
Universidade de Brasília – UnB
Faculdade de Ciências e Tecnologias em Engenharia – FCTE

Engenharia de Software

Projeto e Desenvolvimento do software
TROPA: Teatro de Operações de Airsoft

Autor: Erick Giffoni Felicíssimo
Orientador: Prof. Dr. Daniel Sundfeld

Brasília, DF
2025

Erick Giffoni Felicíssimo

Projeto e Desenvolvimento do software TROPA: Teatro
de Operações de Airsoft

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software.

Universidade de Brasília – UnB

Faculdade de Ciências e Tecnologias em Engenharia – FCTE

Orientador: Prof. Dr. Daniel Sundfeld

Brasília, DF
2025

Erick Giffoni Felicíssimo
Projeto e Desenvolvimento do software TROPA: Teatro de Operações de Air-

soft/ Erick Giffoni Felicíssimo. – Brasília, DF, 2025-
96 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Daniel Sundfeld

Trabalho de Conclusão de Curso –
Universidade de Brasília – UnB
Faculdade de Ciências e Tecnologias em Engenharia – FCTE , 2025.
1. . 2. . I. Prof. Dr. Daniel Sundfeld. II. Universidade de Brasília. III. Faculdade

de Ciências e Tecnologias em Engenharia. IV. Projeto e Desenvolvimento do
software TROPA: Teatro de Operações de Airsoft

CDU 02:141:005.6

Erick Giffoni Felicíssimo

Projeto e Desenvolvimento do software TROPA: Teatro
de Operações de Airsoft

Monografia submetida ao curso de graduação
em Engenharia de Software da Universidade
de Brasília, como requisito parcial para ob-
tenção do Título de Bacharel em Engenharia
de Software.

Trabalho aprovado. Brasília, DF, 15 de julho de 2025:

Prof. Dr. Daniel Sundfeld
Orientador

Prof. Dr. Andre Luiz Peron Martins
Lanna

Convidado 1

Prof. Dr. John Lenon Cardoso
Gardenghi
Convidado 2

Brasília, DF
2025

Este trabalho é dedicado a todos aqueles que, assim como eu,
querem fazer do mundo um lugar melhor.

Agradecimentos

A Deus, pelo dom gratuito da vida.

Ao meu amado pai, por tudo que consigo e que não consigo expressar em palavras.

À minha família, a qual sempre amei.

Aos meus amigos, que são poucos.

Aos meus colegas que, cada um à própria maneira, me ajudaram a chegar até aqui.

Aos meus professores, peças essenciais na minha formação.

À minha amada Katriely por, com amor e ternura, acreditar em mim, me apoiar
e incentivar.

A mim, pela perseverança, dedicação, humildade, pelos erros e acertos. Pela fé em
Jesus, e por acreditar que consigo, mesmo quando os ventos não parecem favoráveis.

Jesus respondeu:
– Eu sou o caminho, a verdade
e a vida; ninguém vem ao Pai

senão por mim.
(Bíblia Sagrada, João 14, 6)

Resumo
O Airsoft é um esporte de simulação tática que tem crescido no Brasil, exigindo cada
vez mais ferramentas de apoio à sua organização. Diante desse cenário, este trabalho tem
como objetivo o projeto completo e o desenvolvimento do MVP do software chamado
TROPA: Teatro de Operações de Airsoft. A aplicação visa oferecer suporte à realização
de jogos, com funcionalidades como gestão de operadores, eventos, equipes e bilheteria
digital. Para isso, adotou-se uma metodologia baseada nas boas práticas da Engenharia
de Software, com foco na definição de requisitos, elaboração de documentação arquitetu-
ral e uso de tecnologias modernas como NestJS, React Native com Expo, PostgreSQL,
Docker, Prisma e Stripe. O sistema foi estruturado de forma modular e implantado na
plataforma Azure. Foi testado por usuários reais, cujos feedbacks contribuíram para vali-
dar a proposta e identificar oportunidades de melhoria. Os resultados demonstram que os
principais requisitos funcionais e não funcionais foram atendidos, ainda que parcialmente
em alguns casos, e que o MVP foi bem recebido pelo público-alvo. O trabalho também
discute desafios enfrentados e apresenta direções futuras, como a migração para micros-
serviços, implementação de um gateway seguro, integração com redes sociais e lançamento
da versão web.

Palavras-chave: Airsoft. Tropa. Desenvolvimento de Software.

Abstract
Airsoft is a tactical simulation sport that has been growing in popularity in Brazil, creat-
ing a growing demand for tools that support its organization. In this context, this work
aims to design and develop the MVP of a software called TROPA: Theater of Airsoft
Operations. The application is intended to support the management of games, includ-
ing functionalities such as player and team management, event scheduling, and digital
ticketing. The methodology followed software engineering best practices, emphasizing re-
quirements definition, architectural documentation, and the use of modern technologies
such as NestJS, React Native with Expo, PostgreSQL, Docker, Prisma, and Stripe. The
system was built with a modular architecture, deployed on the Azure platform, and tested
by real users. Their feedback helped validate the proposal and identify areas for improve-
ment. The results show that the main functional and non-functional requirements were
met—at least partially—and that the MVP was positively received by the target audi-
ence. This work also discusses the challenges encountered and outlines future directions,
including a migration to microservices, implementation of a secure gateway, social features
integration, and development of a web version.

Key-words: Airsoft. Tropa. Software Development.

Lista de ilustrações

Figura 1 – Épicos e Histórias de Usuário . 40
Figura 2 – Diagrama de Casos de Uso do Usuário Operador 42
Figura 3 – Diagrama de Casos de Uso do Usuário Organizador 43
Figura 4 – Diagrama de Casos de Uso do Usuário Administrador 43
Figura 5 – Diagrama de Casos de Uso do Serviço Externo para Envio de E-mails . 44
Figura 6 – SIG dos Requisitos Não-Funcionais de Qualidade 53
Figura 7 – SIG dos Requisitos Não-Funcionais de Segurança 53
Figura 8 – Diagrama relacional da arquitetura . 56
Figura 9 – Diagrama de pacotes do front-end . 58
Figura 10 – Diagrama de pacotes do back-end . 58
Figura 11 – Diagrama de pacotes genérico para os microsserviços do TROPA 60
Figura 12 – Diagrama de classes . 61
Figura 13 – Diagrama de comunicação genérico para o TROPA 61
Figura 14 – Diagrama de implantação do sistema TROPA 63
Figura 15 – Camadas do TROPA . 64
Figura 16 – Diagrama de componentes . 64
Figura 17 – DE-R do TROPA . 65
Figura 18 – DLD do TROPA . 66
Figura 19 – Diagrama de arquitetura e recursos de implantação do MVP TROPA . 75
Figura 20 – Tela de Operações . 76
Figura 21 – Tela de Visualização de uma Operação 77
Figura 22 – Tela de Perfil de Operador . 78
Figura 23 – Tela de Perfil de Organizador . 79
Figura 24 – Tela de Perfil de Ranger . 80
Figura 25 – Tela da Carteira Virtual . 81
Figura 26 – Tela de Visualização de um Ingresso 82
Figura 27 – Tela de Times . 83

Lista de tabelas

Tabela 1 – Comparação entre TypeScript e JavaScript 23
Tabela 2 – Tipos de usuários do sistema TROPA, suas descrições e funções 34
Tabela 3 – 5W2H . 36
Tabela 4 – Posição do Produto . 36
Tabela 5 – Requisitos de Qualidade . 51
Tabela 6 – Alguns endpoints do backend . 68
Tabela 7 – Comparação de feedbacks dos usuários do aplicativo TROPA 89

Lista de abreviaturas e siglas

API Application Programming Interface (Interface de Programação de Apli-
cações)

AWS Amazon Web Services (Serviços Web da Amazon)

CIA Confidentiality, Integrity, Availability (Confidencialidade, Integridade,
Disponibilidade)

DER Diagrama de Entidade e Relacionamento (Entity-Relationship Diagram)

DLD Diagrama Lógico de Dados (Logical Data Diagram)

HTTPS Hypertext Transfer Protocol Secure (Protocolo Seguro de Transferência
de Hipertexto)

MQTTS Message Queuing Telemetry Transport Secure (Protocolo Seguro para
Transporte de Mensagens)

MVC Model–View–Controller (Modelo–Visão–Controlador)

NIST National Institute of Standards and Technology (Instituto Nacional de
Padrões e Tecnologia dos Estados Unidos da América)

ORM Object-Relational Mapping (Mapeador Relacional de Objetos)

SDL Security Development Lifecycle (Ciclo de Vida de Desenvolvimento de
Segurança)

SQL Structured Query Language (Linguagem de Consulta Estruturada)

SSE Secure Software Engineering (Engenharia de Software Segura)

STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, Elevation of Privilege (Falsificação, Adulteração, Repúdio, Di-
vulgação de Informação, Negação de Serviço, Elevação de Privilégio)

TROPA Teatro de Operações de Airsoft

Sumário

1 INTRODUÇÃO . 15
1.1 Objetivo . 16
1.1.1 Objetivos específicos . 16
1.2 Metodologia . 16
1.3 Organização . 17

2 DESENVOLVIMENTO . 18
2.1 Airsoft . 18
2.1.1 Introdução . 18
2.1.2 História do Airsoft . 18
2.1.3 Regras e Funcionamento . 19
2.1.3.1 Modalidades de Jogo . 19
2.1.3.2 Honestidade e Autorregulação . 19
2.1.3.3 Eliminação e Sinalização . 19
2.1.4 Equipamentos e Segurança . 19
2.1.4.1 Simulacros de Armas . 20
2.1.4.2 Equipamentos de Proteção Individual (EPIs) 20
2.1.4.3 Regras de Segurança . 20
2.1.5 Airsoft no Brasil . 21
2.1.5.1 Regulamentação Legal . 21
2.1.5.2 Crescimento e Comunidade . 21
2.1.6 Conclusão . 22
2.2 Suporte Tecnológico . 22
2.2.1 TypeScript . 22
2.2.2 Framework Backend: NestJS . 23
2.2.3 Framework Frontend: React Native e Expo 24
2.2.4 Banco de Dados: PostgreSQL . 24
2.2.5 Mensageria: RabbitMQ . 25
2.2.6 Documentação de API: Swagger . 26
2.2.7 Serviços de E-mail . 27
2.2.7.1 SendGrid . 27
2.2.7.2 Mailchimp . 27
2.2.8 Plataforma de Pagamentos: Stripe . 28
2.2.9 Ferramentas Auxiliares . 29
2.2.9.1 Controle de Versão: Git e GitHub . 29

2.2.9.2 Containerização: Docker e Docker Compose 29
2.2.9.3 Editor de Código: Visual Studio Code (VSCode) 30
2.2.9.4 Design: Whimsical . 30
2.3 Metodologia 5W2H . 30

3 RESULTADOS E DISCUSSÃO . 32
3.1 TROPA: Visão . 32
3.1.1 Escopo . 32
3.1.2 Descrição dos Usuários . 34
3.1.3 Posicionamento . 34
3.1.3.1 Oportunidade de Negócios . 34
3.1.3.2 Alternativas e Concorrências . 35
3.1.3.3 Descrição do Problema com 5W2H . 35
3.1.3.4 Instrução de Posição do Produto . 36
3.1.4 Visão Geral do Produto . 36
3.1.4.1 Estimativa de Custos . 37
3.1.4.1.1 Custos de Operação . 37

3.1.4.2 Propriedade Intelectual . 37
3.1.5 Recursos do Produto . 38
3.1.6 Restrições do Produto . 38
3.2 TROPA: Requisitos . 38
3.2.1 Histórias de Usuário . 40
3.2.2 Casos de Uso . 40
3.2.3 Especificação dos Casos de Uso . 44
3.2.3.1 UC 2: Participar em jogos/eventos . 44
3.2.3.2 UC 10: Comprar Ingresso . 45
3.2.3.3 UC 17: Visualizar jogos/eventos . 46
3.2.3.4 UC 8: Processar Transações . 47
3.2.3.5 UC 11: Organizar jogos/eventos . 48
3.2.3.6 UC 16: Validar ingresso . 49
3.2.3.7 UC 18: Fazer moderação de conteúdo . 49
3.2.3.8 UC 19: Gerenciar o sistema . 50
3.2.4 Requisitos Não-Funcionais (RNFs) . 51
3.2.4.1 Requisitos de Qualidade . 51
3.2.4.2 Requisitos de Segurança . 51
3.2.4.2.1 Justificativa . 51

3.2.4.2.2 Os requisitos . 52

3.2.4.3 Modelagem dos Requisitos Não-Funcionais 53
3.3 TROPA: Arquitetura . 54
3.3.1 Introdução . 54

3.3.1.1 Propósito . 54
3.3.1.2 Escopo . 54
3.3.1.3 Referências . 54
3.3.2 Objetivos e Restrições . 55
3.3.2.1 Objetivos . 55
3.3.2.2 Restrições . 55
3.3.3 Representação da Arquitetura . 56
3.3.3.1 Tecnologias . 57
3.3.4 Visão Lógica . 57
3.3.4.1 Front-end . 57
3.3.4.2 Back-end . 59
3.3.4.2.1 Pacotes dos microsserviços . 59

3.3.5 Visão de Processos . 60
3.3.6 Visão de Implantação . 62
3.3.7 Visão de Implementação . 62
3.3.8 Visão de Dados . 65
3.3.9 Qualidade . 65
3.3.10 Segurança . 67
3.4 TROPA: MVP . 67
3.4.1 Implementação . 67
3.4.2 Módulos complementares . 70
3.4.2.1 Autenticação: auth . 71
3.4.2.2 Autorização: authorization . 71
3.4.2.3 Envio de e-mails: mail . 72
3.4.2.4 Pagamentos: payment . 72
3.4.3 Atualizações no projeto e Diferenças na implementação 73
3.4.3.1 Comunicação entre microsserviços . 73
3.4.3.2 Diagramas de pacotes e estruturação em pastas 73
3.4.3.3 Sistema de notificações push . 74
3.4.3.4 Implantação do sistema . 74
3.5 O aplicativo . 75
3.6 Validando o MVP . 84
3.6.1 Feedbacks coletados . 85

4 CONCLUSÃO . 87
4.1 Pontos positivos e melhorias . 88
4.2 Trabalhos futuros . 91

REFERÊNCIAS . 94

15

1 Introdução

Desenvolvimento de Software é um processo iterativo, incremental e contínuo
(PRESSMAN, 2011). Ele faz parte dos cinco processos essenciais da Engenharia de Soft-
ware e é o que transforma subjetividade em “materialidade”, uma vez que implementa
os requisitos e a arquitetura propostos de um sistema utilizando código. Existem diver-
sas linguagens de programação, tecnologias, ferramentas e metodologias para realizar-se
o desenvolvimento de um software, e a escolha de qual (quais) utilizar dependerá de vá-
rios fatores, como facilidade de uso, eficiência, adequação funcional e familiaridade, por
exemplo.

A Engenharia de Software pode ser entendida como uma abordagem de engenha-
ria que permite o projeto, desenvolvimento, gerenciamento, a manutenção e entrega de
software. Essa abordagem é sistemática, metodológica, disciplinada, baseada em proces-
sos (PRESSMAN, 2011). Estes são formados por um conjunto de atividades e de tarefas,
cada qual atendendo suas responsabilidades de maneira adaptável, flexível e com foco na
entrega dentro do prazo e com qualidade.

De acordo com Pressman (2011), a Engenharia de Software é formada por 5 (cinco)
processos básicos que, geralmente, acontecem de maneira contínua e iterativa ao longo do
projeto: comunicação, planejamento, projeto, desenvolvimento e entrega. Cada iteração
produzirá um incremento do software, o qual torna-se mais completo. A descrição dos
processos apresenta-se a seguir:

• Comunicação. Durante essa etapa o principal objetivo é conversar com o cliente
para entender os objetivos e requisitos do projeto;

• Planejamento. Organizar o que será feito, quais são as tarefas e atividades, os
riscos envolvidos, prazos, cronogramas etc;

• Projeto. Modelagem do software em relação à arquitetura, aos componentes e às
interfaces de usuário. A ideia é ter uma visão do todo;

• Desenvolvimento. É nessa etapa que o projeto será construído, códigos serão feitos
e testes executados;

• Entrega. O software resultante, ou o incremento dele, será entregue ao cliente, que
o usará e fornecerá retorno (feedback) para a equipe de engenharia.

O propósito dessa monografia é, a partir dos conceitos da Engenharia de Software
e de cada um dos processos dela, fazer o projeto e a construção de um software voltado

Capítulo 1. Introdução 16

para os jogos de Airsoft. A Seção 3.1 apresentará com mais detalhes do que se trata esse
sistema.

Além disso, um assunto muito importante, muitas vezes negligenciado nos proces-
sos de desenvolvimento, é a segurança de software. Nesse sentido, também é do intuito
desse trabalho falar sobre o assunto, bem como aplicá-lo no projeto e no desenvolvimento
do sistema proposto.

1.1 Objetivo
Projetar todo o sistema e desenvolver o MVP (Mínimo Produto Viável) do nome-

ado TROPA: Teatro de Operações de Airsoft. Esse software irá gerenciar a participação
de usuários em operações do esporte, além de permitir a venda, divulgação e organização
de eventos relacionados. Haverá, também, outras funcionalidades no sistema, como sis-
tema de pontuação e formação de ranking, conclusão de missões e possibilidade de receber
premiações.

1.1.1 Objetivos específicos

• Fazer a documentação pertinente do sistema, a saber: documento de visão, de ar-
quitetura, levantamento e modelagem de requisitos;

• Desenvolver o software com as tecnologias adequadas às necessidades conforme a
documentação elaborada;

• Desenhar protótipos de baixa fidelidade para a interface de usuário;

• Realizar testes (tanto livres quanto guiados) com usuários;

• Coletar feedbacks dos usuários que testarem o sistema.

1.2 Metodologia
A metodologia para cumprir com o objetivo e a proposta desse trabalho contará

com as seguintes atividades:

• Documentação do sistema: inclui documento de visão e de arquitetura; levantamento
e modelagem de requisitos;

• Desenvolvimento do sistema: etapa de concretização do MVP por meio da pro-
gramação. Esse processo acontecerá utilizando as melhores práticas, ferramentas e
tecnologias de Engenharia de Software adequadas à solução proposta;

Capítulo 1. Introdução 17

• Ajustes finais: período reservado para resolução de quaisquer intercorrências e/ou
modificações necessárias na documentação ou no sistema.

