—

Universidade de Brasilia — UnB

Faculdade de Ciéncias e Tecnologias em Engenharia - FCTE

Engenharia de Software

Desenvolvimento de Jogos Digitais na Pratica:
Um Caso Aplicado ao estilo Tron

Autor: Victor Yukio Cavalcanti Miki
Orientador: Prof. Dr. Ricardo Matos Chaim

Brasilia, DF
2025

Victor Yukio Cavalcanti Miki

Desenvolvimento de Jogos Digitais na Pratica: Um Caso

Aplicado ao estilo Tron

Monografia submetida ao curso de graduagao
em Engenharia de Software da Universidade
de Brasilia, como requisito parcial para ob-
tencao do Titulo de Bacharel em Engenharia
de Software.

Universidade de Brasilia — UnB

Faculdade de Ciéncias e Tecnologias em Engenharia - FCTE

Orientador: Prof. Dr. Ricardo Matos Chaim

Brasilia, DF
2025

Victor Yukio Cavalcanti Miki
Desenvolvimento de Jogos Digitais na Pratica: Um Caso Aplicado ao
estilo Tron/ Victor Yukio Cavalcanti Miki. — Brasilia, DF, 2025.
70 p. : il. (algumas color.) ; 30 cm.
Orientador: Prof. Dr. Ricardo Matos Chaim
Trabalho de Conclusao de Curso (TCC) — Universidade de Brasilia - UnB
Faculdade de Ciéncias e Tecnologias em Engenharia - FCTE , 2025.
1. Gamificagdo. 2. Game development. 3. Estudo de caso. 4. Engenharia
de software. I. Prof. Dr. Ricardo Matos Chaim. II. Universidade de
Brasilia. I1I. Faculdade UnB Gama. IV. Desenvolvimento de Jogos
Digitais na Préatica: Um Caso Aplicado ao estilo Tron

CDU 005.1:794

Victor Yukio Cavalcanti Miki

Desenvolvimento de Jogos Digitais na Pratica: Um Caso
Aplicado ao estilo Tron

Monografia submetida ao curso de graduagao
em Engenharia de Software da Universidade
de Brasilia, como requisito parcial para ob-
tencao do Titulo de Bacharel em Engenharia
de Software.

Trabalho aprovado. Brasilia, DF, 28 de julho de 2025:

Prof. Dr. Ricardo Matos Chaim
Orientador

Profa. Dra. Milene Serrano
Convidado 1

Profa. Dra. Carla Denise Castanho
Convidado 2

Brasilia, DF
2025

Agradecimentos

A jornada académica é repleta de desafios, e chegar até aqui nao teria sido possivel
sem o apoio e a presenca de pessoas especiais. A minha familia, por estar sempre por
perto, oferecendo suporte incondicional nos momentos de dificuldade e sendo a base que
me manteve firme ao longo desse percurso. Seu apoio foi essencial para que eu pudesse
seguir em frente. Aos meus amigos, que compartilharam comigo os momentos dificeis
e as conquistas ao longo da minha vida académica. A companhia e a cumplicidade de
vocés tornaram essa caminhada mais leve e significativa. Ao meu orientador, que aceitou
me guiar neste projeto e abracou este trabalho com entusiasmo, mesmo sendo um tema
novo e pouco explorado. Sua orientagao, paciéncia e dedicacao foram fundamentais para
a construcao deste TCC. A todos que, de alguma forma, contribuiram para que este
momento se tornasse realidade, meu mais sincero agradecimento. Esta conquista nao é
apenas minha, mas de todos que estiveram ao meu lado, incentivando-me a continuar.

Que este seja apenas o comeco de muitas realizagoes!

“Games sao a arte de criar experiéncias interativas que tocam o jogador.”

— Hideo Kojima

Resumo

O desenvolvimento de jogos eletronicos é uma area multidisciplinar que exige a integra-
¢ao de diversas praticas e conhecimentos, como design, musica, psicologia, programacao
e gestao de projetos. Este trabalho tem como objetivo o desenvolvimento de um jogo di-
gital estilo Tron. O processo de desenvolvimento foi estruturado utilizando metodologias
como Scrum, para organizar as fases do projeto e gerenciar o tempo e as entregas, MDA
(Mechanics-Dynamics-Aesthetics) para guiar o design, alinhando mecénicas, dindmicas
e estética com a experiéncia desejada, além de Prototipagem Rapida e Design Iterativo
para testar e ajustar o jogo em desenvolvimento. O trabalho aplica conhecimentos de
engenharia de software, incluindo Metodologias Ageis e estratégias de modelagem, com o
intuito de oferecer uma abordagem pratica e organizada para o desenvolvimento de jogos

digitais.

Palavras-chave: Jogo digital. Game Design. Scrum. MDA. Tron.

Abstract

This work focuses on the development of a 2D digital game in the Tron genre, aiming to
deliver a playable prototype. The development process is organized using methodologies
such as Scrum for project management, ensuring proper scheduling and delivery track-
ing. The Mechanics-Dynamics-Aesthetics (MDA) framework will guide the game design,
ensuring a cohesive experience by aligning gameplay mechanics, player interactions, and
aesthetics. Additionally, Rapid Prototyping and Iterative Design will be employed to test
and refine the game prototype throughout development. This project applies software
engineering principles, including agile methodologies and modeling strategies, providing
a structured approach to digital game development while offering practical insights into

the design and implementation processes.

Key-words: Digital game, Development, Scrum, MDA, Engines, Tron.

Lista de ilustracoes

Figura 1 — Componentes de um jogo modelo MDA 20
Figura 2 — Diagrama casosdeuso o 25
Figura 3 — software asepriteo 26
Figura 4 — software Godot o 27
Figura 5 — Game Loop, Sprite e Music 34
Figura 6 — Tile Set, Tile Map e Resource Management 35
Figura 7 — Jogo Achtung Die Kurve 36
Figura 8 — Diagrama de pacotes de arquivos 44
Figura 9 — Conexao de nds com scripts no editor Godot. 45
Figura 10 — cédigo: round_start Lo 47
Figura 11 — gamescene: _physics_ process 47
Figura 12 — player: _physics_ process. 48
Figura 13 — gamescene: _on_ player died, 48
Figura 14 — player: _on_area entered 49
Figura 15 — BPMN: fluxo légico 50
Figura 16 — Tela menu inicial. o oo 52
Figura 17 — Tela do Lobby do jogo. 52
Figura 18 — Tela do jogo com indicadores de direcao antes de comecar a rodada. . . 53
Figura 19 — Tela do jogo em pause. oo 53
Figura 20 — Tela do jogo encerrado. L 54
Figura 21 — Quadro - Polimento e Ajustes 56
Figura 22 — Menu inicial 63
Figura 23 — Sala de iniciacao 63
Figura 24 — Telado jogo 64
Figura 25 — Fim do jogo - tela de vitoria 64
Figura 26 — fcones dos poderes, 65

Figura 27 — Lista de tarefas oo 66

Tabela 1
Tabela 2
Tabela 3
Tabela 4
Tabela 5
Tabela 6
Tabela 7
Tabela 8

Lista de tabelas

Requisitos funcionais do jogo 18
Requisitos nao funcionais L. 18
Cronograma de desenvolvimento 19
MDA: Mecanicas do jogo 21
MDA: Estética e Dinamicas 21
Andlise comparativa geral entre engines 31
Comparativo técnico baseado em requisitos 32

Tabela de solucao de implementacao das funcionalidades 51

ABNT
autoload

CamelCase

CanvasLayer

containers

Dr.

FCTE

Lista de abreviaturas e siglas

Associacao Brasileira de Normas Técnicas
Script carregado globalmente em tempo de execugao pela Godot.

Padrao de nomenclatura em que cada palavra inicia com letra maits-

cula.
N6 da Godot usado para interface sobreposta a cena principal.

Nés do tipo Control utilizados para organizar automaticamente a in-
terface grafica com base em regras de alinhamento, preenchimento e

hierarquia.
Doutor

Faculdade de Ciéncia e Tecnologia em Engenharia

GameManager Script responsavel por gerenciar transi¢goes de cenas e resolver in-

GameState

teracoes durante o jogo.

Script global (autoload) responsavel por armazenar e gerenciar dados

persistentes do jogo, como pontuagoes.

HBoxContainer Tipo de container da Godot que organiza elementos filhos horizon-

HUD

keybinds

lobby

low-code

talmente.

Sigla para Heads-Up Display; elementos graficos da interface que exi-

bem informagoes durante o jogo, como pontuagao, tempo e status.

Associagoes entre acgoes do jogo e teclas especificas do teclado, configu-

raveis pelo jogador.

Tela ou ambiente onde os jogadores realizam a selecao de personagens

e configuracoes antes do inicio da partida.

Abordagem de desenvolvimento que permite criar funcionalidades com

pouco ou nenhum codigo, geralmente por meio de interfaces visuais.

MarginContainer =~ Container que aplica margens internas aos seus elementos filhos,

MDA

util para criar espagamento interno uniforme.

Mechanics, Dynamics, Aesthetics (Mecénicas, Dindmicas e Estética).

Node2D Tipo de n6 base para objetos 2D na Godot Engine.
p. Pagina

physics_process Funcao de script da Godot chamada em intervalos fixos, utili-

zada para légica relacionada a fisica e movimentacao continua.
S.d Sem data

snake case Padrao de nomenclatura com palavras mintdsculas separadas por su-

blinhado.
TCC Trabalho de Conclusao de Curso.
trail Rastro visual deixado pelos jogadores durante a movimentagao, geral-

mente utilizado como elemento de colisdo e estratégia no gameplay.

VBoxContainer Tipo de container da Godot que organiza elementos filhos verti-

calmente.

Sumario

1 INTRODUCAO ittt e e e et e et e et e 14
Objetivo Geral 14
Objetivos Especificos 15
Estrutura do Trabalho 15
2 METODOLOGIA CIENTIFICA o o e e e e et e e 17
2.1 Scrum 17
2.2 MDA (Mecanica, Dinamica e Estética) 19
221 Estratégias de Modelagem oo 22
22.1.1 Modelo de Casode Uso L 23
3 FERRAMENTAS UTILIZADAS i 26
3.1 Aseprite L 26
3.2 Godot e GDScript 26
3.3 Trello o 27
3.4 GitHub 27
4 REFERENCIAL TEORICO ittt it e it e 28
4.1 Histéria e Evolucao dos Jogos Digitais 28
411 Primeiros Jogos e o Surgimento da Inddstria 28
4.1.2 Jogos nos Dias Atuais e Tendéncias 28
4.2 Desenvolvimento de Jogos, 29
421 Engenharia de Software Aplicada a Jogos 29
4272 Escolha da Engine paraoJogo 30
4221 Comparacdo entre Game Engines (Godot vs Unity) 31
4222 Andlise e critérios para escolha daengineo 32
4223 Conhecendo a Engine Godoto 33
42231 Nodes Lo e e e e e 34
42232 Scenes . . . L L L e e e 35
5 ESPECIFICACAO DO JOGO v it e e et e it e 36
5.1 Narrativa. 36
5.2 Objetivodo Jogo 37
53 Estruturada Fase.o 37
5.4 Poderes e Habilidades 37
5.5 Mecanicas e Jogabilidade 38

5.6

6.1

6.2

6.2.1
6.2.2
6.2.3
6.2.4
6.2.5
6.2.6
6.2.7

7.1
7.2

Gamificacao e Analise Critica 38
RESULTADOS OBTIDOS« . ittt it e 41
Pesquisa e definicakodotema 41
Desenvolvimento do jogo 42
Preparacdo do ambiente e planejamento do desenvolvimento 42
Organizacdo de arquivos e estruturade cenas 43
Interface e usabilidade 44
Implementacdo das mecanicasdo jogo 46
Fluxo de telas e linha de desenvolvimento 51
Principais desafios e solugdes oL 53
Testes de Funcionalidade e Desempenho 55
CONCLUSOES GERAIS oo e 57
Licoes aprendidas e recomendacées 58
Melhorias futuras Lo 59
REFERENCIAS et 60
APENDICES 62
APENDICE A - APENDICE 1 - PROTOTIPOS 63

APENDICE B - APENDICE 2 - IMAGEM DOS PODERES COM

TCONES. o o e e e e e e i i 65
APENDICE C - APENDICE 3 - TAREFAS DO TRELLO 66
ANEXOS 67
ANEXO A - PRIMEIRO ANEXO - LINK DO REPOSITORIO . .. 68
ANEXO B - SEGUNDO ANEXO - LINK DO PROTOTIPO 69

ANEXO C - TERCEIRO ANEXO - RESPOSTAS FORMULARIO
EXPERIENCIADO JOGO 70

14

1 Introducao

Para compreender os objetivos e as implicac¢oes deste projeto, é fundamental enten-
der o que caracteriza um jogo. Um jogo pode ser definido como uma atividade estruturada,
guiada por regras e objetivos, que envolve desafios e, muitas vezes, interacao social. Se-
gundo Johan Huizinga (2000), em sua obra Homo Ludens, o jogo é uma manifestagdo
cultural que transcende o mero entretenimento, sendo parte essencial do desenvolvimento
humano (HUIZINGA, 2000). Jogos tém a capacidade de estimular criatividade, habilida-
des de resolugao de problemas e o pensamento estratégico, promovendo uma experiéncia

ludica que envolve engajamento emocional e intelectual.

Ao incorporar tecnologia computacional em um jogo, surge o conceito de jogo
eletronico, uma midia interativa que combina elementos de narrativa, graficos, audio e
jogabilidade. Os jogos eletronicos possuem diversas categorias, e uma delas é representada
pelos jogos Tron. Esses jogos tém origem no filme “Tron: Uma Odisseia Eletronica”, da
Disney, lancado em 1982, que foi pioneiro em misturar computacao grafica avangada
com live-action (LAWRENCE, 2002). A franquia é ambientada em um universo digital
chamado "Grade'(ou Grid), onde os personagens interagem com programas e sistemas
como se fossem pessoas. Um dos principais elementos desse estilo sao os “Light Cycles”,
corridas em que os jogadores deixam rastros luminosos que funcionam como barreiras

mortais. O objetivo é "trancar'os oponentes em um espago limitado.

Considerando os conceitos e os aspectos citados, junto com os conhecimentos ad-
quiridos no curso de Engenharia de Software, a proposta deste trabalho ¢ desenvolver
o software de um jogo digital utilizando elementos dos Light Cycles do estilo de jogo
Tron. Além disso, busca-se apresentar a metodologia utilizada no desenvolvimento do

jogo digital, com a finalidade de servir como objeto de estudo e aprendizagem.

