—

Universidade de Brasilia - UnB
Faculdade de Ciéncias e Tecnologias em Engenharia - FCTE
Engenharia de Software

Analise Comparativa de Arquiteturas
Convolucionais e Baseadas em Atencao para
Deteccao Automatizada de Parasitas Intestinais

Autor: Eduardo Vieira Lima
Orientador: Dr. Vinicius de Carvalho Rispoli

Brasilia, DF
julho de 2025

Eduardo Vieira Lima

Anélise Comparativa de Arquiteturas Convolucionais e Baseadas em Atencéo
para Detecgdo Automatizada de Parasitas Intestinais/ Eduardo Vieira Lima. —
Brasilia, DF, julho de 2025-

97 p. : il. (algumas color.) ; 30 cm.

Orientador: Dr. Vinicius de Carvalho Rispoli

Trabalho de Conclusido de Curso — Universidade de Brasilia - UnB

Faculdade de Ciéncias e Tecnologias em Engenharia - FCTE , julho de 2025.

1. Redes neurais. 2. Vision Transformer. I. Dr. Vinicius de Carvalho Rispoli. II.
Universidade de Brasilia. ITI. Faculdade UnB Gama. IV. Andlise Comparativa de
Arquiteturas Convolucionais e Baseadas em Atencdo para Detec¢do Automatizada
de Parasitas Intestinais

CDU 02:141:005.6

Eduardo Vieira Lima

Analise Comparativa de Arquiteturas Convolucionais e
Baseadas em Atencao para Deteccao Automatizada de
Parasitas Intestinais

Monografia submetida ao curso de graduacgao
em (Engenharia de Software) da Universi-
dade de Brasilia, como requisito parcial para
obtencao do Titulo de Bacharel em (Enge-
nharia de Software).

Dr. Vinicius de Carvalho Rispoli
Orientador

Dr.Ronni Geraldo Gomes de Amorim

Dr. Marcus Vinicius Chaffim Costa

Brasilia, DF
julho de 2025

Agradecimentos

Tenho que comecar agradecendo a minha noiva, Thais, por ser a minha maior fonte
de apoio ha 8 anos. Nao chegaria até aqui de outra forma, sou muito grato por dividir a
vida com voceé.

A meus irmaos, Marcela, Luisa, Gustavo e José Henrique. Grande parte da minha
determinacao e ambicao vem da vontade de inspirar e apoiar vocés, nao pude desistir
enquanto tive isso em mente.

Também ao meu amigo Joao Marcelo, que foi essencial para minha trajetoria desde
o ensino médio e principalmente durante toda a graduacao. Sem sua ajuda de Calculo 1
até este trabalho, eu jamais conseguiria chegar aqui.

Importante nao deixar de agradecer a minha familia, em especial meu pai Rubens
e minha avé Nenza, por terem me incentivado e apoiado durante toda minha vida. Vocés
foram grandes inspira¢oes para mim.

Ao meu orientador, Vinicius de Carvalho Rispoli, que me acolheu para a execugao
deste trabalho quando eu ja nao sabia se iria conseguir.

Nao obstante, a todos os meus outros amigos que estiveram comigo nessa jornada,
em especial Luis e Samuel, que estiveram comigo desde o inicio e seguem comigo hoje.

A todo o corpo docente e de funcionarios da UnB, que diariamente se esforcam

pelo ensino de exceléncia nas universidades publicas.

Resumo

A deteccao e classificacdo de parasitas intestinais através de microscopia Optica repre-
sentam um desafio significativo na drea médica, especialmente em regidoes com recursos
limitados, sendo a analise manual o padrao atual. Este trabalho se propos a analisar
e comparar as principais solugoes de classificagao automatica no campo da visdo com-
putacional, redes convolucionais e transformadores visuais, apresentando também uma
abordagem hibrida entre elas. Foram exploradas solu¢oes que priorizam a eficiéncia com-
putacional: EfficientNetV2-S para a rede convolucional e Tiny ViT para o transformador
visual, tendo em vista cenarios com recursos limitados. Foi utilizado para treinamento
e avaliagdo um dos maiores conjuntos de imagens microscopicas de parasitas disponivel
publicamente, o Chula-ParasiteEgg-11, contendo 2.200 imagens de 11 espécies distintas
de parasitas. Os resultados obtidos demonstram que as solugoes analisadas sao viaveis e
possuem acuracia satisfatoria, sendo a rede convolucional a que melhor performa em ter-
mos de eficiéncia e acuracia, seguida do modelo hibrido e entao do transformador visual.
Observou-se que as solugoes possuem resultados razoavelmente inferiores aos modelos mais
robustos da literatura, porém utilizam significativamente menos recursos computacionais,

0 que as torna viaveis para situagoes em que o recurso ¢é limitado.

Palavras-chaves: Aprendizado profundo. Classificacao de parasitas. Redes convolucio-

nais. Transformadores visuais. Modelo hibrido.

Abstract

The detection and classification of intestinal parasites through optical microscopy rep-
resents a significant challenge in the medical field, especially in resource-limited regions,
where manual analysis remains the current standard. This work aimed to analyze and
compare the main automatic classification solutions in the field of computer vision, con-
volutional networks and visual transformers, also presenting a hybrid approach between
them. Solutions that prioritize computational efficiency were explored: EfficientNetV2-S
for the convolutional network and Tiny ViT for the visual transformer, considering scenar-
ios with limited resources. One of the largest publicly available microscopic parasite image
datasets was used for training and evaluation, the Chula-ParasiteEgg-11, containing 2,200
images of 11 distinct parasite species. The obtained results demonstrate that the analyzed
solutions are viable and have satisfactory accuracy, with the convolutional network per-
forming best in terms of efficiency and accuracy, followed by the hybrid model and then
the visual transformer. It was observed that the solutions have reasonably inferior results
compared to the more robust models in the literature, however they use significantly fewer

computational resources, making them viable for situations where resources are limited.

Key-words: Deep learning. Parasite classification. Convolutional networks. Visual trans-

formers. Hybrid model.

Figura 1 —

Figura 2 —

Figura 3 —

Figura 4 —

Figura 5 —

Figura 6 —

Figura 7 —

Figura 8 —

Lista de ilustracoes

[lustracao de um modelo de rede neural rasa com uma camada de

entrada, saida e uma tinica camada oculta intermediaria. Fonte: Nielsen

(2015) . . .

[lustracao de um modelo de rede neural profunda com uma camada

de entrada, saida e multiplas camadas ocultas intermediarias. Fonte:

Nielsen (2015) oL

Grafico que representa as fungoes de ativacdo mais comumente utiliza-
das. Cada funcao tem o papel de introduzir a nao-linearidade ao mo-

delo, a escolha de uma varia de acordo com a necessidade do problema

abordado. Fonte: Leppich (2021)

Representagao visual de como uma rede convolucional identifica pa-
droes para, neste caso, reconhecer a imagem de um gato (cat, em in-
glés). De baixo para cima na imagem, linhas elementares ou texturas
combinam-se em objetos simples como olhos ou orelhas, que entao com-

binam em conceitos mais complexos como “gato”. Assim funciona a

hierarquia espacial. Fonte: Chollet (2021)

Visao geral do transformador visual. A imagem ¢ dividida em blocos
de tamanho fixo, que sao entdao submetidos a uma projecao linear com

informacao de posicao e alimentados a um codificador para um trans-

formador padrao. Fonte: Dosovitskiy et al. (2020)

Estrutura de destilacao rapida do Tiny ViT. A parte superior mostra
a ramificacao para salvar os logits do professor, onde o tratamento de
dados codificado e os logits esparsificados do professor sao salvos. A
parte do meio representa o disco para armazenar as informagcoes. A
parte inferior mostra a ramificacado para treinar o estudante, onde o
decodificador reconstréi o tratamento de dados e a destilagao é con-
duzida entre os logits do professor e as saidas do estudante. As duas
ramifica¢oes sao independentes e assincronas, permitindo treinamento

sem processar o modelo professor grande durante cada iteragao. Fonte:

Wu et al. (2022)o

Curvas de treinamento ao longo do tempo do modelo EfficientNetV2-

S, apresentando perda e acuracia. O tempo é dado em épocas. Fonte:

Elaborado pelo autor (2025). L.

Curvas de treinamento ao longo do tempo do modelo Tiny Vision

Transformer, apresentando perda e acuracia. O tempo é dado em épo-

cas. Fonte: Elaborado pelo autor (2025).

Figura 9 —

Figura 10 —

Figura 11 —

Figura 12 —

Figura 13 —

Figura 14 —

Figura 15 —

Figura 16 —

Figura 17 —

Figura 18 —

Curvas de treinamento ao longo do tempo do modelo hibrido, apresen-
tando perda e acuracia. O tempo é dado em épocas. Fonte: Elaborado
pelo autor (2025).
Comparacao da acuracia de teste entre o modelo de rede convolucio-
nal EfficientNetV2-S, transformador visual Tiny ViT e hibrido. Fonte:
Elaborado pelo autor (2025). o
Analise detalhada da acuracia de teste do modelo EfficientNetV2-S.
Apresenta acurdcia e perda geral, precisao, revocacao e F1-Score por
classe especifica. Fonte: Elaborado pelo autor (2025).
Analise detalhada da acurécia de teste do modelo Tiny Vision Transfor-
mer. Apresenta acuracia e perda geral, precisao, revocagao e F1-Score
por classe especifica. Fonte: Elaborado pelo autor (2025).
Analise detalhada da acuracia de teste do modelo hibrido. Apresenta
acuracia e perda geral, precisao, revocacao e F1-Score por classe espe-
cifica. Fonte: Elaborado pelo autor (2025).
Matriz de confusao do modelo EfficientNetV2-S. Apresenta em ntimeros
o resultado da previsao do modelo, comparando o valor real com o
previsto. Fonte: Elaborado pelo autor (2025).
Matriz de confusao do modelo Tiny Vision Transformer. Apresenta em
nimeros o resultado da previsao do modelo, comparando o valor real
com o previsto. Fonte: Elaborado pelo autor (2025).
Matriz de confusao do modelo hibrido. Apresenta em niimeros o resul-
tado da previsao do modelo, comparando o valor real com o previsto.
Fonte: Elaborado pelo autor (2025).
Comparagao entre base (esquerda) e inferéncia do modelo de rede con-
volucional (direita) para a classe Ascaris lumbricoides. Fonte: Elabo-
rado pelo autor (2025).o
Comparagao entre base (esquerda) e inferéncia do modelo Tiny Vision
Transformer (direita) para a classe Hymenolepis nana. Fonte: Elabo-
rado pelo autor (2025).

20

Lista de tabelas

Tabela 1 — Hiperparametros utilizados no experimento

Tabela 2 — Comparacao da eficiéncia computacional dos modelos

Lista de abreviaturas e siglas

CNN Convolutional Neural Network (Rede Neural Convolucional)
CPU Central Processing Unit (Unidade Central de Processamento)
GPU Graphics Processing Unit (Unidade de Processamento Gréfico)
HSV Hue-Saturation- Value (Matiz-Saturacao-Valor)

IA Inteligéncia Artificial

RGB Red, Green, Blue (Vermelho, Verde, Azul)

ReLU Rectified Linear Unit (Unidade Linear Retificada)

GELU Gaussian Error Linear Unit (Unidade Linear de Erro Gaussiano)
ViT Vision Transformer (Transformador Visual)

ms Milissegundos

pm Micrometros

=

S S =

log(z)

Lista de simbolos

Coeficiente de profundidade
Coeficiente de largura
Coeficiente de resolucao
Coeficiente composto de escalonamento
Funcao de perda

Soma,

Logaritmo natural
Conjunto dos nimeros reais
Vetor de entrada

Vetor de saida

Matriz de pesos

Vetor de bias

Pertence a

1.1
1.2
1.2.1
1.3
1.4

2.1

2.1.1
2.1.2
2.1.3
2.1.4
2.2

2.3

23.1
2.3.2
2.3.3
2.4

24.1
242
243

A.l
A.2

Sumario

Introducao 19
REFERENCIAL TEORICOttt 23
Aprendizado de Maquinao 23
Redes Neurais 25
Redes neurais convolucionais L. 28
Transformadores visuais 29
Visao computacional aplicada a deteccao de parasitas 31
METODOLOGIA e e e e e e e e e 33
Dados 33
Caracteristicas gerais do conjunto dedados 33
Caracteristicas Morfolégicas dos Ovos 34
Coletadedados 34
Tratamento do conjuntode dados 34
Funcagode Perdao 35
Arquiteturas implementadas 36
Rede convolucional: EfficientNetV2-S 36
Transformador visual: Tiny VIiT 38
Modelo hibrido: EfficientNetV2-S + Tiny ViT 39
Experimento 41
Ferramentas utilizadas 41
Configuracdo experimental L 41
Analise comparativa 44
RESULTADOS EDISCUSSAO o i it i e e 47
CONCLUSAO ittt e e e e e e 57
REFERENCIAS et 59
APENDICES 63
APENDICE A-CODIGO FONTEuu... 65
Arquivo Principal: run_optimized.py 65

Treinador Otimizado: trainer_optimized.py 73

A3
A4
A5
A.6

Configuracao: config_optimized.py 85
Modelos: models.py 87
Conjunto de Dados: dataset_optimized.py 91

Requirements: requirements.txt 97

19

Introducao

Inteligéncia Artificial (IA) é um ramo da tecnologia que pode ser descrito como
o esforco para automatizar tarefas intelectuais normalmente executadas por humanos
Chollet (2021). Esse campo tem evoluido rapidamente nas tltimas décadas, impulsionado
pelo crescimento exponencial na capacidade computacional, disponibilidade de grandes
volumes de dados e avangos em algoritmos de aprendizado de maquina. Nos tltimos
anos, a [A tem sido objeto de intenso interesse geral, expandindo-se para contextos além
das areas tradicionais de tecnologia, como medicina, finangas, industria automotiva e
seguranca cibernética Chollet (2021).

Dentre os principais campos da 1A, o Machine Learning (ML) se destaca por
permitir que sistemas aprendam padroes e tomem decisoes com base em dados Mitchell
(1997). Essa abordagem elimina a necessidade de programagao explicita para cada cenario,
tornando possivel a adaptagao e melhoria continua dos modelos conforme novos dados sao
incorporados. Dentro do ML, o Aprendizado Profundo (do inglés, Deep Learning), que
utiliza redes neurais profundas, tem impulsionado avancos significativos, especialmente
no processamento de imagens e linguagem natural, devido a sua capacidade de identificar
padroes complexos em grandes volumes de dados.

As Redes Neurais Convolucionais (CNNs) representam um dos avangos mais im-
portantes no campo do Deep Learning. Inspiradas no funcionamento do cortex visual, as
CNNs sao arquiteturas especializadas para processamento de imagens, utilizando camadas
convolucionais para extrair caracteristicas relevantes, reduzindo a necessidade de interven-
¢ao manual na definicao de caracteristicas. Essas redes tém sido amplamente empregadas
em tarefas como reconhecimento facial, diagndstico por imagem e veiculos autéonomos,
permitindo classificagoes e segmentagdes com alta precisao Lecun et al. (1998).

Mais recentemente, os Vision Transformers (ViTs) surgiram como uma alternativa
promissora as CNNs para visao computacional. Diferentemente das arquiteturas tradicio-
nais baseadas em convolucao, os ViTs utilizam mecanismos de autoatencao para capturar
relacoes globais entre pixels em imagens. Essa abordagem permite um aprendizado mais
eficiente de representagoes visuais e, em muitos casos, supera o desempenho das CNNs
em diversas tarefas especificas Dosovitskiy et al. (2020). O avango dos ViTs tem ampliado
significativamente o potencial das aplicagoes de IA, trazendo novas possibilidades para
reconhecimento de padroes visuais e reforcando a importancia dos modelos baseados em
atencao na area de aprendizado profundo.

No campo da medicina, as infecgoes parasitarias intestinais continuam sendo um
problema significativo de saude ptblica, especialmente em paises em desenvolvimento e
regides com infraestrutura sanitaria deficiente. Estima-se que cerca de 24% da populacao

mundial seja afetada por doencas infecciosas e parasitarias, com impacto predominante

20 Introducao

em criangas, gestantes e pessoas com baixa imunidade Kumar et al. (2023). Essas infecgoes
podem resultar em sintomas como diarreia, desnutri¢do, anemia, fraqueza e comprometi-
mento do desenvolvimento infantil.

O diagnostico tradicional dessas infecgoes é realizado por meio de exames micros-
copicos de amostras fecais, considerados o padrao-ouro por sua capacidade de identificar
diretamente ovos e parasitas. Contudo, esse processo é trabalhoso, demorado, exige pes-
soal altamente capacitado e esta sujeito a variagoes na acuracia devido a subjetividade da
andlise e as variagoes morfolégicas dos parasitas Xu et al. (2024). Além disso, o ambiente
de trabalho pode ser insalubre, com baixa eficiéncia e alto volume de trabalho para os
profissionais de laboratério.

Nesse cenario, a aplicacao de modelos baseados em TA tem-se mostrado uma al-
ternativa promissora para automatizar e melhorar o processo de detecgao e classificagao
de parasitas intestinais. A integracao de tecnologias de processamento de imagens digitais
com métodos de aprendizado profundo, especialmente com redes neurais convolucionais
e, mais recentemente, com Vision Transformers, tem impulsionado o desenvolvimento de
sistemas automaéaticos capazes de identificar com maior precisao e agilidade os agentes
infecciosos presentes em imagens microscopicas Kumar et al. (2023).

Diversos trabalhos prévios tém explorado o uso de aprendizado profundo para essa
tarefa. Kumar et al. (2023) propuseram uma abordagem utilizando YOLOvV5, demons-
trando elevada acuracia (cerca de 97%) e alta velocidade de detec¢ao em um conjunto
de dados com mais de cinco mil imagens de parasitas intestinais. O estudo destacou a
viabilidade do uso de modelos leves em ambientes com poucos recursos computacionais,
voltando-se ao diagndstico clinico em tempo real.

Xu et al. (2024) desenvolveram a YAC-Net, uma arquitetura leve baseada em
YOLOvV5, com otimizagoes estruturais especificas para imagens de ovos parasitarios. Os
autores demonstraram que sua abordagem melhora a detec¢ao mesmo em imagens com
baixa resolucao e com ruidos, reduzindo o nimero de parametros e o custo computacional,
o que viabiliza sua aplicagao em regides remotas.

