
Universidade de Brasília - UnB
Faculdade de Ciências e Tecnologias em Engenharia - FCTE

Engenharia de Software

Análise Comparativa de Arquiteturas
Convolucionais e Baseadas em Atenção para

Detecção Automatizada de Parasitas Intestinais

Autor: Eduardo Vieira Lima
Orientador: Dr. Vinicius de Carvalho Rispoli

Brasília, DF
julho de 2025

Eduardo Vieira Lima
Análise Comparativa de Arquiteturas Convolucionais e Baseadas em Atenção

para Detecção Automatizada de Parasitas Intestinais/ Eduardo Vieira Lima. –
Brasília, DF, julho de 2025-

97 p. : il. (algumas color.) ; 30 cm.

Orientador: Dr. Vinicius de Carvalho Rispoli

Trabalho de Conclusão de Curso – Universidade de Brasília - UnB
Faculdade de Ciências e Tecnologias em Engenharia - FCTE , julho de 2025.
1. Redes neurais. 2. Vision Transformer. I. Dr. Vinicius de Carvalho Rispoli. II.

Universidade de Brasília. III. Faculdade UnB Gama. IV. Análise Comparativa de
Arquiteturas Convolucionais e Baseadas em Atenção para Detecção Automatizada
de Parasitas Intestinais

CDU 02:141:005.6

Eduardo Vieira Lima

Análise Comparativa de Arquiteturas Convolucionais e
Baseadas em Atenção para Detecção Automatizada de

Parasitas Intestinais

Monografia submetida ao curso de graduação
em (Engenharia de Software) da Universi-
dade de Brasília, como requisito parcial para
obtenção do Título de Bacharel em (Enge-
nharia de Software).

Dr. Vinicius de Carvalho Rispoli
Orientador

Dr.Ronni Geraldo Gomes de Amorim

Dr. Marcus Vinicius Chaffim Costa

Brasília, DF
julho de 2025

Agradecimentos

Tenho que começar agradecendo à minha noiva, Thaís, por ser a minha maior fonte
de apoio há 8 anos. Não chegaria até aqui de outra forma, sou muito grato por dividir a
vida com você.

A meus irmãos, Marcela, Luisa, Gustavo e José Henrique. Grande parte da minha
determinação e ambição vem da vontade de inspirar e apoiar vocês, não pude desistir
enquanto tive isso em mente.

Também ao meu amigo João Marcelo, que foi essencial para minha trajetória desde
o ensino médio e principalmente durante toda a graduação. Sem sua ajuda de Cálculo 1
até este trabalho, eu jamais conseguiria chegar aqui.

Importante não deixar de agradecer à minha família, em especial meu pai Rubens
e minha avó Nenza, por terem me incentivado e apoiado durante toda minha vida. Vocês
foram grandes inspirações para mim.

Ao meu orientador, Vinicius de Carvalho Rispoli, que me acolheu para a execução
deste trabalho quando eu já não sabia se iria conseguir.

Não obstante, a todos os meus outros amigos que estiveram comigo nessa jornada,
em especial Luís e Samuel, que estiveram comigo desde o início e seguem comigo hoje.

A todo o corpo docente e de funcionários da UnB, que diariamente se esforçam
pelo ensino de excelência nas universidades públicas.

Resumo
A detecção e classificação de parasitas intestinais através de microscopia óptica repre-
sentam um desafio significativo na área médica, especialmente em regiões com recursos
limitados, sendo a análise manual o padrão atual. Este trabalho se propôs a analisar
e comparar as principais soluções de classificação automática no campo da visão com-
putacional, redes convolucionais e transformadores visuais, apresentando também uma
abordagem híbrida entre elas. Foram exploradas soluções que priorizam a eficiência com-
putacional: EfficientNetV2-S para a rede convolucional e Tiny ViT para o transformador
visual, tendo em vista cenários com recursos limitados. Foi utilizado para treinamento
e avaliação um dos maiores conjuntos de imagens microscópicas de parasitas disponível
publicamente, o Chula-ParasiteEgg-11, contendo 2.200 imagens de 11 espécies distintas
de parasitas. Os resultados obtidos demonstram que as soluções analisadas são viáveis e
possuem acurácia satisfatória, sendo a rede convolucional a que melhor performa em ter-
mos de eficiência e acurácia, seguida do modelo híbrido e então do transformador visual.
Observou-se que as soluções possuem resultados razoavelmente inferiores aos modelos mais
robustos da literatura, porém utilizam significativamente menos recursos computacionais,
o que as torna viáveis para situações em que o recurso é limitado.

