetivo central investigar e avaliar tecnicas de oti- 

mizaçao e aprimoramento de modelos de aprendizado profundo para a sustentabilidade 

de ecossistemas de aplicações energeticamente eficientes, com enfase no estudo de caso da 

triagem autom atizada de documentos científicos relevantes em revisões sistematicas da 

literatura. O intuito e fornecer suporte a avancos tecnológicos e científicos que atendam  

as necessidades da sociedade de m aneira eficaz e responsavel.

1.3.1 O b je tiv o s  E specíficos

• E s tu d a r  te cn ica s  d e  a p re n d iz a d o  p ro fu n d o  e m o d e lo s  T ran sfo rm ers : Ex­

plorar os fundamentos do aprendizado profundo, redes neurais artificiais e o fun­

cionamento do mecanismo de atencçõao, incluindo modelos baseados na arquitetura 

Transformer, como o modelo SPECTER na representaçao semântica de textos de 

científicos.

•  E s tu d a r  as p rin c ip a is  te cn ica s  de  o tim izacao : Explorar os fundamentos das 

tecnicas de otimizaçao aplicadas a modelos de aprendizado profundo.

• In v e s tig a r  e s tra te g ia s  de  tre in a m e n to  efic ien tes  p a ra  m o d e lo s  de  base:

Examinar abordagens de pré-treinamento e ajuste fino, buscando um desempenho 

sustentavel e eficaz no treinam ento de modelos de base.

• A v a lia r o d e se m p e n h o  e a  efic ienc ia  c o m p u ta c io n a l do  m od e lo  de  b ase  com  

te cn ica s  de  o tim ização  n a  tr ia g e m  efic ien te  de  d o c u m e n to s  cien tíficos:

Avaliar o impacto das tecnicas de otimizacao na eficiencia computacional e na 

reducao do esforço necessario para a triagem autom atizada de documentos científicos 

relevantes em revisões sistematicas da literatura. Aplicar a análise a 22 bancos de 

dados para verificar a viabilidade dessas otimizacoes, considerando um numero li­

mitado de exemplos de treino.

• D isc u tir  re su lta d o s , su s te n ta b il id a d e  e d ire ç ãe s  fu tu ra s  p a ra  p e sq u isa s  

b a se a d a s  em  a p re n d iz a d o  p ro fu n d o : Identificar desafios, limitacoes e possíveis 

melhorias na abordagem de otimizacao utilizada. Alem disso, discutir a susten- 

tabilidade de ecossistemas de aplicaçcõoes baseadas em aprendizado profundo e seu 

impacto no avançco científico.
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2 Fundam entação Teóricaj»

2.1 A prendizado de M áquina

O aprendizado de móquina e um paradigm a de treinamento que perm ite que 

modelos aprendam a representacao de dados para realizar tarefas específicas. Esse campo e 

dividido em varias areas de pesquisa, das quais as principais são categorizadas da seguinte 

forma:

• A p re n d iz a g e m  S u p e rv is io n a d a : Neste tipo de aprendizagem, o modelo e trei­

nado com um conjunto de dados rotulados, onde a resposta desejada e conhecida. 

O objetivo e ensinar o modelo a m apear os dados de entrada para as saídas corres­

pondentes. Por exemplo, na classificacão de e-mails, os textos dos e-mails servem 

como entrada do modelo, e a saída esperada e classificó-los como “spam” ou “não 

spam” .

• A p re n d iz a g e m  N ao  S u p e rv is io n a d a : Neste tipo de aprendizagem, o modelo e 

treinado com dados nao rotulados e busca descobrir padrões, estruturas ou agru­

pamentos por conta propria. Tecnicas como t-SNE  sao usadas para reduzir a di- 

mensionalidade dos dados e visualizar como diferentes amostras se organizam no 

espaco, revelando agrupamentos naturais mesmo sem categorias definidas previa­

mente (MAATEN; HINTON, 2008).

• A p re n d iz a g e m  A u to -S u p e rv is io n a d a : Aqui, o modelo recebe dados de treina­

mento nãao rotulados e ten ta  identificar estruturas, padrãoes ou agrupamentos nos 

dados. Os rotulos podem ser os próprios dados de entrada ou partes deles. Por 

exemplo, o modelo pode receber um texto com algumas palavras faltando, como na 

frase: “O Aprendizado de [x] e essencial para dar representacoes ao modelo” , onde 

a saída esperada em [x] seria a palavra “M aquina” .

• A p re n d iz a g e m  de  R efo rco : Nesse cenório, o modelo interage com um ambiente 

e tom a acães para maximizar um a recompensa cumulativa. O objetivo e aprender 

um a política que guie as açoes para otimizar as recompensas ao longo do tempo. 

Exemplo: Treinar um modelo para jogar xadrez, onde as açcãoes corretas resultam  em 

vitorias, e as recompensas ao longo do tra je to  da partida modelam o pensamento 

do modelo.
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• A p re n d iz a d o  C o n tra s tiv o : Tecnica utilizada no treinam ento de modelos que visa 

aproximar representacoes semelhantes e afastar as distintas no espaço vetorial. Mo­

delos como o S P E C T E R  (COHAN et al., 2020) aplicam essa abordagem ao treinar 

com pares de artigos científicos que se citam (positivos) e que nao se citam (nega­

tivos), gerando embeddings mais informativos para tarefas como recomendacao, 

predicão de citacoes e classificacao de textos.

Na fase inicial de príe-treinamento, o aprendizado auto-supervisionado permite 

que o modelo desenvolva um a compreensao autonom a das estruturas e padrães dos da­

dos. Esse conhecimento pode ser transferido para tarefas específicas por meio de ajuste 

fino (fine-tuning), em um processo conhecido como Transferencia de Aprendizado. Essa 

abordagem tem  se m ostrado fundamental na construçcãao de modelos de base, ao permi­

tir  que arquiteturas mais complexas aproveitem conhecimento prévio e sejam facilmente 

adaptadas a aplicacoes com poucos dados. Tecnicas como o aprendizado contrastivo e 

por reforço, aplicadas sobre modelos base, tem  sido essenciais para gerar representações 

mais discriminativas e informativas, impulsionando o avanco dos sistemas de inteligencia 

artificial (ROMBACH et a l., 2021; LI et a l., 2022; LI et a l., 2023; SHEN et a l., 2023; 

O PENAI, 2023).

2.2 A prendizado Profundo

No campo da Inteligencia Artificial (IA), o Aprendizado Profundo (Deep Lear- 

ning) íe um  subcampo de estudo desta íarea que se concentra na pesquisa de arquiteturas 

de modelos baseados em Redes Neurais Artificiais (RNAs) e em seu treinamento. A tu­

almente, o aprendizado profundo e um a das principais abordagens utilizadas para com­

preender padrãoes complexos como a linguagem hum ana a partir de dados de entrada. No 

entanto, à medida que estes algoritmos evoluem, o conceito de “inteligencia artificial” 

torna-se cada vez mais subjetivo a medida que as máquinas se tornam  capazes de realizar 

tarefas complexas tão bem quanto, ou ate melhor do que especialistas em determinadas 

áreas (KIELA et a l., 2021; SINGHAL et al., 2023; JUM PER et a l., 2021; ROMBACH et 

a l., 2021) .

Dado este contexto, para compreender um sistema de processamento de in- 

formacães, como a IA, consideramos três níveis de analise (M ARR, 2010):

• N ível de  T eo ria  C o m p u ta c io n a l: Corresponde ao objetivo da computacao, for­

necendo um a definicão abstrata  da tarefa.
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•  N ível de  R e p re se n ta ç ã o  e A lg o ritm o : Determina como a entrada e a saída sao 

representadas e como o algoritmo transform a a entrada em saóda.

• N ível de  H a rd w are : Refere-se a implementacõo física real do sistema.

Nesta secao, abordaremos os princípios basicos dos modelos de Redes Neurais 

Artificiais (RNAs) e seu processo de treinamento. Em seguida, exploraremos a arquite­

tu ra  Transformers, que ganhou destaque nos óltimos anos (DOSOVITSKIY et al., 2020; 

DEVLIN et a l., 2018; BROWN et a l., 2020; ROMBACH et al., 2021).

2 .2.1 R ed e s  N e u ra is  A rtif ic ia is

O trabalho pioneiro de McCulloch e P itts  (1943) representou a primeira abor­

dagem na criacõo de modelos de RNA ou simplesmente redes neurais. Seu objetivo era 

modelar as redes neurais biologicas, buscando compreender e simular processos cognitivos 

biologicos. Esse trabalho foi fundamental para a pesquisa em redes neurais, dividindo 

o campo em duas vertentes principais: uma voltada para a modelagem dos processos 

biologicos no cerebro e a outra direcionada para a aplicaçõo das redes neurais no campo 

da inteligencia artificial. Em sua essencia, as RNAs sõo, na maioria dos casos, consi­

deradas modelos nao parametricos aproximadores universais de funcoes (CSAJI et a l., 

2001). Isso implica que, ao utilizar RNAs, e viavel aproximar qualquer funcao, desde que 

os pesos adequados sejam aplicados a tarefa em questõo. Ou seja, estes modelos pos­

suem a notóvel capacidade de m apear desde funcoes simples, como um a reta, ate funcoes 

complexas, como a linguagem hum ana (DEVLIN et al., 2018; RADFORD et al., 2018).

O modelo Perceptron, proposto por Rosenblatt (1958), e um a versao aprimorada 

do primeiro modelo apresentado por McCulloch e P itts (1943). No entanto, um a de suas 

características mais marcantes e a limitaçao na resolucao de problemas mais complexos, 

como classificacoes que nao podem ser separadas linearmente. Esse desafio foi eviden­

ciado pelo famoso problema XOR, proposto por Minsky e Papert (1969) em seu livro 

Perceptrons: An Introduction to Computational Geometry. A dificuldade em resolver esse 

problema levou a um a desmotivaçao na pesquisa de redes neurais por cerca de 20 anos.

Assim, considerando x  E Rd como o dado de entrada e y E R como o dado de 

saída, o Perceptron pode ser representado por:

(1)
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Esse modelo consiste em uma unidade de processamento bósica que recebe um 

conjunto de entradas ponderadas por pesos w e aplica um a funcao de ativaçao, denotada 

por 0 (.), para produzir um a saóda.

X x1 x2 x3 h l(1) h2(1) h l(2) h2(2)

Ativação

(b)

Figura 1: Multilayer Perceptron.

O Multilayer Perceptron (MLP), proposto por Rumelhart, Hinton e Williams 

(1986), foi desenvolvido para superar essas limitacães e expandir as capacidades do Per- 

ceptron tradicional, impulsionando significativamente a pesquisa em redes neurais nas 

ultimas três decadas. Essa arquitetura e composta por varias camadas de perceptrons 

interconectados, onde cada camada recebe as saódas dos perceptrons da camada anterior 

como entrada, aplicando funcoes de ativaçao para transform ar essas informacoes.

Por exemplo, consideremos um MLP de 2 camadas com um a entrada x  E R 1xd, 

onde d e o número de variaveis explicativas. As camadas do MLP, sem considerar o 

intercepto, sao representadas pelos pesos W E  Rdxk, onde K  ó o óndice da camada, 

k e o numero de neurônios na camada oculta e d e o numero de variaveis de entrada 

da camada anterior (nesse caso, a camada zero, com os valores de entrada h(0) =  x). 

Para ilustrar, consideremos d =  3 e k =  2. As saídas das duas camadas ocultas sao
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representadas por h (1), h (2) G R 1x2. Logo, na Figura 1, apresentamos um a visualização do 

fluxo matricial do modelo (a) e seu correspondente fluxograma neural (b). A expressao 

m atem ática para esse exemplo pode ser denotada por:

01 (xW (1)) =  h(1)

02 (h(1)W (2)) =  h(2)

03 (h(2)w  (3)) =  y

E possível estabelecer um a representacao mais compacta, onde f W (x) =  y, em 

que W =  {W (fc)}3=1 representa o conjunto de pesos do modelo, juntam ente com suas 

respectivas funcoes de ativacão e os pesos das camadas ocultas.

Para os MLPs, as funcoes de ativacão 0(.) desempenham um papel fundamental 

na pesquisa em redes neurais. Essas funcoes, geralmente não lineares, tem  o objetivo de 

proporcionar representacães mais complexas ao modelo entre as camadas. Na literatura, 

algumas das funçoes mais comuns sao monotonicamente crescentes, conforme ilustrado 

na Figura 2.

/

o (x)  1+V *

. R e L U { x )  -  m a x { 0 . x)

- 4  -2  0 2 4
X

Figura 2: Funções de Ativação.

