

UNIVERSIDADE DE BRASÍLIA
FACULDADE DE CEILÂNDIA - FCE
FARMÁCIA

EDUARDA HELENA ALMEIDA DA SILVA

Polímeros como revestimento e matriz para nanomateriais contendo antibióticos para o combate a sepse: um estudo bibliométrico 2022-2023.

TRABALHO DE CONCLUSÃO DE CURSO

Brasília
11 de Dezembro de 2023

EDUARDA HELENA ALMEIDA DA SILVA

Polímeros como revestimento e matriz para nanomateriais contendo antibióticos para o combate a sepse: um estudo bibliométrico 2022-2023.

Trabalho de Conclusão de Curso apresentado ao curso de Farmácia, como parte dos requisitos necessários à obtenção do título de Bacharel em Farmácia.

Orientadora: Claure Nain Lunardi Gomes
Coorientador: Anderson de Jesus Gomes

Brasília
11 de Dezembro de 2023

Gostaria de agradecer primeiramente a Deus, por me manter de pé durante a jornada de formação para ser uma profissional farmacêutica exímia.

Meus agradecimentos aos meus pais, que me deram os caminhos das pedras e todo o suporte necessário para que eu pudesse correr atrás dos meus sonhos.

Gostaria de agradecer aos meus orientadores Prof^a Dra Claure Lunardi Nain Gomes e Prof^o Dr Anderson de Jesus Gomes por todo o conhecimento compartilhado, por toda a dedicação, comprometimento, paciência e carinho.

Meus agradecimentos a todo o corpo docente do curso de Farmácia de Universidade de Brasília, campus Ceilândia por todo o acréscimo na minha formação profissional e por todo o crescimento e desenvolvimento pessoal proporcionado.

Agradecimentos

Agradeço as agências de fomento FAPDF, CNPq, DPI-UnB e DPG-UnB pelo apoio recebido na forma de bolsa de pesquisa, e apoio ao laboratório Fotonanobiotec ao longo de minha jornada como acadêmica.

“Em breve, inventaremos algum modo de nascer de uma ideia.” - Fiódor Dostoiévski

Resumo

A Nanotecnologia é a ciência que estuda materiais em escala nanométrica (1-100nm) e tem sido alvo de pesquisa de diversos laboratórios devido a versatilidade e maleabilidade dos nanomateriais, além de um drug delivery eficiente e otimizado quando associado à diversos polímeros no processo de síntese nanoparticular. A cefepima, uma cefalosporina de 4^a geração, de amplo espectro e baixo peso molecular, é um dos medicamentos mais utilizados no tratamento da sepse. Como todos os beta-lactâmicos, a Cefepima atua na parede celular bacteriana. A cefepima tem meia-vida de cerca de 2 horas em indivíduos com função renal normal, pico de concentração plasmática em 1,4–1,6 horas quando administrada por via intravenosa, taxa de ligação às proteínas plasmáticas de cerca de 20% e eliminação preferencialmente por via urinária. Este trabalho busca realizar uma análise quantitativa de dados referentes aos temas “Cefepime” e “Polymer” através de software de análises bibliométricas chamado VOSViewer.

Palavras-chave: Cefepime. Polymer. Nanotecnologia.

Abstract

Nanotechnology is a science that studies materials on a nanometric scale (1-100nm) and has been the target of research in several laboratories due to the specificity and malleability of nanometers, in addition to efficient and optimized drug delivery when associated with various polymers in the process. nanoparticular. Cefepime, a 4th generation cephalosporin, broad spectrum and low molecular weight, is one of the most used medications in the treatment of sepsis. Like all beta-lactams, Cefepime acts on the bacterial cell wall. Cefepime has a half-life of about 2 hours in individuals with normal renal function, peak plasma concentration in 1.4–1.6 hours when administered intravenously, a plasma protein binding rate of about 20% and preferential elimination via the urinary route. This work seeks to carry out a quantitative analysis of data relating to the themes “Cefepime” and “Polymer” using bibliometric analysis software called VOSViewer.

Lista de ilustrações

Figura 1 – Captura de tela de modelo de busca no Scopus com as palavras-chave “Cefepime” e “Polymers”	11
Figura 2 – Mapa bibliométrico gerado pela busca das palavras-chave.	13
Figura 3 – Tipos de documentos encontrados na busca bibliométrica (2022-2023)	14
Figura 4 – Principais autores desta busca bibliométrica (2022-2023)	15
Figura 5 – Principais países envolvidos na publicação dos termos pesquisados.	16
Figura 6 – Relação de citações/documentos gerando o h-index10 (2022-2023).	17
Figura 7 – Comparação de ensaios aquosos de cepas bacterianas causadoras de resistência com nanopartículas impregnadas com quitosana e antibióticos comuns.	19
Figura 8 – Parâmetros estatísticos para Linearidade, limite de detecção e limite de quantificação para as Cefalosporinas estudadas.	20

Sumário

Referências	22
------------------------------	-----------

Introdução

A Nanotecnologia, sendo a ciência que estuda as propriedades de materiais/partículas em escala nanométrica, vem sendo amplamente visada em diversas áreas do conhecimento, especialmente na microbiologia e infectologia.(DIAS, Bruna de Paula et al, 2021).

A versatilidade e maleabilidade de determinados materiais possibilitam modificações estruturais e moleculares cada vez mais específicas, o que se faz extremamente favorável no contexto da antibioticoterapia, uma vez que a seletividade e especificidade da relação fármaco-alvo conferem uma preferência a este tipo de tecnologia quando se visa a redução de efeitos adversos e o aumento da eficácia de determinados medicamentos. (Wang, 2022; al., 2023; BAEZA-FONTE, 2018; SUAMTE, 2022; WU, 2014; ZALAVRAS, 2004; CHAKRABORTI, 2014; PEBDENI, 2016; JAMIL, 2013; RĂDULESCU, 2016; ISLA, 2013; E, 2014; Chen *et al.*, 2023a; Rahman *et al.*, 2022a; Turner *et al.*, 2023a; Damianaki *et al.*, 2023a; Dou *et al.*, 2023a; Shi *et al.*, 2023a; Bakhshandeh *et al.*, 2023a; Battaglia *et al.*, 2022a; Li *et al.*, 2022a; Heylen *et al.*, 2022a; Chung *et al.*, 2023a; Zhang *et al.*, 2022a; Altaf; Alkheraije, 2023a; Wang *et al.*, 2022a; Liu *et al.*, 2022a; Ismail *et al.*, 2022a; Dias *et al.*, 2022a; Nierhaus *et al.*, 2022a; Sahsuvar *et al.*, 2023a; Zhou *et al.*, 2022a; Turner *et al.*, 2023b; Dias *et al.*, 2022b; Rahman *et al.*, 2022b; Altaf; Alkheraije, 2023b; Nierhaus *et al.*, 2022b; Zhang *et al.*, 2022b; Cai *et al.*, 2022a; Zhou *et al.*, 2022b; Sahsuvar *et al.*, 2023b; Dou *et al.*, 2023b).