Para conseguir cumprir com as atividades da metologia proposta, as diversas dire-
trizes explicadas por Pressman e Maxim (2021), no livro Engenharia de Software, foram
tomadas como referência.

1.3 Organização
O presente trabalho está dividido em vários Capítulos e Seções. O Capítulo 1

apresenta a introdução, os objetivos, a metodologia e a organização do trabalho. A Seção
2.1 discorre sobre a história, as regras, o crescimento e outros aspectos do Airsoft. Já
a Seção 2.2 trata sobre tecnologias e conceitos relevantes que foram utilizados para o
desenvolvimento do trabalho.

O Capítulo 3 mostra os resultados e a discussão sobre o trabalho e o sistema.
A Seção 3.1 é o documento de visão do TROPA, apresentando, dentre outros tópicos,
o posicionamento e a visão geral do produto. A Seção 3.2 é o documento resultado da
engenharia de requisitos do software TROPA. Na Seção 3.3, o documento de arquite-
tura é evidenciado, o qual apresenta o sistema de forma ampla perante diferentes visões
arquitetônicas.

A Seção 3.4 discorre sobre a concretização do MVP TROPA, abordando o que foi
desenvolvido. Já a 3.5 apresenta as principais telas da interface de usuário do aplicativo. A
Seção 3.6 explica o processo de validação da aplicação, que envolveu testes com usuários.
Finalmente, o Capítulo 4 conclui esse trabalho e indica os próximos passos na evolução
do TROPA.

18

2 Desenvolvimento

2.1 Airsoft

2.1.1 Introdução

O Airsoft é um esporte de simulação militar que tem crescido mundialmente, pro-
porcionando uma experiência imersiva para entusiastas de táticas militares e operações
estratégicas. Caracterizado pelo uso de simulacros de armas de fogo que disparam peque-
nas esferas plásticas, o Airsoft combina elementos de competição, estratégia e trabalho
em equipe. Diferente de outros esportes de combate, como o Paintball, o Airsoft se baseia
na honestidade dos jogadores, já que os projéteis não deixam marcas visíveis (CANDIDO,
2024).

Esta Seção explora a história do Airsoft, suas regras e funcionamento, os equipa-
mentos utilizados, além de abordar sua regulamentação e crescimento no Brasil. Compre-
ender o contexto desse esporte é fundamental para justificar a importância do software
desenvolvido neste trabalho, que busca aprimorar a organização e a experiência dos joga-
dores.

2.1.2 História do Airsoft

O Airsoft surgiu no Japão na década de 1970, como uma alternativa legal ao uso
de armas de fogo, que eram fortemente reguladas no país. As primeiras armas de Airsoft
eram réplicas funcionais, mas incapazes de disparar munição real, sendo utilizadas para
treino e recreação (PLUS, 2023).

Com o tempo, o esporte se popularizou e começou a se expandir para outros
países, como Estados Unidos e Reino Unido, onde surgiram novas modalidades e regula-
mentações específicas para sua prática. A partir dos anos 2000, o Airsoft ganhou força na
América Latina, especialmente no Brasil, onde a comunidade cresceu exponencialmente,
impulsionada por eventos temáticos e maior acessibilidade aos equipamentos (COMBAT,
2023a).

No Brasil, a prática do Airsoft foi regulamentada pelo Exército Brasileiro, que
estabeleceu normas para a comercialização e uso dos simulacros, exigindo que as armas
possuam ponteiras laranja ou vermelha para diferenciação de armamentos reais (AIR-
SOFTPEDIA, 2023).

Capítulo 2. Desenvolvimento 19

2.1.3 Regras e Funcionamento

O Airsoft é um esporte altamente versátil, com diferentes tipos de jogos e re-
gras, dependendo do evento ou do grupo organizador. No entanto, algumas diretrizes são
comuns a todas as modalidades:

2.1.3.1 Modalidades de Jogo

Os jogos de Airsoft podem assumir diversos formatos, entre os quais se destacam:

• Mata-mata: Equipes competem até que todos os membros do time adversário
sejam eliminados.

• Resgate de reféns: Um grupo de jogadores deve resgatar um refém, enquanto
outro grupo defende o local.

• Captura de bandeira: Equipes tentam capturar a bandeira do adversário e levá-la
até sua base.

• Simulações militares: Jogos mais elaborados, que podem durar horas ou até dias,
envolvendo táticas avançadas.

2.1.3.2 Honestidade e Autorregulação

Diferentemente de esportes como o Paintball, onde a tinta marca os jogadores
atingidos, o Airsoft funciona com base na honestidade dos participantes. Cada jogador
deve declarar quando foi atingido e sair da rodada ou aguardar o tempo de respawn,
dependendo da regra do jogo.

2.1.3.3 Eliminação e Sinalização

Para garantir a segurança e a clareza durante os jogos, alguns sinais são univer-
salmente aceitos:

• Levantar a mão ao ser atingido para sinalizar a eliminação.

• Uso de coletes vermelhos ou fitas para indicar jogadores fora da partida.

• Comunicação clara com os demais jogadores para evitar disparos desnecessários em
jogadores já eliminados.

2.1.4 Equipamentos e Segurança

A prática do Airsoft requer o uso de equipamentos específicos para garantir tanto a
autenticidade das simulações quanto a segurança dos participantes (AVENTURA, 2023).
São listados, nas seções a seguir, os principais componentes.

Capítulo 2. Desenvolvimento 20

2.1.4.1 Simulacros de Armas

As réplicas utilizadas no Airsoft, conhecidas como simulacros, são classificadas
como armas de pressão que disparam esferas plásticas, geralmente de 6 mm de diâmetro.
Existem diferentes tipos de mecanismos de propulsão:

• Elétricas (AEG - Automatic Electric Gun): Utilizam baterias recarregáveis
para acionar um motor que comprime uma mola, liberando ar para propelir o pro-
jétil.

• Gás (GBB - Gas Blowback): Funcionam com gás comprimido, como propano
ou green gas, proporcionando um recuo mais realista.

• Mola (Spring): Necessitam ser armadas manualmente a cada disparo, sendo co-
muns em rifles de precisão (snipers).

2.1.4.2 Equipamentos de Proteção Individual (EPIs)

A segurança é primordial no Airsoft. O uso de EPIs adequados é obrigatório para
prevenir lesões:

• Proteção Ocular: Óculos ou máscaras com lentes de policarbonato resistentes a
impactos são essenciais para proteger os olhos de possíveis danos causados pelos
projéteis.

• Proteção Facial: Máscaras que cobrem o rosto inteiro ajudam a prevenir lesões
dentárias e faciais.

• Vestuário Adequado: Roupas de manga longa, luvas e joelheiras oferecem prote-
ção adicional contra impactos e abrasões.

2.1.4.3 Regras de Segurança

Para garantir a integridade de todos os participantes, algumas regras de segurança
são universalmente adotadas:

• Transporte Seguro: As réplicas devem ser transportadas em cases ou bolsas apro-
priadas, evitando exposição pública que possa causar alarmes ou mal-entendidos
(AIRSOFTPEDIA, 2023).

• Área de Jogo Delimitada: As partidas devem ocorrer em locais específicos, afas-
tados de áreas públicas, com sinalização adequada para informar sobre a atividade
em andamento.

Capítulo 2. Desenvolvimento 21

• Manutenção Regular: Verificações periódicas nos equipamentos garantem seu
bom funcionamento e previnem acidentes.

2.1.5 Airsoft no Brasil

2.1.5.1 Regulamentação Legal

No Brasil, o Airsoft é regulamentado por legislações específicas que visam assegurar
a prática segura do esporte. As principais diretrizes incluem:

• Portaria nº 002-COLOG, de 26 de fevereiro de 2010: Estabelece normas para
a comercialização e uso de armas de pressão, incluindo as de Airsoft, classificando-as
como equipamentos controlados pelo Exército Brasileiro (COMBAT, 2023b).

• Decreto nº 10.030, de 30 de setembro de 2019 (R-105): Define os produ-
tos controlados pelo Exército e as responsabilidades dos usuários, comerciantes e
colecionadores (AIRSOFT, 2023).

Essas regulamentações determinam que as réplicas devem possuir ponteiras la-
ranja ou vermelhas para diferenciá-las de armas de fogo reais e que sua comercialização
é permitida apenas para maiores de 18 anos. Além disso, o transporte deve ser realizado
de forma discreta, sempre acompanhado de nota fiscal e em embalagem que impeça o uso
imediato do equipamento.

2.1.5.2 Crescimento e Comunidade

Desde sua introdução no país, o Airsoft tem experimentado um crescimento signi-
ficativo. Fatores que contribuíram para essa expansão incluem:

• Popularização de Eventos Temáticos: A realização de eventos e partidas temá-
ticas atraiu entusiastas de simulações militares e jogos de estratégia.

• Acesso Facilitado a Equipamentos: O aumento de lojas especializadas e a faci-
lidade de importação tornaram os equipamentos mais acessíveis aos praticantes.

• Formação de Clubes e Associações: A criação de grupos organizados promoveu
a disseminação de informações, treinamentos e a padronização de regras, fortale-
cendo a comunidade.

Atualmente, diversas cidades brasileiras possuem campos dedicados à prática do
Airsoft, e a comunidade continua a crescer, promovendo eventos de grande escala e fo-
mentando o espírito de camaradagem e disciplina entre os participantes.

Capítulo 2. Desenvolvimento 22

2.1.6 Conclusão

O Airsoft se consolidou como uma atividade que combina esporte, estratégia e
recreação, oferecendo aos seus praticantes uma experiência imersiva em simulações táti-
cas. No Brasil, apesar dos desafios iniciais relacionados à regulamentação e ao acesso a
equipamentos, o esporte encontrou um terreno fértil para seu desenvolvimento, contando
com uma comunidade engajada e em constante expansão.

A compreensão das regras, do uso adequado dos equipamentos e da legislação
vigente é fundamental para a prática segura e responsável do Airsoft. Além disso, o
fortalecimento da comunidade e a promoção de eventos contribuem para a disseminação
do esporte e para a integração dos participantes.

2.2 Suporte Tecnológico
O desenvolvimento do software TROPA: Teatro de Operações de Airsoft

baseou-se em uma ampla gama de tecnologias e conceitos da Engenharia de Software. Este
Capítulo apresenta os fundamentos teóricos das linguagens, ferramentas, dos frameworks
e serviços utilizados, bem como a revisão de literatura que embasa o projeto.

2.2.1 TypeScript

O TypeScript é uma linguagem de programação criada pela Microsoft em 2012
com o objetivo de superar as limitações do JavaScript, de forma a oferecer uma expe-
riência mais robusta para o desenvolvimento de sistemas escaláveis. Essa linguagem é
um superconjunto de JavaScript, o que significa que todo código JavaScript é válido em
TypeScript, permitindo uma adoção gradual por desenvolvedores (MICROSOFT, 2023a).

O principal diferencial do TypeScript é seu sistema de tipagem estática opcional.
Essa característica permite a definição explícita de tipos de variáveis, parâmetros de fun-
ções e retornos, aumentando a segurança e reduzindo erros comuns (REINEHR, 2020).
Além disso, o TypeScript é orientado a objetos, oferecendo suporte a classes, interfaces,
herança e outros conceitos típicos de linguagens como Java e C#.

Outro conceito importante é o transpilation, no qual o código TypeScript é con-
vertido para JavaScript, garantindo compatibilidade com navegadores e ambientes de
execução (MICROSOFT, 2023a). Em outras palavras, ocorre uma “compilação” do có-
digo original, só que para outra linguagem (JavaScript) em que possa ser interpretado e
executado, ou compilado.

Desde seu lançamento, o TypeScript tem se destacado como uma das linguagens
mais utilizadas em projetos de grande escala. Relatórios como o Stack Overflow Develo-
per Survey (OVERFLOW, 2022) apontam o TypeScript como uma das linguagens mais

Capítulo 2. Desenvolvimento 23

amadas, consolidando-se como escolha padrão em frameworks modernos, como Angular e
NestJS.

A tabela 1 faz uma comparação entre essas duas linguagens. No contexto da aplica-
ção TROPA, o TypeScript apresentou mais vantagens de ser utilizado do que o JavaScript.

Tabela 1 – Comparação entre TypeScript e JavaScript

Critério JavaScript TypeScript
Tipagem Linguagem de tipagem dinâ-

mica.
Linguagem de tipagem estática
e opcional, detecta erros em
tempo de desenvolvimento.

Escalabilidade Pode dificultar manutenção
em sistemas grandes.

Ideal para projetos escaláveis,
com suporte a interfaces, tipos
e contratos de código.

IDE e Ferramentas Suporte básico a sugestões e
validações.

Suporte avançado a autocom-
pletar, refatoração e verifica-
ção de tipos.

Legibilidade e Robus-
tez

Pode levar a bugs silenciosos
por falta de verificação.

Código mais legível e robusto,
com validações automáticas
pelo compilador.

Compatibilidade Executado diretamente em na-
vegadores e Node.js.

Compila para JavaScript,
mantendo compatibilidade
com o ecossistema existente.

No desenvolvimento do software TROPA, o TypeScript foi utilizado tanto no bac-
kend quanto no frontend, garantindo:

• Manutenção facilitada: A tipagem estática reduz a ocorrência de erros e melhora
a clareza do código.

• Padronização: A mesma linguagem foi empregada nas duas camadas, simplificando
a integração entre os módulos do sistema.

2.2.2 Framework Backend: NestJS

O NestJS é um framework para desenvolvimento de aplicações backend em Node.js,
projetado com foco em modularidade, escalabilidade e produtividade. Inspirado no An-
gular, o NestJS adota conceitos como injeção de dependências e decoradores, permitindo
uma arquitetura organizada e facilmente extensível (MYSLIWIEC, 2023).

Um dos conceitos centrais do NestJS é a arquitetura modular, que organiza o có-
digo em módulos independentes. Essa abordagem promove o desacoplamento, facilitando
a manutenção e a escalabilidade. Além disso, o framework utiliza decoradores para definir
controladores, serviços e middlewares, seguindo o padrão MVC (Model-View-Controller).

Capítulo 2. Desenvolvimento 24

Outro aspecto importante é a compatibilidade com ferramentas como Swagger
(documentação de APIs) e RabbitMQ (mensageria), que serão detalhadas posteriormente.

Lançado em 2017 por Kamil Myśliwiec, o NestJS foi desenvolvido para suprir a
necessidade de um framework backend completo para Node.js, similar ao que Angular
representa no frontend. Sua popularidade tem crescido exponencialmente, tornando-se
uma escolha preferida em projetos corporativos (MYSLIWIEC, 2023).

No TROPA, o NestJS foi utilizado para estruturar o backend, gerenciar a comu-
nicação com o banco de dados, lidar com autenticação e autorizações e integrar serviços
externos, como e-mails e pagamento.

2.2.3 Framework Frontend: React Native e Expo

O React Native é um framework desenvolvido pelo Facebook em 2015, que per-
mite o desenvolvimento de aplicativos móveis multiplataforma a partir de uma única base
de código. O Expo complementa o React Native, oferecendo ferramentas para prototipa-
gem rápida e testes em dispositivos reais (PLATFORMS, 2023).

React Native utiliza o conceito de bridge, conectando código JavaScript a compo-
nentes nativos do sistema operacional, como botões e barras de navegação. Essa abor-
dagem garante desempenho próximo ao de aplicativos nativos, com a vantagem de um
desenvolvimento unificado.

O Expo adiciona funcionalidades como a criação de builds automáticas e suporte
integrado a bibliotecas nativas, simplificando o fluxo de trabalho do desenvolvedor.

React Native foi criado para superar as limitações de soluções híbridas anteriores,
como Apache Cordova. Desde seu lançamento, tornou-se um dos frameworks mais popu-
lares para desenvolvimento móvel, sendo utilizado por empresas como Airbnb e Uber Eats
(PLATFORMS, 2023).

No TROPA, o React Native e o Expo foram utilizados para desenvolver o aplicativo
móvel, oferecendo:

• Praticidade: O Expo simplificou os testes em dispositivos Android e iOS.

• Imersão: A interface foi projetada para proporcionar uma experiência intuitiva e
eficiente aos usuários.

2.2.4 Banco de Dados: PostgreSQL

O PostgreSQL é um sistema de gerenciamento de banco de dados relacional
(SGBDR) open-source, conhecido por sua robustez e suporte a funcionalidades avança-

Capítulo 2. Desenvolvimento 25

das, como armazenamento de JSON (JavaScript Object Notation) e transações complexas
(GROUP, 2023).

Bancos de dados relacionais organizam informações em tabelas relacionadas por
chaves primárias e estrangeiras. O PostgreSQL, além de suportar esse modelo, oferece:

• Índices avançados para melhorar a performance de consultas.

• Controle de concorrência multiversionamento (MVCC), garantindo transações se-
guras.

• Suporte a extensões, como PostGIS, para processamento de dados geoespaciais.

Criado em 1986 como parte do projeto POSTGRES na Universidade da Califórnia,
Berkeley, o PostgreSQL se consolidou como um dos SGBDs mais populares do mundo,
frequentemente utilizado em grandes empresas (GROUP, 2023).

O PostgreSQL armazena as informações críticas do TROPA, incluindo:

• Registros de usuários (operadores, organizadores e equipes).

• Operações e vendas de ingressos.

2.2.5 Mensageria: RabbitMQ

A troca de mensagens entre serviços é um aspecto essencial em sistemas distri-
buídos. O RabbitMQ é um sistema de mensageria robusto que implementa o protocolo
AMQP (Advanced Message Queuing Protocol). Ele é amplamente utilizado em aplicações
que exigem comunicação assíncrona entre diferentes componentes ou serviços.

O RabbitMQ organiza o fluxo de mensagens em filas (queues), onde produtores
(producers) enviam mensagens e consumidores (consumers) as processam. Uma de suas
principais vantagens é a possibilidade de desacoplar serviços, permitindo que cada com-
ponente opere de forma independente (SOFTWARE, 2023a).

Além disso, o RabbitMQ suporta diferentes padrões de troca de mensagens:

• Fila direta (direct): A mensagem é enviada para uma fila específica.

• Broadcast (fanout): A mensagem é replicada para todas as filas vinculadas a um
exchange.

