
Universidade de Brasília – UnB
Faculdade de Ciências e Tecnologias em Engenharia - FCTE

Engenharia de Software

Desenvolvimento de Jogos Digitais na Prática:
Um Caso Aplicado ao estilo Tron

Autor: Victor Yukio Cavalcanti Miki
Orientador: Prof. Dr. Ricardo Matos Chaim

Brasília, DF
2025

Victor Yukio Cavalcanti Miki

Desenvolvimento de Jogos Digitais na Prática: Um Caso
Aplicado ao estilo Tron

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software.

Universidade de Brasília – UnB

Faculdade de Ciências e Tecnologias em Engenharia - FCTE

Orientador: Prof. Dr. Ricardo Matos Chaim

Brasília, DF
2025

Victor Yukio Cavalcanti Miki
Desenvolvimento de Jogos Digitais na Prática: Um Caso Aplicado ao
estilo Tron/ Victor Yukio Cavalcanti Miki. – Brasília, DF, 2025.
70 p. : il. (algumas color.) ; 30 cm.
Orientador: Prof. Dr. Ricardo Matos Chaim
Trabalho de Conclusão de Curso (TCC) – Universidade de Brasília – UnB
Faculdade de Ciências e Tecnologias em Engenharia - FCTE , 2025.
1. Gamificação. 2. Game development. 3. Estudo de caso. 4. Engenharia
de software. I. Prof. Dr. Ricardo Matos Chaim. II. Universidade de
Brasília. III. Faculdade UnB Gama. IV. Desenvolvimento de Jogos
Digitais na Prática: Um Caso Aplicado ao estilo Tron

CDU 005.1:794

Victor Yukio Cavalcanti Miki

Desenvolvimento de Jogos Digitais na Prática: Um Caso
Aplicado ao estilo Tron

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software.

Trabalho aprovado. Brasília, DF, 28 de julho de 2025:

Prof. Dr. Ricardo Matos Chaim
Orientador

Profa. Dra. Milene Serrano
Convidado 1

Profa. Dra. Carla Denise Castanho
Convidado 2

Brasília, DF
2025

Agradecimentos

A jornada acadêmica é repleta de desafios, e chegar até aqui não teria sido possível
sem o apoio e a presença de pessoas especiais. À minha família, por estar sempre por
perto, oferecendo suporte incondicional nos momentos de dificuldade e sendo a base que
me manteve firme ao longo desse percurso. Seu apoio foi essencial para que eu pudesse
seguir em frente. Aos meus amigos, que compartilharam comigo os momentos difíceis
e as conquistas ao longo da minha vida acadêmica. A companhia e a cumplicidade de
vocês tornaram essa caminhada mais leve e significativa. Ao meu orientador, que aceitou
me guiar neste projeto e abraçou este trabalho com entusiasmo, mesmo sendo um tema
novo e pouco explorado. Sua orientação, paciência e dedicação foram fundamentais para
a construção deste TCC. A todos que, de alguma forma, contribuíram para que este
momento se tornasse realidade, meu mais sincero agradecimento. Esta conquista não é
apenas minha, mas de todos que estiveram ao meu lado, incentivando-me a continuar.
Que este seja apenas o começo de muitas realizações!

“Games são a arte de criar experiências interativas que tocam o jogador.”

— Hideo Kojima

Resumo
O desenvolvimento de jogos eletrônicos é uma área multidisciplinar que exige a integra-
ção de diversas práticas e conhecimentos, como design, música, psicologia, programação
e gestão de projetos. Este trabalho tem como objetivo o desenvolvimento de um jogo di-
gital estilo Tron. O processo de desenvolvimento foi estruturado utilizando metodologias
como Scrum, para organizar as fases do projeto e gerenciar o tempo e as entregas, MDA
(Mechanics-Dynamics-Aesthetics) para guiar o design, alinhando mecânicas, dinâmicas
e estética com a experiência desejada, além de Prototipagem Rápida e Design Iterativo
para testar e ajustar o jogo em desenvolvimento. O trabalho aplica conhecimentos de
engenharia de software, incluindo Metodologias Ágeis e estratégias de modelagem, com o
intuito de oferecer uma abordagem prática e organizada para o desenvolvimento de jogos
digitais.

Palavras-chave: Jogo digital. Game Design. Scrum. MDA. Tron.

Abstract
This work focuses on the development of a 2D digital game in the Tron genre, aiming to
deliver a playable prototype. The development process is organized using methodologies
such as Scrum for project management, ensuring proper scheduling and delivery track-
ing. The Mechanics-Dynamics-Aesthetics (MDA) framework will guide the game design,
ensuring a cohesive experience by aligning gameplay mechanics, player interactions, and
aesthetics. Additionally, Rapid Prototyping and Iterative Design will be employed to test
and refine the game prototype throughout development. This project applies software
engineering principles, including agile methodologies and modeling strategies, providing
a structured approach to digital game development while offering practical insights into
the design and implementation processes.

Key-words: Digital game, Development, Scrum, MDA, Engines, Tron.

Lista de ilustrações

Figura 1 – Componentes de um jogo modelo MDA 20
Figura 2 – Diagrama casos de uso . 25
Figura 3 – software aseprite . 26
Figura 4 – software Godot . 27
Figura 5 – Game Loop, Sprite e Music . 34
Figura 6 – Tile Set, Tile Map e Resource Management 35
Figura 7 – Jogo Achtung Die Kurve . 36
Figura 8 – Diagrama de pacotes de arquivos . 44
Figura 9 – Conexão de nós com scripts no editor Godot. 45
Figura 10 – código: round_start . 47
Figura 11 – gamescene: _physics_process . 47
Figura 12 – player: _physics_process . 48
Figura 13 – gamescene: _on_player_died . 48
Figura 14 – player: _on_area_entered . 49
Figura 15 – BPMN: fluxo lógico . 50
Figura 16 – Tela menu inicial. 52
Figura 17 – Tela do Lobby do jogo. 52
Figura 18 – Tela do jogo com indicadores de direção antes de começar a rodada. . . 53
Figura 19 – Tela do jogo em pause. 53
Figura 20 – Tela do jogo encerrado. 54
Figura 21 – Quadro - Polimento e Ajustes . 56
Figura 22 – Menu inicial . 63
Figura 23 – Sala de iniciação . 63
Figura 24 – Tela do jogo . 64
Figura 25 – Fim do jogo - tela de vitória . 64
Figura 26 – Ícones dos poderes . 65
Figura 27 – Lista de tarefas . 66

Lista de tabelas

Tabela 1 – Requisitos funcionais do jogo . 18
Tabela 2 – Requisitos não funcionais . 18
Tabela 3 – Cronograma de desenvolvimento . 19
Tabela 4 – MDA: Mecânicas do jogo . 21
Tabela 5 – MDA: Estética e Dinâmicas . 21
Tabela 6 – Análise comparativa geral entre engines 31
Tabela 7 – Comparativo técnico baseado em requisitos 32
Tabela 8 – Tabela de solução de implementação das funcionalidades 51

Lista de abreviaturas e siglas

ABNT Associação Brasileira de Normas Técnicas

autoload Script carregado globalmente em tempo de execução pela Godot.

CamelCase Padrão de nomenclatura em que cada palavra inicia com letra maiús-
cula.

CanvasLayer Nó da Godot usado para interface sobreposta à cena principal.

containers Nós do tipo Control utilizados para organizar automaticamente a in-
terface gráfica com base em regras de alinhamento, preenchimento e
hierarquia.

Dr. Doutor

FCTE Faculdade de Ciência e Tecnologia em Engenharia

GameManager Script responsável por gerenciar transições de cenas e resolver in-
terações durante o jogo.

GameState Script global (autoload) responsável por armazenar e gerenciar dados
persistentes do jogo, como pontuações.

HBoxContainer Tipo de container da Godot que organiza elementos filhos horizon-
talmente.

HUD Sigla para Heads-Up Display; elementos gráficos da interface que exi-
bem informações durante o jogo, como pontuação, tempo e status.

keybinds Associações entre ações do jogo e teclas específicas do teclado, configu-
ráveis pelo jogador.

lobby Tela ou ambiente onde os jogadores realizam a seleção de personagens
e configurações antes do início da partida.

low-code Abordagem de desenvolvimento que permite criar funcionalidades com
pouco ou nenhum código, geralmente por meio de interfaces visuais.

MarginContainer Container que aplica margens internas aos seus elementos filhos,
útil para criar espaçamento interno uniforme.

MDA Mechanics, Dynamics, Aesthetics (Mecânicas, Dinâmicas e Estética).

Node2D Tipo de nó base para objetos 2D na Godot Engine.

p. Página

physics_process Função de script da Godot chamada em intervalos fixos, utili-
zada para lógica relacionada à física e movimentação contínua.

S.d Sem data

snake_case Padrão de nomenclatura com palavras minúsculas separadas por su-
blinhado.

TCC Trabalho de Conclusão de Curso.

trail Rastro visual deixado pelos jogadores durante a movimentação, geral-
mente utilizado como elemento de colisão e estratégia no gameplay.

VBoxContainer Tipo de container da Godot que organiza elementos filhos verti-
calmente.

Sumário

1 INTRODUÇÃO . 14
Objetivo Geral . 14
Objetivos Específicos . 15
Estrutura do Trabalho . 15

2 METODOLOGIA CIENTÍFICA . 17
2.1 Scrum . 17
2.2 MDA (Mecânica, Dinâmica e Estética) 19
2.2.1 Estratégias de Modelagem . 22
2.2.1.1 Modelo de Caso de Uso . 23

3 FERRAMENTAS UTILIZADAS . 26
3.1 Aseprite . 26
3.2 Godot e GDScript . 26
3.3 Trello . 27
3.4 GitHub . 27

4 REFERENCIAL TEÓRICO . 28
4.1 História e Evolução dos Jogos Digitais 28
4.1.1 Primeiros Jogos e o Surgimento da Indústria 28
4.1.2 Jogos nos Dias Atuais e Tendências . 28
4.2 Desenvolvimento de Jogos . 29
4.2.1 Engenharia de Software Aplicada a Jogos 29
4.2.2 Escolha da Engine para o Jogo . 30
4.2.2.1 Comparação entre Game Engines (Godot vs Unity) 31
4.2.2.2 Análise e critérios para escolha da engine . 32
4.2.2.3 Conhecendo a Engine Godot . 33
4.2.2.3.1 Nodes . 34

4.2.2.3.2 Scenes . 35

5 ESPECIFICAÇÃO DO JOGO . 36
5.1 Narrativa . 36
5.2 Objetivo do Jogo . 37
5.3 Estrutura da Fase . 37
5.4 Poderes e Habilidades . 37
5.5 Mecânicas e Jogabilidade . 38

5.6 Gamificação e Análise Crítica . 38

6 RESULTADOS OBTIDOS . 41
6.1 Pesquisa e definição do tema . 41
6.2 Desenvolvimento do jogo . 42
6.2.1 Preparação do ambiente e planejamento do desenvolvimento 42
6.2.2 Organização de arquivos e estrutura de cenas 43
6.2.3 Interface e usabilidade . 44
6.2.4 Implementação das mecânicas do jogo . 46
6.2.5 Fluxo de telas e linha de desenvolvimento 51
6.2.6 Principais desafios e soluções . 53
6.2.7 Testes de Funcionalidade e Desempenho 55

7 CONCLUSÕES GERAIS . 57
7.1 Lições aprendidas e recomendações 58
7.2 Melhorias futuras . 59

REFERÊNCIAS . 60

APÊNDICES 62

APÊNDICE A – APÊNDICE 1 - PROTÓTIPOS 63

APÊNDICE B – APÊNDICE 2 - IMAGEM DOS PODERES COM
ÌCONES . 65

APÊNDICE C – APÊNDICE 3 - TAREFAS DO TRELLO 66

ANEXOS 67

ANEXO A – PRIMEIRO ANEXO - LINK DO REPOSITÓRIO . . . 68

ANEXO B – SEGUNDO ANEXO - LINK DO PROTÓTIPO 69

ANEXO C – TERCEIRO ANEXO - RESPOSTAS FORMULÁRIO
EXPERIÊNCIA DO JOGO 70

14

1 Introdução

Para compreender os objetivos e as implicações deste projeto, é fundamental enten-
der o que caracteriza um jogo. Um jogo pode ser definido como uma atividade estruturada,
guiada por regras e objetivos, que envolve desafios e, muitas vezes, interação social. Se-
gundo Johan Huizinga (2000), em sua obra Homo Ludens, o jogo é uma manifestação
cultural que transcende o mero entretenimento, sendo parte essencial do desenvolvimento
humano (HUIZINGA, 2000). Jogos têm a capacidade de estimular criatividade, habilida-
des de resolução de problemas e o pensamento estratégico, promovendo uma experiência
lúdica que envolve engajamento emocional e intelectual.

Ao incorporar tecnologia computacional em um jogo, surge o conceito de jogo
eletrônico, uma mídia interativa que combina elementos de narrativa, gráficos, áudio e
jogabilidade. Os jogos eletrônicos possuem diversas categorias, e uma delas é representada
pelos jogos Tron. Esses jogos têm origem no filme “Tron: Uma Odisseia Eletrônica”, da
Disney, lançado em 1982, que foi pioneiro em misturar computação gráfica avançada
com live-action (LAWRENCE, 2002). A franquia é ambientada em um universo digital
chamado "Grade"(ou Grid), onde os personagens interagem com programas e sistemas
como se fossem pessoas. Um dos principais elementos desse estilo são os “Light Cycles”,
corridas em que os jogadores deixam rastros luminosos que funcionam como barreiras
mortais. O objetivo é "trancar"os oponentes em um espaço limitado.