Dada a crescente utilização da Nanotecnologia como objeto de auxílio e de estudo associado à farmacologia, este trabalho tem como objetivo fazer uma análise quantitativa de dados relacionados à publicações de relevância nos últimos anos dos temas “sepsis” e “Polymer” utilizando um software de análise bibliométrica de dados.

A sepse é uma doença grave, podendo ser descrita como a evolução de uma infecção bacteriana à nível sistêmico e generalizado, atingindo a corrente sanguínea e diversos órgãos vitais, podendo levar o paciente à desenvolver choque séptico e ir a óbito. Em casos de sepse em Unidades de Terapia Intensiva (UTIs), o tempo e a conduta terapêutica são fatores determinantes para a sobrevivência, principalmente, de pacientes graves, uma vez que a sepse mata mais de 11 milhões de pessoas por ano, sendo cerca de 240 mil mortes apenas no Brasil, com uma taxa de mortalidade de 65% dos casos (OMS, 2021).

Um dos medicamentos mais utilizados para o tratamento da sepse é a Cefepima, um antimicrobiano beta-lactâmico da classe da cefalosporinas de quarta geração e de largo espectro. A Cefepima tem baixo peso molecular, possui baixa taxa de ligação à proteínas plasmáticas, baixa toxicidade e tempo de meia vida curto. (ISLA, Arantxazu et al, 2005). Dito isto, julgam-se necessárias novas abordagens e alternativas de utilização deste medicamento.

Justificativa

O trabalho em questão justifica-se pela necessidade de obtenção de informações acerca de novas abordagens no âmbito da nanotecnologia para utilização como estratégia para contornar mecanismos de resistência conferidos a algumas bactérias. Uma vez que a associação entre polímeros e nanopartículas vem sendo notada nos últimos anos como uma possível estratégia de forma farmacêutica para tratamento de sepse, assim neste trabalho busca-se fazer um levantamento do que há de relevante na literatura no que se diz respeito a tais parâmetros.

Objetivos

Objetivo Geral

Avaliar os artigos da literatura a respeito de uso de nanomateriais poliméricos, suas características fisico-químicas e propriedades, quando associados a medicamentos antibacterianos.

Objetivos Específicos

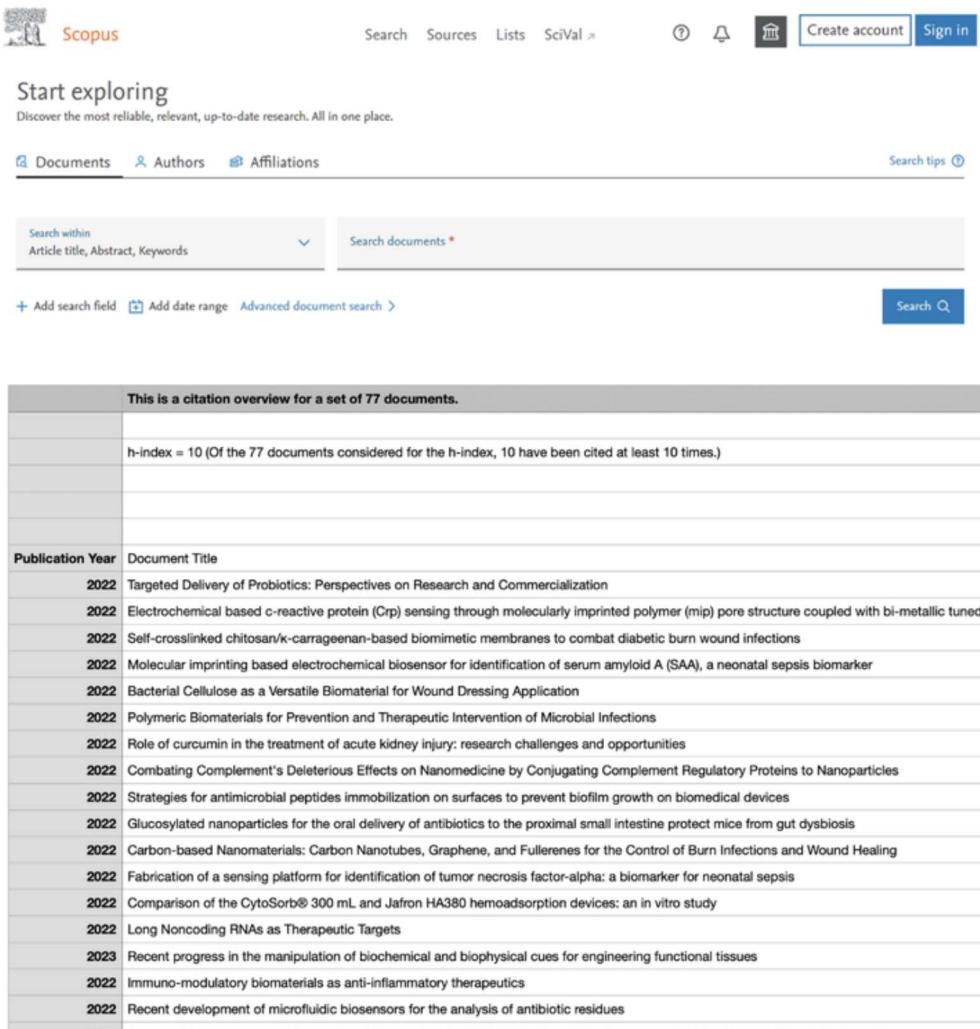
Analizar os polímeros utilizados em conjunto com o antibiótico cefepima com vistas a construção de nanoplataformas para o tratamento da sepse.

Metodologia

Na primeira etapa, utilizou-se o software VOSviwer para se fazer um levantamento bibliométrico, foram selecionados artigos publicados entre os anos de 2022 e 2023 em diversas bases de dados, como por exemplo: SciELO (Scientific Eletronic Library Online), PubMed e MEDLINE (Medical Literature Analysis and Retrieval System on-line).

Para a identificação desses artigos foi utilizado o DOI (Identificador de Objeto Digital), que é um padrão para identificação de documentos em redes digitais, o DOI pode ser aplicado a qualquer objeto digital (livros, capítulos de livros, periódicos, artigos etc.).