• Roteamento baseado em padrões (topic): Mensagens são enviadas para filas
específicas com base em um padrão de roteamento.

Capítulo 2. Desenvolvimento 26

Essas características tornam o RabbitMQ uma ferramenta poderosa para aplica-
ções que requerem alta escalabilidade e resiliência.

O RabbitMQ foi desenvolvido em 2007 pela Rabbit Technologies e, posterior-
mente, adquirido pela VMware em 2010. Desde então, ele se tornou uma escolha popular
em sistemas de grande escala devido à sua estabilidade e suporte a diversos protocolos
(SOFTWARE, 2023a).

No TROPA, o RabbitMQ é utilizado para ajudar a gerenciar eventos relacionados
a operações de Airsoft, como:

• Notificações para organizadores e operadores.

• Atualizações de status de ingressos.

Essa abordagem garante que o sistema seja escalável e capaz de lidar com picos de de-
manda de forma eficiente.

2.2.6 Documentação de API: Swagger

A documentação de APIs desempenha um papel crucial no desenvolvimento de
software, especialmente em sistemas com múltiplos módulos ou equipes de desenvolvi-
mento. O Swagger é uma ferramenta amplamente utilizada para gerar e interagir com do-
cumentações de APIs RESTful de forma automatizada e amigável (SOFTWARE, 2023b).

O Swagger utiliza um padrão chamado OpenAPI Specification (OAS) para des-
crever as APIs. Esse padrão permite que desenvolvedores definam os endpoints, métodos
HTTP, parâmetros de entrada e respostas de forma estruturada. Além disso, o Swagger
fornece uma interface gráfica que permite testar os endpoints diretamente na documenta-
ção, agilizando o desenvolvimento e a validação.

Criado pela SmartBear Software, o Swagger foi introduzido em 2011 como uma
solução para simplificar a integração de APIs. Em 2016, sua especificação foi transferida
para a Linux Foundation, consolidando-se como o padrão de fato para documentação de
APIs (SOFTWARE, 2023b).

No TROPA, o Swagger foi integrado ao backend para documentar os principais
endpoints, como:

• Registro de usuários (operadores, organizadores).

• Gerenciamento de operações e times.

• Vendas e pagamentos de ingressos.

Essa integração facilita a manutenção e documentação do sistema.

Capítulo 2. Desenvolvimento 27

2.2.7 Serviços de E-mail

Os serviços de e-mail desempenham um papel fundamental em sistemas modernos,
sendo utilizados para enviar notificações, confirmações e comunicações personalizadas
aos usuários. No projeto TROPA, dois serviços foram integrados para atender a essas
demandas: SendGrid e Mailchimp.

2.2.7.1 SendGrid

O SendGrid é uma plataforma de envio de e-mails transacionais e de marketing
em larga escala. Criada em 2009, foi adquirida pela Twilio em 2019, consolidando-se como
uma solução robusta para aplicações que demandam alto volume de e-mails (SENDGRID,
2023).

E-mails transacionais são mensagens automatizadas enviadas em resposta a ações
do usuário, como confirmações de cadastro ou atualizações de status. O SendGrid fornece
APIs para integração direta com aplicações, oferecendo:

• Alta taxa de entrega (deliverability).

• Suporte a métricas e logs para monitoramento.

• Ferramentas de autenticação, como DKIM e SPF, para evitar que e-mails sejam
classificados como spam.

No TROPA, o SendGrid é utilizado para:

• Enviar notificações de cadastro e atualizações de operações.

• Confirmar compras de ingressos para eventos de Airsoft.

Esse serviço foi escolhido como principal, mas na eventual indisponibilidade dele,
o TROPA conta com uma segunda opção: Mailchimp.

2.2.7.2 Mailchimp

O Mailchimp, criado em 2001 (MAILCHIMP, 2023), é uma das ferramentas mais
populares para campanhas de e-mail e automação de marketing. Ele oferece funcionali-
dades avançadas de criação de campanhas e segmentação de usuários (MAILCHIMP,
2023).

Diferentemente do SendGrid, que é focado em e-mails transacionais, o Mailchimp
se destaca por sua interface gráfica intuitiva e recursos voltados para marketing, como:

• Criação de campanhas personalizadas com drag-and-drop.

Capítulo 2. Desenvolvimento 28

• Automação de fluxos de e-mail baseados em eventos.

• Segmentação de listas para públicos específicos.

No TROPA, o Mailchimp é a alternativa na ocasião da indisponibilidade ou falha
do Sendgrid. Além disso, ele poderá ser utilizado para campanhas promocionais direciona-
das aos usuários. Por exemplo, campanhas de lançamento de novas operações ou eventos
especiais de Airsoft.

2.2.8 Plataforma de Pagamentos: Stripe

Em aplicações modernas que envolvem transações financeiras, a integração com
plataformas de pagamento confiáveis e escaláveis é essencial. No projeto TROPA, a fer-
ramenta escolhida para gerenciar os pagamentos foi a Stripe, devido à sua robustez,
documentação detalhada e suporte a recursos avançados, como pagamento por cartão de
crédito, carteiras digitais e transferência direta (INC., 2023c).

A Stripe é uma plataforma de processamento de pagamentos que permite que
empresas aceitem transações online de maneira rápida e segura. Fundada em 2010, a
Stripe oferece APIs que abstraem a complexidade dos sistemas de pagamento, incluindo:

• Criação e gerenciamento de Payment Intents: Um Payment Intent é um
objeto que encapsula todo o ciclo de vida de uma transação, desde sua criação até
a confirmação do pagamento.

• Segurança integrada: A Stripe segue padrões como PCI-DSS, garantindo que os
dados do cliente sejam manipulados de forma segura.

• Suporte a múltiplos métodos de pagamento: Inclui cartões de crédito, débito,
carteiras digitais (Apple Pay, Google Pay) e transferências bancárias.

Um dos principais diferenciais da Stripe é o foco em desenvolvedores, oferecendo
APIs claras e consistentes para integração, além de bibliotecas em diversas linguagens de
programação, incluindo TypeScript (INC., 2023c).

A Stripe foi criada por Patrick e John Collison com o objetivo de simplificar o
processo de pagamentos para desenvolvedores e empresas. Desde seu lançamento, tornou-
se uma das maiores empresas do setor, sendo adotada por organizações como Amazon,
Lyft e Shopify. Atualmente, a Stripe opera em mais de 35 países, processando bilhões de
dólares em transações por ano (INC., 2023b).

No TROPA, a Stripe é utilizada para gerenciar o pagamento de ingressos das
operações de Airsoft. A integração com a Stripe segue o seguinte fluxo:

Capítulo 2. Desenvolvimento 29

1. Criação do Payment Intent: Quando um operador compra um ingresso, o sis-
tema cria uma intenção de pagamento, vinculando o pagamento ao organizador do
evento e calculando as taxas de plataforma.

2. Webhook para monitoramento: A confirmação do pagamento é capturada pelo
payment_intent.succeeded, disparando o processo de geração do ingresso.

3. Divisão de receitas: A Stripe permite transferir automaticamente o valor pago ao
organizador, descontando uma taxa fixa para a plataforma TROPA.

Essas funcionalidades tornam a Stripe ideal para o projeto, garantindo segurança,
escalabilidade e simplicidade no gerenciamento de pagamentos.

2.2.9 Ferramentas Auxiliares

Além das tecnologias principais, diversas ferramentas auxiliares foram emprega-
das no desenvolvimento do projeto TROPA, contribuindo para a organização, controle e
qualidade do software.

2.2.9.1 Controle de Versão: Git e GitHub

O controle de versão é um elemento indispensável em projetos de software, permi-
tindo rastrear alterações no código e facilitar o trabalho em equipe. No TROPA, o Git
foi utilizado para versionamento do código, enquanto o GitHub serviu como repositório
remoto.

Criado por Linus Torvalds em 2005, o Git é um sistema de controle de versão
distribuído que permite a criação de branches, rastreamento de alterações e fusão de
códigos (merge) (PROJECT, 2023). O GitHub, por sua vez, adiciona funcionalidades
como hospedagem de repositórios, controle de permissões e integração com ferramentas
de CI/CD (Continuous Integration/Continuous Deployment).

No projeto, o Git e o GitHub foram utilizados para:

• Versionar e armazenar o código do sistema.

• Automatizar o deploy utilizando integrações com pipelines.

2.2.9.2 Containerização: Docker e Docker Compose

O Docker foi utilizado para criar ambientes isolados de desenvolvimento, enquanto
o Docker Compose facilitou o gerenciamento de múltiplos serviços no mesmo ambiente.

Containers são ambientes leves e portáteis que contêm todos os recursos necessários
para rodar uma aplicação. O Docker utiliza imagens pré-configuradas para criar esses

Capítulo 2. Desenvolvimento 30

ambientes de forma rápida e eficiente. Já o Docker Compose permite orquestrar vários
containers em conjunto, definindo as configurações de cada serviço em um único arquivo
(INC., 2023a).

No TROPA, o Docker e o Docker Compose foram utilizados para:

• Criar containers para o banco de dados PostgreSQL e o RabbitMQ.

• Facilitar a configuração do ambiente local de desenvolvimento.

2.2.9.3 Editor de Código: Visual Studio Code (VSCode)

O VSCode foi o editor de código escolhido para o desenvolvimento do projeto,
devido à sua leveza, extensibilidade e integração nativa com Git.

Lançado pela Microsoft em 2015, o VSCode é um editor de código open-source que
suporta múltiplas linguagens e frameworks. Ele oferece recursos como depuração (debug-
ging), integração com controle de versão e suporte a extensões (MICROSOFT, 2023b).

No TROPA, o VSCode foi utilizado com extensões como Prettier e ESLint para
padronizar o código e evitar erros comuns.

2.2.9.4 Design: Whimsical

O Whimsical foi utilizado para projetar alguns elementos de documentação de
software, como o diagrama de arquitetura 8. Ele também serviu para rascunhar protótipos
de baixa fidelidade.

Ferramentas de prototipagem como o Whimsical permitem criar diagramas, wire-
frames e fluxos de forma rápida e colaborativa. Esses protótipos servem como base para
o desenvolvimento, garantindo que os requisitos sejam atendidos (WHIMSICAL, 2023).

O Whimsical foi utilizado para:

• Projetar diagramas de documentação;

• Esboçar interfaces básicas das telas.

2.3 Metodologia 5W2H
A metodologia 5W2H é uma ferramenta amplamente utilizada em gestão de pro-

jetos, planejamento estratégico e processos de melhoria contínua. Seu nome deriva das
iniciais de sete perguntas fundamentais que devem ser respondidas para descrever ou or-
ganizar qualquer atividade de maneira clara e objetiva: What (o quê), Why (por quê),
Where (onde), When (quando), Who (quem), How (como) e How much (quanto custa). Ao

Capítulo 2. Desenvolvimento 31

responder essas questões, é possível obter uma visão abrangente da ação a ser realizada,
seus responsáveis, recursos, prazos e justificativas (CAMPOS, 2004).

No contexto da Engenharia de Software, o 5W2H pode ser aplicado para estruturar
a análise de problemas, a definição de escopos de sistemas e a identificação de requisitos,
funcionando como uma ferramenta complementar às demais técnicas de elicitação. Sua
simplicidade e clareza tornam o método especialmente útil em fases iniciais do projeto,
contribuindo para o alinhamento entre stakeholders e desenvolvedores, além de facilitar a
documentação e a comunicação técnica do sistema.

Neste trabalho, o 5W2H foi utilizado como instrumento de apoio para descrever e
entender o problema que o software TROPA se propõe a resolver. Essa descrição, apre-
sentada na Seção 3.1.3.3, auxilia na identificação das principais motivações e requisitos
do sistema, garantindo uma fundamentação prática e objetiva para o desenvolvimento do
projeto.

32

3 Resultados e Discussão

3.1 TROPA: Visão
O objetivo desta Seção é trazer uma visão ampla de alto nível para os requisitos

técnicos do sistema TROPA. Ao longo do processo de escrita e desenvolvimento dessa
monografia, podem acontecer mudanças na visão do TROPA para que necessidades sejam
atendidas.

3.1.1 Escopo

O software TROPA: Teatro de Operações de Airsoft consiste em uma plataforma
cujo principal objetivo é aumentar o engajamento dos jogadores (operadores) de airsoft
a partir da participação em eventos e jogos, do cumprimento de objetivos e missões, e do
posicionamento no ranking. Outros objetivos incluem:

• Uso comercial: pessoas ou empresas organizadores(as) farão o controle de vendas e o
gerenciamento de eventos e jogos do esporte por meio do sistema; e lojistas poderão
expor e vender artigos militares voltados ao esporte;

• Uso recreativo: jogadores, também chamados de operadores, garantirão suas parti-
cipações no eventos e jogos utilizando o TROPA. Também serão informados sobre
diversas questões relativas ao evento/jogo, como mudanças de hora e/ou local, or-
ganização de times, início e fim de jogo, entre outras;

• Fazer com que o TROPA tenha uma interface genérica que possa ser customizada de
acordo com a vontade de um possível cliente que queira um sistema personalizado;

• De modo semelhante ao item anterior, projetar o TROPA de forma que seja escalável
e de fácil implantação e reprodução para que seja usado de forma personalizada por
clientes.

Além disso, o sistema terá como principal interface com os usuários um aplicativo
mobile, mas é também uma vontade que tenha acesso por meio de um navegador web.

A principal funcionalidade da plataforma, entretanto, é a bilheteria digi-
tal/eletrônica, por meio da qual os usuários organizadores poderão cadastrar, divulgar
e gerenciar eventos e jogos de airsoft. Isso inclui a venda dos ingressos, a formação das
equipes (ou dos exércitos), a leitura da carteira virtual (QR code) do operador para validar
(ckeck-in)) ou fazer a cobrança (check-out) do ingresso, os comandos de pista quente/fria,

Capítulo 3. Resultados e Discussão 33

briefing, início/fim de jogo, a criação e realização de missões, dentre outras possíveis
questões.

A funcionalidade secundária é o ranking de operadores. Essa classificação
será ordenada pela quantidade de XP (moeda prata) do operador, sendo que na primeira
posição fica quem tem mais moedas prata. O XP é adquirido ao participar de eventos,
jogos e missões promovidos na bilheteria, além de outras formas a serem elaboradas (p.ex.:
jogador que permanecer no top 10 por Y semanas ganha mais XP). Operadores que
estiverem subindo no ranking poderão receber prêmios graduais, como patches, dog tag
virtual, dog tag física, carteirinha física (representando a carteira virtual do jogador).
Também ficam sugeridas as criações de ranking de organizações, como a FABE (Federação
de Airsoft de Brasília e Entorno)(FABE, 2024), ranking de equipes entre outros.

A funcionalidade terciária é o espaço loja, onde os parceiros da plataforma ou
lojistas poderão comercializar artigos militares voltados ao esporte. Para isso, os usuários
precisarão de uma moeda de troca (sugere-se moeda ouro), a qual poderá ser adquirida
pela compra de créditos individuais (esse ato também agrega XP). Esse e-commerce con-
tará com calculador de frete e carrinho.

A funcionalidade quaternária é o espaço galeria, no qual será possível en-
contrar vídeos e fotos de eventos anteriores, de conclusão de missões, de operadores entre
outros.

Há ainda a necessidade de controle e manutenção absolutos do sistema por parte
do autor dessa monografia, o qual será o titular da propriedade intelectual do sistema.
Para isso deverá existir uma forma de autenticação e autorização que reconheça o autor
e permita as atividades necessárias. Para isso sugere-se um serviço isolado dos demais do
sistema, a ser denominado “administração”. A real necessidade de implementação disso
será discutida nos próximos Capítulos.

O software TROPA não:

• Implementará a própria API (Interface de Programação de Aplicações) de paga-
mentos, mas usará a de terceiros;

• Será responsável pela correta organização dos jogos e eventos, pois essa responsabi-
lidade é do usuário organizador. TROPA é um facilitador e auxiliador do processo;

• Terá responsabilidade legal nenhuma relativa aos jogos/eventos em si, como ajudar
em caso de acidentes, por exemplo;

• Fará o frete, o transporte em si de mercadorias vendidas no espaço loja;

Capítulo 3. Resultados e Discussão 34

3.1.2 Descrição dos Usuários

A saber, são quatro tipos principais de usuários do TROPA, conforme a Tabela 2.

Tabela 2 – Tipos de usuários do sistema TROPA, suas descrições e funções

Tipo de Usuário Descrição Função
Operador Também conhecido como joga-

dor, é o tipo de usuário mais
simples do sistema.

Interagir com a plataforma a
partir da participação em jogos
e eventos, do posicionamento
no ranking, da compra de ar-
tigos no espaço loja e da publi-
cação de mídia na galeria.

Organizador Pessoas ou empresas que utili-
zam o esporte Airsoft para fins
lucrativos.

Promover e gerenciar jogos e
eventos do esporte, participar
da publicação de mídia na ga-
leria.

Ranger Um tipo especial de usuário or-
ganizador.

Auxiliar os Organizadores
no gerenciamento dos jo-
gos/eventos.

Lojista Pessoas ou empresas que ven-
dem produtos utilizados pelos
praticantes de Airsoft.

Vender produtos no espaço
loja, mantendo uma boa comu-
nicação com os compradores.

Visitantes Podem ser os usuários opera-
dores ou um público externo,
que não tenha cadastro no
TROPA.

Comprar produtos à venda no
espaço loja.

Administrador Autoridade máxima no sis-
tema, que tem permissões para
realizar qualquer tipo de ação.

Controlar, gerenciar, moderar
a plataforma no que tange aos
usuários, às funcionalidades e
à implantação do sistema.

3.1.3 Posicionamento

3.1.3.1 Oportunidade de Negócios

A partir de entrevistas do autor desse trabalho com o Presidente da FABE (2024) e
da participação em jogos e eventos de Aisoft, constatou-se que esse esporte está crescendo
muito no Brasil. Existem diversas equipes e organizações que promovem eventos de norte
a sul no País, tanto em cidades capitais quanto no interior e em cidades menos populosas.

A FABE, assim como a La Catedral (CATEDRAL, 2024), organizam jogos e even-
tos locais e nacionais de Airsoft com a participação de, em alguns casos, centenas de
jogadores. Foi verificada uma dificuldade de contato com os operadores e de gerencia-
mento do pré e pós-jogos por parte dessas organizações, que utilizam listas e inúmeros
grupos de WhatsApp para tanto.