Objetivo Geral

Desenvolver um jogo digital inspirado nos Light Cycles do universo Tron, A ex-
periéncia servira como um estudo de caso para compreender o ciclo de desenvolvimento,
aplicando Metodologias da engenharia de software e fornecendo um guia para futuros

desenvolvedores.

Capitulo 1. Introdugdo 15

Objetivos Especificos

e Pesquisar e analisar as caracteristicas dos jogos Tron e suas mecanicas principais,

com foco nos Light Cycles.

e Implementar o jogo digital empregando a Engine Godot, explorando recursos de

narrativa, graficos, audio e jogabilidade.

e Adotar uma metodologia de desenvolvimento baseada em Scrum e MDA (Mecéanica,

Dindmica e Estética), documentando cada etapa do processo.

e Integrar os conceitos de Engenharia de Software, como levantamento de requisitos,

modelagem e testes, ao ciclo de desenvolvimento do jogo.

e Realizar testes simples de caixa-preta e exploragao com foco na identificacao e cor-

recao de erros, garantindo o funcionamento béasico e a jogabilidade do sistema.

e Apresentar o jogo e a metodologia aplicada como uma ferramenta de estudo para

auxiliar iniciantes no desenvolvimento de jogos digitais.

Estrutura do Trabalho

Este trabalho esta organizado em oito capitulos, cada um dividido em se¢oes para
melhor estruturacao e clareza. A divisao seguiu as diretrizes fornecidas pelos professores da
FCTE — Faculdade de Ciéncias e Tecnologias em Engenharia da Universidade de Brasilia,
conforme o Guia para a Elaboracao de Trabalhos de Conclusao de Curso em Engenharia
de Software, elaborado pelo Prof. Dr. George Marsicano Corréa, além do template LaTeX
fornecido pelo Prof. Dr. Edson Junior e das orientagoes do Prof. Dr. Ricardo Matos Chaim,

meu orientador.

O primeiro capitulo apresenta a introducao, oferecendo uma visao geral do tra-
balho, contextualizando a ideia principal do projeto e detalhando seus objetivos gerais e
especificos. Além disso, descreve a estrutura do documento, facilitando a compreensao do

leitor.

O segundo capitulo aborda a fundamentacgao tedrica, reunindo os principais con-
ceitos e areas de conhecimento essenciais tanto para o desenvolvimento de software quanto
para a criacao de jogos. Esses fundamentos foram aplicados ao longo do projeto para ga-
rantir um melhor embasamento e compreensao do tema. Além disso, o capitulo apresenta

as ferramentas utilizadas no desenvolvimento do jogo, destacando seus papéis no processo.

O terceiro capitulo apresenta as ferramentas utilizadas no trabalho e seus respec-

tivos usos.

Capitulo 1. Introdugdo 16

O quarto capitulo apresenta o processo de execuc¢ao da pesquisa, detalhando as
fases e atividades realizadas. Sao descritas as etapas desde a revisao da literatura até a
aplicagao e avaliacao das técnicas utilizadas, destacando os dados coletados, as metodo-

logias empregadas e a andlise dos resultados.

O quinto capitulo apresenta as especificagoes do jogo, detalhando o processo cria-
tivo e as decisdes tomadas durante o desenvolvimento. Além disso, conceitos e ideias sao

explorados com base em pesquisas, analises de materiais e etapas do processo criativo.

O sexto capitulo apresenta os resultados obtidos ao longo do desenvolvimento do
jogo. Nele, sao discutidas as principais licdes aprendidas durante o processo, abordando
desafios enfrentados, solugoes adotadas e insights adquiridos. Além disso, o capitulo in-
clui demonstragoes do jogo, destacando suas principais funcionalidades e o impacto das

decisbes tomadas ao longo do projeto.

O sétimo capitulo apresenta a conclusao do projeto, reunindo uma reflexdao sobre
todo o processo de desenvolvimento. Nele, é exposta minha opinido geral, uma autoava-
liacao do trabalho realizado e consideracgoes sobre os desafios enfrentados e as solugoes
adotadas. Além disso, discuto as contribui¢des do projeto, possiveis melhorias e sugestoes

para trabalhos futuros.

Por fim, os ultimos capitulos apresentam os apéndices e o referencial bibliografico

utilizado na elaboragao do trabalho.

17

2 Metodologia Cientifica

Este capitulo apresenta a metodologia utilizada para o desenvolvimento deste pro-
jeto, fundamentando os processos adotados na criagdo do jogo eletronico inspirado em
Tron: Light Cycles. A proposta do trabalho é orientar o desenvolvimento com base em
abordagens bem estabelecidas, como o Scrum e o MDA (Mecanica, Dindmica e Estética),

garantindo que cada etapa seja sistematizada e documentada de forma clara.

Além disso, sao detalhadas as estratégias de modelagem aplicadas ao projeto,
bem como as ferramentas utilizadas, como Godot, GDScript e Aseprite, que permitiram
o desenvolvimento e a implementacao do jogo. Essas escolhas tém como objetivo nao
apenas a entrega de um produto funcional, mas também a criacao de uma base didatica

para futuros desenvolvedores.

2.1 Scrum

O Scrum é uma metodologia agil que foi escolhida para gerenciar o desenvol-
vimento do projeto devido a sua capacidade de promover colaboracgao, flexibilidade e
iteragoes rapidas. Essa abordagem divide o projeto em ciclos curtos, chamados sprints,
que tém duracao definida e objetivos claros. Ao final de cada sprint, é possivel revisar os
resultados alcangados e ajustar o planejamento para os préximos passos (SCHWABER;
SUTHERLAND, 2013).

No contexto deste projeto, o Scrum foi adaptado para permitir o desenvolvimento

iterativo do jogo. Cada sprint envolveu as seguintes etapas:

e Planejamento: Definicao das tarefas prioritarias, como implementacao de mecani-

cas, design de niveis e testes.

e Execucao: Desenvolvimento das funcionalidades planejadas, utilizando as ferra-

mentas escolhidas.

e Revisao: Testes e validacao das funcionalidades implementadas, com foco na expe-

riéncia do usudario.

Mesmo em um projeto individual, o uso do Scrum promove organizacao das etapas
e entrega continua de resultados tangiveis. Para montar o cronograma, foi considerado o

periodo de 2 meses e meio para elaboracao do trabalho, com sprints de duas semanas.

Nos Quadros 1 e 2 temos a identificacao dos requisitos funcionais e nao funcionais,

respectivamente.

Capitulo 2.

Metodologia Cientifica

Tabela 1 — Requisitos funcionais do jogo

ID | Requisito Descrigao Prioridade
RFO01 | Criar e gerenciar | Permitir que até 6 jogadores ingressem e Alta
salas de jogo joguem juntos em uma mesma sala.
RF02 | Controlar os | O jogador deve conseguir movimentar seu Alta
personagens personagem para esquerda ou direita.
RFO03 | Gerar e exibir o | Cada jogador deixa um rastro letal no Alta
rastro mapa, exceto nos pontos de brechas ale-
atorias.
RF04 | Aplicar regrasde | O jogo deve calcular a pontuacdo con- Média
pontuacao forme a equacao definida e exibir o placar.
RFO05 | Implementar po- | Os poderes devem surgir aleatoriamente Alta
deres especiais no mapa e ser ativados pelo jogador que
os coletar.
RF06 | Detectar colisoes | O jogo deve encerrar a rodada quando um Alta
jogador colidir com um rastro ou com a
parede.
RFO07 | Reposicionar os | Apds cada rodada, os jogadores devem ser Média
jogadores reposicionados nas posic¢oes iniciais.
RFO08 | Exibir feedback | O jogo deve apresentar efeitos visuais e so- Média
visual e sonoro noros ao ativar poderes, colidir ou vencer
a partida.
Fonte: Elaboracao proépria.
Tabela 2 — Requisitos nao funcionais
1D Requisito Descrigao Prioridade
RNFO01 | Engine de desenvolvi- | O jogo deve ser desenvolvido na Alta
mento Godot Engine devido a sua leveza
e suporte a 2D.
RNF02 | Suporte multiplata- | O jogo deve ser compativel com Média
forma Windows e Linux.
RNF03 | Desempenho otimi- | O jogo deve rodar a pelo menos Média
zado 60 FPS em hardware modesto.
RNF04 | Interface responsiva O jogo deve apresentar uma inter- Alta
face clara e intuitiva para facilitar
o entendimento das mecanicas.
RNF05 | Codigo modular e ex- | O codigo deve ser estruturado de Alta
pansivel forma a permitir futuras adigoes
e melhorias sem grandes refatora-
coes.
RNFO06 | Conectividade com | O usuario pode conectar um con- Baixa
controle Xbox trole analdgico e o game deve po-
der reconhecer o dispositivo.
RNFO07 | Tratamento de bugs Os bugs do jogo nao devem atra- Alta
palhar a jogabilidade.

Fonte: Elaboracao proépria.

Capitulo 2. Metodologia Cientifica

19

O Quadro 3 possui o cronograma inicial do projeto dividido em seis sprints com

duragao de 2 semanas cada.

Tabela 3 — Cronograma de desenvolvimento

Sprint Duracao Objetivo Requisitos en-
volvidos
Sprint 1 - Planeja- | 2 semanas Configurar ambiente na Go- | RFO01, RF02,
mento e Configuracao dot, estruturar projeto, definir | RNF01, RNF02
assets basicos e movimentagao
inicial.
Sprint 2 - Mecanicas | 2 semanas Implementar colisoes, rastros | RF03, RF05
Bésicas de luz e regras fundamentais
da partida.
Sprint 3 - Implemen- | 2 semanas Criar e integrar poderes espe- | RF06
tagao dos Poderes ciais, garantindo variedade e
equilibrio.
Sprint 4 - Interface e | 2 semanas Criar menus, HUD, sistema de | RNF04, RF04
Experiéncia do Usua- pontuacao e feedback visual
rio para melhor UX.
Sprint 5 - Testes e | 2 semanas Testar fluxo do jogo local- | RFO8, RNF03,
Ajustes de Jogabili- mente, ajustar balanceamento | RNF05, RFO7
dade e melhorar usabilidade.
Sprint 6 - Refinamento | 1 semana Revisao final, correcao de bugs | RNF07, RNF06
e correcao de bugs e otimizagoes.

Fonte: Elaboragao proépria.

A metodologia Scrum foi escolhida por ja fazer parte do repertério de praticas
com as quais havia familiaridade. Ter experiéncia prévia facilita a aplicacdo e torna mais
simples adaptar a técnica ao contexto de um projeto individual. Como nao se trata de
um trabalho em equipe, nem todos os ritos tradicionais foram seguidos. Optou-se por
aplicar apenas o que realmente faria diferenca na organizacao e ritmo de trabalho. No

desenvolvimento espera-se observar como essas técnicas foram utilizadas.

2.2 MDA (Mecénica, Dinamica e Estética)

O modelo MDA foi adotado como base para estruturar os elementos do jogo. Este
modelo é amplamente utilizado no desenvolvimento de jogos digitais por oferecer uma
perspectiva clara sobre como cada componente de um jogo contribui para a experiéncia
do jogador. Assim como o autor Johan Huizinga, o estudo feito por Hunicke em “MDA:
A Formal Approach to Game Design and Game Research” formaliza o consumo dos jogos
em trés componentes distintos e estabelece uma relagao de contraparte para o desenvol-
vimento de jogos (HUNICKE; LEBLANC; ZUBEK, 2004).

Capitulo 2. Metodologia Cientifica 20

A Figura 1 ilustra essa divisao, mostrando como a mecénica (regras e sistemas)
influencia a dindmica (comportamento emergente durante o jogo) e, por fim, a estética

(emogdes e experiéncias divertidas geradas no jogador).

Figura 1 — Componentes de um jogo modelo MDA

"Diversao"

A 4

Sistema

v

Regras

...e estabelecer sua contraparte de design

Mecanicas ——» Dinamicas ——» Estética

Adaptado de: HUNICKE, Robin; LEBLANC, Marc; ZUBEK, Robert. MDA: A Formal
Approach to Game Design and Game Research. 2004. p. 2.

Para entender melhor o que é cada camada, fazemos a seguinte descri¢ao:

e Mecanica: Refere-se as regras, interacoes e sistemas que governam o funcionamento
do jogo. No contexto do Light Cycles, inclui aspectos como o controle do veiculo, a

criacao de barreiras luminosas e a detecgao de colisoes.

e Dinamica: Diz respeito as interagoes emergentes resultantes da aplicacao das me-
canicas. Exemplos incluem o comportamento dos jogadores ao tentar “trancar” os

oponentes ou escapar de barreiras.

e Estética: Envolve a experiéncia emocional e sensorial do jogador. Neste projeto,
busca-se criar uma experiéncia visual simples, uma vez que o tempo é curto e o foco

estd no conteudo funcional e didético.

O uso do MDA possibilita uma abordagem holistica no desenvolvimento do jogo,
alinhando os aspectos técnicos & experiéncia pretendida para os jogadores (CARROLL,
2000).

Com base nessas defini¢oes, foram elaboradas as respectivas Tabelas 4 e 5 de

Mecanica, Dindmica e Estética do jogo proposto.

Capitulo 2. Metodologia Cientifica

21

Tabela 4 — MDA: Mecanicas do jogo
Mecanicas Descricao Observacao
Movimentacao O jogador pode girar para a es- | A mecanica exige precisao e es-
querda ou para a direita, sendo | tratégia para evitar colisoes.
a curva maior conforme a velo-
cidade.
Rastros Cada jogador deixa um rastro | Brechas aleatorias surgem oca-

letal ao se movimentar, criando
barreiras no cenario.

sionalmente nos rastros, per-
mitindo a passagem.

Poderes Especiais

Jogadores podem coletar pode-

res aleatorios que afetam a jo-
gabilidade.

Alguns poderes afetam apenas
o jogador, enquanto outros im-
pactam todos.

Colisao e eliminacao

O jogador que colidir com uma
parede ou rastro é eliminado

da rodada.

A rodada continua até restar
apenas um jogador vivo.

Sistema de pontos

A cada rodada, jogadores rece-
bem pontos conforme sua colo-
cagao.

O jogo termina quando um jo-
gador atinge a pontuacao ne-
cessaria.

Fonte: Elaboracao prépria.

Tabela 5 — MDA: Estética e Dindmicas

Estética Dinamicas

Competicao Os jogadores disputam a sobrevivéncia,
tentando eliminar os oponentes.

Desafio A necessidade de reflexos rapidos e
pensamento estratégico cria uma
experiéncia intensa.