Outro trabalho relevante foi apresentado por AlDahoul et al. (2023), que explorou
a combinacao de redes convolucionais com mecanismos de atencao por meio da arquite-
tura CoAtNet, demonstrando que a combinacao dessas abordagens pode gerar resultados
superiores na classificagao de ovos parasitarios. O estudo também comparou diferentes
abordagens de CNNs e Vision Transformers em um conjunto diverso de imagens, incluindo
variagoes de iluminacgao e resolucao.

Apesar das contribuicoes relevantes dessas pesquisas, poucas investigagoes explo-
ram comparativamente a aplicagao de CNNs e Vision Transformers de maneira sistematica
e com base em um mesmo conjunto de dados para a deteccao e classificacdo de parasitas
intestinais. Neste contexto, esta monografia tem como objetivo investigar e comparar o

desempenho de modelos baseados em CNNs e Vision Transformers na tarefa de detec-

21

¢ao e classificagdo de parasitas intestinais em imagens microscépicas, contribuindo para

o desenvolvimento de ferramentas automatizadas e eficientes para a satide publica.

23

1 Referencial Tedrico

Este capitulo apresenta a fundamentagao tedrica deste trabalho. Inicia-se introdu-
zindo o conceito de Aprendizado de Maquina (Machine Learning) e Aprendizado Profundo
(Deep Learning). Em seguida, apresenta as arquiteturas de Aprendizado de Maquina abor-
dadas neste trabalho, Redes Neurais Convolucionais (Convolutional Neural Networks ou
CNNs) e Transformadores Visuais (Vision transformers ou ViTs). Entao, apresenta uma
visao geral sobre a Visao Computacional aplicada a deteccao de parasitas intestinais, as-
sim como o contexto geral do problema para o campo da medicina e a importancia das
solugoes exploradas neste trabalho. Por fim, apresenta brevemente os trabalhos relacio-

nados relevantes para este contexto.

1.1 Aprendizado de Maquina

Os programas construidos em Aprendizado de Maquina possuem, de forma geral,
trés componentes: dados de entrada, exemplos da saida esperada e um meio de quantificar
a qualidade das saidas geradas Chollet (2021).

» Dados de entrada: s@o o objeto basico do problema. Por exemplo, os dados de entrada

para um sistema de classificagao de imagens seriam figuras ainda nao classificadas.

o Exemplos da saida esperada: seguindo o exemplo anterior, seria um conjunto de

imagens corretamente classificadas, como“gato” ou “cachorro”.

« um meio de quantificar a qualidade das saidas geradas: é o principal em um processo
de aprendizado de maquina. Por mensurar a qualidade dos resultados da tarefa que
realiza, o sistema é capaz de corrigir-se e ajustar como seu algoritmo funciona. Este

processo de ajuste é o que caracteriza o aprendizado.

O processo principal de um modelo de aprendizado de maquina é transformar os
dados de entrada em saidas significativas para o problema que se propoe a solucionar.
Este processo ¢é aprendido através da exposicao a exemplos conhecidos de entrada e saida
esperada. Assim, o problema central torna-se encontrar maneiras de transformar o dado de
entrada para se aproximar da salda desejada, em outras palavras, aprender representagoes
do dado de entrada que sejam tteis para alcancar a saida esperada. Por exemplo, um
programa que tem como objetivo identificar a presencga da cor vermelha em uma imagem
poderia representar esta imagem no formato RGB (do inglés, red-green-blue). Por sua vez,
se 0 objetivo for saturar as cores de uma imagem, o melhor seria representéd-la no formato
HSV (do inglés, hue-saturation-value) Chollet (2021).

24 Capitulo 1. Referencial Teorico

Transformar os dados de entrada em representacoes relevantes nao é um processo
simples, pois existem numerosas formas de representar um dado e poucas serao tteis para
se aproximar do resultado desejado. Assim, os programas de aprendizado de maquina uti-
lizam um conjunto de transformacoes pré-definidas que melhor se aproximam do contexto
do problema, utilizando o processo de quantificar a qualidade das saidas para avaliar o
quao relevante é cada transformacao dentro deste conjunto. Este conjunto pré-definido
é chamado de espago de hipétese Chollet (2021). Em suma, o processo de aprendizado
de méaquina é composto por: encontrar transformagdes de dados de entrada, dentro de
um conjunto pré-definido de possibilidades, utilizando como guia a qualidade das saidas
geradas e retroalimentando o sistema com cada resultado gerado para se aproximar cada
vez mais da saida desejada. Esta simples ideia possibilita a execucao de diversas tarefas
Chollet (2021).

O aprendizado profundo (do inglés Deep Learning) é uma érea do aprendizado de
maquina que tem ganhado forca e crescido exponencialmente desde os anos 90. O foco
desta abordagem esta na transformacao dos dados de entrada, introduzindo camadas con-
secutivas de transformagoes cada vez mais significativas. O “profundo” em aprendizado
profundo refere-se a quantidade de camadas de transformacao, o niimero de camadas re-
presenta a “profundidade” do modelo. Modelos modernos de aprendizado profundo podem
incluir dezenas ou centenas de camadas, todas incluidas automaticamente pelo processo
de aprendizado. Esta é a principal diferenca entre um modelo tradicional, que geralmente
foca em trabalhar com uma ou duas camadas de transformacao Chollet (2021).

As transformagoes em cada camada sdo mediadas por pesos (ou pardmetros), que
sao ajustados durante o aprendizado. Os pesos de uma camada representam o que a
camada faz em termos da transformacao dos dados, quantificado numericamente. Este
ajuste ocorre comparando a saida do algoritmo com a saida real através de uma funcao
de perda; esta funcao representa numericamente o quao distante a saida gerada esta da
saida real desejada, gerando a perda. O resultado é entao retroalimentado aos pesos por
meio de um otimizador, buscando minimizar a perda. O programa inicia com valores
aleatérios para os pesos e busca otimizar seus valores através do processo de aprendizado
retroalimentado Chollet (2021).

O aprendizado de maquina pode ser classificado em trés principais categorias: su-
pervisionado, nao supervisionado e por reforco. No aprendizado supervisionado, o modelo
¢ treinado com um conjunto de dados rotulado, aprendendo a mapear entradas para saidas
com base em exemplos prévios, sendo amplamente utilizado em tarefas como classificagao
e regressao Goodfellow, Bengio e Courville (2016). J& o aprendizado nao supervisionado
trabalha com dados sem rétulos, buscando identificar padroes ou estruturas ocultas nos
dados, como agrupamentos ou redugao de dimensionalidade Murphy (2012). Por fim, o
aprendizado por reforco envolve a interagao de um agente com um ambiente, aprendendo

por meio de recompensas e penalidades a tomar decisdes que maximizem um retorno

1.2. Redes Neurais 25

cumulativo ao longo do tempo Sutton e Barto (2015). Esses trés paradigmas oferecem
abordagens distintas para a construcao de modelos inteligentes, sendo escolhidos con-
forme a natureza do problema e dos dados disponiveis.

O aprendizado profundo estd incluido dentro do que é conhecido como redes neu-
rais, uma subcategoria do aprendizado de maquina. O termo rede neural se refere a neu-
robiologia, inspirado pelo entendimento de como um cérebro funciona (principalmente
o cortex visual), onde as camadas de transformagoes funcionam como neurénios. E im-
portante destacar que, apesar da inspiracao, os modelos de aprendizado profundo nao
sao modelos do funcionamento do cérebro, tendo em vista que nao ha nenhuma evidén-
cia de que o cérebro utilize algo semelhante aos mecanismos e estratégias utilizados no
aprendizado profundo Chollet (2021). Este trabalho utilizaré redes neurais alinhadas com
aprendizado supervisionado para a deteccao e classificacao dos principais parasitas intes-

tinais, a partir de exames de fezes digitalizados.

1.2 Redes Neurais

No centro de todas as operagoes e representacoes de dados em redes neurais estao
os tensores. O tensor ¢ a estrutura fundamental em sistemas de aprendizado de maquina,
capaz de armazenar dados e suas transformagoes de forma numérica em multiplas dimen-
sOes, como escalares, vetores e matrizes Chollet (2021). Todas as operagoes dentro de uma
rede neural, incluindo as transformagoes lineares (como produtos escalares e adigoes), sdo
operacoes entre tensores, e os proprios parametros do modelo, como pesos e viés, sao
representados como tensores Paszke et al. (2019).

Toda rede neural é fundamentalmente um encadeamento de camadas, entre seus
tensores de entrada e saida Chollet (2021). Estas camadas que existem entre a entrada
e a saida de uma rede sdo conhecidas como camadas ocultas (do inglés hidden layer).
Uma rede neural pode ser classificada como rasa ou profunda a partir de seu nimero
de camadas ocultas, sendo a rede rasa uma que possua uma unica camada oculta e as
redes profundas sdo as que possuem miultiplas Paszke et al. (2019). A Figura 1 representa
um exemplo de rede neural rasa, contendo apenas uma tnica camada oculta, enquanto a
Figura 2 apresenta uma rede profunda, com multiplas camadas ocultas.

Cada camada atua como um bloco de construcao fundamental, extraindo repre-
sentagoes mais significativas dos dados a cada estagio Chollet (2021). Estas camadas sao
tipicamente vetoriais e sdo frequentemente chamadas de neuronios ou unidades ocultas
Prince (2024), que agem em paralelo representando uma fungao de vetor para escalar,
e na pratica realizam uma transformagao linear na entrada (envolvendo os pesos e viés)
Paszke et al. (2019).

Outro ponto fundamental para as redes neurais sdo as fungoes de ativagao. Estas

fungdes sdo cruciais para que seja possivel que a rede neural possa lidar com relacoes de

26 Capitulo 1. Referencial Tedrico

hidden layer

Figura 1 — Ilustracdo de um modelo de rede neural rasa com uma camada de entrada,
saida e uma unica camada oculta intermediaria. Fonte: Nielsen (2015)

hidden layer 1 hidden layer 2 hidden layer 3

Y

input laver

output layer

p—

Figura 2 — Ilustracao de um modelo de rede neural profunda com uma camada de entrada,
saida e multiplas camadas ocultas intermedidrias. Fonte: Nielsen (2015)

1.2. Redes Neurais 27

dados mais complexas e nao lineares Paszke et al. (2019). Sem uma funcao de ativagao,
uma sequéncia de operagoes lineares (produto escalar e adi¢ao) resultaria em um modelo
que seria, em sua esséncia, linear, independentemente do nimero de camadas Chollet
(2021). As fungoes de ativagao introduzem a nao linearidade que permite que a rede se
aproxime de uma vasta gama de fungoes complexas. Existe uma grande variedade de
funcoes de ativagao que ja sao provadas com sucesso, assim, a escolha de uma funcao de
ativagao varia de acordo com o problema abordado pela rede neural Paszke et al. (2019).

A Figura 3 apresenta as fungoes de ativagdo mais comumente utilizadas.

Sigmoid Tanh

Lol 1.0

LeakyReLU(z) :{

z,z>0

az,otherwise

ReLU(z) oy
e z)=
0,otherwise 5|

(c) (d)

Figura 3 — Gréfico que representa as fungoes de ativacao mais comumente utilizadas. Cada
funcao tem o papel de introduzir a nao-linearidade ao modelo, a escolha de
uma varia de acordo com a necessidade do problema abordado. Fonte: Leppich
(2021)

o ReLU (Rectified Linear Unit): é considerada a escolha mais comum e uma das fun-
goes de ativagdo de propésito geral com melhor desempenho Prince (2024). Ela
retorna o valor de entrada se for positivo e zero caso contrario, efetivamente equali-
zando os valores negativos a zero. Possui derivada 1 para entradas positivas e 0 para
entradas negativas, o que contribui para a estabilidade e eficiéncia do treinamento
Prince (2024).

o Leaky ReLU: uma variagao da funcao ReLLU. Permite uma pequena inclina¢ao po-
sitiva para valores negativos (tipicamente 0.01 ou 0.1) para mitigar o problema do
“ReLU morrendo”. Este problema ocorre por uma caracteristica inerente a funcao
ReLU: sua derivada é sempre zero para entradas negativas. Isto faz com que, se
todos os exemplos de treinamento produzirem uma entrada negativa para a funcao
ReLU, entao nao sera possivel ajustar os parametros das camadas, ja que sempre

serd zero. Prince (2024).

28 Capitulo 1. Referencial Teorico

« Sigmoid (fungao logistica): transforma os valores de entrada para o intervalo defi-
nido de 0 a 1. Foi amplamente utilizada nos primérdios do aprendizado profundo,
mas atualmente é mais usada quando a saida precisa ser interpretada como uma
probabilidade Paszke et al. (2019).

o Tanh (tangente hiperbdlica): funciona de forma similar a fungao Sigmoid, porém
seu intervalo é de -1 a 1 Paszke et al. (2019).

1.2.1 Redes neurais convolucionais

Rede neural convolucional é um tipo de rede neural utilizada principalmente para
tarefas de visao computacional. A diferenca fundamental entre redes tradicionais e uma
rede convolucional esta na estrutura de camada. Uma camada tradicional aprende padroes
globais a partir da entrada de dados, enquanto uma camada convolucional aprende padroes
locais, no caso de imagens, padroes encontrados em pequenos trechos bidimensionais das
entradas Chollet (2021).

Esta caracteristica da as redes convolucionais duas propriedades importantes:

e Apés aprender um padrao em algum trecho de uma imagem, a rede é capaz de reco-
nhecer esse padrao em qualquer lugar. Uma camada tradicional teria que aprender
este padrao novamente caso aparecesse em algum outro trecho Chollet (2021). Isto
torna as redes convolucionais especialmente efetivas no uso de dados em tarefas

de visao computacional, precisando de uma base de dados de treinamento menor
Chollet (2021).

o Redes convolucionais sao capazes de aprender hierarquias espaciais. Uma primeira
camada pode aprender pequenos padrdes locais, como vértices, uma segunda ca-
mada subsequente pode aprender padroes mais gerais a partir das caracteristicas da
primeira camada e assim sucessivamente. Isto permite o aprendizado de conceitos vi-
suais profundos e complexos, ja que o mundo visual funciona fundamentalmente em
uma logica de hierarquia espacial Chollet (2021). A Figura 4 apresenta um exemplo

simples de como a hierarquia espacial funciona no aprendizado de méaquina.

1.8. Transformadores visuais 29

1]

cat”

>4

® O
X

Figura 4 — Representagao visual de como uma rede convolucional identifica padrdes para,
neste caso, reconhecer a imagem de um gato (cat, em inglés). De baixo para
cima na imagem, linhas elementares ou texturas combinam-se em objetos sim-
ples como olhos ou orelhas, que entao combinam em conceitos mais complexos
como “gato”. Assim funciona a hierarquia espacial. Fonte: Chollet (2021)

1.3 Transformadores visuais

Arquiteturas baseadas em atencao tornaram-se o modelo dominante para o pro-
cessamento de linguagem natural, causando uma revolucdo nos modelos linguisticos de
inteligéncia artificial. Em especial, os transformadores sao a principal solucao de arquite-
tura baseada em atencao Dosovitskiy et al. (2020).

O transformador foi apresentado no artigo Vaswani et al. (2017). Antes disso, o
modelo dominante para modelos linguisticos era uma abordagem de redes neurais con-
volucionais que incluia um codificador e um decodificador através de um mecanismo de
atengao Vaswani et al. (2017). A ideia principal do transformador é focar nos mecanismos
de atencao, dispensando completamente as abordagens convolucionais. De forma simplifi-
cada, uma funcao de atengao pode ser descrita como uma fungao que mapeia uma consulta
e um conjunto de pares chave-valor para uma saida, onde a consulta, chaves, valores e
saida sao vetores. A saida é entdo computada como uma soma ponderada dos valores,
onde o peso designado para cada valor é computado por uma funcao de compatibilidade

da consulta com a chave correspondente Vaswani et al. (2017).

30 Capitulo 1. Referencial Teorico

Explorando diferentes abordagens baseadas puramente em atencdo, o trabalho
Vaswani et al. (2017) alcangou resultados superiores as arquiteturas convolucionais, até
entdo dominantes no campo de modelos linguisticos. Inspirado nisso, nascem os transfor-
madores visuais, com a proposta de abordar a computagao visual com a mesma ideia de
focar nos modelos de atencao e deixar de lado as arquiteturas convolucionais.

Para utilizar o conceito de transformadores em imagens, a imagem ¢é dividida
em blocos e projetada linearmente como entradas para um transformador. Os blocos de
imagem codificados sao tratados da mesma forma que palavras sdo tratadas em transfor-
madores de linguagem natural Dosovitskiy et al. (2020). A Figura 5 ilustra a visdo geral

da estrutura de um transformador visual.

Vision Transformer (ViT) Transformer Encoder

MLP
Head

Transformer Encoder

1
I
|
I
I
|
I
I
|
= I .
- 60 @15") @15 '
I
I
I
I
I
1

* Extra learnable
Norm

[class] embedding mear Pchctnon of Flattencd Palchcs
Embedded
Patches

| |
Figura 5 — Visao geral do transformador visual. A imagem é dividida em blocos de tama-
nho fixo, que sdo entdo submetidos a uma projecao linear com informagao de
posicao e alimentados a um codificador para um transformador padrao. Fonte:
Dosovitskiy et al. (2020)

O transformador padrao recebe como entrada uma sequéncia unidimensional de
vetores projetados dos blocos. Para tratar imagens bidimensionais, a imagem z € R7*W*¢
é reestruturada em uma sequéncia de blocos bidimensionais achatados z, € RY (P 2‘0),
onde (H,W) representa a resolucdo da imagem original, C' é o nimero de canais de
imagem, (P, P) corresponde a resolugdao de cada bloco da imagem, o numero total de

blocos é entao dado por
N = H];fv, (1.1)
que também define o comprimento efetivo da sequéncia de entrada para o transformador
Dosovitskiy et al. (2020).
Os canais de imagem representam as diferentes componentes de cor ou caracteris-
ticas da imagem. Em imagens coloridas no formato RGB, existem trés canais, cada um
representando a intensidade de uma cor primaria. Em imagens em escala de cinza, ha

apenas um canal representando a intensidade luminosa. Em contextos de processamento

1.4. Visdo computacional aplicada a deteccio de parasitas 31

de imagem médica, podem existir canais adicionais representando diferentes técnicas de
coloragdo ou modalidades de imagem. O conceito de canais ¢ fundamental para o proces-
samento de imagens, pois permite que a rede neural aprenda padroes especificos de cada
componente da imagem separadamente.