Capítulo 3. Resultados e Discussão 35

Ambas empresas, FABE e La Catedral, foram entrevistadas com relação ao de-
senvolvimento de uma plataforma que auxilie nos jogos e eventos. Ambas manifestaram
grande interesse no que o TROPA se propõe em oferecer, configurando uma boa oportu-
nidade de negócios.

3.1.3.2 Alternativas e Concorrências

Atualmente são desconhecidas ferramentas específicas para o Airsoft que se pro-
põem a entregar as mesmas funcionalidade que o TROPA. Uma pesquisa no mercado
de aplicativos web e mobile foi feita, mas poucos resultados que se parecem com a ideia
proposta foram encontrados.

O sistema mais promissor encontrado é o WARCAMP. De acordo com a própria
página inicial dele WARCAMP (2024), é um “aplicativo para airsoft. Sistema de criação,
gerenciamento e gameficação para partidas de airsoft”. Esse sistema permite a localização
em tempo real, a criação e edição de mapas e o chat por voz e texto como funcionalidades
que mais se destacam.

Do ponto de vista negocial, o WARCAMP é visto como um potencial parceiro
para melhor integrar a experiência de participar em jogos e eventos por meio do TROPA.
Entretando, caso o WARCAMP decida implementar funcionalidades como bilheteria ou
ranking, ele se torna uma concorrência forte, visto que, à princípio, não está previsto a
utilização de mapas em tempo real pelo TROPA, funcionalidade que a outra ferramenta
apresenta.

Além disso, existem outros sítios na web com propósito de gerenciar e organizar
eventos em geral. A ferramenta AIRSOFTZONE (AIRSOFTZONE, 2024) é voltada para
o mundo do esporte em questão, porém é só uma bilheteria básica, não representando
uma alternativa forte ao TROPA.

Também podem ser considerados outros sistemas de bilheteria para eventos como
alternativas não fortes, como Eventiza (EVENTIZA, 2024), Sympla (SYMPLA, 2024),
Bilheteria Digital (DIGITAL, 2024), Eventbrite (EVENTBRITE, 2024), entre outros.
Porém, essas plataformas não são focadas em eventos específicos como o TROPA, mas
sim de forma genérica.

3.1.3.3 Descrição do Problema com 5W2H

O problema a ser resolvido pode ser entendido a partir do 5W2H (Seção 2.3),
como mostra a Tabela 3. Esta mostra como, onde e quando será feito o sistema, e mais
informações.

Capítulo 3. Resultados e Discussão 36

Tabela 3 – 5W2H

Tabela 4 – Posição do Produto

3.1.3.4 Instrução de Posição do Produto

O posicionamento desse sistema enquanto produto é evidenciado pela Tabela 4.
Esta mostra o problema a ser resolvido, a solução e seu impacto.

3.1.4 Visão Geral do Produto

Uma plataforma mobile e web que permita organizações venderem ingressos, ge-
renciarem e controlarem jogos de Airsoft, formarem exércitos para os jogos e mais. Ope-
radores poderão formar de equipes e terão o devido reconhecimento de bons jogadores por
meio de um ranking. Além disso, haverá um espaço para que lojistas vendam de artigos
militares voltados ao esporte, e um espaço para publicação de fotos e vídeos dos eventos
pelos operadores e organizadores.

Existem ferramentas cujas funcionalidades são parecidas com as propostas pelo
TROPA, mas não há, até o momento da pesquisa, ferramentas com os mesmos recursos.
O sistema mais parecido é o WARCAMP, porém este não tem bilheteria, nem ranking,
loja nem galeria.

Capítulo 3. Resultados e Discussão 37

TROPA se destaca por cuja ideia ter sido concebida no ambiente em que se insere,
o esporte Airsoft, sendo específica e projetada para isso. As funcionalidades pensadas para
a plataforma são resultado de entrevistas formais e informais com diversos interessados,
principalmente a FABE.

3.1.4.1 Estimativa de Custos

Essa estimativa será dividida em: custo de desenvolvimento; e custo de operação.
Como o desenvolvimento será feito durante esse TCC, o custo dele é zero. Então resta o
custo de operação.

3.1.4.1.1 Custos de Operação

O custo de operação vai depender de quais tecnologias serão utilizadas para fazer
a implantação do sistema. À princípio, pretende-se utilizar a AWS (Serviços Web da
Amazon) para implantar um ou mais serviços. Estima-se a utilização de:

• 6 instâncias EC2 tipo t3.small;

• 1 Amazon RDS for PostgreSQL tipo db.m1.small com 1TB de armazenamento;

• 1 VPC (Virtual Private Cloud) com 1 Gateway Load Balancer endpoint.

Todos esses recursos alocados na região de São Paulo. Foi utilizada a calculadora
de preços da AWS (AWS, 2024), a qual calcula em Dólares Americanos.

• AWS EC2: USD 97.24 / mês;

• AWS RDS for PostgreSQL: USD 600.79 / mês;

• AWS VPC: USD 288.83 / mês.

Custo de Operação Total: USD 986.86 por mês, aproximadamente.

3.1.4.2 Propriedade Intelectual

A Propriedade Intelectual dessa solução de software será inteiramente e exclusiva-
mente do autor desse Trabalho de Conclusão de Curso.

Capítulo 3. Resultados e Discussão 38

3.1.5 Recursos do Produto

• Bilheteria: usuários organizadores poderão cadastrar, divulgar e gerenciar eventos e
jogos de Airsoft. Operadores comprarão ingressos e participarão dos jogos;

• Ranking: funcionalidade que fornece reconhecimento (“fama”) aos melhores opera-
dores. Será ordenada pela quantidade de XP;

• Espaço loja: onde os parceiros da plataforma ou lojistas poderão comercializar arti-
gos militares voltados ao esporte;

• Espaço Galeria: organizadores e operados poderão publicar fotos e vídeos de jo-
gos/eventos;

3.1.6 Restrições do Produto

• Acesso à Internet;

• Dispositivo móvel (ex.: celular) com capacidade de armazenamento e processamento
suficientes para usar o aplicativo TROPA ou para acessá-lo por meio de um nave-
gador web (ex.: Firefox);

• Indisponibilidade de recursos, como a bilheteria, por exemplo;

3.2 TROPA: Requisitos
Conforme mencionado na Seção 3.1, duas empresas organizadoras de jogos de

Airsoft demonstraram interesse comercial no TROPA, a FABE (FABE, 2024), de Brasília
- DF, e a La Catedral (CATEDRAL, 2024), de Belo Horizonte - MG.

Para o levantamento dos requisitos foram utilizadas as técnicas de: entrevista
aberta; brainstorming; e introspecção. Cerca de 4 entrevistas aconteceram com o Pre-
sidente da FABE, e uma entrevista informal por meio de um aplicativo de mensagens
com o Proprietário da La Catedral.

Somado a isso e às anotações das entrevistas, fez-se uma sessão de brainstorming
bem como uma introspeção. O resultado desse levantamento conta com 23 requisitos,
incialmente:

• R1: CRUD (Criar, Ler, Atualizar, Deletar) de usuário;

• R2: Perfis de usuários, que determinam as permissões do usuário no sistema, tais
como Operador, Organizador, Ranger, Parceiro/Lojista e Administrador;

Capítulo 3. Resultados e Discussão 39

• R3: QR Code do usuário, que serve como um identificador. Será utilizado em diversas
funcionalidades, tais como a validação de ingressos;

• R4: CRUD de equipe;

• R5: Administrar o sistema utilizando o próprio sistema, pode ser um front-end
específico para isso);

• R6: CRUD de jogos;

• R7: CRUD de eventos;

• R8: CRUD de missões e geração de QR Code;

• R9: Venda de ingressos para jogos e eventos. Necessitará da utilização de APIs de
pagamento de terceiros;

• R10: Validação de ingresso por parte do organizador por meio da leitura de QR
Code dos operadores;

• R11: Divulgação de eventos;

• R12: Divulgação de jogos;

• R13: Formação de exércitos para os jogos/eventos. Exército se refere a um con-
junto de operadores com um mesmo objetivo. Geralmente os jogos contam com dois
exércitos identificados por cores diferentes, como amarelo e azul;

• R14: Sistema de XP, para ganho e para perda;

• R15: Visualização e organização do ranking.

• R16: Reset do ranking, que ocorrerá em períodos de tempo fixos, potencialmente
anual;

• R17: Premiação. Distribuição de prêmios aos jogadores que permaneceram no topo
do ranking por um determinado período de tempo, potencialmente o mesmo tempo
do reset. Os prêmios podem ser definidos a qualquer momento e a distribuição deles
pode ser de responsabilidade de um usuário organizador (ex.: FABE decide fabricar
e distribuir prêmios com visibilidade no TROPA) ou do próprio TROPA enquanto
negócio;

• R18: CRUD de lojistas/parceiros;

• R19: CRUD de produtos;

• R20: Carrinho de compras;

Capítulo 3. Resultados e Discussão 40

Figura 1 – Épicos e Histórias de Usuário

• R21: Cálculo de frete;

• R22: Sistema de pagamento para processar as transações. Necessitará da utilização
de APIs de pagamento de terceiros.

• R23: Postagem de mídias, como fotos e vídeos, na galeria.

3.2.1 Histórias de Usuário

Os requisitos foram então organizados e relacionados em histórias de usuário. Estas
possuem: ID; prioridade, seguindo a técnica MoSCoW; estimativa em horas; e ID do
requisito relacionado.

À princípio foram elencadas 13 histórias de usuário, as quais foram agrupadas em
épicos conforme a funcionalidade (ex.: bilheteria) que descrevem. A Figura 1 mostra a
relação épico -> história -> ID do requisito.

3.2.2 Casos de Uso

Para identificação dos casos de uso pertinentes ao TROPA, tomou-se como referên-
cia parte da abordagem explicada por Reinehr (2020). Tomando como ponto de partida
a seguinte pergunta, os casos de uso de cada tipo de ator do sistema foram identificados:
“Quais são as tarefas principais que um ator deverá executar?”

Capítulo 3. Resultados e Discussão 41

Usuário Operador

• Cadastrar;

• Participar em jogos/eventos;

• Criar equipe;

• Entrar para uma equipe;

• Interagir com o ranking;

• Comprar produtos;

• Publicar fotos ou vídeos.

Usuário Organizador

• Cadastrar;

• Organizar jogos/eventos;

• Divulgar jogos/eventos;

• Interagir com o ranking;

• Publicar fotos ou vídeos.

Usuário Lojista

• Cadastrar;

• Vender produtos;

• Publicar fotos ou vídeos.

Usuário Administrador

• Cadastrar;

• Fazer a moderação de conteúdo publicado;

• Gerenciar o sistema.

Usuário Visitante

• Visualizar jogos/eventos;

Capítulo 3. Resultados e Discussão 42

Figura 2 – Diagrama de Casos de Uso do Usuário Operador

• Comprar produtos.

Serviço externo para pagamentos

• Processar pagamento da loja e da bilheteria.

Serviço externo para envio de e-mails

• Notificar sobre atualizações diversas;

• Dar suporte à recuperação de senha.

A partir disso os casos de uso foram identificados e os diagramas de caso de uso
foram elaborados. A Figura 2 mostra o diagrama de casos de uso do usuário operador.

De forma semelhante, a Figura 3 representa o diagrama de casos de uso do usuário
organizador.

O diagrama de casos de uso para o usuário administrador (Figura 4) contém menos
casos, porem um deles, o UC19 (3.2.3.8), que será detalhado adiante, é bem complexo.

Por fim, conforme a Figura 5, o último diagrama de casos de uso relevante ao
TROPA, evidenciando o papel do serviço externo para envio de e-mails.

Capítulo 3. Resultados e Discussão 43

Figura 3 – Diagrama de Casos de Uso do Usuário Organizador

Figura 4 – Diagrama de Casos de Uso do Usuário Administrador

Capítulo 3. Resultados e Discussão 44

Figura 5 – Diagrama de Casos de Uso do Serviço Externo para Envio de E-mails

3.2.3 Especificação dos Casos de Uso

Os casos de uso julgados como mais complexos serão especificados para que seja
obtido um melhor entendimento sobre o funcionamento do TROPA. O modelo de especi-
ficação utilizado é uma mescla do que propõem Reinehr (2020) e Cockburn em Pressman
e Maxim (2021).

Obs.: onde ler “Sistema” ou “Aplicativo”, entenda como o software TROPA.

3.2.3.1 UC 2: Participar em jogos/eventos

Identificador do caso de uso: UC 2

Ator primário: Operador

Ator(es) secundário(s): Organizador e Serviço Externo para Pagamentos

Descrição: O Operador deseja participar dos jogos/eventos promovidos na bilhe-
teria do sistema. Para isso ele precisará visualizar os jogos disponíveis e fazer a compra
do seu ingresso. No dia e horário do evento ele fará o check-in com o Organizador por
meio da leitura do QR Code. O Operador poderá ver todos os detalhes do jogo, bem como
participar de missões e premiações, caso existam.

Pré-condições: Usuário Operador já fez o login no TROPA

Gatilho: Operador entra na tela de bilheteria

Fluxo Principal

1. (Ator) Busca por eventos/jogos disponíveis

Capítulo 3. Resultados e Discussão 45

2. Encontra o desejado, visualiza informações e prossegue para compra (UC 10 3.2.3.2)

3. (Sistema) Recebe o pedido de compra do ingresso e utiliza o serviço externo para
processar a transação financeira (3.2.3.4)

4. (Sistema) Salva ingresso do operador na base de dados

5. (Ator) Comparece ao evento com sua carteira virtual (QR Code) aberta no aplicativo
TROPA

6. (Organizador) Lê credenciais do Operador e valida a entrada dele no jogo

7. (Operador) Participa das missões e premiações, caso existam

Fluxo Alternativo

1. (Ator) Decide por pedir o reembolso do valor do ingresso antes da data e hora do
evento

2. (Sistema) Utiliza o serviço externo para processar a transação financeira (UC 8
3.2.3.4)

3. (Ator) Recebe o dinheiro de volta em forma de moedas ouro, para posterior utiliza-
ção, ou na conta bancária informada

Fluxo de Exceção

• 3.1 (Serviço externo) Notifica o Sistema de falha na transação

• 3.1 (Sistema) Toma as devidas medidas e informa ao usuário a falha

• 6.1 (Sistema) Acusa erro na leitura da carteira virtual do Operador

• 6.2 (Organizador) Entra manualmente com o código QR no sistema para validar o
ingresso do Operador

3.2.3.2 UC 10: Comprar Ingresso

Identificador do caso de uso: UC 10

Atores primários: Operador

Ator(es) secundário(s): Serviço externo para pagamentos

Descrição: Refere-se a toda vez que um Operador decidir comprar um ingresso
para um jogo/evento.

Capítulo 3. Resultados e Discussão 46

Pré-condições: Operador já fez o login no sistema e já escolheu qual evento/jogo
deseja participar (UC 17 3.2.3.3)

Gatilho: Operador clica em “finalizar compra”

Fluxo Principal

1. (Ator) Informa ao sistema informações sobre a compra, como quantidade de ingres-
sos e forma de pagamento, por exemplo. As formas de pagamento disponibilizadas
serão: moeda ouro; pix; crédito; débito

2. (Sistema) Recebe o pedido de compra do ingresso e utiliza o serviço externo para
processar a transação financeira (UC 8 3.2.3.4)

3. (Sistema) Salva ingresso do operador na base de dados

Fluxo Alternativo

1. (Ator) Ao invés de clicar para finalizar a compra, clica em “cancelar”

2. (Sistema) Não inicia o processamento da transação

Fluxo de Exceção

• 2.1 (Serviço externo) Notifica o Sistema de falha na transação

• 2.1 (Sistema) Toma as devidas medidas e informa ao usuário a falha

3.2.3.3 UC 17: Visualizar jogos/eventos

Identificador do caso de uso: UC 17

Ator primário: Operador ou Visitante

Ator(es) secundário(s): Não há

Descrição: Um Operador ou Visitante poderá apenas visualizar os jogos/eventos
disponíveis para compra de ingressos na plataforma TROPA

Pré-condições: Usuário já fez o login no sistema

Gatilho: Usuário clica na “aba” de bilheteria da plataforma

Fluxo Principal

1. (Ator) Escolhe um evento ou usa a barra de busca para encontrá-lo, depois clica
nele

2. (Sistema) Devolve as informações sobre o evento

Capítulo 3. Resultados e Discussão 47

Fluxo Alternativo

1. (Ator) Decide ir para outra “aba” senão bilheteria

Fluxo de Exceção

• 1.1 (Sistema) Informa ao usuário que um erro aconteceu ao carregar as informações
e pede para tentar novamente depois

3.2.3.4 UC 8: Processar Transações

Identificador do caso de uso: UC 8

Ator primário: Serviço externo de pagamentos

Ator(es) secundário(s): Operador ou Visitante

Descrição: Qualquer tipo de compra feita na plataforma TROPA, seja da bilhe-
teria ou da loja, será efetivamente realizada por meio de um serviço de terceiros, o qual
será definido mais adiante. Esse cenário lidará tanto com cobranças quanto com possíveis
devoluções.

Pré-condições: Usuário já fez o login no sistema; usuário clica em “finalizar
compra” ou em “pedir reembolso”.

Gatilho:

Fluxo Principal

1. (Sistema) Envia um pedido de transação monetária ao serviço externo

2. (Serviço externo) Recebe o pedido, faz o processamento e retorna o resultado ao
sistema

Fluxo Alternativo: não se aplica

Fluxo de Exceção

• 1.1 (Sistema) Apresenta indisponibilidade ou erro de conexão

• 1.2 (Serviço externo) Não recebe o pedido

• 2.1 (Serviço externo) Apresenta indisponibilidade ou erro de conexão

• 2.2 (Sistema) Não recebe a resposta, então informa ao usuário que um erro aconteceu
com o serviço externo

Capítulo 3. Resultados e Discussão 48

3.2.3.5 UC 11: Organizar jogos/eventos

Identificador do caso de uso: UC 11

Ator primário: Organizador

Ator(es) secundário(s): Não há

Descrição: A organização de um jogo/evento de Airsoft utilizando o sistema
TROPA compreende atividades de gerenciamento, por parte do Organizador. Definição
de quantidade de ingressos disponíveis, preços, data, hora, local, divisão das equipes e dos
Operadores em exércitos, dar início e fim do jogo são exemplos das várias atribuições do
Organizador.

