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Resumo

Este estudo investiga a sustentabilidade de aplicacbes em aprendizado profundo,
com enfase na eficiencia computacional e especializacao de modelos, explorando a arquite-
tura Transformer e tecnicas de otimizacao para aprimorar sua eficiencia e adaptabilidade,
tornando essas tecnologias mais acessiveis e alinhadas as necessidades humanas e ambi-
entais. Destaca-se a importancia de um ecossistema flexivel, no qual modelos podem ser
treinados, otimizados e compartilhados de forma sustentavel. Para isso, realizou-se um
estudo de caso sobre a triagem de artigos relevantes, utilizando apenas oito exemplos
por classe em 22 bases de dados de revisoes sistematicas da literatura. Foram avaliadas
tecnicas de otimizacao, como poda, quantizacao e composto eficiente de habilidades
ajustadas, aplicadas ao ajuste fino do modelo Transformer SPECTER, empregado para
a representacdo semantica de trechos de textos cientificos. O desempenho foi mensurado
pela metrica quantitativa de trabalho salvo. Os desafios identificados ressaltam a necessi-
dade de explorar novos regimes de treinamento para aprimorar a adaptabilidade dos mo-
delos e desenvolver estrategias para mensurar o impacto ambiental do uso continuo dessas
tecnologias. Alem disso, discute-se o papel da eficiencia computacional na promocao de
avancos cientificos, otimizando pipelines de uso continuo para prototipagem de solucoes e
integrac6o de conhecimento interdisciplinar de solucoes baseadas em revis@es sistematicas

da literatura.

Palavras-chave: aprendizado profundo. sustentabilidade. eficiencia computacio-

nal. Transformer. otimizacao de modelos. representacao semantica. reviséo sistematica.
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8 Introducao

1 Introducao

1.1 Contextualizacao

Em um momento em que a conscientizacao sobre as mudancas climéticas e a
necessidade de reduzir as emissoes de gases de efeito estufa estao no centro das discussdes
globais, e crucial desenvolver estrategias que reduzam o impacto ambiental. Com algorit-
mos cada vez mais avangados e um poder computacional crescente, modelos de inteligencia
artificial (IA) tem se revelado uma ferramenta poderosa em alcancar feitos impressionan-
tes, seja na previsao de estruturas proteicas para o desenvolvimento de remedios ou ate
metodos computacionais basicos como multiplicacGes matriciais mais eficientes, revoluci-
onando diversas descobertas em areas de pesquisa e aplicacoes (JUMPER et al., 2021;
FAWZI et al., 2022). Mas a medida que a IA se torna mais presente em nosso cotidi-
ano, surgem preocupacdes sobre regulamentacoes adequadas, governanca etica, eficiencia

energetica e sustentabilidade no desenvolvimento de aplicagoes baseadas em IA.

Ao longo dos anos, as redes neurais profundas tem desempenhado um papel fun-
damental como modelos basicos, dotados de habilidades especificas, e tem contribuido
para a criacao de um ecossistema que viabiliza a construcao de modelos mais complexos
por meio da modulacao desses modelos. Tornaram-se indispensédveis para a inteligencia
artificial (1A) moderna. No entanto, tais modelos demandam uma quantidade significa-
tiva de recursos computacionais, requerendo no manimo trilhoes de operagoes de ponto
flutuante (FLOPs) para seu treinamento e utilizacao em tarefas de inferéncia (ROSER;
RITCHIE; MATHIEU, 2023). O uso de GPUs (Unidades de Processamento Grafico) tem
sido crucial para acelerar tanto o treinamento quanto a inferéncia desses modelos de IA,
devido a capacidade desses dispositivos de realizar calculos intensivos de forma paralela,

atingindo grandes quantidades de FLOPs.

O uso destas GPUs desperta a preocupacoes quanto ao consumo de energia e
emissdoes de CO2 no qual medigcOoes precisas & uma tarefa desafiadora devido a fatores
como a infraestrutura eletrica local, hardware utilizado, tornando a comparacao entre
as pesquisas desses modelos difaceis (PATTERSON et al., 2021; STRUBELL; GANESH,;
MCCALLUM, 2019; DODGE et al., 2022). Um estudo publicado em 2022 (LUCCIONI;
VIGUIER; LIGOZAT, 2022) estimou que o treinamento do modelo GPT-3 (BROWN et
al., 2020) de 175 hilhdes de parametros gerou aproximadamente 552 toneladas de emissoes
de CO2, equivalente a quase dez vezes a vida util de um carro medio. O processo em

guestao ocorreu ao longo de aproximadamente 15 dias, empregando 10.000 GPUs V100 e
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envolvendo uma quantidade significativa de energia e calculos de ponto flutuante (FLOPS).
Estima-se que tenham sido consumidos cerca de 1,285 MWh de energia, juntamente com
um total de 3,14 x 102 FLOPs, nao levando em conta a busca por hiperparametros
e variacoes de tamanho do modelo. Tambem neste estudo, verificou-se que o modelo
BLOOM (WORKSHOP et al., 2023) conseguiu gerar 10 vezes menos toneladas de CO2 em
comparacao ao GPT-3. Esse resultado impressionante foi alcancado ao treinar o modelo
por 118 dias, utilizando servidores com recursos inteligentes de economia de energia e 0
uso de energia renovOvel, mais precisamente energia nuclear. Essa escolha consciente de
treinamento ajudou a minimizar consideravelmente o impacto ambiental do treinamento

do modelo, resultando em uma pegada de carbono substancialmente menor.

Mesmo que seja relativamente substancial as emissdoes de carbono do treino de
modelos de fundacao proveniente de GPUs, como no exemplo para o GPT e BLOOM,
uma iniciativa financiada pela National Science Foundation (NSF) do EUA, demonstra
que para estes mesmos modelos, ao comparar um escritor humano que utiliza desktop ou
laptops contra IAs geradoras de texto usada em escala, produzem 130 a 1400 vezes menos
CO2 por uma pagina escrita. Este mesmo estudo tambem faz referencia a IA geradora de
imagens em escala que resulta em 310 a 2900 vezes menos CO2 por imagem criada. Assim,
este estudo demonstra que para concretizar o potencial transformador de tecnologias
baseadas na IA moderna, existe a necessidade de desenvolver novas narrativas culturais
e tecnoldgicas em escala para que se alinhem em um futuro sustentavel juntamente com
0 desenvolvimento de novas abordagem de energia limpa (TOMLINSON et al., 2023;
TOMLINSON; TORRANCE; RIPPLE, 2023).

1.2 Motivacao

Uma potencial aplicacao de IA se baseia em modelos de fundacao em linguagem
natural de grande porte (Large Language Models - LLMs) como um componente basico na
construcdo de softwares generalizaveis e adaptoveis. A escolha destes modelos se justifica
pela interpretabilidade e riqueza da linguagem humana em descrever tarefas complexas e
abstratas por meio das palavras ou programas, facilitando a comunicagcdao do usudario entre
diversas aplicaccdoes sob a mesma interface no qual o LLM atua como orquestrador. Alguns
estudos tem demonstrado que estes modelos tem fortes habilidades em adaptacao para a
inicializacao em diversos dominios, dentre os quais implementacoes como no controle de
tomadas de decisoes de tarefas roboticas em sistemas fisicos ou virtuais (BROHAN et al.,
2023; DING et al., 2023; XIE et al., 2023b). Dessa forma, essas aplicacdes potencializam a
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criacao de Agentes de Inteligencia Artificial que se aproximam cada vez mais da chamada
Inteligencia Artificial Geral (Artificial General Intelligence - AGI), promovendo avancos

significativos em varias areas de pesquisa e de aplicacao.

A compreensdao profunda das representagccdoes da linguagem humana por esses mo-
delos emerge como um fator essencial para impulsionar o desenvolvimento de sistemas de
IA mais avancados. Nesse contexto, o0 GPT-4 da OpenAl (OPENAI, 2023) demonstra ha-
bilidades impressionantes, comparaveis as humanas em jogos interpretativos, incluindo a
teoria da mente. Essa teoria avalia a capacidade do ser humano de atribuir representac¢does
independentes a si mesmo e aos outros, o que implica na habilidade de compreender e
atribuir estados mentais, como crencas, emocdes e intencdes. Essa capacidade, por sua
vez, contribui para a previsao de comportamentos sociais mais complexos (GANDHI et
al., 2023; BUBECK et al., 2023).

No entanto, a medida que os sistemas baseados em inteligencia artificial (1A)
ganham espaco, com os LLMs atuando como os orquestradores entre a tarefa e o usuario,
surge um desafio: o0 aumento das interacdes necessarias para produzir uma resposta de-
sejada. Isso pode ocorrer por meio de scripts complexos ou chamadas a outros modelos,
muitas vezes de maneira recursiva, com o objetivo de adquirir novas capacidades para
a execucao de uma tarefa (PACKER et al., 2023; SHEN et al., 2023; XI et al., 2023b).
Diante desse cenirio, tornou-se crucial explorar estrategias de otimizacdo para minimizar
tanto a quantidade de operacoes de ponto flutuante (FLOPs) quanto as emissoes de CO?2
associadas, visando a escalabilidade desses sistemas. Essa abordagem e essencial desde
dispositivos cotidianos ate servidores especializados, promovendo a sustentabilidade e,

consequentemente, impulsionando uma revolucao tecnolégica.

Ao enfrentarmos os desafios da sustentabilidade na era da IA, ieessencial garantir
que os avancos dessa tecnologia sejam utilizados de forma responsivel. A implementacao
de regulamentacBes adequadas e a adocao de uma governanca etica séo fundamentais
para assegurar que os beneficios da IA sejam acessiveis a todos. Este trabalho propoe
uma abordagem mais sustentavel para o desenvolvimento de sistemas de IA avancados,
aplicando mietodos de otimizagcGao em redes neurais profundas para reduzir o consumo de
recursos computacionais e mitigar os impactos ambientais, promovendo a disseminagcdao
responsavel dessa tecnologia emergente e gerando beneficios para a sociedade. Dessa
forma, busca-se maximizar as capacidades dos modelos de IA disponiveis, equilibrando

inovagchao com preocupagcfoes ambientais e sociais.
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1.3 Objetivos do Trabalho

Este trabalho tem como objetivo central investigar e avaliar tecnicas de oti-
mizacao e aprimoramento de modelos de aprendizado profundo para a sustentabilidade
de ecossistemas de aplicagBGes energeticamente eficientes, com enfase no estudo de caso da
triagem automatizada de documentos cientificos relevantes em revisfes sistematicas da
literatura. O intuito e fornecer suporte a avancos tecnolégicos e cientificos que atendam

as necessidades da sociedade de maneira eficaz e responsavel.
1.3.1 Objetivos Especificos

e« Estudar tecnicas de aprendizado profundo e modelos Transformers: Ex-
plorar os fundamentos do aprendizado profundo, redes neurais artificiais e o fun-
cionamento do mecanismo de atencgBao, incluindo modelos baseados na arquitetura
Transformer, como o modelo SPECTER na representacao seméntica de textos de

cientificos.

« Estudar as principais tecnicas de otimizacao: Explorar os fundamentos das

tecnicas de otimizagao aplicadas a modelos de aprendizado profundo.

* Investigar estrategias de treinamento eficientes para modelos de base:
Examinar abordagens de pré-treinamento e ajuste fino, buscando um desempenho

sustentavel e eficaz no treinamento de modelos de base.

« Avaliar o desempenho e a eficiencia computacional do modelo de base com
tecnicas de otimizacdo na triagem eficiente de documentos cientificos:
Avaliar o impacto das tecnicas de otimizacao na eficiencia computacional e na
reducao do esfor¢o necessario para a triagem automatizada de documentos cientificos
relevantes em revisGes sistematicas da literatura. Aplicar a analise a 22 bancos de
dados para verificar a viabilidade dessas otimizacoes, considerando um numero li-

mitado de exemplos de treino.

e Discutir resultados, sustentabilidade e diregdes futuras para pesquisas
baseadas em aprendizado profundo: ldentificar desafios, limitacoes e possiveis
melhorias na abordagem de otimizacao utilizada. Alem disso, discutir a susten-
tabilidade de ecossistemas de aplicagcioes baseadas em aprendizado profundo e seu

impacto no avangco cientifico.
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2

2.1

Fundamentagdo Teodrica

Fundamentagédo Tedrica

Aprendizado de Maquina

O aprendizado de mdquina e um paradigma de treinamento que permite que

modelos aprendam a representacao de dados para realizar tarefas especificas. Esse campo e

dividido em varias areas de pesquisa, das quais as principais sdo categorizadas da seguinte

forma:

« Aprendizagem Supervisionada: Neste tipo de aprendizagem, o modelo e trei-

nado com um conjunto de dados rotulados, onde a resposta desejada e conhecida.
O objetivo e ensinar o modelo a mapear os dados de entrada para as saidas corres-
pondentes. Por exemplo, na classificacdo de e-mails, os textos dos e-mails servem
como entrada do modelo, e a saida esperada e classific6-los como “spam” ou “ndo

spam”.