Na segunda etapa, a metodologia do trabalho também consistiu na análise bibliográfica. Porém para a parte de revisão bibliográfica foram realizadas buscas no banco de dados Scopus. Utilizou-se o software VOSviwer v.1.6.15 para se fazer um levantamento bibliométrico em os termos-chave podem ser identificados nos títulos dos artigos selecionados.


Foram empregadas as seguintes palavras nas línguas portuguesa e inglesa e suas combinações correspondentes: “CEFEPIIME” E “POLYMERS”.

Os critérios de inclusão para seleção dos artigos na plataforma Scopus são baseados no seu valor científico, e para avaliar esse valor foram levados em consideração os seguintes fatores de qualidade: validade, importância, originalidade, originalidade do tema, contribuição para a área temática abordada, estrutura do trabalho científico contente. obras, termos com maior taxa de ocorrência, data de publicação e autores com mais pesquisas na área. Foram considerados artigos em português e inglês, em periódicos nacionais e

internacionais. No quadro 1, é apresentado de forma ilustrativa a plataforma de busca no Scopus e os resultados dos artigos por ordem de citação.

Figura 1 – Captura de tela de modelo de busca no Scopus com as palavras-chave “Cefepime” e “Polymers”.

modelo de busca no Scopus

The screenshot shows the Scopus search interface. At the top, there is a navigation bar with the Scopus logo, search links (Search, Sources, Lists, SciVal), and account options (Create account, Sign in). Below the navigation bar, a search bar is visible with the placeholder "Search documents *". The search query "Cefepime Polymers" is entered. The results page displays a citation overview for 77 documents, including an h-index of 10. A table below shows the publications by year, with the most recent entries from 2022.

Publication Year	Document Title
2022	Targeted Delivery of Probiotics: Perspectives on Research and Commercialization
2022	Electrochemical based c-reactive protein (Crp) sensing through molecularly imprinted polymer (mip) pore structure coupled with bi-metallic tuned sensor
2022	Self-crosslinked chitosan/k-carrageenan-based biomimetic membranes to combat diabetic burn wound infections
2022	Molecular imprinting based electrochemical biosensor for identification of serum amyloid A (SAA), a neonatal sepsis biomarker
2022	Bacterial Cellulose as a Versatile Biomaterial for Wound Dressing Application
2022	Polymeric Biomaterials for Prevention and Therapeutic Intervention of Microbial Infections
2022	Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities
2022	Combating Complement's Deleterious Effects on Nanomedicine by Conjugating Complement Regulatory Proteins to Nanoparticles
2022	Strategies for antimicrobial peptides immobilization on surfaces to prevent biofilm growth on biomedical devices
2022	Glucosylated nanoparticles for the oral delivery of antibiotics to the proximal small intestine protect mice from gut dysbiosis
2022	Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing
2022	Fabrication of a sensing platform for identification of tumor necrosis factor-alpha: a biomarker for neonatal sepsis
2022	Comparison of the CytoSorb® 300 mL and Jaftron HA380 hemoadsorption devices: an in vitro study
2022	Long Noncoding RNAs as Therapeutic Targets
2023	Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues
2022	Immuno-modulatory biomaterials as anti-inflammatory therapeutics
2022	Recent development of microfluidic biosensors for the analysis of antibiotic residues

Resultados

Devido à características intrinsecamente ligadas aos sistemas baseados em polímeros como algumas característica físico-químicas, propriedades biológicas, maior superfície de contato e volume ratio, tornam essas partículas materiais altamente versáteis no que se

diz respeito à utilização das mesmas em nanosistemas baseados nos mesmos, tornando-os candidatos visados para utilização em drug delivery. (RADULESCU, 2016)

Dada o constante crescimento de casos de resistência bacteriana à diversas classes e/ou medicamentos antibacterianos, vê-se a necessidade de busca de novas alternativas para driblar tais mecanismos e oferecer tratamentos mais rápidos, seletivos e eficazes aos pacientes acometidos pela sepse.

A busca de dados na literatura para melhor entendimento acerca da utilização da cefepima associada a diversos polímeros para nanoplatformas são de grande importância para o planejamento de novas abordagens no tratamento da sepse.

Coleta dos dados e análise no software VosViewer

A pesquisa dos termos no *VOSViewer* gerou, inicialmente 77 artigos publicados com os temas “sepsis” e “Polymer”, no período de 2022-2023 (Sahsuvar *et al.*, 2023c; Zhou *et al.*, 2022c; Dou *et al.*, 2023c; Altaf; Alkheraije, 2023c; Dias *et al.*, 2022c; Rahman *et al.*, 2022c; Nierhaus *et al.*, 2022c; Zhang *et al.*, 2022c; Cai *et al.*, 2022b; Ismail *et al.*, 2022b; Chen *et al.*, 2023b; Turner *et al.*, 2023c; Bakhshandeh *et al.*, 2023b; Li *et al.*, 2022b; Damianaki *et al.*, 2023b; Heylen *et al.*, 2022b; Battaglia *et al.*, 2022b; Shi *et al.*, 2023b; Liu *et al.*, 2022b; Wang *et al.*, 2022b; Chung *et al.*, 2023b)

Como resultado da pesquisa bibliométrica foi criado um mapa das palavras-chave listadas nos periódicos, extraímos o título e os campos do resumo, nos quais a cor se relaciona a temas de pesquisa semelhantes e a distância entre os círculos se relaciona às ocorrências.

Na Figura 2, observam-se os *clusters* - esferas indicando o volume e correlação dos temas pesquisados e correlatos mais frequentemente citados em relação a quantidade de publicações nos últimos dois anos, gerando o mapa bibliométrico das palavras chaves utilizadas.

Figura 2 – Mapa bibliométrico gerado pela busca das palavras-chave.