Considerando os conceitos e os aspectos citados, junto com os conhecimentos ad-
quiridos no curso de Engenharia de Software, a proposta deste trabalho é desenvolver
o software de um jogo digital utilizando elementos dos Light Cycles do estilo de jogo
Tron. Além disso, busca-se apresentar a metodologia utilizada no desenvolvimento do
jogo digital, com a finalidade de servir como objeto de estudo e aprendizagem.

Objetivo Geral
Desenvolver um jogo digital inspirado nos Light Cycles do universo Tron, A ex-

periência servirá como um estudo de caso para compreender o ciclo de desenvolvimento,
aplicando Metodologias da engenharia de software e fornecendo um guia para futuros
desenvolvedores.

Capítulo 1. Introdução 15

Objetivos Específicos
∙ Pesquisar e analisar as características dos jogos Tron e suas mecânicas principais,

com foco nos Light Cycles.

∙ Implementar o jogo digital empregando a Engine Godot, explorando recursos de
narrativa, gráficos, áudio e jogabilidade.

∙ Adotar uma metodologia de desenvolvimento baseada em Scrum e MDA (Mecânica,
Dinâmica e Estética), documentando cada etapa do processo.

∙ Integrar os conceitos de Engenharia de Software, como levantamento de requisitos,
modelagem e testes, ao ciclo de desenvolvimento do jogo.

∙ Realizar testes simples de caixa-preta e exploração com foco na identificação e cor-
reção de erros, garantindo o funcionamento básico e a jogabilidade do sistema.

∙ Apresentar o jogo e a metodologia aplicada como uma ferramenta de estudo para
auxiliar iniciantes no desenvolvimento de jogos digitais.

Estrutura do Trabalho
Este trabalho está organizado em oito capítulos, cada um dividido em seções para

melhor estruturação e clareza. A divisão seguiu as diretrizes fornecidas pelos professores da
FCTE – Faculdade de Ciências e Tecnologias em Engenharia da Universidade de Brasília,
conforme o Guia para a Elaboração de Trabalhos de Conclusão de Curso em Engenharia
de Software, elaborado pelo Prof. Dr. George Marsicano Corrêa, além do template LaTeX
fornecido pelo Prof. Dr. Edson Júnior e das orientações do Prof. Dr. Ricardo Matos Chaim,
meu orientador.

O primeiro capítulo apresenta a introdução, oferecendo uma visão geral do tra-
balho, contextualizando a ideia principal do projeto e detalhando seus objetivos gerais e
específicos. Além disso, descreve a estrutura do documento, facilitando a compreensão do
leitor.

O segundo capítulo aborda a fundamentação teórica, reunindo os principais con-
ceitos e áreas de conhecimento essenciais tanto para o desenvolvimento de software quanto
para a criação de jogos. Esses fundamentos foram aplicados ao longo do projeto para ga-
rantir um melhor embasamento e compreensão do tema. Além disso, o capítulo apresenta
as ferramentas utilizadas no desenvolvimento do jogo, destacando seus papéis no processo.

O terceiro capítulo apresenta as ferramentas utilizadas no trabalho e seus respec-
tivos usos.

Capítulo 1. Introdução 16

O quarto capítulo apresenta o processo de execução da pesquisa, detalhando as
fases e atividades realizadas. São descritas as etapas desde a revisão da literatura até a
aplicação e avaliação das técnicas utilizadas, destacando os dados coletados, as metodo-
logias empregadas e a análise dos resultados.

O quinto capítulo apresenta as especificações do jogo, detalhando o processo cria-
tivo e as decisões tomadas durante o desenvolvimento. Além disso, conceitos e ideias são
explorados com base em pesquisas, análises de materiais e etapas do processo criativo.

O sexto capítulo apresenta os resultados obtidos ao longo do desenvolvimento do
jogo. Nele, são discutidas as principais lições aprendidas durante o processo, abordando
desafios enfrentados, soluções adotadas e insights adquiridos. Além disso, o capítulo in-
clui demonstrações do jogo, destacando suas principais funcionalidades e o impacto das
decisões tomadas ao longo do projeto.

O sétimo capítulo apresenta a conclusão do projeto, reunindo uma reflexão sobre
todo o processo de desenvolvimento. Nele, é exposta minha opinião geral, uma autoava-
liação do trabalho realizado e considerações sobre os desafios enfrentados e as soluções
adotadas. Além disso, discuto as contribuições do projeto, possíveis melhorias e sugestões
para trabalhos futuros.

Por fim, os últimos capítulos apresentam os apêndices e o referencial bibliográfico
utilizado na elaboração do trabalho.

17

2 Metodologia Científica

Este capítulo apresenta a metodologia utilizada para o desenvolvimento deste pro-
jeto, fundamentando os processos adotados na criação do jogo eletrônico inspirado em
Tron: Light Cycles. A proposta do trabalho é orientar o desenvolvimento com base em
abordagens bem estabelecidas, como o Scrum e o MDA (Mecânica, Dinâmica e Estética),
garantindo que cada etapa seja sistematizada e documentada de forma clara.

Além disso, são detalhadas as estratégias de modelagem aplicadas ao projeto,
bem como as ferramentas utilizadas, como Godot, GDScript e Aseprite, que permitiram
o desenvolvimento e a implementação do jogo. Essas escolhas têm como objetivo não
apenas a entrega de um produto funcional, mas também a criação de uma base didática
para futuros desenvolvedores.

2.1 Scrum
O Scrum é uma metodologia ágil que foi escolhida para gerenciar o desenvol-

vimento do projeto devido à sua capacidade de promover colaboração, flexibilidade e
iterações rápidas. Essa abordagem divide o projeto em ciclos curtos, chamados sprints,
que têm duração definida e objetivos claros. Ao final de cada sprint, é possível revisar os
resultados alcançados e ajustar o planejamento para os próximos passos (SCHWABER;
SUTHERLAND, 2013).

No contexto deste projeto, o Scrum foi adaptado para permitir o desenvolvimento
iterativo do jogo. Cada sprint envolveu as seguintes etapas:

∙ Planejamento: Definição das tarefas prioritárias, como implementação de mecâni-
cas, design de níveis e testes.

∙ Execução: Desenvolvimento das funcionalidades planejadas, utilizando as ferra-
mentas escolhidas.

∙ Revisão: Testes e validação das funcionalidades implementadas, com foco na expe-
riência do usuário.

Mesmo em um projeto individual, o uso do Scrum promove organização das etapas
e entrega contínua de resultados tangíveis. Para montar o cronograma, foi considerado o
período de 2 meses e meio para elaboração do trabalho, com sprints de duas semanas.

Nos Quadros 1 e 2 temos a identificação dos requisitos funcionais e não funcionais,
respectivamente.

Capítulo 2. Metodologia Científica 18

Tabela 1 – Requisitos funcionais do jogo

ID Requisito Descrição Prioridade
RF01 Criar e gerenciar

salas de jogo
Permitir que até 6 jogadores ingressem e
joguem juntos em uma mesma sala.

Alta

RF02 Controlar os
personagens

O jogador deve conseguir movimentar seu
personagem para esquerda ou direita.

Alta

RF03 Gerar e exibir o
rastro

Cada jogador deixa um rastro letal no
mapa, exceto nos pontos de brechas ale-
atórias.

Alta

RF04 Aplicar regras de
pontuação

O jogo deve calcular a pontuação con-
forme a equação definida e exibir o placar.

Média

RF05 Implementar po-
deres especiais

Os poderes devem surgir aleatoriamente
no mapa e ser ativados pelo jogador que
os coletar.

Alta

RF06 Detectar colisões O jogo deve encerrar a rodada quando um
jogador colidir com um rastro ou com a
parede.

Alta

RF07 Reposicionar os
jogadores

Após cada rodada, os jogadores devem ser
reposicionados nas posições iniciais.

Média

RF08 Exibir feedback
visual e sonoro

O jogo deve apresentar efeitos visuais e so-
noros ao ativar poderes, colidir ou vencer
a partida.

Média

Fonte: Elaboração própria.

Tabela 2 – Requisitos não funcionais

ID Requisito Descrição Prioridade
RNF01 Engine de desenvolvi-

mento
O jogo deve ser desenvolvido na
Godot Engine devido à sua leveza
e suporte a 2D.

Alta

RNF02 Suporte multiplata-
forma

O jogo deve ser compatível com
Windows e Linux.

Média

RNF03 Desempenho otimi-
zado

O jogo deve rodar a pelo menos
60 FPS em hardware modesto.

Média

RNF04 Interface responsiva O jogo deve apresentar uma inter-
face clara e intuitiva para facilitar
o entendimento das mecânicas.

Alta

RNF05 Código modular e ex-
pansível

O código deve ser estruturado de
forma a permitir futuras adições
e melhorias sem grandes refatora-
ções.

Alta

RNF06 Conectividade com
controle Xbox

O usuário pode conectar um con-
trole analógico e o game deve po-
der reconhecer o dispositivo.

Baixa

RNF07 Tratamento de bugs Os bugs do jogo não devem atra-
palhar a jogabilidade.

Alta

Fonte: Elaboração própria.

Capítulo 2. Metodologia Científica 19

O Quadro 3 possui o cronograma inicial do projeto dividido em seis sprints com
duração de 2 semanas cada.

Tabela 3 – Cronograma de desenvolvimento

Sprint Duração Objetivo Requisitos en-
volvidos

Sprint 1 - Planeja-
mento e Configuração

2 semanas Configurar ambiente na Go-
dot, estruturar projeto, definir
assets básicos e movimentação
inicial.

RF01, RF02,
RNF01, RNF02

Sprint 2 - Mecânicas
Básicas

2 semanas Implementar colisões, rastros
de luz e regras fundamentais
da partida.

RF03, RF05

Sprint 3 - Implemen-
tação dos Poderes

2 semanas Criar e integrar poderes espe-
ciais, garantindo variedade e
equilíbrio.

RF06

Sprint 4 - Interface e
Experiência do Usuá-
rio

2 semanas Criar menus, HUD, sistema de
pontuação e feedback visual
para melhor UX.

RNF04, RF04

Sprint 5 - Testes e
Ajustes de Jogabili-
dade

2 semanas Testar fluxo do jogo local-
mente, ajustar balanceamento
e melhorar usabilidade.

RF08, RNF03,
RNF05, RF07

Sprint 6 - Refinamento
e correção de bugs

1 semana Revisão final, correção de bugs
e otimizações.

RNF07, RNF06

Fonte: Elaboração própria.

A metodologia Scrum foi escolhida por já fazer parte do repertório de práticas
com as quais havia familiaridade. Ter experiência prévia facilita a aplicação e torna mais
simples adaptar a técnica ao contexto de um projeto individual. Como não se trata de
um trabalho em equipe, nem todos os ritos tradicionais foram seguidos. Optou-se por
aplicar apenas o que realmente faria diferença na organização e ritmo de trabalho. No
desenvolvimento espera-se observar como essas técnicas foram utilizadas.

2.2 MDA (Mecânica, Dinâmica e Estética)
O modelo MDA foi adotado como base para estruturar os elementos do jogo. Este

modelo é amplamente utilizado no desenvolvimento de jogos digitais por oferecer uma
perspectiva clara sobre como cada componente de um jogo contribui para a experiência
do jogador. Assim como o autor Johan Huizinga, o estudo feito por Hunicke em “MDA:
A Formal Approach to Game Design and Game Research” formaliza o consumo dos jogos
em três componentes distintos e estabelece uma relação de contraparte para o desenvol-
vimento de jogos (HUNICKE; LEBLANC; ZUBEK, 2004).

Capítulo 2. Metodologia Científica 20

A Figura 1 ilustra essa divisão, mostrando como a mecânica (regras e sistemas)
influencia a dinâmica (comportamento emergente durante o jogo) e, por fim, a estética
(emoções e experiências divertidas geradas no jogador).

Figura 1 – Componentes de um jogo modelo MDA

Adaptado de: HUNICKE, Robin; LEBLANC, Marc; ZUBEK, Robert. MDA: A Formal
Approach to Game Design and Game Research. 2004. p. 2.

Para entender melhor o que é cada camada, fazemos a seguinte descrição:

∙ Mecânica: Refere-se às regras, interações e sistemas que governam o funcionamento
do jogo. No contexto do Light Cycles, inclui aspectos como o controle do veículo, a
criação de barreiras luminosas e a detecção de colisões.

∙ Dinâmica: Diz respeito às interações emergentes resultantes da aplicação das me-
cânicas. Exemplos incluem o comportamento dos jogadores ao tentar “trancar” os
oponentes ou escapar de barreiras.

∙ Estética: Envolve a experiência emocional e sensorial do jogador. Neste projeto,
busca-se criar uma experiência visual simples, uma vez que o tempo é curto e o foco
está no conteúdo funcional e didático.

O uso do MDA possibilita uma abordagem holística no desenvolvimento do jogo,
alinhando os aspectos técnicos à experiência pretendida para os jogadores (CARROLL,
2000).

Com base nessas definições, foram elaboradas as respectivas Tabelas 4 e 5 de
Mecânica, Dinâmica e Estética do jogo proposto.

Capítulo 2. Metodologia Científica 21

Tabela 4 – MDA: Mecânicas do jogo

Mecânicas Descrição Observação
Movimentação O jogador pode girar para a es-

querda ou para a direita, sendo
a curva maior conforme a velo-
cidade.

A mecânica exige precisão e es-
tratégia para evitar colisões.

Rastros Cada jogador deixa um rastro
letal ao se movimentar, criando
barreiras no cenário.

Brechas aleatórias surgem oca-
sionalmente nos rastros, per-
mitindo a passagem.

Poderes Especiais Jogadores podem coletar pode-
res aleatórios que afetam a jo-
gabilidade.

Alguns poderes afetam apenas
o jogador, enquanto outros im-
pactam todos.