Estratégia O uso inteligente dos rastros e poderes
pode definir a vitéria.

Satisfacao Jogadas bem executadas e vitorias sao

gratificantes para o jogador.

Caos e imprevisibilidade

Os poderes aleatorios e as brechas nos
rastros tornam cada rodada tnica.

Surpresa

Momentos inesperados ocorrem
constantemente, mantendo o jogo
dinamico.

Pressao crescente

tensao.

Conforme a partida avanga, o espago no
mapa fica mais restrito, aumentando a

Imersao

O ritmo acelerado e a disputa constante
mantém os jogadores envolvidos.

Fonte: Elaboracao proépria.

Capitulo 2. Metodologia Cientifica 22

2.2.1 Estratégias de Modelagem

Para garantir a consisténcia e qualidade do projeto, foram empregadas estratégias
de modelagem baseadas em principios da Engenharia de Software. As etapas adotadas
no processo de desenvolvimento do jogo visam estruturar o fluxo de trabalho de maneira
eficiente e iterativa, permitindo ndo apenas a construgao do jogo, mas também a criacao
de um contetido funcional e didatico para futuras implementagoes e para o aprendizado
de novos desenvolvedores (SOMMERVILLE, 2011).

“[...]Os modelos sao usados durante o processo de engenharia de
requisitos para ajudar a extrair os requisitos do sistema; durante
o processo de projeto, sao usados para descrever o sistema para
os engenheiros que o implementam; e, apos isso, sao usados para

documentar a estrutura e a operacao do sistema.”

(SOMMERVILLE, 2011), p. 82.

As seguintes estratégias foram usadas:

e Levantamento de Requisitos: A primeira etapa foi a identificagao das funciona-
lidades essenciais do jogo. Isso incluiu a defini¢cao dos controles responsivos, garan-
tindo que os jogadores tivessem uma experiéncia fluida e intuitiva, a criacdo de uma
interface grafica simples e acessivel, e o balanceamento das mecanicas do jogo. O
levantamento de requisitos foi fundamental para alinhar as expectativas do produto
com as necessidades dos jogadores, além de facilitar as decisdes durante o processo

de desenvolvimento.

e Modelagem de Dados: Apos o levantamento de requisitos, foi realizada a modela-
gem de dados, que envolveu a estruturagao de informagoes sobre os cenarios do jogo,
personagens, eventos e interagoes. O objetivo foi organizar os dados de forma que
a implementacao das funcionalidades fosse eficiente, sem redundancias e com alto
desempenho. A modelagem de dados também serviu como base para a criacao de
scripts e animacoes dentro da Engine utilizada, o que contribuiu para a integragao

das mecanicas de forma coesa.

e Prototipagem: A prototipagem foi uma etapa relevante para validar as mecanicas
do jogo antes de sua implementacao final. Modelos iniciais das interagoes e funci-
onalidades foram criados, permitindo testar as ideias em um estagio inicial e fazer
ajustes rapidos com base no feedback obtido. A prototipagem nao sé acelerou o pro-
cesso de desenvolvimento, mas também proporcionou uma visao pratica de como as
mecanicas poderiam ser experienciadas pelos jogadores, ajudando na identificagao

de melhorias e possiveis problemas de usabilidade.

Capitulo 2. Metodologia Cientifica 23

A adocao dessas estratégias de modelagem visa proporcionar um processo de de-
senvolvimento mais organizado e focado, com potencial para resultar em um produto
funcional e didéatico, que possa contribuir para a aprendizagem de desenvolvedores inici-

antes.

2.2.1.1 Modelo de Caso de Uso

A modelagem de casos de uso, conforme definido por Sommerville (2011), é uma
técnica essencial na engenharia de software para elicitar e especificar os requisitos funcio-
nais de um sistema. Um caso de uso representa uma interagao entre um ator (um usuério
ou outro sistema) e o sistema em si, descrevendo uma sequéncia de agoes que o ator realiza

para atingir um objetivo especifico.

No contexto do desenvolvimento de jogos, a modelagem de casos de uso oferece uma
maneira clara e concisa de descrever as interacoes dos jogadores com o jogo, auxiliando
no projeto e implementacgao das funcionalidades. A abordagem escolhida para o jogo da
cobrinha 2D buscou representar as agoes dos jogadores e as mecanicas do jogo de forma
abrangente, utilizando um diagrama de casos de uso que incorpora elementos como atores,

casos de uso, relacionamentos (include e extend) e anotagoes.

Atores Os atores, Jogador 1 e Jogador 2, representam os jogadores humanos que
interagem com o jogo. Eles sao os iniciadores das ac¢oes e se beneficiam das funcionalidades

oferecidas pelo jogo.

Casos de Uso Os casos de uso descrevem as agoes que os jogadores podem realizar
ou que ocorrem como parte do jogo. A listas e a Figura 2 abaixo ilustram as agoes dos

jogadores e do sistema dentro do jogo.

e Jogar: Abrange toda a experiéncia do jogador no jogo, desde o inicio até o fim.

e Mover Animal: Representa a acao do jogador de controlar a dire¢ao da cobrinha

(esquerda ou direita).

e Gerar rastro: depois que o jogador se deslocar de sua posicao um rastro ¢ gerado

no lugar como um novo obstaculo a ser evitado.

e Coletar Poder: Descreve a mecanica do jogo em que a cobrinha coleta automati-

camente um poder ao passar por cima do item.

e Colidir: Representa o evento em que a cobrinha colide com a parede ou com o

proprio corpo.

e Morte: Descreve o resultado da colisao, em que a cobrinha perde uma vida ou o

jogo termina.

Capitulo 2. Metodologia Cientifica 24

e Inicia a Rodada: Descreve o inicio da rodada, no qual os jogadores

e Fim da rodada: Representa o momento em que uma rodada termina, seja por um

jogador perder ou por outros critérios.

e Distribuicao de pontos e verificagdo de pontos: Acao de receber pontos ao

final de uma rodada, de acordo com o desempenho e verifica se houve um ganhador.

e Fim do jogo: Ocorre quando um jogador atinge o limite de pontos ou quando todas

as rodadas sdo concluidas.

Relacionamentos

Include: O relacionamento include («includey) é utilizado para indicar que um
caso de uso é parte integrante de outro. Por exemplo, “Jogo” inclui “Rodada”, “Rodada”

inclui “Fim da Rodada” e “Fim da Rodada” inclui “Ganha Pontos”.

Extend: O relacionamento extend («extend») é utilizado para representar vari-
agoes ou extensoes de um caso de uso. Por exemplo, “Mover” pode ser estendido por

“Colidir” e “Mudar Dire¢ao” pode ser estendido por “Coletar Poder”.

Capitulo 2. Metodologia Cientifica

25

Jogador 1

Figura 2 — Diagrama casos de uso

Game
Gerar rastro
Mover animal
=zIncludes=>
E— Mover animal <
Altera
=<Extends=>
‘««eﬂends: Coletar poder
==exiends=>
GameManagar

Inicia a rodada

=«bExtends=>

Fim da rodada <zIncludes=

1019,

Disfribuicao de
ponios e verificacio
de pontos

Finaliza a partida e

=Extends=
declara vencedor

Fonte: Elaboracao prépria.

Outros jogadores

26

3 Ferramentas utilizadas

O desenvolvimento do jogo contou com o apoio de ferramentas especificas, selecio-
nadas pela sua capacidade de atender as demandas do projeto. As principais ferramentas

utilizadas foram:

3.1 Aseprite

O Aseprite foi utilizado para criar os elementos gréaficos do jogo, como sprites
de personagens, veiculos e efeitos visuais. Essa ferramenta é amplamente reconhecida no
desenvolvimento de jogos 2D devido a sua interface intuitiva e recursos especializados em
pizel art (ASEPRITE, 2024). A Figura 3 ilustra um exemplo pratico da tentativa de criar

um design para cada animal.

Figura 3 — software aseprite

Fonte: Elaboracao prépria.

3.2 Godot e GDScript

A Engine Godot foi escolhida como plataforma principal para o desenvolvimento do
jogo, devido a sua versatilidade e comunidade ativa. O uso do GDScript, uma linguagem
integrada a Engine, permitiu a implementacao de mecéanicas e sistemas com agilidade. A
Godot oferece recursos nativos para jogos 2D, como sistemas de colisdo e animacoes, que
foram essenciais para o projeto (ENGINE, 2024a). A Figura 4 apresenta a interface godot
com algumas marcagoes dos principais recursos dentro do jogo (Nodes, Cenas, Scripts e

a previsualizagdo 2D).

Capitulo 3. Ferramentas utilizadas 27

Além disso, a Godot fornece suporte para multiplas plataformas, abrangendo os

principais sistemas operacionais e navegadores web.

Figura 4 — software Godot

Fonte: Elaboracgao propria.

3.3 Trello

O Trello foi utilizado para gerenciar as tarefas do projeto, permitindo organizagao
visual e controle do progresso em cada sprint. Essa ferramenta ajudou a manter o fluxo

de trabalho alinhado com os principios do Scrum.

Ao utilizar essas ferramentas em conjunto, foi possivel criar um ambiente de desen-
volvimento eficiente, onde cada etapa do processo contribuiu para o alcance dos objetivos

do projeto.

3.4 GitHub

O GitHub foi utilizado para gerenciar as versoes do projeto e fazer backups na
nuvem. Ele permitiu acompanhar o progresso do trabalho, facilitando o controle das mu-
dancas feitas no c6digo e garantindo que o projeto estivesse sempre seguro e acessivel. O

repositorio com o codigo-fonte esta disponivel no Anexo A.

28

4 Referencial Tedrico

4.1 Histéria e Evolucao dos Jogos Digitais

Neste capitulo, exploraremos a historia dos jogos eletronicos e sua evolugdo ao
longo do tempo, com um foco especifico no Brasil, estabelecendo uma conexao direta com

o tema deste documento.

4.1.1 Primeiros Jogos e o Surgimento da Inddstria

O desenvolvimento dos primeiros jogos eletronicos ocorreu em um cenario muito di-
ferente do atual, quando os proprios criadores precisavam construir seus sistemas do zero,
sem engines ou ferramentas especializadas. Jogos como Tennis for Two (1958) e Spacewar!
(1962) foram experimentos académicos desenvolvidos em computadores de grande porte,
sem qualquer preocupacao comercial. A industria comecgou a se consolidar na década de
1970, com o langamento de Pong (1972) pela Atari, popularizando o conceito de jogos

eletronicos como uma forma viavel de entretenimento (KENT, 2001).

No Brasil, o contato com os jogos eletronicos comecou nos anos 1980, ainda com
forte influéncia externa. Naquela época, a maior parte dos consoles e jogos chegava im-
portada ou por meio de clones nacionais, como o Telejogo da Philco/Ford e os modelos
compativeis com o Atari 2600. A auséncia de uma industria formal robusta e as barreiras
de importacgao levaram a popularizacao de cartuchos pirateados e adaptagoes locais. Nas
décadas seguintes, computadores como o MSX e os primeiros PCs também ajudaram a

criar uma base de jogadores e curiosos por programacao e desenvolvimento de games,
ainda que de forma amadora e restrita. (DINIZ RODRIGO GAVIOLI, 2024)

4.1.2 Jogos nos Dias Atuais e Tendéncias

Atualmente, a industria dos jogos digitais esta mais acessivel, principalmente de-
vido ao surgimento de engines como Unity, Unreal Engine e Godot, que permitem que
estudantes e desenvolvedores independentes criem jogos sem precisar programar tudo do
zero. Esse avanco é particularmente relevante no Brasil, onde o desenvolvimento de jogos
ainda enfrenta desafios, como a falta de investimentos e o alto custo de hardware. Além
disso, o acesso a hardware e computadores para o desenvolvimento de jogos estd bem mais
barato, o que incentiva mais pessoas a explorarem e descobrirem cada vez mais sobre o

jogos eletronicos.

Hoje, o Brasil é o maior mercado de games da América Latina e ocupa a 10* posigao

Capitulo 4. Referencial Teorico 29

mundial em receita, movimentando cerca de US$ 2.6 bilhoes em 2023, com previsao de
alcancar US$ 3,5 bilhoes até 2025. O nimero de estudios saltou de 150, em 2014, para
mais de 1.000 em 2024, empregando mais de 13 mil profissionais. Esse crescimento é
impulsionado por fatores como avancgos tecnoldgicos, a cultura gamer consolidada e o
Marco Legal dos Jogos Eletronicos (Lei 14.852/2024), que estabelece regras claras para
fabricagdo e comercializacdo. Com uma comunidade estimada em mais de 100 milhoes
de jogadores, o pais nao apenas consome, mas também exporta criatividade, atraindo
parcerias internacionais e se firmando como um polo promissor no cendrio global (Avell,
2025).

Um dos fendomenos mais marcantes da atualidade é o crescimento dos jogos indie,
desenvolvidos por pequenos estudios ou até mesmo por individuos. Diferente das grandes
producdes !, que exigem orcamentos milionérios, os jogos independentes apostam em cria-
tividade, mecanicas inovadoras e narrativas tinicas para conquistar o publico. Plataformas
como a Steam facilitaram a distribuicao desses jogos, permitindo que producoes de baixo

orcamento alcancassem grandes sucessos.

Com essa democratizacao das ferramentas e do acesso ao conhecimento, o desenvol-
vimento de jogos digitais se tornou uma oportunidade viavel para iniciantes aprenderem
na pratica. Este trabalho explora esse processo por meio da criacdo de um jogo estilo

Tron, analisando os desafios e aprendizados envolvidos.

4.2 Desenvolvimento de Jogos

Neste capitulo, abordaremos a parte técnica do trabalho, com foco no desenvolvi-
mento de jogos utilizando praticas de engenharia de software. O objetivo é demonstrar
como essas praticas podem contribuir para a criagdo de jogos eletronicos, considerando
que, assim como qualquer outro produto digital, um jogo também ¢é essencialmente com-
posto por software. Também discutiremos, de forma breve, o funcionamento das engines
de jogos, ressaltando que, embora o foco do trabalho nao seja um estudo aprofundado

sobre engines, elas desempenham um papel fundamental no processo de desenvolvimento.

4.2.1 Engenharia de Software Aplicada a Jogos

No desenvolvimento de jogos, a Engenharia de Software desempenha um papel
fundamental para garantir que o processo seja eficiente, escalavel e focado na entrega de

um produto de alta qualidade.