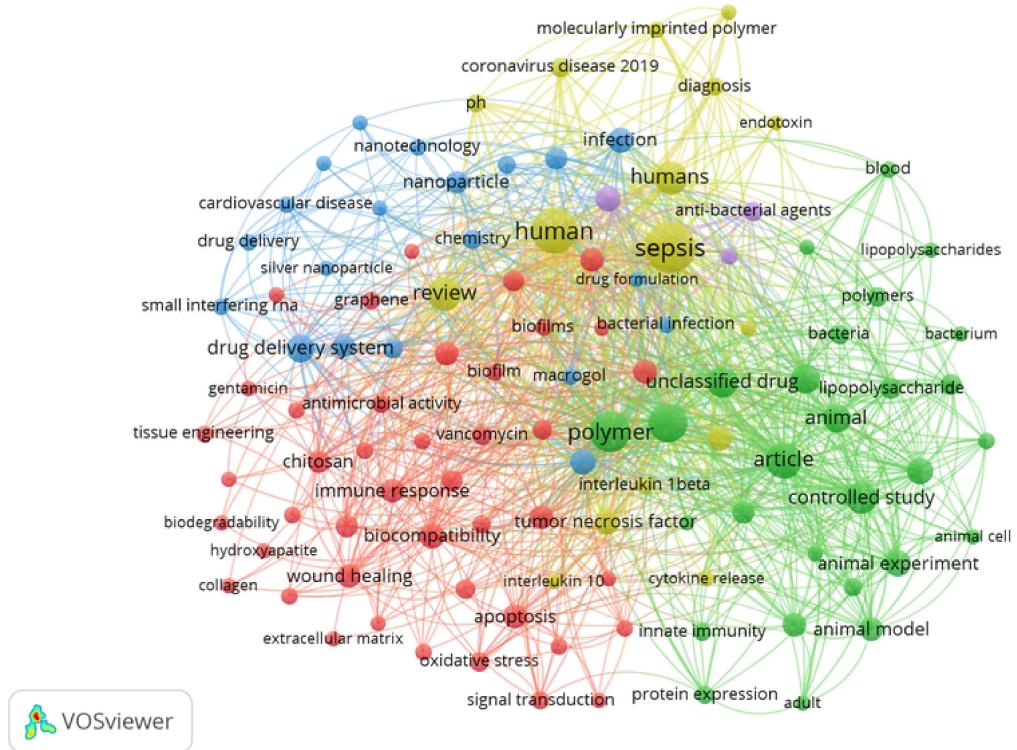
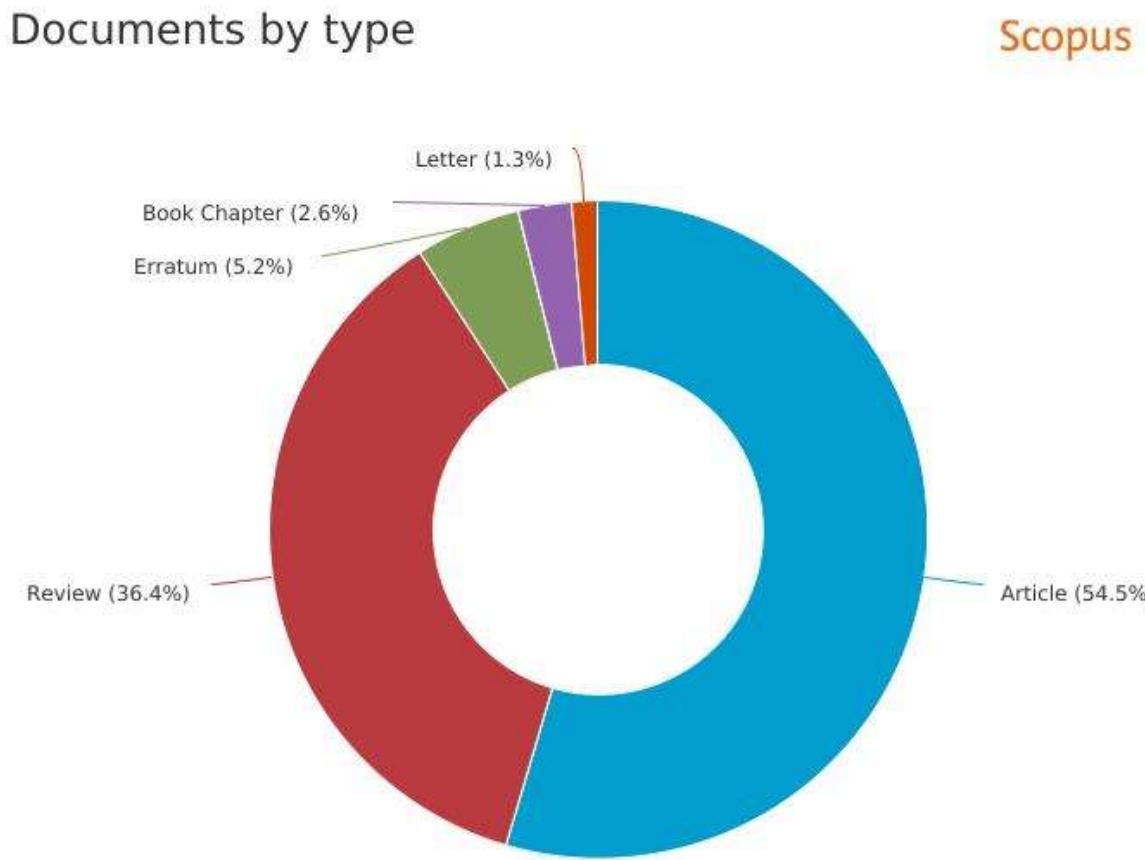