No exemplo apresentado, 0 3(-) corresponde a um a funcão identidade ( f  (x) =  x), 

utilizada na áltim a camada. Dessa forma, o uso das funcães não lineares 0 1(.) e 0 2(.) nas 

camadas anteriores permite modelar um a regressao nao linear. A escolha dessas funcoes 

de ativacão depende do nível de representaçao desejado pelo pesquisador e da otimizacao
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do treinamento.

2.2 .2  T re in a m e n to

O treinam ento de um a RNA desenvolve a capacidade do modelo em compreender 

a representacõo dos dados fornecidos como valores de entrada. Isso e alcancado por meio 

do ajuste iterativo dos pesos, baseado em um a ou mais funcoes de perda desejadas, capa­

citando o modelo com as habilidades necessórias para executar um a determ inada tarefa. 

A escolha apropriada da funçcõao de perda depende da natureza da tarefa de aprendizado 

e desempenha um papel fundamental na capacidade do modelo de aprender e generalizar 

a partir dos dados de treinamento.

Para ilustrar, consideremos a abordagem de atualizacao em modo Mini-Batch, 

amplamente reconhecida por sua eficiencia na generalizacao e velocidade de treinamento. 

Denotamos por X T =  { Xk os dados de treino, onde X k =  { (x ,y i)}™=i sõo os mini- 

lotes de exemplos (mini-batch) de tam anho n da varióvel explicativa x* e da variavel 

resposta y*. Agora, suponha o modelo f W(.), com um a funçõo de perda em funcao dos 

parâm etros dada por LW =  L(yi , f W(x*)). O erro medio da previsao do mini-lote X k e 

dado por E x k [l w ] =  n E nLi L (yi, f w (xi)) .

Para aproximar os valores dos pesos que minimizam a perda, representados por 

W  =  arg m inW E Xk [LW], o modelo aprende de forma iterativa atualizando os parâmetros 

por meio da descida do gradiente (ou backpropagation), conforme a expressao:

V W t  =  Vw E x k [Lw ]
(2)

Wt+i := Wt -  nVW t

Assim, a principal diferenca entre os metodos de atualizacao reside na construcao 

dos mini-lotes X T e no momento em que e com putada a atualizaçõo dos parâmetros, 

considerando um a epoca ao ter passado por todos os exemplos estruturados em X T.

Esse processo e repetido iterativam ente para minimizar o erro ao longo das a tu ­

alizações, utilizando um a taxa de aprendizagem (n E (0 , 1)) como hiperparâm etro para 

controlar o tam anho dos passos de atualizacõo. Na Figura 3, e demonstrado um exem­

plo da geometria do espaco da funcao de perda em relaçõo aos parâmetros, com base no 

conjunto de dados e no valor esperado. Os parâmetros sõo inicializados aleatoriamente, 

e o modelo, de forma iterativa, conforme o tra je to  em verde, percorre a superfície ate 

encontrar um a combinacao de pesos que minimize o erro.
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Figura 3: Descida do gradiente.

2 .2 .3  E n c o d e r-D e c o d e r

As arquiteturas de redes neurais, em sua essência, podem ser concebidas com 

estruturas que incluem elementos como o Encoder e o Decoder. Essas estruturas desem­

penham  um papel crucial no processamento de informacões, permitindo a extracao ou 

geracao de padroes a partir dos dados.

O Encoder desempenha um papel crucial na extraçõo das informacoes mais im­

portantes do dado de entrada, visando reduzir o ruído e características menos relevantes. 

Sua responsabilidade e transform ar os valores de entrada para extrair características re­

levantes e condensa-las em um vetor denso como contexto, ou tambem conhecido como 

representaçao latente.

Essa representacõo latente facilita a manipulaçao e interpretacao por parte do 

modelo. O Decoder, por sua vez, desempenha um  papel inverso ao do Encoder, utilizando 

este vetor latente resultante como contexto para reconstruir o dado original sem ruído ou 

gerar uma saída relevante, preenchendo detalhes e personalizando a saída de acordo com 

a tarefa específica em questõo.

Essa abordagem íe altam ente robusta, pois perm ite a modulaçcõao de modelos e 

a criaçcõao de um sistema de processamento de informaçcoões capaz de capturar relaçcõoes 

essenciais e complexas, resultando em resultados de alta qualidade. A capacidade de 

ajustar o vetor de contexto para atender a tarefas específicas de maneira precisa e eficaz 

e fundamental. Isso se torna um dos elementos essenciais na construçao de modelos mais 

complexos, contribuindo para avancos significativos em um a ampla gama de aplicações
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que envolvem relações complexas e abstratas, como na geração de imagens condicionada 

ao texto (ROMBACH et a l., 2021).

2 .2 .4  E m b e d d in g

Os embeddings sao amplamente utilizados devido a sua capacidade de representar 

sequencias de entrada como vetores que preservam relacoes espaciais. Sua formulacao 

baseia-se na representacao de um vocabulario de símbolos, onde, ao passar por uma 

funcao de dicionário, cada símbolo e mapeado para um vetor correspondente.

Gato

Leão

Cachorro

Lagartixa

c?\o ^^  t f  <?N
0.6 0.9 0.1 0.4 -0.7 -0.3 -0.2

0.5 0.8 -0.1 0.2 -0.6 -0.5 -0.1

0.7 -0.1 0.4 0.3 -0.4 -0.1 -0.3

-0.8 -0.4 -0.5 0.1 -0.9 0.3 0.8

Lagartixa

Gato

kLeão

O
Cachorro

Homem

Mulher

Rei

Rainha

0.6 -0.2 0.8 0.9 -0.1 -0.9 -0.7

0.7 0.3 0.9 -0.7 0.1 -0.5 -0.4

0.5 -0.4 0.7 0.8 0.9 -0.7 -0.6

0.8 -0.1 0.8 -0.9 0.8 -0.5 -0.9

Símbolo

Mulher
•

Rainha

•
•

Homem

•
Rei

Embedding

Figura 4: Representação dos Embeddings.

Redução de Visuzalização dos embeddings 
dimensionalidade dos símbolos em 2D

Após o treinamento, esses embeddings adquirem a habilidade de codificar relacoes 

simbólicas espaciais. As dimensães de seus vetores podem ser interpretadas como carac­

terísticas representacionais dos símbolos do dicionário, possibilitando operacoes lágicas e 

simbolicas modeladas por um algoritmo de aprendizado.

Para ilustrar, tomando como símbolos as palavras, na Figura 4, temos como 

exemplo animais de mesma família proximos um do outro, e operacão lineares simbolicas, 

como “rei - homem +  mulher =  rainha” , tornando estas representações um a ferramenta 

versatil e poderosa para uma ampla gama de aplicaçoes.
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X1

X2

X3

(a) (b)

Figura 5: Computação Neural de uma sequência.

No entanto, e crucial observar que, ao introduzir um a sequencia de vetores para 

um modelo MLP, dependendo da implementacao, a estru tura do modelo pode não conside­

rar a posicao dos valores na sequencia em suas dimensoes. Isso implica que as informaçães 

na sequencia podem ser tra tadas como pontos no espaco, sem codificacao da ordem sequen- 

cial. Essa abordagem pode ser problemática em situaçoes específicas, como no contexto de 

frases, onde a ordem das palavras íe fundamental para um a compreensãao completa do sig­

nificado. Alem disso, e im portante ressaltar que na computacao e representacão neural do 

modelo MLP para um a sequencia de embeddings, como exemplificado por (X  1 , X 2 , X 3) 

com duas dimensoes, conforme ilustrado na Figura 5, os pesos dos neurônios interagem 

diretamente com as dimensães dos valores de entrada (b), porem de forma independente 

em relaçao a sequencia, assemelhando-se a um a operacao de convolucão dos pesos sobre 

a sequencia de vetores.

2 .2 .5  M ecan ism o  de  A ten cão

O mecanismo de atencao, proposto por Vaswani et al. (2017), tem  se mostrado 

um componente fundamental nas arquiteturas de aprendizado profundo. Esse mecanismo 

permite que o modelo atribua maior im portancia a determinadas partes do dado de en­

trada, destacando informaçcãoes relevantes para a tarefa em questãao.

Ao representar um vetor de entrada como x  E R 1xd, o mecanismo de atencao 

projeta essa entrada em três representaçães principais: Query (Q), Key  (K) e Value (V). 

Essas representaçcãoes sãao obtidas por meio de projeçcãoes lineares, param etrizadas pelos 

pesos aprendidos durante o treinamento, utilizando W q ,W k , Wv E Rdxk, onde d e a 

dimensao original do vetor de entrada e k a dimensão latente (ou do espaco de atencao). 

Generalizando para um a sequencia de entrada, seja, X T =  [x1 . . .  xn] E Rdxn, em
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que X  C E  representa vetores no espaço representacional E  (por exemplo, embeddings), 

obtemos as matrizes Q, K, V E Rnxk, que contem as projecoes latentes dos n elementos da 

sequencia. Essas representações compactas viabilizam o calculo das similaridades internas 

entre os vetores por meio do mecanismo de atencao, definido como:

Q =  X W q , K  =  X W k  , V =  X W v ,

(3)
a  =  softmax ^QK^) , Atten tionx (Q, K , V ) =  aV,

Aplicando a funcao softmax(xi) =  exp(x^)/  n=1 exp(xj) aos produtos escalares resultan­

tes de Q K T, obtem-se a matriz estocóstica a  E Rnxn. Esses produtos sao normalizados 

pelo termo dk =  k, que limita a variancia dos valores e garante maior estabilidade numerica 

e dos gradientes durante o treinamento. Em seguida, o produto a V  E Rnxk representa 

um a soma ponderada das projecões em V , onde os pesos sõo determinados pelas similari­

dades entre as representaçcõoes em Q e K , conforme expresso em a . Esse resultado modela 

a influencia de cada vetor latente da sequencia na formacao da representacõo final de 

cada elemento pelo mecanismo de atencao, denotado por AttentionX ( Q , K , V ) E Rnxk, 

oferecendo um a contextualizacao global.

Em suma, a funcao primordial do mecanismo de atencao e utilizar as repre- 

sentacoes abstratas dos símbolos de entrada, dadas por Q, K  e V , e, por meio das simila­

ridades entre eles (representadas por a ), ponderar essas representacões para gerar novos 

símbolos latentes no espaco representacional E . Essa abordagem possibilita a criacao de 

novas representacoes do conteudo de X , capturando as relacões contextuais entre os ele­

mentos da sequencia e produzindo um a nova sequencia de símbolos abstratos, que podem 

ou nao pertencer ao vocabulario original (embeddings).

Assim, o mecanismo de atencõo oferece uma maneira eficaz de capturar e gerar 

informacoes relevantes, ponderando a im portancia dos diferentes elementos de entrada. 

Entretanto, um a desvantagem computacional reside no cílculo da multiplicacao entre 

as matrizes Q e K , que pode se tornar custoso em funçao do tam anho da sequencia 

de entrada. Estudos recentes, porem, demonstram que esse mecanismo pode armazenar 

padroes contextuais de forma exponencialmente eficiente, utilizando metodos simples de 

aprendizado interativo, como as chamadas Hopfield Networks (RAMSAUER et al., 2020).
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2.2 .6  T ran s fo rm ers

Os Transformers, introduzidos por Vaswani et al. (2017) em 2017, revolucionaram 

o Aprendizado de Máquina ao empregar o mecanismo de atencao para capturar relações 

complexas e processar sequencias em paralelo. Treinados de forma auto-supervisionada, 

tornam-se modelos base robustos, impulsionando avancos por meio do aprendizado por 

transferencia.

Output
Probabilities

(shitted right)

(A) (B) (C)

Figura 6: Estrutura do Transformer (VASWANI et al., 2017), incluindo Encoder, Decoder e Cross
Attention.

A arquitetura Transformer, como demonstrado na Figura 6 , generaliza o meca­

nismo de Atenção e e estruturada em três variacoes principais: E n c o d e r, D e co d e r e uma 

combinacao de ambos. O E n c o d e r  e projetado para aprendizado bidirecional, permitindo 

que o modelo capte relacoes contextuais em toda a sequencia de entrada, como no BERT 

(DEVLIN et al., 2018). O D eco d er, por outro lado, opera de forma auto-regressiva, 

gerando sequencias com base nas entradas anteriores, característica fundamental do G PT 

(RADFORD; NARASIMHAN, 2018). Quando combinados por meio do Cross Attention, 

resultam  na arquitetura Transformer original proposta por Vaswani et al. (2017).