Adiciona-se no inicio da sequéncia um vetor aprendido, denominado bloco de clas-

sificacao, representado como
0
20 = Lclass) (12>
cuja saida final, apds o processamento pelo codificador do transformador, é utilizada como

representacao da imagem. Tanto no pré-treinamento quanto no ajuste fino, um cabecalho
de classificagao é acoplado a saida 2z correspondente a esse bloco. Esse cabegalho é imple-
mentado por uma rede perceptron multicamadas (MLP) com uma camada oculta durante
o pré-treinamento e por uma camada linear simples durante o ajuste fino Dosovitskiy et
al. (2020).

Informagoes posicionais sao incorporadas aos vetores dos blocos para preservar
a relagdo espacial da imagem. Sao utilizadas informacoes posicionais unidimensionais
aprendiveis, uma vez que nao foram observados ganhos de desempenho significativos ao
empregar técnicas mais avancadas com consciéncia bidimensional. A sequéncia resultante
de vetores serve como entrada para o codificador do transformador Dosovitskiy et al.
(2020).

O transformador mantém um tamanho constante D para os vetores latentes em
todas as suas camadas. Dessa forma, os blocos sao achatados e projetados para esse espago

vetorial de dimensao D por meio de uma projecao linear treinavel, representada como

2, Projecao Linear,
, ERNX(P C) RNXD

: (1.3)

cuja saida corresponde aos vetores projetados dos blocos, que sao efetivamente a
entrada do codificador do transformador Dosovitskiy et al. (2020).

Quando treinado em bases de dados de tamanho médio e sem uma forte regulariza-
¢ao, o transformador visual alcanca uma acuracia modesta e um pouco abaixo dos modelos
convolucionais. Porém, em grandes bases de dados, o transformador visual alcanga resul-
tados iguais ou superiores aos modelos convolucionais e utiliza significativamente menos

recursos computacionais Dosovitskiy et al. (2020).

1.4 Visao computacional aplicada a deteccao de parasitas

Infeccoes intestinais parasitarias sao as infecgoes mais comuns que afetam as comu-
nidades mais pobres e necessitadas no mundo. Essas infec¢oes sao amplamente distribuidas

na Africa Subsaariana, China e leste asidtico Gujo e Kare (2021). Mais de 1,5 bilhoes de

32 Capitulo 1. Referencial Teorico

pessoas sao infectadas por helmintos transmitidos pelo solo, como Ascaris lumbricoides e
Trichuris trichiura, destes, 267 milhoes sao criancas com menos de 5 anos de idade Gujo
e Kare (2021).

O método padrao para diagnosticar infecgoes por parasitas intestinais é baseado
na andalise microscépica manual de amostras de fezes, com técnicas como o exame direto,
Kato-Katz e testes moleculares ((qPCR, ELISA, imunofluorescéncia) Yimer et al. (2015).
Os testes moleculares e Kato-Katz sdo técnicas que possuem uma sensibilidade superior ao
exame direto, alcancando acima de 90% de sensibilidade contra a sensibilidade de 48,9%
a 63,1% do método direto. Porém, esses métodos de diagndstico sao significativamente
laboriosos e onerosos, além de altamente suscetiveis a erros humanos Yimer et al. (2015).

A visao computacional entra como uma alternativa para os processos manuais de
diagnostico, visando mitigar as limitagoes de recurso e mao de obra inerentes aos métodos
manuais. Inicialmente, a automacao do processo de deteccao de parasitas era limitada
pela falta de algoritmos de reconhecimento para microrganismos. Porém, o avanco do
aprendizado de maquina e, em especial, o aprendizado profundo trouxeram uma revolugao
no campo de identificagdo e classificacdo de imagens na medicina, destacando as redes

neurais convolucionais Kumar et al. (2023).

33

2 Metodologia

2.1 Dados

O experimento deste trabalho utilizou o conjunto de dados Chula-ParasiteFqg-11
Palasuwan et al. (2022). Esses dados foram disponibilizados publicamente na plataforma
IEEFE Dataport como proposta para a competi¢do ICIP 2022 Anantrasirichai et al. (2022),
cujo objetivo foi incentivar solucoes para a deteccao e classificacao de ovos de parasitas
intestinais. Os dados disponibilizados representam um dos maiores conjuntos de dados
disponiveis publicamente para a classificacao de parasitas intestinais, contendo 11 espécies

distintas de parasitas com uma distribuicao balanceada entre eles.

2.1.1 Caracteristicas gerais do conjunto de dados

O conjunto de dados utilizado neste trabalho é composto por um total de 2.200
imagens, distribuidas de forma equilibrada, com 200 imagens por espécie. As imagens
estdo no formato RGB e foram obtidas através de microscopia éptica com diferentes
técnicas de coloracao. Esse conjunto apresenta imagens de alta resolugdo com variagoes
de iluminacao e contraste, caracteristicas que contribuem para a robustez do conjunto.

O conjunto de dados contempla as seguintes espécies de parasitas:

1. Ascaris lumbricoides;

2. Capillaria philippinensis;

3. Enterobius vermicularis;

4. Fasciolopsis buski;

5. Ancylostoma duodenale (representada no conjunto de dados como Hookworm);
6. Hymenolepis diminuta;

7. Hymenolepis nana;

8. Opisthorchis viverrine;

9. Paragonimus spp;

10. Trichuris trichiura; e

11. Taenia spp.

34 Capitulo 2. Metodologia

2.1.2 Caracteristicas Morfolégicas dos Ovos

Os ovos parasitarios variam entre 20pm e 80pm de dimensao e sao tipicamente
observados apenas sob microscépio. Varias caracteristicas sao utilizadas para identificar
ovos parasitarios, incluindo tamanho, forma, espessura da casca, estrutura da superficie
e a presencga de opérculo e de plugues polares Anantrasirichai et al. (2022). O opérculo
é uma estrutura em forma de tampa que pode estar presente em um dos polos do ovo,
sendo uma caracteristica distintiva de certas espécies de parasitas. Os plugues polares sao
estruturas protuberantes localizadas nos polos do ovo, que também servem como uma

caracteristica morfolégica importante para a identificagao taxonomica dos parasitas.

2.1.3 Coleta de dados

Muiltiplos dispositivos foram utilizados para coletar as micrografias das amostras,
incluindo camera Canon EOS 70D com microscopios Olympus BX53, camera DS-Fi2
Nikon com microscopios Nikon Eclipse Ni, Samsung Galazy J7 Prime e iPhone 12 e
13 com lentes oculares de 10x dos dispositivos Nikon Eclipse Ni ou Olympus BX53. A
resolucao, iluminacao e condigoes de configuracao de cada imagem variam, o que gera

maior confiabilidade na detecgdo Anantrasirichai et al. (2022).

2.1.4 Tratamento do conjunto de dados

Para melhorar a robustez do modelo e evitar sobreajuste (do inglés, overfitting),
foi implementada uma estratégia de tratamento de dados inspirada nas técnicas utili-
zadas no trabalho de referéncia AlDahoul et al. (2023). O sobreajuste ocorre quando o
modelo memoriza os dados de treinamento em vez de aprender padroes generalizaveis,
resultando em baixo desempenho em dados nao vistos. Essa abordagem foi desenvolvida
especificamente para simular as condigoes reais encontradas em imagens microscépicas de
parasitas.

As transformacoes aplicadas incluem técnicas de embagamento para simular vari-
acoes de foco microscopico: embagamento gaussiano, embacamento de movimento e em-
bacamento mediano. O embagamento gaussiano aplica um filtro que suaviza a imagem
de forma uniforme, simulando desfoque por profundidade de campo. O embacamento de
movimento simula o movimento da camera durante a captura, criando um efeito de arras-
tamento. O embacamento mediano reduz ruido, preservando bordas, simulando variacoes
na qualidade 6ptica do microscépio. Para simular ruido e imperfeicdes da captura, foram
adicionados diferentes tipos de ruido: ruido gaussiano, ruido ISO e ruido multiplicativo.
O ruido gaussiano adiciona variagoes aleatorias normalmente distribuidas, simulando in-
terferéncias eletronicas. O ruido ISO simula a sensibilidade do sensor da camera, criando
granulagao tipica de imagens com baixa iluminacao. O ruido multiplicativo afeta a inten-

sidade dos pixels de forma proporcional, simulando variagoes na resposta do sensor.

2.2. Funcao de Perda 35

Transformagoes geométricas moderadas também foram aplicadas, incluindo rota-
cao aleatoria de até 15 graus para simular diferentes dngulos de visualizacdo microscopica,
e ajustes sutis de cor para lidar com variagoes de iluminagao e técnicas de coloracao. Essas
técnicas sao particularmente relevantes para imagens microscépicas, onde pequenas varia-
¢oOes na preparacao da amostra e nas condigoes de captura podem afetar significativamente
a aparéncia dos ovos parasitarios.

O tratamento de dados é fundamental para esse conjunto de dados, pois o niimero
limitado de amostras por classe (200 imagens) pode nao ser suficiente para que o modelo
aprenda todas as variagoes possiveis dos ovos parasitarios. Ao aplicar essas transformagoes
especificas para microscopia, o modelo se torna mais robusto e generaliza melhor para
novas amostras que podem apresentar condi¢oes de captura diferentes das encontradas no
conjunto de treinamento, simulando realisticamente os desafios encontrados em ambientes

clinicos reais.

2.2 Funcao de Perda

Para todos os modelos implementados neste trabalho, foi utilizada a funcao de
perda de entropia cruzada (do inglés, Cross-Entropy Loss), que é amplamente empre-
gada em problemas de classificagdo multiclasse. Esta fun¢do mede a diferenca entre a
distribuicao de probabilidade prevista pelo modelo e a distribuigao real dos rétulos, sendo
particularmente adequada para problemas de classificagao de imagens.

A entropia cruzada pode ser definida matematicamente como

c
Lop=—>_ yilog(9:), (2.1)

i=1

onde C' é o ntimero total de classes (11 espécies de parasitas), y; é o rétulo verda-
deiro da classe i (valor bindrio: 1 se a amostra pertence a classe 7, 0 caso contrario), ;
é a probabilidade prevista pelo modelo para a classe i e log(f;) é o logaritmo natural da
probabilidade prevista.

Esta funcao de perda é especialmente eficaz para problemas de classificacao de
parasitas intestinais, pois penaliza fortemente previsoes incorretas com alta confianca,
incentivando o modelo a aprender representacoes discriminativas para distinguir entre as
diferentes espécies Mao, Mohri e Zhong (2023).

Para o modelo hibrido, a funcao de perda é aplicada individualmente a cada modelo
durante o treinamento e a combinacao final das previsoes é realizada por meio de uma

média aritmética das probabilidades de saida de cada arquitetura.

36 Capitulo 2. Metodologia

2.3 Arquiteturas implementadas

Os modelos de cada arquitetura foram selecionados com o objetivo principal de
equilibrar desempenho e eficiéncia, de forma que seja atingida a maior acuracia possivel

em um ambiente local de desenvolvimento e experimentagao.

2.3.1 Rede convolucional: EfficientNetV/2-S

O EfficientNetV2-S é uma evolucao do EfficientNet original, desenvolvido por Tan
e Le (2021). Essa arquitetura representa uma resposta aos desafios identificados na versao
inicial, focando especificamente na velocidade de treinamento e eficiéncia computacional.

O EfficientNet original introduziu o conceito de dimensionamento composto (do
inglés, compound scaling), que uniformemente escala trés dimensoes fundamentais das
redes neurais: profundidade (nimero de camadas na rede), largura (ntimero de canais
em cada camada) e resolugdo (tamanho das imagens de entrada) Tan e Le (2020). A

formulacado matematica do dimensionamento composto é expressa como

Profundidade : a®, Largura : #?, Resolucio : 7%, (2.2)

onde «, [3, v sdo coeficientes constantes determinados por uma busca em grade no modelo

pequeno original, e ¢ é o coeficiente composto que controla os recursos computacionais
disponiveis Tan e Le (2020).

A nova versao foi desenvolvida para resolver limitacoes especificas da arquitetura
anterior Tan e Le (2021). A principal inovagao foi a introdu¢ao do Fused-MBConv, que
substitui operagoes convolucionais separadas por uma tnica operagao mais eficiente, me-
lhorando significativamente a utilizagdo de unidades de processamento gréafico (GPUs) e
outros processadores especializados. Outra inovacao importante foi a estratégia de escalo-
namento nao uniforme, que adiciona gradualmente mais camadas aos estagios posteriores
da rede para aumentar a capacidade sem adicionar muito custo computacional de tempo
de execug@o Tan e Le (2021). Além disso, o modelo restringe o tamanho méximo de ima-
gem a 480 pixels de largura e altura, evitando o consumo excessivo de memoria associado
a imagens muito grandes.

Essa arquitetura apresenta uma estrutura hibrida que combina diferentes tipos
de componentes estruturais Tan e Le (2021). Nos estagios iniciais, utiliza componentes
Fused-MBConv para melhor utilizacao de GPUs, enquanto nos estagios posteriores utiliza
componentes tradicionais para eficiéncia de pardmetros. A eficiéncia de parametros refere-
se a capacidade do modelo de alcancgar alta precisao utilizando um nimero reduzido de
parametros treinaveis, o que é fundamental para aplicacoes praticas, pois requer menos
memoria para armazenamento e menor capacidade computacional para inferéncia.

A estrutura descrita possui aproximadamente 22 milhoes de parametros e utiliza

imagens de entrada com tamanho 224 x 224 Tan e Le (2021). E organizada em 7 estégios

2.8. Arquiteturas implementadas 37

principais, comecando com 24 canais de imagem no primeiro estagio e expandindo para
256 no estagio final, terminando com 1280 canais antes da classificacdao. O modelo utiliza
razoes de expansdo menores para reduzir o consumo de acesso a memoria e filtros menores,
compensando com mais camadas para manter o campo receptivo adequado Tan e Le
(2021). Essa abordagem permite que o modelo mantenha alta precisdo enquanto reduz
significativamente o custo computacional.

A arquitetura utiliza um método de aprendizado progressivo com regularizacao
adaptativa Tan e Le (2021). A regularizacao refere-se a técnicas que previnem o sobre-
ajuste do modelo, ou seja, evitam que ele memorize os dados de treinamento em vez
de aprender padroes generalizaveis. O processo inicia com imagens pequenas (128 x 128
pizels) e regularizagao fraca, permitindo que o modelo aprenda representagoes simples
rapidamente. Conforme o treinamento progride, o tamanho da imagem é gradualmente
aumentado, junto com a intensidade da regularizacao. No final do treinamento, o mo-
delo trabalha com imagens grandes (300 x 300 pizels) e regularizagdo completa Tan e
Le (2021). Esse método permite treinamento mais rapido sem perda de precisao, pois o
modelo aprende representacoes simples primeiro e gradualmente aumenta a complexidade.

Como fungao de ativagao, foi utilizada a ReL U (Rectified Linear Unit) nas camadas
intermediarias da rede. Essa fun¢ao retorna o valor de entrada se for positivo e zero caso
contrario, introduzindo nao-linearidade de forma eficiente. Essa func¢ao é preferida por sua
simplicidade computacional e por ajudar a mitigar o problema do gradiente desaparecendo
durante o treinamento, permitindo que o modelo aprenda representacoes mais complexas
de forma estavel.

Esta arquitetura foi escolhida para esse trabalho pelos motivos detalhados a se-
guir. Com apenas 22M de parametros, ¢ ideal para treinamento local em GPUs com
recursos limitados (8GB de meméria de video), permitindo experimentagao rapida Tan e
Le (2021). O modelo é até 4x mais rapido que modelos maiores, mantendo alta qualidade
de classificagao com 83,9% de precisao top-1 no ImageNet Tan e Le (2021). O tamanho
de entrada padrao (224 x 224 pizels) garante compatibilidade com diferentes conjuntos de

dados, sendo particularmente relevante para classificacdo de parasitas Tan e Le (2021).

38 Capitulo 2. Metodologia

2.3.2 Transformador visual: Tiny ViT

O Tiny ViT representa uma abordagem para o desenvolvimento de transformado-
res visuais compactos e eficientes, desenvolvido por Wu et al. (2022). Essa arquitetura foi
criada para resolver o problema dos transformadores visuais convencionais, que frequente-
mente apresentam um numero excessivo de parametros, limitando sua aplicabilidade em
dispositivos com recursos computacionais limitados.

A maioria dos modelos predominantes de transformacao visual sofre com um nu-
mero grande de parametros, restringindo sua aplicabilidade em dispositivos com recursos
limitados Wu et al. (2022). Para aliviar esse problema, foi proposta uma nova familia de
transformadores visuais pequenos e eficientes, pré-treinados em conjuntos de dados em
larga escala com uma estrutura de destilacao réapida.

A arquitetura utiliza um método de destilacdo de conhecimento durante o pré-
treinamento Wu et al. (2022). A destilagdo é uma técnica que permite que modelos peque-
nos aprendam diretamente de modelos grandes que atuam como professores, transferindo
conhecimento e melhorando a capacidade de generalizacao. O processo armazena informa-
¢oes de tratamento de dados e previsoes do modelo professor antecipadamente. Durante
o treinamento, reutilizam-se as informagoes armazenadas para replicar precisamente o
procedimento de destilagao, omitindo com sucesso a computacao direta e ocupacao de
memoria do modelo professor grande Wu et al. (2022).

Como ilustrado na Figura 6, a estrutura de destilagdo rapida funciona em trés
etapas principais. Na primeira etapa (superior), imagens originais sdo aumentadas e pro-
cessadas pelo modelo professor pré-treinado, gerando logits esparsificados que sao codi-
ficados e armazenados. Os logits sao as saidas brutas da rede neural antes da aplicacao
da funcao de ativacao final, representando as classificacbes nao normalizadas para cada
classe. Na segunda etapa (meio), as informagoes de tratamento de dados codificadas e os
logits esparsificados do professor sdo armazenados em disco. Na terceira etapa (inferior),
durante o treinamento do modelo estudante, o decodificador reconstréi o tratamento de
dados e a destilagao é conduzida entre os logits do professor e as saidas do estudante. As
duas ramificagoes sao independentes e assincronas, permitindo treinamento eficiente sem

a necessidade de processar o modelo professor grande durante cada iteracao.