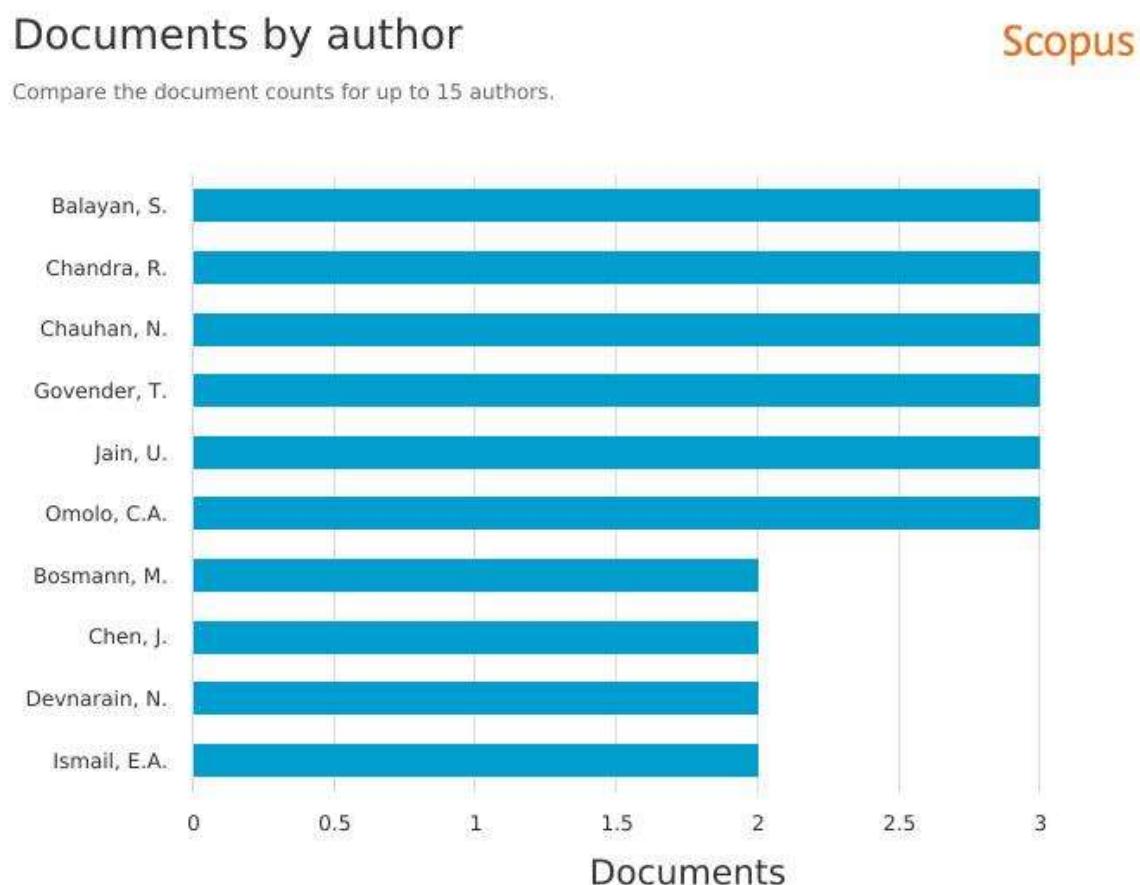
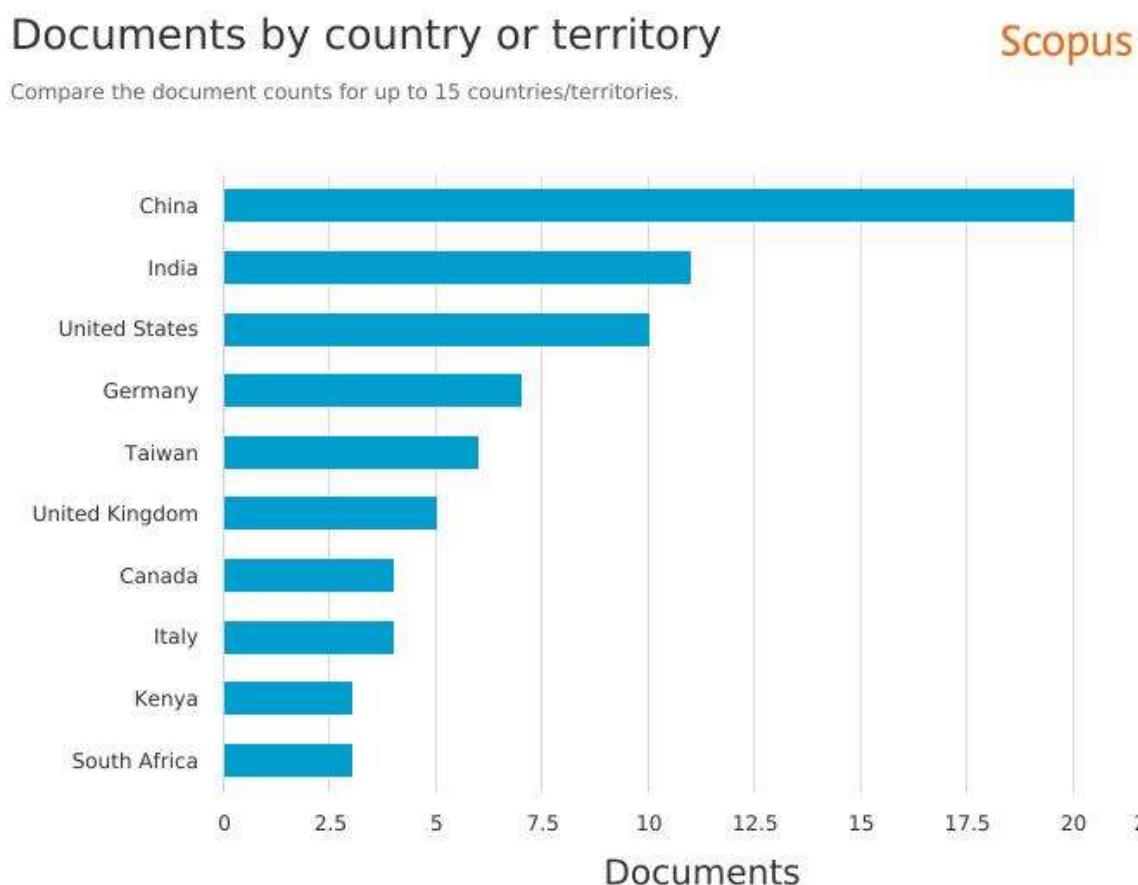