Colisão e eliminação O jogador que colidir com uma
parede ou rastro é eliminado
da rodada.

A rodada continua até restar
apenas um jogador vivo.

Sistema de pontos A cada rodada, jogadores rece-
bem pontos conforme sua colo-
cação.

O jogo termina quando um jo-
gador atinge a pontuação ne-
cessária.

Fonte: Elaboração própria.

Tabela 5 – MDA: Estética e Dinâmicas
Estética Dinâmicas
Competição Os jogadores disputam a sobrevivência,

tentando eliminar os oponentes.
Desafio A necessidade de reflexos rápidos e

pensamento estratégico cria uma
experiência intensa.

Estratégia O uso inteligente dos rastros e poderes
pode definir a vitória.

Satisfação Jogadas bem executadas e vitórias são
gratificantes para o jogador.

Caos e imprevisibilidade Os poderes aleatórios e as brechas nos
rastros tornam cada rodada única.

Surpresa Momentos inesperados ocorrem
constantemente, mantendo o jogo
dinâmico.

Pressão crescente Conforme a partida avança, o espaço no
mapa fica mais restrito, aumentando a
tensão.

Imersão O ritmo acelerado e a disputa constante
mantêm os jogadores envolvidos.

Fonte: Elaboração própria.

Capítulo 2. Metodologia Científica 22

2.2.1 Estratégias de Modelagem

Para garantir a consistência e qualidade do projeto, foram empregadas estratégias
de modelagem baseadas em princípios da Engenharia de Software. As etapas adotadas
no processo de desenvolvimento do jogo visam estruturar o fluxo de trabalho de maneira
eficiente e iterativa, permitindo não apenas a construção do jogo, mas também a criação
de um conteúdo funcional e didático para futuras implementações e para o aprendizado
de novos desenvolvedores (SOMMERVILLE, 2011).

“[...]Os modelos são usados durante o processo de engenharia de
requisitos para ajudar a extrair os requisitos do sistema; durante
o processo de projeto, são usados para descrever o sistema para
os engenheiros que o implementam; e, após isso, são usados para
documentar a estrutura e a operação do sistema.”

(SOMMERVILLE, 2011), p. 82.

As seguintes estratégias foram usadas:

∙ Levantamento de Requisitos: A primeira etapa foi a identificação das funciona-
lidades essenciais do jogo. Isso incluiu a definição dos controles responsivos, garan-
tindo que os jogadores tivessem uma experiência fluida e intuitiva, a criação de uma
interface gráfica simples e acessível, e o balanceamento das mecânicas do jogo. O
levantamento de requisitos foi fundamental para alinhar as expectativas do produto
com as necessidades dos jogadores, além de facilitar as decisões durante o processo
de desenvolvimento.

∙ Modelagem de Dados: Após o levantamento de requisitos, foi realizada a modela-
gem de dados, que envolveu a estruturação de informações sobre os cenários do jogo,
personagens, eventos e interações. O objetivo foi organizar os dados de forma que
a implementação das funcionalidades fosse eficiente, sem redundâncias e com alto
desempenho. A modelagem de dados também serviu como base para a criação de
scripts e animações dentro da Engine utilizada, o que contribuiu para a integração
das mecânicas de forma coesa.

∙ Prototipagem: A prototipagem foi uma etapa relevante para validar as mecânicas
do jogo antes de sua implementação final. Modelos iniciais das interações e funci-
onalidades foram criados, permitindo testar as ideias em um estágio inicial e fazer
ajustes rápidos com base no feedback obtido. A prototipagem não só acelerou o pro-
cesso de desenvolvimento, mas também proporcionou uma visão prática de como as
mecânicas poderiam ser experienciadas pelos jogadores, ajudando na identificação
de melhorias e possíveis problemas de usabilidade.

Capítulo 2. Metodologia Científica 23

A adoção dessas estratégias de modelagem visa proporcionar um processo de de-
senvolvimento mais organizado e focado, com potencial para resultar em um produto
funcional e didático, que possa contribuir para a aprendizagem de desenvolvedores inici-
antes.

2.2.1.1 Modelo de Caso de Uso

A modelagem de casos de uso, conforme definido por Sommerville (2011), é uma
técnica essencial na engenharia de software para elicitar e especificar os requisitos funcio-
nais de um sistema. Um caso de uso representa uma interação entre um ator (um usuário
ou outro sistema) e o sistema em si, descrevendo uma sequência de ações que o ator realiza
para atingir um objetivo específico.

No contexto do desenvolvimento de jogos, a modelagem de casos de uso oferece uma
maneira clara e concisa de descrever as interações dos jogadores com o jogo, auxiliando
no projeto e implementação das funcionalidades. A abordagem escolhida para o jogo da
cobrinha 2D buscou representar as ações dos jogadores e as mecânicas do jogo de forma
abrangente, utilizando um diagrama de casos de uso que incorpora elementos como atores,
casos de uso, relacionamentos (include e extend) e anotações.

Atores Os atores, Jogador 1 e Jogador 2, representam os jogadores humanos que
interagem com o jogo. Eles são os iniciadores das ações e se beneficiam das funcionalidades
oferecidas pelo jogo.

Casos de Uso Os casos de uso descrevem as ações que os jogadores podem realizar
ou que ocorrem como parte do jogo. A listas e a Figura 2 abaixo ilustram as ações dos
jogadores e do sistema dentro do jogo.

∙ Jogar: Abrange toda a experiência do jogador no jogo, desde o início até o fim.

∙ Mover Animal: Representa a ação do jogador de controlar a direção da cobrinha
(esquerda ou direita).

∙ Gerar rastro: depois que o jogador se deslocar de sua posição um rastro é gerado
no lugar como um novo obstáculo a ser evitado.

∙ Coletar Poder: Descreve a mecânica do jogo em que a cobrinha coleta automati-
camente um poder ao passar por cima do item.

∙ Colidir: Representa o evento em que a cobrinha colide com a parede ou com o
próprio corpo.

∙ Morte: Descreve o resultado da colisão, em que a cobrinha perde uma vida ou o
jogo termina.

Capítulo 2. Metodologia Científica 24

∙ Inicía a Rodada: Descreve o início da rodada, no qual os jogadores

∙ Fim da rodada: Representa o momento em que uma rodada termina, seja por um
jogador perder ou por outros critérios.

∙ Distribuição de pontos e verificação de pontos: Ação de receber pontos ao
final de uma rodada, de acordo com o desempenho e verifica se houve um ganhador.

∙ Fim do jogo: Ocorre quando um jogador atinge o limite de pontos ou quando todas
as rodadas são concluídas.

Relacionamentos

Include: O relacionamento include («include») é utilizado para indicar que um
caso de uso é parte integrante de outro. Por exemplo, “Jogo” inclui “Rodada”, “Rodada”
inclui “Fim da Rodada” e “Fim da Rodada” inclui “Ganha Pontos”.

Extend: O relacionamento extend («extend») é utilizado para representar vari-
ações ou extensões de um caso de uso. Por exemplo, “Mover” pode ser estendido por
“Colidir” e “Mudar Direção” pode ser estendido por “Coletar Poder”.

Capítulo 2. Metodologia Científica 25

Figura 2 – Diagrama casos de uso

Fonte: Elaboração própria.

26

3 Ferramentas utilizadas

O desenvolvimento do jogo contou com o apoio de ferramentas específicas, selecio-
nadas pela sua capacidade de atender às demandas do projeto. As principais ferramentas
utilizadas foram:

3.1 Aseprite
O Aseprite foi utilizado para criar os elementos gráficos do jogo, como sprites

de personagens, veículos e efeitos visuais. Essa ferramenta é amplamente reconhecida no
desenvolvimento de jogos 2D devido à sua interface intuitiva e recursos especializados em
pixel art (ASEPRITE, 2024). A Figura 3 ilustra um exemplo prático da tentativa de criar
um design para cada animal.

Figura 3 – software aseprite

Fonte: Elaboração própria.

3.2 Godot e GDScript
A Engine Godot foi escolhida como plataforma principal para o desenvolvimento do

jogo, devido à sua versatilidade e comunidade ativa. O uso do GDScript, uma linguagem
integrada à Engine, permitiu a implementação de mecânicas e sistemas com agilidade. A
Godot oferece recursos nativos para jogos 2D, como sistemas de colisão e animações, que
foram essenciais para o projeto (ENGINE, 2024a). A Figura 4 apresenta a interface godot
com algumas marcações dos principais recursos dentro do jogo (Nodes, Cenas, Scripts e
a previsualização 2D).

Capítulo 3. Ferramentas utilizadas 27

Além disso, a Godot fornece suporte para múltiplas plataformas, abrangendo os
principais sistemas operacionais e navegadores web.

Figura 4 – software Godot

Fonte: Elaboração própria.

3.3 Trello
O Trello foi utilizado para gerenciar as tarefas do projeto, permitindo organização

visual e controle do progresso em cada sprint. Essa ferramenta ajudou a manter o fluxo
de trabalho alinhado com os princípios do Scrum.

Ao utilizar essas ferramentas em conjunto, foi possível criar um ambiente de desen-
volvimento eficiente, onde cada etapa do processo contribuiu para o alcance dos objetivos
do projeto.

3.4 GitHub
O GitHub foi utilizado para gerenciar as versões do projeto e fazer backups na

nuvem. Ele permitiu acompanhar o progresso do trabalho, facilitando o controle das mu-
danças feitas no código e garantindo que o projeto estivesse sempre seguro e acessível. O
repositório com o código-fonte está disponível no Anexo A.

28

4 Referencial Teórico

4.1 História e Evolução dos Jogos Digitais
Neste capítulo, exploraremos a história dos jogos eletrônicos e sua evolução ao

longo do tempo, com um foco específico no Brasil, estabelecendo uma conexão direta com
o tema deste documento.

4.1.1 Primeiros Jogos e o Surgimento da Indústria

O desenvolvimento dos primeiros jogos eletrônicos ocorreu em um cenário muito di-
ferente do atual, quando os próprios criadores precisavam construir seus sistemas do zero,
sem engines ou ferramentas especializadas. Jogos como Tennis for Two (1958) e Spacewar!
(1962) foram experimentos acadêmicos desenvolvidos em computadores de grande porte,
sem qualquer preocupação comercial. A indústria começou a se consolidar na década de
1970, com o lançamento de Pong (1972) pela Atari, popularizando o conceito de jogos
eletrônicos como uma forma viável de entretenimento (KENT, 2001).

No Brasil, o contato com os jogos eletrônicos começou nos anos 1980, ainda com
forte influência externa. Naquela época, a maior parte dos consoles e jogos chegava im-
portada ou por meio de clones nacionais, como o Telejogo da Philco/Ford e os modelos
compatíveis com o Atari 2600. A ausência de uma indústria formal robusta e as barreiras
de importação levaram à popularização de cartuchos pirateados e adaptações locais. Nas
décadas seguintes, computadores como o MSX e os primeiros PCs também ajudaram a
criar uma base de jogadores e curiosos por programação e desenvolvimento de games,
ainda que de forma amadora e restrita. (DINIZ RODRIGO GAVIOLI, 2024)

4.1.2 Jogos nos Dias Atuais e Tendências

Atualmente, a indústria dos jogos digitais está mais acessível, principalmente de-
vido ao surgimento de engines como Unity, Unreal Engine e Godot, que permitem que
estudantes e desenvolvedores independentes criem jogos sem precisar programar tudo do
zero. Esse avanço é particularmente relevante no Brasil, onde o desenvolvimento de jogos
ainda enfrenta desafios, como a falta de investimentos e o alto custo de hardware. Além
disso, o acesso a hardware e computadores para o desenvolvimento de jogos está bem mais
barato, o que incentiva mais pessoas a explorarem e descobrirem cada vez mais sobre o
jogos eletrônicos.

Hoje, o Brasil é o maior mercado de games da América Latina e ocupa a 10a posição

Capítulo 4. Referencial Teórico 29

mundial em receita, movimentando cerca de US$ 2,6 bilhões em 2023, com previsão de
alcançar US$ 3,5 bilhões até 2025. O número de estúdios saltou de 150, em 2014, para
mais de 1.000 em 2024, empregando mais de 13 mil profissionais. Esse crescimento é
impulsionado por fatores como avanços tecnológicos, a cultura gamer consolidada e o
Marco Legal dos Jogos Eletrônicos (Lei 14.852/2024), que estabelece regras claras para
fabricação e comercialização. Com uma comunidade estimada em mais de 100 milhões
de jogadores, o país não apenas consome, mas também exporta criatividade, atraindo
parcerias internacionais e se firmando como um polo promissor no cenário global (Avell,
2025).

Um dos fenômenos mais marcantes da atualidade é o crescimento dos jogos indie,
desenvolvidos por pequenos estúdios ou até mesmo por indivíduos. Diferente das grandes
produções 1, que exigem orçamentos milionários, os jogos independentes apostam em cria-
tividade, mecânicas inovadoras e narrativas únicas para conquistar o público. Plataformas
como a Steam facilitaram a distribuição desses jogos, permitindo que produções de baixo
orçamento alcançassem grandes sucessos.

Com essa democratização das ferramentas e do acesso ao conhecimento, o desenvol-
vimento de jogos digitais se tornou uma oportunidade viável para iniciantes aprenderem
na prática. Este trabalho explora esse processo por meio da criação de um jogo estilo
Tron, analisando os desafios e aprendizados envolvidos.

4.2 Desenvolvimento de Jogos
Neste capítulo, abordaremos a parte técnica do trabalho, com foco no desenvolvi-

mento de jogos utilizando práticas de engenharia de software. O objetivo é demonstrar
como essas práticas podem contribuir para a criação de jogos eletrônicos, considerando
que, assim como qualquer outro produto digital, um jogo também é essencialmente com-
posto por software. Também discutiremos, de forma breve, o funcionamento das engines
de jogos, ressaltando que, embora o foco do trabalho não seja um estudo aprofundado
sobre engines, elas desempenham um papel fundamental no processo de desenvolvimento.