O M u lti-H e a d  A tte n tio n  (M H A (Q ,K ,  V )) e o nácleo do Transformer, consis­

tindo na aplicacão simultanea de multiplos mecanismos de atencão para capturar diferen­

tes aspectos da sequencia de entrada. Na Figura 7, e ilustrado o calculo do MHA, no qual
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Figura 7: Representação computacional do Multi-Head Attention, com uma sequência de 3 entradas 
(Xi, X 2, X 3), 2 cabeças e 2 dimensões para Q, K  e V.

cada cabeça gera suas próprias representações Q, K  e V , computa os mapas de correlação 

a  e os pondera de forma paralela. Em seguida, os resultados de todas as cabeças sao 

concatenados e passam por um a projecão linear com WO G R nx(k'h'), onde h é o numero 

de cabecas; essa projecão retorna as representações ao espaco original dos embeddings 

E . O processo e completado por uma co n ex ão  re s id u a l (HE et a l., 2015), que soma os 

resultados a entrada original, e por uma L ayer N o rm a liz a tio n  (BA; KIROS; HINTON, 

2016), contribuindo para a estabilidade dos gradientes e a eficiencia do treinamento.

Alem do MHA, os Transformers incluem um F eed  F o rw a rd  N e tw o rk  (F F N ) 

com ativacao ReLU entre duas camadas densas, introduzindo a unica nao linearidade no 

modelo. Esse bloco Transformer e empilhado N  vezes para proporcionar representacoes 

mais profundas, conforme ilustrado na Figura 6.

Os Transformers podem assumir diferentes configuracoes dependendo da tarefa. 

No E n c o d e r-O n ly , a salda do Transformer passa por uma camada linear e normalizacao 

softmax, como no BERT, utilizado para modelagem de linguagem e compreensao con- 

textual. No D eco d e r- O nly , o modelo remove a conexao entre Encoder e Decoder e 

incorpora um M ask ed  M u lti-H e a d  A tte n tio n  (M ask ed  M H A ), garantindo que a 

sequencia de entrada atenda apenas aos tokens anteriores. Essa estrutura, amplamente 

adotada pelo GPT, pode ser interpretada como um processo auto-regressivo formulado 

como uma densidade de probabilidade condicional:

P w (X k\X k-1, ..., X 1)
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Na versao original do Transformer, representada na Figura 6 (C), o C ro ss  A t- 

te n tio n  (C1) interliga os modelos Encoder e Decoder. Nessa configuracao, o Encoder 

fornece as projecoes de K  e V , enquanto o Decoder utiliza a projecao Q, permitindo a 

geraçao de novas sequencias a partir da entrada.

Os modelos Transformers baseiam-se em embeddings para representar palavras, 

adicionando Positional Embeddings para codificar a posicao sequencial dos tokens. Na 

formulaçao original, esses embeddings sao definidos como:

PE(pos,2i) =  sin(pos/100002i/d)

onde pos e a posicao na sequencia, d e a dimensao do vetor e i e o índice da 

dimensao correspondente (VASWANI et a l., 2017).

Em bora o Multi-Head Attention  seja altam ente eficaz na captura de relaçcãoes 

semânticas, sua implementacao e computacionalmente custosa devido ao grande numero 

de parâmetros e aos calculos intensivos das matrizes de covariância a. O pré-treinamento 

de Transformers requer vastas quantidades de dados e o uso de hardwares especializados, 

como GPUs e TPUs, que empregam processamento massivamente paralelo otimizado para 

operaçcãoes matriciais.
V

A  medida que esses modelos crescem em escala e sao amplamente adotados, a de­

m anda computacional aum enta exponencialmente, gerando desafios críticos em consumo 

energetico e escalabilidade. Para viabilizar o uso de Transformers em larga escala, e fun­

damental adotar tecnicas de otimizacao que reduzam os custos operacionais, mitiguem 

impactos ambientais e promovam um uso mais sustentavel da infraestrutura computaci­

onal.

2 .2 .7  M o d e lo  S P E C T E R : R e p re se n ta c a o  S e m â n tic a  de  te x to s  C ien tíficos

A classificacao de documentos científicos exige modelos que capturem  nao apenas 

informacães contextuais do texto, mas tambem relacoes entre publicacoes, como citacoes 

e relevancia semantica. Modelos pré-treinados baseados na arquitetura T ran sfo rm er, 

como o B E R T , tem  sido amplamente utilizados em tarefas de Processamento de Lin­

guagem N atural (PLN), pois oferecem representacães vetoriais eficientes (DEVLIN et al., 

2018). Entretanto, esses modelos sao predominantemente treinados em textos generalis- 

tas, como os da W ikipedia e do BookCorpus, e nao são otimizados para as particularidades 

da literatura científica.
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Para suprir essa limitaçao, variantes especializadas foram desenvolvidas, como 

o S c iB E R T , que continua o pre-treinamento do BERT utilizando um corpus composto 

por 1,14 milhao de artigos científicos do S e m a n tic  S cho lar, totalizando 3,17 bilhoes de 

tokens (BELTAGY; LO; COHAN, 2019). Esse ajuste possibilita uma melhor adaptacao 

ao domínio academico, aprimorando sua capacidade de representaçõo para tarefas como 

reconhecimento de entidades nomeadas (NER), extraçao de informacões científicas (PICO 

Extraction) e classificaçcõao de textos científicos.

Apesar da especializacao do SciBERT, esse modelo ainda tra ta  os artigos de 

m aneira isolada, sem considerar a estru tura de citaçcoões que os interliga. Para supe­

rar essa limitacao, foi desenvolvido o S P E C T E R  (Scientific Paper Embeddings using 

Citation-informed Transformers), que aprimora a representaçao semântica ao incorporar 

informacões de citaçoes no treinam ento (COHAN et a l., 2020).

O SPECTER íe baseado no treinam ento do modelo SciBERT, mas se diferencia 

por empregar um treinam ento supervisionado com um objetivo contrastivo, explorando 

a rede de citacoes científicas. O treinam ento foi realizado com um conjunto de 146 

m il a r tig o s  c ien tíficos do  S e m a n tic  S cho lar, totalizando 26,7 m ilhoes d e  to k en s.

Diferentemente dos modelos anteriores, o SPECTER aprende a projetar textos extraidos 

de artigos em um espaço vetorial, no qual publicacoes relacionadas, isto e, aquelas que 

se citam mutuamente, possuem embeddings mais proximos, enquanto documentos nao 

relacionados sao afastados.

No treinam ento do SPECTER, utiliza-se o a p re n d iz a d o  c o n tra s tiv o , no qual 

pares de textos de artigos sao organizados da seguinte maneira:

•  P ositiv o s: pares de artigos em que um cita o outro;

• N eg ativos: pares de artigos sem relacao de citacao.

A representacao vetorial final de cada artigo e obtida a partir do to k e n  [C LS], 

que sintetiza as informacões contextuais do título e do resumo. Esse modelo tem  demons­

trado alto desempenho em tarefas como:

• C lassificacao  de  d o c u m en to s , utilizando a similaridade entre artigos para cate- 

gorizaçcõao;

• P re d ic a o  de  c itaco es, identificando quais artigos sao relevantes para determinada 

pesquisa;
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•  R ec o m e n d ac ã o  de  a rtig o s , auxiliando na descoberta de publicacoes sem depender 

exclusivamente de palavras-chave.

2.3 O tim izacão de R edes N eurais Profundas

A otimizacao de Redes Neurais Profundas desempenha um papel essencial no 

avanco da inteligencia artificial, permitindo aprimoramentos significativos no treinamento 

e na inferência de modelos. Embora sejam técnicas eficientes para reduzir custos compu­

tacionais, este íe um campo de pesquisa ativo, buscando otimizar arquiteturas e tarefas 

específicas sem comprometer a performance do modelo. Um dos principais motores desse 

progresso e o movimento open-source, que promove um ecossistema sustentavel ao in­

centivar a colaboracao e a disseminacao de algoritmos de otimizacão e modelos de IA. 

Iniciativas disruptivas, como o D eep S eek 1, desafiam o domínio dos modelos fechados 

adotados por empresas como a O p e n A I2, disponibilizando arquiteturas avançadas, mo­

delos de base pré-treinados e estratégias de otimização acessíveis a comunidade.

Alem de reduzir custos computacionais e minimizar o impacto ambiental, essas 

otimizacães tornam  a IA mais acessível, eficiente e escalível, ampliando suas aplicacoes em 

diferentes domínios. O acesso aberto a essas tecnologias nao apenas acelera a inovaçao, 

mas tambíem reduz barreiras tíecnicas e operacionais, permitindo que pesquisadores e 

desenvolvedores aprimorem, adaptem  e criem modelos de base de forma descentralizada. 

Esse movimento fortalece um ambiente de pesquisa mais inclusivo e sustentível, criando 

um ciclo virtuoso de avancço tecnolíogico.

Nesta secao, serão exploradas as principais estratégias de otimizacao para Redes 

Neurais Profundas, desde algoritmos fundamentais ate abordagens avancadas investigadas 

neste estudo, com o objetivo de aprim orar a eficiencia e promover a democratizacao do 

uso da IA.

2.3.1 Q u a n tiza c ão

A q u a n tiz a c ã o  e uma técnica que transform a valores contínuos em discretos, 

permitindo a representaçcaão numíerica com menos bits e reduzindo a demanda por recursos 

computacionais. Essa técnica e geralmente classificada em duas abordagens principais:

• Q u a n tiza c ao  D in âm ica : Apenas os pesos são quantizados, enquanto as ativacães

1 (https://www.deepseek.com/)
2 (https://openai.com/)

https://www.deepseek.com/
https://openai.com/
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permanecem em ponto flutuante. Nao requer calibracao previa, pois a desquan- 

tizacao ocorre durante a execucao, reduzindo o consumo de memória e melhorando 

a eficiencia computacional em relacao ao uso integral de ponto flutuante. No en­

tanto, pode introduzir latencia adicional devido às operacoes de desquantizacao em 

tempo real.

• Q u a n tiza ç ão  E s tá tic a : Tanto pesos quanto ativaçães sao quantizados, permitindo 

calculos diretamente em baixa precisao (por exemplo, in t8 ). Essa abordagem re­

duz significativamente a carga computacional e o uso de memoria, mas exige uma 

etapa de calibracao para determ inar faixas de quantizacao adequadas. Alem disso, 

modelos que dependem de alta precisao numerica podem sofrer degradacão no de­

sempenho.

Alem disso, a quantizacao pode ser a ss im é tric a , deslocando os pesos por uma 

constante, ou s im é tric a , onde os valores podem incluir ou nao mímeros negativos. A 

escolha entre essas abordagens depende do tipo de entrada, das ativaçcoães do modelo e da 

precisãao desejada.

Na quantizaçao em 8 bits, por exemplo, os intervalos abrangem 256 =  28 valores 

inteiros distintos, convertendo valores contínuos em representacoes discretas. No entanto, 

a precisãao da quantizaçcãao afeta o desempenho do modelo, pois o arredondamento e as 

restricoes de valores no intervalo podem comprometer a exatidão (NAGEL et al., 2021; 

FOURNARAKIS, 2021) .

2 .3 .2  P o d a

A p o d a  (pruning) e um a tecnica para reduzir a complexidade de redes neurais 

profundas, removendo parâm etros de baixa relevância, promovendo esparsidade e melho­

rando a latencia do modelo.

A importâancia dos parâametros pode ser determ inada por míetricas como magni­

tude dos pesos, sensibilidade dos gradientes ou impacto na funcão de perda (KURTIC et 

a l., 2022; LIEBENW EIN, 2021). As principais abordagens incluem:

• P o d a  é s tru tu ra d a :  Remove blocos inteiros, como camadas, filtros ou conexãoes 

específicas, mantendo a coerência da arquitetura e otimizando a execuçao do modelo.

• P o d a  dé  co m p ressao : Aplicada a modelos pré-treinados, pode ocorrer durante o 

treinam ento via compressao ascendente (no pré-treinamento) ou descendente (para
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um a tarefa especifica), aumentando a esparsidade.

Figura 8: Poda Wanda com 50% dos valores zerados. Adaptado de Sun et al. (2023).

Entre as tecnicas de poda, a W a n d a  destaca-se pela simplicidade e eficiencia 

(SUN et a l., 2023). Como ilustrado na Figura 8 , a tecnica aplica a norma L2 sobre os 

vetores de pre-ativaçõo {h0, ...,hn} (passo 1), multiplica elemento a elemento a matriz de 

pesos absolutos (passo 2) e zera os valores mais proximos de zero (passo 3), promovendo 

esparsidade naõo estruturada.

2.3 .3  D e stilac ão  de  C o n h ec im e n to

A Destilacao de Conhecimento em redes neurais profundas e um a tecnica que 

permite transferir habilidades de modelos maiores e complexos (Professor) para modelos 

menores e mais eficientes (Aluno), reduzindo a complexidade e os recursos computacionais. 

Este processo de destilaçcaõo, como ilustrado na Figura 9 , utiliza do professor para orientar 

o aluno transferindo seu conhecimento, mas nao se limitando, atraves da prediçao final.
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Professor ►

Destilação de 
Conhecimento

Aluno ► Predições

Hard Labels

í
Figura 9: Destilação de conhecimento.