“Engenharia de software é uma disciplina de engenharia cujo foco estd em todos

os aspectos da producao de software, desde os estagios iniciais da especificagdo do

L o termo triple A ou AAA se refere a titulos de jogos com altos orcamentos

Capitulo 4. Referencial Teorico 30

sistema até sua manutengio, quando o sistema ji estd sendo usado.” (SOMMER-
VILLE, 2011)

A aplicacao de praticas de Engenharia de Software no contexto de desenvolvimento
de jogos nao se limita a codificacao, mas envolve também o gerenciamento de projetos,

design e testes.

Conforme Nikhil Malankar discute em seu video, o ciclo de vida de um jogo se-
gue uma estrutura semelhante ao de um software, com etapas de testes e elaboracao de
requisitos, desde a escolha da plataforma até a implementacao final (MALANKAR, 2023).

No projeto em questao, as praticas de engenharia de software foram tuteis para
organizar, planejar e orientar as etapas de desenvolvimento do jogo. Nas etapas iniciais,
mesmo sem iniciar o desenvolvimento, ja pude perceber como a aplicacao de metodologias
como Scrum e MDA pode trazer clareza e eficiéncia para o processo. Ao seguir essas
praticas, o projeto sera conduzido de maneira estruturada, com entregas claras e bem
definidas em cada ciclo. Além disso, a abordagem de modelagem e os testes iterativos
contribuirdo para refinar o jogo conforme ele evolui, minimizando erros e ajustando o

produto para oferecer a melhor experiéncia possivel.

4.2.2 Escolha da Engine para o Jogo

Para desenvolver um jogo, é essencial definir as necessidades técnicas. As engines,
ou motores de jogos, desempenham um papel central nesse processo. Uma engine é um
software que integra um conjunto de ferramentas e recursos projetados para simplificar e
otimizar o desenvolvimento de jogos, abrangendo elementos como graficos, fisica, som e
muito mais. Além de acelerar o processo de produgao, o uso de uma engine garante maior
eficiéncia e qualidade no resultado final (STUDIOS, 2014).

Embora seja possivel criar uma engine propria, essa abordagem geralmente ¢ reco-
mendada apenas em casos especificos, como atender a requisitos altamente personalizados
ou aprofundar o entendimento técnico do desenvolvimento de jogos. No entanto, construir
uma engine do zero é uma tarefa complexa e demorada, exigindo meses de trabalho para
implementar funcionalidades basicas, como renderizagdo grafica e gerenciamento de re-
cursos, antes mesmo de iniciar o desenvolvimento do jogo em si. Por outro lado, engines
amplamente utilizadas, como Unity, Unreal Engine e Godot, ja oferecem essas funciona-
lidades de maneira robusta e otimizada. Além disso, elas contam com suporte técnico,
documentacao abrangente e comunidades ativas, permitindo que o desenvolvedor con-
centre seus esforgos na criagdo e no design do jogo, sem a necessidade de programar
ferramentas fundamentais a partir do zero (ULLMANN et al., 2025).

Para garantir a escolha mais adequada da engine para este projeto, foi realizado

um estudo comparativo entre duas opgoes amplamente reconhecidas: Unity e Godot. Cada

Capitulo 4. Referencial Teorico 31

uma foi avaliada com base em critérios especificos, como:

e Facilidade de aprendizagem e qualidade da documentacao;

Suporte a multiplas plataformas;

e Licenciamento e custos;

Linguagem de programagao utilizada;

e Recursos e ferramentas disponiveis;

Adequacao ao tipo de jogo a ser desenvolvido.

Este estudo forneceu uma base solida para a escolha da engine mais alinhada as

necessidades e objetivos do projeto.

4221 Comparagdo entre Game Engines (Godot vs Unity)

O desenvolvimento de jogos exige a escolha de uma engine que atenda as ne-
cessidades do projeto. Neste comparativo, analisamos Unity 6 e Godot 4 como principais
alternativas, considerando fatores como facilidade de uso, desempenho em jogos 2D, custos
e requisitos técnicos. Como o objetivo deste trabalho é apresentar um guia e desenvolver
um jogo de baixo custo, a escolha deve priorizar acessibilidade e eficiéncia (ENGINE,
2024b) (TECHNOLOGIES, 2024).

As Tabelas 6 e 7 mostram comparativos técnicos das engines relacionados a suas

funcionalidades e desempenho.

Capitulo 4. Referencial Teorico

32

Tabela 6 — Analise comparativa geral entre engines

Critério Unity 6 Godot 4
Facilidade de Uso Interface robusta com | Interface leve e simpli-
muitas funcionalidades, | ficada, curva de apren-

mas complexa para inici-
antes. Utiliza C# como
principal linguagem de
programacao.

dizado menos ingreme.
Oferece GDScript, seme-
lhante ao Python, facili-
tando o desenvolvimento.

Desempenho em Jogos 2D

Suporte a 2D, mas origi-
nalmente projetado para
3D. Recursos sao adapta-
dos do ambiente 3D, po-
dendo resultar em menos
eficiéncia.

Motor 2D do Godot, ape-
sar de funcionar tanto
para 3D como 2D, o mo-
tor 2D ¢é considerado um
aspecto forte da engine.

Custo e Licenciamento

O uso é gratuito, mas
ap6s o lancamento, o
modelo de licenciamento
pode incluir taxas basea-
das no nimero de down-
loads.

Open-source e totalmente
gratuito, sem taxas ou
restricoes comerciais.

Fonte: Autoria propria.

Tabela 7 — Comparativo técnico baseado em requisitos

Requisitos Técnicos

Unity 6

Godot

CPU

X64 com suporte a SSE2
ou ARM64. Exemplo: Intel
Core 2 Duo E8200, AMD
Athlon XE BE-2300.

X86_ 32 com SSE2,
X86_ 64 ou ARMvS.

Exemplo: Intel Core 2 Duo
E8200, Raspberry Pi 4.

GPU DX10, DX11, DX12 ou Vulkan 1.0 ou OpenGL
Vulkan-capaz. Exemplo: 3.3. Exemplo: Intel HD
Intel HD Graphics 5500, Graphics 2500, AMD
AMD Radeon R5. Radeon R5.

RAM Minimo de 8GB, Nativo: 4GB; Web editor:
recomendado 16GB ou 8GB.
mais para projetos
complexos.

Armazenamento Ocupa mais espago em 200MB para execucao;

disco, especialmente com
projetos grandes.

exportagao requer 1.3GB.

Sistema Operacional

Windows 10 21H1+,
macOS 11+ (Big Sur),
Ubuntu 22.04+

Windows 7+, macOS
10.13+, Linux p6s-2016,
Web Editor compativel
com navegadores
modernos.

Fonte: Elaboracao prépria.

Capitulo 4. Referencial Teorico 33

4.2.2.2 Andlise e critérios para escolha da engine

Apoés a andlise comparativa entre as duas Engines, Godot foi escolhida como a
Engine mais adequada para o desenvolvimento deste jogo. A decisao foi fundamentada

em varios critérios técnicos e de projeto, conforme detalhado abaixo.

Facilidade de uso e curva de aprendizagem : A simplicidade da interface do
Godot e a utilizacao do GDScript, que é uma linguagem de programacao semelhante ao
Python, tornam o desenvolvimento mais acessivel, especialmente para quem esta come-
c¢ando ou tem um foco maior na parte logica do jogo. Isso permite uma curva de apren-
dizado mais suave, o que é um ponto crucial dado o prazo do projeto e a necessidade de

uma implementacao eficiente.

Desempenho em Jogos 2D : Embora o Unity ofereca suporte robusto para
jogos 2D, a Godot foi projetada desde o inicio com um motor 2D altamente otimizado.
Isso garante que o desempenho da Engine em jogos bidimensionais seja superior, além de
permitir um maior controle sobre o comportamento do jogo, o que é essencial para um

projeto que visa ser leve e de baixo custo, como o proposto.

Custo e Licenciamento : Godot é open-source e totalmente gratuita, sem custos
adicionais ou limitagoes comerciais, o que representa uma vantagem significativa para o
projeto. Nao ha taxas de licenciamento, e o codigo-fonte da Engine pode ser modificado
conforme as necessidades especificas do desenvolvimento. Esse fator elimina preocupa-
¢oes com custos futuros e garante flexibilidade total, além de facilitar a utilizacao sem

complicagoes de licenciamento.

Requisitos Técnicos : A Godot exige menos recursos de hardware, o que torna
o desenvolvimento mais agil, especialmente em termos de tempo e capacidade de testes.
Com um espago de armazenamento inicial de apenas 200MB e suporte para uma ampla
gama de sistemas operacionais, como Windows, macOS e Linux, a Engine se adequa bem
aos requisitos de recursos do projeto e possibilita um desenvolvimento mais fluido, sem

depender de maquinas muito potentes.

Adequacao ao tipo de jogo : Como o projeto é voltado para a criacao de um
jogo 2D com mecanicas simples de movimento e interacao, a Godot oferece ferramentas
e funcionalidades que atendem perfeitamente as necessidades do jogo. O motor 2D da
Godot é mais direto e flexivel para o tipo de mecanica que estamos desenvolvendo, sem a

necessidade de adaptagdes que seriam necessarias em outras Engines.

Por todas essas razoes, a Godot se mostrou a escolha mais adequada para este
projeto, considerando tanto o orcamento, a complexidade técnica e a necessidade de uma

Engine eficiente para o desenvolvimento de jogos 2D de baixo custo.

Capitulo 4. Referencial Teorico 34

4.2.2.3 Conhecendo a Engine Godot

Como ja foi mencionado anteriormente, desenvolver sua propria Engine de jogos é
uma tarefa desafiadora e envolvente. Porém, para entender como a Engine Godot funciona,

¢ interessante compreender quais as funcionalidades minimas de uma Engine de jogos.

Para desenvolver uma Engine de jogo, é necessario implementar alguns sistemas

essenciais. Esses sistemas sao:

e Inicializacao do Sistema: Basicamente, é abrir uma janela, obter o contexto
grafico (OpenGL/DirectX/Vulkan) e inicializar o dudio.

e Controle de Tempo ou Game Loop: Todo jogo precisa ter um loop para con-

trolar a taxa de atualizacao e renderizagao do jogo.
e Entrada de Dados: Implementar a captura de entradas (botoes pressionados).
e Renderizacao: Utilizar computagao grafica para renderizar as texturas na tela.

e Utilitarios Mateméticos: Bibliotecas de matemaética (vetores e matrizes) e fun-

¢oOes lteis para o desenvolvimento.

e Gestao de Objetos e Cenas: Sistema para gerenciar objetos e cenas a medida

que seu jogo se torna mais complexo.
e Audio: Suporte para tocar miisicas e efeitos sonoros.

e Carregamento de Arquivos: Utilizar um gerenciador de arquivos para evitar o

carregamento redundante e permitir a adigdo de recursos como mods.

Tudo isso é apenas o basico, e cada sistema pode variar muito em nivel de com-
plexidade Glaiel (2021).

A figura 5 abaixo representa um exemplo e arquitetura de engine no qual conta com
GameState que controla a iniciagao do sistema e liberagao de recursos, GameLoop que é
responsavel pela atualizacao de quadro e o estado dos objetos intanciado na cena. Imagem

busca facilitar a visualizacao dos recursos de uma engine e fluxo de seu comportamento.

Agora, vamos entender como o Godot traduz tudo isso para dentro de sua Engine.

4.2.2.3.1 Nodes

No Godot, nodes (ou nds) sao os elementos fundamentais que compoem qualquer
cena. Existem dezenas de tipos de nodes, cada um com uma funcao especifica, como
representar objetos graficos, controlar fisica, lidar com entradas de usuario ou até organizar

o layout de outros noés. Eles sao como os sistemas mencionados anteriormente.

Capitulo 4. Referencial Teorico 35

Figura 5 — Game Loop, Sprite e Music

Arquitetura: Trabalho 1 gameLoop

Game:Updateifloat dt)

Game

State:Update(float dt)

Iniclalizagoes de recursos

[Spnle‘:Upda(e(ﬂwld()‘
gamet. 1 ~ -

(Music-Updatefioat dt) |

Game:Render()

State:Render()

SpritezRender()

Liberagao de recursos

Music::Render()

Fonte: Introdugao de Desenvolvimento de Jogo - Departamento de Ciéncia da Computagao
UnB.

“Nodes are the fundamental building blocks of your game. They are like the ingredients
in a recipe. There are dozens of kinds that can display an image, play a sound, represent
a camera, and much more.” (GODOT ENGINE 4.3 documentation in English, s.d., p. 1)

42232 Scenes

As cenas sao as telas que contém os Nodes. Para entender melhor as cenas podemos
exemplificar de duas maneiras: através de menus/telas ou chunks. No caso do jogo que
estamos desenvolvendo, cada cena é representada por uma tela. J& em jogos com grandes
mundos, onde a camera segue o jogador, as cenas podem ser chunks e apenas os chunks

necessarios sao carregados para gerar a cena.

Quem controla os recursos para gerar as cenas sao os scripts do programador (de
forma manual) ou, de forma dindmica, usando TileSet, TileMap e recursos de Resource

Management.

Capitulo 4. Referencial Teorico 36

Figura 6 — Tile Set, Tile Map e Resource Management

Anpaitetan- Teabalho §
image orignal
y=00
TileSet
il 5 E 7 TileMap
8o WNTII3TMIE has—32 11
$:1?1319I@21__22._23_ colunas I'.] 99999990999
4TSI T7 28 283031 -
305737 5994 35 36,37 9999999909099
839 40 41 47 4342 45 9 99999599 9 39

fpan 484050 51 5253

Tela de jogo

Fonte: Trabalho 3 - Introdugao de Desenvolvimento de Jogo - Departamento de Ciéncia
da Computacao UnB.

37

5 Especificacao do jogo

Neste capitulo, apresentamos os conceitos gerais do jogo produzido, desde o obje-
tivo, narrativa, regras, mecanicas e funcionalidades. A especificagdo do jogo é um docu-
mento essencial para definir de maneira clara e detalhada todos os aspectos que compoem
a experiéncia do jogador, servindo como guia tanto para a equipe de desenvolvimento
quanto para possiveis ajustes e melhorias no decorrer do projeto. A partir desta espe-
cificagao, ¢ possivel alinhar as expectativas e assegurar que o produto final atenda aos

requisitos propostos, oferecendo uma base sélida para a implementacao e testes do jogo.

5.1 Narrativa

O jogo tem varias inspiragoes, sendo a principal delas a série “Tron — Uma Odisseia
Eletronica” Ele utiliza a mecanica dos light-cycles, que sao rastros deixados pelos joga-
dores no filme. Light-cycle é um sub-jogo da série no qual o objetivo é forcar os jogadores
a colidirem com a parede ou com os rastros de luz deixados pelos demais, muito similar
ao classico jogo Snake, também conhecido como jogo da cobrinha, mas com elementos de

battle royale.