Aprendizagem Nao Supervisionada: Neste tipo de aprendizagem, o modelo e
treinado com dados nao rotulados e busca descobrir padrdes, estruturas ou agru-
pamentos por conta propria. Tecnicas como t-SNE sao usadas para reduzir a di-
mensionalidade dos dados e visualizar como diferentes amostras se organizam no
espaco, revelando agrupamentos naturais mesmo sem categorias definidas previa-
mente (MAATEN; HINTON, 2008).

Aprendizagem Auto-Supervisionada: Aqui, o modelo recebe dados de treina-
mento ndao rotulados e tenta identificar estruturas, padrdoes ou agrupamentos nos
dados. Os rotulos podem ser os proprios dados de entrada ou partes deles. Por
exemplo, o modelo pode receber um texto com algumas palavras faltando, como na
frase: “O Aprendizado de [X] e essencial para dar representacoes ao modelo”, onde

a saida esperada em [X] seria a palavra “Maquina”.

Aprendizagem de Reforco: Nesse cenério, 0 modelo interage com um ambiente
e toma acdes para maximizar uma recompensa cumulativa. O objetivo e aprender
uma politica que guie as agoes para otimizar as recompensas ao longo do tempo.
Exemplo: Treinar um modelo para jogar xadrez, onde as agcioes corretas resultam em
vitorias, e as recompensas ao longo do trajeto da partida modelam o pensamento

do modelo.
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» Aprendizado Contrastivo: Tecnica utilizada no treinamento de modelos que visa
aproximar representacoes semelhantes e afastar as distintas no espaco vetorial. Mo-
delos como o SPECTER (COHAN et al., 2020) aplicam essa abordagem ao treinar
com pares de artigos cientificos que se citam (positivos) e que nao se citam (nega-
tivos), gerando embeddings mais informativos para tarefas como recomendacao,

predicdo de citacoes e classificacao de textos.

Na fase inicial de prie-treinamento, o aprendizado auto-supervisionado permite
qgue o modelo desenvolva uma compreensao autonoma das estruturas e padrdes dos da-
dos. Esse conhecimento pode ser transferido para tarefas especificas por meio de ajuste
fino (fine-tuning), em um processo conhecido como Transferencia de Aprendizado. Essa
abordagem tem se mostrado fundamental na constru¢ccdao de modelos de base, ao permi-
tir que arquiteturas mais complexas aproveitem conhecimento prévio e sejam facilmente
adaptadas a aplicacoes com poucos dados. Tecnicas como o aprendizado contrastivo e
por reforco, aplicadas sobre modelos base, tem sido essenciais para gerar representacfes
mais discriminativas e informativas, impulsionando o avanco dos sistemas de inteligencia
artificial (ROMBACH et al., 2021; LI et al., 2022; LI et al., 2023; SHEN et al., 2023;
OPENAI, 2023).

2.2 Aprendizado Profundo

No campo da Inteligencia Artificial (IA), o Aprendizado Profundo (Deep Lear-
ning) ieum subcampo de estudo desta iarea que se concentra na pesquisa de arquiteturas
de modelos baseados em Redes Neurais Artificiais (RNAS) e em seu treinamento. Atu-
almente, o aprendizado profundo e uma das principais abordagens utilizadas para com-
preender padrdoes complexos como a linguagem humana a partir de dados de entrada. No
entanto, a medida que estes algoritmos evoluem, o conceito de “inteligencia artificial”
torna-se cada vez mais subjetivo a medida que as maquinas se tornam capazes de realizar
tarefas complexas tdo bem quanto, ou ate melhor do que especialistas em determinadas
areas (KIELA et al., 2021; SINGHAL et al., 2023; JUMPER et al., 2021; ROMBACH et
al., 2021).

Dado este contexto, para compreender um sistema de processamento de in-

formacédes, como a IA, consideramos trés niveis de analise (MARR, 2010):

 Nivel de Teoria Computacional: Corresponde ao objetivo da computacao, for-

necendo uma definicdo abstrata da tarefa.
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* Nivel de Representacdo e Algoritmo: Determina como a entrada e a saida sao

representadas e como o algoritmo transforma a entrada em sadda.

* Nivel de Hardware: Refere-se a implementacdo fisica real do sistema.

Nesta secao, abordaremos os principios basicos dos modelos de Redes Neurais
Artificiais (RNAs) e seu processo de treinamento. Em seguida, exploraremos a arquite-
tura Transformers, que ganhou destaque nos 4ltimos anos (DOSOVITSKIY et al., 2020;
DEVLIN et al., 2018; BROWN et al., 2020; ROMBACH et al., 2021).

2.2.1 Redes Neurais Artificiais

O trabalho pioneiro de McCulloch e Pitts (1943) representou a primeira abor-
dagem na criacdo de modelos de RNA ou simplesmente redes neurais. Seu objetivo era
modelar as redes neurais biologicas, buscando compreender e simular processos cognitivos
biologicos. Esse trabalho foi fundamental para a pesquisa em redes neurais, dividindo
0 campo em duas vertentes principais: uma voltada para a modelagem dos processos
biologicos no cerebro e a outra direcionada para a aplicagbo das redes neurais no campo
da inteligencia artificial. Em sua essencia, as RNAs s6o, na maioria dos casos, consi-
deradas modelos nao parametricos aproximadores universais de funcoes (CSAIJI et al.,
2001). Isso implica que, ao utilizar RNAs, e viavel aproximar qualquer funcao, desde que
0s pesos adequados sejam aplicados a tarefa em questdo. Ou seja, estes modelos pos-
suem a notével capacidade de mapear desde funcoes simples, como uma reta, ate funcoes
complexas, como a linguagem humana (DEVLIN et al., 2018; RADFORD et al., 2018).

O modelo Perceptron, proposto por Rosenblatt (1958), e uma versao aprimorada
do primeiro modelo apresentado por McCulloch e Pitts (1943). No entanto, uma de suas
caracteristicas mais marcantes e a limitagao na resolucao de problemas mais complexos,
como classificacoes que nao podem ser separadas linearmente. Esse desafio foi eviden-
ciado pelo famoso problema XOR, proposto por Minsky e Papert (1969) em seu livro
Perceptrons: An Introduction to Computational Geometry. A dificuldade em resolver esse

problema levou a uma desmotivacao na pesquisa de redes neurais por cerca de 20 anos.

Assim, considerando x E Rd como o dado de entrada e y E R como o dado de

saida, o Perceptron pode ser representado por:

(1)
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Esse modelo consiste em uma unidade de processamento boésica que recebe um
conjunto de entradas ponderadas por pesos w e aplica uma funcao de ativagao, denotada

por 0(.), para produzir uma sadda.

X xa x hi(1) h2(1) h1(2) h2(2)

Ativacéo

(b)

Figura L Multilayer Perceptron.

@) Multilayer Perceptron (MLP), proposto por Rumelhart, Hinton e Williams
(1986), foi desenvolvido para superar essas limitacdes e expandir as capacidades do Per-
ceptron tradicional, impulsionando significativamente a pesquisa em redes neurais nas
ultimas trés decadas. Essa arquitetura e composta por varias camadas de perceptrons
interconectados, onde cada camada recebe as saddas dos perceptrons da camada anterior

como entrada, aplicando funcoes de ativagao para transformar essas informacoes.

Por exemplo, consideremos um MLP de 2 camadas com uma entrada x E R 1xd,
onde d e o nimero de variaveis explicativas. As camadas do MLP, sem considerar o
intercepto, sao representadas pelos pesos W E Rdxk, onde K 6 o Ondice da camada,
k e o numero de neurdnios na camada oculta e d e 0 numero de variaveis de entrada
da camada anterior (nesse caso, a camada zero, com os valores de entrada h(@ = x).

Para ilustrar, consideremos d = 3 e k = 2. As saidas das duas camadas ocultas sao
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representadas por h(1),h(@ G R1x2. Logo, na Figura 1, apresentamos uma visualizacdo do
fluxo matricial do modelo (a) e seu correspondente fluxograma neural (b). A expressao

matematica para esse exemplo pode ser denotada por:

01 (XW (1) = h()
02(h(YW(2) = h(@d
03(h@Qw @) =y

E possivel estabelecer uma representacao mais compacta, onde fW(x) = y, em
que W = {W(f0)}3=1 representa o conjunto de pesos do modelo, juntamente com suas

respectivas funcoes de ativacdo e os pesos das camadas ocultas.

Para os MLPs, as funcoes de ativacdo 0(.) desempenham um papel fundamental
na pesquisa em redes neurais. Essas funcoes, geralmente ndo lineares, tem o objetivo de
proporcionar representacdes mais complexas ao modelo entre as camadas. Na literatura,
algumas das fungoes mais comuns sao monotonicamente crescentes, conforme ilustrado

na Figura 2.

o(x) 1+v=*

ReLU{x) - max{0. x)

Figura 22 FungOes de Ativacéo.

No exemplo apresentado, 03(-) corresponde a uma funcéo identidade (f(x) = x),
utilizada na altima camada. Dessa forma, o uso das funcdes ndo lineares 01(.) e 02(.) nas
camadas anteriores permite modelar uma regressao nao linear. A escolha dessas funcoes

de ativacdo depende do nivel de representacao desejado pelo pesquisador e da otimizacao



Fundamentacdo Teoricd 17

do treinamento.

2.2.2 Treinamento

O treinamento de uma RNA desenvolve a capacidade do modelo em compreender
a representacto dos dados fornecidos como valores de entrada. Isso e alcancado por meio
do ajuste iterativo dos pesos, baseado em uma ou mais funcoes de perda desejadas, capa-
citando o modelo com as habilidades necessoOrias para executar uma determinada tarefa.
A escolha apropriada da funccBao de perda depende da natureza da tarefa de aprendizado
e desempenha um papel fundamental na capacidade do modelo de aprender e generalizar

a partir dos dados de treinamento.

Para ilustrar, consideremos a abordagem de atualizacao em modo Mini-Batch,
amplamente reconhecida por sua eficiencia na generalizacao e velocidade de treinamento.
Denotamos por XT = {Xk os dados de treino, onde Xk = {(x,yi)}"i sdo os mini-
lotes de exemplos (mini-batch) de tamanho n da varidvel explicativa x* e da variavel
resposta y* Agora, suponha o modelo fW(.), com uma funcdo de perda em funcao dos
parametros dada por LW = L(yi,fW(x*)). O erro medio da previsao do mini-lote Xk e

dado por Exk[t w] = n E rLi L(yi,fw (xi)).

Para aproximar os valores dos pesos que minimizam a perda, representados por
W = argminWE Xk[LW)], o0 modelo aprende de forma iterativa atualizando os parametros

por meio da descida do gradiente (ou backpropagation), conforme a expressao:

VWt = VwEXk[Lw]
(2)
Wt+i = Wt - nVWt
Assim, a principal diferenca entre os metodos de atualizacao reside na construcao
dos mini-lotes XT e no momento em que e computada a atualizagdo dos pardmetros,

considerando uma epoca ao ter passado por todos os exemplos estruturados em XT.

Esse processo e repetido iterativamente para minimizar o erro ao longo das atu-
alizagbes, utilizando uma taxa de aprendizagem (n E (0, 1)) como hiperpardmetro para
controlar o tamanho dos passos de atualizac6o. Na Figura 3, e demonstrado um exem-
plo da geometria do espaco da funcao de perda em relacdo aos pard@metros, com base no
conjunto de dados e no valor esperado. Os parédmetros sdo inicializados aleatoriamente,
e 0 modelo, de forma iterativa, conforme o trajeto em verde, percorre a superficie ate

encontrar uma combinacao de pesos que minimize o erro.



18 Fundamentagdo Teodrica

Figura 3. Descida do gradiente.

2.2.3 Encoder-Decoder

As arquiteturas de redes neurais, em sua esséncia, podem ser concebidas com
estruturas que incluem elementos como o Encoder e o Decoder. Essas estruturas desem-
penham um papel crucial no processamento de informacdes, permitindo a extracao ou

geracao de padroes a partir dos dados.

O Encoder desempenha um papel crucial na extracdo das informacoes mais im-
portantes do dado de entrada, visando reduzir o ruido e caracteristicas menos relevantes.
Sua responsabilidade e transformar os valores de entrada para extrair caracteristicas re-
levantes e condensa-las em um vetor denso como contexto, ou tambem conhecido como

representacao latente.

Essa representac6o latente facilita a manipulagcao e interpretacao por parte do
modelo. O Decoder, por sua vez, desempenha um papel inverso ao do Encoder, utilizando
este vetor latente resultante como contexto para reconstruir o dado original sem ruido ou
gerar uma saida relevante, preenchendo detalhes e personalizando a saida de acordo com

a tarefa especifica em questdo.

Essa abordagem ie altamente robusta, pois permite a modulagcdao de modelos e
a criagcieo de um sistema de processamento de informagcoBes capaz de capturar relagcdoes
essenciais e complexas, resultando em resultados de alta qualidade. A capacidade de
ajustar o vetor de contexto para atender a tarefas especificas de maneira precisa e eficaz
e fundamental. Isso se torna um dos elementos essenciais na construgao de modelos mais

complexos, contribuindo para avancos significativos em uma ampla gama de aplicacdes
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que envolvem relacbes complexas e abstratas, como na geracdo de imagens condicionada
ao texto (ROMBACH et al., 2021).