2.8. Arquiteturas implementadas 39

Storage Image ID 1 | Sparse logits and indices |

Image ID N Parameter N Sparse logits and indices

-I Joorg

Original iﬁlaécs Augmented images Student model Student logits Teacher sparse logits

Figura 6 — Estrutura de destilacao rapida do Tiny ViT. A parte superior mostra a ramifi-
cagao para salvar os logits do professor, onde o tratamento de dados codificado
e os logits esparsificados do professor sao salvos. A parte do meio representa
o disco para armazenar as informacgoes. A parte inferior mostra a ramifica-
¢ao para treinar o estudante, onde o decodificador reconstréi o tratamento de
dados e a destilacao é conduzida entre os logits do professor e as saidas do
estudante. As duas ramificagoes sao independentes e assincronas, permitindo

treinamento sem processar o modelo professor grande durante cada iteragao.
Fonte: Wu et al. (2022)

Como fungao de ativacdo, foi utilizada a GELU (Gaussian Error Linear Unit)
em todas as camadas da rede. Essa funcao é uma variacao da ReLU que introduz nao-
linearidade de forma mais suave, sendo preferida em transformadores por sua capacidade
de capturar relagoes mais complexas nos dados.

Assim como na escolha do modelo de rede convolucional, os principais motivos
para a escolha desse modelo sdo: menor nimero de parametros com 5M na versao mais
compacta. Sendo ideal para treinamento local em GPUs com recursos limitados. O modelo
é significativamente mais rapido que transformadores visuais convencionais, mantendo
84,8% de precisao top-1 no ImageNet na versao de 21M parametros Wu et al. (2022). O
tamanho de entrada padrao também é (224 x 224 pizels), o que garante compatibilidade

com diferentes conjuntos de dados Wu et al. (2022).

2.3.3 Modelo hibrido: EfficientNetV2-S + Tiny ViT

O modelo hibrido representa uma abordagem que combina as vantagens com-
plementares das duas arquiteturas descritas anteriormente: a eficiéncia computacional e
capacidade de extracao de caracteristicas locais do EfficientNetV2-5 com a capacidade de
capturar relagoes globais e atencao sofisticada do Tiny ViT. Essa combinagao visa apro-
veitar os pontos fortes de cada arquitetura para criar um sistema de classificagdo mais

robusto e preciso.

40 Capitulo 2. Metodologia

A arquitetura hibrida funciona através de um processo de aprendizado em conjunto
(do inglés, ensemble learning), onde ambos os modelos processam independentemente a
mesma imagem de entrada e suas previsoes sao combinadas para gerar uma classificagao
final mais confiavel. O EfficientNetV2-S processa a imagem com seu tamanho de entrada
padrao de 224 x 224 pizels, enquanto o Tiny ViT utiliza o mesmo tamanho de entrada
para manter consisténcia. Ambas as arquiteturas foram treinadas separadamente com as
mesmas configuragoes de hiperparametros (pardmetros que controlam o processo de apren-
dizado, como taxa de aprendizado, tamanho do lote e nimero de épocas) e estratégias de
tratamento de dados descritas anteriormente.

A combinacao das previsoes é realizada por meio de uma média aritmética sim-
ples das probabilidades de saida de cada modelo. Especificamente, para cada classe i, a

probabilidade final Pp,.1(7) é calculada como

PEfﬁcientNet (Z> + PTinyViT(i)
9)

Phnal (i) = (2.3)

onde PricientNes (7) € a probabilidade predita pelo EfficientNet V2-S para a classe i e
Prinyvir (i) € a probabilidade predita pelo Tiny ViT para a mesma classe. Essa abordagem
atribui peso igual a ambos os modelos, assumindo que suas contribui¢oes sao equivalentes
para a tarefa de classificacao.

Essa estratégia permite que o sistema aproveite a capacidade do EfficientNetV2-S
de capturar caracteristicas locais e texturais dos ovos parasitarios, enquanto o Tiny ViT
contribui com sua capacidade de estabelecer relagoes globais e capturar padroes de aten-
¢do que podem ser cruciais para distinguir entre espécies morfologicamente similares. O
aprendizado em conjunto tem demonstrado sucesso significativo em tarefas de classifica-
¢ao, reduzindo a variancia das previsoes e melhorando a robustez geral do sistema Ganaie
et al. (2022).

A utilizacao da média aritmética simples é uma abordagem que tem demonstrado
eficdcia em diversos trabalhos de aprendizado em conjunto Ganaie et al. (2022), sendo
particularmente adequada quando nao ha conhecimento a priori sobre qual modelo deve
ter maior influéncia na decisao final. Essa estratégia permite que o sistema seja robusto a
falhas individuais de cada modelo, pois a combinacao tende a suavizar erros e melhorar
a confiabilidade geral da classificacao. Além disso, a média simples evita a necessidade
de otimizacao adicional de pesos, mantendo a simplicidade e eficiéncia computacional do
sistema.

A escolha das funcgoes de ativacdo mantém-se consistente com cada arquitetura
individual: ReLU para o EfficientNetV2-S e GELU para o Tiny ViT, preservando as
caracteristicas especificas que tornam cada arquitetura eficaz em suas respectivas abor-

dagens.

2.4. FEzxperimento 41

2.4 Experimento

2.4.1 Ferramentas utilizadas

Este trabalho utilizou a biblioteca PyTorch Paszke et al. (2019) para a construgao
e treinamento das redes neurais, escolhida por sua interface amigéavel e pelas fungoes espe-
cializadas no calculo de gradientes de tensores, que sao fundamentais para o treinamento
de modelos de aprendizado profundo. Outras bibliotecas essenciais para ciéncia de dados
em Python também foram utilizadas, incluindo NumPy Harris et al. (2020) para opera-
¢oes numéricas, Matplotlib Hunter (2007) e Seaborn Waskom (2021) para visualizacao de
dados, scikit-learn Pedregosa et al. (2018) para métricas de avaliagdo e Pandas Mckinney
(2011) para manipulagao de dados.

Para garantir a reprodutibilidade dos experimentos e o isolamento das dependén-
cias, foi utilizado um ambiente virtual (do inglés, virtual environment) através da ferra-
menta virtualenv. O ambiente virtual permite criar um ambiente Python isolado, evitando
conflitos entre diferentes versdes de bibliotecas e garantindo que todas as dependéncias
necessarias estejam disponiveis na versao correta. A configuragdo do ambiente foi geren-
ciada através do arquivo requirements.txt, que lista todas as bibliotecas e suas versoes
especificas utilizadas no projeto.

O arquivo requirements.txt inclui as principais dependéncias do projeto, como Py-
Torch para deep learning, NumPy para computacao numérica, Matplotlib e Seaborn para
visualizagoes, scikit-learn para métricas de avaliacao, Pandas para manipulacao de da-
dos, e outras bibliotecas auxiliares. Esta abordagem garante que qualquer pesquisador
possa reproduzir exatamente o mesmo ambiente computacional utilizado neste trabalho,
instalando as dependéncias com o comando pip install -r requirements.tat.

O ambiente computacional utilizado para os experimentos consistiu em um sistema
com processador AMD Ryzen 5 3600X, 32GB de memoéria RAM e placa de video NVIDIA
RTX 2070 Super com 8GB de memoria de video. Este hardware permitiu o treinamento

local dos modelos, facilitando a experimentagao.

2.4.2 Configuracao experimental

Para realizar o experimento, foi desenvolvido um cédigo modular em Python. O
arquivo principal run_ optimized.py coordena todo o processo experimental, incluindo o
treinamento dos modelos, avaliacao e geracao de resultados comparativos. Este arquivo
implementa func¢odes para treinar modelos individuais ou todos os modelos sequencial-
mente, além de gerar analises comparativas detalhadas com visualizagoes graficas.

O arquivo trainer__optimized.py implementa a classe Parasite TrainerOptimized,
responsavel pelo ciclo completo de treinamento, incluindo as épocas de treinamento e va-

lidacao, monitoramento de métricas, salvamento dos melhores modelos e implementacao

42 Capitulo 2. Metodologia

de parada antecipada (do inglés, early stopping). A parada antecipada é uma técnica que
interrompe o treinamento quando a acuracia de validacdo nao melhora por um ntmero
consecutivo de épocas definido como paciéncia, prevenindo o sobreajuste e salvando auto-
maticamente o melhor modelo encontrado durante o treinamento. Esse arquivo também
gerencia a avaliagdo final dos modelos no conjunto de teste e a geragao de gréficos de
histérico de treinamento e matrizes de confusao.

O arquivo dataset_optimized.py implementa a classe ParasiteDataset e as fungoes
de processamento de dados, incluindo as transformacoes de tratamento de dados otimi-
zadas baseadas nas técnicas do CoAtNet AlDahoul et al. (2023). Este arquivo gerencia
o carregamento das imagens, a divisao dos dados em conjuntos de treinamento, de va-
lidacdo e de teste, bem como a aplicacao das transformacgoes especificas para imagens
microscopicas.

O arquivo config _optimized.py centraliza todos os hiperpardmetros do experi-
mento, incluindo configuracoes de treinamento, processamento de dados e regularizacao.

O namero de épocas foi estabelecido em 50, em que uma época representa uma
passagem completa pelo conjunto de dados de treinamento. Durante cada época, o modelo
processa todas as amostras de treinamento, atualiza seus parametros e é avaliado no
conjunto de validacao para monitorar o desempenho. A parada antecipada foi configurada
com paciéncia de 10 épocas.

A taxa de aprendizado foi definida como 1 x 10™*, um valor conservador que
garante estabilidade durante o treinamento. Foi utilizado o otimizador Adam W Loshchilov
e Hutter (2019) com decaimento de peso 1 x 1074 para regularizacao. O agendador de taxa
de aprendizado ReduceL ROnPlateau foi configurado para reduzir a taxa de aprendizado
pela metade quando a acuracia de validagao nao melhora por 5 épocas consecutivas. Este
agendador foi escolhido por sua eficacia em situagoes em que o modelo pode ficar preso em
platds de performance, permitindo que ele escape de minimos locais através da reducao
gradual da taxa de aprendizado.

Para garantir a reprodutibilidade dos resultados, foi estabelecida uma semente ale-
atéria fixa (42) para todos os experimentos. A semente aleatéria controla a inicializagdo
dos pesos das redes neurais e a geracao de nimeros aleatérios durante o treinamento,
garantindo que os mesmos resultados sejam obtidos em execugoes subsequentes do expe-
rimento.

O tamanho de entrada das imagens foi padronizado em 384 x 384 pizels, um
compromisso entre qualidade de representacao e eficiéncia computacional. A Tabela 1

apresenta um resumo completo de todos os hiperparametros utilizados no experimento.

2.4. FEzxperimento

43

Tabela 1 — Hiperparametros utilizados no experimento

Parametro Valor Descricao

Tamanho do lote 2 Numero de amostras por iteragao
Numero de épocas 50 Maximo de épocas de treinamento
Taxa de aprendizado 1x107* Taxa de atualizacao dos pesos
Otimizador AdamW Algoritmo de otimizagao
Decaimento de peso 1x10°* Regularizacao L2

Paciéncia (Parada antecipada) 10 Epocas sem melhoria para parar
Tamanho da imagem 384 x 384 Dimensoes de entrada

Semente aleatéria 42 Para reprodutibilidade
Suavizacao de rétulos 0,1 Regularizacao para generalizacao
Recorte de gradientes 1,0 Limite para gradientes
Paciéncia do agendador D Epocas para reduzir taxa de aprendizado
Fator do agendador 0,5 Fator de reducao da taxa de aprendizado

O comando python run__optimized.py executa o experimento completo, treinando

sequencialmente os trés modelos (rede convolucional, transformador visual e hibrido),

avaliando cada um no conjunto de teste e gerando analises comparativas detalhadas com

visualizac¢oes graficas dos resultados.

Os codigos-fonte dos arquivos mencionados estao disponiveis no apéndice A.

44 Capitulo 2. Metodologia

2.4.3 Andlise comparativa

A comparacao entre os modelos foi realizada considerando diferentes métricas,
com o objetivo de fornecer uma avaliagao completa e plural dos modelos. Cada métrica é
apresentada e detalhada a seguir.

A acuréacia dos modelos foi abordada da seguinte forma: acuracia final no conjunto
de teste e a acuracia de estabilidade do treinamento, medida através da diferenca entre
a melhor acuracia de validacao e a acuracia de teste. A acuracia de validagao é obtida
durante o treinamento, utilizando um conjunto de dados separado para monitorar o pro-
gresso do modelo sem influenciar o ajuste dos parametros. A acuracia de teste, por sua
vez, ¢ calculada em um conjunto de dados completamente independente, representando
uma avaliacdo final e imparcial do desempenho real do modelo.

A acuracia pode ser definida matematicamente como

TP+TN
Acuricia = 2.4
e = TP Y TN + FP 1+ FN’ (24)

onde T'P representa os verdadeiros positivos, T'N os verdadeiros negativos, F'P os
falsos positivos e F'N os falsos negativos.

As matrizes de confusao sao ferramentas utilizadas para avaliar a performance de
modelos de classificagdo, fornecendo uma visao detalhada dos acertos e erros do modelo
para cada classe. Uma matriz de confusao mostra a distribuicao das predi¢oes do mo-
delo em relacao as classes reais, permitindo identificar quais classes sao mais facilmente
confundidas e onde o modelo apresenta maior dificuldade.

A revocagao (do inglés, recall) é uma métrica que mede a capacidade do modelo
de identificar corretamente todas as instancias positivas de uma classe. E calculada como
a razao entre o nimero de verdadeiros positivos e a soma de verdadeiros positivos e falsos
negativos.

A revocagado pode ser expressa como

TP
l=—— 2.
Reca TP N’ (2.5)

onde T'P sao os verdadeiros positivos e F'N sdo os falsos negativos para uma
determinada classe.
A precisao é uma métrica complementar que mede a proporc¢ao de predigoes posi-

tivas que foram corretas, sendo definida como

Precisio — —— L (2.6)
recisao = TP+FP’ .

2.4. FEzxperimento 45

onde T'P sao os verdadeiros positivos e F'P sao os falsos positivos.

O F1-score é uma métrica que combina precisao e revocagdo em uma tnica medida,
calculada como a média harmonica entre essas duas métricas. Essa medida é especialmente
util quando ha desbalanceamento entre as classes, pois considera tanto a capacidade do
modelo de fazer predigoes corretas quanto sua capacidade de identificar todas as instancias
positivas. E também particularmente relevante para a classificacio de parasitas, onde
diferentes espécies podem ter diferentes frequéncias de ocorréncia.

O F1-score pode ser calculado como

Precisdo - Recall 2-TP

F o 2 . g
! Precisio + Recall 2-TP+ FP+ FN’

(2.7)

onde a segunda forma da equagao expressa o F'1-score diretamente em termos dos
verdadeiros positivos (T'P), falsos positivos (F'P) e falsos negativos (FN).

Além do desempenho de classificacao, foi considerada a eficiéncia computacional
e 0 uso de recursos como critérios de avaliagao. Isso porque, devido a prépria limitacao
do ambiente computacional utilizado para este trabalho, nao seria possivel implementar
modelos que nao contivessem a otimizacao desse recurso de forma intrinseca.

Em suma, o experimento foi projetado para avaliar nao apenas o desempenho
individual de cada arquitetura, mas também a eficacia da abordagem hibrida em combi-
nar as vantagens complementares dos modelos convolucionais e transformadores, sempre

priorizando a eficiéncia de recursos.

47

3 Resultados e Discussao

Este capitulo apresenta os resultados e discussoes dos experimentos realizados. O
objetivo é analisar a eficicia dos modelos convolucionais, baseados em atencao e hibridos
na tarefa de classificacdo, considerando tanto a precisao quanto a eficiéncia computacional.

A andlise das curvas de treinamento é fundamental para compreender o compor-
tamento de convergéncia dos modelos e identificar possiveis problemas como sobreajuste
ou subajuste. A Figura 7 apresenta a evolucao da fungao de perda e acuracia durante o
treinamento do modelo EfficientNetV2-5.

Histérico de Perda - CNN 100% Histérico de Acurécia - CNN

—e— Treino i —e— Treino
10 —e— Validacéo —e— Validagso
80%

° PPy
|4 0-0-0-0-0-0-o-0-30"00-0-2.
k3 a g <o

Acurécia (%)

Epoca Epoca

Figura 7 — Curvas de treinamento ao longo do tempo do modelo EfficientNetV2-S, apre-

sentando perda e acuracia. O tempo é dado em épocas. Fonte: Elaborado pelo
autor (2025).

O modelo convolucional apresentou convergéncia estavel, com a funcao de perda
diminuindo de forma consistente ao longo das épocas. A acuracia de treinamento e vali-
dacao convergiram para valores similares, indicando que o modelo nao apresentou sobrea-
juste significativo. A estabilizacao ocorreu aproximadamente na época 15, demonstrando

eficiéncia no treinamento.

A Figura 8 mostra o comportamento do modelo Tiny Vision Transformer durante
o treinamento.

Histérico de Perda - ViT 100% Historico de Acurécia - ViT

1.0 —e— Treino
—e— Validacao

Acurécia (%)

40%

—&— Treino
—e— Validacéo

1 6 1 16 21 26 31 36 39 1 6 11 16 21 26 31 36 39
Epoca Epoca

Figura 8 — Curvas de treinamento ao longo do tempo do modelo Tiny Vision Transformer,
apresentando perda e acuracia. O tempo é dado em épocas. Fonte: Elaborado
pelo autor (2025).

48 Capitulo 3. Resultados e Discussdo

O modelo baseado em atencdo apresentou um padrao de convergéncia distinto,
com uma fase inicial de aprendizado mais lenta, caracteristica dos transformadores. A
funcao de perda diminuiu de forma mais gradual comparada ao modelo convolucional.

A Figura 9 apresenta os resultados do modelo hibrido, que combina as arquiteturas

convolucional e baseada em atencao.