Outra inspiragao relevante é o jogo de navegador “Curve Fever”, cuja proposta é
semelhante a adotada neste projeto. A ideia é criar uma versao renovada do jogo para

guiar o aprendizado.

Figura 7 — Jogo Achtung Die Kurve

FIRST T REACH l

| Guest 9838
I voltom Eida
Guest 277

Fonte: https://www.youtube.com/watch?v=FHyALtYMfPY

A narrativa do jogo é relativamente simples. Até 6 jogadores podem ingressar

numa sala virtual, onde cada um controla um dos 6 animais disponiveis. Cada animal é

Capitulo 5. FEspecificagio do jogo 38

representado por uma cor especifica: porco (rosa), dragao (vermelho), serpente (verde),

baleia (azul), lobo (branco) e dguia (amarelo).

Os jogadores competem em varias rodadas e acumulam pontos de acordo com sua

colocagao. O nimero de pontos necessarios para o fim da partida ¢ definido pela equagao:
Pontuagao para vitéria = niimero de jogadores x 5

O niimero minimo de jogadores para iniciar uma partida é 2. A pontuagao obtida

em cada rodada segue a regra:
Pontos da rodada = niimero de jogadores — colocacao do jogador

O primeiro jogador a atingir a pontuagao definida é coroado como Rei dos Animais.

5.2 Objetivo do Jogo

O objetivo do jogo é sobreviver o maior tempo possivel dentro de um cenario
limitado. Por se tratar de um jogo competitivo PvP, o tltimo jogador vivo sera o vitorioso

na rodada.

Para alcancar esse objetivo, os jogadores podem adotar estratégias variadas, utili-
zar poderes especiais que tornam a partida mais cadtica, além de exigir habilidade motora

para controlar seu personagem com precisao.

5.3 Estrutura da Fase

A estrutura da fase é simples: uma caixa com tamanho adaptavel ao nimero de jo-
gadores, fundo cinza-escuro e bordas cinza-claro. Ao lado da arena, ha um placar exibindo

a colocacao dos jogadores.

Ao final de cada rodada, a area de jogo é limpa e os jogadores sdo reposicionados

em suas posigoes iniciais.

5.4 Poderes e Habilidades

O jogo oferece uma habilidade padrao e diversos poderes especiais que surgem

aleatoriamente durante a partida.

A habilidade padrao consiste em deixar um rastro letal por onde o personagem se
move, capaz de eliminar qualquer jogador (inclusive o préprio). O rastro pode ocasional-

mente conter brechas que permitem a passagem.

Capitulo 5. FEspecificagio do jogo 39

Os poderes especiais aparecem aleatoriamente no mapa. Ao serem coletados, sao
ativados imediatamente e tém duracao de 7 segundos. Eles podem ajudar ou prejudicar

o jogador que os coletou ou afetar os demais.

e +Velocidade
e -Velocidade
e +Velocidade para os outros
e -Velocidade para os outros
e Inverter controles para os outros
e Andar em 90°
e Tornar bordas atravessaveis
e Limpar mapa
e Voar
e +Tamanho
e -Tamanho
Poderes verdes: aplicam-se somente ao jogador que os coletou.

Poderes vermelhos: afetam todos os outros jogadores.

Poderes azuis: afetam todos os jogadores.

Para uma descricao visual dos poderes, consulte o Apéndice 2.

5.5 Mecanicas e Jogabilidade

A mecénica do jogo: o jogador pode mover-se para a esquerda ou para a direita. No
entanto, a movimentagao dos personagens ¢ limitada a curvas com raio pré-determinado.
A velocidade do jogador influencia diretamente o tamanho da curva: quanto maior a

velocidade, maior sera o raio da curva.

5.6 Gamificacao e Analise Critica

A escolha desse tipo de jogo envolveu diversos fatores, como a facilidade de criagao
de assets (arte do jogo) e desenvolvimento curto devido ao prazo de tempo. Reforgando a
ideia deste projeto ser utiliza-lo como estudo de caso, visando gerar resultados relevantes

para a pesquisa.

Capitulo 5. FEspecificagio do jogo 40

Apesar da mecanica simplificada, o jogo conta com diversas funcionalidades, como

poderes especiais e regras que o tornam dinamico e interessante.

Para a avaliacdo do engajamento, utilizou-se o framework Octalysis, desenvolvido
por Yu-kai Chou, originalmente voltado para gamificacao de atividades e comportamen-
tos. Embora seu uso mais comum esteja relacionado a sistemas gamificados em contextos
educacionais e corporativos, o Octalysis também é aplicavel ao game design digital, pois
fornece uma compreensao aprofundada das motivagdes que mantém os jogadores envol-
vidos. Ele j4 foi utilizado em pesquisas de experiéncia do usuério (UX) em jogos digitais
para identificar pontos de engajamento e orientar melhorias no design, como no caso
documentado de Candy Crush (Game Developer Staff, 2021).

O framework é composto por oito cores (impulsionadores motivacionais). Cada um
representa um aspecto-chave da motivacao humana que pode ser explorado em um jogo.
Nesta analise, selecionamos os principais cores presentes no prototipo e os avaliamos com
base na percepcao de trés testadores, incluindo o autor, em uma escala de 1 a 5, onde 1

indica presenga pouco explorada e 5 indica presenga fortemente explorada (CHOU, 2019).

O ntmero reduzido de participantes se deveu a limitagoes de tempo e disponibi-
lidade durante a etapa de testes. Ainda que a amostra pequena limite a generalizacao
dos resultados, ela foi suficiente para apontar ajustes iniciais nas mecanicas e confirmar
elementos que contribuiram para o engajamento. O formulario de avaliagdo completo e os

resultados estao disponiveis no Anexo C.

Principais cores utilizados

Epic Meaning Resumo: Este core refere-se ao senso de propdsito maior ou missao.
Uso: 1 — Embora a narrativa tente envolver os animais na floresta, ela nao é muito explo-
rada e ficou desconexa do tema Tron. Os jogadores nao ficaram interessados infelizmente

e acabou sendo uma prospota que aos poucos foi perdendo prioridade.

Social Influence & Relatedness Resumo: Relacionado a interacdo social e senso
de comunidade. Uso: 4 — Como o jogo é competitivo, a interagao entre os jogadores é um
ponto-chave. A disputa aumenta o engajamento e a imersao, estimulando o sentimento de
conexao e rivalidade. Houve problemas em alocar muitas pessoas em um tnico teclado,

mas foi uma bagunca divertida que reuniu amigos e situagoes engragadas.

Unpredictability & Curiosity Resumo: Este core envolve a curiosidade e o
desejo de explorar. Uso: 4 — A presenca de poderes aleatérios e a variabilidade no com-
portamento dos jogadores tornam o jogo imprevisivel, mantendo o jogador curioso sobre

os resultados de cada partida.

Loss & Avoidance Resumo: Refere-se ao medo de perder e & motivacao para

Capitulo 5. FEspecificagio do jogo 41

evitar consequéncias negativas. Uso: 3 — Embora o jogo seja competitivo, a perda nao é
tratada como uma consequéncia punitiva. A penalizacdo ocorre principalmente na pon-
tuagao, com perdas menores nas rodadas, o que suaviza o impacto da derrota, mas ainda

causa irritacao nos jogadores.

42

6 Resultados Obtidos

Neste primeiro estagio, foram realizadas pesquisas e defini¢oes fundamentais para a
estruturacao do jogo. A analise de Engines, frameworks de gamificagdo e metodologias de
design proporcionou uma base sélida para o desenvolvimento. Além disso, foram definidos
os principais requisitos, mecanicas e elementos de jogabilidade. O fluxo de telas e a or-
ganizagao do desenvolvimento também foram planejados, garantindo um direcionamento

claro do jogo.

6.1 Pesquisa e definicao do tema

Neste primeiro estagio do trabalho, foi possivel estabelecer uma base sélida para o
desenvolvimento do jogo. Foram definidos os objetivos do projeto, a Engine de desenvol-
vimento, as mecanicas e regras do jogo, além de uma estrutura metodoldgica baseada em
engenharia de software, Scrum e MDA. A documentacao elaborada até o momento servira
como um guia para a implementacao no TCC 2, garantindo que o desenvolvimento siga

um planejamento estruturado e eficiente.

Durante o TCC 1, foram realizadas diversas etapas essenciais para a estruturacao
do projeto e o planejamento do desenvolvimento do jogo. A primeira fase consistiu em uma
pesquisa aprofundada sobre Engines de desenvolvimento, avaliando opg¢oes como Unity,
Unreal Engine e Godot. Testei algumas dessas Engines para entender suas capacidades,
limitagoes e adequagao ao escopo do projeto. Apesar de ndo me aprofundar inicialmente
em uma, optei por escolher a Godot pela necessidade de um ambiente acessivel, eficiente
para jogos 2D e alinhado com os principios de codigo aberto, garantindo maior flexibilidade

e sem custos adicionais.

Além da escolha da Engine, explorei frameworks de gamificagdo para compreen-
der como os elementos de design poderiam ser utilizados para engajar os jogadores. O
framework Octalysis, criado por Yu-kai Chou, foi um dos principais referenciais para es-
truturar os aspectos motivacionais do jogo. A pesquisa ajudou a definir quais motivagoes

e mecanicas seriam mais relevantes para criar uma experiéncia dindmica e envolvente.

Outro conceito fundamental descoberto durante a leitura de artigos foi o framework
MDA (Mecénica, Dindmica e Estética), que se mostrou essencial para estruturar o de-
sign do jogo. Esse modelo permitiu uma abordagem mais sistematica na construcao da
jogabilidade, separando os elementos do jogo em trés niveis distintos: as mecanicas, que
englobam as regras e interacoes basicas; as dindmicas, que emergem dessas regras e mol-

dam o comportamento do jogador; e a estética, que representa as sensagoes e emogoes

Capitulo 6. Resultados Obtidos 43

desejadas.

A aplicacao do MDA no planejamento do jogo ajudou a antecipar como determi-
nadas mecanicas impactam a experiéncia dos jogadores. Por exemplo, ao definir o sistema
de movimentagao com curvas e os poderes especiais, analisei como essas mecanicas afetam
a dinamica do jogo e quais emogoes poderiam ser despertadas, como tensao, estratégia e
senso de imprevisibilidade. Esse modelo se tornou uma ferramenta essencial para guiar as
decisoes de design, garantindo um alinhamento entre os objetivos do projeto e a experi-

éncia proporcionada ao jogador.

6.2 Desenvolvimento do jogo

Neste capitulo falaremos sobre as etapas de desenvolvimento do jogo, apresentando
o fluxo de telas, desde o menu inicial até a tela de fim da partida. Descreveremos nosso
primeiro contato com a Engine Godot, os principais desafios de criacao de Scenes e Nodes,
e como organizamos o trabalho. Vamos destacar os pontos criticos de implementagao (mo-
vimentagao, colisao, sistema de poderes e pontuagao) e as solucgoes adotadas, ilustrando

cada fase com trechos de c6digo e capturas de tela.

6.2.1 Preparacao do ambiente e planejamento do desenvolvimento

A configuracgao inicial do ambiente de desenvolvimento comegou com a instalagao
da Engine Godot 4.4 por meio da plataforma Steam ., que facilitou o processo de down-
load e atualizacao. Em seguida, foi criado um repositério no GitHub, clonado localmente

para permitir o inicio imediato do projeto na raiz do versionamento.

As primeiras configuracoes incluiram o ajuste da resolucao de tela, ativagao de fer-
ramentas de debug e o mapeamento de entradas no Input Map para controlar as acoes do
jogador. Esses ajustes foram essenciais para garantir um ambiente funcional e preparado
para as etapas seguintes. O préoprio Godot fornece ferramentas de debug como painel de
saida (Qutput), breakpoints, o monitor de desempenho em tempo real e a exibi¢ao de va-
riaveis no Inspector, permitindo acompanhar o uso de memoria, FPS, colisoes e mensagens
personalizadas via comandos print. Esses recursos foram utilizados principalmente para
rastrear o comportamento dos objetos em cena, identificar colisdes inesperadas e ajustar

a logica dos poderes e do sistema de movimentacao durante os testes iniciais.

A organizacao do trabalho foi orientada pelo uso de Metodologias ageis, conforme
descrito no Capitulo 2, com foco em sprints quinzenais e no uso continuo do Trello. Essa
abordagem permitiu visualizar metas especificas a cada ciclo, monitorar o progresso e

reorganizar prioridades sempre que necessario. Ainda que alguns atrasos tenham ocorrido

1 E uma plataforma digital de jogos para PC, desenvolvida pela Valve Corporation, que permite aos

usudrios comprar, baixar, jogar e gerenciar seus jogos.

Capitulo 6. Resultados Obtidos 44

devido a imprevistos técnicos ou demandas externas, a estrutura do Scrum possibilitou

replanejamentos sem comprometer o andamento geral do projeto.

Em diversos momentos, retornar ao quadro do Trello foi fundamental para reor-
ganizar ideias, como identificar o préoximo passo e retomar o ritmo de desenvolvimento.
Essa pratica ajudou a contornar bloqueios, duvidas sobre prioridade e fases de menor

produtividade, tornando o processo mais fluido e direcionado.

Para manter a constancia no desenvolvimento, optou-se por uma aplicagao adap-
tada do Scrum. Entre os ritos adotados, destacam-se o planejamento inicial de cada sprint
e uma revisao informal ao final. As reunides diarias foram dispensadas, substituidas por
acompanhamento continuo via Trello, o que se mostrou eficaz dentro do contexto indi-
vidual. Essa flexibilidade também permitiu aproveitar momentos de maior dedicagao ou
clareza nas tarefas para antecipar funcionalidades futuras, otimizando o uso do tempo

disponivel.

Na primeira retrospectiva da sprint, notei um atraso causado pelo tempo necessario
para se familiarizar com a plataforma Godot. Apesar de conhecimento tedrico, a pratica
exigiu ajustes constantes, principalmente na construcao da interface inicial. No inicio surge
duvidas constantes sobre a melhor abordagem para determinado objetivo, oque levou a
revisoes muito frequentes do c6digo e nas estruturas dos nés até acertar. Esse feedback
individual me ajudou a tomar uma decisao de nao subestimar a primeira atividade de

entrega e estender seu prazo.