4.2.1 Engenharia de Software Aplicada a Jogos

No desenvolvimento de jogos, a Engenharia de Software desempenha um papel
fundamental para garantir que o processo seja eficiente, escalável e focado na entrega de
um produto de alta qualidade.

“Engenharia de software é uma disciplina de engenharia cujo foco está em todos
os aspectos da produção de software, desde os estágios iniciais da especificação do

1 o termo triple A ou AAA se refere a títulos de jogos com altos orçamentos

Capítulo 4. Referencial Teórico 30

sistema até sua manutenção, quando o sistema já está sendo usado.” (SOMMER-
VILLE, 2011)

A aplicação de práticas de Engenharia de Software no contexto de desenvolvimento
de jogos não se limita à codificação, mas envolve também o gerenciamento de projetos,
design e testes.

Conforme Nikhil Malankar discute em seu vídeo, o ciclo de vida de um jogo se-
gue uma estrutura semelhante ao de um software, com etapas de testes e elaboração de
requisitos, desde a escolha da plataforma até a implementação final (MALANKAR, 2023).

No projeto em questão, as práticas de engenharia de software foram úteis para
organizar, planejar e orientar as etapas de desenvolvimento do jogo. Nas etapas iniciais,
mesmo sem iniciar o desenvolvimento, já pude perceber como a aplicação de metodologias
como Scrum e MDA pode trazer clareza e eficiência para o processo. Ao seguir essas
práticas, o projeto será conduzido de maneira estruturada, com entregas claras e bem
definidas em cada ciclo. Além disso, a abordagem de modelagem e os testes iterativos
contribuirão para refinar o jogo conforme ele evolui, minimizando erros e ajustando o
produto para oferecer a melhor experiência possível.

4.2.2 Escolha da Engine para o Jogo

Para desenvolver um jogo, é essencial definir as necessidades técnicas. As engines,
ou motores de jogos, desempenham um papel central nesse processo. Uma engine é um
software que integra um conjunto de ferramentas e recursos projetados para simplificar e
otimizar o desenvolvimento de jogos, abrangendo elementos como gráficos, física, som e
muito mais. Além de acelerar o processo de produção, o uso de uma engine garante maior
eficiência e qualidade no resultado final (STUDIOS, 2014).

Embora seja possível criar uma engine própria, essa abordagem geralmente é reco-
mendada apenas em casos específicos, como atender a requisitos altamente personalizados
ou aprofundar o entendimento técnico do desenvolvimento de jogos. No entanto, construir
uma engine do zero é uma tarefa complexa e demorada, exigindo meses de trabalho para
implementar funcionalidades básicas, como renderização gráfica e gerenciamento de re-
cursos, antes mesmo de iniciar o desenvolvimento do jogo em si. Por outro lado, engines
amplamente utilizadas, como Unity, Unreal Engine e Godot, já oferecem essas funciona-
lidades de maneira robusta e otimizada. Além disso, elas contam com suporte técnico,
documentação abrangente e comunidades ativas, permitindo que o desenvolvedor con-
centre seus esforços na criação e no design do jogo, sem a necessidade de programar
ferramentas fundamentais a partir do zero (ULLMANN et al., 2025).

Para garantir a escolha mais adequada da engine para este projeto, foi realizado
um estudo comparativo entre duas opções amplamente reconhecidas: Unity e Godot. Cada

Capítulo 4. Referencial Teórico 31

uma foi avaliada com base em critérios específicos, como:

∙ Facilidade de aprendizagem e qualidade da documentação;

∙ Suporte a múltiplas plataformas;

∙ Licenciamento e custos;

∙ Linguagem de programação utilizada;

∙ Recursos e ferramentas disponíveis;

∙ Adequação ao tipo de jogo a ser desenvolvido.

Este estudo forneceu uma base sólida para a escolha da engine mais alinhada às
necessidades e objetivos do projeto.

4.2.2.1 Comparação entre Game Engines (Godot vs Unity)

O desenvolvimento de jogos exige a escolha de uma engine que atenda às ne-
cessidades do projeto. Neste comparativo, analisamos Unity 6 e Godot 4 como principais
alternativas, considerando fatores como facilidade de uso, desempenho em jogos 2D, custos
e requisitos técnicos. Como o objetivo deste trabalho é apresentar um guia e desenvolver
um jogo de baixo custo, a escolha deve priorizar acessibilidade e eficiência (ENGINE,
2024b) (TECHNOLOGIES, 2024).

As Tabelas 6 e 7 mostram comparativos técnicos das engines relacionados a suas
funcionalidades e desempenho.

Capítulo 4. Referencial Teórico 32

Tabela 6 – Análise comparativa geral entre engines

Critério Unity 6 Godot 4
Facilidade de Uso Interface robusta com

muitas funcionalidades,
mas complexa para inici-
antes. Utiliza C# como
principal linguagem de
programação.

Interface leve e simpli-
ficada, curva de apren-
dizado menos íngreme.
Oferece GDScript, seme-
lhante ao Python, facili-
tando o desenvolvimento.

Desempenho em Jogos 2D Suporte a 2D, mas origi-
nalmente projetado para
3D. Recursos são adapta-
dos do ambiente 3D, po-
dendo resultar em menos
eficiência.

Motor 2D do Godot, ape-
sar de funcionar tanto
para 3D como 2D, o mo-
tor 2D é considerado um
aspecto forte da engine.

Custo e Licenciamento O uso é gratuito, mas
após o lançamento, o
modelo de licenciamento
pode incluir taxas basea-
das no número de down-
loads.

Open-source e totalmente
gratuito, sem taxas ou
restrições comerciais.

Fonte: Autoria própria.

Tabela 7 – Comparativo técnico baseado em requisitos

Requisitos Técnicos Unity 6 Godot
CPU X64 com suporte a SSE2

ou ARM64. Exemplo: Intel
Core 2 Duo E8200, AMD
Athlon XE BE-2300.

X86_32 com SSE2,
X86_64 ou ARMv8.
Exemplo: Intel Core 2 Duo
E8200, Raspberry Pi 4.

GPU DX10, DX11, DX12 ou
Vulkan-capaz. Exemplo:
Intel HD Graphics 5500,
AMD Radeon R5.

Vulkan 1.0 ou OpenGL
3.3. Exemplo: Intel HD
Graphics 2500, AMD
Radeon R5.

RAM Mínimo de 8GB,
recomendado 16GB ou
mais para projetos
complexos.

Nativo: 4GB; Web editor:
8GB.

Armazenamento Ocupa mais espaço em
disco, especialmente com
projetos grandes.

200MB para execução;
exportação requer 1.3GB.

Sistema Operacional Windows 10 21H1+,
macOS 11+ (Big Sur),
Ubuntu 22.04+

Windows 7+, macOS
10.13+, Linux pós-2016,
Web Editor compatível
com navegadores
modernos.
Fonte: Elaboração própria.

Capítulo 4. Referencial Teórico 33

4.2.2.2 Análise e critérios para escolha da engine

Após a análise comparativa entre as duas Engines, Godot foi escolhida como a
Engine mais adequada para o desenvolvimento deste jogo. A decisão foi fundamentada
em vários critérios técnicos e de projeto, conforme detalhado abaixo.

Facilidade de uso e curva de aprendizagem : A simplicidade da interface do
Godot e a utilização do GDScript, que é uma linguagem de programação semelhante ao
Python, tornam o desenvolvimento mais acessível, especialmente para quem está come-
çando ou tem um foco maior na parte lógica do jogo. Isso permite uma curva de apren-
dizado mais suave, o que é um ponto crucial dado o prazo do projeto e a necessidade de
uma implementação eficiente.

Desempenho em Jogos 2D : Embora o Unity ofereça suporte robusto para
jogos 2D, a Godot foi projetada desde o início com um motor 2D altamente otimizado.
Isso garante que o desempenho da Engine em jogos bidimensionais seja superior, além de
permitir um maior controle sobre o comportamento do jogo, o que é essencial para um
projeto que visa ser leve e de baixo custo, como o proposto.

Custo e Licenciamento : Godot é open-source e totalmente gratuita, sem custos
adicionais ou limitações comerciais, o que representa uma vantagem significativa para o
projeto. Não há taxas de licenciamento, e o código-fonte da Engine pode ser modificado
conforme as necessidades específicas do desenvolvimento. Esse fator elimina preocupa-
ções com custos futuros e garante flexibilidade total, além de facilitar a utilização sem
complicações de licenciamento.

Requisitos Técnicos : A Godot exige menos recursos de hardware, o que torna
o desenvolvimento mais ágil, especialmente em termos de tempo e capacidade de testes.
Com um espaço de armazenamento inicial de apenas 200MB e suporte para uma ampla
gama de sistemas operacionais, como Windows, macOS e Linux, a Engine se adequa bem
aos requisitos de recursos do projeto e possibilita um desenvolvimento mais fluido, sem
depender de máquinas muito potentes.

Adequação ao tipo de jogo : Como o projeto é voltado para a criação de um
jogo 2D com mecânicas simples de movimento e interação, a Godot oferece ferramentas
e funcionalidades que atendem perfeitamente às necessidades do jogo. O motor 2D da
Godot é mais direto e flexível para o tipo de mecânica que estamos desenvolvendo, sem a
necessidade de adaptações que seriam necessárias em outras Engines.

Por todas essas razões, a Godot se mostrou a escolha mais adequada para este
projeto, considerando tanto o orçamento, a complexidade técnica e a necessidade de uma
Engine eficiente para o desenvolvimento de jogos 2D de baixo custo.

Capítulo 4. Referencial Teórico 34

4.2.2.3 Conhecendo a Engine Godot

Como já foi mencionado anteriormente, desenvolver sua própria Engine de jogos é
uma tarefa desafiadora e envolvente. Porém, para entender como a Engine Godot funciona,
é interessante compreender quais as funcionalidades mínimas de uma Engine de jogos.

Para desenvolver uma Engine de jogo, é necessário implementar alguns sistemas
essenciais. Esses sistemas são:

∙ Inicialização do Sistema: Basicamente, é abrir uma janela, obter o contexto
gráfico (OpenGL/DirectX/Vulkan) e inicializar o áudio.

∙ Controle de Tempo ou Game Loop: Todo jogo precisa ter um loop para con-
trolar a taxa de atualização e renderização do jogo.

∙ Entrada de Dados: Implementar a captura de entradas (botões pressionados).

∙ Renderização: Utilizar computação gráfica para renderizar as texturas na tela.

∙ Utilitários Matemáticos: Bibliotecas de matemática (vetores e matrizes) e fun-
ções úteis para o desenvolvimento.

∙ Gestão de Objetos e Cenas: Sistema para gerenciar objetos e cenas à medida
que seu jogo se torna mais complexo.

∙ Áudio: Suporte para tocar músicas e efeitos sonoros.

∙ Carregamento de Arquivos: Utilizar um gerenciador de arquivos para evitar o
carregamento redundante e permitir a adição de recursos como mods.

Tudo isso é apenas o básico, e cada sistema pode variar muito em nível de com-
plexidade Glaiel (2021).

A figura 5 abaixo representa um exemplo e arquitetura de engine no qual conta com
GameState que controla a iniciação do sistema e liberação de recursos, GameLoop que é
responsável pela atualização de quadro e o estado dos objetos intanciado na cena. Imagem
busca facilitar a visualização dos recursos de uma engine e fluxo de seu comportamento.

Agora, vamos entender como o Godot traduz tudo isso para dentro de sua Engine.

4.2.2.3.1 Nodes

No Godot, nodes (ou nós) são os elementos fundamentais que compõem qualquer
cena. Existem dezenas de tipos de nodes, cada um com uma função específica, como
representar objetos gráficos, controlar física, lidar com entradas de usuário ou até organizar
o layout de outros nós. Eles são como os sistemas mencionados anteriormente.

Capítulo 4. Referencial Teórico 35

Figura 5 – Game Loop, Sprite e Music

Fonte: Introdução de Desenvolvimento de Jogo - Departamento de Ciência da Computação
UnB.

“Nodes are the fundamental building blocks of your game. They are like the ingredients
in a recipe. There are dozens of kinds that can display an image, play a sound, represent
a camera, and much more.” (GODOT ENGINE 4.3 documentation in English, s.d., p. 1)

4.2.2.3.2 Scenes

As cenas são as telas que contêm os Nodes. Para entender melhor as cenas podemos
exemplificar de duas maneiras: através de menus/telas ou chunks. No caso do jogo que
estamos desenvolvendo, cada cena é representada por uma tela. Já em jogos com grandes
mundos, onde a câmera segue o jogador, as cenas podem ser chunks e apenas os chunks
necessários são carregados para gerar a cena.

Quem controla os recursos para gerar as cenas são os scripts do programador (de
forma manual) ou, de forma dinâmica, usando TileSet, TileMap e recursos de Resource
Management.

Capítulo 4. Referencial Teórico 36

Figura 6 – Tile Set, Tile Map e Resource Management

Fonte: Trabalho 3 - Introdução de Desenvolvimento de Jogo - Departamento de Ciência
da Computação UnB.

37

5 Especificação do jogo

Neste capítulo, apresentamos os conceitos gerais do jogo produzido, desde o obje-
tivo, narrativa, regras, mecânicas e funcionalidades. A especificação do jogo é um docu-
mento essencial para definir de maneira clara e detalhada todos os aspectos que compõem
a experiência do jogador, servindo como guia tanto para a equipe de desenvolvimento
quanto para possíveis ajustes e melhorias no decorrer do projeto. A partir desta espe-
cificação, é possível alinhar as expectativas e assegurar que o produto final atenda aos
requisitos propostos, oferecendo uma base sólida para a implementação e testes do jogo.