Palavras-chaves: Aprendizado profundo. Classificação de parasitas. Redes convolucio-
nais. Transformadores visuais. Modelo híbrido.

Abstract
The detection and classification of intestinal parasites through optical microscopy rep-
resents a significant challenge in the medical field, especially in resource-limited regions,
where manual analysis remains the current standard. This work aimed to analyze and
compare the main automatic classification solutions in the field of computer vision, con-
volutional networks and visual transformers, also presenting a hybrid approach between
them. Solutions that prioritize computational efficiency were explored: EfficientNetV2-S
for the convolutional network and Tiny ViT for the visual transformer, considering scenar-
ios with limited resources. One of the largest publicly available microscopic parasite image
datasets was used for training and evaluation, the Chula-ParasiteEgg-11, containing 2,200
images of 11 distinct parasite species. The obtained results demonstrate that the analyzed
solutions are viable and have satisfactory accuracy, with the convolutional network per-
forming best in terms of efficiency and accuracy, followed by the hybrid model and then
the visual transformer. It was observed that the solutions have reasonably inferior results
compared to the more robust models in the literature, however they use significantly fewer
computational resources, making them viable for situations where resources are limited.

Key-words: Deep learning. Parasite classification. Convolutional networks. Visual trans-
formers. Hybrid model.

Lista de ilustrações

Figura 1 – Ilustração de um modelo de rede neural rasa com uma camada de
entrada, saída e uma única camada oculta intermediária. Fonte: Nielsen
(2015) . 26

Figura 2 – Ilustração de um modelo de rede neural profunda com uma camada
de entrada, saída e múltiplas camadas ocultas intermediárias. Fonte:
Nielsen (2015) . 26

Figura 3 – Gráfico que representa as funções de ativação mais comumente utiliza-
das. Cada função tem o papel de introduzir a não-linearidade ao mo-
delo, a escolha de uma varia de acordo com a necessidade do problema
abordado. Fonte: Leppich (2021) . 27

Figura 4 – Representação visual de como uma rede convolucional identifica pa-
drões para, neste caso, reconhecer a imagem de um gato (cat, em in-
glês). De baixo para cima na imagem, linhas elementares ou texturas
combinam-se em objetos simples como olhos ou orelhas, que então com-
binam em conceitos mais complexos como “gato”. Assim funciona a
hierarquia espacial. Fonte: Chollet (2021) 29

Figura 5 – Visão geral do transformador visual. A imagem é dividida em blocos
de tamanho fixo, que são então submetidos a uma projeção linear com
informação de posição e alimentados a um codificador para um trans-
formador padrão. Fonte: Dosovitskiy et al. (2020) 30

Figura 6 – Estrutura de destilação rápida do Tiny ViT. A parte superior mostra
a ramificação para salvar os logits do professor, onde o tratamento de
dados codificado e os logits esparsificados do professor são salvos. A
parte do meio representa o disco para armazenar as informações. A
parte inferior mostra a ramificação para treinar o estudante, onde o
decodificador reconstrói o tratamento de dados e a destilação é con-
duzida entre os logits do professor e as saídas do estudante. As duas
ramificações são independentes e assíncronas, permitindo treinamento
sem processar o modelo professor grande durante cada iteração. Fonte:
Wu et al. (2022) . 39

Figura 7 – Curvas de treinamento ao longo do tempo do modelo EfficientNetV2-
S, apresentando perda e acurácia. O tempo é dado em épocas. Fonte:
Elaborado pelo autor (2025). 47

Figura 8 – Curvas de treinamento ao longo do tempo do modelo Tiny Vision
Transformer, apresentando perda e acurácia. O tempo é dado em épo-
cas. Fonte: Elaborado pelo autor (2025). 47

Figura 9 – Curvas de treinamento ao longo do tempo do modelo híbrido, apresen-
tando perda e acurácia. O tempo é dado em épocas. Fonte: Elaborado
pelo autor (2025). 48

Figura 10 – Comparação da acurácia de teste entre o modelo de rede convolucio-
nal EfficientNetV2-S, transformador visual Tiny ViT e híbrido. Fonte:
Elaborado pelo autor (2025). 48