Pré-condições: Organizador já fez o login no sistema e está pronto para organizar
eventos/jogos

Gatilho: qualquer ação dentro da plataforma que envolva a elaboração e/ou edição
de um evento/jogo

Fluxo Principal

1. (Ator) Faz uma ação para criar novo evento/jogo

2. (Sistema) Pede as informações necessárias

3. (Ator) Preenche todas as informação referentes ao jogo/evento

4. (Sistema) Confirma criação do evento e o salva na base de dados

Fluxo Alternativo

• 2.1 (Ator) Desiste de criar o evento

• 3.1 (Ator) Desiste de criar o evento

• 4.1 (Ator) Faz edições no evento/jogo, tais como divisão de exércitos (UC 14),
alteração de local, comanda o início e o fim do jogo, cria e edita missões (UC 13),
lê a carteira virtual dos Operadores inscritos (UC 16), entre outras

Fluxo de Exceção

• (Sistema) Apresenta algum tipo de erro que impeça a realização de qualquer um
dos itens dos fluxos acima

Capítulo 3. Resultados e Discussão 49

3.2.3.6 UC 16: Validar ingresso

Identificador do caso de uso: UC 16

Ator primário: Organizador

Ator(es) secundário(s): Operador, Aplicativo

Descrição: Para confirmar a participação do Operador no evento/jogo, o Orga-
nizador precisará ler a carteira virtual (QR Code) do Operador e validar o ingresso

Pré-condições: Operador já comprou o ingresso na bilheteria do sistema; a data,
hora e o local do jogo/evento são no momento presente, não no futuro

Gatilho: Organizador usa a funcionalidade de ler QR Code por meio do aplicativo

Fluxo Principal

1. (Ator) Lê a carteira virtual do Operador

2. (Sistema) Faz a validação do ingresso

3. (Organizador e Operador) Recebem notificação de ingresso validado

Fluxo Alternativo: não se aplica

Fluxo de Exceção

• 1.1 (Aplicativo) Apresenta erro na leitura

• 1.2 (Ator) Entra manualmente com o código QR

• 2.1 (Sistema) Apresenta erro na validação do ingresso

• 2.2 (Aplicativo) Exibe mensagem de erro correspondente

3.2.3.7 UC 18: Fazer moderação de conteúdo

Identificador do caso de uso: UC 18

Ator primário: Administrador

Ator(es) secundário(s): Usuário

Descrição: Usuários, como Operador, Lojista e Organizador, poderão publicar
conteúdo, tal como mídias digitais, na plataforma. Pode ser que esse conteúdo seja ina-
propriado para o TROPA, então o Administrador fará a moderação correta, seja exclusão
da informação ou outra

Pré-condições: Usuário fez uma publicação na plataforma

Capítulo 3. Resultados e Discussão 50

Gatilho: Sistema emitiu alerta de conteúdo inapropriado; ou o Administrador
encontrou o conteúdo por conta própria

Fluxo Principal

1. (Ator) Revisa o conteúdo. Sendo necessário, faz a exclusão

2. (Sistema) Notifica quem fez a publicação sobre o ocorrido

Fluxo Alternativo

1. (Ator) Coloca a publicação com visibilidade apenas para o publicante (Usuário),
enquanto este é notificado de revisar o conteúdo

2. (Usuário) É notificado e faz a revisão. Fluxo volta ao principal

Fluxo de Exceção

• 2.1 (Usuário) Entre com pedido de recurso pois não concorda com o julgamento do
Administrador

• 2.2 (Ator) Faz uma nova revisão. Fluxo volta ao principal

3.2.3.8 UC 19: Gerenciar o sistema

Identificador do caso de uso: UC 19

Ator primário: Administrador

Ator(es) secundário(s): Não há

Descrição: A tarefa de gerenciamento do sistema é de responsabilidade do Ad-
ministrador. Este não é um usuário comum, como os outros, mas sim uma autoridade
máxima para controlar o sistema. Esse resolverá questões de permissão de usuário, mode-
ração de conteúdo (3.2.3.7), edição, bloqueio/desbloqueio de eventos/jogos, de usuários,
de lojas/produtos, adição/remoção de Administradores, enfim, diversas ações dentro do
TROPA

Pré-condições: O sistema está em funcionamento, implantado

Gatilho: Não se aplica

Fluxo Principal

1. (Ator) Faz o login na parte do sistema específica para Administradores

2. (Ator) Desempenha funções diversas tais como as descritas acima

Capítulo 3. Resultados e Discussão 51

Tabela 5 – Requisitos de Qualidade

Fluxo Alternativo: não se aplica

Fluxo de Exceção

• 1.1 (Sistema) Não consegue autenticar ou autorizar o Administrador, por algum
motivo

3.2.4 Requisitos Não-Funcionais (RNFs)

3.2.4.1 Requisitos de Qualidade

A partir das características e sub-características definidas pela ISO/IEC 9126,
como foi mostrado por Burgués e Franch (2000), foram escolhidas para maior foco pelo
TROPA aquelas que fazem sentido ao que esse sistema propõe. A Tabela 5 mostra as
características, sub-características e os requisitos de qualidade para o TROPA. O identi-
ficador deles será RNFQ: requisito não-funcional de qualidade.

3.2.4.2 Requisitos de Segurança

3.2.4.2.1 Justificativa

Apesar de Pressman (2011) e outros autores apresentarem a segurança como um
atributo de qualidade, o autor dessa monografia prefere a abordagem de que segurança e
qualidade são assuntos diferentes, mas que se completam, como foi abordado por Naik e
Tripathy (1959).

Nesse sentido, a segurança aqui é fundamentada pela disciplina da Segurança Ci-
bernética. Esta é entendida, segundo Kremer et al. (2019), como a proteção de sistemas de
computadores contra roubo ou dano ao hardware, software ou à informação relacionados

Capítulo 3. Resultados e Discussão 52

a tais sistemas, bem como contra à perturbação, disrupção, desordem ou direcionamento
incorreto dos serviços fornecidos por aqueles sistemas.

Mais ainda, a segurança cibernética também pode ser entendida como a garantia
de 3 (três) propriedades importantíssimas para a informação, para os serviços e para a
infraestrutura de tecnologia da informação (KREMER et al., 2019). Tais propriedades
são conhecidas como a tríade CIA de segurança cibernética, a qual traduz-se em: confi-
dencialidade; integridade; e disponibilidade. É importante ter noção do que significa cada
propriedade da CIA para conseguir estabelecer os requisitos de segurança do TROPA.

• A confidencialidade estabelece que partes não confiáveis sejam incapazes de vazar
ou inferir informações de uma mensagem (ROSSOW; JHA, 2019). Para ACADEMY
(2023), o termo se refere a limitar o acesso e a divulgação de informação para usuários
autorizados, e prevenir o acesso por pessoas não autorizadas.

• Aintegridade de um sistema, de acordo com Naik e Tripathy (1959), refere-se
à habilidade ou capacidade dele de resistir a ataques contra a segurança. Para
ACADEMY (2023), significa preservar dados sem corrupção de qualquer informação
transmitida para ou inserida no sistema. Também significa assegurar que o trans-
missor é quem diz ser.

• A disponibilidade estabelece que os usuários e interessados de um sistema de-
vem ser capazes de acessá-lo com a garantia de que ele estará disponível, ou seja,
funcionando corretamente e atendendo às demandas solicitadas (ROSSOW; JHA,
2019). E como afirma ACADEMY (2023), um sistema que está indisponível quando
precisa-se dele é quase tão inútil à não existência do tal.

3.2.4.2.2 Os requisitos

A partir desse entendimento, foi possível estabelecer o que caracterizam os requi-
sitos de segurança de confidencialidade, integridade e disponibilidade para o TROPA. O
identificador deles será RNFSec: requisito não-funcional de segurança.

• RNFSec 1 - Confidencialidade: nem todas as informações guardadas e tramitadas
pelo TROPA serão públicas. Portanto somente usuários autorizados poderão visuali-
zar esses dados. Estes, em caso de invasão no sistema, não devem ser compreendidos
pelo invasor;

• RNFSec 2 - Integridade: o TROPA deverá ser capaz de resistir a alguns ataques
de segurança, como DDoS (Negação de Serviço Distribuído, injeção SQL, injeção de
comando e XSS (Cross-Site Scripting)). Também deve assegurar que dados arma-
zenados permaneçam sem corrupção nem adulteração;

Capítulo 3. Resultados e Discussão 53

Figura 6 – SIG dos Requisitos Não-Funcionais de Qualidade

Figura 7 – SIG dos Requisitos Não-Funcionais de Segurança

• RNFSec 3 - Disponibilidade: o sistema deverá se recuperar contra qualquer coisa/pessoa
que tente provocar indisponibilidade total ou parcial.

3.2.4.3 Modelagem dos Requisitos Não-Funcionais

Para melhor entender como conseguir atender aos requisitos não-funcionais, foi
feita a modelagem utilizando o framework NFR (SILVA, 2004), proposto por Chung
(2006). A Figura 6 mostra o grafo (SIG) para os requisitos de qualidade.

De forma semelhante, a Figura 7 mostra o grafo para os requisitos de segurança.

Capítulo 3. Resultados e Discussão 54

3.3 TROPA: Arquitetura

3.3.1 Introdução

Este é o documento de arquitetura do software TROPA: Teatro de Operações de
Airsoft, uma plataforma mobile e web para a organização, venda, a participação e o geren-
ciamento de jogos/eventos do esporte, além de outras finalidades conforme evidenciado
no Documento de Visão (Seção 3.1).

3.3.1.1 Propósito

Prover uma visão geral compreensiva do sistema por meio de diferentes visões
arquitetônicas para ilustrar diferentes aspectos do software. A intenção é capturar e co-
municar as decisões de arquitetura que foram feitas, tomando como base a Visão e os
Requisitos (seções 3.1 e 3.2) do sistema.

O público-alvo desse documento é composto por:

• Analistas de Requisitos: verificarão se a arquitetura atende aos requisitos definidos;

• Arquitetos de Software: projetarão a arquitetura;

• Desenvolvedores: implementarão o sistema de acordo com a arquitetura; e

• Engenheiros Devops: implantarão o sistema considerando a arquitetura.

3.3.1.2 Escopo

O escopo desse documento é referente apenas ao software TROPA, o que inclui
seu back-end e front-end. A arquitetura apresentada é um reflexo dos requisitos e da visão
do sistema, e influencia as decisões que serão tomadas a partir daqui, como a escolha das
tecnologias e o projeto dos componentes, por exemplo.

3.3.1.3 Referências

A arquitetura do TROPA faz referência aos seguintes documentos, localizados nas
suas seções:

• Documento de Visão, Seção 3.1; e

• Documento de Requisitos, Seção 3.2.

Capítulo 3. Resultados e Discussão 55

3.3.2 Objetivos e Restrições

3.3.2.1 Objetivos

Os requisitos de qualidade (Seção 3.2.4.1) e de segurança (Seção 3.2.4.2) desem-
penharam papel crucial nas decisões sobre a arquitetura do TROPA. Formas pelas quais
tais requisitos podem ser atingidos são evidenciadas pelas operacionalizações (nuvens com
bordas escuras) ilustradas nos grafos NFR da Seção 3.2.4.3.

Os principais requisitos de qualidade e de segurança que apresentam impacto sig-
nificativo na arquitetura do sistema TROPA são: interoperabilidade (RNFQ2); tolerância
a falhas (RNFQ3); recuperabilidade (RNFQ4); analisabilidade (RNFQ8); mutabilidade
(RNFQ9); adaptabilidade (RNFQ11); integridade (RNFSec2); e disponibilidade (RNF-
Sec3).

Tais requisitos apontam para uma arquitetura:

• Construída com tecnologias adequadas para proporcionar aos usuários um aplicativo
móvel funcional;

• Orientada a serviços ou microsserviços, isolados, modularizados e independentes;

• Implantada em nuvem, sendo fácil e rápida a manutenção;

• Com escalabilidade flexível e baixa sensibilidade à mudanças de ambiente de im-
plantação;

• Encapsulada, de forma que seja garantida a privacidade dos serviços em relação ao
mundo exterior.

3.3.2.2 Restrições

Algumas restrições se aplicam para a arquitetura do TROPA de forma a colabo-
rarem com os objetivos listados anteriormente. São elas:

• Os serviços do TROPA não aceitarão requisições de qualquer número IP, mas so-
mente dos que eles conhecem;

• A implantação em nuvem deve ser feita utilizando recursos presentes no país em
que o sistema funcionará, nesse caso no Brasil;

• A comunicação entre os serviços deve: ser criptografada; utilizar protocolos adequa-
dos; acontecer somente quando necessário;

• Serão utilizados dois serviços externos ao TROPA, a saber: um para envio de e-mails;
e um para realizar os pagamentos.

Capítulo 3. Resultados e Discussão 56

Figura 8 – Diagrama relacional da arquitetura

3.3.3 Representação da Arquitetura

A arquitetura do TROPA é distribuída, sendo seu estilo orientado a serviços, mais
especificamente a microsserviços: unidades lógicas funcionais independentes e isoladas. A
Figura 8 mostra a arquitetura geral do sistema.

Conforme evidenciado, os usuários interagem com o sistema por meio de um apli-
cativo mobile e web. Exceto pelo usuário administrador, que interage por meio de uma
aplicação web específica.

O sistema TROPA utilizará um gateway/load balancer para rotear as requisições
dos usuários ao serviço correspondente, bem como para balancear a carga de várias re-
quisições. Essa API também serve para esconder os serviços do sistema da Internet, cola-
borando com a segurança.

São 7 os microsserviços do TROPA, representados dentro do retângulo verde. Eles
se comunicam com um banco de dados e, alguns deles, entre si. Para o microsserviço
da administração há um banco de dados adicional isolado do outro por segurança. Caso
uma invasão aconteça no banco dos serviços, não haverá acesso ao da administração, e
vice-versa.

O TROPA se comunica com 2 serviços externos, um para processar pagamentos e
outro para envio de e-mails. Há também um broker MQTTS para envio de mensagens da
Operação para os usuários.

Capítulo 3. Resultados e Discussão 57

3.3.3.1 Tecnologias

As tecnologias utilizadas pelo sistema são descritas a seguir, mas mais detalhes
estão nas seções 2.2 e ??.

• Expo: framework para desenvolvimento de aplicativos para Android, iOS e web;

• React-Native: framework de interfaces de usuário para aplicativos Android e iOS ;

• React: biblioteca para interfaces web baseadas em componentes;

• NestJS: framework para construção de aplicações NodeJS escaláveis e eficientes;

• Prisma: ORM (Mapeador Relacional de Dados) NodeJS e TypeScript com modelos
de dados intuitivos, migrações automáticas e mais;

• PostgreSQL: sistema gerenciador de bancos de dados (SGBD) relacionais robusto;

• RabbitMQ: broker de mensagens maduro e confiável;

3.3.4 Visão Lógica

O sistema TROPA está decomposto em dois subsistemas, front-end e back-end,
cada um com os devidos pacotes/módulos necessários.

3.3.4.1 Front-end

Este é o responsável por prover a interface do usuário e por comunica-se com o
back-end. O front-end será mobile, mas também web. A Figura 9 mostra os pacotes desse
subsistema.

Conforme evidenciado, os pacotes são:

• Assets: armazena as mídias usadas, sejam fotos ou vídeos;

• Pages: responsável palas páginas da aplicação;

• Styles: os estilos e as tipografias de textos e demais elementos gráficos ficam aqui;

• Routes: configura as rotas do aplicativo;

• Components: responsável pela criação de componentes de interface reutilizáveis à
aplicação.

Capítulo 3. Resultados e Discussão 58

Figura 9 – Diagrama de pacotes do front-end

Figura 10 – Diagrama de pacotes do back-end

Capítulo 3. Resultados e Discussão 59

3.3.4.2 Back-end

Este é o subserviço responsável pela lógica negocial e de dados do sistema. A
Figura 10 mostra os pacotes do back-end:

Conforme evidenciado, os pacotes são:

• Prisma: configura a comunicação com o banco de dados;

• User : responsável pela implementação e pelo controle do microsserviço dos usuários,
exceto pelo usuário administrador;

• Box-office: responsável pela implementação e pelo controle do microsserviço da bi-
lheteria;

• Operation: responsável pela implementação e pelo controle do microsserviço das
operações, ou seja, dos jogos/eventos de Airsoft;

• Ranking: responsável pela implementação e pelo controle do microsserviço do ran-
king, conforme a pontuação dos usuários;

• Store: responsável pela implementação e pelo controle do microsserviço da loja;

• Galery: responsável pela implementação e pelo controle do microsserviço da galeria;

• Administration: responsável pela implementação e pelo controle do microsserviço
da administração, exclusivo de usuários administradores. Esse pacote tem um sub-
pacote Prisma próprio.

3.3.4.2.1 Pacotes dos microsserviços

Os pacotes do back-end mostrados anteriormente seguem um padrão de arquitetura
parecido com o MVP (Model, View, Controller), exceto pelo pacote Prisma. Tendo em
vista que essa mesma organização estrutural segue para cada um dos microsserviços, a
Figura 11 apresenta um serviço genérico “generic-service” para ilustrar os pacotes de cada
microsserviço.

Como mostrado, há dois pacotes “dto” e “entities”, bem como 3 classes, “generic-
service.module.ts”, “generic-service.controller.ts” e “generic-service.service.ts”:

• DTO: é uma camada de validação de dados de requisições, garantindo acurácia e
consistência nos dados que trafegam a rede do sistema. Ela é usada pelo controlador;

• Entities: as entidades atuam, junto às “services”, como camada de modelo do MVC.
As entidades definem as estruturas de dados, representando objetos reais armaze-
nados no banco de dados;

Capítulo 3. Resultados e Discussão 60

Figura 11 – Diagrama de pacotes genérico para os microsserviços do TROPA

• generic-service.module.ts: módulo serve como ponto de entrada do microsserviço,
especificando quem é seu controlador e quem é seu serviço;

• generic-service.controller.ts: o controlador atua como as camadas controller e view
do MVC, recebendo requisições, comunicando-se com a camada modelo, e retor-
nando a resposta ao requisitante;

• generic-service.service.ts: esta atua como a camada model (modelo) do MVC, fa-
zendo a lógica negocial e interagindo com os dados da aplicação.