Este treinam ento geralmente envolve apenas atualizar os parâmetros do modelo 

aluno, enquanto o modelo professor faz prediçoes em um conjunto de dados para ser pas­

sado ao aluno. Estas predicões são chamadas Soft Labels, que consiste de valores contínuos 

de um a ou mais ultimas camadas do modelo professor. Estas previsoes geralmente u ti­

lizam da normalizacõo softmax para suavizar as predicoes e estabilizar os gradientes na 

hora do treino. Esta transferencia do conhecimento ocorre ao minimizar a funcõo de perda 

que mede a distancia entre as distribuições de prediçõo do aluno e do professor. E comum 

utilizar a divergencia de Kullback-Leibler dada por:

Se o banco de dados for rotulado, os rotulos (tambem chamados de hard labels) po­

dem orientar o aluno sobre a distribuicõo esperada para a predicao (HINTON; VINYALS; 

DEAN, 2015). Um estudo recente proposto por Chen et al. (2020) demonstrou que a des- 

tilaçao de conhecimento usando aprendizado auto-supervisionado e especialmente eficiente 

quando há poucos dados rotulados e o professor e um modelo pre-treinado. No qual o 

modelo aluno íe capaz de aprender uma nova tarefa com apenas alguns dados rotula­

dos, aproveitando as representações uteis destiladas pelo professor, o que impulsiona a

k (5)
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aplicabilidade dos modelos.

2 .3 .4  T re in a m e n to  E fic ien te  de  M o d elo s  de  B ase

O treinam ento eficiente de modelos de base visa melhorar a eficiencia e o de­

sempenho das redes neurais profundas, reduzindo o tem po e os recursos computacionais 

necessarios. Isso permite treinar modelos complexos de forma mais rapida e economica, 

promovendo a sustentabilidade de sistemas de IA.

2.3 .4 .1  P re -T re in a m e n to

Como mencionado anteriormente, o pré-treinamento de modelos de base e uma 

etapa computacionalmente intensiva que requer grandes quantidades de recursos, mas re­

sulta em modelos adaptaveis para tarefas específicas por meio de ajuste fino. Otimizar essa 

fase íe crucial para alcançcar maior sustentabilidade e disponibilizar modelos príe-treinados 

uteis para distribuicao e pesquisa. Durante essa etapa, v írias tecnicas e metodologias sao 

estudadas, mas algumas seguem diretrizes centrais. Exemplos incluem medidas diretas 

para reduzir o consumo de recursos computacionais e aum entar a eficiencia do treina­

mento. Algumas dessas tecnicas consiste em:

• P ro to tip a g e m : A prototipagem com exemplos mais simples e essencial para validar 

as escolhas de arquiteturas e hiperparam etros antes de treinar o modelo. Tecnicas, 

como aquelas demonstradas por Yang et al. (2022), perm item  a inicializacao dos 

hiperparam etros do modelo, treinando modelos menores e, em seguida, escalando 

para modelos maiores. Alem disso, escolher os algoritmos de otimizacao corretos 

para um problema específico ou inicializar os pesos de modelos anteriores podem 

induzir a convergencia mais ríp id a  dos modelos (LIU et a l., 2023; XIA et a l., 2023).

• D ados: Estudos demonstram que a qualidade dos dados íe mais crucial do que a 

quantidade, desafiando o paradigma tradicional (GUNASEKAR et a l., 2023). O 

trabalho de Xie et al. (2023a) indica a viabilidade de treinar modelos menores para 

selecionar os dados mais beneficos, atribuindo pesos a um a m istura de conjuntos de 

dados. Essa abordagem reduz a necessidade de exemplos no treinam ento de modelos 

maiores, resultando em tempos de treinamento mais curtos e melhor desempenho.

• S o ftw ares, H a rd w a re s  e E n e rg ia  L im pa: A adoçao de softwares eficientes, como 

processamento assíncrono de dados em CPUs, caching, pré-carregamento de dados
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e otimizacçãoes no formato de armazenamento de arquivos, reduz significativamente o 

tempo de preparacao antes do processamento (DAO et a l., 2022; RAJBHANDARI 

et a l., 2020; LECLERC et a l., 2023). O uso de hardwares especializados para 

computaçao intensiva, como GPUs, tambem desempenha um papel crucial. Alem 

disso, a integracao de fontes de energia renovavel, como solar e eálica, ou iniciativas 

como a Green AI Cloud3, que visa reduzir as emissoes de carbono e alcancar uma 

taxa de CO negativa, promove a sustentabilidade e contribui para a mitigaçao das 

mudancas climaticas, sem comprometer a performance no treinam ento ou uso dos 

modelos.

• A lg o ritm o s  dé  T re in a m e n to  E sp a rço s , Q u a n tiz a d o s  é A p ro x im aco es  dé  

B aix o  P o s to : O uso de algoritmos para promover esparsidade de modelos no 

treinam ento pode alcancar uma performance igual ou ate superior em metricas, com 

menos quantidade de operacães (THANGARASA et al., 2023; PESTE et al., 2021; 

SAXENA et al., 2023). Alem disso, treinamentos com aproximações matriciais de 

baixo posto como demonstrado por Lialin et al. (2023), combinados com quantizacao 

auxiliam na economia de recursos computacionais (DETTM ERS et a l., 2023; XI et 

a l., 2023a).

• A rq u i té tu ra s  E ficién tés: Como mencionado anteriormente, a computacao do 

Multi-Head-Attention pode ser computacionalmente custosa. Portanto, varias abor­

dagens buscam reestruturar os principais mecanismos dos modelos Transformers, 

seja repensando o mecanismo de atencao ou o processamento dos valores de entrada 

para obter as contextualizaçoes (WU et al., 2021; WANG et a l., 2020a; CHORO- 

MANSKI et al., 2022; MARTINS; MARINHO; MARTINS, 2022; JAEGLE et a l., 

2021; SHAZEER, 2019; AINSLIE et al., 2023). Uma abordagem interessante e 

substituir o principal mecanismo de atencao pela transform ada discreta de Fou- 

rier (DFT), como demonstrado por Sevim et al. (2023), Lee-Thorp et al. (2022). 

Nesse metodo, a complexidade computacional do calculo de atençao e o treinamento 

dos parâmetros tornam-se mais simples e eficientes devido a baixa quantidade de 

parâm etros treináveis. Eles concluem que, ao comparar com o modelo BERT (DE- 

VLIN et a l., 2018), o treinamento e 80% mais râpido e a inferência de 40% a 70% 

mais râpida, m antendo pelo menos 90% dos resultados do BERT. Isso demonstra que 

a transform ada de Fourier e um a técnica poderosa para Redes Neurais Profundas.

Ao combinar essas técnicas e continuar explorando novas estrategias, podemos

3 https://greenai.doud/

https://greenai.doud/
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alcancar avancos significativos na eficiencia do treinam ento e na sustentabilidade. Isso 

possibilita a construçcãao de modelos mais sofisticados em menos tempo, utilizando menos 

recursos computacionais e, consequentemente, reduzindo a pegada de carbono.

2 .3 .4 .2  A ju s te  F in o

O ajuste fino de modelos de base diz respeito a capacidade de aprimorar as 

habilidades de um modelo para novas tarefas, aproveitando seu conhecimento prévio. 

Isso implica na aplicacao pratica desses modelos em diferentes cenarios, utilizando os 

parâm etros pré-treinados para promover a sustentabilidade dos sistemas de IA. E uma area 

em constante desenvolvimento, oferecendo v írias tecnicas e abordagens para transferir 

conhecimento de forma eficiente para o modelo. Algumas das principais metodologias 

incluem:

• A p re n d iz a d o  com  P o u co s  D ad o s  (Few-Shot Learn ing ): Essa abordagem visa 

alcancar a maxima eficiencia nos modelos, permitindo que eles obtenham  bom de­

sempenho e se adaptem  a novas tarefas com um a quantidade extremamente lim itada 

de exemplos (SONG et a l., 2022) .

• A ju s te  F in o  E fic ien te  d e  P a râ m e tro s  (P aram eter-E ffic ien t F in e-T u n in g ):

Esta abordagem utiliza tecnicas como LoRa, Adapters, (IA)3, entre outras, destaca- 

se por possibilitar a construcao de um ecossistema de modelos especializados em di­

versos problemas, ao treinar um a quantidade mínima de parâm etros e deixar grande 

parte inalterada (HU et al., 2022; HU et a l., 2023; LIU et a l., 2022; LIAO; TAN; 

MONZ, 2023).

• S e tF i t  (Sentence T ransform er F in e-T u n in g ): O SetFit e um a técnica que 

combina aprendizado contrastivo e ajuste fino eficiente para melhorar a classificacao 

de textos com poucos exemplos rotulados (TUNSTALL et a l., 2022). Diferentemente 

de abordagens convencionais, ele realiza um treinam ento em duas etapas: primeiro, 

aplica aprendizado contrastivo para refinar as representaçcãoes dos textos e, em se­

guida, ajusta  um classificador linear sobre essas representaçcoães. Essa metodologia 

permite que modelos baseados em Transformers obtenham  alto desempenho em ta ­

refas de classificaçcãao sem a necessidade de grandes volumes de dados rotulados, 

tornando o processo de ajuste fino mais ríapido e eficiente.

A técnica L o R a  (Low Rank A daptation), utilizada neste trabalho, permite adi­

cionar novas funcionalidades a um modelo sem aum entar o número de parâmetros apos o
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ajuste fino. Em vez de atualizar diretamente os pesos do modelo base Wo G Rnixn2 via 

gradiente VW0, onde a atualizaçao tradicional seria dada por W := W0 +  VW 0, a tecnica 

introduz uma matriz de decomposicão de baixo posto, definida como Wi :=  A B , onde 

A  G Rnixr e B  G Rrxn2, com r  representando o valor do posto reduzido (HU et a l., 2022). 

Dessa forma, o treinam ento ocorre de m aneira indireta, no qual apenas A e B  são atuali­

zados pela descida do gradiente, enquanto W0 permanece fixo. O ajuste fino, portanto, e 

realizado na forma W  := W0 +  (Wi +  VWi) =  W0 +  L, de modo que, apos o treinamento, 

as atualizacoes capturadas por L sao incorporadas a W0. Esse processo reduz a complexi­

dade computacional sem aum entar a latencia do modelo com novos parâmetros. Similar 

aos metodos quasi-Newton, que aproximam a matriz Hessiana por uma de baixa ordem, o 

LoRa melhora a eficiencia do ajuste fino e facilita a reutilizacao dos modulos A e B  como 

compressores de conhecimento, permitindo sua transferencia para outros sistemas de IA 

baseados no mesmo modelo de referencia.

Essa tecnica pode ter extensoes, como no caso da Q L o R a (DETTM ERS et a l., 

2023), que combina essa d e c o m p o s to  com quantizacão, reduzindo ainda mais o consumo 

de recursos. A QLoRa e amplamente aplicada nos pesos dos blocos de atencao em modelos 

Transformers, ajustando correlacoes com base nos valores de entrada e diminuindo os 

recursos computacionais necessarios para adaptar modelos com grandes quantidades de 

parâm etros (LIAO; TAN; MONZ, 2023).

Ao unir abordagens de aprendizado com poucos dados e ajustes finos eficientes, 

pesquisadores e engenheiros tem  a oportunidade de impulsionar avancos significativos no 

campo da aprendizagem de maquina. Essa combinacao direciona modelos para tarefas 

específicas, resultando em economia de tempo, energia e recursos computacionais. Como 

resultado, os modelos tornam-se mais acessíveis e aplicaveis em diversos domínios e con­

textos, promovendo um a evoluçao tecnologica mais eficiente e sustentável.

2 .3 .4 .3  C o m p o sicao  E fic ien te  de  M o d elo s  de  B ase  A d a p ta d o s

A medida que surgem mais modelos especializados em um ecossistema baseado 

em um modelo de base de referencia, torna-se crucial avaliar como integrar as habi­

lidades específicas de diversas tarefas em um  ánico modelo. Nesse sentido, propoe-se 

um metodo para criar um modelo com as respectivas habilidades dos modulos LoRa de 

forma híbrida, utilizando a tecnica de decomposiçao por valor singular (SVD). Assim, este 

metodo possibilita a combinacão de diferentes pesos adaptáveis com tamanhos distintos 

para os modulos LoRa, resultando em um a nova representacao de baixo posto que pode ser
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utilizada como uma interpolação de habilidades, conforme sua aplicação na arquitetura 

do modelo base.

Passo 3

Figura 10: Método de Hibridacao dos módulos LoRa.