Figura 3 – Tipos de documentos encontrados na busca bibliométrica (2022-2023)



Copyright © 2023 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Figura 4 – Principais autores desta busca bibliométrica (2022-2023)

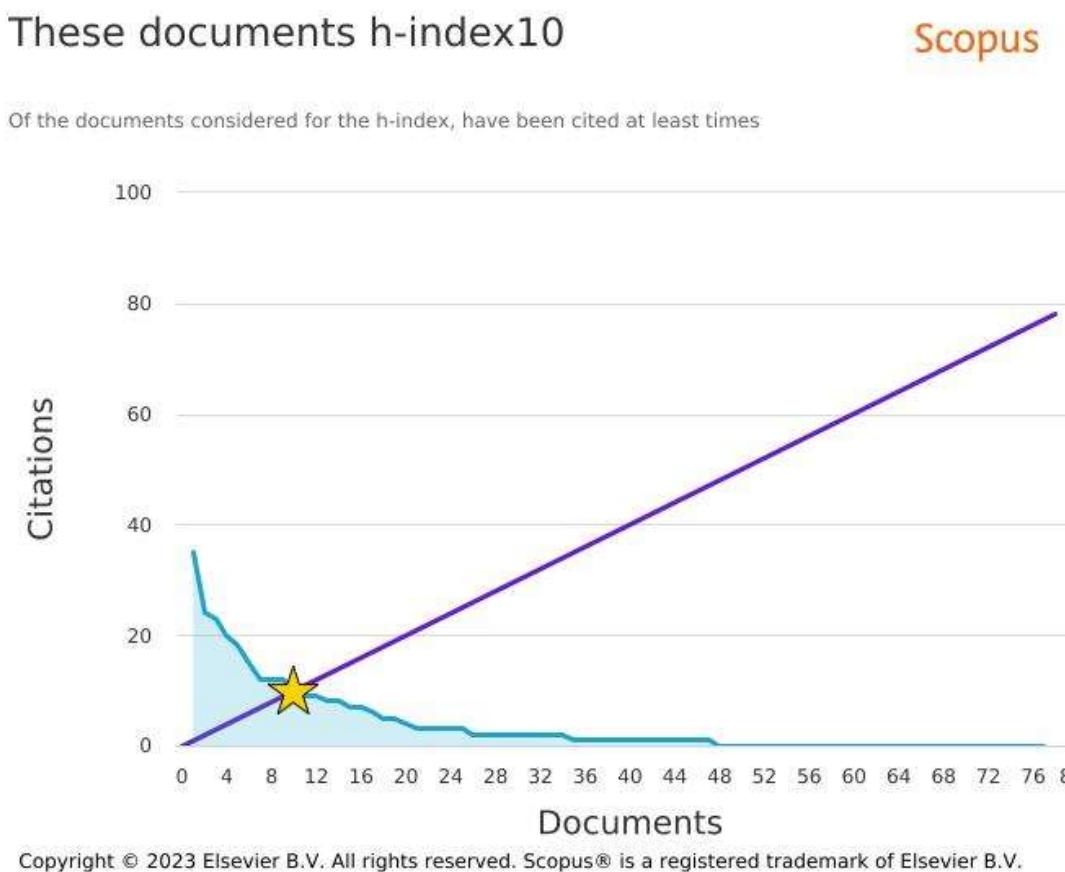


Figura 5 – Principais países envolvidos na publicação dos termos pesquisados.

Copyright © 2023 Elsevier B.V. All rights reserved. Scopus® is a registered trademark of Elsevier B.V.

Figura 6 – Relação de citações/documentos gerando o h-index10 (2022-2023).

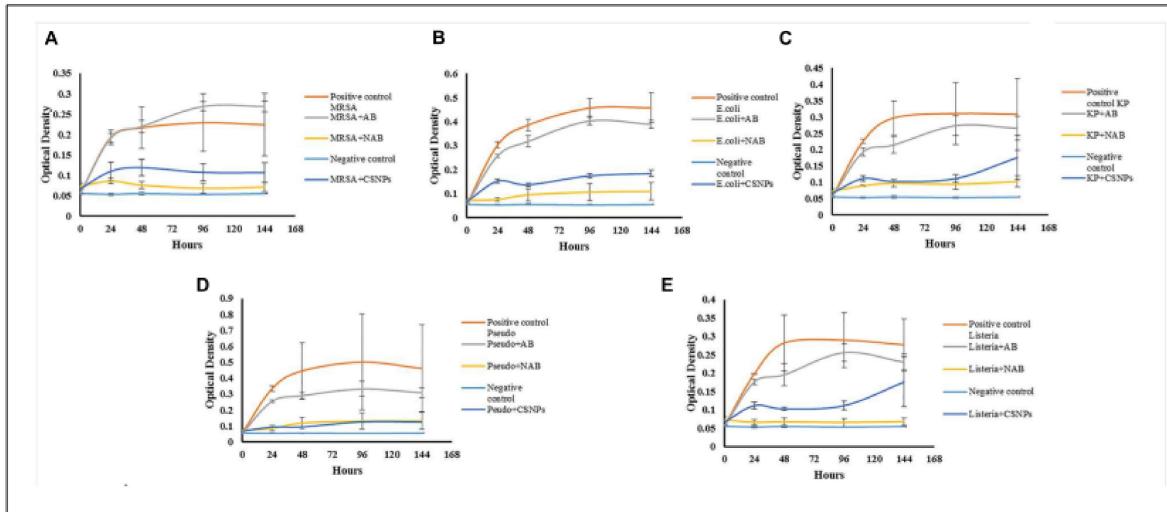
Entre os artigos encontrados, notou-se uma grande utilização da nanotecnologia como um sistema de drug delivery, onde os antibióticos da classe das Cefalosporinas, uma vez que as mesmas são protocoladas por diretrizes clínicas como drogas de primeira escolha para tratar certas cepas de bactérias, como objeto de estudo para associação à polímeros na intenção de construção de nanossistemas e nanoplatformas no tratamento da sepse. Atentando-se ao fato de que as Cefalosporinas são antimicrobianos beta-lactâmicos, espera-se que suas características farmacodinâmicas sejam um atrativo como alvo de estudos para síntese de antimicrobianos, especialmente para a área de nanotecnologia e polímeros.

Na figura 3, observamos que os tipos de documentos que possuem mais volume de publicações são artigos e revisões. Na figura 4 podemos ver a relação de documentos por autor e na figura 5 podemos observar os principais países envolvidos na publicação dos termos chave pesquisados. Já na figura 5, podemos observar o gráfico h-index-10, onde há os artigos mais citados que foram selecionados pela busca no VOSViewer.

Revisão Bibliográfica(Dinger, 2006)

A etapa de revisão da literatura foi realizada com a leitura dos principais artigos selecionados a partir do índice h obtido das buscas bibliográficas e posterior análise no

Vosviewer. Dentre as diversas abordagens, dividimos em tópicos principais da revisão, conforme apresentados a seguir.


Estabilidade do revestimento e das nanopartículas.

Em Jamil (2016), utilizou-se do antibiótico Cefotaxima impregnada com partículas de quitosana como objeto de estudo para o combate do biofilme na resistência bacteriana, descrevendo os Nanoantibióticos (NABs) como estratégias “de novo” contra patógenos multirresistentes. Neste estudo, foi analisado o parâmetro de carga superficial através da medida do potencial zeta, como um indicador da estabilidade ou não da nanopartícula produzida. Foi relatado que o valor encontrado era de +50 mV, em acordo com valores descritos na literatura. A estabilidade é relacionada ao potencial zeta, pois este é um indicador de estabilidade da solução, uma vez que partículas que formam menos flocações e agregações conferem uma maior repulsão entre as cargas superficiais, tornando a solução mais estável. Na figura 7, podemos observar, de forma ilustrativa o trabalho de Jamil 2016, onde há diversos gráficos comparativos de habilidades antipatogênicas entre antibióticos e a cefotaxima impregnada com partículas de quitosana.

Em Pebdeni (2016), faz-se uma síntese de nanofibras de quitosana/PEO/sílica associadas à cefepima como um nanossistema de liberação controlada para implantes, com o intuito de superar as desvantagens mecânicas inerentes ao material da sílica, uma vez que, apesar de serem moléculas altamente maleáveis e com alta superfície de contato. É conhecido na literatura que a superfície de contato é uma característica muito importante para as nanopartículas, uma vez que o tamanho da partícula indica uma maior atividade da partícula (JAMIL, 2016), assim a sílica, por si, foi demonstrado que esta não se comporta de forma favorável em sistemas liberação de longo período, limitando sua atuação a sistemas de velocidade mais rápidos. Ao realizarem a associação com a quitosana, foi possível observar um maior tempo de atuação da cefepima e maior biocompatibilidade, uma vez que se trata de um polímero natural. Pode-se observar, na figura 6, diversos gráficos, cada um com uma cepa bacteriana responsável por resistência, em soluções aquosas, comparando a ação antimicrobiana das nanopartículas impregnadas com quitosana em relação a ação antimicrobiana de antibióticos já em uso pela indústria.