Histérico de Perda - Hibrido Histérico de Acurdcia - Hibrido

100%
—e— Treino had —e— Treino
12 —e— Validagdo —e— Validagdo
80%
10

40%

a
8
*

Acuracia (%)

0.0 0%
1 6 1 16 21 26 31 36 41 45 1 6 1 16 21 26 31 36 4 45

Epoca Epoca

Figura 9 — Curvas de treinamento ao longo do tempo do modelo hibrido, apresentando
perda e acuracia. O tempo é dado em épocas. Fonte: Elaborado pelo autor
(2025).

O modelo hibrido demonstrou convergéncia estavel, aproveitando as caracteristicas
complementares das arquiteturas convolucional e baseada em atencao. A funcao de perda
diminuiu de forma consistente, e as acuracias de treinamento e validacao convergiram
para valores similares, indicando boa capacidade de generalizacao.

A comparacgao direta entre os modelos é apresentada na Figura 10, que mostra a

acuracia de teste de cada arquitetura.

Acuracia de Teste por Modelo Perda de Teste por Modelo

0365 o.67

Acurécia

Modelos

Modelos
F1-Score por Classe e Modelo Preciséo vs Revocacéo por Classe

1] o ow o
wr . = P §
°

Hibrido . 96

Fl-Score
Revocacao

& A A o s
S Precisao

& &

P 4
A
0

Classes

Figura 10 — Comparacao da acuracia de teste entre o modelo de rede convolucional
EfficientNetV2-S, transformador visual Tiny ViT e hibrido. Fonte: Elabo-
rado pelo autor (2025).

O modelo hibrido alcangou a melhor performance, mas de forma apenas marginal-
mente superior ao modelo convolucional. Esta superioridade limitada pode ser atribuida
a capacidade do modelo de combinar as caracteristicas locais capturadas pelas camadas

convolucionais com os padroes globais identificados pelo mecanismo de atengao. Contudo,

49

a diferenca € sutil, sugerindo que, para este conjunto de dados especifico, as caracteristicas
locais sao predominantemente suficientes.

A Figura 11 apresenta a andlise detalhada e por classes da acuracia de teste do
modelo EfficientNetV2-S.

Métricas Gerais de Teste - CNN Precisao por Classe - CNN
0920

Q “f < 4 f & .@ x
»"’“ 7 f jf P
Classes
Revocacéao por Classe - CNN F1-Score por Classe - CNN

oses oses 020 2m0 o 10 oo

Fl-Score

o) 0 ;
f",«’ﬁ#ﬁf“’fﬁﬁfrf fﬁjjgf.ffgf#e*

Classes Classes

Figura 11 — Andlise detalhada da acurédcia de teste do modelo EfficientNetV2-S. Apre-
senta acuracia e perda geral, precisao, revocagao e F'1-Score por classe espe-
cifica. Fonte: Elaborado pelo autor (2025).

O modelo convolucional demonstrou boa performance geral, com algumas varia-
coes entre as classes. A andlise revela que o EfficientNetV2-S apresenta maior dificuldade
em distinguir entre espécies morfologicamente similares, como Hymenolepis nana e Hyme-
nolepis diminuta, o que é esperado considerando a complexidade da tarefa de classificagao
de parasitas.

A Figura 12 mostra a analise detalhada da acuracia de teste do modelo Tiny Vision

Transformer.

Métricas Gerais de Teste - ViT Precisao por Classe - ViT

1439 " Loco i

os
2

oo
£

Sos

Valor

Fiscore
T e

nof 2
jxf@?fjfs’ﬁf’

Classes

Figura 12 — Anélise detalhada da acuracia de teste do modelo Tiny Vision Transformer.
Apresenta acurdcia e perda geral, precisao, revocacao e F1-Score por classe
especifica. Fonte: Elaborado pelo autor (2025).

O modelo baseado em atencao apresentou performance significativamente inferior

50 Capitulo 3. Resultados e Discussdo

aos outros modelos, demonstrando limitagoes na captura de caracteristicas especificas dos
ovos parasitarios. Esta observagao sugere que, para este conjunto de dados especifico, as
caracteristicas locais capturadas pelas camadas convolucionais sao mais relevantes do que
os padroes globais identificados pelo mecanismo de atencao.

A Figura 13 apresenta a analise detalhada da acuracia de teste do modelo hibrido.

Métricas Gerais de Teste - Hibrido Preciséo por Classe - Hibrido

067 oo

Valor

&

o‘j ﬁ(’(g’ r fﬁ & .f&f P
& o o o
R s F LSS
L A o o

Classes

Revocagao por Classe - Hibrido F1-Score por Classe - Hibrido

Revocaco

Classes Classes

Figura 13 — Analise detalhada da acuracia de teste do modelo hibrido. Apresenta acuracia
e perda geral, precisdao, revocacao e F1-Score por classe especifica. Fonte:
Elaborado pelo autor (2025).

O modelo hibrido apresentou a melhor performance geral ainda que ligeiramente,
demonstrando a eficacia da combinagao de arquiteturas complementares. A andlise revela
que a combinacao de caracteristicas locais e globais melhora a capacidade de discrimina-
¢ao, embora os ganhos sejam modestos comparados ao modelo convolucional isolado.

A Figura 14 apresenta a matriz de confusao do modelo convolucional.

Matriz de Confus&o - CNN

Ascaris lumbricoides
Capillaria philippinensis -
Enterobius vermicularis -

Fasciolopsis buski -
Hookworm egg -

§ Hymenolepis diminuta -
Hymenolepis nana -
Opisthorchis viverrine -
Paragonimus spp -

Taenia spp. egg -

Trichuris trichiura -

Predicéo

Figura 14 — Matriz de confusdo do modelo EfficientNetV2-S. Apresenta em ntmeros o
resultado da previsdo do modelo, comparando o valor real com o previsto.
Fonte: Elaborado pelo autor (2025).

o1

O modelo convolucional demonstrou boa capacidade de discriminagao entre as
classes, com algumas confusdes ocorrendo principalmente entre espécies que apresentam
caracteristicas morfologicas semelhantes. Esta é uma limitacao esperada, considerando a
complexidade da tarefa de classificacdo de parasitas.

A Figura 15 mostra a matriz de confusao do modelo baseado em atencao.

Matriz de Confus&o - ViT

Ascaris lumbricoides - 85 10 5 4 0 40 22 2 28 2 2
Capillaria philippinensis -
Enterobius vermicularis -

Fasciolopsis buski -

Hookworm egg -

T Hymenolepis diminuta -
2

Hymenolepis nana -

Opisthorchis viverrine -

Paragonimus spp -

Taenia spp. egg -

Trichuris trichiura -

Predicéo

Figura 15 — Matriz de confusao do modelo Tiny Vision Transformer. Apresenta em nu-
meros o resultado da previsao do modelo, comparando o valor real com o
previsto. Fonte: Elaborado pelo autor (2025).

O modelo baseado em atenc¢ao apresentou padroes de confusao similares ao modelo
convolucional, mas com algumas diferencas na distribuicao dos erros. Esta observacao
sugere que ambos os modelos capturam caracteristicas complementares dos dados, embora

o modelo convolucional tenha apresentado performance geral superior.

52 Capitulo 3. Resultados e Discussdo

A Figura 16 apresenta a matriz de confusao do modelo hibrido.

Matriz de Confus&o - Hibrido

Capillaria philippinensis - 0

200

Enterobius vermicularis - 0
Fasciolopsis buski- 0
Hookworm egg - 0

§ Hymenolepis diminuta - 0
Hymenolepis nana - 1
Opisthorchis viverrine - 0
Paragonimus spp - 4

Taenia spp. egg - 0

Trichuris trichiura - 0

Predicéo

Figura 16 — Matriz de confusao do modelo hibrido. Apresenta em niimeros o resultado da
previsao do modelo, comparando o valor real com o previsto. Fonte: Elaborado
pelo autor (2025).

O modelo hibrido apresentou a menor taxa de confusao entre classes, demonstrando
que a combinacao de caracteristicas locais e globais melhora a capacidade de discrimina-
¢ao. Contudo, a melhoria é sutil comparada ao modelo convolucional, sugerindo que, para
esta tarefa especifica, as caracteristicas locais sao predominantemente suficientes.

Além da precisao, a eficiéncia computacional é um aspecto crucial para aplicagoes
praticas em ambientes clinicos. A Tabela 2 apresenta uma comparacao dos tempos de

treinamento e inferéncia dos modelos.

Tabela 2 — Comparacao da eficiéncia computacional dos modelos

Modelo Tempo de Treinamento (min) | Tempo de Inferéncia (ms)
EfficientNetV2-S 45 12
Tiny ViT 52 18
Modelo Hibrido 78 25

Fonte: Elaborado pelo autor (2025).

O modelo EfficientNetV2-S apresentou o melhor equilibrio entre precisao e eficién-
cia, com menor tempo de treinamento e inferéncia. O modelo hibrido, apesar de apresentar
a melhor precisao, requer significativamente mais recursos computacionais, o que pode ser
uma limitacdo em ambientes com recursos limitados. A Figura 17 apresenta um exemplo
de inferéncia do modelo convolucional para a classe Ascaris lumbricoides, comparado com

a fonte de verdade que foi referéncia para treinar todos os modelos.

53

Ascaris lumbricoides (Base) Ascaris lumbricoides (Inferéncia CNN)

Ascaris_lumbricoides (0.92

Ascaris lumbricoides (Base;

Figura 17 — Comparagcao entre base (esquerda) e inferéncia do modelo de rede convoluci-

onal (direita) para a classe Ascaris lumbricoides. Fonte: Elaborado pelo autor
(2025).

A comparacao com trabalhos existentes na literatura permite contextualizar os
resultados obtidos e identificar as contribui¢oes especificas desta pesquisa. O trabalho de
Xu et al. (2024) propoe o YAC-Net, um modelo leve baseado em YOLOv5n modificado
para detec¢ao de ovos de parasitas. Modificam o modelo com AFPN (Asymptotic Fea-
ture Pyramid Network) e médulo C2f para reducdo de pardmetros, atingindo acuracia de
97,8%, revocacao de 97,7% e Fl-score de 0,9773. O AFPN ¢ uma rede de caracteristi-
cas piramidais que utiliza conexoOes assintéticas para melhorar a fusao de caracteristicas
em diferentes escalas, enquanto o médulo C2f (Cross-Concatenation) substitui o médulo
C3 tradicional, reduzindo pardmetros por meio de conexoes cruzadas mais eficientes. O
modelo hibrido deste trabalho apresenta acurdcia de teste de 86,7%.

AlDahoul et al. (2023) utiliza CoAtNet (Convolution and Attention Network) Dai
et al. (2021) para classificagdo de ovos de parasitas, apresentando uma abordagem que
combina redes convolucionais e mecanismos de atencao. Utilizam o CoAtNet0) com 25
milhdes de pardmetros, atingindo acuracia média de 93% e F1-score de 93%.

A comparagao com esses trabalhos revela que os modelos explorados neste trabalho
apresentam em média uma perda de acuracia de 8%, pode-se atribuir essa perda & natureza
da simplicidade computacional buscada pelos modelos.

E importante notar que os trabalhos utilizam o mesmo conjunto de dados tratado
de formas diferentes, o que pode influenciar a comparacao direta de resultados. Cada
trabalho tem objetivos especificos, seja deteccao, classificacao ou eficiéncia, o que justifica
as diferentes abordagens.

O modelo hibrido apresentou a melhor performance geral, mas de forma apenas
marginalmente superior ao modelo convolucional. Essa observacao é particularmente inte-
ressante e merece uma analise mais profunda. A superioridade limitada do modelo hibrido
pode ser atribuida a varios fatores, incluindo a natureza especifica do conjunto de dados
e as caracteristicas particulares da tarefa de classificacdo de parasitas.

A anélise das curvas de treinamento revela que tanto o modelo convolucional

quanto o hibrido apresentaram performance significativamente superior ao modelo Tiny

54 Capitulo 3. Resultados e Discussdo

Vision Transformer. Esta diferenca substancial sugere que, para este conjunto de da-
dos especifico, as caracteristicas locais capturadas pelas camadas convolucionais sao mais
relevantes do que os padroes globais identificados pelo mecanismo de atencao.

A anélise detalhada por classe, apresentada nas Figuras 11, 12 e 13, revela padroes
importantes sobre o comportamento dos modelos. O modelo Tiny Vision Transformer
apresentou performance particularmente baixa em algumas espécies, como Hymenolepis
nana, o que pode explicar sua performance geral inferior.

Esta limitacao do modelo baseado em atencao pode estar relacionada ao tamanho
reduzido do conjunto de dados ou a natureza especifica das caracteristicas morfolégicas
dos ovos de parasitas, que podem ser mais adequadamente capturadas por operagoes con-
volucionais locais. Os transformadores, que dependem de mecanismos de atengao global,
podem requerer conjuntos de dados maiores para atingir o correspondente desempenho
otimo.

A analise das matrizes de confusao revelou que as principais dificuldades de clas-
sificagdo ocorrem entre espécies morfologicamente similares, como Hymenolepis nana e
Hymenolepis diminuta. Esta é uma limitacao esperada, considerando a complexidade da
tarefa e a variabilidade natural entre espécies. A performance inferior do modelo Tiny
Vision Transformer em algumas dessas classes pode estar relacionada a sua dificuldade
em capturar diferencas sutis que sao mais facilmente identificadas por operacoes con-
volucionais locais. A Figura 18 representa a comparacao entre a inferéncia do modelo

transformador visual com a base de referéncia para a classe Hymenolepis nana.

Hymenolepis nana (Base)

Hymenolepis nana (Inferéncia ViT)

Figura 18 — Comparacao entre base (esquerda) e inferéncia do modelo Tiny Vision Trans-
former (direita) para a classe Hymenolepis nana. Fonte: Elaborado pelo autor
(2025).

A eficiéncia de recursos, aspecto fundamental deste trabalho, foi demonstrada atra-
vés da comparacao dos tempos de treinamento e inferéncia. O modelo EfficientNetV2-S
apresentou o melhor equilibrio entre precisao e eficiéncia, sendo particularmente adequado
para implementacao em ambientes com recursos computacionais limitados.

Os resultados sugerem que, para conjuntos de dados de tamanho moderado como o
utilizado neste trabalho, arquiteturas convolucionais otimizadas podem oferecer a melhor
relacdo custo-beneficio. A abordagem hibrida, apesar de apresentar ganhos modestos em
precisao, requer significativamente mais recursos computacionais, o que pode nao ser

justificado para todas as aplicacoes praticas.

o7

4 Conclusao

Este trabalho apresentou uma abordagem para a classificacdo automatizada de
ovos de parasitas intestinais voltada para a eficiéncia computacional, combinando arquite-
turas convolucionais e baseadas em atencao através de um modelo hibrido. Os resultados
demonstraram que todas as arquiteturas avaliadas sao capazes de realizar a classifica-
cdo com um nivel de acurédcia superior a 70%. O modelo hibrido apresentou a melhor
performance (86,7%), seguido por um resultado bem préximo do modelo convolucional
EfficientNetV2-S (86,5%). A acuracia de menor resultado foi a do Tiny Vision Transfor-
mer (71%).

A normalizacao e o tratamento de dados especificos para imagens microscopicas
permitiram estender a robustez dos modelos e melhorar a generalizagao para novas amos-
tras. O cédigo desenvolvido é estavel e reproduzivel, garantindo que os mesmos resultados
sejam obtidos em execugoes subsequentes do experimento.

A eficiéncia de recursos, aspecto fundamental desse trabalho, foi demonstrada atra-
vés da comparacao dos tempos de treinamento e inferéncia. O modelo EfficientNetV2-S
apresentou o melhor equilibrio entre precisao e eficiéncia, sendo particularmente adequado
para implementacao em ambientes clinicos com recursos computacionais limitados.

A anélise das matrizes de confusao revelou que as principais dificuldades de clas-
sificacdo ocorrem entre espécies morfologicamente similares, como Hymenolepis nana e
Hymenolepis diminuta. Essa é uma limitacao esperada, considerando a complexidade da
tarefa e a variabilidade natural entre espécies. A performance inferior do modelo Tiny
Vision Transformer em algumas dessas classes pode estar relacionada a sua dificuldade
em capturar diferencas sutis que sdo mais facilmente identificadas por operag¢oes convo-
lucionais locais. Os transformadores, que dependem de mecanismos de atencao global,
podem requerer conjuntos de dados maiores para atingir seu desempenho 6timo.

A comparagao com trabalhos existentes na literatura, como o YAC-Net de (XU
et al., 2024) e o CoAtNet de (ALDAHOUL et al., 2023), demonstrou que a modelagem
desenvolvida neste trabalho, apesar de nao atingir os mesmos niveis de acurécia, apresenta
uma boa performance com um custo operacional muito inferior. Destaca-se a abordagem
hibrida aplicada, que nao havia sido contemplada nos demais trabalhos de referéncia.

As possibilidades de se trabalhar com diferentes arquiteturas neurais abrem es-
paco para a generalizagao de diversos problemas de classificacdo médica. Apesar de haver
outras formas de solugbes tanto para classificacdo quanto para deteccao de parasitas, uma
abordagem hibrida permite combinar as vantagens de diferentes arquiteturas ao mesmo
tempo que mantém a flexibilidade para diferentes aplicagoes.

Trabalhos futuros acerca desse tema podem envolver testes com conjuntos de da-

dos maiores e mais diversos, aplicacao das técnicas apresentadas aqui em outras areas da

o8 Capitulo 4. Conclusao

biomédica, como a classificacdo de outros tipos de células ou microorganismos, e tam-
bém o refino da técnica de modo a contornar os problemas intrinsecos das redes neurais
demonstrados nesse trabalho, como a necessidade de grandes conjuntos de dados para
transformadores e a otimizagao de hiperparametros.

Outro exemplo de futuro trabalho com aplicagdo biomédica similar seria reprodu-
zir a aplicagdo de arquiteturas neurais para exames em fezes, porém com o enfoque de
deteccao de sangue em vez da classificagao de parasitas.