6.2.2 Organizacdo de arquivos e estrutura de cenas

Para manter a organizacao e padronizacao do projeto, foi adotado um modelo de
nomenclatura no qual arquivos e pastas seguem o padrao snake case, enquanto os nés
(nodes) definidos no editor utilizam o formato CamelCase. Cada cena foi estruturada em
uma pasta propria, contendo obrigatoriamente dois arquivos com o mesmo nome-base: o

arquivo de cena .tscn e o respectivo script .gd. Por exemplo:
main menu/main_menu.tscn e main_menu/main_menu.gd

Essa estrutura facilita a manutencao do projeto, a navegacao entre arquivos e a

identificacdo de dependéncias diretas entre logica e visual.

Internamente, a separagao entre a logica de jogo e a interface foi conduzida de
forma clara. As cenas responsaveis pelo gameplay adotam Node2D como né raiz, com filhos
como Sprite2D e CollisionShape2D, entre outros. Ja as cenas de interface, como menus
e HUDs, sdao construidas sobre nés do tipo Control, organizadas em camadas distintas
por meio de CanvasLayer, e compostas por elementos reutilizaveis, como botoes, painéis

e icones.

Capitulo 6. Resultados Obtidos 45

As funcionalidades relacionadas ao jogador e aos power-ups foram encapsuladas
em cenas independentes, cada uma com seu proprio script, seguindo um modelo baseado
em componentes. Essa abordagem permite isolar responsabilidades, como movimentacao,
deteccao de colisao e controle de tempo de efeitos, promovendo maior modularidade e

reuso de cédigo.

Por fim, a persisténcia de estado, como pontuacao e configuragoes dos jogado-
res, bem como a musica de fundo, sao gerenciadas por meio do autoload GameManager.
Esse script atua como um controlador global, acessivel por todas as cenas, facilitando a
manutencao de dados entre transicoes e o gerenciamento de comportamentos que devem

persistir durante toda a execucgao do jogo.

A Figura 8 exemplifica melhor como o projeto foi organizado em pastas. As pastas

azuis possuem arquivos de cena e script relativos ao nome da pasta.

Figura 8 — Diagrama de pacotes de arquivos

Assets Autoloads Objects sCene Ul Components
|
i . . -
sprites_png game._
state gd :
player mai_menu button

trail lobby grid_container
E - . .

\\ power_ups game_scene select_player _/

Tron Game - res.f/

Fonte: Elaboracao propria

6.2.3 Interface e usabilidade

No projeto, a interface e a usabilidade foram estruturadas em trés telas principais:
o menu inicial, a selegdo de jogadores (lobby) e a GameScene. A Engine Godot oferece um
sistema de construgao de interfaces com baixa dependéncia de c6digo (low-code), permi-
tindo o ajuste de tamanhos, textos e posicionamento de Containers diretamente no editor
2D. A integracao desses nos a scripts possibilita a conexao de sinais e a atribuicao de mé-
todos aos componentes interativos, proporcionando controle total sobre o comportamento

da interface.

Capitulo 6. Resultados Obtidos 46

Na Figura 9, exemplifica como referenciar os nés (nodes) dentro do script. é comum
usarmos o termo "@Qonready'seguido da varidavel que vai armazenar o nd para acessar e

alterar suas propriedades antes e depois da cena carregar.

Figura 9 — Conexao de nés com scripts no editor Godot.

Fonte: Elaboracao propria

Nas telas de menu, foram utilizados exclusivamente nos do tipo Control, explo-
rando recursos como Anchors e Size Flags para garantir o alinhamento e o dimensiona-
mento automaticos de painéis, labels e botoes em diferentes resolucoes. Na GameScene,
a raiz da cena é um Node2D, o que facilita a renderizacao e o posicionamento de ele-
mentos graficos em 2D, mantendo a interface separada em camadas por meio do uso de

CanvasLayer, evitando interferéncia entre a loégica da interface e a logica de jogo.

Com o objetivo de aprimorar a experiéncia do usuario, duas funcionalidades es-
pecificas foram implementadas. A primeira consiste na personalizacdo dos comandos
de movimento (keybinds) no lobby, com armazenamento das configuragoes no singleton
GameManager, permitindo a persisténcia das escolhas entre as rodadas. A segunda funci-
onalidade ¢ a exibicao de uma seta direcional sobre o veiculo de cada jogador no inicio de
cada rodada, indicando sua orientagao inicial e contribuindo para uma melhor percepcao
espacial logo nos primeiros movimentos. Tais melhorias foram planejadas para oferecer

maior clareza visual e controle aos participantes durante a partida.

Além disso, sons foram adicionados para reforcar a imersao do jogador e dar fe-
edbacks importantes durante o jogo. A musica de fundo é gerenciada por meio de um
AudioStreamPlayer inserido em um né global no AutoLoad, configurado para reproducao
continua em loop entre as cenas. J& os efeitos sonoros especificos, como o som de morte
do jogador, foram implementados diretamente em suas respectivas cenas (Player.tscn).
Para isso, utilizou-se o né AudioStreamPlayer2D, permitindo que cada jogador repro-

duza sons de forma independente e com espacializacdo adequada, sem comprometer a

Capitulo 6. Resultados Obtidos 47

logica principal do jogo.

6.2.4 Implementacdo das mecanicas do jogo

O desenvolvimento foi feito em GDScript, a linguagem nativa da Godot. Ela é
baseada em Python e é fortemente integrada a arquitetura da Engine. Trés métodos se
destacam na construcao da logica do jogo: ready, chamado uma vez assim que o né entra
na arvore de cena; physics_process(delta), executado a cada frame de fisica e utilizado
para atualizar elementos em tempo real; e a anotagao Qonready, que permite inicializar
variaveis com nés da cena somente apds estarem carregados. Esses recursos estruturam
o ciclo de vida dos objetos e organizam a execucao do jogo em etapas previsiveis. Além
disso, a Engine Godot adota uma estrutura orientada a nds, onde tudo é tratado como
um objeto independente na hierarquia da cena. Qualquer referéncia a esse objeto, quando
alterada, reflete automaticamente em todas as partes do codigo onde ele esta instanciado

ou referenciado, o que facilita a reutilizacao, modularizagdo e manutencao do projeto.

O ready carrega a cena inicial. Define as dimensoes do mapa e chamado a funcao

de start_round que dé inicio ao jogo.

A funcao start_round é chamada no inicio de cada rodada e tem como responsa-
bilidade configurar o estado inicial do jogo. Nela sao instanciados os jogadores, com base
em uma cena pré-configurada (PackedScene), posicionados nos marcadores definidos no
mapa e conectados aos seus respectivos sinais. Além disso, o método define o tempo para
inicio da rodada, ativando um contador regressivo e liberando o movimento dos jogadores
apenas apo6s sua conclusao. Esse controle inicial garante que todas as partidas comecem

de forma sincronizada e clara para os participantes.

A Figura 10 mostra como os jogadores sao instanciados na cena do jogo. Primeiro
instanciamos o jogador, alinhamos todos na mesma camada, definimos sua posi¢ao incial

e ajustamos os sinais de suas fungoes.

Durante a execugao do jogo, a fungdo physics_process(delta) é responsavel por
atualizar o tempo, movimentar os jogadores e controlar os poderes. Cada jogador move-se
em linha reta com velocidade constante, ajustando sua rotacao com base nas entradas
recebidas. A cada ciclo de atualizagao, o jogo verifica se é hora de instanciar um novo
rastro atras do jogador, formando a trilha que delimita o espago percorrido. Também é
nesse método que o cronémetro de geragao de poderes é verificado, e, ao atingir o tempo

definido, um novo poder é instanciado em posicao aleatoria no mapa.

Naa Figuras 11 e 12 tem exemplos da fungao nativa do Godot _ physics process
preentes no jogadores e no mapa do jogo. Nessa funcao é colocado tudo que for verifi-
cado ou processado pelos game ticks, ou seja, a cada frame do jogo como deteccao da

momvimentagao e colisoes.

Capitulo 6. Resultados Obtidos 48

Figura 10 — codigo: round start

func start_round():|

imer(1).timeout

Fonte: Elaboracao propria

Figura 11 — gamescene: _ physics process

a: float) -> void:

ionShape2D")

bottom_wall, left_wall, rig

isionShape2D").disabled

Fonte: Elaboracao propria

A detecgao de colisoes foi feita por meio do n6 Area2D com CollisionShape2D,
presente tanto nos jogadores quanto nos rastros e paredes. Cada jogador possui um si-
nal area_entered conectado diretamente a cena GameScene, utilizando Callable(self,
" on_player_died"). Ao detectar uma colisdio com uma area pertencente a outro joga-
dor, a fun¢ao de morte é acionada, removendo o jogador da cena e atualizando o ranking
da rodada. A funcao end_round, chamada apos restar apenas um jogador vivo, é respon-
savel por pausar o jogo, distribuir os pontos com base na ordem de eliminagao, verificar
se algum jogador alcancou a pontuacao de vitéria e, caso nao haja vencedor, iniciar uma

nova rodada com start_round.

Nas Figuras 13 e 14 sao exemplos das fungoes responsaveis por detectar a morte

e a colisao do jogador. Para detectar a morte de um jogador, a funcdo _on_ player died

Capitulo 6. Resultados Obtidos 49

Figura 12 — player: _ physics_ process

lta):

time_since_spawn += delta

_left) a not a

Fonte: Elaboracao propria

identifica quem morreu usando uma funcao de callback ligado ao sinal de colisdo do jogador
e a colisao é identificar verificando o grupo ao qual o objeto colidido pertence, seja rastro

ou parede.

Figura 13 — gamescene: _on_ player died

mal_data["name"])

ound_ending

animal_data["name"])

imer(3.0).timecut

Fonte: Elaboracao propria

Para o audio, foi adotada uma abordagem simples e funcional. A misica de fundo é
gerenciada por um né AudioStreamPlayer, carregado por meio de um script no AutoLoad,
0 que permite sua reproducao continua em loop durante todo o jogo, independentemente

da cena ativa. Ja os efeitos sonoros, como o som de morte, foram incorporados diretamente

Capitulo 6. Resultados Obtidos 50

Figura 14 — player: _on_area_entered

_group("wall"):

Fonte: Elaboracao propria

a cena de cada jogador, utilizando o n6 AudioStreamPlayer2D. Essa escolha permite que
cada instancia de jogador reproduza seus préprios sons de forma independente, garantindo
uma espacializacao adequada e mantendo o controle de dudio encapsulado no préprio

objeto responsavel pela acao.
Abaixo tem a Figura 15 do fluxo légico simplificado que ocorre na cena de jogo.

A Tabela 8 contem o resumo das principais solu¢oes de implementacao das funci-

onalidades do jogo.

Capitulo 6. Resultados Obtidos

o1

Figura 15 — BPMN: fluxo légico

Pool

Player

GameScene

_physics_process()

h 4

_ready()

h J
o

round_start()

i
*

moviementa()

Colidiu?

R —

Y

_pbhysics_process()

ey

- Reinicia Mapa
M - Instancia
jogadores

R

X Sim o

_on_player_died()

Resta um jogador?

&

Sim
)

Q
.

m

Algum jogador atingiu a pontuacao limite?

Instancia

poderes

Fonte: Elaboracao propria

Capitulo 6. Resultados Obtidos

52

Tabela 8 — Tabela de solucao de implementagao das funcionalidades

Funcionalidade Principais nés Descricao resumida da implemen-

tacao

Movimentagao Player (Area2D), | Usa Input.is_key_pressed para
Polygon2D, Collisi- | ajustar a direcio dentro do
onShape2D e AudioS- | physics_process e possui veloci-
treamPlayer2D dade variavel que determina curvas

mais fechadas ou abertas.

Rastros Trail (Node2D), | A cada frame um ponto ¢ adicionado
Polygon2D, Collisi- | no mapa com a mesma propor¢ao do
onShape2D Player. Esses pontos, em sequéncia,

criam uma linha.

Poderes Especiais PowerUp (Node2D), | Quando o jogador colide com um
Sprite2D, Collisi- | PowerUp, altera atributos do joga-
onShape2D dor (ex.: velocidade, invulnerabilidade)

ou das paredes do mapa dentro do
GameManager.

Colisdo e elimina-
cao

Embutido nos rastros,
jogadores e paredes,
signal body_entered

Conecta o sinal de eliminacdo ao mé-
todo que verifica se o jogador tocou pa-
rede ou rastro alheio; em caso positivo,

através do Collisi- | notifica o GameManager e o préprio ob-
onShape2D jeto remove sua instancia do jogo.
Sistema de pontos | Singleton Mantém dicionario de pontuagodes; ao
GameManager, La- | final de cada rodada calcula ordem de
bel de HUD eliminacdo, atualiza as labels e de-

clara fim da partida.

Tamanho do mapa

Dois Marker2D e qua-
tro Walls (Area2D)

Os marcadores delimitam as bordas do
mapa e as paredes, com as coordena-
das dos marcadores, sdo instanciadas
na cena.

Fonte: Elaboracao proépria.

6.2.5 Fluxo de telas e linha de desenvolvimento

O fluxo de telas do jogo consiste em trés cenas: menu principal, lobby e jogo.

Abaixo é possivel visualizar o resultado final e a sequéncia de tela do jogo.

A tela inicial possui um background com estética semelhante ao jogo, e o usuario
pode optar por sair do jogo ou jogar através de um clique. As préximas Figuras 16, 17,

18 e 19, mostra telas do jogo desde o menu até a tela em jogo.

Na tela de Lobby tem a opcao de jogar com até 6 jogadores e cada jogador pode
customizar suas teclas de comando. E possivel remover um jogadores caso necessario e

continuar para o jogo.

Na cena do jogo, temos um painel com a pontuacao dos jogadores, um botao de

pause, um contador que declara inicio da rodada e trés jogadores dispostos no mapa com

Capitulo 6. Resultados Obtidos

Figura 16 — Tela menu inicial.

Fonte: Elaboracao propria

Figura 17 — Tela do Lobby do jogo.

Adicioner Serperte

Adicienar Baleia Adicionar Lobe Adicanar Dragio

Fonte: Elaboracao prépria

Capitulo 6. Resultados Obtidos 54

indicadores de suas atuais diregoes.

Figura 18 — Tela do jogo com indicadores de direcao antes de comegar a rodada.

Fonte: Elaboracao propria

O jogo pode ser pausado a qualquer momento oferecendo as op¢oes de voltar ou

continuar a partida.

Figura 19 — Tela do jogo em pause.

Peusado
Cantinuar Valtar ao mer

Fonte: Elaboracao prépria.

Quando um jogador alcanca a pontuagao minima, o jogo encerra declarando o

vencedor seguido de um botao de continuar.