Em CHAKRABORTI, Soumyananda et al, 2014, há a síntese de nanopartículas de óxido de zinco (ZnO-NP) através da síntese alcóolica utilizando acetato de zinco como precursor, com Polietilamina (PEI) para recobrimento particular contra um gene de uma bactéria que apresenta alta resistência antibacteriana.

Figura 7 – Comparação de ensaios aquosos de cepas bacterianas causadoras de resistência com nanopartículas impregnadas com quitosana e antibióticos comuns.

JAMIL, Bushra et al. Development of cefotaxime impregnated chitosan as nano-antibiotics: De novo strategy to combat biofilm forming multi-drug resistant pathogens. *Frontiers in microbiology*, v. 7, p. 330, 2016.

Propriedades poliméricas.

Uma das vantagens e motivo da escolha do polímero PLGA Poli (ácido lático-co-ácido glicólico) como objeto de estudo de diversos estudos, sustenta-se no fato deste polímero ser altamente biocompatível e biodegradável. Seus produtos de degradação são o ácido poli-glicólico (PGA) e o ácido poli-láctico (PLA), que são eliminados pelo organismo. O PLGA é solúvel em água, metanol, etanol e parcialmente solúvel em alguns outros solventes polares (Wu, 2014).

O PLGA possui uma grande similaridade com as camadas da pele humana, devido a isto é amplamente utilizado na engenharia tecidual e em sistemas de liberação de fármacos na pele, em tecidos ósseos, articulares e cartilaginosos. Além disso, possuem a capacidade de recrutar células que atuam na cicatrização tecidual (SUAMTE, 2022). Em paralelo ao estudo de Suamte, 2022, podemos citar ZALAVRAS, 2004, onde utiliza-se o PMMA como veículo para antibióticos na antibioticoterapia localizada para osteomielite e fraturas abertas.

Já em RADULESKU, utiliza-se polímeros derivados de meios naturais, usando a quitina e alginato de sódio, carregados com antibióticos comerciais, utilizando, neste caso, a cefepima e a cefuroxima para administração antimicrobiana local.

Em BAEZA-FONTE, 2015, sintetizam-se Molecularly Imprinted polymers (MIPs) para determinação de cefalosporinas por UHPLC-DAD, utilizando ácido metacrílico com monômero funcional. 8, podemos observar, de forma ilustrativa, o trabalho de BAEZA-FONTE,

2015, onde em uma tabela de parâmetros estatísticos de linearidade, limite de detecção (LOD) e limite de quantificação de cada tipo de cefalosporina associada ao método de MIPs.

Em Junjun Chen, 2023, usa-se um co-polímero hemocompatível baseado, mime-tizando as ligações histidina-histidina dos LPS e uma unidade dipolar de N-Óxido de trimetilamina. Os lipopolissacarídeos (LPS), compõem grande parte da estrutura membranar bacteriana, nas bactérias gram negativas, conferindo proteção e integridade estrutural. O polímero conseguiu remover os LPS do sangue e de diversas bactérias tanto gram positivas quanto gram negativas. A vantagem deste novo mecanismo dá-se pelo clearance de LPS no sangue antes mesmo da identificação do patógeno, o que otimizaria o tempo e a sobrevivência dos pacientes acometidos pela sepse bacteriana, uma vez que, nesta doença, o tempo é um fator determinante no desfecho clínico.

Já em Daquan Wang, 2022., obtém-se uma base teórica de utilização de nanopartículas de ferro zero-valente associadas à carboximetilcelulose para reduzir lesões cardíacas induzidas pela sepse, uma vez que as nanopartículas atuaram de maneira a reduzir o stress oxidativo celular e aumentando a atividade mitocondrial, além da ativação da via AMPK.

Infere-se que, os estudos são cada vez mais conduzidos para a utilização de polímeros naturais e biocompatíveis, o que caracteriza um avanço promissor para a área uma vez que a maior problemática dos nanoantibióticos são os testes in vivo. Além disso, há uma ampla utilização de nanopartículas metálicas no que se diz respeito ao stress oxidativo celular.

Figura 8 – Parâmetros estatísticos para Linearidade, limite de detecção e limite de quantificação para as Cefalosporinas estudadas.

Table II. Statistic Parameters for Linearity, LOD and LOQ for all the Cephalosporins

Cephalosporin	R	RSD (%)	P-value	P-value	LOD (ng L ⁻¹)	LOQ (ng L ⁻¹)
EPI	0.996	9.9	0.68	0.52	7	20
AZI	0.996	9.1	0.82	0.96	3	8
TAX	0.999	3.0	0.95	0.90	6	19
ALE	0.999	4.9	0.86	0.68	12	20
AZO	0.990	9.8	0.68	0.95	9	28

Referências Bibliográficas

AL., J. C. et. Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. **Advanced Materials**, v. 35, n. 33, p. 230 – 256, 08 2023.

ALTAF, S.; ALKHERAIJE, K. A. Cell membrane-coated nanoparticles: An emerging antibacterial platform for pathogens of food animals. **Frontiers in Veterinary Science, Frontiers Media S.A.**, v. 10, 2023a. ISSN 22971769

BAEZA-FONTE, A. N. et al. Determination of cephalosporins by UHPLC-DAD using molecularly imprinted polymers. **Journal of chromatographic science**, v. 56, n. 2, p. 187 – 193, 02 2018.

BAKHSHANDEH, B. et al. Recent progress in the manipulation of biochemical and biophysical cues for engineering functional tissues. **Bioengineering and Translational Medicine**, John Wiley and Sons Inc, v. 8, n. 2, 2023a. ISSN 23806761.

BATTAGLIA, F. et al. Molecularly imprinted polymers as effective capturing receptors in a pseudo-ELISA immunoassay for procalcitonin detection in veterinary species. **Analytical Methods, Royal Society of Chemistry**, v. 15, n. 1, p. 27 – 35, 2022a. ISSN 17599660.

CAI, Y. et al. Role of curcumin in the treatment of acute kidney injury: research challenges and opportunities. **Phytomedicine**, Elsevier GmbH, v. 104, 2022a. ISSN 09447113.