5.1 Narrativa
O jogo tem várias inspirações, sendo a principal delas a série “Tron – Uma Odisseia

Eletrônica”. Ele utiliza a mecânica dos light-cycles, que são rastros deixados pelos joga-
dores no filme. Light-cycle é um sub-jogo da série no qual o objetivo é forçar os jogadores
a colidirem com a parede ou com os rastros de luz deixados pelos demais, muito similar
ao clássico jogo Snake, também conhecido como jogo da cobrinha, mas com elementos de
battle royale.

Outra inspiração relevante é o jogo de navegador “Curve Fever”, cuja proposta é
semelhante à adotada neste projeto. A ideia é criar uma versão renovada do jogo para
guiar o aprendizado.

Figura 7 – Jogo Achtung Die Kurve

Fonte: https://www.youtube.com/watch?v=FHyALtYMfPY

A narrativa do jogo é relativamente simples. Até 6 jogadores podem ingressar
numa sala virtual, onde cada um controla um dos 6 animais disponíveis. Cada animal é

Capítulo 5. Especificação do jogo 38

representado por uma cor específica: porco (rosa), dragão (vermelho), serpente (verde),
baleia (azul), lobo (branco) e águia (amarelo).

Os jogadores competem em várias rodadas e acumulam pontos de acordo com sua
colocação. O número de pontos necessários para o fim da partida é definido pela equação:

Pontuação para vitória = número de jogadores × 5

O número mínimo de jogadores para iniciar uma partida é 2. A pontuação obtida
em cada rodada segue a regra:

Pontos da rodada = número de jogadores − colocação do jogador

O primeiro jogador a atingir a pontuação definida é coroado como Rei dos Animais.

5.2 Objetivo do Jogo
O objetivo do jogo é sobreviver o maior tempo possível dentro de um cenário

limitado. Por se tratar de um jogo competitivo PvP, o último jogador vivo será o vitorioso
na rodada.

Para alcançar esse objetivo, os jogadores podem adotar estratégias variadas, utili-
zar poderes especiais que tornam a partida mais caótica, além de exigir habilidade motora
para controlar seu personagem com precisão.

5.3 Estrutura da Fase
A estrutura da fase é simples: uma caixa com tamanho adaptável ao número de jo-

gadores, fundo cinza-escuro e bordas cinza-claro. Ao lado da arena, há um placar exibindo
a colocação dos jogadores.

Ao final de cada rodada, a área de jogo é limpa e os jogadores são reposicionados
em suas posições iniciais.

5.4 Poderes e Habilidades
O jogo oferece uma habilidade padrão e diversos poderes especiais que surgem

aleatoriamente durante a partida.

A habilidade padrão consiste em deixar um rastro letal por onde o personagem se
move, capaz de eliminar qualquer jogador (inclusive o próprio). O rastro pode ocasional-
mente conter brechas que permitem a passagem.

Capítulo 5. Especificação do jogo 39

Os poderes especiais aparecem aleatoriamente no mapa. Ao serem coletados, são
ativados imediatamente e têm duração de 7 segundos. Eles podem ajudar ou prejudicar
o jogador que os coletou ou afetar os demais.

∙ +Velocidade

∙ -Velocidade

∙ +Velocidade para os outros

∙ -Velocidade para os outros

∙ Inverter controles para os outros

∙ Andar em 90o

∙ Tornar bordas atravessáveis

∙ Limpar mapa

∙ Voar

∙ +Tamanho

∙ -Tamanho

Poderes verdes: aplicam-se somente ao jogador que os coletou.
Poderes vermelhos: afetam todos os outros jogadores.
Poderes azuis: afetam todos os jogadores.

Para uma descrição visual dos poderes, consulte o Apêndice 2.

5.5 Mecânicas e Jogabilidade
A mecânica do jogo: o jogador pode mover-se para a esquerda ou para a direita. No

entanto, a movimentação dos personagens é limitada a curvas com raio pré-determinado.
A velocidade do jogador influencia diretamente o tamanho da curva: quanto maior a
velocidade, maior será o raio da curva.

5.6 Gamificação e Análise Crítica
A escolha desse tipo de jogo envolveu diversos fatores, como a facilidade de criação

de assets (arte do jogo) e desenvolvimento curto devido ao prazo de tempo. Reforçando a
ideia deste projeto ser utilizá-lo como estudo de caso, visando gerar resultados relevantes
para a pesquisa.

Capítulo 5. Especificação do jogo 40

Apesar da mecânica simplificada, o jogo conta com diversas funcionalidades, como
poderes especiais e regras que o tornam dinâmico e interessante.

Para a avaliação do engajamento, utilizou-se o framework Octalysis, desenvolvido
por Yu-kai Chou, originalmente voltado para gamificação de atividades e comportamen-
tos. Embora seu uso mais comum esteja relacionado a sistemas gamificados em contextos
educacionais e corporativos, o Octalysis também é aplicável ao game design digital, pois
fornece uma compreensão aprofundada das motivações que mantêm os jogadores envol-
vidos. Ele já foi utilizado em pesquisas de experiência do usuário (UX) em jogos digitais
para identificar pontos de engajamento e orientar melhorias no design, como no caso
documentado de Candy Crush (Game Developer Staff, 2021).

O framework é composto por oito cores (impulsionadores motivacionais). Cada um
representa um aspecto-chave da motivação humana que pode ser explorado em um jogo.
Nesta análise, selecionamos os principais cores presentes no protótipo e os avaliamos com
base na percepção de três testadores, incluindo o autor, em uma escala de 1 a 5, onde 1
indica presença pouco explorada e 5 indica presença fortemente explorada (CHOU, 2019).

O número reduzido de participantes se deveu a limitações de tempo e disponibi-
lidade durante a etapa de testes. Ainda que a amostra pequena limite a generalização
dos resultados, ela foi suficiente para apontar ajustes iniciais nas mecânicas e confirmar
elementos que contribuíram para o engajamento. O formulário de avaliação completo e os
resultados estão disponíveis no Anexo C.

Principais cores utilizados

Epic Meaning Resumo: Este core refere-se ao senso de propósito maior ou missão.
Uso: 1 — Embora a narrativa tente envolver os animais na floresta, ela não é muito explo-
rada e ficou desconexa do tema Tron. Os jogadores não ficaram interessados infelizmente
e acabou sendo uma prospota que aos poucos foi perdendo prioridade.

Social Influence & Relatedness Resumo: Relacionado à interação social e senso
de comunidade. Uso: 4 — Como o jogo é competitivo, a interação entre os jogadores é um
ponto-chave. A disputa aumenta o engajamento e a imersão, estimulando o sentimento de
conexão e rivalidade. Houve problemas em alocar muitas pessoas em um único teclado,
mas foi uma bagunça divertida que reuniu amigos e situações engraçadas.

Unpredictability & Curiosity Resumo: Este core envolve a curiosidade e o
desejo de explorar. Uso: 4 — A presença de poderes aleatórios e a variabilidade no com-
portamento dos jogadores tornam o jogo imprevisível, mantendo o jogador curioso sobre
os resultados de cada partida.

Loss & Avoidance Resumo: Refere-se ao medo de perder e à motivação para

Capítulo 5. Especificação do jogo 41

evitar consequências negativas. Uso: 3 — Embora o jogo seja competitivo, a perda não é
tratada como uma consequência punitiva. A penalização ocorre principalmente na pon-
tuação, com perdas menores nas rodadas, o que suaviza o impacto da derrota, mas ainda
causa irritação nos jogadores.

42

6 Resultados Obtidos

Neste primeiro estágio, foram realizadas pesquisas e definições fundamentais para a
estruturação do jogo. A análise de Engines, frameworks de gamificação e metodologias de
design proporcionou uma base sólida para o desenvolvimento. Além disso, foram definidos
os principais requisitos, mecânicas e elementos de jogabilidade. O fluxo de telas e a or-
ganização do desenvolvimento também foram planejados, garantindo um direcionamento
claro do jogo.

6.1 Pesquisa e definição do tema
Neste primeiro estágio do trabalho, foi possível estabelecer uma base sólida para o

desenvolvimento do jogo. Foram definidos os objetivos do projeto, a Engine de desenvol-
vimento, as mecânicas e regras do jogo, além de uma estrutura metodológica baseada em
engenharia de software, Scrum e MDA. A documentação elaborada até o momento servirá
como um guia para a implementação no TCC 2, garantindo que o desenvolvimento siga
um planejamento estruturado e eficiente.

Durante o TCC 1, foram realizadas diversas etapas essenciais para a estruturação
do projeto e o planejamento do desenvolvimento do jogo. A primeira fase consistiu em uma
pesquisa aprofundada sobre Engines de desenvolvimento, avaliando opções como Unity,
Unreal Engine e Godot. Testei algumas dessas Engines para entender suas capacidades,
limitações e adequação ao escopo do projeto. Apesar de não me aprofundar inicialmente
em uma, optei por escolher a Godot pela necessidade de um ambiente acessível, eficiente
para jogos 2D e alinhado com os princípios de código aberto, garantindo maior flexibilidade
e sem custos adicionais.

Além da escolha da Engine, explorei frameworks de gamificação para compreen-
der como os elementos de design poderiam ser utilizados para engajar os jogadores. O
framework Octalysis, criado por Yu-kai Chou, foi um dos principais referenciais para es-
truturar os aspectos motivacionais do jogo. A pesquisa ajudou a definir quais motivações
e mecânicas seriam mais relevantes para criar uma experiência dinâmica e envolvente.

Outro conceito fundamental descoberto durante a leitura de artigos foi o framework
MDA (Mecânica, Dinâmica e Estética), que se mostrou essencial para estruturar o de-
sign do jogo. Esse modelo permitiu uma abordagem mais sistemática na construção da
jogabilidade, separando os elementos do jogo em três níveis distintos: as mecânicas, que
englobam as regras e interações básicas; as dinâmicas, que emergem dessas regras e mol-
dam o comportamento do jogador; e a estética, que representa as sensações e emoções

Capítulo 6. Resultados Obtidos 43

desejadas.

A aplicação do MDA no planejamento do jogo ajudou a antecipar como determi-
nadas mecânicas impactam a experiência dos jogadores. Por exemplo, ao definir o sistema
de movimentação com curvas e os poderes especiais, analisei como essas mecânicas afetam
a dinâmica do jogo e quais emoções poderiam ser despertadas, como tensão, estratégia e
senso de imprevisibilidade. Esse modelo se tornou uma ferramenta essencial para guiar as
decisões de design, garantindo um alinhamento entre os objetivos do projeto e a experi-
ência proporcionada ao jogador.

6.2 Desenvolvimento do jogo
Neste capítulo falaremos sobre as etapas de desenvolvimento do jogo, apresentando

o fluxo de telas, desde o menu inicial até a tela de fim da partida. Descreveremos nosso
primeiro contato com a Engine Godot, os principais desafios de criação de Scenes e Nodes,
e como organizamos o trabalho. Vamos destacar os pontos críticos de implementação (mo-
vimentação, colisão, sistema de poderes e pontuação) e as soluções adotadas, ilustrando
cada fase com trechos de código e capturas de tela.

6.2.1 Preparação do ambiente e planejamento do desenvolvimento

A configuração inicial do ambiente de desenvolvimento começou com a instalação
da Engine Godot 4.4 por meio da plataforma Steam 1., que facilitou o processo de down-
load e atualização. Em seguida, foi criado um repositório no GitHub, clonado localmente
para permitir o início imediato do projeto na raiz do versionamento.

As primeiras configurações incluíram o ajuste da resolução de tela, ativação de fer-
ramentas de debug e o mapeamento de entradas no Input Map para controlar as ações do
jogador. Esses ajustes foram essenciais para garantir um ambiente funcional e preparado
para as etapas seguintes. O próprio Godot fornece ferramentas de debug como painel de
saída (Output), breakpoints, o monitor de desempenho em tempo real e a exibição de va-
riáveis no Inspector, permitindo acompanhar o uso de memória, FPS, colisões e mensagens
personalizadas via comandos print. Esses recursos foram utilizados principalmente para
rastrear o comportamento dos objetos em cena, identificar colisões inesperadas e ajustar
a lógica dos poderes e do sistema de movimentação durante os testes iniciais.

A organização do trabalho foi orientada pelo uso de Metodologias ágeis, conforme
descrito no Capítulo 2, com foco em sprints quinzenais e no uso contínuo do Trello. Essa
abordagem permitiu visualizar metas específicas a cada ciclo, monitorar o progresso e
reorganizar prioridades sempre que necessário. Ainda que alguns atrasos tenham ocorrido
1 É uma plataforma digital de jogos para PC, desenvolvida pela Valve Corporation, que permite aos

usuários comprar, baixar, jogar e gerenciar seus jogos.

Capítulo 6. Resultados Obtidos 44

devido a imprevistos técnicos ou demandas externas, a estrutura do Scrum possibilitou
replanejamentos sem comprometer o andamento geral do projeto.

Em diversos momentos, retornar ao quadro do Trello foi fundamental para reor-
ganizar ideias, como identificar o próximo passo e retomar o ritmo de desenvolvimento.
Essa prática ajudou a contornar bloqueios, dúvidas sobre prioridade e fases de menor
produtividade, tornando o processo mais fluido e direcionado.

Para manter a constância no desenvolvimento, optou-se por uma aplicação adap-
tada do Scrum. Entre os ritos adotados, destacam-se o planejamento inicial de cada sprint
e uma revisão informal ao final. As reuniões diárias foram dispensadas, substituídas por
acompanhamento contínuo via Trello, o que se mostrou eficaz dentro do contexto indi-
vidual. Essa flexibilidade também permitiu aproveitar momentos de maior dedicação ou
clareza nas tarefas para antecipar funcionalidades futuras, otimizando o uso do tempo
disponível.