Conforme ilustrado na Figura 10, o primeiro passo do metodo proposto consiste 

em utilizar os módulos LoRa A0 e B0 pos-ajuste para todas as camadas em que foram 

aplicados e recriar as respectivas matrizes de adaptacao denotado por W0 =  A0B0, onde 

W0 E R kxv, com A0 E R kxr e B0 E Rrxv. Esse passo e realizado para cada um dos ajustes 

que resultaram  em diferentes modulos A e B  para a tarefa específica em questao.

No segundo passo, e criado um vetor de matrizes de pesos adaptáveis (W0, ..., Wn) E 

Rnxkxv e, em seguida, para cada elemento, e aplicado o quantil igual a 75%, resultando 

em um a matriz de valores interpolados W , entre os valores do vetor de pesos adaptaveis. 

Este tem  como intuito m anter a maior parte dos valores da distribuicão sem prejudicar 

os valores de outras matrizes.

No terceiro passo, e aplicado o metodo SVD na matriz de pesos resultante W
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e definido um valor a rb itríria  igual a r para a aproximacao da matriz resultante W . 

Selecionando esses r componentes da decomposiçao, como descrito no Passo 3 da Figura 

10, eles sao utilizados como novos valores de inicializacõo para os modulos do LoRa. No 

qual, para o modulo B, sao utilizados os r valores singulares multiplicados pelos r vetores 

singulares descritos na matriz V , o mesmo para o míodulo A e a matriz U.
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3 M étodologia

3.1 M étodologia  dé Estudo

Esta pesquisa tem  como objetivo contribuir para a investigaçao do aprendizado 

profundo e metodos de otimizacão, para o desenvolvimento de estrategias eficientes e 

ambientalmente sustentáveis na construcão de sistemas de IA complexos. Seu objetivo e 

fornecer diretrizes de praticas para pesquisadores, com o intuito de impulsionar a adocao 

de hábitos mais responsaveis e contribuir para o avanco da sociedade em direcao a um 

futuro de avancos tecnolágicos ambientalmente amigaveis. Na metodologia de estudo 

abordada, destacam-se os seguintes topicos:

• A introduçao sobre redes neurais profundas, abordando seus conceitos basicos, assim 

como a arquitetura Transformer e seus blocos de atençao (VASWANI et al., 2017), 

que se destacam como uma das tecnicas mais utilizadas e influentes na area de redes 

neurais profundas nos ultimos anos. Isso proporciona ao leitor uma compreensão das 

redes neurais profundas e de um a das arquiteturas mais prevalentes para introduzir 

modelos de base, os quais sao empregados na resolucao de problemas complexos e 

específicos em diversos setores.

• A introducao de tecnicas e estrategias de otimizaçao em redes neurais profundas, 

como quantizacao, poda e destilacao de conhecimento (LIEBENW EIN, 2021). Alem 

disso, serao abordados o ajuste fino eficiente para modelos de grande porte (HE et 

a l., 2021) , a c o m p o s to  de habilidades e considerações sobre hardware, software, 

arquiteturas e treinamentos eficientes para Transformers. Essas metodologias de­

sempenham um papel crucial na otimizaçcãao do treinamento e escalabilidade de 

aplicacoes, tornando a execucao dos modelos mais eficiente em termos de custo 

computacional e emissaão de CO2 em ferramentas baseadas em IA.

3.2 M étodologia  dé A plicacão

Com o objetivo de promover o avancos cientifico em todas as areas de pesquisa, 

ao mesmo tem po em que busca a sustentabilidade, este trabalho se dedica ao estudo de 

aplicacão de um modelo base, baseado na arquitetura Transformers, para a automacao 

de revisoes sistematicas da literatura (SLR).

No entanto, conforme especificado por Keele et al. (2007), a conducão de uma
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revisao sistematica pode ser dividida em várias etapas ate sua conclusão. Na Tabela 1, 

apresentamos um resumo dessas etapas, destacando que, neste estudo de aplicacao, nos 

concentramos exclusivamente na automacão do passo de triagem de citacoes (SLR6).

P asso D escricao
SLR1 Comissionamento de um a revisao
SLR2 Especificaçao da(s) pergunta(s) de pesquisa
SLR3 Desenvolvimento de um protocolo de revisao
SLR4 Avaliacão do protocolo de revisao
SLR5 Desenvolvimento de termos de Pesquisa
SLR6 Selecao de estudos primários (Triagem de citaçoes)
SLR7 Revisao de seleçao
SLR8 Extracão e monitoramento de dados
SLR9 Síntese de dados

SLR10 Especificacao de mecanismos de disseminacao do re-
latorio principal

SLR11 Formataçao do relatorio principal
SLR12 Avaliacao do relatorio

Tabela 1: Passos no processo de revisao sistemática conforme proposto por Keele et al. (2007) e 
adaptado de Dinter, Catal e Tekinerdogan (2021).

Esse passo, em particular, e reconhecido como o mais demorado, pois exige que 

um ou mais especialistas reduzam a quantidade de citacoes em um banco de dados de 

referencia gerado a partir dos resultados da busca, utilizando os termos de pesquisa da 

etapa anterior (SLR5). Essa reduçao e realizada por meio da classificaçao dos exemplos 

como relevantes ou não, de acordo com o criterio de inclusao definido para o estudo em 

questao (BANNACH-BROWN et al., 2019; SELLAK; OUHBI; FRIK H , 2015; TSAFNAT 

et a l., 2018; DINTER; CATAL; TEKINERDOGAN, 2021).

3 .2 .1  B an co  d e  D ad o s  e M e tr ic a  de  T ra b a lh o  Salvo

Para avaliar a automacao da triagem de citacães, propoe-se o uso de 20 bancos de 

dados abertos sobre a seleçcãao de citaçcãoes relevantes em revisãoes sistematicas da literatura 

em varios topicos da area medica. Esses conjuntos de dados saão propostos por Cohen et 

al. (2006) e Howard et al. (2016), que consistem em exemplos contendo título, resumo e 

rótulos de classificaçao como Incluídos (1) e Excluídos (-1) para as respectivas citaçoes 

dos bancos de dados.

Para avaliar a eficacia do modelo na classificacao de citaçães relevantes em Re- 

visoes Sistematicas da L iteratura (SLRs), metricas convencionais podem nao refletir com 

precisao seu desempenho, pois esses bancos de dados sao altam ente desbalanceados, con­
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tendo mais exemplos irrelevantes do que relevantes. Assim, a metrica WSS (Work Saved 

over Sampling) (KUSA et al., 2023), introduzida por Cohen et al. (2006), quantifica a 

economia de trabalho ao estimar a porcentagem de exemplos irrelevantes corretamente 

descartados pelo classificador, relativa apenas à quantidade to tal de exemplos irrelevantes 

presentes no banco de dados específico. Esse aspecto pode dificultar a comparacçaõo entre 

diferentes conjuntos de dados, pois a proporçcõao de exemplos irrelevantes pode variar signi­

ficativamente entre bases distintas. Para evitar a perda excessiva de exemplos relevantes, 

adota-se um criterio que garante um a retencao mínima de 95%.

Entretanto, em conjuntos de dados com distribuiçcoões de classes distintas, os va­

lores extremos da WSS podem variar significativamente, dificultando a comparacçõao entre 

experimentos (MELO et al., 2022; FARIA et a l., 2022). Para mitigar essa limitaçõo, Melo 

et al. (2022) propos a metrica AWSS (Adjusted Work Saved over Sampling), um a versao 

normalizada da WSS com valores entre [-1 ,1]. A AWSS e definida como:

onde T N % e T P  % representam, respectivamente, a taxa de verdadeiros negativos 

e a taxa de verdadeiros positivos. Sua interpretacçõao íe a seguinte:

• A W SS e n tre  0 e 1: O modelo economiza trabalho em relacao a amostragem 

aleatoria. Por exemplo, se uma base contem 1000 citacoes (800 irrelevantes e 200 

relevantes) e o modelo exclui corretamente 80% dos irrelevantes (T N % =  0 .80) 

enquanto retem 95% dos relevantes (T P % =  0.95), temos:

Isso significa que 75% dos exemplos podem ser descartados sem comprometer a 

retençcõao dos 95% dos relevantes .

•  A W SS =  0: O desempenho do modelo equivale ao de uma amostragem aleatoria.

• A W SS e n tre  —1 e 0: O modelo falha em excluir exemplos irrelevantes. Quanto 

mais proximo de —1, maior a porcentagem de inclusõo dos exemplos irrelevantes.

Dessa forma, a metrica AWSS torna a comparacao entre diferentes conjuntos de 

dados mais consistente, permitindo um a avaliacõo mais precisa do trabalho salvo pelo 

mesmo modelo de referâencia.

A W S S  @TP  % =  T N  % — (1 — T P  %) (3.2.1)

A W S S  =  0.80 — (1 — 0.95) =  0.75. (3.2.2)
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3.2 .2  C o n fig u racao  do  E x p e r im e n to

Para a modelagem da classificacao de citacoes relevantes utilizando a arquitetura 

T ran sfo rm ers , adotou-se a metodologia S E T F IT  (TUNSTALL et a l., 2022), conforme 

descrito na Secao 2.3.4.2, em conjunto com o modelo S P E C T E R , apresentado na Secao 

2.2.7. O modelo S P E C T E R , desenvolvido por Cohan et al. (2020), foi escolhido de­

vido ao seu treinam ento especializado em textos científicos e a sua capacidade de veto- 

rizaçao semantica utilizando o token “[CLS]” , tornando-o particularm ente adequado para 

o domínio desta pesquisa. Esse modelo representa sentencas em um espaco vetorial, no 

qual textos cientificamente similares possuem embeddings mais proximos entre si.

O ajuste fino utilizando a abordagem S E T F IT  ocorre em dois passos. No 

primeiro, o modelo e ajustado com a p re n d iz a d o  c o n tra s tiv o , aprimorando as repre- 

sentacoes semânticas dos textos de entrada. No segundo, realiza-se a c lassificacao  b a se ­

a d a  em  e m b ed d in g s, onde um classificador e treinado sobre essas novas representacães 

para a tarefa de classificaçcaão final.

3 .2 .2 .1  Fase 1: A p re n d iz a d o  C o n tra s tiv o

Inicialmente, os exemplos para o ajuste fino sao organizados em pares aleatórios. 

Pares pertencentes à mesma classe recebem o rotulo P  (p a res  s im ila res), enquanto pares 

de classes distintas recebem o rotulo N  (p a res  não  s im ila res). Cada par representa 

um a am ostra utilizada no treinam ento contrastivo, cujo objetivo e aproximar exemplos 

da mesma classe e afastar aqueles pertencentes a classes diferentes, com base em suas 

representacães vetoriais.

Para esse treinamento, foram selecionados aleatoriamente 8 ex em p lo s  p o r  classe, 

totalizando 16 exem plos. A partir desses exemplos, foram gerados 40 p a re s  p o s itiv o s  e 

40 p a re s  n eg a tiv o s, resultando em um conjunto de treino com 80 p a re s  c o n tra s tiv o s .

A vetorizacao dos exemplos e realizada utilizando o modelo S P E C T E R , no 

qual cada entrada na am ostra de treino e representada pela concatenacao do t í tu lo  e 

do re su m o  do respectivo artigo científico. O truncam ento e aplicado para um maximo 

de 512 to k en s, respeitando a limitacao de entrada do modelo. Essas frases sao entao 

convertidas em representacoes vetoriais por meio do vetor resultante do token de entrada 

[CLS], que captura a representacão semantica do texto de entrada na saída do modelo.

Neste treinam ento contrastivo, foi aplicado um ajuste fino eficiente com L oR a, 

treinando apenas os m o d u lo s  d e  b a ix o  p o s to , configurados com dimensionalidade igual
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a 4, conforme descrito na Seçao 2.3.4.2. Esses modulos sao aplicados as matrizes V e K  

do mecanismo de atencao, conforme ilustrado na Figura 7, nas t r é s  ú ltim a s  cam a d a s  

do modelo SPECTER. O treinamento foi conduzido por d u a s  ép o cas , atualizando esses 

modulos com lo tés  dé  16 p a ré s  c o n tra s tiv o s  e um a taxa de aprendizado (learning rate) 

igual a 0,007.

A funcao de perda adotada e um a adaptaçao da fu ncão  dé  p é rd a  c o n tra s tiv a  

s u p é rv is io n a d a  de Khosla et al. (2021), definida como:

T ( \ - 1  exp {s im (xp, yp) / r } . x ■ y , .
L o ss(x ,y) =  —  > tag = -------------------------- — - , s im (x ,y) = ............... (3.2.3)

|P  1 p-p l^n -N  exp {s lm (xn ,yn)/ T} | |x ||2||y ||2

onde p G P  representa os exemplos contrastivos da mesma classe e n G N  pertence 

a classes distintas. A metrica de similaridade s lm (x ,y )  utilizada foi a s im ila rid a d é  do 

cosséno, com o hiperparâm etro t  fixado em 0 ,2 .