CHAKRABORTI, S. et al. Bactericidal effect of polyethyleneimine capped ZnO nanoparticles on multiple antibiotic resistant bacteria harboring genes of high-pathogenicity island. **Colloids and Surfaces B: Biointerfaces**, v. 121, n. , p. 1 – 9, 5 2014.

CHEN, J. et al. Broad-Spectrum Clearance of Lipopolysaccharides from Blood Based on a Hemocompatible Dihistidine Polymer. **ACS Applied Materials and Interfaces, American Chemical Society**, v. 15, n. 27, p. 32251 – 32261, 2023b. ISSN 19448244.

CHUNG, F. et al. Natural nanogels crosslinked with S-benzyl-L-cysteine exhibit potent antibacterial activity. **Biomaterials Advances**, Elsevier Ltd, v. 153, 2023a. ISSN 27729508.

DAMIANAKI, A. et al. Expanding the potential therapeutic options of hemoperfusion in the era of improved sorbent biocompatibility. **Kidney Research and Clinical Practice, The Korean Society of Nephrology**, v. 42, n. 3, p. 298 – 311, 2023a. ISSN 22119132.

DIAS, F. G. G. et al. Topical formulations based on polyhexamethylene hydrochloride guanidine for surgical field antisepsis. **Turkish Journal of Veterinary and Animal Sciences**, TUBITAK, v. 46, n. 3, p. 411 – 419, 2022a. ISSN 13000128.

DINGER, D. Medidas de Pontos Isoelétricos sem o Uso de Analisador de Potencial Zeta. **Cerâmica Industrial**, v. 11, n. 3, p. 23 – 30, 06 2006.

DOU, W. et al. Charge-biased nanofibrous membranes with uniform charge distribution and hemocompatibility for enhanced selective adsorption of endotoxin from plasma. **Journal of Membrane Science**, Elsevier B.V., v. 666, 2023b. ISSN 03767388.

E, F. M. Da nanociênci à nanotecnologia - A realidade do futuro. **Revista de Ciência Elementar**, v. 2, n. 3, p. 1 – 5, 1 2014.

HEYLEN, R. A. et al. Optimisation of a lozenge-based sensor for detecting impending blockage of urinary catheters. **Biosensors and Bioelectronics**, Elsevier Ltd, v. 197, 2022a. ISSN 09565663.

ISLA, A. et al. Influence of Renal Function on the Pharmacokinetics of Piperacillin/Tazobactam in Intensive Care Unit Patients During Continuous Venovenous Hemofiltration. **American Journal of Clinical Pharmacology**, v. 45, n. 2, p. 1 – 8, 03 2013.

ISMAIL, E. A. et al. Stimuli-responsive and biomimetic delivery systems for sepsis and related complications. **Journal of Controlled Release**, Elsevier B.V., v. 352, p. 1048 – 1070, 2022a. ISSN 01683659.

JAMIL, B. et al. Development of cefotaxime impregnated chitosan as nanoantibiotics: De novo strategy to combat biofilm forming multi-drug resistant pathogens. **Frontiers in microbiology**, v. 7, n. 330, p. 1 – 11, 03 2013.

LI, J. et al. CTRP6 suppresses neutrophil extracellular traps formation to ameliorate sepsis-induced lung injury through inactivation of ERK pathway. **Allergologia et Immunopathologia**, Codon Publications, v. 50, n. 6, p. 53 – 59, 2022a. ISSN 03010546.

LIU, C. et al. Interstitial Control-Released Polymer Carrying a Targeting Small-Molecule Drug Reduces PD-L1 and MGMT Expression in Recurrent High-Grade Gliomas with TMZ Resistance. **Cancers**, MDPI, v. 14, n. 4, 2022a. ISSN 20726694.

NIERHAUS, A. et al. Comparison of the CytoSorb® 300 mL and Jafron HA380 hemoabsorption devices: an in vitro study. **Minimally Invasive Therapy and Allied Technologies**, Taylor and Francis Ltd., v. 31, n. 7, p. 1058 – 1065, 2022a. ISSN 13645706.

PEBDENI, A. B. Synthesis of chitosan/PEO/silica nanofiber coating for controlled release of cefepime from implants. **RSC advances**, v. 6, n. 29, p. 1 – 12, 02 2016.

RAHMAN, M. A. et al. Carbon-based Nanomaterials: Carbon Nanotubes, Graphene, and Fullerenes for the Control of Burn Infections and Wound Healing. **Current Pharmaceutical Biotechnology**, Bentham Science Publishers, Sharjah, v. 23, n. 12, p. 1483 – 1496, 2022a. ISSN 13892010.

RADULESCU, M. et al. Fabrication, characterization, and evaluation of bionanocomposites based on natural polymers and antibiotics for wound healing applications. **Molecules**, v. 21, n. 6, p. 1 – 14, 06 2016.

SAHSUVAR, S. et al. In vitro efficacy of different PEGylation designs on cathelicidin-like peptide with high antibacterial and antifungal activity. **Scientific Reports**, Nature Research, v. 13, n. 1, 2023a. ISSN 20452322.

SHI, Z. et al. Specific Clearance of Lipopolysaccharide from Blood Based on Peptide Bottlebrush Polymer for Sepsis Therapy. **Advanced Materials**, John Wiley and Sons Inc, v. 35, n. 33, 2023b. ISSN 09359648

SUAMTE, L. Design of 3D smart scaffolds using natural, synthetic and hybrid derived polymers for skin regenerative applications. **Smart Materials in Medicine**, v. 4, n. ., p. 243 – 256, 09 2022.

TURNER, S. et al. Gram-Positive Bacteria Cell Wall Peptidoglycan Polymers Activate Human Dendritic Cells to Produce IL-23 and IL-1 β and Promote TH17 Cell Differentiation. **Microorganisms**, MDPI, v. 11, n. 1, 2023a. ISSN 20762607

WANG, D. et al. Protection of zero-valent iron nanoparticles against sepsis and septic heart failure. **Journal of Nanobiotechnology**, BioMed Central Ltd, v. 20, n. 1, 2022b. ISSN 14773155.

WU, J. et al. Synthesis of antibacterial TiO₂/PLGA composite biofilms. **Nanomedicine: Nanotechnology, Biology and Medicine**, v. 10, n. 5, p. 1097 – 1107, 07 2014.

ZALAVRAS, C. G. Local antibiotic therapy in the treatment of open fractures and osteomyelitis. **Clinical Orthopaedics and Related Research**, v. 427, n. , p. 86 – 93, 10 2004.

ZHOU, Y. et al. A Cu(II) coordination polymer: Crystal structure and therapeutic effect on sepsis. **Journal of the Indian Chemical Society**, Elsevier B.V., v. 99, n. 9, 2022c. ISSN 00194522.