Além dos pacotes apresentados, tanto do back-end quanto do front-end, é im-
portante mostrar as principais classes do TROPA. Para isso, a Figura 12 representa o
diagrama de classes.

Tal diagrama foi elaborado a partir do DLD (Figura 18) do sistema. Nota-se que
vários tipos de usuários tem atributos em comum, por isso há uma classe pai Usuário,
da qual outras herdam. Os relacionamentos mostrados no DLD se traduzem para as
agregações e composições do diagrama de classes.

3.3.5 Visão de Processos

Para essa visão, optou-se por mostrar de forma genérica como ocorre a comunicação
no sistema. Para isso foi feito o diagrama de comunicação, representado pela Figura 13.

Muitas requisições são feitas para suprir as necessidades do usuário. Via de regra,
todas começam chamando a controladora do microsserviço adequado. Essa controladora

Capítulo 3. Resultados e Discussão 61

Figura 12 – Diagrama de classes

Figura 13 – Diagrama de comunicação genérico para o TROPA

Capítulo 3. Resultados e Discussão 62

verifica se os dados da requisição estão corretos. Caso positivo, ela chama a camada de
serviço. Esta pode tanto se comunicar com as entidades, para depois pedir ao “cliente-
Prisma” um dado armazenado pelo SGBD (Sistema Gerenciador de Bancos de Dados),
quando enviar um e-mail ou uma mensagem relacionada a alguma operação de Airsoft
por meio do broker.

3.3.6 Visão de Implantação

A implantação do sistema TROPA, parte do front-end, será tanto por um aplicativo
móvel, o qual os usuários baixarão nos dispositivos celulares deles, quanto utilizando dois
servidores web: um para a aplicação em si; e outro para o painel de administração. Já a
parte do back-end, como mostra a Figura 14, se dará por meio: de um servidor dedicado
para cada microsserviço; de outro para cada banco de dados; de um terceiro servidor para
o broker de mensagens escolhido; e da alocação de um gateway/load balancer. Todos esses
recursos em nuvem.

Os microsserviços de usuário (user) e administração (administration) se comuni-
cam com todos os demais. Cores diferentes foram usadas para destacar as linhas de comu-
nicação de cada um. O microsserviço de operação (operation) se comunica tanto com os
de galeria (galery) e ranking, quanto com o broker, para enviar mensagens aos operadores
durante uma operação. Ainda, a galeria também se comunica com a loja (store).

3.3.7 Visão de Implementação

O software TROPA está dividido em 4 camadas, como mostra a Figura 15.

A camada em que acontece a interface com o usuário é a do front-end. O fluxo
de informação segue para o gateway, que irá direcionar o caminho para o microsserviço
do back-end apropriado. Esse último faz a lógica negocial, comunica-se com a camada de
dados e redireciona o fluxo da informação para a primeira camada.

A mesma ideia pode ser representada por meio dos componentes do sistema, os
quais são ilustrados na Figura 16. O usuário interage com o ponto de entrada do front-end,
o App.tsx, por meio de uma interface no aplicativo celular.

O Gateway direciona a requisição para um dos microsserviços. Estes estão repre-
sentados em seus respectivos módulos por meio do arquivo “-module.ts”, que é a quem os
expõe para comunicação. Há ainda um cliente Prisma que é responsável por fazer a ponte
entre os microsserviços e o banco de dados.

De modo semelhante acontece o fluxo para o usuário administrador. Este interage
com uma aplicação web específica, a qual utiliza o microsserviço da administação (“admi-
nistration.module.ts”). Este pode comunicar-se com qualquer um dos microsserviços do
sistema, e também com seu próprio banco de dados por meio do cliente Prisma específico.

Capítulo 3. Resultados e Discussão 63

Figura 14 – Diagrama de implantação do sistema TROPA

Capítulo 3. Resultados e Discussão 64

Figura 15 – Camadas do TROPA

Figura 16 – Diagrama de componentes

Capítulo 3. Resultados e Discussão 65

Figura 17 – DE-R do TROPA

3.3.8 Visão de Dados

O TROPA precisará persistir dados dos usuários, dos jogos/eventos (agora nomea-
dos como Operação, para simplificar), dos produtos a serem vendidos e mais. Para iniciar
a modelagem disso, foi feito o DE-R (Diagrama Entidade Relacionamento), mostrado na
Figura 17.

A partir disso gerou-se o DLD (Diagrama Lógico de Dados), o qual representa
uma perspectiva mais próxima da implementação dos dados que serão armazenados. Veja
a Figura 18.

3.3.9 Qualidade

A arquitetura do sistema TROPA foi pensada e projetada de forma que atendesse
aos requisitos de qualidade (Seção 3.2.4.1). Sendo assim, a seguir é apresentada, para cada
requisito contemplado, uma descrição de como a arquitetura contribui-lhe.

Capítulo 3. Resultados e Discussão 66

Figura 18 – DLD do TROPA

Capítulo 3. Resultados e Discussão 67

• RNFQ 1 - Aptidão: conforme demonstrado pelos diagramas de pacote, comunicação
e componentes, o sistema está modularizado o suficiente para atender esse requisito;

• RNFQ 2 - Interoperabilidade: a escolha das tecnologias a serem utilizadas para a
construção do sistema obedeceu a esse requisito;

• RNFQ 3 e 11 - Tolerância a falhas e Adaptabilidade: a arquitetura de microsserviços
contribui para que falhas em uma funcionalidade não impactem outra. Também
facilita a manutenção em ambientes de implantação;

• RNFQ 9 e 10 - Mutabilidade e Testabilidade: a modularização do sistema e a escolha
de tecnologias permite a simplicidade nas eventuais mudanças bem como ao testá-
las.

3.3.10 Segurança

De forma semelhante aos requisitos de qualidade, a arquitetura do sistema TROPA
também foi pensada e projetada para que contribuísse aos requisitos de segurança (Se-
ção 3.2.4.2). Sendo assim, a seguir é apresentada, para cada requisito contemplado, uma
descrição de como a arquitetura contribui-lhe.

• RNFSec 1, 2 e 3 - Confidencialidade, Integridade e Disponibilidade: requisitos par-
cialmente atendidos por causa da utilização de um Gateway/Load Balancer. Este
esconde os microsserviços da Internet, e balanceia as requisições ao sistema.

3.4 TROPA: MVP
O mínimo produto viável definido ao software TROPA compreendeu os micros-

serviços de usuário, bilheteria e operação, os quais representam o core do sistema de forma
que a principal funcionalidade (definida em 3.1.1) fosse concretizada. Somado a isso, fo-
ram desenvolvidos módulos complementares para realizar a autenticação, a autorização,
o envio de e-mails, de notificações e a realização dos pagamentos.

Com isso, o TROPA já suporta que usuários operadores, organizadores e rangers
desempenhem suas principais macro-tarefas no aplicativo, a saber, respectivamente: com-
pra de ingressos para participar em operações de Airsoft, formação de times (equipes);
organização, venda e gerenciamento de operações; auxílio no gerenciamento de operações.

3.4.1 Implementação

Para que o MVP TROPA fosse implementado, tanto backend quanto frontend
precisaram ser desenvolvidos, sendo que sofreram leves adaptações em relação ao que foi

Capítulo 3. Resultados e Discussão 68

projetado no documento de arquitetura (Seção 3.3). A título do primeiro, a Tabela 6
evidencia alguns dos endpoints desenvolvidos.

Tabela 6 – Alguns endpoints do backend

Módulo Método Endpoint

App
GET /

GET /health/db

User

POST /user/operator

POST /user/organizer

POST /user/ranger

GET /user

GET /user/operators

GET /user/organizers

GET /user/rangers

GET /user/operator/{id}

PATCH /user/operator/{id}

GET /user/organizer/{id}

PATCH /user/organizer/{id}

GET /user/organizer/refreshCode/{refreshCode}

GET /user/ranger/{id}

PATCH /user/ranger/{id}

PATCH /user/operator/{id}/connect

PATCH /user/operator/{id}/disconnect

PATCH /user/ranger/{id}/connect

PATCH /user/ranger/{id}/disconnect

DELETE /user/{id}

Team

POST /user/team

GET /user/teams

GET /user/team/{id}

PATCH /user/team/{id}

DELETE /user/team/{id}

BoxOffice

POST /box-office

GET /box-office/success

Capítulo 3. Resultados e Discussão 69

Módulo Método Endpoint

GET /box-office/cancel

GET /box-office/all

GET /box-office/{id}

PATCH /box-office/checkin/{id}

POST /box-office/webhook

Operation

POST /operation

GET /operation

GET /operation/mine

GET /operation/citystate

GET /operation/name

GET /operation/{id}

PATCH /operation/{id}

DELETE /operation/{id}

POST /operation/operationimage/{id}

GET /operation/operationimage/{id}

POST /operation/{id}/command

POST /operation/{id}/accomplished

GET /operation/conclusionCode/{id}

Army

POST /operation/army

GET /operation/army/{operationId}

PATCH /operation/army/{id}

DELETE /operation/army/{id}

POST /operation/army/rearrange

Auth POST /auth/login

Para o microsserviço de usuários (User), foi desenvolvido o CRUD completo para
operadores, organizadores, rangers e também para times, que são compostos exclusiva-
mente por dois ou mais operadores. Há ainda outras rotas que desempenham funções
específicas, como, por exemplo, as com sufixos connect e disconnect. Elas servem para,
respectivamente:

• No caso dos operadores: vinculá-los e desvinculá-los a um time;

Capítulo 3. Resultados e Discussão 70

• No caso dos rangers: vinculá-los e desvinculá-los a uma organização, representada
por um usuário organizador (organizer).

O microsserviço da bilheteria (box-office) é responsável pela compra/venda de
ingressos para as operações. Nesse sentido, o endpoint “/box-office” recebe um pedido
de compra vindo do frontend, e devolve a este informações relacionadas a uma “intenção
de pagamento”. Com isso, o aplicativo consegue direcionar o usuário operador a pagar
pelo ingresso de uma operação. Nas ocasiões de sucesso e falha dessa compra, o backend
recebe eventos vindos do serviço de pagamentos externo por meio do endpoint “/box-
office/webhook”. Assim, a decisão de criar (sucesso) ou não (falha) um ingresso (ticket)
para o operador é tomada e ele é avisado.

Para o microsserviço de operações (operation) também há um CRUD com-
pleto, inclusive para a divisão dos operadores participantes em exércitos. O endpoint
“/auth/login” realiza a autenticação dos usuários para cada uma das rotas protegidas
(indicadas com um pequeno cadeado à direita) da aplicação, sendo parte do módulo de
autenticação: complementar aos microsserviços do software TROPA.

Em relação ao frontend, foram implementadas interfaces correspondentes às fun-
cionalidades do MVP TROPA. Para o usuário operador, a tela inicial do aplicativo mostra
as operações à venda na cidade em que ele escolher como filtro. A tela de perfil segue um
padrão para os usuários, visto que existem informações semelhantes entre eles, mas difere
em alguns aspectos: para o operador e ranger, são apresentadas as operações passadas e
futuras dele dentro de uma “carteira”; para o organizador, além das operações passadas
e futuras, é possível criar novos eventos.

Há também a tela dos times existentes na plataforma e, para os operadores, a
possibilidade de criar times. Além disso, vários outros elementos visuais e componentes
fazem parte da lógica implementada no frontend.

3.4.2 Módulos complementares

O Nestjs, framework escolhido para o backend TROPA, recomenda fortemente o
uso de módulos como uma forma efetiva de organizar os componentes de uma aplicação
(MYSLIWIEC, 2023). Embora seja possível executar módulos do Nestjs individualmente,
como será feito na implantação desse trabalho, uma vez que os microsserviços desenvol-
vidos são módulos, os componentes complementares a seguir são compartilhados entre
vários outros módulos do backend. O autor desse trabalho chama os módulos a seguir de
“complementares” porque são fundamentais para auxiliar na lógica das funcionalidades
do TROPA, ou seja, eles complementam a implementação dos componentes essenciais do
sistema.

Capítulo 3. Resultados e Discussão 71

3.4.2.1 Autenticação: auth

Todos os usuários do TROPA são autenticados, inicialmente, por e-mail e senha ao
utilizarem o endpoint “/auth/login” , mencionado anteriormente. Isso retorna ao frontend
um token de acesso que contém três informações: número identificador do usuário; perfil
do usuário; recurso que o usuário pode acessar no sistema. Para requisitar os endpoints
protegidos do sistema, é obrigatório o uso do token de acesso no cabeçalho da requisição.

Uma vez que uma rota protegida é requisitada, entra em cena a guarda “JwtAuth-
Guard” do módulo auth. Guardas (guards) do Nestjs são classes de responsabilidade única:
determinar se uma requisição será aceita ou não, dependendo de condições programa-
das (MYSLIWIEC, 2023). A “JwtAuthGuard” do TROPA é uma guarda que estende a
guarda de autenticação padrão do Nestjs (AuthGuard), utilizando uma estratégia baseada
em JWT (Json Web Token) para: validar o token de acesso da requisição; e popular o
objeto “usuário” (user) da requisição com o conteúdo decodificado do JWT.

Com isso, todas as rotas que precisam ser protegidas são decoradas com “@Use-
Guards(JwtAuthGuard)” e, automaticamente, não serão acessíveis caso a requisição vinda
do frontend não fornecer um JWT válido. Nesse caso a aplicação retorna uma resposta
com status 401, informando que o requisitante não está autorizado.

3.4.2.2 Autorização: authorization

A autorização dos usuários no software TROPA é feita por meio de regras definidas
em código. O módulo authorization conta com um serviço para fazer tais verificações: o
“AuthorizationService”, onde se encontram as regras. Este está injetado em cada micros-
serviço do sistema em que há a necessidade de verificar se determinada requisição pode
ou não receber as informações que deseja, em totalidade ou parcialidade.

Para tornar isso possível, cada acesso restrito chama o serviço de autorização
ainda no nível da controladora do microsserviço requisitado. Em outras palavras, cada
endpoint em que há tal necessidade usa o “AuthorizationService” para assegurar que o
usuário requisitante tem acesso total, parcial ou negado sobre a informação que deseja
antes de chamar a classe de serviço em questão. Nos casos em que o acesso é total, toda
a informação é retornada. Caso seja parcial, apenas dados considerados “públicos” ou
não-sensíveis são fornecidos. Já quando o acesso é negado, uma resposta com código 403,
proibido (forbidden), é retornada.

Há ainda uma configuração no TROPA que barra requisições vindas de servidores
desconhecidos. Isso é feito com a “IpAuthorizationGuard”, uma guarda customizada e
habilitada globalmente em todo o backend. Isto é, ela funciona para todos os endpoints
obrigatoriamente. Essa guarda verifica, para cada requisição, se o requisitante está na
lista de servidores conhecidos do TROPA. Caso não esteja, uma resposta com status 403

Capítulo 3. Resultados e Discussão 72

(forbidden) é retornada, mas caso esteja a requisição é aceita, então entram em cena os
outros mecanismos de segurança mencionados anteriormente.

3.4.2.3 Envio de e-mails: mail

As mensagens eletrônicas do TROPA são enviadas a partir do endereço “con-
tato@tropairsoft.com”. Para isso, dois serviços externos estão configurados, um principal
e outro secundário, respectivamente: Sendgrid e Mailchimp. A escolha sobre qual deles
utilizar se dá em tempo de execução, assim que o backend é inicializado, por meio de uma
variável de ambiente.

Esse módulo foi feito utilizando o padrão de projeto Factory. Dessa forma, módu-
los que utilizam o serviço de e-mails TROPA não sabem se estão chamando um objeto
da classe “SendgridService” ou da “MailchimpService”. Ao invés disso, eles utilizam a
fábrica “MailServiceFactory”, a qual retorna uma instância de um daqueles serviços. Am-
bas “SendgridService” e “MailchimpService” implementam a interface “IMailService” do
módulo mail.

Além disso, as informações dos e-mails enviados pelo TROPA, como conteúdo da
mensagem e assunto, estão definidas em um arquivo específico, em Português. No futuro,
caso o sistema precise enviar mensagens em outros idiomas, basta criar um arquivo com
o conteúdo na língua desejada e fazer algumas alterações em código.

3.4.2.4 Pagamentos: payment

O módulo de pagamentos do TROPA também seguiu o padrão Factory, mas por
enquanto está configurado apenas com o serviço Stripe. Sendo assim, na prática, não
é uma fábrica, mesmo estando estruturada como uma. Para lidar com compra/venda de
ingressos na aplicação, intenções de pagamentos são criadas e retornadas ao frontend, onde
o pagamento realmente acontece. No backend, eventos de sucesso e falha dessas compras
são tradados de forma a criar ou não um ingresso para o operador.

Além disso, o TROPA usa um recurso do Stripe chamado Stripe Connect. Por meio
dele, usuários organizadores são encaminhados, no momento em que se registram com o
TROPA, a fornecerem dados relativos a como querem receber pelas vendas do ingressos
diretamente com o Stripe. O TROPA não lida com essas informações, mas sim cria as
chamadas “contas conectadas” do Stripe para cada organizador. No momento em que
acontece um pagamento de um ingresso, o Stripe automaticamente transfere os valores
para a conta conectada do organizador, e uma taxa de serviço é depositada na conta do
TROPA.

Capítulo 3. Resultados e Discussão 73

3.4.3 Atualizações no projeto e Diferenças na implementação

O projeto da arquitetura de um software é fundamental, mas nem sempre é seguido
totalmente à risca, principalmente quando é feito antes da fase de desenvolvimento, como
foi o caso desse trabalho. Nesse sentido, há algumas diferenças entre o que fora projetado
na Seção 3.3 e o que realmente foi implementado.

Além disso, frequentemente acontecem atualizações no projeto (design) do sistema
e na arquitetura durante o ciclo de vida de desenvolvimento. Isso também foi verdade para
o TROPA em alguns aspectos, ora por conta de uma adequação a uma tecnologia, ora
para dar mais robustez a alguma funcionalidade do sistema.

A seguir serão apresentadas algumas atualizações de projeto e diferenças de im-
plementação.

3.4.3.1 Comunicação entre microsserviços

Durante o planejamento da arquitetura, foi previsto que a comunicação entre ser-
viços aconteceria por meio de chamadas HTTP, simulando um ambiente de microsserviços
distribuídos. No entanto, como os módulos foram implementados em um único projeto
monolítico modularizado usando NestJS, a comunicação foi feita via injeção de depen-
dência, aproveitando os recursos do próprio framework para realizar chamadas diretas
entre os módulos internos da aplicação.