2.2.4 Embedding

Os embeddings sao amplamente utilizados devido a sua capacidade de representar
sequencias de entrada como vetores que preservam relacoes espaciais. Sua formulacao
baseia-se na representacao de um vocabulario de simbolos, onde, ao passar por uma

funcao de dicionéario, cada simbolo e mapeado para um vetor correspondente.

co ~
R tf a
Gato 0.6 0.9 0.1 0.4 -0.7 -0.3 -0.2 Lagartixa
Ledo 0.5 0.8 -0.1 0.2 -0.6 -0.5 -0.1
Gato
Cachorro - - - -
0.7 0.1 04 0.3 0.4 0.1 0.3 kLedo
Lagartixa -0.8 -0.4 -0.5 0.1 -0.9 0.3 0.8 Cachorro
Homem 0.6 -0.2 0.8 0.9 -0.1 -0.9 -0.7 Mulher
Mulher 0.7 0.3 0.9 -0.7 0.1 -0.5 -0.4 Rainha
Rei 0.5 -0.4 0.7 0.8 0.9 -0.7 -0.6 <
Homem
Rainha 0.8 -0.1 0.8 -0.9 0.8 -0.5 -0.9 -
Rei
Simbolo Embedding Reducéao de Visuzalizacdo dos embeddings
dimensionalidade dos simbolos em 2D

Figura 4. Representacdo dos Embeddings.

Apbs o treinamento, esses embeddings adquirem a habilidade de codificar relacoes
simbdlicas espaciais. As dimensdes de seus vetores podem ser interpretadas como carac-
teristicas representacionais dos simbolos do dicionério, possibilitando operacoes lagicas e

simbolicas modeladas por um algoritmo de aprendizado.

Para ilustrar, tomando como simbolos as palavras, na Figura 4, temos como
exemplo animais de mesma familia proximos um do outro, e operacdo lineares simbolicas,
como ‘“rei - homem + mulher = rainha”, tornando estas representagdes uma ferramenta

versatil e poderosa para uma ampla gama de aplicagoes.
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X1
X2
X3

@ ®)

Figura 5: Computagdo Neural de uma sequéncia.

No entanto, e crucial observar que, ao introduzir uma sequencia de vetores para
um modelo MLP, dependendo da implementacao, a estrutura do modelo pode ndo conside-
rar a posicao dos valores na sequencia em suas dimensoes. Isso implica que as informacées
na sequencia podem ser tratadas como pontos no espaco, sem codificacao da ordem sequen-
cial. Essa abordagem pode ser problemaética em situacgoes especificas, como no contexto de
frases, onde a ordem das palavras iefundamental para uma compreensdao completa do sig-
nificado. Alem disso, e importante ressaltar que na computacao e representacdo neural do
modelo MLP para uma sequencia de embeddings, como exemplificado por (X 1,X2,X3)
com duas dimensoes, conforme ilustrado na Figura 5, os pesos dos neurdnios interagem
diretamente com as dimensdes dos valores de entrada (b), porem de forma independente
em relacao a sequencia, assemelhando-se a uma operacao de convolucdo dos pesos sobre

a sequencia de vetores.

2.2.5 Mecanismo de Atencao

O mecanismo de atencao, proposto por Vaswani et al. (2017), tem se mostrado
um componente fundamental nas arquiteturas de aprendizado profundo. Esse mecanismo
permite que o modelo atribua maior importancia a determinadas partes do dado de en-

trada, destacando informaccdoes relevantes para a tarefa em questaao.

Ao representar um vetor de entrada como x E R1xd, o mecanismo de atencao
projeta essa entrada em trés representacaes principais: Query (Q), Key (K) e Value (V).
Essas representaccdoes sdao obtidas por meio de projeccdoes lineares, parametrizadas pelos
pesos aprendidos durante o treinamento, utilizando Wq,Wk ,Wv E Rdxk, onde d e a
dimensao original do vetor de entrada e k a dimenséo latente (ou do espaco de atencao).

Generalizando para uma sequencia de entrada, seja, XT = [x1 ... xn] E Rdxn, em
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que X C E representa vetores no espaco representacional E (por exemplo, embeddings),
obtemos as matrizes Q, K, V E Rnxk, que contem as projecoes latentes dos n elementos da
sequencia. Essas representacdes compactas viabilizam o calculo das similaridades internas

entre os vetores por meio do mecanismo de atencao, definido como:

Q=XWq, K=XWk, V=XWv,

a = softmax "QK?#) , Attentionx (Q, K, V) = aV, ®)
Aplicando a funcao softmax(xi) = exp(x®)/ n=lexp(xj) aos produtos escalares resultan-
tes de QKT, obtem-se a matriz estocOstica a E Rnxn. Esses produtos sao normalizados
pelo termo dk = k, que limita a variancia dos valores e garante maior estabilidade numerica
e dos gradientes durante o treinamento. Em seguida, o produto aV E Rnxk representa
uma soma ponderada das projecées em V, onde 0s pesos s6o determinados pelas similari-
dades entre as representaccoes em Q e K , conforme expresso em a. Esse resultado modela
a influencia de cada vetor latente da sequencia na formacao da representac6o final de
cada elemento pelo mecanismo de atencao, denotado por AttentionX(Q,K,V) E Rnxk,

oferecendo uma contextualizacao global.

Em suma, a funcao primordial do mecanismo de atencao e utilizar as repre-
sentacoes abstratas dos simbolos de entrada, dadas por Q, K e V, e, por meio das simila-
ridades entre eles (representadas por a), ponderar essas representacdes para gerar novos
simbolos latentes no espaco representacional E. Essa abordagem possibilita a criacao de
novas representacoes do conteudo de X , capturando as relacdes contextuais entre os ele-
mentos da sequencia e produzindo uma nova sequencia de simbolos abstratos, que podem

ou nao pertencer ao vocabulario original (embeddings).

Assim, o mecanismo de atencdo oferece uma maneira eficaz de capturar e gerar
informacoes relevantes, ponderando a importancia dos diferentes elementos de entrada.
Entretanto, uma desvantagem computacional reside no cilculo da multiplicacao entre
as matrizes Q e K, que pode se tornar custoso em fungao do tamanho da sequencia
de entrada. Estudos recentes, porem, demonstram que esse mecanismo pode armazenar
padroes contextuais de forma exponencialmente eficiente, utilizando metodos simples de

aprendizado interativo, como as chamadas Hopfield Networks (RAMSAUER et al., 2020).
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2.2.6 Transformers

Os Transformers, introduzidos por Vaswani et al. (2017) em 2017, revolucionaram
o Aprendizado de Méaquina ao empregar o0 mecanismo de atencao para capturar relagdes
complexas e processar sequencias em paralelo. Treinados de forma auto-supervisionada,
tornam-se modelos base robustos, impulsionando avancos por meio do aprendizado por

transferencia.

Output
Probabilities

(shitted right)

(™) (B) ©

Figura 6: Estrutura do Transformer (VASWANI et al., 2017), incluindo Encoder, Decoder e Cross
Attention.

A arquitetura Transformer, como demonstrado na Figura 6, generaliza 0 meca-
nismo de Atencéo e e estruturada em trés variacoes principais: Encoder, Decoder euma
combinacao de ambos. O Encoder e projetado para aprendizado bidirecional, permitindo
gue o modelo capte relacoes contextuais em toda a sequencia de entrada, como no BERT
(DEVLIN et al., 2018). O Decoder, por outro lado, opera de forma auto-regressiva,
gerando sequencias com base nas entradas anteriores, caracteristica fundamental do GPT
(RADFORD; NARASIMHAN, 2018). Quando combinados por meio do Cross Attention,

resultam na arquitetura Transformer original proposta por Vaswani et al. (2017).

O Multi-Head Attention (MHA(Q,K, V)) e o nacleo do Transformer, consis-
tindo na aplicacdo simultanea de multiplos mecanismos de atencdo para capturar diferen-

tes aspectos da sequencia de entrada. Na Figura 7, e ilustrado o calculo do MHA, no qual
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Figura 7: Representagdo computacional do Multi-Head Attention, com uma sequéncia de 3 entradas
(Xi, X2,X3), 2 cabecas e 2 dimensfes para Q, K e V.

cada cabeca gera suas proprias representa¢gfes Q, K e V, computa os mapas de correlagdo
a e os pondera de forma paralela. Em seguida, os resultados de todas as cabecas sao
concatenados e passam por uma projecdo linear com WO G Rnx(k'h), onde h é o numero
de cabecas; essa projecdo retorna as representacfes ao espaco original dos embeddings
E. O processo e completado por uma conexdo residual (HE et al., 2015), que soma 0s
resultados a entrada original, e por uma Layer Normalization (BA; KIROS; HINTON,

2016), contribuindo para a estabilidade dos gradientes e a eficiencia do treinamento.

Alem do MHA, os Transformers incluem um Feed Forward Network (FFN)
com ativacao ReLU entre duas camadas densas, introduzindo a unica nao linearidade no
modelo. Esse bloco Transformer e empilhado N vezes para proporcionar representacoes

mais profundas, conforme ilustrado na Figura 6.

Os Transformers podem assumir diferentes configuracoes dependendo da tarefa.
No Encoder-Only, a salda do Transformer passa por uma camada linear e normalizacao
softmax, como no BERT, utilizado para modelagem de linguagem e compreensao con-
textual. No Decoder-Only, o modelo remove a conexao entre Encoder e Decoder e
incorpora um Masked Multi-Head Attention (Masked MHA), garantindo que a
sequencia de entrada atenda apenas aos tokens anteriores. Essa estrutura, amplamente
adotada pelo GPT, pode ser interpretada como um processo auto-regressivo formulado

como uma densidade de probabilidade condicional:

Pw(XkXk-1,...,X 1)
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Na versao original do Transformer, representada na Figura 6 (C), o Cross At-
tention (C1) interliga os modelos Encoder e Decoder. Nessa configuracao, o Encoder
fornece as projecoes de K e V, enquanto o Decoder utiliza a projecao Q, permitindo a

geracao de novas sequencias a partir da entrada.

Os modelos Transformers baseiam-se em embeddings para representar palavras,
adicionando Positional Embeddings para codificar a posicao sequencial dos tokens. Na

formulacao original, esses embeddings sao definidos como:

PE(pos,2i) = sin(p0s/100002i/d)

onde pos e a posicao na sequencia, d e a dimensao do vetor e i e o indice da
dimensao correspondente (VASWANI et al., 2017).

Embora o Multi-Head Attention seja altamente eficaz na captura de relagcioes
semanticas, sua implementacao e computacionalmente custosa devido ao grande numero
de pardmetros e aos calculos intensivos das matrizes de covariancia a. O pré-treinamento
de Transformers requer vastas quantidades de dados e o uso de hardwares especializados,
como GPUs e TPUs, que empregam processamento massivamente paralelo otimizado para

operagcdoes matriciais.

A medida gue esses modelos crescem em escala e sao amplamente adotados, a de-
manda computacional aumenta exponencialmente, gerando desafios criticos em consumo
energetico e escalabilidade. Para viabilizar o uso de Transformers em larga escala, e fun-
damental adotar tecnicas de otimizacao que reduzam o0s custos operacionais, mitiguem
impactos ambientais e promovam um uso mais sustentavel da infraestrutura computaci-

onal.

2.2.7 Modelo SPECTER: Representacao Semantica de textos Cientificos

A classificacao de documentos cientificos exige modelos que capturem nao apenas
informacées contextuais do texto, mas tambem relacoes entre publicacoes, como citacoes
e relevancia semantica. Modelos pré-treinados baseados na arquitetura Transformer,
como o BERT, tem sido amplamente utilizados em tarefas de Processamento de Lin-
guagem Natural (PLN), pois oferecem representacédes vetoriais eficientes (DEVLIN et al.,
2018). Entretanto, esses modelos sao predominantemente treinados em textos generalis-
tas, como os da Wikipedia e do BookCorpus, e nao sdo otimizados para as particularidades

da literatura cientifica.
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Para suprir essa limitacao, variantes especializadas foram desenvolvidas, como
0 SCiBERT, que continua o pre-treinamento do BERT utilizando um corpus composto
por 1,14 milhao de artigos cientificos do Semantic Scholar, totalizando 3,17 bilhoes de
tokens (BELTAGY; LO; COHAN, 2019). Esse ajuste possibilita uma melhor adaptacao
ao dominio academico, aprimorando sua capacidade de representacdo para tarefas como
reconhecimento de entidades nomeadas (NER), extracao de informacdes cientificas (PICO

Extraction) e classificagcao de textos cientificos.

Apesar da especializacao do SciBERT, esse modelo ainda trata os artigos de
maneira isolada, sem considerar a estrutura de citagcodes que os interliga. Para supe-
rar essa limitacao, foi desenvolvido o SPECTER (Scientific Paper Embeddings using
Citation-informed Transformers), que aprimora a representacao semantica ao incorporar

informacdes de citacoes no treinamento (COHAN et al., 2020).