6.2.6 Principais desafios e solucdes

Durante o desenvolvimento do jogo, diversos desafios técnicos e conceituais sur-

giram, especialmente por se tratar da primeira experiéncia pratica com uma Engine de

Capitulo 6. Resultados Obtidos 55

Figura 20 — Tela do jogo encerrado.

Forco B
Fguia 18

Earpante 16

Serpente genhoul w
Cortinuar

Fonte: Elaboracao prépria.

jogos. O primeiro obstaculo foi compreender o funcionamento da Godot Engine e explorar
suas funcionalidades. Para isso, foi essencial adotar uma abordagem de aprendizagem ba-
seada em experimentacao continua, consulta a documentacao oficial, féruns, videos e o uso
de inteligéncia artificial para suporte na resolucao de problemas. A prépria Engine facilita
esse processo ao oferecer uma documentagao embutida que permite explorar métodos e

propriedades diretamente nos nos utilizados.

Um segundo desafio relevante foi a construcao da interface. A tentativa de criar
telas responsivas exigiu o entendimento aprofundado sobre propriedades como ancoragem,
margens, alinhamentos e retdngulos (Rect). Além disso, foi necessério aprender a combinar
diferentes tipos de Container para estruturar layouts adaptaveis, utilizando ferramentas

como HBoxContainer, VBoxContainer ¢ MarginContainer.

A elaboracao da légica principal do jogo representou outro desafio. Por ser baseada
em uma estrutura de noés hierarquicos, o desenvolvedor precisa entender a relagao entre
os elementos, como a importancia de posicionar corretamente objetos filhos em relacao
ao pai, além de saber gerenciar sua comunicacao por meio de sinais e grupos. No inicio,
quando ainda nao ha uma versao testavel do jogo, muitos conceitos permanecem meio que
abstratos, por isso ¢ comum implementar diversas funcionalidades sem conseguir visualizar
seu comportamento final. Isso exige um processo constante de revisao e adaptacao, a

medida que o restante da estrutura vai sendo integrada e testada.

Entre os problemas praticos mais complexos esteve a criacao do rastro deixado pe-
los jogadores em movimento, principal elemento do jogo. A primeira abordagem testada
foi 0 uso de um Line2D, que conectava os pontos por onde o jogador passava. Inicial-
mente era funcional. Porém, essa solucao apresentou falhas ao lidar com teletransporte.

Ao atravessar a borda do mapa, um traco era desenhado ligando pontos opostos da tela.

Capitulo 6. Resultados Obtidos 56

A solugao adotada foi instanciar, em intervalos curtos, multiplos rastros independentes

com aparéncia igual a do jogador, que juntos formam uma linha visualmente continua.

Outro problema significativo ainda relacionado ao rastro foi a colisdo imediata
do jogador com o proprio trago recém-gerado, o que tornava a partida impossivel de
continuar. Trés alternativas foram testadas: aplicar um pequeno atraso antes de instanciar
o rastro, adicionar uma distancia minima entre o jogador e o ponto de criacao do rastro,
e finalmente, a abordagem escolhida: aguardar que o jogador deixe a area de colisdo do
rastro antes de adicionéd-lo ao grupo responsavel por registrar colisoes (grupo "trail").
Essa ultima estratégia demonstrou-se mais confiavel e garantiu a jogabilidade esperada,

mas ainda com problemas.

Apébs a implementagao de todos os poderes, aqueles que alteravam o tamanho dos
jogadores ainda apresentavam comportamentos inconsistentes, sem uma solugao satisfa-
téria no momento. Diante disso, optou-se por remover temporariamente esses poderes do
jogo, até que uma abordagem mais estavel e compativel com o restante da logica fosse

encontrada.

Ao longo do desenvolvimento, diversos outros problemas surgiram, de escala me-
nor ou semelhante, mas ainda assim relevantes para o processo de aprendizagem. Alguns
foram resolvidos rapidamente, enquanto outros exigiram maior abstragao e andlise do
comportamento da Engine. Entre os exemplos recorrentes estavam situacdes como ins-
tanciar objetos como filhos de outros e perceber que isso altera sua global_position,
ou tentar interagir com nds que ja haviam sido removidos. Com o tempo, esses padroes
de erro se tornam mais reconheciveis, e a experiéncia adquirida passa a desempenhar um
papel fundamental na antecipagao de problemas e na escolha de solu¢des mais eficientes.
Esses aprendizados acumulados, ainda que muitas vezes ndao documentados diretamente,

contribuem significativamente para a formacao pratica do desenvolvedor.

6.2.7 Testes de Funcionalidade e Desempenho

Os testes realizados no projeto seguiram uma abordagem pratica e limitada, con-
siderando os recursos disponiveis. A metodologia adotada foi a de testes manual de caixa-
preta, com foco na verificacdo do comportamento esperado das funcionalidades imple-
mentadas, sem considerar a estrutura interna do cédigo. Essa abordagem é comum em

projetos de software com restricbes de tempo ou equipe reduzida, como é o caso deste
trabalho (PINHEIRO, 2024) (Check Point Software Technologies, s.d.).

Os testes foram realizados pelo préprio autor, de forma exploratéria, em um am-
biente local, utilizando um computador pessoal com sistema Windows 11, AMD Ryzen
5 3600 6-Core Processor, 16 GB meméria RAM, placa de video AMD Radeon RX 5600
XT.

Capitulo 6. Resultados Obtidos 57

Durante o processo de testes, foram identificados bugs e comportamentos inespe-
rados, como colisoes incorretas, travamentos de movimentos ou falhas em efeitos visuais.
Esses problemas eram registrados na plataforma Trello, dentro da secao de tarefas “Me-
lhorias”, para posterior analise e correcao. Esse processo, ainda que informal, foi essencial
para garantir a estabilidade minima do sistema e evitar que erros simples passassem des-

percebidos até a entrega final.
A Figura 21 mostra o quadro de bugs encontrados, para poder haver rastreamento

e identificagao de bugs e comportamento inesperados do jogo.

Figura 21 — Quadro - Polimento e Ajustes

DOING v

Polimento e Ajustes

Editar

Fonte: Elaboracao prépria

Além da deteccao de falhas, os testes também desempenharam um papel funda-
mental no balanceamento das mecanicas do jogo. Durante as sessoes de teste, foi possivel
observar, por exemplo, se a velocidade base dos jogadores proporcionava uma movimen-
tacao justa, se o tempo de duracao dos poderes estava adequado para nao desestabilizar
as partidas e se os controles respondiam de forma fluida. Pequenas observagoes sobre o
comportamento em jogo que contribuindo para a melhoria da experiéncia geral e diversao

dos jogadores.

Apesar das limitagoes, o processo de testes contribuiu para a melhoria continua
do jogo, permitindo a identificacdo e correcao de falhas ao longo do desenvolvimento. A
pratica de documentar os problemas e tratd-los como parte do ciclo de producao reforgou

o valor da organizacao e da iteragdo constante no desenvolvimento de software.

o8

7 Conclusoes Gerais

O trabalho teve como proposta o desenvolvimento de um jogo digital inspirado
nos Light Cycles do universo Tron, servindo simultaneamente como exercicio pratico de
aplicacao de conceitos da Engenharia de Software e como objeto de estudo sobre o pro-
cesso de criacao de jogos digitais. A conducao do projeto foi estruturada por meio de
Metodologias Ageis, com destaque para o uso adaptado do framework Scrum, que possi-
bilitou organizar as etapas do desenvolvimento de forma iterativa e flexivel, respeitando

os limites temporais e o escopo previamente definido.

A utilizagdo do modelo MDA (Mechanics—Dynamics—Aesthetics) na primeira etapa
do trabalho contribuiu para orientar as decisdes de design de forma estruturada, pro-
movendo o alinhamento entre os componentes técnicos do jogo e a experiéncia de jogo
pretendida. As mecénicas implementadas, como a geragao de rastro, colisdes e poderes
temporarios, foram integradas com foco em proporcionar dinamicas de disputa réapida e
interacao estratégica entre jogadores. Ainda que alguns ajustes tenham sido necessarios
ao longo do desenvolvimento, a estrutura teérica do MDA mostrou-se 1itil para manter a

coeréncia entre intencao e implementacao.

Durante a fase pratica, a escolha da Godot Engine atendeu bem as necessidades
do projeto, especialmente por seu suporte nativo ao desenvolvimento 2D, sua estrutura
baseada em nés hierarquicos e pela facilidade da linguagem GDScript. No entanto, nem
sempre os comportamentos da Engine foram intuitivos, o que demandou muitos testes
e adaptagoes na logica do jogo. Ainda assim, a experiéncia geral com a ferramenta foi
positiva, e a curva de aprendizagem, inicialmente lenta, tornou-se significativamente mais

fluida a partir do meio do projeto.

A pratica do desenvolvimento proporcionou aprendizado técnico relevante, como o
uso de instanciamento dindmico, gerenciamento de colisoes com Area2D, manipulagao de
grupos e sinais para controle de comportamento, constru¢ao de HUD com CanvasLayer
e organizacao modular da logica de jogo. Além disso, a necessidade constante de tes-
tar, depurar e refatorar consolidou competéncias relacionadas a modelagem, resolugao de

problemas e tomada de decisdo em cendrios praticos.

Considerando o escopo proposto, os resultados obtidos demonstram a viabilidade
de aplicar fundamentos da Engenharia de Software ao desenvolvimento de jogos digitais
com uma abordagem acessivel e orientada a aprendizagem. O jogo desenvolvido, mesmo
com limitagdes pontuais, funciona como um protétipo jogavel e representa uma base con-
creta para futuras melhorias ou expansoes. Dessa forma, o trabalho cumpre seu papel

como objeto de estudo pratico e formativo, oferecendo subsidios tanto para o desenvolvi-

Capitulo 7. Conclusées Gerais 59

mento técnico quanto para a reflexao sobre metodologias aplicadas a criagao de jogos.

Por fim, é importante reconhecer que o ciclo de desenvolvimento de um jogo vai
além da construcao de sua versao jogavel. Etapas como empacotamento e exportacao
multiplataforma, publicagdo em lojas digitais, monetizagao, questoes de licenciamento e
direitos autorais extrapolam o escopo deste trabalho, mas fazem parte do ecossistema do
desenvolvimento de jogos e representam oportunidades futuras de aprendizado. No total,
foram gastas 291 horas para desenvolver o jogo, marcadas por registros do tempo de uso

da ferramenta de controle de sessoes.

7.1 Licoes aprendidas e recomendacdes

Durante o desenvolvimento do projeto, algumas ligbes importantes foram aprendi-
das, especialmente em relacao ao planejamento, a abordagem técnica e ao gerenciamento
de riscos. Um dos principais desafios enfrentados ocorreu logo no inicio, ao subestimar
a complexidade da primeira tarefa, que também representava o primeiro contato pratico
com a Engine e a estrutura do jogo. Essa etapa revelou a importancia de reservar mais

tempo para a fase inicial de familiarizacao e experimentacao.

Houve acertos estratégicos que contribuiram significativamente para a viabilidade
do projeto. A escolha por um jogo 2D e baseado em uma mecanica ja conhecida (inspirada
nos *Light Cycles* de Tron) foi essencial para evitar a reinvenc¢ao de conceitos e permitiu
concentrar esforcos na adaptacao e melhoria das funcionalidades. As solugoes simplifi-
cadas, aplicadas principalmente as mecanicas e a organizacao do codigo, facilitaram o
entendimento das estruturas internas da Engine e possibilitaram uma evolucao técnica

consistente ao longo do projeto.

Os riscos de software é um problema potencial que pode afetar negativamente o
cronograma, a qualidade ou o desempenho do projeto (PRESSMAN; MAXIM, 2016) (Pro-
ject Management Institute, 2017).Ficou evidente que a auséncia de um gerenciamento de
riscos mais estruturado dificultou a antecipacao de imprevistos, como mudangas no escopo
e desafios técnicos inesperados. O planejamento inicial, ainda que basico, demonstrou ser

um elemento crucial para manter o foco e organizar as entregas de forma coesa.

Durante a preparacao para o projeto, foi realizado um curso introdutério de Godot
e GDScript por meio da plataforma Udemy, ministrado por Davi Bandeira (BANDEIRA,
2024). O curso abordava conceitos basicos de légica de programagao e construgao de jogos
simples na Engine. Embora a experiéncia tenha sido positiva e proporcionado seguranca
inicial, ao iniciar o desenvolvimento do jogo proéprio, surgiu a percepcao de que a depen-
déncia de tutoriais com solugoes prontas limitava a autonomia na resolugao de problemas.
Acostumado a seguir uma 'receita', foi desafiador lidar com decisoes técnicas de forma

independente e contextualizada.

Capitulo 7. Conclusées Gerais 60

Esse contraste reforcou uma licdo importante: a medida que um desenvolvedor
comecga a construir um jogo por conta prépria, sem se apoiar diretamente em tutoriais
passo a passo, ele se depara com obstaculos mais reais, que exigem criatividade, leitura
da documentacao e adaptacao ao funcionamento da Engine. Essa pratica estimula o pen-
samento critico e, sobretudo, gera confianca para iniciar projetos mais complexos e com

mecanicas mais inovadoras.

Portanto, para quem estar comecando, recomendo que futuros projetos priorizem
um planejamento claro, escolham abordagens viaveis, considerem estratégias de mitigacao
de riscos desde as primeiras etapas e busquem um equilibrio entre referéncias externas e

a autonomia criativa no processo de desenvolvimento.

7.2 Melhorias futuras

Com o protétipo funcional concluido, diversas melhorias podem ser exploradas em

uma continuidade do projeto. Entre as mais relevantes estao:

e Implementacao de uma inteligéncia artificial simples para permitir partidas solo

contra o computador;

e Adicao de suporte a partidas remotas entre jogadores por meio de conexao ponto a

ponto (peer-to-peer);

e Inclusdao de recompensas visuais ou sonoras, como efeitos de vitoria, conquistas ou

feedbacks de desempenho;

e Expansao dos menus com opgoes de configuracao de dudio, controles e parametros

de jogo;

e Criacao de mapas com tamanhos e propor¢oes ajustaveis, permitindo personalizagao

do campo de jogo;

e Desenvolvimento de novos tipos de poderes especiais para ampliar a variedade de

estratégias;

e Aprimoramento do sistema de colisdo, buscando mais precisao e confiabilidade no

registro de impactos;

e Preparacgao do jogo para publicacao, com foco em empacotamento, identidade visual

e publicacao em plataformas como a Steam;

Essas propostas visam transformar o protétipo em um produto mais robusto, aces-
sivel e com maior valor de rejogabilidade, mantendo a esséncia competitiva e estratégica

da experiéncia original.