Essa abordagem trouxe benefícios como menor latência, maior simplicidade de
implementação e ausência da sobrecarga de protocolos HTTP, além de facilitar os testes
unitários e de integração. Por outro lado, ela representa um acoplamento maior entre os
componentes do sistema, o que pode ser revisto em versões futuras, caso se deseje migrar
para uma arquitetura de microsserviços distribuídos, com comunicação assíncrona ou via
API Gateway.

3.4.3.2 Diagramas de pacotes e estruturação em pastas

A estrutura proposta nos diagramas de pacotes iniciais diferiu da organização real
do código-fonte. Durante o desenvolvimento, optou-se por uma abordagem mais alinhada
com o estilo do NestJS, que adota a organização por módulos independentes, cada um
contendo seus próprios controladores, serviços e entidades.

Além disso, a divisão em pastas refletiu melhor a separação de responsabilidades e
a modularização do sistema, facilitando tanto a leitura quanto a manutenção do código. Os
pacotes foram reestruturados para refletir melhor os domínios de negócio, como box-office,
auth, notification, payment, entre outros.

Capítulo 3. Resultados e Discussão 74

3.4.3.3 Sistema de notificações push

O projeto inicial previa que o sistema de notificações usaria exclusivamente o
RabbitMQ para comunicação assíncrona entre serviços e publicação de eventos. Embora
o RabbitMQ tenha de fato sido utilizado, principalmente para envio de mensagens internas
no backend, a implementação do sistema de notificações push para o aplicativo móvel
exigiu a integração com o serviço Expo Notifications, próprio do ecossistema do React
Native com Expo.

Assim, foi necessário implementar uma fila intermediária e um serviço de orques-
tração que recebesse eventos via RabbitMQ e os transformasse em notificações compreen-
didas pelo Expo. Essa solução híbrida possibilitou a comunicação eficaz entre o backend
e os dispositivos móveis dos operadores.

3.4.3.4 Implantação do sistema

Durante o planejamento da arquitetura, optou-se pela utilização da nuvem Mi-
crosoft Azure para hospedar o backend do sistema, aproveitando os créditos estudantis
(US$ 100) fornecidos pelo programa GitHub Student Developer Pack.

Essa decisão foi motivada pela integração nativa com containers Docker, suporte
à execução de aplicações Node.js e a disponibilidade de serviços gerenciados como bancos
de dados relacionais.

A Figura 19 ilustra como, na prática, a arquitetura do MVP TROPA foi im-
plantada. Ela também destaca os principais recursos de nuvem utilizados e o fluxo de
comunicação entre os componentes.

A aplicação backend foi construída em uma imagem Docker customizada e publi-
cada no Azure Container Registry (ACR). Em seguida, um Azure Web App for
Containers faz o pull da última versão (latest) da imagem e a executa, com integração
a uma Virtual Network (VNet) privada.

O serviço Web App encontra-se conectado à sub-rede tropa-services-vnet-subnet
da VNet, permitindo acesso seguro à instância de banco de dados PostgreSQL hospe-
dada na própria Azure. Essa instância foi provisionada como Azure Database for
PostgreSQL - Flexible Server, com conectividade privada e hospedada na sub-rede
tropa-postgres-subnet. Somente o Web App foi autorizado a se comunicar com a base
de dados.

A resolução de nomes DNS para o endereço interno do banco foi viabilizada via
Private DNS Zone, vinculada à VNet. Para permitir a comunicação segura entre a
aplicação e a base, foram configurados grupos de segurança de rede (NSGs) permi-
tindo explicitamente o tráfego na porta 5432 entre as sub-redes da aplicação e do banco
de dados.

Capítulo 3. Resultados e Discussão 75

Figura 19 – Diagrama de arquitetura e recursos de implantação do MVP TROPA

O processo de deployment da aplicação foi automatizado por meio de scripts bash e
um Dockerfile específico para produção, seguindo boas práticas de CI/CD. Esse processo
inclui a construção da imagem, publicação no ACR e reinício automático da aplicação
hospedada.

3.5 O aplicativo
À partir do desenvolvimento do MVP, foi desenvolvida a interface de usuário do

frontend, concretizado por meio do aplicativo mobile tropaapp. À seguir, as principais
telas da aplicação são evidenciadas.

A Figura 20 mostra a principal tela do aplicativo, o ponto de entrada do usuário.
Lá ele visualiza e busca por operações para participar.

Ao escolher e clicar em uma operação, são exibidos mais detalhes sobre ela, como
mostra a Figura 21.

Para cada tipo de usuário, a tela de perfil se diferencia em alguns elementos. A
Figura 22 exibe a tela de perfil de operador, enquanto a Figura 23 mostra a de organizador,
e a Figura 24 a de ranger.

Para os usuários operadores existe a tela da carteira virtual, como mostra a Figura

Capítulo 3. Resultados e Discussão 76

Figura 20 – Tela de Operações

Capítulo 3. Resultados e Discussão 77

Figura 21 – Tela de Visualização de uma Operação

Capítulo 3. Resultados e Discussão 78

Figura 22 – Tela de Perfil de Operador

Capítulo 3. Resultados e Discussão 79

Figura 23 – Tela de Perfil de Organizador

Capítulo 3. Resultados e Discussão 80

Figura 24 – Tela de Perfil de Ranger

Capítulo 3. Resultados e Discussão 81

Figura 25 – Tela da Carteira Virtual

25. Nela o operador encontra os ingressos para as operações que ele irá participar, bem
como para as que já participou.

Ao selecionar um ingresso, abre-se a tela de visualização do QRCode, como evi-
dencia a Figura 26.

Outra aba de navegação importante do aplicativo é a tela de exibição de times.
Esta é representada pela Figura 27.

Capítulo 3. Resultados e Discussão 82

Figura 26 – Tela de Visualização de um Ingresso

Capítulo 3. Resultados e Discussão 83

Figura 27 – Tela de Times

Capítulo 3. Resultados e Discussão 84

3.6 Validando o MVP
Para validar o funcionamento, a viabilidade técnica e a necessidade do TROPA,

foram feitas várias builds do aplicativo durante o curso de aproximadamente um mês, as
quais foram disponibilizadas para alguns usuários interessados na solução. Estes frequen-
temente relatavam sobre o uso do aplicativo. Concomitantemente, o backend já havia sido
implantado na Azure e a API estava disponível em:

https://api.tropairsoft.com

Além disso, durante uma rodada de testes de uso da aplicação, algumas tarefas
específicas foram passadas aos usuários para que fosse possível identificar pontos positivos
e negativos no aplicativo. Isso também foi feito para validar algumas principais funcio-
nalidades, bem como para avaliar tanto a interface (UI) quanto a experiência de usuário
(UX). As tarefas variaram conforme o perfil de usuário, mas eram complementares.

Usuário 1 - perfil de organizador

Tarefas:

• Baixe e instale o aplicativo a partir do link: https://expo.dev/accounts/clever-
ltda/projects/tropa-app/builds/<id da build>

• Crie sua conta de organizador;

• Faça login;

• Crie uma operação chamada “Valida MVP”, começando no dia em que receber a
tarefa, e terminando 24h depois, com o valor de R$1,00 e com localização no DF;

• Quando houver operadores que compraram ingressos, divida-os em exércitos con-
forme achar melhor;

• Use a função de leitura de QR Code para validar ingressos;

• Use a função de disparar comandos para a operação: pelo menos 1 vez cada comando;

• Na data e horário de final de operação, dispare o comando de “fim de game”;

Usuários 2, 3 e 4 - perfis de operador

Tarefas:

• Baixe e instale o aplicativo a partir do link: https://expo.dev/accounts/clever-
ltda/projects/tropa-app/builds/<id da build>

Capítulo 3. Resultados e Discussão 85

• Crie sua conta de operador;

• Faça login;

• Compre um ingresso na Operação Valida MVP, do DF;

• Feito isso, navegue para sua carteira e verifique que seu ingresso está presente;

• (Opcional) Compareça ao local da operação na data e no horário especificados.
Apresente seu QR Code para que o organizador valide seu ingresso;

• Fique atento(a) aos comandos disparados e verifique em seu e-mail que os recebeu.
Ex.: pista fria; pista quente; fim de game;

• Ao final da operação, caso a funcionalidade de digitar código de conclusão esteja
disponível, utilize-a. Depois, verifique no seu perfil que ganhou XP;

Durante a realização dessas tarefas, alguns usuários já começaram a relatar pontos
bons e ruins no aplicativo, bem como dificuldades no uso. O autor deste trabalho absteve-
se ao máximo de auxiliá-los para que suas experiências fossem o mais realistas possíveis,
de forma a não haver interferência nos testes.

3.6.1 Feedbacks coletados

Após a realização das tarefas, os usuários que participaram foram indagados a
relatar sobre a experiência de uso do aplicativo, a qualidade da interface e a efetividade
das funcionalidades disponíveis. Os seguintes feedbacks foram coletados, na íntegra:

Usuário 1 - perfil de organizador

“durante o uso do aplicativo tropa senti uma facilidade para criar e gerir mi-
nhas operações, no geral o aplicativo funciona muito bem e é bem didático
para nos organizadores, facilitando a criação e a gerência dos jogos, me per-
mitindo gerenciar os rangers/juízes e criar apenas dois times, o’que poderia
ser aumentado, pois dependendo da operação existe a necessidade de mais
equipes, os comandos são fáceis e permite a qualquer momento parar o jogo e
continuar de forma fácil e pratica, no entanto percebi alguns pontos de ajuste,
na tela de login o campo para escolher o tipo da conta fica oculto pelo botão
login quando se esta colocando login e senha, em algumas telas o contraste da
escrita preta com o fundo cinza atrapalha a visualização, sugestão trocar a cor
da escrita, seria interessante o organizador poder alterar informações como a
data, horário e local da operação, mas no geral o aplicativo é bem prático, irei
usá lo em outras operações.”

Capítulo 3. Resultados e Discussão 86

Usuário 2 - perfil de operador

“o aplicativo é bem prático e intuitivo, so precisa alterar alguns icones, eu
demorei para achar onde comprar o ingresso pois o ícone confunde, seria mais
interessante um icone de dinheiro ou de um ingresso, mas e bem pratico,
recebi todos os comandos no meu celular, so acho que seria melhor se o celular
conseguisse emitir uma voz indicando as informações sobre o jogo, como por
exemplo o inicio e o fim do jogo”

Usuário 3 - perfil de operador

“O App é tem uma funcionalidade interessante. A interface é fácil navegar
e relevantes para o público alvo. Algumas áreas que podem melhorar; Pri-
meiro, o direcionamento após pagamento, levando para outra página, dessa
maneira ficaria mais fácil a compressão que realmente deu certo a compra do
card. Segundo, outra coisa que acho que seria interessante de ser acrescentada,
notificações que mandem informações sobre os eventos e torneios de airsoft,
assim os jogadores ficariam por dentro. Terceiro, a possibilidade de conectar
com as redes sociais, dessa maneira os usuários compartilha suas experiências,
fotos com outros jogadores, interagindo e trazendo engajamento para o APP.
Por último, além do perfil do usuário poder ter fotos, descrição detalhada, e
avaliações de outros jogadores (pontuação).

O app sem dúvidas é muito valioso e útil para a comunidade de Airsoft e com
algumas melhorias vai se tornar ainda mais eficaz.”

Usuário 4 - perfil de operador

“Gostaria de parabenizar pelo excelente trabalho no desenvolvimento do apli-
cativo. A interface é limpa, intuitiva e de fácil navegação, o que facilita bas-
tante o uso diário. As funcionalidades atendem bem às necessidades. No en-
tanto, acredito que alguns pontos ainda podem ser aprimorados, como:

Desempenho: Em certos momentos o app apresenta lentidão ao carregar algu-
mas telas.

Estabilidade: Notei que o app fecha sozinho.”

87

4 Conclusão

O objetivo desse trabalho era, como apresentado na Introdução (1), realizar o
projeto do sistema por completo e desenvolver o MVP. Para o projeto, foram feitos os
documentos de Visão (Seção 3.1), de Requisitos (Seção 3.2) e de Arquitetura (Seção 3.3).
O primeiro trouxe uma visão ampla, de alto nível, sobre o sistema e serviu de base para os
seguintes. O segundo desceu para o nível técnico e abordou os resultados do processo de
Engenharia de Requisitos para o TROPA. Já o terceiro, a partir das informações coletadas
pelos dois anteriores, fez o projeto da arquitetura do sistema e especificou detalhes por
meio de diferentes visões arquitetônicas.

Para o desenvolvimento, as seções 3.4 e 3.6 discorreram os pormenores executados
ao longo dos meses em que o sistema fora implementado. Apresentou-se o que fazia parte
do MVP TROPA, bem como alguns detalhes sobre as tecnologias utilizadas e a imple-
mentação. Após isso, as atualizações e diferenças entre o projetado e o executado foram
expostas, evidenciando que o processo de Engenharia de Software realmente passa por
mudanças e é flexível. Também foi possível relatar os resultados dos testes com usuários
e a coleta dos feedbacks fornecidos.

Além disso, na seção 3.5 foi apresentada a interface de usuário referente ao MVP
por meio de capturas de telas do aplicativo. De modo geral, o trabalho cumpriu com o
que havia se proposto a fazer, visto que o TROPA foi inteiramente projetado, teve seu
MVP entregue e foi bem aceito pelo público que o testou.

À seguir, o autor apresenta, dentre os requisitos do sistema, quais foram atendidos
em totalidade ou parcialidade; reflete sobre os pontos positivos e as melhorias necessárias
para o aplicativo, com base nos relatos dos usuários que o testaram e; discute sobre os
trabalhos futuros, por fim.

Requisitos atendidos

• Em totalidade: R4; R6; R7; R9; R10; R13; RNFQ1; RNFQ9; RNFQ10; RNFQ11.

• Em parcialidade: R1 (falta Lojista); R2 (falta Lojista); R22 (falta Pix); RNFQ2
(falta web); RNFQ3 (depende da falha); RNFQ5 e RNFQ6 (alguns usuários relata-
ram um pouco de dificuldade); RNFSec1 (falta criptografar outros dados além de
senhas); RNFSec2 (falta resistir a DDoS).

Capítulo 4. Conclusão 88

Casos de Uso atendidos
Usuário Operador

• UC1; UC2; UC3; UC4; UC10; UC17.

Usuário Organizador

• Em totalidade: UC1; UC11; UC14; UC15; UC16; UC17;

• Em parcialidade: UC7 (foto de perfil e de operação atendidas)

Usuário Visitante

• UC17.

Serviço externo para pagamentos

• Em totalidade: UC10;

• Em parcialidade: UC8 (falta UC6);

Serviço externo para envio de e-mails

• UC20.

4.1 Pontos positivos e melhorias
Com base nos feedbacks fornecidos durante a fase de validação do sistema (Seção

3.6), foi possível verificar os aspectos em que o aplicativo acertou bem, além daqueles em
que há necessidade de melhoria. A Tabela 7 a seguir reúne os principais pontos positivos
e de melhoria para o aplicativo.

Capítulo 4. Conclusão 89

Tabela 7 – Comparação de feedbacks dos usuários do
aplicativo TROPA

Funcionalidade Pontos Positivos Pontos de Melhoria

Interface de Usuá-
rio • Interface limpa e intuitiva

(Usuário 4)

• Fácil navegação (Usuários 3
e 4)

• Interface prática e relevante
para o público-alvo (Usuário
3)

• Contraste inadequado entre
texto preto e fundo cinza
(Usuário 1)

• Ícones confusos, especi-
almente para compra de
ingressos (Usuário 2)

• Campo de seleção de tipo de
conta fica oculto pelo botão
de login (Usuário 1)

Gestão de Opera-
ções

• Facilidade para criar e gerir
operações (Usuário 1)

• Interface didática para orga-
nizadores (Usuário 1)

• Gerenciamento eficiente de
rangers/juízes (Usuário 1)

• Limitação de apenas dois ti-
mes por operação (Usuário
1)

• Impossibilidade de alterar in-
formações como data, ho-
rário e local após criação
(Usuário 1)

Controle de Jogo

• Comandos simples e práticos
(Usuário 1)

• Possibilidade de pausar e re-
tomar partidas com facili-
dade (Usuário 1)

• Recebimento eficaz de co-
mandos via celular (Usuário
2)

• Ausência de notificações so-
noras para início e fim de
partidas (Usuário 2)

Capítulo 4. Conclusão 90

Funcionalidade Pontos Positivos Pontos de Melhoria

Sistema de Paga-
mento

• Compra de ingressos funcio-
nal (Usuários 2 e 3)

• Ícone de compra pouco intui-
tivo (Usuário 2)

• Falta de redirecionamento
após pagamento para confir-
mação clara (Usuário 3)

Desempenho e Es-
tabilidade

• Aplicativo funciona bem no
geral (Usuário 1)

• Lentidão ao carregar certas
telas (Usuário 4)

• Fechamentos inesperados do
aplicativo (Usuário 4)

Recursos Sociais e
Perfil

• N/A • Falta de integração com re-
des sociais (Usuário 3)

• Perfil poderia conter fotos,
descrição e avaliações (Usuá-
rio 3)

• Ausência de mecanismos
para compartilhamento
entre usuários (Usuário 3)

Notificações e En-
gajamento

• N/A • Ausência de notificações so-
bre eventos e torneios (Usuá-
rio 3)

• Falta de alertas automáticos
e personalizáveis (Usuário 3)

Vale esclarecer que alguns dos aspectos de melhoria já haviam sido feitos enquanto

Capítulo 4. Conclusão 91

os usuários testavam o aplicativo, porém em versões em que não foram feitas builds. Isso
porque a plataforma Expo, escolhida como a responsável pela compilação de código para
Android e iOS, está sendo utilizada em plano gratuito, o qual limita o número de builds
no mês. Outros pontos para aperfeiçoamento da aplicação já estão em andamento, visto
que o desenvolvimento de software é um processo contínuo.

4.2 Trabalhos futuros
Como mencionado anteriormente, o desenvolvimento de software é um processo

iterativo e contínuo. Embora o MVP do sistema TROPA tenha alcançado seu objetivo
e sido bem recebido pelos usuários, diversos aspectos ainda podem ser aprimorados e
ampliados em versões futuras. Abaixo são descritas as principais frentes que devem nortear
os próximos ciclos de desenvolvimento.