O SPECTER iebaseado no treinamento do modelo SciBERT, mas se diferencia
por empregar um treinamento supervisionado com um objetivo contrastivo, explorando
a rede de citacoes cientificas. O treinamento foi realizado com um conjunto de 146
mil artigos cientificos do Semantic Scholar, totalizando 26,7 milhoes de tokens.
Diferentemente dos modelos anteriores, 0 SPECTER aprende a projetar textos extraidos
de artigos em um espaco vetorial, no qual publicacoes relacionadas, isto e, aquelas que
se citam mutuamente, possuem embeddings mais proximos, enquanto documentos nao

relacionados sao afastados.

No treinamento do SPECTER, utiliza-se o0 aprendizado contrastivo, no qual

pares de textos de artigos sao organizados da seguinte maneira:

» Positivos: pares de artigos em que um cita o outro;

 Negativos: pares de artigos sem relacao de citacao.

A representacao vetorial final de cada artigo e obtida a partir do token [CLS],
que sintetiza as informacdes contextuais do titulo e do resumo. Esse modelo tem demons-

trado alto desempenho em tarefas como:

» Classificacao de documentos, utilizando a similaridade entre artigos para cate-

gorizagcao;

* Predicao de citacoes, identificando quais artigos sao relevantes para determinada

pesquisa;
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* Recomendacdo de artigos, auxiliando na descoberta de publicacoes sem depender

exclusivamente de palavras-chave.

2.3 Otimizacdo de Redes Neurais Profundas

A otimizacao de Redes Neurais Profundas desempenha um papel essencial no
avanco da inteligencia artificial, permitindo aprimoramentos significativos no treinamento
e na inferéncia de modelos. Embora sejam técnicas eficientes para reduzir custos compu-
tacionais, este ie um campo de pesquisa ativo, buscando otimizar arquiteturas e tarefas
especificas sem comprometer a performance do modelo. Um dos principais motores desse
progresso e 0 movimento open-source, que promove um ecossistema sustentavel ao in-
centivar a colaboracao e a disseminacao de algoritmos de otimizacdo e modelos de IA.
Iniciativas disruptivas, como o DeepSeekl, desafiam o dominio dos modelos fechados
adotados por empresas como a OpenA|l2, disponibilizando arquiteturas avancadas, mo-

delos de base pré-treinados e estratégias de otimizacdo acessiveis a comunidade.

Alem de reduzir custos computacionais e minimizar o impacto ambiental, essas
otimizacdes tornam a IA mais acessivel, eficiente e escalivel, ampliando suas aplicacoes em
diferentes dominios. O acesso aberto a essas tecnologias nao apenas acelera a inovagao,
mas tambiem reduz barreiras tiecnicas e operacionais, permitindo que pesquisadores e
desenvolvedores aprimorem, adaptem e criem modelos de base de forma descentralizada.
Esse movimento fortalece um ambiente de pesquisa mais inclusivo e sustentivel, criando

um ciclo virtuoso de avancgo tecnoliogico.

Nesta secao, serdo exploradas as principais estratégias de otimizacao para Redes
Neurais Profundas, desde algoritmos fundamentais ate abordagens avancadas investigadas
neste estudo, com o objetivo de aprimorar a eficiencia e promover a democratizacao do
uso da IA.

2.3.1 Quantizacéo

A guantizacdo e uma técnica que transforma valores continuos em discretos,
permitindo a representagcado numierica com menos bits e reduzindo a demanda por recursos

computacionais. Essa técnica e geralmente classificada em duas abordagens principais:

e Quantizacao Dindmica: Apenas 0s pesos sdo quantizados, enquanto as ativacaes

1(https://www.deepseek.com/)
2(https://openai.com/)
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permanecem em ponto flutuante. Nao requer calibracao previa, pois a desquan-
tizacao ocorre durante a execucao, reduzindo o consumo de meméria e melhorando
a eficiencia computacional em relacao ao uso integral de ponto flutuante. No en-
tanto, pode introduzir latencia adicional devido as operacoes de desquantizacao em

tempo real.

 Quantizacao Estatica: Tanto pesos quanto ativacdes sao quantizados, permitindo
calculos diretamente em baixa precisao (por exemplo, int8). Essa abordagem re-
duz significativamente a carga computacional e o uso de memoria, mas exige uma
etapa de calibracao para determinar faixas de quantizacao adequadas. Alem disso,
modelos que dependem de alta precisao numerica podem sofrer degradacdo no de-

sempenho.

Alem disso, a quantizacao pode ser assimétrica, deslocando os pesos por uma
constante, ou simétrica, onde os valores podem incluir ou nao mimeros negativos. A
escolha entre essas abordagens depende do tipo de entrada, das ativaccodes do modelo e da

precisdao desejada.

Na quantizagcao em 8 bits, por exemplo, os intervalos abrangem 256 = 28 valores
inteiros distintos, convertendo valores continuos em representacoes discretas. No entanto,
a precisdao da quantizaccdao afeta o desempenho do modelo, pois o arredondamento e as
restricoes de valores no intervalo podem comprometer a exatiddo (NAGEL et al., 2021;
FOURNARAKIS, 2021).

2.3.2 Poda

A poda (pruning) e uma tecnica para reduzir a complexidade de redes neurais
profundas, removendo parametros de baixa relevancia, promovendo esparsidade e melho-

rando a latencia do modelo.

A importdancia dos pardametros pode ser determinada por mietricas como magni-
tude dos pesos, sensibilidade dos gradientes ou impacto na funcdo de perda (KURTIC et
al., 2022; LIEBENWEIN, 2021). As principais abordagens incluem:

« Poda éstruturada: Remove blocos inteiros, como camadas, filtros ou conexaoes

especificas, mantendo a coeréncia da arquitetura e otimizando a execu¢ao do modelo.

« Poda dé compressao: Aplicada a modelos pré-treinados, pode ocorrer durante o

treinamento via compressao ascendente (no pré-treinamento) ou descendente (para
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uma tarefa especifica), aumentando a esparsidade.

Figura 8 Poda Wanda com 50% dos valores zerados. Adaptado de Sun et al. (2023).

Entre as tecnicas de poda, a Wanda destaca-se pela simplicidade e eficiencia
(SUN et al., 2023). Como ilustrado na Figura 8, a tecnica aplica a norma L2 sobre os
vetores de pre-ativagbo {hO,...,hn} (passo 1), multiplica elemento a elemento a matriz de
pesos absolutos (passo 2) e zera os valores mais proximos de zero (passo 3), promovendo

esparsidade nado estruturada.

2.3.3 Destilacdo de Conhecimento

A Destilacao de Conhecimento em redes neurais profundas e uma tecnica que
permite transferir habilidades de modelos maiores e complexos (Professor) para modelos
menores e mais eficientes (Aluno), reduzindo a complexidade e 0s recursos computacionais.
Este processo de destilagcado, como ilustrado na Figura 9, utiliza do professor para orientar

o aluno transferindo seu conhecimento, mas nao se limitando, atraves da predicao final.
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Professor >

Destilagdo de
Conhecimento

Hard Labels
Aluno

> Predigdes

Figura 9: Destilagdo de conhecimento.

Este treinamento geralmente envolve apenas atualizar os pardmetros do modelo
aluno, enquanto o modelo professor faz predicoes em um conjunto de dados para ser pas-
sado ao aluno. Estas predicdes sdo chamadas Soft Labels, que consiste de valores continuos
de uma ou mais ultimas camadas do modelo professor. Estas previsoes geralmente uti-
lizam da normalizac6o softmax para suavizar as predicoes e estabilizar os gradientes na
hora do treino. Esta transferencia do conhecimento ocorre ao minimizar a funcdo de perda
que mede a distancia entre as distribui¢des de predicdo do aluno e do professor. E comum

utilizar a divergencia de Kullback-Leibler dada por:

k 5)

Se 0 banco de dados for rotulado, os rotulos (tambem chamados de hard labels) po-
dem orientar o aluno sobre a distribuicdo esperada para a predicao (HINTON; VINYALS;
DEAN, 2015). Um estudo recente proposto por Chen et al. (2020) demonstrou que a des-
tilacao de conhecimento usando aprendizado auto-supervisionado e especialmente eficiente
quando ha poucos dados rotulados e o professor e um modelo pre-treinado. No qual o
modelo aluno ie capaz de aprender uma nova tarefa com apenas alguns dados rotula-

dos, aproveitando as representacGes uteis destiladas pelo professor, o que impulsiona a



30

Fundamentagdo Teodrica

aplicabilidade dos modelos.

2.3.4

Treinamento Eficiente de Modelos de Base

O treinamento eficiente de modelos de base visa melhorar a eficiencia e o de-

sempenho das redes neurais profundas, reduzindo o tempo e 0s recursos computacionais

necessarios. Isso permite treinar modelos complexos de forma mais rapida e economica,

promovendo a sustentabilidade de sistemas de IA.

2.3.4

.1 Pre-Treinamento

Como mencionado anteriormente, o pré-treinamento de modelos de base e uma

etapa computacionalmente intensiva que requer grandes quantidades de recursos, mas re-

sulta em modelos adaptaveis para tarefas especificas por meio de ajuste fino. Otimizar essa

fase iecrucial para alcangcar maior sustentabilidade e disponibilizar modelos prie-treinados

uteis para distribuicao e pesquisa. Durante essa etapa, virias tecnicas e metodologias sao

estudadas, mas algumas seguem diretrizes centrais. Exemplos incluem medidas diretas

para reduzir o consumo de recursos computacionais e aumentar a eficiencia do treina-

mento. Algumas dessas tecnicas consiste em:

Prototipagem: A prototipagem com exemplos mais simples e essencial para validar
as escolhas de arquiteturas e hiperparametros antes de treinar o modelo. Tecnicas,
como aquelas demonstradas por Yang et al. (2022), permitem a inicializacao dos
hiperparametros do modelo, treinando modelos menores e, em seguida, escalando
para modelos maiores. Alem disso, escolher os algoritmos de otimizacao corretos
para um problema especifico ou inicializar os pesos de modelos anteriores podem

induzir a convergencia mais ripida dos modelos (LIU et al., 2023; XIA et al., 2023).

Dados: Estudos demonstram que a qualidade dos dados ie mais crucial do que a
guantidade, desafiando o paradigma tradicional (GUNASEKAR et al., 2023). O
trabalho de Xie et al. (2023a) indica a viabilidade de treinar modelos menores para
selecionar os dados mais beneficos, atribuindo pesos a uma mistura de conjuntos de
dados. Essa abordagem reduz a necessidade de exemplos no treinamento de modelos

maiores, resultando em tempos de treinamento mais curtos e melhor desempenho.

Softwares, Hardwares e Energia Limpa: A adocao de softwares eficientes, como

processamento assincrono de dados em CPUs, caching, pré-carregamento de dados
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e otimizacgdoes no formato de armazenamento de arquivos, reduz significativamente o
tempo de preparacao antes do processamento (DAO et al., 2022; RAJBHANDARI
et al., 2020; LECLERC et al., 2023). O uso de hardwares especializados para
computagao intensiva, como GPUs, tambem desempenha um papel crucial. Alem
disso, a integracao de fontes de energia renovavel, como solar e ealica, ou iniciativas
como a Green Al Cloud3, que visa reduzir as emissoes de carbono e alcancar uma
taxa de CO negativa, promove a sustentabilidade e contribui para a mitigacao das
mudancas climaticas, sem comprometer a performance no treinamento ou uso dos

modelos.

 Algoritmos dé Treinamento Esparcos, Quantizados é Aproximacoes dé
Baixo Posto: O uso de algoritmos para promover esparsidade de modelos no
treinamento pode alcancar uma performance igual ou ate superior em metricas, com
menos quantidade de operacdes (THANGARASA et al., 2023; PESTE et al., 2021;
SAXENA et al., 2023). Alem disso, treinamentos com aproximagdes matriciais de
baixo posto como demonstrado por Lialin et al. (2023), combinados com quantizacao
auxiliam na economia de recursos computacionais (DETTMERS et al., 2023; X1 et
al., 2023a).

« Arquitéturas Eficiéntés: Como mencionado anteriormente, a computacao do
Multi-Head-Attention pode ser computacionalmente custosa. Portanto, varias abor-
dagens buscam reestruturar os principais mecanismos dos modelos Transformers,
seja repensando o mecanismo de atencao ou o processamento dos valores de entrada
para obter as contextualizacoes (WU et al., 2021; WANG et al., 2020a; CHORO-
MANSKI et al., 2022; MARTINS; MARINHO; MARTINS, 2022; JAEGLE et al.,
2021; SHAZEER, 2019; AINSLIE et al., 2023). Uma abordagem interessante e
substituir o principal mecanismo de atencao pela transformada discreta de Fou-
rier (DFT), como demonstrado por Sevim et al. (2023), Lee-Thorp et al. (2022).
Nesse metodo, a complexidade computacional do calculo de atengao e o treinamento
dos parametros tornam-se mais simples e eficientes devido a baixa quantidade de
parametros treindveis. Eles concluem que, ao comparar com o modelo BERT (DE-
VLIN et al., 2018), o treinamento e 80% mais rapido e a inferéncia de 40% a 70%
mais rapida, mantendo pelo menos 90% dos resultados do BERT. Isso demonstra que

a transformada de Fourier e uma técnica poderosa para Redes Neurais Profundas.