Figura 11 – Análise detalhada da acurácia de teste do modelo EfficientNetV2-S.
Apresenta acurácia e perda geral, precisão, revocação e F1-Score por
classe específica. Fonte: Elaborado pelo autor (2025). 49

Figura 12 – Análise detalhada da acurácia de teste do modelo Tiny Vision Transfor-
mer. Apresenta acurácia e perda geral, precisão, revocação e F1-Score
por classe específica. Fonte: Elaborado pelo autor (2025). 49

Figura 13 – Análise detalhada da acurácia de teste do modelo híbrido. Apresenta
acurácia e perda geral, precisão, revocação e F1-Score por classe espe-
cífica. Fonte: Elaborado pelo autor (2025). 50

Figura 14 – Matriz de confusão do modelo EfficientNetV2-S. Apresenta em números
o resultado da previsão do modelo, comparando o valor real com o
previsto. Fonte: Elaborado pelo autor (2025). 50

Figura 15 – Matriz de confusão do modelo Tiny Vision Transformer. Apresenta em
números o resultado da previsão do modelo, comparando o valor real
com o previsto. Fonte: Elaborado pelo autor (2025). 51

Figura 16 – Matriz de confusão do modelo híbrido. Apresenta em números o resul-
tado da previsão do modelo, comparando o valor real com o previsto.
Fonte: Elaborado pelo autor (2025). 52

Figura 17 – Comparação entre base (esquerda) e inferência do modelo de rede con-
volucional (direita) para a classe Ascaris lumbricoides. Fonte: Elabo-
rado pelo autor (2025). 53

Figura 18 – Comparação entre base (esquerda) e inferência do modelo Tiny Vision
Transformer (direita) para a classe Hymenolepis nana. Fonte: Elabo-
rado pelo autor (2025). 55

Lista de tabelas

Tabela 1 – Hiperparâmetros utilizados no experimento 43
Tabela 2 – Comparação da eficiência computacional dos modelos 52

Lista de abreviaturas e siglas

CNN Convolutional Neural Network (Rede Neural Convolucional)

CPU Central Processing Unit (Unidade Central de Processamento)

GPU Graphics Processing Unit (Unidade de Processamento Gráfico)

HSV Hue-Saturation-Value (Matiz-Saturação-Valor)

IA Inteligência Artificial

RGB Red, Green, Blue (Vermelho, Verde, Azul)

ReLU Rectified Linear Unit (Unidade Linear Retificada)

GELU Gaussian Error Linear Unit (Unidade Linear de Erro Gaussiano)

ViT Vision Transformer (Transformador Visual)

ms Milissegundos

µm Micrômetros

Lista de símbolos

𝛼 Coeficiente de profundidade

𝛽 Coeficiente de largura

𝛾 Coeficiente de resolução

𝜑 Coeficiente composto de escalonamento

ℒ Função de perda
∑︀ Soma

log(𝑥) Logaritmo natural

R Conjunto dos números reais

x Vetor de entrada

y Vetor de saída

W Matriz de pesos

b Vetor de bias

∈ Pertence a

Sumário

Introdução . 19

1 REFERENCIAL TEÓRICO . 23
1.1 Aprendizado de Máquina . 23
1.2 Redes Neurais . 25
1.2.1 Redes neurais convolucionais . 28
1.3 Transformadores visuais . 29
1.4 Visão computacional aplicada à detecção de parasitas 31

2 METODOLOGIA . 33
2.1 Dados . 33
2.1.1 Características gerais do conjunto de dados 33
2.1.2 Características Morfológicas dos Ovos . 34
2.1.3 Coleta de dados . 34
2.1.4 Tratamento do conjunto de dados . 34
2.2 Função de Perda . 35
2.3 Arquiteturas implementadas . 36
2.3.1 Rede convolucional: EfficientNetV2-S . 36
2.3.2 Transformador visual: Tiny ViT . 38
2.3.3 Modelo híbrido: EfficientNetV2-S + Tiny ViT 39
2.4 Experimento . 41
2.4.1 Ferramentas utilizadas . 41
2.4.2 Configuração experimental . 41
2.4.3 Análise comparativa . 44

3 RESULTADOS E DISCUSSÃO . 47

4 CONCLUSÃO . 57

REFERÊNCIAS . 59

APÊNDICES 63

APÊNDICE A – CÓDIGO FONTE 65
A.1 Arquivo Principal: run_optimized.py 65
A.2 Treinador Otimizado: trainer_optimized.py 73