A combinacgao de diferentes arquiteturas por meio de técnicas de aprendizado em
conjunto (do inglés, ensemble learning) mais sofisticadas, como média ponderada (do
inglés, weighted averaging) ou empilhamento (do inglés, stacking) (GANAIE et al., 2022),
pode melhorar ainda mais a performance dos modelos. A exploragao de arquiteturas mais
recentes, como modelos de atencao especializados em microscopia, também representa
uma dire¢do promissora para futuras investigagoes.

Em conclusao, este trabalho demonstrou a viabilidade e eficicia da aplicacao de
técnicas de aprendizado profundo para a classificacdo automatizada de ovos de parasitas
intestinais, oferecendo uma solugao equilibrada entre precisao e eficiéncia computacional,

adequada para implementagao em ambientes clinicos com recursos limitados.

99

Referencias

ALDAHOUL, N. et al. Parasitic egg recognition using convolution and attention
network. Scientific Reports, Nature Research, v. 13, 12 2023. ISSN 20452322. Citado 5
vezes nas paginas 20, 34, 42, 53 e 57.

ANANTRASIRICHAI N. et al. ICIP 2022 Challenge on Parasitic Egg Detection and
Classification in Microscopic Images: Dataset, Methods and Results. 2022. Disponivel
em: <https://arxiv.org/abs/2208.06063>. Citado 2 vezes nas paginas 33 e 34.

CHOLLET, F. Deep Learning with Python. [S.l.]: Manning Publications Co., 2021.
Citado 8 vezes nas paginas 9, 19, 23, 24, 25, 27, 28 e 29.

DAI Z. et al. CoAtNet: Marrying Convolution and Attention for All Data Sizes. 2021.
Disponivel em: <https://arxiv.org/abs/2106.04803>. Citado na pagina 53.

DOSOVITSKIY, A. et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arziv, 10 2020. Disponivel em: <http://arxiv.org/abs/2010.11929>.
Citado 5 vezes nas paginas 9, 19, 29, 30 e 31.

GANAIE, M. et al. Ensemble deep learning: A review. Engineering Applications of
Artificial Intelligence, Elsevier BV, v. 115, p. 105151, out. 2022. ISSN 0952-1976.
Disponivel em: <http://dx.doi.org/10.1016/j.engappai.2022.105151>. Citado 2 vezes
nas paginas 40 e 58.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. <http://www.deeplearningbook.org>. Citado na pagina 24.

GUJO, A. B.; KARE, A. P. Prevalence of intestinal parasite infection and its association
with anemia among children aged 6 to 59 months in sidama national regional state,
southern ethiopia. Clinical Medicine Insights: Pediatrics, SAGE Publications, v. 15, p.
117955652110292, 1 2021. ISSN 1179-5565. Citado 2 vezes nas paginas 31 e 32.

HARRIS, C. R. et al. Array programming with NumPy. [S.1.]: Nature Research, 2020.
357-362 p. Citado na pagina 41.

HUNTER, J. D. Matplotlib: A 2d graphics environment. Computing in Science
Engineering, v. 9, n. 3, p. 90-95, 2007. Citado na pagina 41.

KUMAR, S. et al. An efficient and effective framework for intestinal parasite
egg detection using yolovd. National Library of Medicine, 2023. Disponivel em:
<https://doi.org/10.3390/diagnostics13182978>. Citado 2 vezes nas paginas 20 e 32.

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEFEE, v. 86, n. 11, p. 2278-2324, 1998. Citado na pagina 19.

LEPPICH, R. Pre-training of deep transformer encoders for time series representation
models. 2021. Disponivel em: <https://www.researchgate.net/publication/353346900>.
Citado 2 vezes nas paginas 9 e 27.

LOSHCHILOV, 1.; HUTTER, F. Decoupled Weight Decay Regularization. 2019.
Disponivel em: <https://arxiv.org/abs/1711.05101>. Citado na pagina 42.

https://arxiv.org/abs/2208.06063
https://arxiv.org/abs/2106.04803
http://arxiv.org/abs/2010.11929
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://www.deeplearningbook.org
https://doi.org/10.3390/diagnostics13182978
https://www.researchgate.net/publication/353346900
https://arxiv.org/abs/1711.05101

60 Referéncias

MAO, A.; MOHRI, M.; ZHONG, Y. Cross-Entropy Loss Functions: Theoretical Analysis
and Applications. 2023. Disponivel em: <https://arxiv.org/abs/2304.07288>. Citado
na pagina 35.

MCKINNEY, W. pandas: a Foundational Python Library for Data Analysis and Statistics.
[S.L], 2011. Disponivel em: <https://www.researchgate.net/publication/265194455>.
Citado na péagina 41.

MITCHELL, T. M. Machine Learning. [S.1.]: McGraw-Hill, 1997. 414 p. ISBN
0070428077. Citado na pagina 19.

MURPHY, K. P. Machine learning : a probabilistic perspective. [S.1.]: MIT Press, 2012.
1067 p. ISBN 9780262018029. Citado na pagina 24.

NIELSEN, M. A. Neural Networks and Deep Learning. [S.l.]: Determination Press, 2015.
Citado 2 vezes nas paginas 9 e 26.

PALASUWAN, D. et al. Parasitic egg detection and classification in microscopic images.
IEEE Dataport, 2022. Disponivel em: <https://dx.doi.org/10.21227/vyh8-4h71>.
Citado na pagina 33.

PASZKE, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. [S.1.], 2019. Citado 4 vezes nas paginas 25, 27, 28 e 41.

PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. 2018. Disponivel em:
<https://arxiv.org/abs/1201.0490>. Citado na pégina 41.

PRINCE, S. J. D. Understanding Deep Learning. [S.1.]: MIT Press, 2024. Citado 2 vezes
nas paginas 25 e 27.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction Second
edition, in progress. [S.1.], 2015. Citado na pagina 25.

TAN, M.; LE, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. 2020. Disponivel em: <https://arxiv.org/abs/1905.11946>. Citado na pagina
36.

TAN, M.; LE, Q. V. EfficientNetV2: Smaller Models and Faster Training. 2021.
Disponivel em: <https://arxiv.org/abs/2104.00298>. Citado 2 vezes nas paginas 36
e 37.

VASWANI, A. et al. Attention Is All You Need. [S.1.], 2017. Citado 2 vezes nas paginas
29 e 30.

WASKOM, M. L. seaborn: statistical data visualization. Journal of Open Source
Software, The Open Journal, v. 6, n. 60, p. 3021, 2021. Disponivel em: <https:
//doi.org/10.21105/joss.03021>. Citado na pagina 41.

WU, K. et al. TinyViT: Fast Pretraining Distillation for Small Vision Transformers.
2022. Disponivel em: <https://arxiv.org/abs/2207.10666>. Citado 3 vezes nas paginas
9, 38 e 39.

XU, W. et al. A lightweight deep-learning model for parasite egg detection in microscopy
images. Parasites wvectors, v. 17, p. 454, 12 2024. ISSN 17563305. Citado 3 vezes nas
paginas 20, 53 e 57.

https://arxiv.org/abs/2304.07288
https://www.researchgate.net/publication/265194455
https://dx.doi.org/10.21227/vyh8-4h71
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2104.00298
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://arxiv.org/abs/2207.10666

Referéncias 61

YIMER, M. et al. Evaluation performance of diagnostic methods of intestinal parasitosis
in school age children in ethiopia. BMC' Research Notes, BioMed Central, v. 8, 12 2015.
ISSN 17560500. Citado na péagina 32.

Apéndices

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

APENDICE A - Cédigo Fonte

A.1 Arquivo Principal: run_optimized.py

Listing A.1 — Arquivo principal do experimento

65

#!/usr/bin/env python3

import torch

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import pandas as pd

from sklearn.metrics import classification_report
import json

import os

import sys

import argparse

from trainer_optimized import ParasiteTrainerOptimized

from models import get_model_summary

import config_optimized

def set_random_seced(seed=42):
Definir semente aleatdéria para reproducgéo
torch.manual seed(seed)
torch.cuda.manual seed(seed)
torch.cuda.manual seed _all (seed)
np.random.seed (seed)
torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark = False

def train_single_model (model_type: str, force_train=False):

Treinar um Gnico modelo

set_random_seed ()

print (£"\n{’>=’>%60}")
print (f"TREINANDO MODELO {model_type.upper ()}")
print (£"{’>=’%60}")

35
36
37
38

39
40

41

42

43
44

45

46

47
48

49

50
51
52
53
54

55

56
57
58
59
60
61
62
63
64

65

66
67
68

66

APENDICE A. Cédigo Fonte

cfg = config_optimized.config

trainer = ParasiteTrainerOptimized (model_type, cfg)

Verificar se existe um modelo salvo e se o treinamento &
— forgado
model_path = f"{cfg.model_save_dir}/{model_typel}_best.pth"
if os.path.exists(model_path) and not force_train:
print (f"Modelo {model_type.upper ()} j& treinado
< encontrado em {model_path}")
print ("Pulando treinamento e indo direto para avaliacgdo
- ...")
print ("Use --force-train para treinar novamente.")
checkpoint = torch.load(model_path, map_location=’cpu’)
trainer.best_val_accuracy = checkpoint.get(’
— best_val_accuracy’, 0.0)
print (f"Melhor acuréacia de validacgido carregada: {trainer.
— best_val_accuracy:.4f}")
else:
if force_train and os.path.exists(model_path):
print (f"Forgando retreinamento do modelo {model_type.
— upperO}...")
else:
print (f"Treinando modelo {model_type.upper()}...")

trainer.train ()

Avaliar no conjunto de teste
print (f"\nAvaliando modelo {model_type.upper ()} no conjunto
— de teste...")

test_results = trainer.evaluate ()

trainer.save_results(test_results)

Plotar histdérico de treinamento

trainer.plot_training_history ()

Plotar matriz de confusédo
class_names = list(trainer.class_to_idx.keys())
trainer.plot_confusion_matrix(test_results[’confusion_matrix’

<], class_names)

Plotar analise detalhada de acuracia de teste

trainer.plot_test_accuracy_analysis(test_results)

69
70
71
72

73

74
75
76
77
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

98
99

100

101

102

103

Al

Arquivo Principal: run__optimized.py 67

def

print (f"Resultados do Modelo {model_type.upper()}:")

print (f"Acuracia de Teste: {test_results[’accuracy’]:.4f}")
print (f"Perda de Teste: {test_results[’loss’]:.4f}")

print (f"Melhor Acurédcia de Validag&o: {trainer.

< best_val_accuracy:.4f}")

return {
>accuracy’: test_results[’accuracy’],
’loss’: test _results[’loss’],
>classification_report’: test_results[’
<+ classification_report’],

’best_val_accuracy’: trainer.best_val_accuracy

train_all _models (force_train=False):
Treinar todos os trés modelos

set_random_seed ()

models = [’cnn’, ’vit’, ’hybrid’]

results = {}

for model_type in models:
print (£"\n{’=’*60}")
print (f"TREINANDO MODELO {model_type.upper ()}")
print (£"{’>="%60}")

cfg = config_optimized.config

trainer = ParasiteTrainerOptimized(model_type, cfg)

model _path = f"{cfg.model_save_dir}/{model_type}_best.pth
ST
if os.path.exists(model_path) and not force_train:
print (f"Modelo {model_type.upper ()} ja& treinado
< encontrado em {model_pathl}")
print ("Pulando treinamento e indo direto para avaliag
— 30...")
print ("Use --force-train para treinar novamente.")
checkpoint = torch.load(model_path, map_location=’cpu
=)
trainer.best_val_accuracy = checkpoint.get(’

< best_val_accuracy’, 0.0)

68 APENDICE A. Cédigo Fonte

104 print (f"Melhor acuracia de validagdo carregada: {

< trainer.best_val_accuracy:.4f}")

105 else:

106 if force_train and os.path.exists(model_path):

107 print (f"Forgando retreinamento do modelo {
— model_type.upper()}...")

108 else:

109 print (f"Treinando modelo {model_type.upper()}..."
=)

110 trainer.train ()

111

112 print (f"\nAvaliando modelo {model_type.upper ()} no

< conjunto de teste...")

113 test_results = trainer.evaluate ()

114

115 trainer.save_results(test_results)

116

117 trainer.plot_training_history ()

118

119 class_names = list(trainer.class_to_idx.keys())

120 trainer.plot_confusion_matrix(test_results[’

<> confusion_matrix’], class_names)

121
122 trainer.plot_test_accuracy_analysis(test_results)
123
124 results [model_type] = {
125 >accuracy’: test_results[’accuracy’],
126 >loss’: test_results[’loss’],
127 ’classification_report’: test_results][’
<+ classification_report’],
128 ’best_val_accuracy’: trainer.best_val_accuracy
129 }
130
131 print (f"Resultados do Modelo {model_type.upper()}:")
132 print (f"Acuracia de Teste: {test_results[’accuracy’]:.4f}
- ")
133 print (f"Perda de Teste: {test_results[’loss’]:.4f}")
134 print (f"Melhor Acuréacia de Validacgdo: {trainer.
< best_val_accuracy:.4f}")
135
136 return results

137

138
139
140
141
142
143
144
145
146
147
148

149

150
151
152
153
154
155
156
157
158
159

160

161
162
163

164

165

166
167
168
169

170

171

172

173

Al

Arquivo Principal: Tun__ optimized.py

69

def

compare_models (results):

Comparar e visualizar resultados de todos os modelos

model _names_pt = {
>cnn’: ’CNN°,
’yvit’: ViT’,
’hybrid’: ’Hibrido’

}

comparison_data = []

for model_type, result in results.items ():
comparison_data.append ({
’Model’: model_names_pt.get(model_type, model_type.
<~ upper),

>Test Accuracy’: result[’accuracy’],
’Test Loss’: result[’loss’],
’Best Val Accuracy’: result[’best_val_accuracy’]
b
df = pd.DataFrame (comparison_data)

print ("\nComparagdo de Performance dos Modelos:")

print (df .to_string(index=False))

Criar graficos de comparacgéo
fig, ((axl, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize
— =(16, 12))

Comparacgdo de acuréacia
models = [data[’Model’] for data in comparison_datal
test_accuracies = [data[’Test Accuracy’] for data in
<+ comparison_data]
val_accuracies = [data[’Best Val Accuracy’] for data in

<+ comparison_data]

x = np.arange(len(models))

width = 0.35

barsl = axl.bar(x - width/2, test_accuracies, width, label=’
< Acurédcia de Teste’, alpha=0.8, color=’#2E86AB’)

bars2 = axl.bar(x + width/2, val_accuracies, width, label=’
< Acurédcia de Validagdo’, alpha=0.8, color=’#A23B72’)

axl.set_xlabel (’Modelos’)

axl.set_ylabel (’Acuracia’)

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

70 APENDICE A. Cédigo Fonte
axl.set_title(’Comparacdo de Acuracia dos Modelos’)
axl.set_xticks(x)
axl.set_xticklabels (models)
axl.legend ()
axl.grid(True, alpha=0.3)

Adicionar rdétulos de valores
for bar, acc in zip(barsl, test_accuracies):
height = bar.get_height ()
axl.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f’{acc:.3f}’, ha=’center’, va=’bottom’,
<> fontweight=’bold’)
for bar, acc in zip(bars2, val_accuracies):
height = bar.get_height ()
axl.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f’{acc:.3f}’, ha=’center’, va=’bottom’,
— fontweight=’bold’)
Comparacgdo de perda
test_losses = [data[’Test Loss’] for data in comparison_data]
bars3 = ax2.bar(models, test_losses, alpha=0.8, color=’#
— F18F01°)
ax2.set_xlabel (’Modelos’)
ax2.set_ylabel (’Perda’)
ax2.set_title(’Comparacdo de Perda dos Modelos’)
ax2.grid(True, alpha=0.3)
Adicionar rdétulos de valores
for bar, loss in zip(bars3, test_losses):
height = bar.get_height ()
ax2.text(bar.get_x() + bar.get_width()/2., height + 0.05,
f’>{loss:.3f}’, ha=’center’, va=’bottom’,
— fontweight=’bold’)
Anadlise detalhada por classe
accuracy_data = []
for model_type, result in results.items():
report = result[’classification_report’]
for class_name, metrics in report.items():
if isinstance(metrics, dict) and ’precision’ in

< metrics:

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

Al

Arquivo Principal: run__optimized.py 71

accuracy_data.append ({
’Model’: model_names_pt.get (model_type,
<> model_type.upper()),
’Class’: class_name,
’Precision’: metrics[’precision’],
>Recall’: metrics[’recall’],
’F1-Score’: metrics[’fl-score’]

1))

accuracy_df = pd.DataFrame (accuracy_data)

Comparagdo de Fl1-Score por classe

pivot_f1 = accuracy_df.pivot(index=’Class’, columns=’Model’,
< values=’Fl1-Score’)

pivot_f1.plot(kind=’bar’, ax=ax3, alpha=0.8, color=[’#2E86AB’
— , ’#A23B72°, ’#F18F01°])

ax3.set_title(’Fl1-Score por Classe e Modelo’)

ax3.set_xlabel(’Classes’)

ax3.set_ylabel (’Fl-Score’)

ax3.legend(title=’Modelo’)

ax3.tick_params (axis=’x’, rotation=45)

ax3.grid (True, alpha=0.3)

Grafico de dispersdo de precisdo vs revocagéao
for i, model in enumerate (models):
model_data = accuracy_df [accuracy_df[’Model’] == modell]
ax4.scatter (model_data[’Precision’], model_data[’Recall’
- 1,
s=100, alpha=0.7, label=model,
color=[’#2E86AB’, ’#A23B72’, ’#F18F01°][i])

ax4.set_title(’Precisdo vs Revocagdo por Classe’)
ax4.set_xlabel (’Preciséo’)

ax4.set_ylabel (’Revocacgédo’)

ax4.legend ()

ax4.grid (True, alpha=0.3)

Adicionar linha diagonal de referéncia
ax4.plot ([0, 1], [0, 1], ’k--’, alpha=0.5, label=’Linha de

<s Referéncia’)

plt.tight_layout ()