Ao combinar essas técnicas e continuar explorando novas estrategias, podemos

3https://greenai.doud/
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alcancar avancos significativos na eficiencia do treinamento e na sustentabilidade. Isso
possibilita a construgcdao de modelos mais sofisticados em menos tempo, utilizando menos

recursos computacionais e, consequentemente, reduzindo a pegada de carbono.

2.3.4.2 Ajuste Fino

O ajuste fino de modelos de base diz respeito a capacidade de aprimorar as
habilidades de um modelo para novas tarefas, aproveitando seu conhecimento prévio.
Isso implica na aplicacao pratica desses modelos em diferentes cenarios, utilizando os
parametros pré-treinados para promover a sustentabilidade dos sistemas de IA. E uma area
em constante desenvolvimento, oferecendo virias tecnicas e abordagens para transferir
conhecimento de forma eficiente para o modelo. Algumas das principais metodologias

incluem:

e Aprendizado com Poucos Dados (Few-Shot Learning): Essa abordagem visa
alcancar a maxima eficiencia nos modelos, permitindo que eles obtenham bom de-
sempenho e se adaptem a novas tarefas com uma quantidade extremamente limitada
de exemplos (SONG et al., 2022).

e Ajuste Fino Eficiente de Parametros (Parameter-Efficient Fine-Tuning):
Esta abordagem utiliza tecnicas como LoRa, Adapters, (IA)3, entre outras, destaca-
se por possibilitar a construcao de um ecossistema de modelos especializados em di-
versos problemas, ao treinar uma quantidade minima de pardmetros e deixar grande
parte inalterada (HU et al., 2022; HU et al., 2023; LIU et al., 2022; LIAO; TAN;
MONZ, 2023).

« SetFit (Sentence Transformer Fine-Tuning): O SetFit e uma técnica que
combina aprendizado contrastivo e ajuste fino eficiente para melhorar a classificacao
de textos com poucos exemplos rotulados (TUNSTALL et al., 2022). Diferentemente
de abordagens convencionais, ele realiza um treinamento em duas etapas: primeiro,
aplica aprendizado contrastivo para refinar as representaccdoes dos textos e, em se-
guida, ajusta um classificador linear sobre essas representaccodes. Essa metodologia
permite que modelos baseados em Transformers obtenham alto desempenho em ta-
refas de classificagcdao sem a necessidade de grandes volumes de dados rotulados,

tornando o processo de ajuste fino mais riapido e eficiente.

A técnica LoRa (Low Rank Adaptation), utilizada neste trabalho, permite adi-

cionar novas funcionalidades a um modelo sem aumentar o nimero de parametros apos o
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ajuste fino. Em vez de atualizar diretamente os pesos do modelo base Wo G Rnixn2 via
gradiente VWO, onde a atualizacao tradicional seria dada por W := W0+ VWO, a tecnica
introduz uma matriz de decomposicdo de baixo posto, definida como Wi := AB, onde
A GRnixr e B GRrxn2, com r representando o valor do posto reduzido (HU et al., 2022).
Dessa forma, o treinamento ocorre de maneira indireta, no qual apenas A e B sdo atuali-
zados pela descida do gradiente, enquanto WO permanece fixo. O ajuste fino, portanto, e
realizado na forma W := W0+ (Wi+ VWi) = W0+ L, de modo que, apos o treinamento,
as atualizacoes capturadas por L sao incorporadas a WO0. Esse processo reduz a complexi-
dade computacional sem aumentar a latencia do modelo com novos parametros. Similar
aos metodos quasi-Newton, que aproximam a matriz Hessiana por uma de baixa ordem, o
LoRa melhora a eficiencia do ajuste fino e facilita a reutilizacao dos modulos A e B como
compressores de conhecimento, permitindo sua transferencia para outros sistemas de IA

baseados no mesmo modelo de referencia.

Essa tecnica pode ter extensoes, como no caso da QLoRa (DETTMERS et al.,
2023), que combina essa decomposto com quantizacdo, reduzindo ainda mais 0 consumo
de recursos. A QLoRa e amplamente aplicada nos pesos dos blocos de atencao em modelos
Transformers, ajustando correlacoes com base nos valores de entrada e diminuindo os
recursos computacionais necessarios para adaptar modelos com grandes quantidades de
parametros (LIAO; TAN; MONZ, 2023).

Ao unir abordagens de aprendizado com poucos dados e ajustes finos eficientes,
pesquisadores e engenheiros tem a oportunidade de impulsionar avancos significativos no
campo da aprendizagem de maquina. Essa combinacao direciona modelos para tarefas
especificas, resultando em economia de tempo, energia e recursos computacionais. Como
resultado, os modelos tornam-se mais acessiveis e aplicaveis em diversos dominios e con-

textos, promovendo uma evolucao tecnologica mais eficiente e sustentavel.

2.3.4.3 Composicao Eficiente de Modelos de Base Adaptados

A medida que surgem mais modelos especializados em um ecossistema baseado
em um modelo de base de referencia, torna-se crucial avaliar como integrar as habi-
lidades especificas de diversas tarefas em um anico modelo. Nesse sentido, propoe-se
um metodo para criar um modelo com as respectivas habilidades dos modulos LoRa de
forma hibrida, utilizando a tecnica de decomposigao por valor singular (SVD). Assim, este
metodo possibilita a combinacdo de diferentes pesos adaptaveis com tamanhos distintos

para os modulos LoRa, resultando em uma nova representacao de baixo posto que pode ser
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utilizada como uma interpolacdo de habilidades, conforme sua aplicacdo na arquitetura

do modelo base.

Passo 3

Figura 10: Método de Hibridacao dos modulos LoRa.

Conforme ilustrado na Figura 10, o primeiro passo do metodo proposto consiste
em utilizar os modulos LoRa AO e BO pos-ajuste para todas as camadas em que foram
aplicados e recriar as respectivas matrizes de adaptacao denotado por WO = AOBO, onde
W0 E Rkxv, com AO E Rkxr e BO E Rrxv. Esse passo e realizado para cada um dos ajustes

que resultaram em diferentes modulos A e B para a tarefa especifica em questao.

No segundo passo, e criado um vetor de matrizes de pesos adaptaveis (WO, ..., Wn) E
Rnxkxv e, em seguida, para cada elemento, e aplicado o quantil igual a 75%, resultando
em uma matriz de valores interpolados W, entre os valores do vetor de pesos adaptaveis.
Este tem como intuito manter a maior parte dos valores da distribuicdo sem prejudicar

os valores de outras matrizes.

No terceiro passo, e aplicado o metodo SVD na matriz de pesos resultante W
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e definido um valor arbitriria igual a r para a aproximacao da matriz resultante W .
Selecionando esses r componentes da decomposi¢cao, como descrito no Passo 3 da Figura
10, eles sao utilizados como novos valores de inicializacéo para os modulos do LoRa. No
qual, para o modulo B, sao utilizados os r valores singulares multiplicados pelos r vetores

singulares descritos na matriz V, 0 mesmo para o miodulo A e a matriz U.
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3

3.1

Metodologia

Métodologia

M étodologia dé Estudo

Esta pesquisa tem como objetivo contribuir para a investigagao do aprendizado

profundo e metodos de otimizacdo, para o desenvolvimento de estrategias eficientes e

ambientalmente sustentiveis na construcdo de sistemas de IA complexos. Seu objetivo e

fornecer diretrizes de praticas para pesquisadores, com o intuito de impulsionar a adocao

de habitos mais responsaveis e contribuir para o avanco da sociedade em direcao a um

futuro de avancos tecnolagicos ambientalmente amigaveis. Na metodologia de estudo

abordada, destacam-se os seguintes topicos:

3.2

» Aintroducao sobre redes neurais profundas, abordando seus conceitos basicos, assim

como a arquitetura Transformer e seus blocos de atengao (VASWANI et al., 2017),
que se destacam como uma das tecnicas mais utilizadas e influentes na area de redes
neurais profundas nos ultimos anos. Isso proporciona ao leitor uma compreensdo das
redes neurais profundas e de uma das arquiteturas mais prevalentes para introduzir
modelos de base, os quais sao empregados na resolucao de problemas complexos e

especificos em diversos setores.

A introducao de tecnicas e estrategias de otimizacao em redes neurais profundas,
como quantizacao, poda e destilacao de conhecimento (LIEBENWEIN, 2021). Alem
disso, serao abordados o ajuste fino eficiente para modelos de grande porte (HE et
al., 2021), a composto de habilidades e consideracdes sobre hardware, software,
arquiteturas e treinamentos eficientes para Transformers. Essas metodologias de-
sempenham um papel crucial na otimizagcdao do treinamento e escalabilidade de
aplicacoes, tornando a execucao dos modelos mais eficiente em termos de custo

computacional e emissado de CO2 em ferramentas baseadas em IA.

M étodologia dé Aplicacao

Com o objetivo de promover o avancos cientifico em todas as areas de pesquisa,

ao mesmo tempo em que busca a sustentabilidade, este trabalho se dedica ao estudo de

aplicacdo de um modelo base, baseado na arquitetura Transformers, para a automacao

de revisoes sistematicas da literatura (SLR).

No entanto, conforme especificado por Keele et al. (2007), a conducdo de uma
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revisao sistematica pode ser dividida em varias etapas ate sua conclusdo. Na Tabela 1,
apresentamos um resumo dessas etapas, destacando que, neste estudo de aplicacao, nos

concentramos exclusivamente na automacao do passo de triagem de citacoes (SLR6).

Passo Descricao

SLR1  Comissionamento de uma revisao

SLR2  Especificacao da(s) pergunta(s) de pesquisa

SLR3 Desenvolvimento de um protocolo de revisao

SLR4  Avaliacdo do protocolo de revisao

SLR5 Desenvolvimento de termos de Pesquisa

SLR6  Selecao de estudos primarios (Triagem de citagoes)

SLR7 Revisao de selecao

SLR8 Extracdo e monitoramento de dados

SLR9  Sintese de dados

SLR10 Especificacao de mecanismos de disseminacao do re-
latorio principal

SLR11 Formatagao do relatorio principal

SLR12 Awvaliacao do relatorio

Tabela 1 Passos no processo de revisao sistematica conforme proposto por Keele et al. (2007) e
adaptado de Dinter, Catal e Tekinerdogan (2021).

Esse passo, em particular, e reconhecido como o mais demorado, pois exige que
um ou mais especialistas reduzam a quantidade de citacoes em um banco de dados de
referencia gerado a partir dos resultados da busca, utilizando os termos de pesquisa da
etapa anterior (SLR5). Essa reducgao e realizada por meio da classificacao dos exemplos
como relevantes ou ndo, de acordo com o criterio de inclusao definido para o estudo em
questao (BANNACH-BROWN et al., 2019; SELLAK; OUHBI; FRIKH, 2015; TSAFNAT
et al., 2018; DINTER; CATAL; TEKINERDOGAN, 2021).

3.2.1 Banco de Dados e Metrica de Trabalho Salvo

Para avaliar a automacao da triagem de citacdes, propoe-se o uso de 20 bancos de
dados abertos sobre a selegcdao de citagcdoes relevantes em revisdoes sistematicas da literatura
em varios topicos da area medica. Esses conjuntos de dados sado propostos por Cohen et
al. (2006) e Howard et al. (2016), que consistem em exemplos contendo titulo, resumo e
rétulos de classificacao como Incluidos (1) e Excluidos (-1) para as respectivas citacoes

dos bancos de dados.

Para avaliar a eficacia do modelo na classificacao de citacdes relevantes em Re-
visoes Sistematicas da Literatura (SLRs), metricas convencionais podem nao refletir com

precisao seu desempenho, pois esses bancos de dados sao altamente desbalanceados, con-
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tendo mais exemplos irrelevantes do que relevantes. Assim, a metrica WSS (Work Saved
over Sampling) (KUSA et al., 2023), introduzida por Cohen et al. (2006), quantifica a
economia de trabalho ao estimar a porcentagem de exemplos irrelevantes corretamente
descartados pelo classificador, relativa apenas a quantidade total de exemplos irrelevantes
presentes no banco de dados especifico. Esse aspecto pode dificultar a comparaccado entre
diferentes conjuntos de dados, pois a proporgcdao de exemplos irrelevantes pode variar signi-
ficativamente entre bases distintas. Para evitar a perda excessiva de exemplos relevantes,

adota-se um criterio que garante uma retencao minima de 95%.

Entretanto, em conjuntos de dados com distribuiccodes de classes distintas, os va-
lores extremos da WSS podem variar significativamente, dificultando a comparac¢@ao entre
experimentos (MELO et al., 2022; FARIA et al., 2022). Para mitigar essa limitacdo, Melo
et al. (2022) propos a metrica AWSS (Adjusted Work Saved over Sampling), uma versao

normalizada da WSS com valores entre [-1,1]. A AWSS e definida como:

AWSS@TP% = TN % —(1 —TP %) (3.2.1)

onde TN % e TP % representam, respectivamente, a taxa de verdadeiros negativos

e a taxa de verdadeiros positivos. Sua interpretac¢dao ie a seguinte:

* AWSS entre 0 e 1: O modelo economiza trabalho em relacao a amostragem
aleatoria. Por exemplo, se uma base contem 1000 citacoes (800 irrelevantes e 200
relevantes) e o modelo exclui corretamente 80% dos irrelevantes (TN % = 0.80)

enquanto retem 95% dos relevantes (TP % = 0.95), temos:

AWSS = 0.80 —(1 —0.95) = 0.75. (3.2.2)

Isso significa que 75% dos exemplos podem ser descartados sem comprometer a
retenccdao dos 95% dos relevantes .