Na primeira retrospectiva da sprint, notei um atraso causado pelo tempo necessário
para se familiarizar com a plataforma Godot. Apesar de conhecimento teórico, a prática
exigiu ajustes constantes, principalmente na construção da interface inicial. No início surge
dúvidas constantes sobre a melhor abordagem para determinado objetivo, oque levou a
revisões muito frequentes do código e nas estruturas dos nós até acertar. Esse feedback
individual me ajudou a tomar uma decisão de não subestimar a primeira atividade de
entrega e estender seu prazo.

6.2.2 Organização de arquivos e estrutura de cenas

Para manter a organização e padronização do projeto, foi adotado um modelo de
nomenclatura no qual arquivos e pastas seguem o padrão snake_case, enquanto os nós
(nodes) definidos no editor utilizam o formato CamelCase. Cada cena foi estruturada em
uma pasta própria, contendo obrigatoriamente dois arquivos com o mesmo nome-base: o
arquivo de cena .tscn e o respectivo script .gd. Por exemplo:

main_menu/main_menu.tscn e main_menu/main_menu.gd

Essa estrutura facilita a manutenção do projeto, a navegação entre arquivos e a
identificação de dependências diretas entre lógica e visual.

Internamente, a separação entre a lógica de jogo e a interface foi conduzida de
forma clara. As cenas responsáveis pelo gameplay adotam Node2D como nó raiz, com filhos
como Sprite2D e CollisionShape2D, entre outros. Já as cenas de interface, como menus
e HUDs, são construídas sobre nós do tipo Control, organizadas em camadas distintas
por meio de CanvasLayer, e compostas por elementos reutilizáveis, como botões, painéis
e ícones.

Capítulo 6. Resultados Obtidos 45

As funcionalidades relacionadas ao jogador e aos power-ups foram encapsuladas
em cenas independentes, cada uma com seu próprio script, seguindo um modelo baseado
em componentes. Essa abordagem permite isolar responsabilidades, como movimentação,
detecção de colisão e controle de tempo de efeitos, promovendo maior modularidade e
reuso de código.

Por fim, a persistência de estado, como pontuação e configurações dos jogado-
res, bem como a música de fundo, são gerenciadas por meio do autoload GameManager.
Esse script atua como um controlador global, acessível por todas as cenas, facilitando a
manutenção de dados entre transições e o gerenciamento de comportamentos que devem
persistir durante toda a execução do jogo.

A Figura 8 exemplifica melhor como o projeto foi organizado em pastas. As pastas
azuis possuem arquivos de cena e script relativos ao nome da pasta.

Figura 8 – Diagrama de pacotes de arquivos

Fonte: Elaboração própria

6.2.3 Interface e usabilidade

No projeto, a interface e a usabilidade foram estruturadas em três telas principais:
o menu inicial, a seleção de jogadores (lobby) e a GameScene. A Engine Godot oferece um
sistema de construção de interfaces com baixa dependência de código (low-code), permi-
tindo o ajuste de tamanhos, textos e posicionamento de Containers diretamente no editor
2D. A integração desses nós a scripts possibilita a conexão de sinais e a atribuição de mé-
todos aos componentes interativos, proporcionando controle total sobre o comportamento
da interface.

Capítulo 6. Resultados Obtidos 46

Na Figura 9, exemplifica como referenciar os nós (nodes) dentro do script. é comum
usarmos o termo "@onready"seguido da variável que vai armazenar o nó para acessar e
alterar suas propriedades antes e depois da cena carregar.

Figura 9 – Conexão de nós com scripts no editor Godot.

Fonte: Elaboração própria

Nas telas de menu, foram utilizados exclusivamente nós do tipo Control, explo-
rando recursos como Anchors e Size Flags para garantir o alinhamento e o dimensiona-
mento automáticos de painéis, labels e botões em diferentes resoluções. Na GameScene,
a raiz da cena é um Node2D, o que facilita a renderização e o posicionamento de ele-
mentos gráficos em 2D, mantendo a interface separada em camadas por meio do uso de
CanvasLayer, evitando interferência entre a lógica da interface e a lógica de jogo.

Com o objetivo de aprimorar a experiência do usuário, duas funcionalidades es-
pecíficas foram implementadas. A primeira consiste na personalização dos comandos
de movimento (keybinds) no lobby, com armazenamento das configurações no singleton
GameManager, permitindo a persistência das escolhas entre as rodadas. A segunda funci-
onalidade é a exibição de uma seta direcional sobre o veículo de cada jogador no início de
cada rodada, indicando sua orientação inicial e contribuindo para uma melhor percepção
espacial logo nos primeiros movimentos. Tais melhorias foram planejadas para oferecer
maior clareza visual e controle aos participantes durante a partida.

Além disso, sons foram adicionados para reforçar a imersão do jogador e dar fe-
edbacks importantes durante o jogo. A música de fundo é gerenciada por meio de um
AudioStreamPlayer inserido em um nó global no AutoLoad, configurado para reprodução
contínua em loop entre as cenas. Já os efeitos sonoros específicos, como o som de morte
do jogador, foram implementados diretamente em suas respectivas cenas (Player.tscn).
Para isso, utilizou-se o nó AudioStreamPlayer2D, permitindo que cada jogador repro-
duza sons de forma independente e com espacialização adequada, sem comprometer a

Capítulo 6. Resultados Obtidos 47

lógica principal do jogo.

6.2.4 Implementação das mecânicas do jogo

O desenvolvimento foi feito em GDScript, a linguagem nativa da Godot. Ela é
baseada em Python e é fortemente integrada à arquitetura da Engine. Três métodos se
destacam na construção da lógica do jogo: ready, chamado uma vez assim que o nó entra
na árvore de cena; physics_process(delta), executado a cada frame de física e utilizado
para atualizar elementos em tempo real; e a anotação @onready, que permite inicializar
variáveis com nós da cena somente após estarem carregados. Esses recursos estruturam
o ciclo de vida dos objetos e organizam a execução do jogo em etapas previsíveis. Além
disso, a Engine Godot adota uma estrutura orientada a nós, onde tudo é tratado como
um objeto independente na hierarquia da cena. Qualquer referência a esse objeto, quando
alterada, reflete automaticamente em todas as partes do código onde ele está instanciado
ou referenciado, o que facilita a reutilização, modularização e manutenção do projeto.

O ready carrega a cena inicial. Define as dimensões do mapa e chamado a função
de start_round que dá início ao jogo.

A função start_round é chamada no início de cada rodada e tem como responsa-
bilidade configurar o estado inicial do jogo. Nela são instanciados os jogadores, com base
em uma cena pré-configurada (PackedScene), posicionados nos marcadores definidos no
mapa e conectados aos seus respectivos sinais. Além disso, o método define o tempo para
início da rodada, ativando um contador regressivo e liberando o movimento dos jogadores
apenas após sua conclusão. Esse controle inicial garante que todas as partidas comecem
de forma sincronizada e clara para os participantes.

A Figura 10 mostra como os jogadores são instanciados na cena do jogo. Primeiro
instânciamos o jogador, alinhamos todos na mesma camada, definimos sua posição incial
e ajustamos os sinais de suas funções.

Durante a execução do jogo, a função physics_process(delta) é responsável por
atualizar o tempo, movimentar os jogadores e controlar os poderes. Cada jogador move-se
em linha reta com velocidade constante, ajustando sua rotação com base nas entradas
recebidas. A cada ciclo de atualização, o jogo verifica se é hora de instanciar um novo
rastro atrás do jogador, formando a trilha que delimita o espaço percorrido. Também é
nesse método que o cronômetro de geração de poderes é verificado, e, ao atingir o tempo
definido, um novo poder é instanciado em posição aleatória no mapa.

Naa Figuras 11 e 12 tem exemplos da função nativa do Godot _physics_process
preentes no jogadores e no mapa do jogo. Nessa função é colocado tudo que for verifi-
cado ou processado pelos game ticks, ou seja, a cada frame do jogo como detecção da
momvimentação e colisões.

Capítulo 6. Resultados Obtidos 48

Figura 10 – código: round_start

Fonte: Elaboração própria

Figura 11 – gamescene: _physics_process

Fonte: Elaboração própria

A detecção de colisões foi feita por meio do nó Area2D com CollisionShape2D,
presente tanto nos jogadores quanto nos rastros e paredes. Cada jogador possui um si-
nal area_entered conectado diretamente à cena GameScene, utilizando Callable(self,
"_on_player_died"). Ao detectar uma colisão com uma área pertencente a outro joga-
dor, a função de morte é acionada, removendo o jogador da cena e atualizando o ranking
da rodada. A função end_round, chamada após restar apenas um jogador vivo, é respon-
sável por pausar o jogo, distribuir os pontos com base na ordem de eliminação, verificar
se algum jogador alcançou a pontuação de vitória e, caso não haja vencedor, iniciar uma
nova rodada com start_round.

Nas Figuras 13 e 14 são exemplos das funções responsáveis por detectar a morte
e a colisão do jogador. Para detectar a morte de um jogador, a função _on_player_died

Capítulo 6. Resultados Obtidos 49

Figura 12 – player: _physics_process

Fonte: Elaboração própria

identifica quem morreu usando uma função de callback ligado ao sinal de colisão do jogador
e a colisão é identificar verificando o grupo ao qual o objeto colidido pertence, seja rastro
ou parede.

Figura 13 – gamescene: _on_player_died

Fonte: Elaboração própria

Para o áudio, foi adotada uma abordagem simples e funcional. A música de fundo é
gerenciada por um nó AudioStreamPlayer, carregado por meio de um script no AutoLoad,
o que permite sua reprodução contínua em loop durante todo o jogo, independentemente
da cena ativa. Já os efeitos sonoros, como o som de morte, foram incorporados diretamente

Capítulo 6. Resultados Obtidos 50

Figura 14 – player: _on_area_entered

Fonte: Elaboração própria

à cena de cada jogador, utilizando o nó AudioStreamPlayer2D. Essa escolha permite que
cada instância de jogador reproduza seus próprios sons de forma independente, garantindo
uma espacialização adequada e mantendo o controle de áudio encapsulado no próprio
objeto responsável pela ação.

Abaixo tem a Figura 15 do fluxo lógico simplificado que ocorre na cena de jogo.

A Tabela 8 contem o resumo das principais soluções de implementação das funci-
onalidades do jogo.

Capítulo 6. Resultados Obtidos 51

Figura 15 – BPMN: fluxo lógico

Fonte: Elaboração própria

Capítulo 6. Resultados Obtidos 52

Tabela 8 – Tabela de solução de implementação das funcionalidades

Funcionalidade Principais nós Descrição resumida da implemen-
tação

Movimentação Player (Area2D),
Polygon2D, Collisi-
onShape2D e AudioS-
treamPlayer2D

Usa Input.is_key_pressed para
ajustar a direção dentro do
physics_process e possui veloci-
dade variável que determina curvas
mais fechadas ou abertas.

Rastros Trail (Node2D),
Polygon2D, Collisi-
onShape2D

A cada frame um ponto é adicionado
no mapa com a mesma proporção do
Player. Esses pontos, em sequência,
criam uma linha.

Poderes Especiais PowerUp (Node2D),
Sprite2D, Collisi-
onShape2D

Quando o jogador colide com um
PowerUp, altera atributos do joga-
dor (ex.: velocidade, invulnerabilidade)
ou das paredes do mapa dentro do
GameManager.

Colisão e elimina-
ção

Embutido nos rastros,
jogadores e paredes,
signal body_entered
através do Collisi-
onShape2D

Conecta o sinal de eliminação ao mé-
todo que verifica se o jogador tocou pa-
rede ou rastro alheio; em caso positivo,
notifica o GameManager e o próprio ob-
jeto remove sua instância do jogo.

Sistema de pontos Singleton
GameManager, La-
bel de HUD

Mantém dicionário de pontuações; ao
final de cada rodada calcula ordem de
eliminação, atualiza as labels e de-
clara fim da partida.

Tamanho do mapa Dois Marker2D e qua-
tro Walls (Area2D)

Os marcadores delimitam as bordas do
mapa e as paredes, com as coordena-
das dos marcadores, são instanciadas
na cena.

Fonte: Elaboração própria.

6.2.5 Fluxo de telas e linha de desenvolvimento

O fluxo de telas do jogo consiste em três cenas: menu principal, lobby e jogo.
Abaixo é possível visualizar o resultado final e a sequência de tela do jogo.

A tela inicial possui um background com estética semelhante ao jogo, e o usuário
pode optar por sair do jogo ou jogar através de um clique. As próximas Figuras 16, 17,
18 e 19, mostra telas do jogo desde o menu até a tela em jogo.

Na tela de Lobby tem a opção de jogar com até 6 jogadores e cada jogador pode
customizar suas teclas de comando. É possível remover um jogadores caso necessário e
continuar para o jogo.

Na cena do jogo, temos um painel com a pontuação dos jogadores, um botão de
pause, um contador que declara início da rodada e três jogadores dispostos no mapa com

Capítulo 6. Resultados Obtidos 53

Figura 16 – Tela menu inicial.

Fonte: Elaboração própria

Figura 17 – Tela do Lobby do jogo.

Fonte: Elaboração própria

Capítulo 6. Resultados Obtidos 54

indicadores de suas atuais direções.

Figura 18 – Tela do jogo com indicadores de direção antes de começar a rodada.

Fonte: Elaboração própria

O jogo pode ser pausado a qualquer momento oferecendo as opções de voltar ou
continuar a partida.

Figura 19 – Tela do jogo em pause.

Fonte: Elaboração própria.

Quando um jogador alcança a pontuação mínima, o jogo encerra declarando o
vencedor seguido de um botão de continuar.