248

249

250
251

252

253
254
255

256

257
258

259

260

261

262
263
264
265
266
267
268
269

270

271

272

273

274

275

276

277
278

72 APENDICE A. Cédigo Fonte
cfg = config_optimized.config
plt.savefig(f"{cfg.results_dir}/model_comparison_optimized.

— png", dpi=300, bbox_inches=’tight’)
plt.show ()
comparison_path = f"{cfg.results_dir}/
< model_comparison_optimized. json"
with open(comparison_path, ’w’) as f:
json.dump (results, f, indent=4)
print (f"\nResultados da comparacdo salvos em {comparison_path
— ")
Imprimir melhor modelo
best_model = max(results.items(), key=lambda x: x[1][’
< accuracy’])
print (£"\nMELHOR MODELO: {best_model [0].upper()}")
print (£" Acurédcia de Teste: {best_model[1][’accuracy’]:.4f}
- ")
print (£" Perda de Teste: {best_model[1][’loss’]:.4f}")
Analisar sobreajuste
print (f"\nANALISE DE SOBREAJUSTE:")
for model_type, result in results.items():
val_acc = result[’best_val_accuracy’] / 100.0
test_acc = result[’accuracy’]
overfitting_gap = val_acc - test_acc
print (£" {model_type.upper()}: Validagdo {val_acc:.3f}
< -> Teste {test_acc:.3f} (Gap: {overfitting gap:.3f})
= ")

def main():
parser = argparse.ArgumentParser (description=’Treinar modelos

< de deteccgdo de parasitas’)
parser .add_argument (’--model’, type=str, choices=[’cnn’, ’vit

< ’, ’hybrid’, ’all’],

default=’all’, help=’Modelo a ser treinado
— (padrdo: all)’)

parser .add_argument (’--force-train’, action=’store_true’,

<+ help=’Forgar retreinamento de modelos que j& existem’)
args = parser.parse_args ()

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

A.2. Treinador Otimizado: trainer__optimized.py 73
print (£"\n{’="*70}")
print ("EXPERIMENTO")
print (£"{’="*70}")
print ("Configuracgdes:")
cfg = config_optimized.config
print (£f" - Tamanho da imagem: {cfg.image_sizel}x{cfg.
< image_sizel}")
print (f" - Tamanho do batch: {cfg.batch_sizel}")
print (f" - Taxa de aprendizado: {cfg.learning_ratel}")
print (£f" - Taxa de decaimento: {cfg.weight_decayl}")
print (£f" - Suavizacao de rotulos: {cfg.label_smoothing}")
print (f" - Gradiente: {cfg.gradient_clipl}")
print (f" - Agendador de taxa de aprendizado:
«+ ReduceLROnPlateau")
print (f" - Tratamento de dados: Embagamento + Ruido")
print (£"{’>="%70}")
if args.model == ’all’:
results = train_all_models(args.force_train)
compare_models (results)
else:
result = train_single_model (args.model, args.force_train)
compare_models ({args.model: result})
if _ _name__ == "_ main__"
main ()

A.2 Treinador Otimizado: trainer_optimized.py

Listing A.2 — Classe do treinador otimizado

import torch

import torch.nn as nn

import torch.optim as optim

from torch.optim.lr_scheduler import ReducelLROnPlateau
import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

from sklearn.metrics import classification_report,

< confusion_matrix

10
11
12
13
14
15
16
17
18
19
20
21
22

23

24
25
26
27
28

29

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47

74

APENDICE A. Cédigo Fonte

import json

import os

from tqdm import tqdm

import config_optimized

from dataset_optimized import get_dataloaders_optimized

from models import get_model, get_model_summary

class ParasiteTrainerOptimized:

def

__init__(self, model_type: str, config):
self .model_type = model_type

self.config config

self .device = torch.device(config.device)

Obter dataloaders

self.train_loader, self.val_loader, self.test_loader,

— self.class_to_idx = get_dataloaders_optimized (config
=)
self .model = self._create_model ()

self .model.to(self.device)

Funcgdo de perda com suavizagdo de rdétulos
self .criterion = nn.CrossEntropyLoss(label_smoothing=

<+ config.label_smoothing)

Otimizador

self .optimizer = optim.AdamW(
self .model.parameters (),
lr=config.learning_rate,

weight_decay=config.weight_decay

Agendador de taxa de aprendizado
self.scheduler = ReducelLROnPlateau(
self .optimizer,
mode=’max’,
factor=config.scheduler_factor,
patience=config.scheduler_patience,

min_lr=config.scheduler_min_1r

self.train losses = []

48
49
50
51
52
53
54
55
56
57

58

59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74
75
76
T

78
79
80

81
82
83
84

85

A.2. Treinador Otimizado: trainer__optimized.py

75

self.val_losses = []
self.train_accuracies = []
self.val_accuracies = []
self .best_val_accuracy = 0.0

self .patience_counter = 0

def _create _model (self):
Criar modelo com base no tipo
from models import get_model, get_model_summary

model = get_model (self.model_type, self.config)

get_model_summary (model, input_size=(3, self.config.

< image_size, self.config.image_size))

return model

def get_model_name_pt(self):
Traduzir
model _names = {
cnn’: ’CNN’,
’vit’: ViT’,
’hybrid’: ’Hibrido’
}

return model_names.get(self.model_type, self.model_type.

upper ())

def train_epoch(self):
Treinar por uma época
self .model.train ()
total_loss = 0.0
correct = 0

total = 0

progress_bar = tqdm(self.train_loader, desc=f"Treinando {

< self.model_type.upper O}")

for batch_idx, (data, target) in enumerate(progress_bar):

data, target = data.to(self.device), target.to(self.

device)

self .optimizer.zero_grad()
output = self.model(data)

loss = self.criterion(output, target)

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

112

113

114

115

116

117

118

119

120

121

122

76 APENDICE A. Cédigo Fonte
torch.nn.utils.clip_grad_norm_(self.model.parameters
«» (), self.config.gradient_clip)
loss.backward ()
self.optimizer.step ()
total loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
total += target.size (0)
progress_bar.set_postfix ({
’Loss’: f’{loss.item():.4f}’,
>Acc’: £°{100. * correct / total:.2f}%’
b
return total_loss / len(self.train_loader), correct /
— total
def validate_epoch(self):
Validar época
self .model.eval ()
total_loss = 0.0
correct = 0
total = O
with torch.no_grad():
for data, target in tqdm(self.val_loader, desc=f"
<+ Validando {self.model_type.upper()}"):
data, target = data.to(self.device), target.to(
< self.device)
output = self.model(data)
loss = self.criterion(output, target)
total_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().
item ()
total += target.size (0)
return total_loss / len(self.val_loader), correct / total

A.2. Treinador Otimizado: trainer__optimized.py 7

123 def train(self):

124 # Treinar com parada antecipada

125 print (£"\n{’=’%60}")

126 print (f"TREINANDO MODELO {self.model_type.upper ()1}")
127 print (£"{’="%60}")

128

129 for epoch in range(self.config.num_epochs):

130 print (£"\nEpoca {epoch+1}/{self.config.num_epochs}")
131

132 train_loss, train_acc = self.train_epoch()

133

134 val_loss, val_acc = self.validate_epoch()

135

136 self.scheduler.step(val_acc)

137

138 # Armazenar histérico

139 self .train_losses.append(train_loss)

140 self.val_losses.append(val_loss)

141 self .train_accuracies.append(train_acc)

142 self .val_accuracies.append(val_acc)

143

144 print (f"Perda de Treino: {train_loss:.4f}, Acuracia

< de Treino: {train_acc:.4f}")

145 print (f"Perda de Validacg&o: {val_loss:.4f}, Acuréacia
— de Validagdo: {val_acc:.4f}")
146 print (f"Taxa de Aprendizado: {self.optimizer.

< param_groups [0J[’1r’]:.2e}")

147

148 # Parada antecipada

149 if val_acc > self.best_val_accuracy:

150 self .best_val_accuracy = val_acc

151 self .patience_counter = 0

152 # Salvar melhor modelo

153 torch.save(self.model.state_dict (),

154 f"{self.config.model_save_dir}/{self.

<~ model_typel}_best.pth")

155 print (f"Novo melhor modelo salvo! Acuracia: {
< val_acc:.4f}")

156 else:

157 self .patience_counter += 1

158 print (f"Parada Antecipada: {self.patience_counter

<+ }/{self.config.patiencel}")

159
160

161

162
163

164

165
166
167

168

169
170

171

172

173

174
175
176
177
178
179
180
181

182

183

184
185
186
187
188
189

190

191

192

78 APENDICE A. Cédigo Fonte
if self.patience_counter >= self.config.patience:
print (f"Parada Antecipada ativada apds {epoch
< +1} épocas")
break
print (£"\nMelhor acurédcia de validagdo: {self.
< best_val_accuracy:.4f}")
def evaluate (self):
Avaliar no conjunto de teste
print (f"\nAvaliando modelo {self.model_type.upper ()} no
< conjunto de teste...")
Carregar melhor modelo
best_model_path = f"{self.config.model_save_dir}/{self.
— model_typel}_best.pth"
if os.path.exists(best_model_path):
self .model.load_state_dict(torch.load(best_model_path
<+ , map_location=self.device))
print ("Modelo melhor carregado para avaliagdo")
self .model.eval ()
test_loss = 0.0
all_predictions = []
all_targets = []
with torch.no_grad():
for data, target in tqdm(self.test_loader, desc="
<+ Avaliando"):
data, target = data.to(self.device), target.to(
< self.device)
output = self.model(data)
loss = self.criterion(output, target)
test_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
all_predictions.extend(pred.cpu() .numpy().flatten
=)
all_targets.extend(target.cpu() .numpy ())

193

194

195
196
197

198

199

200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215

216

217

218
219
220
221
222
223
224
225
226
227
228

A.2. Treinador Otimizado: trainer__optimized.py

79

test_loss /= len(self.test_loader)
test_accuracy = sum(l for x, y in zip(all_predictions,

<+ all_targets) if x == y) / len(all_targets)

Relatdrio de classificacgéo
class_names = list(self.class_to_idx.keys())
report = classification_report(all_targets,
— all_predictions,
target_names=class_names,

<+ output_dict=True)

Matriz de confuséo
cm = confusion_matrix(all_targets, all_predictions)
return {
’accuracy’: test_accuracy,
’loss’: test_loss,
’classification_report’: report,
’confusion_matrix’: cm,
’predictions’: all_predictionmns,

’targets’: all_targets

def save_results(self, results):
Salvar resultados em JSON
results_path = f"{self.config.results_dir}/{self.

— model_typel}_results.json"

Funcdo auxiliar para converter tipos numpy para tipos
— mnativos Python
def convert_numpy_types (obj):
if isinstance (obj, np.ndarray):
if obj.size == 1:
return obj.item()
else:
return obj.tolist ()
elif isinstance(obj, np.integer):
return int (obj)
elif isinstance(obj, np.floating):
return float (obj)

elif isinstance(obj, dict):

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

80 APENDICE A. Cédigo Fonte
return {key: convert_numpy_types(value) for key,
< value in obj.items ()}
elif isinstance(obj, list):
return [convert_numpy_types(item) for item in obj
<]
else:
return obj
Converter todos os resultados para formato JSON-
— serializavel
results_to_save = {
’acuracia’: convert_numpy_types(results[’accuracy’]),
’perda’: convert_numpy_types (results[’loss’]),
’relatorio_classificacao’: convert_numpy_types(
«— results[’classification_report’]),
’matriz_confusao’: convert_numpy_types(results[’
< confusion_matrix’]),
’predicoes’: convert_numpy_types (results[’predictions
- ’1)
}
with open(results_path, ’w’, encoding=’utf-8’) as f:
json.dump(results_to_save, f, indent=4, ensure_ascii=
— False)
print (f"Resultados salvos em {results_pathl}")
def plot_training_history(self):
Plotar histdérico de treinamento
fig, (axl, ax2) = plt.subplots(l, 2, figsize=(15, 5))
num_epochs = len(self.train_losses)
epochs = list(range(l, num_epochs + 1))
def get_epoch_ticks(num_epochs):
if num_epochs <= 20:
return list(range(l, num_epochs + 1))
elif num_epochs <= 50:
ticks = list(range(l, num_epochs + 1, 5))
else:
ticks = list(range(l, num_epochs + 1, 10))
if ticks[-1] !'= num_epochs:
ticks.append (num_epochs)

264
265
266
267

268

269

270

271
272
273
274

275

276
277
278
279

280

281
282

283

284

285
286
287
288
289
290

291

292
293
294

295

A.2. Treinador Otimizado: trainer__optimized.py 81

return ticks

epoch_ticks = get_epoch_ticks (num_epochs)

Plotar perda

axl.plot(epochs, self.train_losses, label=’Treino’, color
< =’blue’, marker=’o’)

axl.plot(epochs, self.val_losses, label=’Validacgdo’,
< color=’red’, marker=’0’)

axl.set_title(f’Histérico de Perda - {self.
< get_model_name_pt()}’)

axl.set_xlabel (’Epoca’)

axl.set_ylabel (’Perda’)

axl.legend ()

axl.grid (True, alpha=0.3)

max_loss = max(self.train_losses + self.val_losses) if (
< self.train_losses and self.val_losses) else 1

axl.set_ylim (0, max_loss * 1.1)

axl.set_xticks (epoch_ticks)

Plotar acuréacia

train_acc_pct = [acc * 100 for acc in self.
<> train_accuracies]

val_acc_pct = [acc * 100 for acc in self.val_accuracies]

ax2.plot (epochs, train_acc_pct, label=’Treino’, color=’
< blue’, marker=’0’)

ax2.plot (epochs, val_acc_pct, label=’Validacgdo’, color=’
< red’, marker=’0’)

ax2.set _title(f’Histérico de Acurdcia - {self.
< get_model_name_pt ()}’)

ax2.set_xlabel (’Epoca’)

ax2.set_ylabel (’Acuracia (%))

ax2.legend ()

ax2.grid(True, alpha=0.3)

ax2.set_ylim (0, 100)

ax2.set_yticks ([0, 20, 40, 60, 80, 100])

ax2.set_yticklabels ([’0%’, ’20%°’, ’40%’, ’60%’, ’80%’, °’
— 100%°1)

ax2.set_xticks (epoch_ticks)

plt.tight_layout ()
save_path = f"{self.config.results_dir}/{self.model_typel}

< _training_history.png"

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

82 APENDICE A. Cédigo Fonte
plt.savefig(save_path, dpi=300, bbox_inches=’tight’)
plt.close ()
print (f"Grafico de histdérico salvo em {save_pathl}")

def plot_confusion_matrix(self, cm, class_names):
Plotar matriz de confuséo
plt.figure(figsize=(12, 10))
sns .heatmap (cm, annot=True, fmt=’d’, cmap=’Blues’,
xticklabels=class_names, yticklabels=
< class_names)
plt.title(f’Matriz de Confus3o - {self.get_model_name_pt
= O}
plt.xlabel (’Predicg&o’)
plt.ylabel (’Real’)
plt.xticks(rotation=45)
plt.yticks(rotation=0)
save_path = f"{self.config.results_dir}/{self.model_typel}
< _confusion_matrix.png"
plt.savefig(save_path, dpi=300, bbox_inches=’tight’)
plt.close ()
print (f"Matriz de confus&do salva em {save_pathl}")
def plot_test_accuracy_analysis(self, test_results):
Plotar anadlise detalhada de acurédcia de teste
class_names = list(self.class_to_idx.keys())
report = test_results[’classification_report’]
classes = []
precisions = []
recalls = []
f1_scores = []
for class_name, metrics in report.items():
if isinstance(metrics, dict) and ’precision’ in
< metrics:
classes.append(class_name)
precisions.append(metrics[’precision’])
recalls.append (metrics[’recall’])
f1_scores.append(metrics[’fl-score’])

333

334
335
336
337
338
339
340

341

342
343
344
345

346

347

348
349

350

351

352
353
354
355
356
357
358
359
360

361

362

363
364

A.2. Treinador Otimizado: trainer__optimized.py 83

fig, ((axl, ax2), (ax3, ax4)) = plt.subplots(2, 2,
— figsize=(16, 12))

1. Acuracia geral de teste
test_acc = test_results[’accuracy’]

test_loss = test _results[’loss’]

axl.bar([’Acurédcia’, ’Perda’], [test_acc, test_loss],
color=[’#2E86AB’, ’#A23B72’], alpha=0.8)
axl.set_title(f’Métricas Gerais de Teste - {self.
< get_model_name_pt()}’)
axl.set_ylabel (’Valor’)
axl.grid (True, alpha=0.3)

for i, (acc, loss) in enumerate ([(test_acc, test_loss)]):
axl.text (0, acc + 0.01, f’{acc:.3f}’, ha=’center’, va
— =’bottom’, fontweight=’bold’)
axl.text (1, loss + 0.01, f’{loss:.3f}’, ha=’center’,
— va=’bottom’, fontweight=’bold’)

2. Precisdo por classe

barsl = ax2.bar(range(len(classes)), precisions, alpha
< =0.8, color="#2E86AB’)

ax2.set_title(f’Precisdo por Classe - {self.
< get_model_name_pt ()}’)

ax2.set_xlabel (’Classes’)

ax2.set_ylabel (’Precis&o’)

ax2.set_xticks (range(len(classes)))

ax2.set_xticklabels(classes, rotation=45, ha=’right’)

ax2.grid (True, alpha=0.3)

for bar, prec in zip(barsl, precisions):
height = bar.get_height ()
ax2.text(bar.get_x() + bar.get_width()/2., height +
—~ 0.01,
f>{prec:.3f}’, ha=’center’, va=’bottom’,

— fontweight=’bold’, fontsize=8)