Atender aos pontos de melhoria identificados

Os feedbacks coletados durante a fase de testes revelaram oportunidades claras de
melhoria, especialmente no que diz respeito à usabilidade, estabilidade e clareza visual da
interface. Aspectos como o contraste de textos, desempenho em telas específicas, ícones
pouco intuitivos e ausência de redirecionamento pós-pagamento devem ser tratados com
prioridade. Além disso, melhorias na personalização do perfil e notificações sonoras podem
ampliar a imersão do operador no jogo.

Desenvolver funcionalidades pendentes

Durante a fase de implementação do MVP, algumas funcionalidades previstas ori-
ginalmente foram adiadas. Entre elas destacam-se:

• o sistema de ranking entre jogadores, que permitirá avaliações baseadas em desem-
penho e engajamento;

• a galeria de fotos e vídeos das operações, integrando aspectos sociais e de com-
partilhamento;

• suporte completo ao papel de Lojista, incluindo a edição e o gerenciamento de
produtos;

• a adição de métodos de pagamento como Pix, ampliando a acessibilidade e conve-
niência.

Capítulo 4. Conclusão 92

Evoluir para arquitetura de microsserviços

Atualmente, a aplicação foi estruturada com base em módulos internos comunicando-
se por injeção de dependência, aproveitando a estrutura modular do NestJS. No entanto,
o projeto arquitetônico original previa uma arquitetura de microsserviços distribuídos.
Uma futura reestruturação nesse sentido permitirá:

• maior escalabilidade e tolerância a falhas;

• possibilidade de deploys independentes por serviço;

• distribuição de carga entre múltiplos nós.

Disponibilizar a versão web

Embora o sistema já tenha sido desenvolvido com React Native e Expo, visando
compatibilidade com múltiplas plataformas, o frontend ainda não foi adaptado comple-
tamente para navegação via web. Esta versão permitirá acesso facilitado por navegadores
e poderá ampliar o público-alvo, especialmente para usuários organizadores e lojistas que
preferem operar a partir de computadores.

Desenvolver o sistema de gerenciamento administrativo (Admin Service)

Por fim, a criação de um serviço administrativo (Admin Service) para gestão global
da plataforma se apresenta como uma etapa essencial para a escalabilidade e manutenção
do sistema. Esse painel permitiria:

• visualizar e moderar operações ativas;

• controlar permissões de usuários;

• analisar estatísticas de uso, vendas e engajamento;

• aplicar medidas de segurança e banimento, caso necessário.

Esse sistema administrativo poderá ser implementado como uma aplicação inde-
pendente, com sua própria interface e permissões restritas, comunicando-se com os demais
serviços pela API TROPA ou por mensageria assíncrona.

Implementar o gateway e balanceador de carga do sistema

A arquitetura originalmente proposta para o sistema TROPA incluía um API
Gateway ou load balancer dedicado como ponto único de entrada para todas as requi-
sições externas. Este componente ainda não foi implementado no MVP, mas representa

Capítulo 4. Conclusão 93

uma etapa importante para garantir maior segurança, controle e escalabilidade em versões
futuras do sistema.

O gateway poderá assumir responsabilidades como:

• Roteamento inteligente das requisições para os serviços internos do sistema,
evitando exposição direta dos microsserviços à Internet;

• Autenticação e verificação de origem, por exemplo, distinguindo se uma requi-
sição foi feita por um aplicativo móvel oficial, pela versão web ou por fontes não
autorizadas;

• Controle de acesso, com filtragem de IPs, limitação de taxa (rate limiting) e
proteção contra ataques de negação de serviço (DDoS);

• Monitoramento centralizado, possibilitando auditoria, logging e geração de mé-
tricas de uso por serviço ou origem.

Esse componente poderá ser implementado com soluções presentes no mercado
ou serviços gerenciados na própria nuvem, como o Azure Application Gateway. Ele tam-
bém poderá ser integrado a sistemas de autenticação existentes e prover suporte a rotas
dinâmicas, versionamento de APIs e políticas de segurança personalizadas.

Ao assumir esse papel de orquestração e segurança, o gateway fortalecerá a robustez
arquitetônica do TROPA e permitirá sua escalabilidade segura em ambientes de produção.

94

Referências

ACADEMY, A. AWS Academy Cloud Security Foundations. [S.l.]: AWS, 2023. Disponível
em: <https://aws.amazon.com/training/awsacademy/>. Acesso em: 26 out. 2023.
Citado na página 52.

AIRSOFT, Q. Entendendo a Legislação do Airsoft no Brasil. 2023. <https:
//qgairsoft.com.br/legislacao>. Acesso em: 30 jan. 2025. Citado na página 21.

AIRSOFTPEDIA. Legislação Airsoft Brasil. 2023. <https://airsoftpedia.com.br/
legislacao-airsoft-brasil/>. Acesso em: 21 jan. 2025. Citado 2 vezes nas páginas 18 e 20.

AIRSOFTZONE. 2024. "Disponível em: <https://airsoftzone.com.br">. Citado na
página 35.

AVENTURA, L. e. Legislação sobre Airsoft no Brasil: En-
tenda como Funciona. 2023. <https://blog.lazereaventura.com.br/
legislacao-sobre-airsoft-no-brasil-entenda-como-funciona/>. Acesso em: 30 jan.
2025. Citado na página 19.

AWS. AWS Pricing Calculator. 2024. "Disponível em: <https://calculator.aws/>".
Citado na página 37.

BURGUéS, X.; FRANCH, X. A language for stating component quality. In: SIMPÓSIO
BRASILEIRO DE ENGENHARIA DE SOFTWARE (SBES), 14. , 2000, João
Pessoa/PB. Anais [...]. Porto Alegre: Sociedade Brasileira de Computação, 2000. P.
69-84. DOI: https://doi.org/10.5753/sbes.2000.25921. Citado na página 51.

CAMPOS, V. F. Gerenciamento da rotina do trabalho do dia a dia. 9. ed. [S.l.]: Falconi,
2004. Citado na página 31.

CANDIDO, W. A Verdadeira Origem do Airsoft: Uma Jor-
nada Histórica. 2024. <https://combatgame.com.br/blog/2024/01/17/
a-verdadeira-origem-do-airsoft-uma-jornada-historica/>. Acesso em: 21 jan.
2025. Citado na página 18.

CATEDRAL, L. 2024. "Disponível em: <https://lacatedralairsoft.com>". Citado 2
vezes nas páginas 34 e 38.

CHUNG, L. Non-Functional Requirements. 2006. The Universisty of Texas at Dallas.
Department of Computer Science. Disponível em: <https://personal.utdallas.edu/
~chung/RE/NFR-18.pdf>. Citado na página 53.

COMBAT, A. A. of S. A Ascensão do Airsoft: História, Dissemi-
nação Global e Chegada ao Brasil. 2023. <https://ascairsoft.com.br/
a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/>. Acesso
em: 21 jan. 2025. Citado na página 18.

COMBAT, A. A. of S. A Ascensão do Airsoft: História, Dissemi-
nação Global e Chegada ao Brasil. 2023. <https://ascairsoft.com.br/

https://aws.amazon.com/training/awsacademy/
https://qgairsoft.com.br/legislacao
https://qgairsoft.com.br/legislacao
https://airsoftpedia.com.br/legislacao-airsoft-brasil/
https://airsoftpedia.com.br/legislacao-airsoft-brasil/
https://airsoftzone.com.br"
https://blog.lazereaventura.com.br/legislacao-sobre-airsoft-no-brasil-entenda-como-funciona/
https://blog.lazereaventura.com.br/legislacao-sobre-airsoft-no-brasil-entenda-como-funciona/
https://calculator.aws/
https://combatgame.com.br/blog/2024/01/17/a-verdadeira-origem-do-airsoft-uma-jornada-historica/
https://combatgame.com.br/blog/2024/01/17/a-verdadeira-origem-do-airsoft-uma-jornada-historica/
https://lacatedralairsoft.com
https://personal.utdallas.edu/~chung/RE/NFR-18.pdf
https://personal.utdallas.edu/~chung/RE/NFR-18.pdf
https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/
https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/
https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/
https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/
https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/

Referências 95

a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/>. Acesso
em: 30 jan. 2025. Citado na página 21.

DIGITAL, B. 2024. "Disponível em: <https://www.bilheteriadigital.com/">. Citado na
página 35.

EVENTBRITE. 2024. "Disponível em: <https://www.eventbrite.com/">. Citado na
página 35.

EVENTIZA. 2024. "Disponível em: <https://eventiza.com.br">. Citado na página 35.

FABE, F. de Airsoft de Brasília e E. 2024. Disponível em: <https://www.instagram.
com/fabebsb/>. Citado 3 vezes nas páginas 33, 34 e 38.

GROUP, T. P. G. D. PostgreSQL: Documentation. 2023. <https://www.postgresql.org/
docs/>. Acesso em: 20 jan. 2025. Citado na página 25.

INC., D. Docker Documentation. 2023. <https://docs.docker.com/>. Acesso em: 20 jan.
2025. Citado na página 30.

INC., S. Stripe Company History. 2023. <https://stripe.com/about>. Acesso em: 20
jan. 2025. Citado na página 28.

INC., S. Stripe Documentation. 2023. <https://stripe.com/docs>. Acesso em: 20 jan.
2025. Citado na página 28.

KREMER, S. et al. Cybersecurity: Current Challenges and Inria‘s research directions. 3.
ed. França, 2019. Citado 2 vezes nas páginas 51 e 52.

MAILCHIMP, I. Mailchimp Documentation. 2023. <https://mailchimp.com/help/>.
Acesso em: 20 jan. 2025. Citado na página 27.

MICROSOFT. TypeScript: Documentation. 2023. <https://www.typescriptlang.org/
docs/>. Acesso em: 20 jan. 2025. Citado na página 22.

MICROSOFT. Visual Studio Code Documentation. 2023. <https://code.visualstudio.
com/docs>. Acesso em: 20 jan. 2025. Citado na página 30.

MYSLIWIEC, K. NestJS Framework: Documentation. 2023. <https://docs.nestjs.com/>.
Acesso em: 20 jan. 2025. Citado 4 vezes nas páginas 23, 24, 70 e 71.

NAIK, K.; TRIPATHY, P. Mccall’s quality factors and criteria. In: Software Testing and
Quality Assurance: Theory and Practise. New Jersey: John Wiley & Sons, Inc., 1959,
(ISBN 978-0-471-78911-6). cap. 17, p. 523–527. Citado 2 vezes nas páginas 51 e 52.

OVERFLOW, S. Developer Survey 2022. 2022. <https://survey.stackoverflow.co/2022/>.
Acesso em: 20 jan. 2025. Citado na página 22.

PLATFORMS, M. React Native: Documentation. 2023. <https://reactnative.dev/docs/
getting-started>. Acesso em: 20 jan. 2025. Citado na página 24.

PLUS, A. O que é Airsoft? Das Origens no Japão ao Crescimento no Brasil. 2023.
<https://www.aegplus.com/conteudo/21-artigo-o-que-e-airsoft>. Acesso em: 30 jan.
2025. Citado na página 18.

https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/
https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/
https://ascairsoft.com.br/a-ascensao-do-airsoft-historia-disseminacao-global-e-chegada-ao-brasil/
https://www.bilheteriadigital.com/"
https://www.eventbrite.com/"
https://eventiza.com.br"
https://www.instagram.com/fabebsb/
https://www.instagram.com/fabebsb/
https://www.postgresql.org/docs/
https://www.postgresql.org/docs/
https://docs.docker.com/
https://stripe.com/about
https://stripe.com/docs
https://mailchimp.com/help/
https://www.typescriptlang.org/docs/
https://www.typescriptlang.org/docs/
https://code.visualstudio.com/docs
https://code.visualstudio.com/docs
https://docs.nestjs.com/
https://survey.stackoverflow.co/2022/
https://reactnative.dev/docs/getting-started
https://reactnative.dev/docs/getting-started
https://www.aegplus.com/conteudo/21-artigo-o-que-e-airsoft

Referências 96

PRESSMAN, R. S. Engenharia de software: uma abordagem profissional. 7. ed. Porto
Alegre: AMGH, 2011. Citado 2 vezes nas páginas 15 e 51.

PRESSMAN, R. S.; MAXIM, B. R. Engenharia de software. [S.l.]: Grupo A, 2021. ISBN
9786558040118. Disponível em: <https://integrada.minhabiblioteca.com.br/#/books/
9786558040118/>. Acesso em: 09 abr. 2024. Ebook. Citado 2 vezes nas páginas 17 e 44.

PROJECT, T. G. Git Documentation. 2023. <https://git-scm.com/doc>. Acesso em: 20
jan. 2025. Citado na página 29.

REINEHR, S. Engenharia de Requisitos. [S.l.]: Grupo A, 2020. ISBN 9786556900674.
Disponível em: <https://integrada.minhabiblioteca.com.br/#/books/9786556900674/>.
Acesso em: 09 abr. 2024. Ebook. Citado 3 vezes nas páginas 22, 40 e 44.

ROSSOW, C.; JHA, S. The cyber security body of knowledge v1.0, 2019. In: .
University of Bristol, 2019. cap. Network Security. KA Version 1.0. Disponível em:
<https://www.cybok.org/>. Citado na página 52.

SENDGRID, T. SendGrid Documentation. 2023. <https://docs.sendgrid.com/>. Acesso
em: 20 jan. 2025. Citado na página 27.

SILVA, F. R. da C. Requisitos Não-Funcionais: NFR Framework. 2004. Disponível em:
<https://www.inf.unioeste.br/~olguin/4446-2009/RequisitosNaoFuncionais_aula.pdf>.
Citado na página 53.

SOFTWARE, P. RabbitMQ Documentation. 2023. <https://www.rabbitmq.com/
documentation.html>. Acesso em: 20 jan. 2025. Citado 2 vezes nas páginas 25 e 26.

SOFTWARE, S. Swagger Documentation. 2023. <https://swagger.io/docs/>. Acesso
em: 20 jan. 2025. Citado na página 26.

SYMPLA. 2024. "Disponível em: <https://www.sympla.com.br">. Citado na página
35.

WARCAMP. 2024. "Disponível em: <https://warcamp.app/blog/">. Citado na página
35.

WHIMSICAL, I. Whimsical Documentation. 2023. <https://whimsical.com/>. Acesso
em: 20 jan. 2025. Citado na página 30.

https://integrada.minhabiblioteca.com.br/#/books/9786558040118/
https://integrada.minhabiblioteca.com.br/#/books/9786558040118/
https://git-scm.com/doc
https://integrada.minhabiblioteca.com.br/#/books/9786556900674/
https://www.cybok.org/
https://docs.sendgrid.com/
https://www.inf.unioeste.br/~olguin/4446-2009/RequisitosNaoFuncionais_aula.pdf
https://www.rabbitmq.com/documentation.html
https://www.rabbitmq.com/documentation.html
https://swagger.io/docs/
https://www.sympla.com.br"
https://warcamp.app/blog/"
https://whimsical.com/

	Folha de rosto
	Folha de aprovação
	Dedicatória
	Agradecimentos
	Epígrafe
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Sumário
	Introdução
	Objetivo
	Objetivos específicos

	Metodologia
	Organização

	Desenvolvimento
	Airsoft
	Introdução
	História do Airsoft
	Regras e Funcionamento
	Modalidades de Jogo
	Honestidade e Autorregulação
	Eliminação e Sinalização

	Equipamentos e Segurança
	Simulacros de Armas
	Equipamentos de Proteção Individual (EPIs)
	Regras de Segurança

	Airsoft no Brasil
	Regulamentação Legal
	Crescimento e Comunidade

	Conclusão

	Suporte Tecnológico
	TypeScript
	Framework Backend: NestJS
	Framework Frontend: React Native e Expo
	Banco de Dados: PostgreSQL
	Mensageria: RabbitMQ
	Documentação de API: Swagger
	Serviços de E-mail
	SendGrid
	Mailchimp

	Plataforma de Pagamentos: Stripe
	Ferramentas Auxiliares
	Controle de Versão: Git e GitHub
	Containerização: Docker e Docker Compose
	Editor de Código: Visual Studio Code (VSCode)
	Design: Whimsical

	Metodologia 5W2H

	Resultados e Discussão
	TROPA: Visão
	Escopo
	Descrição dos Usuários
	Posicionamento
	Oportunidade de Negócios
	Alternativas e Concorrências
	Descrição do Problema com 5W2H
	Instrução de Posição do Produto

	Visão Geral do Produto
	Estimativa de Custos
	Custos de Operação

	Propriedade Intelectual

	Recursos do Produto
	Restrições do Produto

	TROPA: Requisitos
	Histórias de Usuário
	Casos de Uso
	Especificação dos Casos de Uso
	UC 2: Participar em jogos/eventos
	UC 10: Comprar Ingresso
	UC 17: Visualizar jogos/eventos
	UC 8: Processar Transações
	UC 11: Organizar jogos/eventos
	UC 16: Validar ingresso
	UC 18: Fazer moderação de conteúdo
	UC 19: Gerenciar o sistema

	Requisitos Não-Funcionais (RNFs)
	Requisitos de Qualidade
	Requisitos de Segurança
	Justificativa
	Os requisitos

	Modelagem dos Requisitos Não-Funcionais

	TROPA: Arquitetura
	Introdução
	Propósito
	Escopo
	Referências

	Objetivos e Restrições
	Objetivos
	Restrições

	Representação da Arquitetura
	Tecnologias

	Visão Lógica
	Front-end
	Back-end
	Pacotes dos microsserviços

	Visão de Processos
	Visão de Implantação
	Visão de Implementação
	Visão de Dados
	Qualidade
	Segurança

	TROPA: MVP
	Implementação
	Módulos complementares
	Autenticação: auth
	Autorização: authorization
	Envio de e-mails: mail
	Pagamentos: payment

	Atualizações no projeto e Diferenças na implementação
	Comunicação entre microsserviços
	Diagramas de pacotes e estruturação em pastas
	Sistema de notificações push
	Implantação do sistema

	O aplicativo
	Validando o MVP
	Feedbacks coletados

	Conclusão
	Pontos positivos e melhorias
	Trabalhos futuros

	Referências