6.2.6 Principais desafios e soluções

Durante o desenvolvimento do jogo, diversos desafios técnicos e conceituais sur-
giram, especialmente por se tratar da primeira experiência prática com uma Engine de

Capítulo 6. Resultados Obtidos 55

Figura 20 – Tela do jogo encerrado.

Fonte: Elaboração própria.

jogos. O primeiro obstáculo foi compreender o funcionamento da Godot Engine e explorar
suas funcionalidades. Para isso, foi essencial adotar uma abordagem de aprendizagem ba-
seada em experimentação contínua, consulta à documentação oficial, fóruns, vídeos e o uso
de inteligência artificial para suporte na resolução de problemas. A própria Engine facilita
esse processo ao oferecer uma documentação embutida que permite explorar métodos e
propriedades diretamente nos nós utilizados.

Um segundo desafio relevante foi a construção da interface. A tentativa de criar
telas responsivas exigiu o entendimento aprofundado sobre propriedades como ancoragem,
margens, alinhamentos e retângulos (Rect). Além disso, foi necessário aprender a combinar
diferentes tipos de Container para estruturar layouts adaptáveis, utilizando ferramentas
como HBoxContainer, VBoxContainer e MarginContainer.

A elaboração da lógica principal do jogo representou outro desafio. Por ser baseada
em uma estrutura de nós hierárquicos, o desenvolvedor precisa entender a relação entre
os elementos, como a importância de posicionar corretamente objetos filhos em relação
ao pai, além de saber gerenciar sua comunicação por meio de sinais e grupos. No início,
quando ainda não há uma versão testável do jogo, muitos conceitos permanecem meio que
abstratos, por isso é comum implementar diversas funcionalidades sem conseguir visualizar
seu comportamento final. Isso exige um processo constante de revisão e adaptação, à
medida que o restante da estrutura vai sendo integrada e testada.

Entre os problemas práticos mais complexos esteve a criação do rastro deixado pe-
los jogadores em movimento, principal elemento do jogo. A primeira abordagem testada
foi o uso de um Line2D, que conectava os pontos por onde o jogador passava. Inicial-
mente era funcional. Porém, essa solução apresentou falhas ao lidar com teletransporte.
Ao atravessar a borda do mapa, um traço era desenhado ligando pontos opostos da tela.

Capítulo 6. Resultados Obtidos 56

A solução adotada foi instanciar, em intervalos curtos, múltiplos rastros independentes
com aparência igual à do jogador, que juntos formam uma linha visualmente contínua.

Outro problema significativo ainda relacionado ao rastro foi a colisão imediata
do jogador com o próprio traço recém-gerado, o que tornava a partida impossível de
continuar. Três alternativas foram testadas: aplicar um pequeno atraso antes de instanciar
o rastro, adicionar uma distância mínima entre o jogador e o ponto de criação do rastro,
e finalmente, a abordagem escolhida: aguardar que o jogador deixe a área de colisão do
rastro antes de adicioná-lo ao grupo responsável por registrar colisões (grupo "trail").
Essa última estratégia demonstrou-se mais confiável e garantiu a jogabilidade esperada,
mas ainda com problemas.

Após a implementação de todos os poderes, aqueles que alteravam o tamanho dos
jogadores ainda apresentavam comportamentos inconsistentes, sem uma solução satisfa-
tória no momento. Diante disso, optou-se por remover temporariamente esses poderes do
jogo, até que uma abordagem mais estável e compatível com o restante da lógica fosse
encontrada.

Ao longo do desenvolvimento, diversos outros problemas surgiram, de escala me-
nor ou semelhante, mas ainda assim relevantes para o processo de aprendizagem. Alguns
foram resolvidos rapidamente, enquanto outros exigiram maior abstração e análise do
comportamento da Engine. Entre os exemplos recorrentes estavam situações como ins-
tanciar objetos como filhos de outros e perceber que isso altera sua global_position,
ou tentar interagir com nós que já haviam sido removidos. Com o tempo, esses padrões
de erro se tornam mais reconhecíveis, e a experiência adquirida passa a desempenhar um
papel fundamental na antecipação de problemas e na escolha de soluções mais eficientes.
Esses aprendizados acumulados, ainda que muitas vezes não documentados diretamente,
contribuem significativamente para a formação prática do desenvolvedor.

6.2.7 Testes de Funcionalidade e Desempenho

Os testes realizados no projeto seguiram uma abordagem prática e limitada, con-
siderando os recursos disponíveis. A metodologia adotada foi a de testes manual de caixa-
preta, com foco na verificação do comportamento esperado das funcionalidades imple-
mentadas, sem considerar a estrutura interna do código. Essa abordagem é comum em
projetos de software com restrições de tempo ou equipe reduzida, como é o caso deste
trabalho (PINHEIRO, 2024) (Check Point Software Technologies, s.d.).

Os testes foram realizados pelo próprio autor, de forma exploratória, em um am-
biente local, utilizando um computador pessoal com sistema Windows 11, AMD Ryzen
5 3600 6-Core Processor, 16 GB memória RAM, placa de vídeo AMD Radeon RX 5600
XT.

Capítulo 6. Resultados Obtidos 57

Durante o processo de testes, foram identificados bugs e comportamentos inespe-
rados, como colisões incorretas, travamentos de movimentos ou falhas em efeitos visuais.
Esses problemas eram registrados na plataforma Trello, dentro da seção de tarefas “Me-
lhorias”, para posterior análise e correção. Esse processo, ainda que informal, foi essencial
para garantir a estabilidade mínima do sistema e evitar que erros simples passassem des-
percebidos até a entrega final.

A Figura 21 mostra o quadro de bugs encontrados, para poder haver rastreamento
e identificação de bugs e comportamento inesperados do jogo.

Figura 21 – Quadro - Polimento e Ajustes

Fonte: Elaboração própria

Além da detecção de falhas, os testes também desempenharam um papel funda-
mental no balanceamento das mecânicas do jogo. Durante as sessões de teste, foi possível
observar, por exemplo, se a velocidade base dos jogadores proporcionava uma movimen-
tação justa, se o tempo de duração dos poderes estava adequado para não desestabilizar
as partidas e se os controles respondiam de forma fluida. Pequenas observações sobre o
comportamento em jogo que contribuindo para a melhoria da experiência geral e diversão
dos jogadores.

Apesar das limitações, o processo de testes contribuiu para a melhoria contínua
do jogo, permitindo a identificação e correção de falhas ao longo do desenvolvimento. A
prática de documentar os problemas e tratá-los como parte do ciclo de produção reforçou
o valor da organização e da iteração constante no desenvolvimento de software.

58

7 Conclusões Gerais

O trabalho teve como proposta o desenvolvimento de um jogo digital inspirado
nos Light Cycles do universo Tron, servindo simultaneamente como exercício prático de
aplicação de conceitos da Engenharia de Software e como objeto de estudo sobre o pro-
cesso de criação de jogos digitais. A condução do projeto foi estruturada por meio de
Metodologias Ágeis, com destaque para o uso adaptado do framework Scrum, que possi-
bilitou organizar as etapas do desenvolvimento de forma iterativa e flexível, respeitando
os limites temporais e o escopo previamente definido.

A utilização do modelo MDA (Mechanics–Dynamics–Aesthetics) na primeira etapa
do trabalho contribuiu para orientar as decisões de design de forma estruturada, pro-
movendo o alinhamento entre os componentes técnicos do jogo e a experiência de jogo
pretendida. As mecânicas implementadas, como a geração de rastro, colisões e poderes
temporários, foram integradas com foco em proporcionar dinâmicas de disputa rápida e
interação estratégica entre jogadores. Ainda que alguns ajustes tenham sido necessários
ao longo do desenvolvimento, a estrutura teórica do MDA mostrou-se útil para manter a
coerência entre intenção e implementação.

Durante a fase prática, a escolha da Godot Engine atendeu bem às necessidades
do projeto, especialmente por seu suporte nativo ao desenvolvimento 2D, sua estrutura
baseada em nós hierárquicos e pela facilidade da linguagem GDScript. No entanto, nem
sempre os comportamentos da Engine foram intuitivos, o que demandou muitos testes
e adaptações na lógica do jogo. Ainda assim, a experiência geral com a ferramenta foi
positiva, e a curva de aprendizagem, inicialmente lenta, tornou-se significativamente mais
fluida a partir do meio do projeto.

A prática do desenvolvimento proporcionou aprendizado técnico relevante, como o
uso de instanciamento dinâmico, gerenciamento de colisões com Area2D, manipulação de
grupos e sinais para controle de comportamento, construção de HUD com CanvasLayer
e organização modular da lógica de jogo. Além disso, a necessidade constante de tes-
tar, depurar e refatorar consolidou competências relacionadas à modelagem, resolução de
problemas e tomada de decisão em cenários práticos.

Considerando o escopo proposto, os resultados obtidos demonstram a viabilidade
de aplicar fundamentos da Engenharia de Software ao desenvolvimento de jogos digitais
com uma abordagem acessível e orientada à aprendizagem. O jogo desenvolvido, mesmo
com limitações pontuais, funciona como um protótipo jogável e representa uma base con-
creta para futuras melhorias ou expansões. Dessa forma, o trabalho cumpre seu papel
como objeto de estudo prático e formativo, oferecendo subsídios tanto para o desenvolvi-

Capítulo 7. Conclusões Gerais 59

mento técnico quanto para a reflexão sobre metodologias aplicadas à criação de jogos.

Por fim, é importante reconhecer que o ciclo de desenvolvimento de um jogo vai
além da construção de sua versão jogável. Etapas como empacotamento e exportação
multiplataforma, publicação em lojas digitais, monetização, questões de licenciamento e
direitos autorais extrapolam o escopo deste trabalho, mas fazem parte do ecossistema do
desenvolvimento de jogos e representam oportunidades futuras de aprendizado. No total,
foram gastas 291 horas para desenvolver o jogo, marcadas por registros do tempo de uso
da ferramenta de controle de sessões.

7.1 Lições aprendidas e recomendações
Durante o desenvolvimento do projeto, algumas lições importantes foram aprendi-

das, especialmente em relação ao planejamento, à abordagem técnica e ao gerenciamento
de riscos. Um dos principais desafios enfrentados ocorreu logo no início, ao subestimar
a complexidade da primeira tarefa, que também representava o primeiro contato prático
com a Engine e a estrutura do jogo. Essa etapa revelou a importância de reservar mais
tempo para a fase inicial de familiarização e experimentação.

Houve acertos estratégicos que contribuíram significativamente para a viabilidade
do projeto. A escolha por um jogo 2D e baseado em uma mecânica já conhecida (inspirada
nos *Light Cycles* de Tron) foi essencial para evitar a reinvenção de conceitos e permitiu
concentrar esforços na adaptação e melhoria das funcionalidades. As soluções simplifi-
cadas, aplicadas principalmente às mecânicas e à organização do código, facilitaram o
entendimento das estruturas internas da Engine e possibilitaram uma evolução técnica
consistente ao longo do projeto.

Os riscos de software é um problema potencial que pode afetar negativamente o
cronograma, a qualidade ou o desempenho do projeto (PRESSMAN; MAXIM, 2016) (Pro-
ject Management Institute, 2017).Ficou evidente que a ausência de um gerenciamento de
riscos mais estruturado dificultou a antecipação de imprevistos, como mudanças no escopo
e desafios técnicos inesperados. O planejamento inicial, ainda que básico, demonstrou ser
um elemento crucial para manter o foco e organizar as entregas de forma coesa.

Durante a preparação para o projeto, foi realizado um curso introdutório de Godot
e GDScript por meio da plataforma Udemy, ministrado por Davi Bandeira (BANDEIRA,
2024). O curso abordava conceitos básicos de lógica de programação e construção de jogos
simples na Engine. Embora a experiência tenha sido positiva e proporcionado segurança
inicial, ao iniciar o desenvolvimento do jogo próprio, surgiu a percepção de que a depen-
dência de tutoriais com soluções prontas limitava a autonomia na resolução de problemas.
Acostumado a seguir uma "receita", foi desafiador lidar com decisões técnicas de forma
independente e contextualizada.

Capítulo 7. Conclusões Gerais 60

Esse contraste reforçou uma lição importante: à medida que um desenvolvedor
começa a construir um jogo por conta própria, sem se apoiar diretamente em tutoriais
passo a passo, ele se depara com obstáculos mais reais, que exigem criatividade, leitura
da documentação e adaptação ao funcionamento da Engine. Essa prática estimula o pen-
samento crítico e, sobretudo, gera confiança para iniciar projetos mais complexos e com
mecânicas mais inovadoras.

Portanto, para quem estar começando, recomendo que futuros projetos priorizem
um planejamento claro, escolham abordagens viáveis, considerem estratégias de mitigação
de riscos desde as primeiras etapas e busquem um equilíbrio entre referências externas e
a autonomia criativa no processo de desenvolvimento.

7.2 Melhorias futuras
Com o protótipo funcional concluído, diversas melhorias podem ser exploradas em

uma continuidade do projeto. Entre as mais relevantes estão:

∙ Implementação de uma inteligência artificial simples para permitir partidas solo
contra o computador;

∙ Adição de suporte a partidas remotas entre jogadores por meio de conexão ponto a
ponto (peer-to-peer);

∙ Inclusão de recompensas visuais ou sonoras, como efeitos de vitória, conquistas ou
feedbacks de desempenho;

∙ Expansão dos menus com opções de configuração de áudio, controles e parâmetros
de jogo;

∙ Criação de mapas com tamanhos e proporções ajustáveis, permitindo personalização
do campo de jogo;

∙ Desenvolvimento de novos tipos de poderes especiais para ampliar a variedade de
estratégias;

∙ Aprimoramento do sistema de colisão, buscando mais precisão e confiabilidade no
registro de impactos;

∙ Preparação do jogo para publicação, com foco em empacotamento, identidade visual
e publicação em plataformas como a Steam;

Essas propostas visam transformar o protótipo em um produto mais robusto, aces-
sível e com maior valor de rejogabilidade, mantendo a essência competitiva e estratégica
da experiência original.