61

Referencias

ASEPRITE. Aseprite documentation. 2024. Acesso em: 04 Feb. 2025. Disponivel em:
<https://www.aseprite.org/docs/>. Citado na pagina 26.

Avell. Mercado de games no Brasil se destaca no cendrio global. 2025. Acesso em: 11
ago. 2025. Disponivel em: <https://avell.com.br/blog/mercado-de-games>. Citado na
pagina 29.

BANDEIRA, D. Ldgica de Programagao + Projetos na Godot/GDScript 4.3+. 2024.
<https://www.udemy.com/course/aprenda-godot-e-gdscript-em-7-dias/>. Curso online,
Udemy. Citado na pagina 58.

CARROLL, J. Using the MDA Framework as an approach to game design. 2000.
Acesso em: 25 Jan. 2025. Disponivel em: <https://medium.com/@jenny carroll/
using-the-mda-framework-as-an-approach-to-game-design-9568569cb7d>. Citado na
pagina 20.

Check Point Software Technologies. What is Black Box Testing? s.d. Acessado em 14
jul. 2025. Disponivel em: <https://www.checkpoint.com/pt/cyber-hub/cyber-security/
what-is-penetration-testing /what-is-black-box-testing/>. Citado na pagina 55.

CHOU, Y.-K. The Octalysis Framework for gamification € behavioral design. 2019. Acesso
em: 14 Nov. 2024. Disponivel em: <https://yukaichou.com/gamification-examples/
octalysis-complete-gamification-framework/>. Citado na pagina 39.

DINIZ RODRIGO GAVIOLI, F. G. A indtstria de jogos eletronicos no brasil: uma
breve historia e suas implicacdes na atualidade. Geoingd: Revista do Programa de
Pos-Graduagdo em Geografia, Universidade Estadual de Maringé, 2024. Doutorando no
Programa de Poés-graduacao em Geografia da UEM; Mestre em Tecnologias Ambientais
pela UFMS. Citado na péagina 28.

ENGINE, G. Introduction to Godot. 2024. Acesso em: 29 Jan. 2025. Disponivel em:
<https://docs.godotengine.org/en/stable/getting started/introduction/introduction_
to_godot.html>. Citado na pagina 26.

ENGINE, G. System requirements. 2024. Acesso em: 01 Feb. 2025. Disponivel em:
<https://docs.godotengine.org/en/stable/about /system_ requirements.html>. Citado
na pagina 31.

Game Developer Staff. User research: Utilizing octalysis in game user research. Game
Developer, 2021. Acesso em 5 de agosto de 2025. Disponivel em: <https://www.
gamedeveloper.com /business /user-research-utilizing-octalysis-in-game-user-research>.
Citado na péagina 39.

GLAIEL, T. How to make your own game engine (and why). 2021. Acesso
em: 02 Feb. 2025. Disponivel em: <https://medium.com/geekculture/
how-to-make-your-own-game-engine-and-why-ddfOacbcbf3>. Citado na péagina
34.

https://www.aseprite.org/docs/
https://avell.com.br/blog/mercado-de-games
https://www.udemy.com/course/aprenda-godot-e-gdscript-em-7-dias/
https://medium.com/@jenny_carroll/using-the-mda-framework-as-an-approach-to-game-design-9568569cb7d
https://medium.com/@jenny_carroll/using-the-mda-framework-as-an-approach-to-game-design-9568569cb7d
https://www.checkpoint.com/pt/cyber-hub/cyber-security/what-is-penetration-testing/what-is-black-box-testing/
https://www.checkpoint.com/pt/cyber-hub/cyber-security/what-is-penetration-testing/what-is-black-box-testing/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://yukaichou.com/gamification-examples/octalysis-complete-gamification-framework/
https://docs.godotengine.org/en/stable/getting_started/introduction/introduction_to_godot.html
https://docs.godotengine.org/en/stable/getting_started/introduction/introduction_to_godot.html
https://docs.godotengine.org/en/stable/about/system_requirements.html
https://www.gamedeveloper.com/business/user-research-utilizing-octalysis-in-game-user-research
https://www.gamedeveloper.com/business/user-research-utilizing-octalysis-in-game-user-research
https://medium.com/geekculture/how-to-make-your-own-game-engine-and-why-ddf0acbc5f3
https://medium.com/geekculture/how-to-make-your-own-game-engine-and-why-ddf0acbc5f3

Referéncias 62

HUIZINGA, J. Homo Ludens: o jogo como elemento da cultura. 2000. Acesso em: 02
Feb. 2025. Disponivel em: <http://jnsilva.ludicum.org/Huizinga HomoLudens.pdf>.
Citado na pagina 14.

HUNICKE, R.; LEBLANC, M.; ZUBEK, R. MDA: A formal approach to game
design and game research. 2004. Acesso em: 26 Jan. 2025. Disponivel em: <https:
//users.cs.northwestern.edu/~hunicke/MDA.pdf>. Citado na pégina 19.

KENT, S. L. The ultimate history of video games. Three Rivers Press, 2001. Acesso em:
21 Dec. 2024. Disponivel em: <https://archive.org/details/ultimatehistoryo0000kent /
page/n627/mode/2up>. Citado na pagina 28.

LAWRENCE, S. Tron arcade game 2002. 2002. Acesso em: 09 Nov. 2025. Disponivel em:
<https://www.csh.rit.edu/~jerry /arcade/tron/>. Citado na péagina 14.

MALANKAR, N. Software engineering in gaming over the years | Game development
| Evolution of gaming | @SCALER. 2023. Acesso em: 04 Feb. 2025. Disponivel em:
<https://www.youtube.com/watch?v=abcdel1234>. Citado na pagina 30.

PINHEIRO, D. Entenda a importancia dos testes para o sucesso em jogos digitais. 2024.
Acessado em 14 jul. 2025. Disponivel em: <https://www.testingcompany.com.br/blog/
entenda-a-importancia-dos-testes-para-o-sucesso-em-jogos-digitais>. Citado na pagina

55.

PRESSMAN;, R. S.; MAXIM, B. R. Engenharia de Software: uma abordagem profissional.
8. ed. [S.1.]: AMGH Editora, 2016. Citado na pagina 58.

Project Management Institute. Guia PMBOK: Um guia do conhecimento em
gerenciamento de projetos. 6. ed. [S.1.]: Project Management Institute, 2017. Citado na
pagina 58.

SCHWABER, K.; SUTHERLAND, J. Guia do Scrum: um guia definitivo para

o Scrum: as regras do jogo. 2013. Acesso em: 04 Nov. 2024. Disponivel em:
<https://scrumguides.org/docs/scrumguide/v1/Scrum-Guide- Portuguese-BR.pdf>.
Citado na péagina 17.

SOMMERVILLE, 1. Engenharia de Software. 9. ed. Sao Paulo: Pearson Prentice Hall,
2011. ISBN 9788576057152. Citado 2 vezes nas paginas 22 e 29.

STUDIOS, P. O que sao as Game FEngines ou motores de jo-

gos? 2014. Acesso em: 08 Jan. 2025. Disponivel em: <https:
//pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/
o-que-sao-engine-de-games-ou-motor-de-jogo/index.html>. Citado na pégina
30.

TECHNOLOGIES, U. System requirements. 2024. Acesso em: 01 Feb. 2025. Disponivel
em: <https://docs.unity3d.com/6000.0/Documentation/Manual/system-requirements.
html>. Citado na pagina 31.

ULLMANN, G. C. et al. Game engine comparative anatomy. 2025. Acesso em: 05 Feb.
2025. Disponivel em: <https://arxiv.org/pdf/2207.06473>. Citado na pagina 30.

http://jnsilva.ludicum.org/Huizinga_HomoLudens.pdf
https://users.cs.northwestern.edu/~hunicke/MDA.pdf
https://users.cs.northwestern.edu/~hunicke/MDA.pdf
https://archive.org/details/ultimatehistoryo0000kent/page/n627/mode/2up
https://archive.org/details/ultimatehistoryo0000kent/page/n627/mode/2up
https://www.csh.rit.edu/~jerry/arcade/tron/
https://www.youtube.com/watch?v=abcde1234
https://www.testingcompany.com.br/blog/entenda-a-importancia-dos-testes-para-o-sucesso-em-jogos-digitais
https://www.testingcompany.com.br/blog/entenda-a-importancia-dos-testes-para-o-sucesso-em-jogos-digitais
https://scrumguides.org/docs/scrumguide/v1/Scrum-Guide-Portuguese-BR.pdf
https://pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/o-que-sao-engine-de-games-ou-motor-de-jogo/index.html
https://pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/o-que-sao-engine-de-games-ou-motor-de-jogo/index.html
https://pixstudios.com.br/blog/novidades-de-computacao-grafica-e-games/o-que-sao-engine-de-games-ou-motor-de-jogo/index.html
https://docs.unity3d.com/6000.0/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/6000.0/Documentation/Manual/system-requirements.html
https://arxiv.org/pdf/2207.06473

Apéndices

64

APENDICE A - Apéndice 1 - Protétipos

Este apéndice apresenta os prototipos do jogo feitos no figma. Ele complementa
as informacoes discutidas no trabalho, fornecendo detalhes adicionais sobre a etapa de

idealizagao do produto final.

Figura 22 Protétipo menu inicial

Figura 22 — Menu inicial

Fonte: Elaboracao propria

Figura 23 Prototipo Selecao dos jogadores - Sala do jogo

Figura 23 — Sala de iniciagao

Serpente

iniciar

Fonte: Elaboracao propria

Figura 24 Prototipo Cena do Jogo

APENDICE A. Apéndice 1 - Protétipos

65

Figura 24 — Tela do jogo

Porco ™
Aguia 2
Baleia a8
Dragdo B8
Serpente 7

Fonte: Elaboracao propria

Figura 25 Protétipo Fim do Jogo

Figura 25 — Fim do jogo - tela de vitéria

[= =Ty’ =-]
FAguia
Baleia
Dregéo 8
Serpente 7

Porco & Wins

Fonte: Elaboracao propria

sectionMenu inicial

66

APENDICE B — Apéndice 2 - Imagem dos

poderes com icones

Durante a prototipagao a idealizacao dos poderes foi feita de forma que tente

representar bem seus feitos. A Figura 26 tem o prototipo dos poderes e suas habilidades.

Figura 26 — Icones dos poderes

Poderes

; + Velocidade para .
. + velocidade s Q Limpar mapa

. e icim e = Velocidade pars
todos outros Todos

. o + Tamanho para .I_ podem
todos outros atravessar

o mapa
Inverter contrales
. = tamanho

para todos outros
. - Andar 9@°

Fonte: Elaboracao propria

67

APENDICE C - Apéndice 3 - Tarefas do
Trello

Figura 27, quadro do trello que foi utilizado para guiar as tarefas ao longo das

semanas.

Figura 27 — Lista de tarefas

Fonte: Elaboracao propria

Anexos

69

ANEXO A - Primeiro Anexo - link do

repositério

O codigo-fonte do jogo desenvolvido neste trabalho esta disponivel no seguinte

endereco:

<https://github.com/yukioz/TCC-1_ Tron-Game>

https://github.com/yukioz/TCC-1_Tron-Game

70

ANEXO B - Segundo Anexo - link do
protétipo

A visualizacdo do protétipo estd disponivel no seguinte endereco:

<https://www.figma.com/design/AFDOFtHaKFXwTHDV Ja9CMI/Prot%C3%B3tipo---Tro
node-id=0-1&t=wq8J Gf6yV9IygoW40-1>

https://www.figma.com/design/AFDOFtHaKFXwTHDVJa9CMl/Prot%C3%B3tipo---Tron-game?node-id=0-1&t=wq8JGf6yV9ygoW40-1
https://www.figma.com/design/AFDOFtHaKFXwTHDVJa9CMl/Prot%C3%B3tipo---Tron-game?node-id=0-1&t=wq8JGf6yV9ygoW40-1

71

ANEXO C - Terceiro Anexo - Respostas

Formulario experiéncia do jogo

O arquivo com as respostas coletadas esta disponivel para consulta no link:

<https://docs.google.com /spreadsheets/d /1t Xdx6wGHI2u7x3QuYwRbvPLA21IJUAMm4AjZ
edit?resourcekey=~&gid=1051398419#¢gid=1051398419>

https://docs.google.com/spreadsheets/d/1tXdx6wGHl2u7x3QuYwRbvPLd2llJUAMm4AjZpPHemCQ/edit?resourcekey=&gid=1051398419#gid=1051398419
https://docs.google.com/spreadsheets/d/1tXdx6wGHl2u7x3QuYwRbvPLd2llJUAMm4AjZpPHemCQ/edit?resourcekey=&gid=1051398419#gid=1051398419

	Folha de rosto
	Folha de aprovação
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivo Geral
	Objetivos Específicos
	 Estrutura do Trabalho

	Metodologia Científica
	Scrum
	MDA (Mecânica, Dinâmica e Estética)
	Estratégias de Modelagem
	Modelo de Caso de Uso

	Ferramentas utilizadas
	Aseprite
	Godot e GDScript
	Trello
	GitHub

	Referencial Teórico
	História e Evolução dos Jogos Digitais
	Primeiros Jogos e o Surgimento da Indústria
	Jogos nos Dias Atuais e Tendências

	Desenvolvimento de Jogos
	Engenharia de Software Aplicada a Jogos
	Escolha da Engine para o Jogo
	Comparação entre Game Engines (Godot vs Unity)
	Análise e critérios para escolha da engine
	Conhecendo a Engine Godot
	Nodes
	Scenes

	Especificação do jogo
	Narrativa
	Objetivo do Jogo
	Estrutura da Fase
	Poderes e Habilidades
	Mecânicas e Jogabilidade
	Gamificação e Análise Crítica

	Resultados Obtidos
	Pesquisa e definição do tema
	Desenvolvimento do jogo
	Preparação do ambiente e planejamento do desenvolvimento
	Organização de arquivos e estrutura de cenas
	Interface e usabilidade
	Implementação das mecânicas do jogo
	Fluxo de telas e linha de desenvolvimento
	Principais desafios e soluções
	Testes de Funcionalidade e Desempenho

	Conclusões Gerais
	Lições aprendidas e recomendações
	Melhorias futuras

	Referências
	Apêndices
	Apêndice 1 - Protótipos
	Apêndice 2 - Imagem dos poderes com ìcones
	Apêndice 3 - Tarefas do Trello

	Anexos
	Primeiro Anexo - link do repositório
	Segundo Anexo - link do protótipo
	Terceiro Anexo - Respostas Formulário experiência do jogo