Duas modificacoes foram incorporadas em relacao à formulaçao original: (i) os 

pares foram selecionados aleatoriamente, em vez de considerar todas as combinacçãoes 

possrveis dentro da amostra; e (ii) o denominador da funcao de perda inclui apenas 

exemplos negativos, aplicando a tecnica de H a rd  N ég a tiv é  S am p lin g . Esse metodo 

proporciona maior estabilidade ao treinamento, enfatizando a separaçcaão adequada entre 

exemplos contrastivos, conforme discutido por Wang e Liu (2021).

3 .2 .2 .2  F asé 2: C lassificação  B a sé a d a  ém  E m b éd d in g s

Apos o ajuste fino contrastivo, os 16 éx ém p lo s utilizados na Fase 1 são emprega­

dos para treinar o modelo de classificacao baseado na ré g ré ssa o  log ística , associando-os 

as suas respectivas classes. Esse treinamento utiliza as novas representacoes vetoriais 

(ém b éd d in g s) extraádas do token [CLS] do modelo Transformer ajustado pela fase 1. 

Essa abordagem possibilita a classificacao dos textos de entrada como ré lé v an té s  ou nao  

ré lév an té s , alem de perm itir a avaliaçao da performance do modelo adaptado por meio 

da metrica AW SS@ 95% , que mensura a economia de trabalho na seleçcãao de artigos 

relevantes em um a revisão sistemática da literatura.
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3 .2 .2 .3  O tim ização

Para aprim orar a eficiencia computacional do modelo, algumas tecnicas de oti- 

mizacao foram aplicadas. Este estudo foca em abordagens simples que perm item  tornar 

os modelos de base mais sustentaveis por meio dos seguintes metodos:

• Q u a n tiza ç ao  d in â m ic a  em  4 b its .

• P o d a  d e  p a râ m e tro s  utilizando o metodo W an d a , proposto por Sun et al. (2023) 

e ilustrado na Figura 8. Esse metodo e aplicado em todas as camadas do modelo, 

exceto nos mádulos LoRa, que sao utilizados paralelamente aos pesos, conforme 

apresentado na Secao 2.3.4.2.

Alem disso, foram realizadas análises sobre o consumo de recursos computacionais 

e a latâencia durante o treinam ento e a inferâencia do modelo Transformer, considerando 

diferentes configuracoes de precisao e hardware:

H a rd w a re E specificação T D P  (W )
CPU Intel Core i7-11800H (11a geracao) 45 - 109
GPU NVIDIA GeForce RTX 3060 Mobile 60 - 115

Tabela 2: Especificações de hardware utilizadas nos experimentos .

A avaliacçõao da latâencia de inferâencia foi realizada sobre um a am ostra de 32 

ex em p lo s  de textos, enquanto a avaliacao do treinamento seguiu as especificacoes da 

Fase 1. Todos os exemplos contendo 512 to k en s.

3 .2 .2 .4  C o m p o siçao  de  H ab ilid a d es

Com o ob jetivo de consolidar o conhecimento das novas representacçõoes semâanticas 

adquiridas apos o treinamento contrastivo da Fase 1 nos 20 bancos de dados, seleciona­

mos os cinco melhores resultados apás o ajuste fino, com base na metrica de trabalho 

salvo A W SS@ 95% . Essa m etrica foi utilizada para avaliar a performance da separacao 

semantica entre classes locais (dentro de um mesmo banco de dados) e g loba is  (entre 

diferentes bancos de dados), na composicõo de um único modelo com habilidades combi­

nadas. Para isso, realizamos a co m p o siçao  de  m ó d u lo s  L oR a, conforme descrito na 

Secao 2.3.4.3, configurando-a para gerar os novos mádulos A e B  com ra n k  8.
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4 R esultados

4.1 A nálise quantitativa dos bancos de dados

Os bancos de dados utilizados em revisãoes sistemíaticas da literatura consistem em 

extensas colecoes de referencias textuais, submetidas a um  rigoroso processo de triagem 

para a selecçãao de estudos relevantes. O objetivo desse procedimento íe identificar artigos 

que respondam a um a questao específica ou fundamentem um a investigacão científica. 

Em bancos de dados de revisoes sistematicas da literatura (SLR s), observa-se frequente­

mente um d e se q u ilíb r io  a c e n tu a d o  entre o n ím ero  de artigos relevantes (Inclu ídos) 

e nao relevantes (E xclu ídos). Esse padrão e evidente nos bancos de dados analisados 

neste estudo, conforme apresentado na Tabela 3, onde as classificacães E x c lu íd o  (-1) 

e In c lu íd o  (1) foram atribuídas pelos autores com base no título e no resumo de cada 

artigo. Em alguns casos, essa desproporcao e expressiva, com menos de 10% dos a r tig o s  

sen d o  in c lu íd o s  na revisao sistematica.

Banco de Dados Total Incl. Excl.

ACE Inhibitors 2544 41 (1.6%) 2503 (98.4%)
ADHD 851 20 (2.4%) 831 (97.6%)
Antihistamines 310 16 (5.2%) 294 (94.8%)
Atypical Antipsychotics 1120 146 (13.0%) 974 (87.0%)
Beta Blockers 2072 42 (2.0%) 2030 (98.0%)
Calcium Channel Blockers 1218 100 (8.2%) 1118 (91.8%)
Estrogens 368 80 (21.7%) 288 (78.3%)
NSAIDs 393 41 (10.4%) 352 (89.6%)
Opioids 1915 15 (0.8%) 1900 (99.2%)
Oral Hypoglycemics 503 136 (27.0%) 367 (73.0%)
Proton Pum p Inhibitors 1333 51 (3.8%) 1282 (96.2%)
Skeletal Muscle Relaxants 1643 9 (0.6%) 1634 (99.4%)
Statins 3465 85 (2.5%) 3380 (97.5%)
Triptans 671 24 (3.6%) 647 (96.4%)
Urinary Incontinence 327 40 (12.2%) 287 (87.8%)

Drug Reviews (COHEN et al., 2006) 16015 2169 13846

Bisphenol A (BPA) 7700 111(1.4%) 7589 (98.6%)
Fluoride and Neurotoxicity 4479 51 (1.1%) 4428 (98.9%)
Neurophatic pain 29207 5011 (17.2%) 24196 (82.8%)
PFO A /PFO S 6331 95 (1.5%) 6236 (98.5%)
Transgenerational 48638 765 (1.6%) 47873 (98.4%)

SW IFT (HOWARD et al., 2016) 92262 5861 86401

Tabela 3: Distribuição de rótulos para cada respectivo banco de dados.
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A analise da distribuicao da contagem de tokens foi realizada considerando a li- 

mitacao de 512 to k e n s  como entrada para o modelo base S P E C T E R  (COHAN et a l., 

2020), que recebe como entrada a concatenacao do título e do resumo de cada artigo. O 

maior banco de dados analisado, T ran sg e rac io n a l, apresenta um número significativo 

de outliers, especialmente entre os textos classificados como exclu íd o s  (-1), que frequen­

temente ultrapassam  esse limite, conforme indicado pelo boxplot vermelho na Figura 11. 

De modo geral, ao analisar a distribuiçcãao dos tokens nos diferentes bancos de dados e suas 

respectivas classes, observa-se que 75% dos te x to s  de  e n tra d a  p e rm a n e c e m  d e n tro  

do  lim ite  do  m odelo , com apenas alguns exemplos necessitando de truncam ento para 

viabilizar sua utilizaçcãao.

Figura 11: Distribuicao de tokens para cada banco de dados.

Em bora os bancos de dados contenham terminologia específica de suas respecti­

vas áreas de pesquisa, a segmentacao realizada pelo tokenizador permite que o modelo 

interprete os textos de forma adequada, sem a necessidade de um vocabulaírio especiali­

zado para cada domínio. Dessa forma, a capacidade maxima de 512 to k e n s  dos modelos 

T ra n s fo rm e rs  e utilizada para gerar representacoes vetoriais contextualizadas do título
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e do resumo concatenados. Essas representações sao extraídas a partir do token especial 

[CLS] e posteriormente empregadas na tarefa de classificação, utilizando um modelo de 

re g re ssã o  lo g ís tica  em conjunto com aprendizado contrastivo.

4.2 A nálise exploratória do m odelo e treinam ento contrastivo

O modelo Transformer S P E C T E R  (COHAN et al., 2020), utilizado neste estudo, 

foi inicialmente pré-treinado por meio de um treinam ento contrastivo. Esse processo 

teve como objetivo aproximar vetores semanticamente semelhantes e afastar aqueles sem 

correlacão, utilizando a representaçao vetorial de 768 d im en sõ es, gerada como saída do 

modelo a partir do token de entrada [CLS]. Dessa forma, o modelo estabelece um espaco 

semântico inicial capaz de contextualizar a estru tura dos textos de entrada.
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Figura 12: Visualização T-SNE dos vetores [CLS] de cinco bancos de dados utilizando o modelo 
SPECTER: (1) NSAIDS, (2) Neuropain, (3) Oral Hypoglycemics, (4) Statins e (5) Antihistamines.
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Para avaliar a capacidade inicial do espaçco semaântico criado pelo modelo de 

base, foram selecionados 300 exemplos por classe em cinco bancos de dados escolhidos 

aleatoriamente. Cada exemplo foi representado pela concatenaçcãao do título com o resumo 

do respectivo artigo, respeitando o limite de 512 tokens.

Os rotulos foram atribuídos conforme a origem dos exemplos em cada banco de 

dados. No caso do banco Antihistamines, por exemplo, os índices 5 e -5 foram usados 

para representar, respectivamente, os exemplos incluídos (1) e excluídos (-1). Essa cate- 

gorizaçcaão foi m antida para os demais bancos de dados, permitindo a comparacçãao entre 

classes e entre bancos distintos.

Para visualizar as representacães geradas pelo modelo, utilizou-se o metodo de 

reduçao de dimensionalidade t-SNE (MAATEN; HINTON, 2008) para projetar os vetores 

de 768 dimensoes, obtidos a partir do token [CLS], em um espaco bidimensional. A 

Figura 12 apresenta o resultado dessa projeçao, onde observa-se que os pontos exibem 

agrupamentos semanticos coerentes entre os diferentes bancos de dados.

Entretanto, ao analisar a separacçãao entre as classes dentro de cada banco, nota-se 

que o modelo naão consegue distingui-las de forma eficiente. Esse problema íe particular­

mente evidente no banco Antihistamines, onde exemplos incluídos e excluídos nãao apre­

sentam separaçcaão clara no espaçco vetorial. Esse comportamento sugere que, embora o 

modelo capture a estru tura semantica geral dos textos, ele nao diferencia adequadamente 

os exemplos pertencentes a classes opostas dentro de um mesmo banco de dados.

Para um a anílise mais detalhada da capacidade da representaçao semântica re­

sultante do token [CLS] do modelo de base e sua adaptabilidade na separaçcãao das classes, 

utilizou-se o banco de dados N S A ID S , com 16 ex em p lo s  de  tre in o  (8 por classe) e 

um a am ostra de validaçao composta por 360 ex em p lo s, sendo 41 in c lu íd o s  (1) e 319 

ex c lu íd o s  (-1), organizados conforme essa ordem.

A Figura 13 ilustra o desempenho da representacão gerada pelo modelo antes do 

treinam ento contrastivo nas imagens (a) e (c). A imagem (a), obtida por meio da reducao 

de dimensionalidade t-S N E , indica que o modelo nao conseguiu capturar visualmente 

a separaçao semantica entre as classes dentro do banco de dados. Ja  a imagem (c), 

que representa a matriz de similaridade do cosseno dos índices organizados conforme 

especificado, revela um a alta correlaçcãao entre exemplos de diferentes classes, evidenciando 

a dificuldade do modelo em distinguir padroes semânticos antes do ajuste fino.

Por outro lado, ap ís  o ajuste fino da Fase 1, observa-se na imagem (b) que o 

modelo passa a agrupar os exemplos de acordo com suas classes rotuladas. Esse com­
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portam ento e reforçado na imagem (d), onde a similaridade entre exemplos da mesma 

classe atinge valores superiores a 0,75, especialmente para a classe (-1), nos índices de 

42 a  360. No entanto, para os índices de 1 a  41, que representam a classe (1), algu­

mas amostras foram erroneamente classificadas como negativas, apresentando valores de 

similaridade proximos a -0 ,75, sugerindo um agrupamento indevido com a classe -1.