61

Referências

ASEPRITE. Aseprite documentation. 2024. Acesso em: 04 Feb. 2025. Disponível em:
<https://www.aseprite.org/docs/>. Citado na página 26.

Avell. Mercado de games no Brasil se destaca no cenário global. 2025. Acesso em: 11
ago. 2025. Disponível em: <https://avell.com.br/blog/mercado-de-games>. Citado na
página 29.

BANDEIRA, D. Lógica de Programação + Projetos na Godot/GDScript 4.3+. 2024.
<https://www.udemy.com/course/aprenda-godot-e-gdscript-em-7-dias/>. Curso online,
Udemy. Citado na página 58.

CARROLL, J. Using the MDA Framework as an approach to game design. 2000.
Acesso em: 25 Jan. 2025. Disponível em: <https://medium.com/@jenny_carroll/
using-the-mda-framework-as-an-approach-to-game-design-9568569cb7d>. Citado na
página 20.

Check Point Software Technologies. What is Black Box Testing? s.d. Acessado em 14
jul. 2025. Disponível em: <https://www.checkpoint.com/pt/cyber-hub/cyber-security/
what-is-penetration-testing/what-is-black-box-testing/>. Citado na página 55.

CHOU, Y.-K. The Octalysis Framework for gamification & behavioral design. 2019. Acesso
em: 14 Nov. 2024. Disponível em: <https://yukaichou.com/gamification-examples/
octalysis-complete-gamification-framework/>. Citado na página 39.

DINIZ RODRIGO GAVIOLI, F. G. A indústria de jogos eletrônicos no brasil: uma
breve história e suas implicações na atualidade. Geoingá: Revista do Programa de
Pós-Graduação em Geografia, Universidade Estadual de Maringá, 2024. Doutorando no
Programa de Pós-graduação em Geografia da UEM; Mestre em Tecnologias Ambientais
pela UFMS. Citado na página 28.

ENGINE, G. Introduction to Godot. 2024. Acesso em: 29 Jan. 2025. Disponível em:
<https://docs.godotengine.org/en/stable/getting_started/introduction/introduction_
to_godot.html>. Citado na página 26.

ENGINE, G. System requirements. 2024. Acesso em: 01 Feb. 2025. Disponível em:
<https://docs.godotengine.org/en/stable/about/system_requirements.html>. Citado
na página 31.

Game Developer Staff. User research: Utilizing octalysis in game user research. Game
Developer, 2021. Acesso em 5 de agosto de 2025. Disponível em: <https://www.
gamedeveloper.com/business/user-research-utilizing-octalysis-in-game-user-research>.
Citado na página 39.

GLAIEL, T. How to make your own game engine (and why). 2021. Acesso
em: 02 Feb. 2025. Disponível em: <https://medium.com/geekculture/
how-to-make-your-own-game-engine-and-why-ddf0acbc5f3>. Citado na página
34.

https://www.aseprite.org/docs/
https://avell.com.br/blog/mercado-de-games
https://www.udemy.com/course/aprenda-godot-e-gdscript-em-7-dias/
https://medium.com/@jenny_carroll/using-the-mda-framework-as-an-approach-to-game-design-9568569cb7d
https://medium.com/@jenny_carroll/using-the-mda-framework-as-an-approach-to-game-design-9568569cb7d
https://www.checkpoint.com/pt/cyber-hub/cyber-security/what-is-penetration-testing/what-is-black-box-testing/
https://www.checkpoint.com/pt/cyber-hub/cyber-security/what-is-penetration-testing/what-is-black-box-testing/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://docs.godotengine.org/en/stable/getting_started/introduction/introduction_to_godot.html
https://docs.godotengine.org/en/stable/getting_started/introduction/introduction_to_godot.html
https://docs.godotengine.org/en/stable/about/system_requirements.html
https://www.gamedeveloper.com/business/user-research-utilizing-octalysis-in-game-user-research
https://www.gamedeveloper.com/business/user-research-utilizing-octalysis-in-game-user-research
https://medium.com/geekculture/how-to-make-your-own-game-engine-and-why-ddf0acbc5f3
https://medium.com/geekculture/how-to-make-your-own-game-engine-and-why-ddf0acbc5f3

Referências 62

HUIZINGA, J. Homo Ludens: o jogo como elemento da cultura. 2000. Acesso em: 02
Feb. 2025. Disponível em: <http://jnsilva.ludicum.org/Huizinga_HomoLudens.pdf>.
Citado na página 14.

HUNICKE, R.; LEBLANC, M.; ZUBEK, R. MDA: A formal approach to game
design and game research. 2004. Acesso em: 26 Jan. 2025. Disponível em: <https:
//users.cs.northwestern.edu/~hunicke/MDA.pdf>. Citado na página 19.

KENT, S. L. The ultimate history of video games. Three Rivers Press, 2001. Acesso em:
21 Dec. 2024. Disponível em: <https://archive.org/details/ultimatehistoryo0000kent/
page/n627/mode/2up>. Citado na página 28.

LAWRENCE, S. Tron arcade game 2002. 2002. Acesso em: 09 Nov. 2025. Disponível em:
<https://www.csh.rit.edu/~jerry/arcade/tron/>. Citado na página 14.

MALANKAR, N. Software engineering in gaming over the years | Game development
| Evolution of gaming | @SCALER. 2023. Acesso em: 04 Feb. 2025. Disponível em:
<https://www.youtube.com/watch?v=abcde1234>. Citado na página 30.

PINHEIRO, D. Entenda a importância dos testes para o sucesso em jogos digitais. 2024.
Acessado em 14 jul. 2025. Disponível em: <https://www.testingcompany.com.br/blog/
entenda-a-importancia-dos-testes-para-o-sucesso-em-jogos-digitais>. Citado na página
55.

PRESSMAN, R. S.; MAXIM, B. R. Engenharia de Software: uma abordagem profissional.
8. ed. [S.l.]: AMGH Editora, 2016. Citado na página 58.

Project Management Institute. Guia PMBOK: Um guia do conhecimento em
gerenciamento de projetos. 6. ed. [S.l.]: Project Management Institute, 2017. Citado na
página 58.

SCHWABER, K.; SUTHERLAND, J. Guia do Scrum: um guia definitivo para
o Scrum: as regras do jogo. 2013. Acesso em: 04 Nov. 2024. Disponível em:
<https://scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf>.
Citado na página 17.

SOMMERVILLE, I. Engenharia de Software. 9. ed. São Paulo: Pearson Prentice Hall,
2011. ISBN 9788576057152. Citado 2 vezes nas páginas 22 e 29.

STUDIOS, P. O que são as Game Engines ou motores de jo-
gos? 2014. Acesso em: 08 Jan. 2025. Disponível em: <https:
//pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/
o-que-sao-engine-de-games-ou-motor-de-jogo/index.html>. Citado na página
30.

TECHNOLOGIES, U. System requirements. 2024. Acesso em: 01 Feb. 2025. Disponível
em: <https://docs.unity3d.com/6000.0/Documentation/Manual/system-requirements.
html>. Citado na página 31.

ULLMANN, G. C. et al. Game engine comparative anatomy. 2025. Acesso em: 05 Feb.
2025. Disponível em: <https://arxiv.org/pdf/2207.06473>. Citado na página 30.

http://jnsilva.ludicum.org/Huizinga_HomoLudens.pdf
https://users.cs.northwestern.edu/~hunicke/MDA.pdf
https://users.cs.northwestern.edu/~hunicke/MDA.pdf
https://archive.org/details/ultimatehistoryo0000kent/page/n627/mode/2up
https://archive.org/details/ultimatehistoryo0000kent/page/n627/mode/2up
https://www.csh.rit.edu/~jerry/arcade/tron/
https://www.youtube.com/watch?v=abcde1234
https://www.testingcompany.com.br/blog/entenda-a-importancia-dos-testes-para-o-sucesso-em-jogos-digitais
https://www.testingcompany.com.br/blog/entenda-a-importancia-dos-testes-para-o-sucesso-em-jogos-digitais
https://scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf
https://pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/o-que-sao-engine-de-games-ou-motor-de-jogo/index.html
https://pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/o-que-sao-engine-de-games-ou-motor-de-jogo/index.html
https://pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/o-que-sao-engine-de-games-ou-motor-de-jogo/index.html
https://docs.unity3d.com/6000.0/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/6000.0/Documentation/Manual/system-requirements.html
https://arxiv.org/pdf/2207.06473

Apêndices

64

APÊNDICE A – Apêndice 1 - Protótipos

Este apêndice apresenta os protótipos do jogo feitos no figma. Ele complementa
as informações discutidas no trabalho, fornecendo detalhes adicionais sobre a etapa de
idealização do produto final.

Figura 22 Protótipo menu inicial

Figura 22 – Menu inicial

Fonte: Elaboração própria

Figura 23 Protótipo Seleção dos jogadores - Sala do jogo

Figura 23 – Sala de iniciação

Fonte: Elaboração própria

Figura 24 Protótipo Cena do Jogo

APÊNDICE A. Apêndice 1 - Protótipos 65

Figura 24 – Tela do jogo

Fonte: Elaboração própria

Figura 25 Protótipo Fim do Jogo

Figura 25 – Fim do jogo - tela de vitória

Fonte: Elaboração própria

sectionMenu inicial

66

APÊNDICE B – Apêndice 2 - Imagem dos
poderes com ìcones

Durante a prototipação a idealização dos poderes foi feita de forma que tente
representar bem seus feitos. A Figura 26 tem o protótipo dos poderes e suas habilidades.

Figura 26 – Ícones dos poderes

Fonte: Elaboração própria

67

APÊNDICE C – Apêndice 3 - Tarefas do
Trello

Figura 27, quadro do trello que foi utilizado para guiar as tarefas ao longo das
semanas.

Figura 27 – Lista de tarefas

Fonte: Elaboração própria

Anexos

69

ANEXO A – Primeiro Anexo - link do
repositório

O código-fonte do jogo desenvolvido neste trabalho está disponível no seguinte
endereço:

<https://github.com/yukioz/TCC-1_Tron-Game>

https://github.com/yukioz/TCC-1_Tron-Game

70

ANEXO B – Segundo Anexo - link do
protótipo

A visualização do protótipo está disponível no seguinte endereço:

<https://www.figma.com/design/AFDOFtHaKFXwTHDVJa9CMl/Prot%C3%B3tipo---Tron-game?
node-id=0-1&t=wq8JGf6yV9ygoW40-1>

https://www.figma.com/design/AFDOFtHaKFXwTHDVJa9CMl/Prot%C3%B3tipo---Tron-game?node-id=0-1&t=wq8JGf6yV9ygoW40-1
https://www.figma.com/design/AFDOFtHaKFXwTHDVJa9CMl/Prot%C3%B3tipo---Tron-game?node-id=0-1&t=wq8JGf6yV9ygoW40-1

71

ANEXO C – Terceiro Anexo - Respostas
Formulário experiência do jogo

O arquivo com as respostas coletadas está disponível para consulta no link:

<https://docs.google.com/spreadsheets/d/1tXdx6wGHl2u7x3QuYwRbvPLd2llJUAMm4AjZpPHemCQ/
edit?resourcekey=&gid=1051398419#gid=1051398419>

https://docs.google.com/spreadsheets/d/1tXdx6wGHl2u7x3QuYwRbvPLd2llJUAMm4AjZpPHemCQ/edit?resourcekey=&gid=1051398419#gid=1051398419
https://docs.google.com/spreadsheets/d/1tXdx6wGHl2u7x3QuYwRbvPLd2llJUAMm4AjZpPHemCQ/edit?resourcekey=&gid=1051398419#gid=1051398419

	Folha de rosto
	Folha de aprovação
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivo Geral
	Objetivos Específicos
	 Estrutura do Trabalho

	Metodologia Científica
	Scrum
	MDA (Mecânica, Dinâmica e Estética)
	Estratégias de Modelagem
	Modelo de Caso de Uso

	Ferramentas utilizadas
	Aseprite
	Godot e GDScript
	Trello
	GitHub

	Referencial Teórico
	História e Evolução dos Jogos Digitais
	Primeiros Jogos e o Surgimento da Indústria
	Jogos nos Dias Atuais e Tendências

	Desenvolvimento de Jogos
	Engenharia de Software Aplicada a Jogos
	Escolha da Engine para o Jogo
	Comparação entre Game Engines (Godot vs Unity)
	Análise e critérios para escolha da engine
	Conhecendo a Engine Godot
	Nodes
	Scenes

	Especificação do jogo
	Narrativa
	Objetivo do Jogo
	Estrutura da Fase
	Poderes e Habilidades
	Mecânicas e Jogabilidade
	Gamificação e Análise Crítica

	Resultados Obtidos
	Pesquisa e definição do tema
	Desenvolvimento do jogo
	Preparação do ambiente e planejamento do desenvolvimento
	Organização de arquivos e estrutura de cenas
	Interface e usabilidade
	Implementação das mecânicas do jogo
	Fluxo de telas e linha de desenvolvimento
	Principais desafios e soluções
	Testes de Funcionalidade e Desempenho

	Conclusões Gerais
	Lições aprendidas e recomendações
	Melhorias futuras

	Referências
	Apêndices
	Apêndice 1 - Protótipos
	Apêndice 2 - Imagem dos poderes com ìcones
	Apêndice 3 - Tarefas do Trello

	Anexos
	Primeiro Anexo - link do repositório
	Segundo Anexo - link do protótipo
	Terceiro Anexo - Respostas Formulário experiência do jogo