* AWSS = 0: O desempenho do modelo equivale ao de uma amostragem aleatoria.

* AWSS entre —1 e 0: O modelo falha em excluir exemplos irrelevantes. Quanto

mais proximo de —1, maior a porcentagem de inclusdo dos exemplos irrelevantes.

Dessa forma, a metrica AWSS torna a comparacao entre diferentes conjuntos de
dados mais consistente, permitindo uma avaliacdo mais precisa do trabalho salvo pelo

mesmo modelo de referaencia.
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3.2.2 Configuracao do Experimento

Para a modelagem da classificacao de citacoes relevantes utilizando a arquitetura
Transformers, adotou-se a metodologia SETFIT (TUNSTALL et al., 2022), conforme
descrito na Secao 2.3.4.2, em conjunto com o modelo SPECTER, apresentado na Secao
2.2.7. O modelo SPECTER, desenvolvido por Cohan et al. (2020), foi escolhido de-
vido ao seu treinamento especializado em textos cientificos e a sua capacidade de veto-
rizacao semantica utilizando o token “[CLS]”, tornando-o particularmente adequado para
o dominio desta pesquisa. Esse modelo representa sentencas em um espaco vetorial, no

qgual textos cientificamente similares possuem embeddings mais proximos entre si.

O ajuste fino utilizando a abordagem SETFIT ocorre em dois passos. No
primeiro, o modelo e ajustado com aprendizado contrastivo, aprimorando as repre-
sentacoes semanticas dos textos de entrada. No segundo, realiza-se a classificacao base-
ada em embeddings, onde um classificador e treinado sobre essas novas representacaes

para a tarefa de classificaccado final.

3.2.2.1 Fase 1. Aprendizado Contrastivo

Inicialmente, os exemplos para o ajuste fino sao organizados em pares aleatorios.
Pares pertencentes a mesma classe recebem o rotulo P (pares similares), enquanto pares
de classes distintas recebem o rotulo N (pares néo similares). Cada par representa
uma amostra utilizada no treinamento contrastivo, cujo objetivo e aproximar exemplos
da mesma classe e afastar aqueles pertencentes a classes diferentes, com base em suas

representacées vetoriais.

Para esse treinamento, foram selecionados aleatoriamente 8 exemplos por classe,
totalizando 16 exemplos. A partir desses exemplos, foram gerados 40 pares positivos e

40 pares negativos, resultando em um conjunto de treino com 80 pares contrastivos.

A vetorizacao dos exemplos e realizada utilizando o modelo SPECTER, no
qual cada entrada na amostra de treino e representada pela concatenacao do titulo e
do resumo do respectivo artigo cientifico. O truncamento e aplicado para um maximo
de 512 tokens, respeitando a limitacao de entrada do modelo. Essas frases sao entao
convertidas em representacoes vetoriais por meio do vetor resultante do token de entrada

[CLS], que captura a representacdo semantica do texto de entrada na saida do modelo.

Neste treinamento contrastivo, foi aplicado um ajuste fino eficiente com LoRa,

treinando apenas os modulos de baixo posto, configurados com dimensionalidade igual
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a 4, conforme descrito na Segao 2.3.4.2. Esses modulos sao aplicados as matrizes V e K
do mecanismo de atencao, conforme ilustrado na Figura 7, nas trés ultimas camadas
do modelo SPECTER. O treinamento foi conduzido por duas épocas, atualizando esses
modulos com lotés dé 16 parés contrastivos e uma taxa de aprendizado (learning rate)
igual a 0,007.

A funcao de perda adotada e uma adaptacao da funcdo dé pérda contrastiva

supérvisionada de Khosla et al. (2021), definida como:

I_Tossgx,y)\ S > tag = exp{sim(xp.yp)/r} ,sim(x,y) = ... ™. (3.2.3)
|P 1p-p I"n-N exp{sim(xn,yn)/ T} [1x12]ly |2

onde p G P representa os exemplos contrastivos da mesma classe e n G N pertence
a classes distintas. A metrica de similaridade sIm(x,y) utilizada foi a similaridadé do

cosséno, com o hiperparametro t fixado em 0,2.

Duas modificacoes foram incorporadas em relacao a formulagao original: (i) os
pares foram selecionados aleatoriamente, em vez de considerar todas as combinaccéoes
possrveis dentro da amostra; e (ii) o denominador da funcao de perda inclui apenas
exemplos negativos, aplicando a tecnica de Hard Négativé Sampling. Esse metodo
proporciona maior estabilidade ao treinamento, enfatizando a separaccado adequada entre

exemplos contrastivos, conforme discutido por Wang e Liu (2021).

3.2.2.2 Fasé 2: Classificacdo Baséada ém Embéddings

Apos o ajuste fino contrastivo, os 16 éxémplos utilizados na Fase 1sdo emprega-
dos para treinar o modelo de classificacao baseado na régréssao logistica, associando-o0s
as suas respectivas classes. Esse treinamento utiliza as novas representacoes vetoriais
(émbéddings) extraddas do token [CLS] do modelo Transformer ajustado pela fase 1
Essa abordagem possibilita a classificacao dos textos de entrada como rélévantés ou nao
rélévantés, alem de permitir a avaliacao da performance do modelo adaptado por meio
da metrica AWSS@95%, que mensura a economia de trabalho na seleccdao de artigos

relevantes em uma revisao sistematica da literatura.
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3.2.2.3 Otimizacao

Para aprimorar a eficiencia computacional do modelo, algumas tecnicas de oti-
mizacao foram aplicadas. Este estudo foca em abordagens simples que permitem tornar

os modelos de base mais sustentaveis por meio dos seguintes metodos:

e Quantizacao dindmica em 4 bits.

» Poda de parametros utilizando o metodo W anda, proposto por Sun et al. (2023)
e ilustrado na Figura 8. Esse metodo e aplicado em todas as camadas do modelo,
exceto nos madulos LoRa, que sao utilizados paralelamente aos pesos, conforme

apresentado na Secao 2.3.4.2.

Alem disso, foram realizadas analises sobre o consumo de recursos computacionais
e a latdencia durante o treinamento e a inferaencia do modelo Transformer, considerando

diferentes configuracoes de precisao e hardware:

Hardware Especificagéo TDP (W)
CPU Intel Core i7-11800H (1la geracao) 45 - 109
GPU NVIDIA GeForce RTX 3060 Mobile 60 - 115

Tabela 2. Especificagbes de hardware utilizadas nos experimentos .

A avaliaccBao da latencia de inferdencia foi realizada sobre uma amostra de 32
exemplos de textos, enquanto a avaliacao do treinamento seguiu as especificacoes da

Fase 1. Todos os exemplos contendo 512 tokens.

3.2.2.4 Composicao de Habilidades

Com o objetivo de consolidar o conhecimento das novas representaccfoes seméaanticas
adquiridas apos o treinamento contrastivo da Fase 1 nos 20 bancos de dados, seleciona-
mos os cinco melhores resultados apas o ajuste fino, com base na metrica de trabalho
salvo AWSS@95%. Essa metrica foi utilizada para avaliar a performance da separacao
semantica entre classes locais (dentro de um mesmo banco de dados) e globais (entre
diferentes bancos de dados), na composicdo de um Unico modelo com habilidades combi-
nadas. Para isso, realizamos a composicao de mdédulos LoRa, conforme descrito na

Secao 2.3.4.3, configurando-a para gerar os novos madulos A e B com rank 8.
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4 Resultados

4.1 Analise quantitativa dos bancos de dados

Os bancos de dados utilizados em revisdoes sistemiaticas da literatura consistem em
extensas colecoes de referencias textuais, submetidas a um rigoroso processo de triagem
para a seleccdao de estudos relevantes. O objetivo desse procedimento ieidentificar artigos
que respondam a uma questao especifica ou fundamentem uma investigacdo cientifica.
Em bancos de dados de revisoes sistematicas da literatura (SLRs), observa-se frequente-
mente um desequilibrio acentuado entre o nimero de artigos relevantes (Incluidos)
e nao relevantes (Excluidos). Esse padrdo e evidente nos bancos de dados analisados
neste estudo, conforme apresentado na Tabela 3, onde as classificacdes Excluido (-1)
e Incluido (1) foram atribuidas pelos autores com base no titulo e no resumo de cada
artigo. Em alguns casos, essa desproporcao e expressiva, com menos de 10% dos artigos

sendo incluidos na revisao sistematica.

Banco de Dados Total Incl. Excl.
ACE Inhibitors 2544 41 (1.6%) 2503 (98.4%)
ADHD 851 20 (2.4%) 831 (97.6%)
Antihistamines 310 16 (5.2%) 294 (94.8%)
Atypical Antipsychotics 1120 146 (13.0%) 974 (87.0%)
Beta Blockers 2072 42 (2.0%) 2030 (98.0%)
Calcium Channel Blockers 1218 100 (8.2%) 1118 (91.8%)
Estrogens 368 80 (21.7%) 288 (78.3%)
NSAIDs 393 41 (10.4%) 352 (89.6%)
Opioids 1915 15 (0.8%) 1900 (99.2%)
Oral Hypoglycemics 503 136 (27.0%) 367 (73.0%)
Proton Pump Inhibitors 1333 51 (3.8%) 1282 (96.2%)
Skeletal Muscle Relaxants 1643 9 (0.6%) 1634 (99.4%)
Statins 3465 85 (2.5%) 3380 (97.5%)
Triptans 671 24 (3.6%) 647 (96.4%)
Urinary Incontinence 327 40 (12.2%) 287 (87.8%)
Drug Reviews (COHEN et al., 2006) 16015 2169 13846
Bisphenol A (BPA) 7700 111(1.4%) 7589 (98.6%)
Fluoride and Neurotoxicity 4479 51 (1.1%) 4428 (98.9%)
Neurophatic pain 29207 5011 (17.2%) 24196 (82.8%)
PFOA/PFOS 6331 95 (1.5%) 6236 (98.5%)
Transgenerational 48638 765 (1.6%) 47873 (98.4%)
SWIFT (HOWARD et al., 2016) 92262 5861 86401

Tabela 3. Distribuicdo de rotulos para cada respectivo banco de dados.
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A analise da distribuicao da contagem de tokens foi realizada considerando a li-
mitacao de 512 tokens como entrada para o modelo base SPECTER (COHAN et al.,
2020), que recebe como entrada a concatenacao do titulo e do resumo de cada artigo. O
maior banco de dados analisado, Transgeracional, apresenta um numero significativo
de outliers, especialmente entre os textos classificados como excluidos (-1), que frequen-
temente ultrapassam esse limite, conforme indicado pelo boxplot vermelho na Figura 11.
De modo geral, ao analisar a distribui¢gcdao dos tokens nos diferentes bancos de dados e suas
respectivas classes, observa-se que 75% dos textos de entrada permanecem dentro
do limite do modelo, com apenas alguns exemplos necessitando de truncamento para

viabilizar sua utilizagcdao.

Figura 11 Distribuicao de tokens para cada banco de dados.

Embora os bancos de dados contenham terminologia especifica de suas respecti-
vas areas de pesquisa, a segmentacao realizada pelo tokenizador permite que o modelo
interprete os textos de forma adequada, sem a necessidade de um vocabulairio especiali-
zado para cada dominio. Dessa forma, a capacidade maxima de 512 tokens dos modelos

Transformers e utilizada para gerar representacoes vetoriais contextualizadas do titulo
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e do resumo concatenados. Essas representagdes sao extraidas a partir do token especial
[CLS] e posteriormente empregadas na tarefa de classificagdo, utilizando um modelo de

regressdo logistica em conjunto com aprendizado contrastivo.

4.2 Analise exploratéria do modelo e treinamento contrastivo

0] modelo Transformer SPECTER (COHAN et al., 2020), utilizado neste estudo,
foi inicialmente pré-treinado por meio de um treinamento contrastivo. Esse processo
teve como objetivo aproximar vetores semanticamente semelhantes e afastar aqueles sem
correlacdo, utilizando a representacao vetorial de 768 dimensdes, gerada como saida do
modelo a partir do token de entrada [CLS]. Dessa forma, o modelo estabelece um espaco

semantico inicial capaz de contextualizar a estrutura dos textos de entrada.
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Figura 12: Visualizagdo T-SNE dos vetores [CLS] de cinco bancos de dados utilizando o modelo
SPECTER: (1) NSAIDS, (2) Neuropain, (3) Oral Hypoglycemics, (4) Statins e (5) Antihistamines.
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Para avaliar a capacidade inicial do espagco semaéntico criado pelo modelo de
base, foram selecionados 300 exemplos por classe em cinco bancos de dados escolhidos
aleatoriamente. Cada exemplo foi representado pela concatenagcdao do titulo com o resumo

do respectivo artigo, respeitando o limite de 512 tokens.

Os rotulos foram atribuidos conforme a origem dos exemplos em cada banco de
dados. No caso do banco Antihistamines, por exemplo, os indices 5 e -5 foram usados
para representar, respectivamente, os exemplos incluidos (1) e excluidos (-1). Essa cate-
gorizagcado foi mantida para os demais bancos de dados, permitindo a comparacgdao entre

classes e entre bancos distintos.