Figura 13: Visualização T-SNE dos vetores [CLS] do banco de dados NSAIDS antes e depois do ajuste 
fino. As imagens (a) e (b) representam, respectivamente, a distribuiçao dos vetores antes e após o 
treinamento contrastivo. As imagens (c) e (d) exibem a matriz de similaridade do cosseno entre os

exemplos antes e depois do ajuste fino.

Para avaliar a eficacia do modelo em termos de economia de trabalho, utilizou- 

se um m o d e lo  de  re g re ssão  lo g ís tic a  treinado com a representacao vetorial do token 

[CLS] gerada pelo modelo Transformer antes e depois do ajuste fino da Fase 1, mantendo 

os mesmos 16 ex em p lo s  de re fe ren c ia . Na Figura 14, a imagem (a) apresenta a 

distribuiçao das classes antes do treinamento contrastivo no espaço entre 0 e 1, projetado 

pelo modelo de regressao logística. Nota-se que o modelo de base, sem ajuste, já  consegue
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criar um a representação semântica com um a distinção inicial entre as densidades das 

classes 1 e -1, conforme indicado pelas curvas “D e n sid a d e  1” e “D e n s id a d e  -1 ” .

Figura 14: Curvas normalizadas da densidade de probabilidade e densidade acumulada (estrelada) das 
representações vetoriais do token [CLS] pelo modelo Transformer para o banco de dados NSAIDS antes 

(a) e depois (b) do ajuste fino, utilizando a regressao logística ajustada no conjunto de treino.

Comparando com o modelo ajustado conforme a especificacao da Fase 1, a ima­

gem (b) da Figura 14 m ostra que a distribuicão das densidades indica um a separaçao mais 

definida, posicionando os exemplos de validacao mais próximos dos extremos 0 e 1 da 

regressao logística. Alem disso, ao analisar a fu n cao  de  so b re v iv en c ia  (definida como

1 m en o s a  fu n çao  a cu m u lad a ), percebe-se que a separacão entre as classes e mais 

evidente da imagem (a) para a (b). Esse comportamento sugere que o modelo, apos o 

treinam ento contrastivo, apresenta maior confianca na classificacão dos exemplos, corro­

borando as analises apresentadas na Figura 13, onde as imagens (a) e (c) ilustram  o estado 

antes do treinamento, enquanto as imagens (b) e (d) representam o comportamento apos

o ajuste fino da Fase 1.

Entretanto, ao avaliar o desempenho do modelo pela m etrica A W SS@ 95% , 

m antendo 95%  dos ex em p lo s  re lev an te s , observa-se que o modelo treinado conse­
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guiu excluir 21,3%  dos exemplos irrelevantes, enquanto o modelo sem ajuste contrastivo 

apresentou um desempenho superior, excluindo 28,9%  dos exemplos irrelevantes.

Em bora o ajuste fino tenha melhorado a separacao semântica, a regressao logística 

treinada com os 16 ex em p lo s  de  re fe re n c ia  sobre as representacoes vetoriais do mo­

delo S P E C T E R  sem ajuste apresentou melhor desempenho no banco N S A ID s. Esse 

resultado indica que, apesar de o modelo apresentar maior confianca na clusterizacão dos 

exemplos, a metrica A W SS@ 95%  revela que, ao a justar o limiar para atender a esse 

criterio, mais exemplos irrelevantes acabam sendo erroneamente incluídos apos o ajuste 

fino, reduzindo a eficiencia do modelo na economia de trabalho.

4.3 A nalise de O tim izacao

A avaliacao do desempenho do modelo e essencial para garantir sua escalabili- 

dade e viabilidade em aplicações praticas. A escolha de tecnicas de otimizacao im pacta 

diretamente a eficiâencia computacional e a qualidade dos resultados. Para m ensurar es­

ses efeitos, foram conduzidos experimentos comparando diferentes precisãoes numíericas 

durante o treinam ento e a inferência do modelo.

P re c isa o T re in a m e n to In fe re n c ia  G P U In fe re n c ia  C P U
FLOAT32
BFLOAT16
FLOAT16
INT8

132s ±  0.10 (1x) 
40s ±  0.10 (3.3x)

0.72s ±  0.10 (1x)

0.32s ±  0.07 (2.4x) 
0.15s ±  0.04 (4.8x)

10.92s ±  0.21 (1x)

19.86s ±  0.22 (0.55x) 
6.38s ±  0.31 (1.7x)

Tabela 4: Latencia em diferentes tipos de precisao para inferência e configuracao do treinamento 
contrastivo especificado na Fase 1. Para o treinamento contrastivo, foram utilizados 1280 pares de 

exemplos contrastivos, cada um com 512 tokens, treinados por 2 epocas com lotes de 16 exemplos. Para 
a inferência, utilizou-se um lote de 32 exemplos, tambem com 512 tokens.

A Tabela 4 apresenta as estatísticas de desempenho do treinamento na Fase 1. 

Ao empregar a precisao B F L O A T 16, observa-se uma re d u c ã o  s ig n ifica tiv a  no te m p o  

de  tre in a m e n to , resultando em um desempenho 3,3 vezes s u p e r io r  em comparacao a 

precisao FL O A T 32. Com um  nível de confiança de 95% , nao foi identificada diferença 

estatisticam ente significativa no valor final da funcao de perda, conforme verificado por 

um te s te - t ,  em relaçao à inicializacao padrâo dos modelos em FL O A T 32.

No que se refere a inferência, utilizando um lote de 32 exem p lo s, cada um 

contendo 512 to k en s, a execução na G P U  com precisão F L O A T 16  apresentou uma 

re d u c a o  d e  2,4 vezes n a  la te n c ia  em relacão a FL O A T 32. No entanto, ao realizar 

a inferência na C P U , a precisao F L O A T 16  resultou em um a latencia aproximadamente
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d u a s  vezes su p e r io r  a obtida com FL O A T 32. Esse comportamento pode ser atribuído 

a o tim izacao  d a  a r q u i te tu r a  d a  C P U , que processa de forma mais eficiente precisoes 

específicas e príe-determinadas.

Para valores de menor precisao na C P U , como IN T 8 , utilizando q u a n tiz a c a o  

d in â m ic a  — na qual apenas os pesos sao quantizados, enquanto os valores de ativacao 

permanecem em F L O A T 32 — , obteve-se um a re d u c ã o  s ig n ifica tiv a  d a  la ten c ia , com 

um desempenho ate 70% su p e r io r  em relacao a FL O A T 32. Na G P U , essa melhoria foi 

ainda mais expressiva, resultando em um a inferência 4 ,8  vezes m ais  ra p id a , com uma 

latencia de apenas 0,15 segundos. Considerando o T D P  como um a m etrica aproximada 

do consumo energíetico, conforme apresentado na Tabela 2, verifica-se que a G P U  e m ais 

e fic ien te  p a ra  in fe rên c ia , um a vez que sua a r q u i te tu r a  o tim iz a d a  p a ra  o p e raçõ es  

m a tr ic ia is  proporciona menor latencia e maior economia de energia em comparacao a 

CPU.

S P E C T E R L o R a
P re c isa o 110M  (100% ) 36.864 (0 ,03% )

32 bits 420 MB 144 KB (0,14 MB)
16 bits 209 MB 72 KB (0,07 MB)
8 bits 104 MB 36 KB (0,035 MB)
4 bits 52 MB 18 KB (0,018 MB)

Tabela 5: Consumo de recursos computacionais em diferentes precisoes para o modelo SPECTER e os
módulos LoRa.

A alocacao de recursos computacionais para o modelo de base utilizado neste 

estudo e diretamente influenciada pela precisao dos pesos, impactando significativamente 

a demanda por armazenamento e processamento. Como ilustrado na Tabela 5 , a precisao 

original do modelo S P E C T E R , que contem 110 m ilh ães  de  p a râ m e tro s , consome 

aproximadamente 420M B . Esse valor pode ser considerado elevado para dispositivos com 

restricoes de memoria, como d isp o s itiv o s  m oveis. Entretanto, ao reduzir a precisão dos 

pesos, e possível obter reducoes de ate 8 vezes no consumo de memoria, como no caso 

do modelo quantizado em 4 b its .

Por outro lado, ao analisar os modulos L oR a, conforme a configuracão da Fase

1 do  tre in a m e n to  c o n tra s tiv o , observa-se um a reduçao expressiva no numero de 

parâm etros treinaveis necessírios para o ajuste fino. Esses modulos representam me­

nos de 0,1%  do tam anho do modelo base, proporcionando um armazenamento altamente 

eficiente para o acervo de habilidades adaptadas, atingindo um tam anho reduzido de ape­

nas 18 K B  (0 ,018 MB). Essa característica possibilita a transmissao eficiente dos modulos
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por redes de comunicaçao, alem de viabilizar seu armazenamento tanto  em dispositivos 

com baixa capacidade computacional quanto em grandes bancos de dados de habilidades, 

sem im pactar significativamente o consumo de recursos em datacenters.

Alem da análise da la té n c ia  e do consumo de ré c u rso s  c o m p u ta c io n a is , avaliou- 

se a capacidade do modelo base e o impacto da otimizacao especificada na Secão 3.2.2.3. 

Para isso, analisaram-se as configurações da Fasé 1 do  tré in a m é n to  c o n tra s tiv o , u ti­

lizando os mesmos 16 exemplos de referencia para treinar o modelo de regressao logística 

sobre as representacães vetoriais do token [CLS] desses exemplos, conforme determinado 

na Fase 2, em cada um dos 20 b an co s  d é  dad o s. A p é rfo rm a n c é  dessas representacoes 

foi medida antes e depois do ajuste fino com L oR a, por meio da m é tr ic a  AW SS@ 95% , 

com o objetivo de avaliar a capacidade do modelo base de é x p a n d ir  su as  h ab ilid a d és  em 

diferentes topicos de revisoes sistematicas da literatura. Os resultados dessa comparacao 

sao apresentados na Figura 15.

Conforme ilustrado na Figura 15, ao m anter 95% dos exemplos relevantes na clas­

sificação, conforme a m etrica adotada, o modelo S P E C T E R , identificado como “B asé” , 

apresentou um desempenho satisfatorio no conjunto de bancos de dados do S W IF T , des­

crito na Tabela 3, reduzindo em mais de 70% a quantidade de documentos irrelevantes. 

No entanto, em alguns cenarios, o ajuste fino nao proporcionou melhorias significativas na 

metrica, como observado no caso do N S A ID S , descrito anteriormente na Secao 2.3.4.2. 

Aláem disso, em situacçãoes extremas, como no banco de dados E s tro g é n s , a máetrica de 

trabalho salvo d im in u iu  dé  35%  p a ra  12%, evidenciando limitacoes na adaptacao do 

modelo a determinadas bases de dados.

Apás o ajuste fino do treinam ento contrastivo utilizando L oR a, aplicou-se, pa­

ralelamente, a q u a n tiz a c ã o  d in â m ic a  ém  4 b its  e a p o d a  W an d a , sendo esta últim a 

responsavel por zerar 50%  dos pésos. Esses metodos sao referenciados, respectivamente, 

como “Q u a n t. 4 B it” e “P r u n é ” . Utilizando o modelo de regressao logística gerado pelo 

ajuste fino, os resultados indicam que, em diversos bancos de dados, ha um a degradacao 

na m etrica A W SS@ 95%  em comparacao com os valores obtidos pelo ajuste L o R a  e pelo 

modelo base. No entanto, de forma surpreendente, em alguns casos, a máetrica apresenta 

recuperaçao de desempenho ou ate mesmo um a melhoria em relacao ao ajuste fino. Esse 

fenomeno e observado, por exemplo, nos bancos de dados “U rin a ry  In c o n tin é n c é ” e 

“O p io id s” , ao empregar a tecnica de poda. No banco “O p io id s” , a m etrica de trabalho 

salvo atinge aproximadamente 50% , superando os 40%  do ajuste fino. Comportamento 

semelhante e identificado em outros bancos ao utilizar a quantizaçao, como nos casos de 

“P F O S -P F O A ” e “C a lc iu m  C h a n n é l B lo ck érs” . De m aneira geral, o modelo base
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Figura 15: Metrica AWSS@95% para diferentes tecnicas de otimizacão por banco de dados.

apresenta um desempenho inicial mais robusto quando comparado aos resultados obtidos 

das tecnicas de ajuste fino e dos metodos de otimizaçao propostos. Em 10 dos bancos 

de dados analisados, essas tecnicas resultaram  em melhorias de desempenho; entretanto, 

nos outros 10 casos, verificou-se ao menos um a ocorrência de degradacao em relacao ao 

desempenho na míetrica pelo modelo de base.