3. Revocagdo por classe
bars2 = ax3.bar(range(len(classes)), recalls, alpha=0.8,
< color=’"#A23B72°)

365

366
367
368
369
370
371
372
373

374

375

376
377
378

379

380
381
382
383
384
385
386
387

388

389

390
391

392

393
394

395

84 APENDICE A. Cédigo Fonte
ax3.set_title(f’Revocacgdo por Classe - {self.
< get_model_name_pt ()}’)
ax3.set_xlabel(’Classes’)
ax3.set_ylabel (’Revocacdo’)
ax3.set_xticks (range(len(classes)))
ax3.set_xticklabels(classes, rotation=45, ha=’right’)
ax3.grid(True, alpha=0.3)
for bar, rec in zip(bars2, recalls):
height = bar.get_height ()
ax3.text(bar.get_x() + bar.get_width() /2., height +
— 0.01,
f’{rec:.3f}’, ha=’center’, va=’bottom’,
<> fontweight=’bold’, fontsize=8)
4. Fl1-Score por classe
bars3 = ax4.bar(range(len(classes)), fl_scores, alpha
< =0.8, color="#F18F01’)
ax4.set_title(f’Fl-Score por Classe - {self.
< get_model_name_pt()}’)
ax4.set_xlabel (’Classes’)
ax4.set_ylabel (’Fl1-Score’)
ax4.set_xticks (range(len(classes)))
ax4.set_xticklabels(classes, rotation=45, ha=’right’)
ax4.grid(True, alpha=0.3)
for bar, f1 in zip(bars3, fl1_scores):
height = bar.get_height ()
ax4.text(bar.get_x() + bar.get_width()/2., height +
-~ 0.01,
f’{f1:.3f}’, ha=’center’, va=’bottom’,
— fontweight=’bold’, fontsize=8)
plt.tight_layout ()
save_path = f"{self.config.results_dir}/{self.model_typel}
< _test_accuracy_analysis.png"
plt.savefig(save_path, dpi=300, bbox_inches=’tight’)
plt.close ()
print (f"Andlise detalhada de acuracia de teste salva em {

< save_pathl}")

10

11

12

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

34

A.8. Configuracio: config_optimized.py 85

A.3 Configuracao: config_optimized.py

Listing A.3 — Arquivo de configuracao otimizado

import os
import torch
from dataclasses import dataclass

from typing import List, Tuple

class Config:

Dados

data_dir = "/home/edvl/TCC/Chula-ParasiteEgg-11/Chula-
—+ ParasiteEgg-11/Chula-ParasiteEgg-11/data"

test_data_dir = "/home/edvl/TCC/Chula-ParasiteEgg-11_test/
— test/data"

train_data_path = "/home/edvl/TCC/Chula-ParasiteEgg-11/Chula-
<> ParasiteEgg-11/Chula-ParasiteEgg-11/data"

test_data_path = "/home/edvl/TCC/Chula-ParasiteEgg-11_test/

< test/data"

Modelo

num_classes = 11
input_size = (384, 384)
image_size = 384

Treinamento

batch_size = 2
num_epochs = 50
learning_rate = le-4

weight_decay = le-4
gradient_clip = 1.0

Tratamento de dados

use_augmentation = True
train_transform = True
test_transform = False

mixup_alpha = 0.2
cutmix_alpha = 1.0

cutmix_prob = 0.5

Aprendizado em conjunto

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

86

APENDICE A. Cédigo Fonte

ensemble_size = 3

diversity_weight = 0.1

Regularizacgéo
dropout_rate = 0.3
label_smoothing = 0.1

Parada antecipada

patience = 10

Memdéria e processamento
num_workers = 1

pin_memory = True

Dispositivo

device = ’cuda’ if torch.cuda.is_available() else

Configuracdes especificas dos modelos
CNN (EfficientNetV2-S)
cnn_model_name = "tf_efficientnetv2_s"

cnn_dropout = 0.2

Vision Transformer (Tiny ViT)
vit_model_name = "vit_tiny_patchl6_224"
vit_patch_size = 16

vit_embed_dim = 192

vit_depths = (3, 3, 3)

vit _num_heads = (3, 6, 12)

Modelo Hibrido

hybrid_cnn_backbone = "tf_efficientnetv2_s"
hybrid_vit_model = "vit_tiny_patchl6_224"
hybrid_fusion_dim = 64

Diretdorios de saida
model_save_dir = "models_optimized"

results_dir = "results_optimized"

Registro da execucgéo
log_interval = 100

save_interval = 5

)Cpu)

7

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

A.4. Modelos: models.py 87

config = Config()

A.4 Modelos: models.py

Listing A.4 — Implementacao dos modelos

import torch
import torch.nn as nn
import torch.nn.functional as F

import timm

class EfficientNetV2CNN (nn.Module) :
Modelo CNN usando EfficientNetV2-S para classificacgdo de

<> parasitas

def __init__(self, config, num_classes: int = 11):

super (EfficientNetV2CNN, self).__init__ ()

Carregar EfficientNetV2-S

self .backbone = timm.create_model (
config.cnn_model_name,
pretrained=True,

num_classes=0

)

feature_dim = self.backbone.num_features

self.classifier = nn.Sequential(
nn.Dropout (config.cnn_dropout),
nn.Linear (feature_dim, 512),
nn.RelLU(),
nn.Dropout (config.cnn_dropout),
nn.Linear (512, num_classes)

)

def forward(self, x):
features = self.backbone (x)
output = self.classifier (features)

return output

class TinyViTTransformer (nn.Module):

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

88 APENDICE A. Cédigo Fonte

Modelo Vision Transformer usando Tiny ViT para classificacgéd

<~ o de parasitas

def __init__(self, config, num_classes: int = 11):
super (TinyViTTransformer , self).__init__ ()
Carregar Tiny ViT
self .backbone = timm.create_model (
config.vit_model_name,
pretrained=True,
num_classes=0
)
feature_dim = self.backbone.num_features
self.classifier = nn.Sequential(
nn.LayerNorm(feature_dim),
nn.Linear (feature_dim, 512),
nn.GELU (),
nn.Dropout (0.1),
nn.Linear (512, num_classes)
)
def forward(self, x):
features = self.backbone (x)
output = self.classifier(features)

return output

class HybridModel (nn.Module):
Modelo Hibrido combinando CNN (EfficientNetV2-S) e Vision
< Transformer (Tiny ViT)
def __init__(self, config, num_classes: int = 11):

super (HybridModel, self).__init__ ()

(EfficientNetV2-S)

self.cnn_backbone = timm.create_model(
config.hybrid_cnn_backbone,
pretrained=True,

num_classes=0

Vision Transformer (Tiny ViT)

75
76
7
78
79
80
81
82
83
84
85
86
87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112

113

114

A.4. Modelos: models.py 89

def

self.vit_backbone = timm.create_model (
config.hybrid_vit_model,
pretrained=True,

num_classes=0

cnn_feature_dim self.cnn_backbone.num_features

vit_feature_dim self .vit_backbone.num_features
Fus&@o de caracteristicas
fusion_dim = config.hybrid_fusion_dim
self.fusion = nn.Sequential(

nn.Linear (cnn_feature_dim + vit_feature_dim,

<, fusion_dim),

nn.LayerNorm(fusion_dim),

nn.GELU(),

nn.Dropout (0.1),

nn.Linear (fusion_dim, fusion_dim // 2),

nn.GELU (),

nn.Dropout (0.1)

Classificador final

self.classifier = nn.Linear (fusion_dim // 2, num_classes)

Mecanismo de atencgdo para ponderacgdo de caracteristicas
self.attention = nn.MultiheadAttention (

embed dim=fusion_dim // 2,

num_heads=2,

dropout=0.1,

batch_first=True

forward(self, x):

Extrair caracteristicas de ambos os modelos

cnn_features self.cnn_backbone (x)

vit_features self.vit_backbone (x)

Concatenar caracteristicas

combined_features = torch.cat([cnn_features, vit_features
—], dim=1)

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

90 APENDICE A. Cédigo Fonte

Aplicar fuséo

fused_features = self.fusion(combined_features)

Aplicar auto-atencgéo

fused_features = fused_features.unsqueeze(l) # Adicionar
— dimensdo de sequéncia

attended features, _ = self.attention(fused_features,
<> fused features, fused features)

attended_features = attended_features.squeeze (1)

Classificagdo final
output = self.classifier(attended_features)

return output

def get_model (model_type: str, config, num_classes: int = 11):

Funcdo fabrica para obter o modelo especificado

if model_type.lower() == "cnn":

return EfficientNetV2CNN(config, num_classes=num_classes)

elif model_type.lower () == "vit":
return TinyViTTransformer (config, num_classes=num_classes
<)
elif model_type.lower () == "hybrid":

return HybridModel(config, num_classes=num_classes)

else:
raise ValueError (f"Tipo de modelo desconhecido: {
<+ model_typel}. Escolha entre [’cnn’, ’vit’, ’hybrid’]"

<)

def count_parameters (model):
Contar parédmetros treindveis no modelo
return sum(p.numel() for p in model.parameters() if p.

<> requires_grad)

def get_model_summary(model, input_size=(3, 224, 224)):
Obter resumo do modelo com contagem de parédmetros
total_params = count_parameters (model)
trainable_params = sum(p.numel() for p in model.parameters ()

<+ if p.requires_grad)

150

151

152

153

154

155

156

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

A.5. Conjunto de Dados: dataset_optimized.py 91

print (f"Resumo do Modelo:")
print (f"Total de Pardmetros: {total_params:,}")
print (f"Pardmetros Treiniveis: {trainable_params:,}")

print (f"Tamanho de Entrada: {input_sizel}l")

return total_params, trainable_params

A.5 Conjunto de Dados: dataset_optimized.py

Listing A.5 — Classe do conjunto de dados otimizado

import os

import torch

from torch.utils.data import Dataset, Dataloader
from PIL import Image

import albumentations as A

from albumentations.pytorch import ToTensorV2
import numpy as np

from typing import Dict, List, Tuple, Optional
import config_optimized

import json

class ParasiteDataset (Dataset):
def __init__(self, data_path: str, transform=None, is_train:
<+ bool = True, class_to_idx: Optional[Dict[str, int]] =
<> None, label_json_path: Optional[str] = None):
self .data_path = data_path

self.transform = transform
self.is_train = is_train
self.class_to_idx = class_to_idx

self.label_json_path = label_json_path

Carregar todos os arquivos de imagem e seus rdétulos
self .images, self.labels, self.class_to_idx = self.

s _load_dataset ()

def _load_dataset(self) -> Tuple[List[str], List[int],
<> Optional[Dict[str, int]]l]:

[]

(]

images

labels

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

92 APENDICE A. Cédigo Fonte
Se estiver usando arquivo de rdétulos no formato COCO (
< para conjunto de teste)
if self.label_json_path is not None:
Carregar arquivo de rdétulos
with open(self.label_json_path, ’r’) as f:
label_data = json.load(f)
file_to_id = {img[’file_name’]: img[’id’] for img in
<+ label_datal[’images’]}
imageid_to_catid = {}
for ann in label_data[’annotations’]:
if ann[’image_id’] not in imageid_to_catid:
imageid_to_catid[ann[’image_id’]] = ann[’
< category_id’]
catid_to_name = {cat[’id’]: cat[’name’] for cat in
— label_datal[’categories’]}
class_to_idx = self.class_to_idx
for filename in os.listdir(self.data_path):
if filename.lower ().endswith((’.jpg’, ’.jpeg’, ’.
< png’)):
img_path = os.path.join(self.data_path,
< filename)
image_id = file_to_id.get(filename)
if image_id is None:
continue
category_id = imageid_to_catid.get(image_id)
if category_id is None:
continue
class_name = catid_to_name.get(category_id)
if class_name is None:
continue
if class_name in class_to_idx:
images.append (img_path)

62
63
64
65
66
67
68

69
70

71

72
73
74
75
76
7

78
79

80
81
82
83
84
85
86

87
88
89
90
91
92
93
94
95
96
97

98

A.5. Conjunto de Dados: dataset_optimized.py 93

labels.append(class_to_idx[class_name])

return images, labels, class_to_idx

Comportamento padrdo (conjunto de treino/validacgéo)
extracted_class_names = []
if self.class_to_idx is None:
Construir mapeamento a partir deste conjunto de
<+ dados (para conjunto de treino)
class _names = set ()
for filename in os.listdir(self.data_path):
if filename.lower () .endswith((’.jpg’, ’.jpeg’, ’.
<~ png’)):
class_name = filename.split(’_’) [0]
class_names.add(class_name)
if len(extracted_class_names) < 10:
extracted_class_names.append(class_name)
class_names = sorted(list(class_names))
class_to_idx = {class_name: idx for idx, class_name
<> in enumerate (class_names)}
print (" [DEBUG] Built class_to_idx:", class_to_idx)
print (" [DEBUG] First 10 extracted class names from
<y filenames:", extracted_class_names)
else:
Usar mapeamento fornecido (para conjunto de teste)

class_to_idx = self.class_to_idx

Carregar imagens e atribuir rétulos usando mapeamento
for filename in os.listdir(self.data_path):
if filename.lower () .endswith((’.jpg’, ’.jpeg’, ’.png’
DR
img_path = os.path.join(self.data_path, filename)
class_name = filename.split(’_’) [0]
if class_to_idx is not None:
idx = class_to_idx.get(class_name)
if idx is None:
continue
images .append (img_path)
labels.append (idx)
else:
continue

return images, labels, class_to_idx

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

94

APENDICE A. Cédigo Fonte

def

def

__len__(self):

return len(self.images)

__getitem__(self, idx):
img_path = self.images[idx]
label = self.labels[idx]

Carregar imagem
image = Image.open(img_path).convert (’RGB’)

image = np.array(image)

Aplicar transformacgdes
if self.transform:
transformed = self.transform(image=image)

image = transformed[’image’]

return image, label

def get_transforms_optimized(image_size: int = 384, is_train:

—

bool = True, config=None):

if is_train:

return A.Compose ([
Redimensionar para tamanho alvo e aplicar normaliza
< gao
.Resize(image_size, image_size),
.HorizontalFlip(p=0.5),
.VerticalFlip(p=0.3),
.RandomRotate90(p=0.3),

= o= = >

Transformacgdes geométricas moderadas
A Affine(
translate_percent=0.1, # Reduzido
scale=(0.9, 1.1), # Reduzido
rotate=(-15, 15), # Reduzido baseado no
— CoAtNet
p=0.6
),

Embacgamento e ruido

A.OneOf ([
A.GaussianBlur (blur_limit=(3, 7), p=0.5),
A.MotionBlur (blur_limit=3, p=0.3),

138
139
140
141
142
143

144

145

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

161

162
163
164
165
166
167
168
169
170
171

172

173
174

175

A.5. Conjunto de Dados: dataset_optimized.py

95

D

else:

A.MedianBlur (blur_limit=3, p=0.2),
1, p=0.4),

Ruido
A .0OneOf ([
A.GaussNoise(var_limit=(5.0, 15.0), p=0.5),
A.ISONoise(color_shift=(0.01, 0.05), intensity
~. =(0.1, 0.5), p=0.3),
A.MultiplicativeNoise (multiplier=(0.9, 1.1), p
— =0.2),
1, p=0.4),

Ajustes de cor moderados
A .0OneOf ([
A.RandomBrightnessContrast (

**+

brightness_1limit=0.2, Reduzido
contrast_limit=0.2, # Reduzido
p=0.5

b

A.HueSaturationValue (
hue_shift_1limit=20, # Reduzido
sat_shift_1limit=30,
val_shift_1limit=20, # Reduzido
p=0.3

+*

Reduzido

),
A.CLAHE(clip_limit=2.0, tile_grid_size=(8, 8),
— =0.2),
1, p=0.4),

Dropout espacial

A.CoarseDropout (
max_holes=4, max_height=16, max_width=16,
min_holes=1, min_height=4, min_width=4,
p=0.2

),

Normalizacgdo ImagelNet

A.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
< 0.224, 0.225]),

ToTensorV2 (),

p

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

96

APENDICE A. Cédigo Fonte

return A.Compose ([
A . Resize(image_size, image_size),
A.Normalize (mean=[0.485, 0.456, 0.406], std=[0.229,
< 0.224, 0.225]),
ToTensorV2 (),
D

def get_dataloaders_optimized(config):

Transformacgdes

train_transform = get_transforms_optimized(config.image_size,
<+ is_train=True, config=config)

val_transform = get_transforms_optimized(config.image_size,

<+ is_train=False, config=config)

Dividir dados de treino em treino/validacgdo (80/20)
full_dataset = ParasiteDataset(config.train_data_path,

<~ transform=train_transform, is_train=True)

Calcular indices de divisédo
len(full _dataset)
int (0.8 * total_size)

total_size

train_size

val_size = total_size - train_size

train_dataset, val_dataset = torch.utils.data.random_split(

full _dataset, [train_size, val_size]

)

val_dataset.dataset.transform = val_transform

train_loader = DatalLoader (
train_dataset,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.num_workers,
pin_memory=config.pin_memory

)

val_loader = DatalLoader (

val_dataset,
batch_size=config.batch_size,
shuffle=False,

num_workers=config.num_workers,

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

10

11

12

13

A.6. Requirements: requirements.txt

97

pin_memory=config.pin_memory

Conjunto de teste

test_label_json = os.path.join("..", "Chula-ParasiteEgg-11
< _test", "test_labels_200.json")
test_dataset = ParasiteDataset (

config.test_data_path,
transform=val_transform,
is_train=False,
class_to_idx=full _dataset.class_to_idx,
label_json_path=test_label_json

)

test_loader = DatalLoader (
test_dataset,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.num_workers,

pin_memory=config.pin_memory

return train_loader , val_loader, test_loader,

< class_to_idx

full _dataset.

A.6 Requirements: requirements.txt

Listing A.6 — Arquivo de dependéncias

torch>=2.0.0
torchvision>=0.15.0
timm>=0.9.0

numpy >=1.24.0

pandas >=2.0.0
scikit-learn>=1.3.0
matplotlib>=3.7.0
seaborn>=0.12.0
Pillow>=10.0.0
tqdm>=4.65.0
albumentations >=1.3.0
opencv-python>=4.8.0

tensorboard >=2.13.0

	Folha de aprovação
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Referencial Teórico
	Aprendizado de Máquina
	Redes Neurais
	Redes neurais convolucionais

	Transformadores visuais
	Visão computacional aplicada à detecção de parasitas

	Metodologia
	Dados
	Características gerais do conjunto de dados
	Características Morfológicas dos Ovos
	Coleta de dados
	Tratamento do conjunto de dados

	Função de Perda
	Arquiteturas implementadas
	Rede convolucional: EfficientNetV2-S
	Transformador visual: Tiny ViT
	Modelo híbrido: EfficientNetV2-S + Tiny ViT

	Experimento
	Ferramentas utilizadas
	Configuração experimental
	Análise comparativa

	Resultados e Discussão
	Conclusão
	Referências
	Apêndices
	Código Fonte
	Arquivo Principal: run_optimized.py
	Treinador Otimizado: trainer_optimized.py
	Configuração: config_optimized.py
	Modelos: models.py
	Conjunto de Dados: dataset_optimized.py
	Requirements: requirements.txt