Para visualizar as representacdes geradas pelo modelo, utilizou-se o0 metodo de
reducao de dimensionalidade t-SNE (MAATEN; HINTON, 2008) para projetar os vetores
de 768 dimensoes, obtidos a partir do token [CLS], em um espaco bidimensional. A
Figura 12 apresenta o resultado dessa projecao, onde observa-se que 0s pontos exibem

agrupamentos semanticos coerentes entre os diferentes bancos de dados.

Entretanto, ao analisar a separac¢dao entre as classes dentro de cada banco, nota-se
que o modelo nado consegue distingui-las de forma eficiente. Esse problema ie particular-
mente evidente no banco Antihistamines, onde exemplos incluidos e excluidos ndao apre-
sentam separaccado clara no espagco vetorial. Esse comportamento sugere que, embora o
modelo capture a estrutura semantica geral dos textos, ele nao diferencia adequadamente

os exemplos pertencentes a classes opostas dentro de um mesmo banco de dados.

Para uma anilise mais detalhada da capacidade da representacao semantica re-
sultante do token [CLS] do modelo de base e sua adaptabilidade na separagcdao das classes,
utilizou-se o banco de dados NSAIDS, com 16 exemplos de treino (8 por classe) e
uma amostra de validacao composta por 360 exemplos, sendo 41 incluidos (1) e 319

excluidos (-1), organizados conforme essa ordem.

A Figura 13 ilustra o desempenho da representacdo gerada pelo modelo antes do
treinamento contrastivo nas imagens (a) e (c). A imagem (a), obtida por meio da reducao
de dimensionalidade t-SNE, indica que o modelo nao conseguiu capturar visualmente
a separacao semantica entre as classes dentro do banco de dados. Ja a imagem (c),
que representa a matriz de similaridade do cosseno dos indices organizados conforme
especificado, revela uma alta correlagcdao entre exemplos de diferentes classes, evidenciando

a dificuldade do modelo em distinguir padroes semanticos antes do ajuste fino.

Por outro lado, apis o ajuste fino da Fase 1, observa-se na imagem (b) que o

modelo passa a agrupar os exemplos de acordo com suas classes rotuladas. Esse com-
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portamento e reforcado na imagem (d), onde a similaridade entre exemplos da mesma
classe atinge valores superiores a 0,75, especialmente para a classe (-1), nos indices de
42 a 360. No entanto, para os indices de 1a 41, que representam a classe (1), algu-
mas amostras foram erroneamente classificadas como negativas, apresentando valores de

similaridade proximos a -0,75, sugerindo um agrupamento indevido com a classe -1.

Figura 13 Visualizacdo T-SNE dos vetores [CLS] do banco de dados NSAIDS antes e depois do ajuste
fino. As imagens (a) e (b) representam, respectivamente, a distribuicao dos vetores antes e apds o
treinamento contrastivo. As imagens (c) e (d) exibem a matriz de similaridade do cosseno entre os

exemplos antes e depois do ajuste fino.

Para avaliar a eficacia do modelo em termos de economia de trabalho, utilizou-
se um modelo de regressdo logistica treinado com a representacao vetorial do token
[CLS] gerada pelo modelo Transformer antes e depois do ajuste fino da Fase 1, mantendo
0s mesmos 16 exemplos de referencia. Na Figura 14, a imagem (a) apresenta a
distribuicao das classes antes do treinamento contrastivo no espaco entre 0 e 1, projetado

pelo modelo de regressao logistica. Nota-se que o modelo de base, sem ajuste, jA consegue
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criar uma representacdo semantica com uma distincdo inicial entre as densidades das

classes 1 e -1, conforme indicado pelas curvas “Densidade 1” e “Densidade -1".

Figura 14: Curvas normalizadas da densidade de probabilidade e densidade acumulada (estrelada) das
representagdes vetoriais do token [CLS] pelo modelo Transformer para o banco de dados NSAIDS antes
(@) e depois (b) do ajuste fino, utilizando a regressao logistica ajustada no conjunto de treino.

Comparando com o modelo ajustado conforme a especificacao da Fase 1, a ima-
gem (b) da Figura 14 mostra que a distribuicdo das densidades indica uma separagao mais
definida, posicionando os exemplos de validacao mais proximos dos extremos 0 e 1 da
regressao logistica. Alem disso, ao analisar a funcao de sobrevivencia (definida como
1 menos a funcao acumulada), percebe-se que a separacdo entre as classes e mais
evidente da imagem (a) para a (b). Esse comportamento sugere que o modelo, apos o
treinamento contrastivo, apresenta maior confianca na classificacdo dos exemplos, corro-
borando as analises apresentadas na Figura 13, onde as imagens (a) e (c) ilustram o estado
antes do treinamento, enquanto as imagens (b) e (d) representam o comportamento apos

0 ajuste fino da Fase 1.

Entretanto, ao avaliar o desempenho do modelo pela metrica AWSS@ 95%,

mantendo 95% dos exemplos relevantes, observa-se que o modelo treinado conse-
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guiu excluir 21,3% dos exemplos irrelevantes, enquanto o modelo sem ajuste contrastivo

apresentou um desempenho superior, excluindo 28,9% dos exemplos irrelevantes.

Embora o ajuste fino tenha melhorado a separacao semantica, a regressao logistica
treinada com os 16 exemplos de referencia sobre as representacoes vetoriais do mo-
delo SPECTER sem ajuste apresentou melhor desempenho no banco NSAIDs. Esse
resultado indica que, apesar de o modelo apresentar maior confianca na clusterizacdo dos
exemplos, a metrica AWSS@95% revela que, ao ajustar o limiar para atender a esse
criterio, mais exemplos irrelevantes acabam sendo erroneamente incluidos apos o ajuste

fino, reduzindo a eficiencia do modelo na economia de trabalho.

4.3 Analise de Otimizacao

A avaliacao do desempenho do modelo e essencial para garantir sua escalabili-
dade e viabilidade em aplicacfes praticas. A escolha de tecnicas de otimizacao impacta
diretamente a eficidencia computacional e a qualidade dos resultados. Para mensurar es-
ses efeitos, foram conduzidos experimentos comparando diferentes precisdoes numiericas
durante o treinamento e a inferéncia do modelo.

Precisao Treinamento Inferencia GPU Inferencia CPU
FLOAT32 132s + 0.10 (1x) 0.72s + 0.10 (1x) 10.92s + 0.21 (1x)
BFLOAT16 40s+ 0.10 (3.3x)

FLOAT16 0.32s + 0.07 (2.4x) 19.86s + 0.22 (0.55x)
INTS 0.15s + 0.04 (4.8x)  6.38s = 0.31 (1.7)

Tabela 4: Latencia em diferentes tipos de precisao para inferéncia e configuracao do treinamento
contrastivo especificado na Fase 1 Para o treinamento contrastivo, foram utilizados 1280 pares de
exemplos contrastivos, cada um com 512 tokens, treinados por 2 epocas com lotes de 16 exemplos. Para
a inferéncia, utilizou-se um lote de 32 exemplos, tambem com 512 tokens.

A Tabela 4 apresenta as estatisticas de desempenho do treinamento na Fase 1.
Ao empregar a precisao BFLOAT16, observa-se uma reducéo significativa no tempo
de treinamento, resultando em um desempenho 3,3 vezes superior em comparacao a
precisao FLOAT32. Com um nivel de confianca de 95%, nao foi identificada diferenca
estatisticamente significativa no valor final da funcao de perda, conforme verificado por

um teste-t, em relagao a inicializacao padrdo dos modelos em FLOAT32.

No que se refere a inferéncia, utilizando um lote de 32 exemplos, cada um
contendo 512 tokens, a execucdo na GPU com precisdio FLOAT16 apresentou uma
reducao de 2,4 vezes na latencia em relacdo a FLOAT32. No entanto, ao realizar

a inferéncia na CPU, a precisao FLOAT16 resultou em uma latencia aproximadamente
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duas vezes superior a obtida com FLOAT32. Esse comportamento pode ser atribuido
a otimizacao da arquitetura da CPU, que processa de forma mais eficiente precisoes

especificas e prie-determinadas.

Para valores de menor precisao na CPU, como INTS8, utilizando quantizacao
dindmica — na qual apenas os pesos sao quantizados, engquanto os valores de ativacao
permanecem em FLOAT32 —, obteve-se uma reducdo significativa da latencia, com
um desempenho ate 70% superior em relacao a FLOAT32. Na GPU, essa melhoria foi
ainda mais expressiva, resultando em uma inferéncia 4,8 vezes mais rapida, com uma
latencia de apenas 0,15 segundos. Considerando o TDP como uma metrica aproximada
do consumo energietico, conforme apresentado na Tabela 2, verifica-se que a GPU e mais
eficiente para inferéncia, uma vez que sua arquitetura otimizada para operagdes
matriciais proporciona menor latencia e maior economia de energia em comparacao a
CPU.

SPECTER LoRa
Precisao 110M (100%) 36.864 (0,03%)
32 bits 420 MB 144 KB (0,14 MB)
16 bits 209 MB 72 KB (0,07 MB)
8 bits 104 MB 36 KB (0,035 MB)
4 bits 52 MB 18 KB (0,018 MB)

Tabela 5: Consumo de recursos computacionais em diferentes precisoes para 0 modelo SPECTER e os
modulos LoRa.

A alocacao de recursos computacionais para o modelo de base utilizado neste
estudo e diretamente influenciada pela precisao dos pesos, impactando significativamente
a demanda por armazenamento e processamento. Como ilustrado na Tabela 5, a precisao
original do modelo SPECTER, que contem 110 milhdes de parametros, consome
aproximadamente 420M B. Esse valor pode ser considerado elevado para dispositivos com
restricoes de memoria, como dispositivos moveis. Entretanto, ao reduzir a precisdo dos
pesos, e possivel obter reducoes de ate 8 vezes no consumo de memoria, cOmo no caso

do modelo quantizado em 4 bits.

Por outro lado, ao analisar os modulos LoRa, conforme a configuracdo da Fase
1 do treinamento contrastivo, observa-se uma reducao expressiva no numero de
pardmetros treinaveis necessirios para o ajuste fino. Esses modulos representam me-
nos de 0,1% do tamanho do modelo base, proporcionando um armazenamento altamente
eficiente para o acervo de habilidades adaptadas, atingindo um tamanho reduzido de ape-

nas 18 KB (0,018 MB). Essa caracteristica possibilita a transmissao eficiente dos modulos
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por redes de comunicagao, alem de viabilizar seu armazenamento tanto em dispositivos
com baixa capacidade computacional quanto em grandes bancos de dados de habilidades,

sem impactar significativamente o consumo de recursos em datacenters.

Alem da anélise da laténcia e do consumo de récursos computacionais, avaliou-
se a capacidade do modelo base e o impacto da otimizacao especificada na Secédo 3.2.2.3.
Para isso, analisaram-se as configuracdes da Fasé 1 do tréinaménto contrastivo, uti-
lizando os mesmos 16 exemplos de referencia para treinar o modelo de regressao logistica
sobre as representacdes vetoriais do token [CLS] desses exemplos, conforme determinado
na Fase 2, em cada um dos 20 bancos dé dados. A pérformancé dessas representacoes
foi medida antes e depois do ajuste fino com LoRa, por meio da métrica AWSS@95%,
com o objetivo de avaliar a capacidade do modelo base de éxpandir suas habilidadés em
diferentes topicos de revisoes sistematicas da literatura. Os resultados dessa comparacao

sao apresentados na Figura 15.

Conforme ilustrado na Figura 15, ao manter 95% dos exemplos relevantes na clas-
sificacdo, conforme a metrica adotada, o modelo SPECTER, identificado como “Basé”,
apresentou um desempenho satisfatorio no conjunto de bancos de dados do SW IFT, des-
crito na Tabela 3, reduzindo em mais de 70% a quantidade de documentos irrelevantes.
No entanto, em alguns cenarios, o ajuste fino nao proporcionou melhorias significativas na
metrica, como observado no caso do NSAIDS, descrito anteriormente na Secao 2.3.4.2.
Aldem disso, em situacgdoes extremas, como no banco de dados Estrogéns, a maetrica de
trabalho salvo diminuiu dé 35% para 12%, evidenciando limitacoes na adaptacao do

modelo a determinadas bases de dados.