Por fim, considerando os cinco bancos de dados com os melhores resultados na 

míetrica AW SS@ 95% , conforme apresentado na Figura 15, realizou-se uma analise ex­

ploratória para avaliar o impacto da combinacao de multiplas habilidades ao longo do 

tempo. Partiu-se da hipotese de que, caso o modelo base fosse ajustado para aprender 

e acumular diferentes habilidades por meio do ajuste fino, seria possível consolidar essas 

representacoes em um ín ico  modelo híbrido, utilizando a c o m p o s to  dos m ídulos L o R a  

em um a estru tura unificada, preservando a performance específica de cada tarefa.

Para esse experimento, adotou-se a metodologia descrita na Secao 2.3.4.3, que 

viabiliza a combinacao dos modulos. A configuraçao do ra n k  foi definida como 8 para os 

novos modulos A  e B  do LoRa híbrido, permitindo a fusao das representações vetoriais
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adquiridas pelo modelo ajustado em diferentes bancos de dados.

• Classe -1 • Classe -2 • Classe -3 • Classe -4 • Classe -5
Classe 1 • Classe 2 • Classe 3 • Classe 4 • Classe 5

(c) (d)

Figura 16: Visualizacao T-SNE dos vetores [CLS] de cinco bancos de dados utilizando o modelo 
SPECTER. Os bancos considerados sao: (1) ADHD, (2) BPA, (3) Fluoride, (4) PFOS-PFOA e (5) 

Transgenerational. A subfigura (a) apresenta o modelo sem ajuste fino, enquanto a subfigura (b) exibe 
o modelo ajustado por meio da abordagem híbrida. As matrizes de similaridade do cosseno para o 

banco de dados PFOS-PFOA sao apresentadas nas subfiguras (c) e (d), representando, respectivamente, 
os resultados após o ajuste fino convencional e a composicao híbrida.

Na Figura 16, onde amostras de validacao composta por 360 ex em p lo s  para 

cada banco de dados, a subfigura (a) apresenta o espaço vetorial do modelo base antes 

de qualquer ajuste, considerando os cinco bancos de dados analisados. Em contrapar­

tida, a subfigura (b) exibe a projecao resultante da composicao híbrida dos modulos de 

habilidades, utilizando a tecnica t-SNE. Embora a visualizaçao ocorra em um espaço bi­

dimensional, observa-se que, na subfigura (b), o modelo passa a promover uma melhor 

separacao das classes dentro de cada banco de dados, mantendo, ao mesmo tempo, uma 

distinção global entre os diferentes bancos. Esse efeito pode ser notado, por exemplo, no 

banco “P F O S -P F O A ” , onde as classes 4 e -4, correspondentes aos rótulos in c lu íd o  (1) 

e ex c lu íd o  (-1), tornam-se mais claramente diferenciadas ap ís a composicao híbrida.

Na imagem (c), apresenta-se a m a tr iz  de  s im ila r id a d e  cosseno  para o banco
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de dados P F O S -P F O A , utilizando o resultado do a ju s te  fino correspondente à Fase 1. 

Para os índices de 1 a  80, que representam instancias dos rotulos in c lu íd o  (1) e ex clu ído  

(-1), a similaridade entre os vetores e aproximadamente 1, indicando a l ta  sem e lh a n ça  

entre instâancias da mesma classe. Em contrapartida, ao comparar instaâncias de ro tu lo s  

d is tin to s , essa relacao se aproxima de -1, refletindo a separaçao entre os grupos.

Ao comparar esse resultado com a imagem (d), que representa os mesmos exem­

plos utilizando a representaçcãao vetorial do modelo resultante da composiçcãao híbrida, 

observa-se que a m a tr iz  d e  s im ila rid a d e  m antem  um a estru tura semelhante à da matriz 

(c). No entanto, os valores de similaridade nãao permanecem p e rfe ita m e n te  p ro x im o s 

de 1 e -1, como anteriormente. Em vez disso, os valores para in s tâ n c ia s  d a  m esm a  

c lasse  situam-se em torno de 0,8, enquanto para in s ta n c ia s  de  c lasses d is tin ta s  variam 

entre -0 ,25 e 0,25, aproximando-se de um a co n fig u racao  o rto g o n a l.

AWSS@95%
Banco de Dados Híbrido LoRa base

ADHD 0.78 0.77 0.71
BPA 0.71 0.73 0.71
Fluoride 0.82 0.80 0.77
PFOS-PFOA 0.70 0.67 0.65
Transgenerational 0.50 0.47 0.49

Tabela 6: Comparacao entre abordagens e os valores do AWSS@95% para os 5 melhores desempenhos
do modelo.

Ja  na T a b e la  6 , e apresentada um a c o m p arac a o  de  d e se m p e n h o  entre os 

modelos utilizando a m etrica de trabalho salvo (AWSS@95%). A avaliacão foi realizada 

considerando os mesmos modelos de classificacao resultantes do ajuste fino da Fase 1 

com LoRa, específicos para cada base, aplicados para rotular os vetores gerados pelo 

modelo “H íb r id o ” e pelo modelo L oR a, comparando-os com a rotulagem do modelo de 

classificaçcãao treinado sobre as representaçcãoes sem ajuste do m o d e lo  base.

Os resultados indicam que, com exceçao do banco de dados B P A , todos os de­

mais apresentam p e q u e n a  m e lh o ra  n a  m e tr ic a  AW SS@ 95% . Esse efeito pode ser 

atribuído ao p ro cesso  de  re g u la riz ac a o  decorrente da p ro x im id a d e  d a  o rto g o n a li-  

d a d e  e n tre  as classes, como analisado na Figura 16 imagem (d).
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5 D iscussao e Trabalhos Futuros

Conforme apresentado na Secao 4.2, o modelo base demonstrou boa capacidade 

de representaçcãao vetorial dos textos entre diferentes bancos de dados, como ilustrado 

na Figura 12. No entanto, essa representacão nao capturou agrupamentos locais entre 

classes dentro de um mesmo banco de dados. Com a aplicacão do ajuste fino baseado 

em aprendizado contrastivo, o modelo aprimorou a separacao dessas classes, conforme 

evidenciado na Figura 13. Esse efeito tam bem  foi observado na regressão logística, onde 

as densidades dos exemplos convergiram para valores extremos, conforme demonstrado na 

Figura 14. Entretanto, ao aplicar a mesma metodologia a diferentes bancos de dados, naão 

houve melhora significativa na metrica de trabalho salvo, conforme indicado na Figura

15.

Esses resultados sugerem que o treinam ento contrastivo reforça a similaridade en­

tre exemplos de um a mesma base, promovendo agrupamentos mais coesos (13d). Contudo, 

ao m anter 95% dos artigos relevantes na m etrica de trabalho salvo, podem ser adicionados 

exemplos irrelevantes próximos ao limiar de classificacao na regressao logística.

Por outro lado, as tecnicas de otimizacão aplicadas ao modelo, como quantizaçao 

e poda de parâmetros, nao comprometeram significativamente o desempenho da metrica 

apos o ajuste contrastivo. Alem de reduzir a carga computacional, perm itiram  compactar 

o modelo em ate oito vezes, reduzindo seu tam anho de 420MB para apenas 52MB, o que 

e essencial para hardware com restricoes de capacidade. Essa compactaçao viabiliza a 

implementacao do modelo em dispositivos especializados, servidores remotos e acervos de 

modelos base, sem prejuízo significativo no desempenho. Alem disso, os modulos LoRa 

utilizados neste estudo representam menos de 0,1% do to tal de parâmetros, exigindo ape­

nas 144KB de armazenamento, podendo ser reduzidos para 18KB com 4 bits de precisao. 

Isso possibilita um a transferencia eficiente de conhecimento entre servidores e usuários, 

permitindo a adaptaçcãao de um modelo base para diferentes contextos com baixo custo 

computacional. Essa flexibilidade fomenta um ecossistema modular, onde habilidades 

específicas podem ser adicionadas e distribuídas de m aneira eficiente.

A aplicaçao da metodologia descrita na Secao 2.3.4.3 nos cinco melhores mode­

los, segundo a m etrica AWSS@95%, demonstrou que e possível preservar habilidades do 

modelo base enquanto se incorporam novas especializacçãoes. Como ilustrado na Figura

16, essa abordagem resulta na formaçao de agrupamentos mais estruturados e melhor 

separacao de classes dentro de cada banco de dados. Esse efeito tam bem  e observado na 

matriz de similaridade, que se mantem estível na transicao do modelo ajustado para o
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híbrido (16c e 16d). Embora o modelo híbrido perca parte da confianca absoluta na clas- 

sificaçao, ele m antem  representacoes semanticas bem definidas. Essa abordagem viabiliza 

um ecossistema de habilidades especfficas, onde mádulos podem ser ativados conforme 

necessario, aumentando a eficiencia computacional, especialmente em hardwares especia­

lizados para computacçãao paralela, como GPUs. Dessa forma, otimiza-se o uso dos recursos 

computacionais, reduzindo o consumo energáetico e promovendo maior sustentabilidade.

Vale destacar que novas representaçcãoes vetoriais foram adquiridas com apenas 

oito exemplos por classe e tempo reduzido de processamento, tornando essa aborda­

gem sustentavel para a especializacao de modelos. Assim, o custo computacional dessas 

adaptacoes e insignificante para servidores especializados, permitindo sua aplicacao em 

contextos específicos e facilitando a democratizacao do conhecimento científico de forma 

acessável e eficiente.

Diante dos achados deste estudo, a aplicabilidade de modelos base transcende a 

simples otimizaçcaão de desempenho. Futuras pesquisas podem explorar o uso desses mo­

delos para otimizar revisoes sistematicas, reduzindo custos e carga de trabalho na selecão 

de referencias relevantes para pesquisas cientificas. A otimizaçao do trabalho salvo pode 

ser aprimorada combinando abordagens de aprendizado contánuo e modelos compactos 

especializados para extracao autom atizada e analise de padrães em artigos científicos. 

Essa estrategia permite a construçao de um repositorio dinamico de conhecimento, no 

qual máodulos especializados podem ser atualizados continuamente sem necessidade de 

re-treinamento completo, viabilizando um ecossistema evolutivo de IA aplicada à ciencia.

Em bora os resultados obtidos apresentem diversas perspectivas promissoras, al­

gumas limitacçoães foram identificadas na configuraçcaão de treinam ento utilizada. Para 

aprimoramentos futuros, sugere-se a exploraçcãao de novos regimes de ajuste fino, como a 

destilacao de conhecimento em modelos Transformer, conforme proposto por Wang et al. 

(2020b). Essa tecnica pode perm itir um a compactacao ainda mais eficiente do modelo, 

m antendo sua eficácia em tarefas especficas.

Por fim, considerando o crescente interesse na sustentabilidade e na reducçãao da 

pegada de carbono, futuras pesquisas devem incorporar máetricas de impacto ambiental no 

treinam ento e uso de modelos de IA. Estudos recentes Patterson et al. (2021), Strubell, 

Ganesh e McCallum (2019), Dodge et al. (2022) ressaltam a im portancia de avaliar as 

emissoes de carbono, promovendo praticas mais sustentaveis na área. A exploracão de 

novos regimes de ajuste fino e a avaliacao direta das tecnicas de otimizacao sobre o modelo 

base, sem adaptaçcãoes adicionais, representam caminhos promissores para aprim orar a 

aplicabilidade da inteligencia artificial em benefício da sociedade e do meio ambiente.
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6 Conclusão

Este estudo explorou diversas tecnicas e metodologias para aprimorar modelos 

de aprendizado profundo, visando melhorar sua eficiencia e adaptabilidade em diferentes 

contextos. Ao longo da pesquisa, foi investigado desdes os componentes basicos de modelos 

de redes neurais artificiais, ate metodos de ajuste fino eficientes, otimizacao e hibridacao 

de modelos, alem de avaliar sua aplicabilidade em um a variedade de conjuntos de dados 

de revisao sintemática da literatura e estru turar o conhecimento de modelos base pela 

arquitetura Transformers.

Observamos que, embora que as configuracães de treino empregadas para a abor­

dagem de ajuste fino do modelo não tenham  obtido sucesso na metrica de trabalho salvo 

em todos os cenáarios avaliados, este abriu portas para um a sáerie de possibilidades de me­

lhoria e inovacão. A análise qualitativa e quantitativa dos metodos de otimizacao revelou 

insights valiosos sobre o desempenho e a robustez dos modelos, fornecendo um novo para­

digma para o desenvolvimento de aplicacoes baseadas em IA, ressaltando a im portancia 

de um ecossistema rico de habilidades específicas para os modelos e sustentáveis, trazendo 

benefácios tanto  para a sociedade quanto para a preservaçcãao da natureza.

Dessa forma, este trabalho oferece um a c o n tr ib u to  significativa para o campo 

da inteligencia artificial, incentivando a continuidade da pesquisa e desenvolvimento de 

solucoes que atendam  às necessidades da sociedade de forma etica, eficiente e sustentável.
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