Apés o ajuste fino do treinamento contrastivo utilizando LoRa, aplicou-se, pa-
ralelamente, a quantizacdo dindmica ém 4 bits e a poda Wanda, sendo esta Gltima
responsavel por zerar 50% dos pésos. Esses metodos sao referenciados, respectivamente,
como “Quant. 4Bit” e “Pruné”. Utilizando o modelo de regressao logistica gerado pelo
ajuste fino, os resultados indicam que, em diversos bancos de dados, ha uma degradacao
na metrica AWSS@95% em comparacao com os valores obtidos pelo ajuste LoRa e pelo
modelo base. No entanto, de forma surpreendente, em alguns casos, a maetrica apresenta
recuperacao de desempenho ou ate mesmo uma melhoria em relacao ao ajuste fino. Esse
fenomeno e observado, por exemplo, nos bancos de dados “Urinary Incontinéncé” e
“Opioids”, a0 empregar a tecnica de poda. No banco “Opioids”, a metrica de trabalho
salvo atinge aproximadamente 50%, superando os 40% do ajuste fino. Comportamento
semelhante e identificado em outros bancos ao utilizar a quantizacao, como nos casos de

“PFOS-PFOA” e “Calcium Channél Blockérs”. De maneira geral, 0 modelo base
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Figura 15. Metrica AWSS@95% para diferentes tecnicas de otimizacdo por banco de dados.

apresenta um desempenho inicial mais robusto quando comparado aos resultados obtidos
das tecnicas de ajuste fino e dos metodos de otimizacao propostos. Em 10 dos bancos
de dados analisados, essas tecnicas resultaram em melhorias de desempenho; entretanto,
nos outros 10 casos, verificou-se a0 menos uma ocorréncia de degradacao em relacao ao

desempenho na mietrica pelo modelo de base.

Por fim, considerando os cinco bancos de dados com os melhores resultados na
mietrica AWSS@ 95%, conforme apresentado na Figura 15, realizou-se uma analise ex-
ploratoria para avaliar o impacto da combinacao de multiplas habilidades ao longo do
tempo. Partiu-se da hipotese de que, caso o modelo base fosse ajustado para aprender
e acumular diferentes habilidades por meio do ajuste fino, seria possivel consolidar essas
representacoes em um inico modelo hibrido, utilizando a composto dos midulos LoRa

em uma estrutura unificada, preservando a performance especifica de cada tarefa.

Para esse experimento, adotou-se a metodologia descrita na Secao 2.3.4.3, que
viabiliza a combinacao dos modulos. A configuracao do rank foi definida como 8 para os

novos modulos A e B do LoRa hibrido, permitindo a fusao das representacfes vetoriais
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adquiridas pelo modelo ajustado em diferentes bancos de dados.

- Classe -1 - Classe -2 - Classe -3 - Classe -4 - Classe -5
Classe 1 - Classe 2 - Classe 3 - Classe 4 - Classe 5

(c) 1))

Figura 16: Visualizacao T-SNE dos vetores [CLS] de cinco bancos de dados utilizando o modelo
SPECTER. Os bancos considerados sao: (1) ADHD, (2) BPA, (3) Fluoride, (4) PFOS-PFOA e (5)
Transgenerational. A subfigura (a) apresenta o modelo sem ajuste fino, enquanto a subfigura (b) exibe
0 modelo ajustado por meio da abordagem hibrida. As matrizes de similaridade do cosseno para o
banco de dados PFOS-PFOA sao apresentadas nas subfiguras (c) e (d), representando, respectivamente,
os resultados ap6s o ajuste fino convencional e a composicao hibrida.

Na Figura 16, onde amostras de validacao composta por 360 exemplos para
cada banco de dados, a subfigura (a) apresenta o espaco vetorial do modelo base antes
de qualquer ajuste, considerando os cinco bancos de dados analisados. Em contrapar-
tida, a subfigura (b) exibe a projecao resultante da composicao hibrida dos modulos de
habilidades, utilizando a tecnica t-SNE. Embora a visualizacao ocorra em um espaco bi-
dimensional, observa-se que, na subfigura (b), o modelo passa a promover uma melhor
separacao das classes dentro de cada banco de dados, mantendo, ao mesmo tempo, uma
distincdo global entre os diferentes bancos. Esse efeito pode ser notado, por exemplo, no
banco “PFOS-PFO A", onde as classes 4 e -4, correspondentes aos rétulos incluido (1)

e excluido (-1), tornam-se mais claramente diferenciadas apis a composicao hibrida.

Na imagem (c), apresenta-se a matriz de similaridade cosseno para o banco
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de dados PFOS-PFOA, utilizando o resultado do ajuste fino correspondente a Fase 1
Para os indices de 1 a 80, que representam instancias dos rotulos incluido (1) e excluido
(-1), a similaridade entre os vetores e aproximadamente 1, indicando alta semelhanca
entre instdancias da mesma classe. Em contrapartida, ao comparar instadncias de rotulos

distintos, essa relacao se aproxima de -1, refletindo a separagao entre 0s grupos.

Ao comparar esse resultado com a imagem (d), que representa 0S mesmos exem-
plos utilizando a representagcdao vetorial do modelo resultante da composi¢cdao hibrida,
observa-se que a matriz de similaridade mantem uma estrutura semelhante a da matriz
(c). No entanto, os valores de similaridade ndao permanecem perfeitamente proximos
de 1 e -1, como anteriormente. Em vez disso, os valores para instdncias da mesma
classe situam-se em torno de 0,8, enquanto para instancias de classes distintas variam

entre -0,25 e 0,25, aproximando-se de uma configuracao ortogonal.

AWSS@95%
Banco de Dados Hibrido LoRa base
ADHD 0.78 0.77 0.71
BPA 0.71 0.73 0.71
Fluoride 0.82 0.80 0.77
PFOS-PFOA 0.70 0.67 0.65
Transgenerational 0.50 0.47 0.49

Tabela 6: Comparacao entre abordagens e os valores do AWSS@95% para os 5 melhores desempenhos
do modelo.

Ja na Tabela 6, e apresentada uma comparacao de desempenho entre os
modelos utilizando a metrica de trabalho salvo (AWSS@95%). A avaliacdo foi realizada
considerando os mesmos modelos de classificacao resultantes do ajuste fino da Fase 1
com LoRa, especificos para cada base, aplicados para rotular os vetores gerados pelo
modelo “Hibrido” e pelo modelo LoRa, comparando-os com a rotulagem do modelo de

classificagcdao treinado sobre as representagcdoes sem ajuste do modelo base.

Os resultados indicam que, com excecao do banco de dados BPA, todos os de-
mais apresentam pequena melhora na metrica AWSS@95%. Esse efeito pode ser
atribuido ao processo de regularizacao decorrente da proximidade da ortogonali-

dade entre as classes, como analisado na Figura 16 imagem (d).
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5 Discussao e Trabalhos Futuros

Conforme apresentado na Secao 4.2, 0 modelo base demonstrou boa capacidade
de representagccdao vetorial dos textos entre diferentes bancos de dados, como ilustrado
na Figura 12. No entanto, essa representacdo nao capturou agrupamentos locais entre
classes dentro de um mesmo banco de dados. Com a aplicacdo do ajuste fino baseado
em aprendizado contrastivo, o modelo aprimorou a separacao dessas classes, conforme
evidenciado na Figura 13. Esse efeito tambem foi observado na regressdo logistica, onde
as densidades dos exemplos convergiram para valores extremos, conforme demonstrado na
Figura 14. Entretanto, ao aplicar a mesma metodologia a diferentes bancos de dados, nado
houve melhora significativa na metrica de trabalho salvo, conforme indicado na Figura
15.

Esses resultados sugerem que o treinamento contrastivo reforca a similaridade en-
tre exemplos de uma mesma base, promovendo agrupamentos mais coesos (13d). Contudo,
ao manter 95% dos artigos relevantes na metrica de trabalho salvo, podem ser adicionados

exemplos irrelevantes proximos ao limiar de classificacao na regressao logistica.

Por outro lado, as tecnicas de otimizacdo aplicadas ao modelo, como quantizacao
e poda de parametros, nao comprometeram significativamente o desempenho da metrica
apos o ajuste contrastivo. Alem de reduzir a carga computacional, permitiram compactar
0 modelo em ate oito vezes, reduzindo seu tamanho de 420MB para apenas 52MB, o que
e essencial para hardware com restricoes de capacidade. Essa compactacao viabiliza a
implementacao do modelo em dispositivos especializados, servidores remotos e acervos de
modelos base, sem prejuizo significativo no desempenho. Alem disso, os modulos LoRa
utilizados neste estudo representam menos de 0,1% do total de pardmetros, exigindo ape-
nas 144KB de armazenamento, podendo ser reduzidos para 18KB com 4 bits de precisao.
Isso possibilita uma transferencia eficiente de conhecimento entre servidores e usuarios,
permitindo a adaptagcdao de um modelo base para diferentes contextos com baixo custo
computacional. Essa flexibilidade fomenta um ecossistema modular, onde habilidades

especificas podem ser adicionadas e distribuidas de maneira eficiente.

A aplicacao da metodologia descrita na Secao 2.3.4.3 nos cinco melhores mode-
los, segundo a metrica AWSS@95%, demonstrou que e possivel preservar habilidades do
modelo base enquanto se incorporam novas especializaccdoes. Como ilustrado na Figura
16, essa abordagem resulta na formagao de agrupamentos mais estruturados e melhor
separacao de classes dentro de cada banco de dados. Esse efeito tambem e observado na

matriz de similaridade, que se mantem estivel na transicao do modelo ajustado para o
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hibrido (16c e 16d). Embora o modelo hibrido perca parte da confianca absoluta na clas-
sificacao, ele mantem representacoes semanticas bem definidas. Essa abordagem viabiliza
um ecossistema de habilidades especfficas, onde madulos podem ser ativados conforme
necessario, aumentando a eficiencia computacional, especialmente em hardwares especia-
lizados para computaccdao paralela, como GPUs. Dessa forma, otimiza-se o uso dos recursos

computacionais, reduzindo o consumo energéetico e promovendo maior sustentabilidade.

Vale destacar que novas representaccdoes vetoriais foram adquiridas com apenas
oito exemplos por classe e tempo reduzido de processamento, tornando essa aborda-
gem sustentavel para a especializacao de modelos. Assim, o custo computacional dessas
adaptacoes e insignificante para servidores especializados, permitindo sua aplicacao em
contextos especificos e facilitando a democratizacao do conhecimento cientifico de forma

acessavel e eficiente.

Diante dos achados deste estudo, a aplicabilidade de modelos base transcende a
simples otimizaccado de desempenho. Futuras pesquisas podem explorar o uso desses mo-
delos para otimizar revisoes sistematicas, reduzindo custos e carga de trabalho na selecdo
de referencias relevantes para pesquisas cientificas. A otimizagao do trabalho salvo pode
ser aprimorada combinando abordagens de aprendizado contanuo e modelos compactos
especializados para extracao automatizada e analise de padrdes em artigos cientificos.
Essa estrategia permite a construcao de um repositorio dinamico de conhecimento, no
qual maodulos especializados podem ser atualizados continuamente sem necessidade de

re-treinamento completo, viabilizando um ecossistema evolutivo de IA aplicada a ciencia.

Embora os resultados obtidos apresentem diversas perspectivas promissoras, al-
gumas limitaccodes foram identificadas na configuragcado de treinamento utilizada. Para
aprimoramentos futuros, sugere-se a exploragcdao de novos regimes de ajuste fino, como a
destilacao de conhecimento em modelos Transformer, conforme proposto por Wang et al.
(2020b). Essa tecnica pode permitir uma compactacao ainda mais eficiente do modelo,

mantendo sua eficacia em tarefas especficas.

Por fim, considerando o crescente interesse na sustentabilidade e na reducgdao da
pegada de carbono, futuras pesquisas devem incorporar maetricas de impacto ambiental no
treinamento e uso de modelos de IA. Estudos recentes Patterson et al. (2021), Strubell,
Ganesh e McCallum (2019), Dodge et al. (2022) ressaltam a importancia de avaliar as
emissoes de carbono, promovendo praticas mais sustentaveis na area. A exploracdo de
novos regimes de ajuste fino e a avaliacao direta das tecnicas de otimizacao sobre o modelo
base, sem adaptaccdoes adicionais, representam caminhos promissores para aprimorar a

aplicabilidade da inteligencia artificial em beneficio da sociedade e do meio ambiente.
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6 Conclusao

Este estudo explorou diversas tecnicas e metodologias para aprimorar modelos
de aprendizado profundo, visando melhorar sua eficiencia e adaptabilidade em diferentes
contextos. Ao longo da pesquisa, foi investigado desdes os componentes basicos de modelos
de redes neurais artificiais, ate metodos de ajuste fino eficientes, otimizacao e hibridacao
de modelos, alem de avaliar sua aplicabilidade em uma variedade de conjuntos de dados
de revisao sintematica da literatura e estruturar o conhecimento de modelos base pela

arquitetura Transformers.

Observamos que, embora que as configuracdes de treino empregadas para a abor-
dagem de ajuste fino do modelo ndo tenham obtido sucesso na metrica de trabalho salvo
em todos os cendarios avaliados, este abriu portas para uma séerie de possibilidades de me-
Ihoria e inovacdo. A analise qualitativa e quantitativa dos metodos de otimizacao revelou
insights valiosos sobre o desempenho e a robustez dos modelos, fornecendo um novo para-
digma para o desenvolvimento de aplicacoes baseadas em I|A, ressaltando a importancia
de um ecossistema rico de habilidades especificas para os modelos e sustentaveis, trazendo

benefacios tanto para a sociedade quanto para a preservagcdao da natureza.

Dessa forma, este trabalho oferece uma contributo significativa para o campo
da inteligencia artificial, incentivando a continuidade da pesquisa e desenvolvimento de

solucoes que atendam as necessidades da sociedade de forma etica, eficiente e sustentavel.
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