A.3 Configuração: config_optimized.py 85
A.4 Modelos: models.py . 87
A.5 Conjunto de Dados: dataset_optimized.py 91
A.6 Requirements: requirements.txt . 97

19

Introdução

Inteligência Artificial (IA) é um ramo da tecnologia que pode ser descrito como
o esforço para automatizar tarefas intelectuais normalmente executadas por humanos
Chollet (2021). Esse campo tem evoluído rapidamente nas últimas décadas, impulsionado
pelo crescimento exponencial na capacidade computacional, disponibilidade de grandes
volumes de dados e avanços em algoritmos de aprendizado de máquina. Nos últimos
anos, a IA tem sido objeto de intenso interesse geral, expandindo-se para contextos além
das áreas tradicionais de tecnologia, como medicina, finanças, indústria automotiva e
segurança cibernética Chollet (2021).

Dentre os principais campos da IA, o Machine Learning (ML) se destaca por
permitir que sistemas aprendam padrões e tomem decisões com base em dados Mitchell
(1997). Essa abordagem elimina a necessidade de programação explícita para cada cenário,
tornando possível a adaptação e melhoria contínua dos modelos conforme novos dados são
incorporados. Dentro do ML, o Aprendizado Profundo (do inglês, Deep Learning), que
utiliza redes neurais profundas, tem impulsionado avanços significativos, especialmente
no processamento de imagens e linguagem natural, devido à sua capacidade de identificar
padrões complexos em grandes volumes de dados.

As Redes Neurais Convolucionais (CNNs) representam um dos avanços mais im-
portantes no campo do Deep Learning. Inspiradas no funcionamento do córtex visual, as
CNNs são arquiteturas especializadas para processamento de imagens, utilizando camadas
convolucionais para extrair características relevantes, reduzindo a necessidade de interven-
ção manual na definição de características. Essas redes têm sido amplamente empregadas
em tarefas como reconhecimento facial, diagnóstico por imagem e veículos autônomos,
permitindo classificações e segmentações com alta precisão Lecun et al. (1998).

Mais recentemente, os Vision Transformers (ViTs) surgiram como uma alternativa
promissora às CNNs para visão computacional. Diferentemente das arquiteturas tradicio-
nais baseadas em convolução, os ViTs utilizam mecanismos de autoatenção para capturar
relações globais entre pixels em imagens. Essa abordagem permite um aprendizado mais
eficiente de representações visuais e, em muitos casos, supera o desempenho das CNNs
em diversas tarefas específicas Dosovitskiy et al. (2020). O avanço dos ViTs tem ampliado
significativamente o potencial das aplicações de IA, trazendo novas possibilidades para
reconhecimento de padrões visuais e reforçando a importância dos modelos baseados em
atenção na área de aprendizado profundo.

No campo da medicina, as infecções parasitárias intestinais continuam sendo um
problema significativo de saúde pública, especialmente em países em desenvolvimento e
regiões com infraestrutura sanitária deficiente. Estima-se que cerca de 24% da população
mundial seja afetada por doenças infecciosas e parasitárias, com impacto predominante

20 Introdução

em crianças, gestantes e pessoas com baixa imunidade Kumar et al. (2023). Essas infecções
podem resultar em sintomas como diarreia, desnutrição, anemia, fraqueza e comprometi-
mento do desenvolvimento infantil.

O diagnóstico tradicional dessas infecções é realizado por meio de exames micros-
cópicos de amostras fecais, considerados o padrão-ouro por sua capacidade de identificar
diretamente ovos e parasitas. Contudo, esse processo é trabalhoso, demorado, exige pes-
soal altamente capacitado e está sujeito a variações na acurácia devido à subjetividade da
análise e às variações morfológicas dos parasitas Xu et al. (2024). Além disso, o ambiente
de trabalho pode ser insalubre, com baixa eficiência e alto volume de trabalho para os
profissionais de laboratório.

Nesse cenário, a aplicação de modelos baseados em IA tem-se mostrado uma al-
ternativa promissora para automatizar e melhorar o processo de detecção e classificação
de parasitas intestinais. A integração de tecnologias de processamento de imagens digitais
com métodos de aprendizado profundo, especialmente com redes neurais convolucionais
e, mais recentemente, com Vision Transformers, tem impulsionado o desenvolvimento de
sistemas automáticos capazes de identificar com maior precisão e agilidade os agentes
infecciosos presentes em imagens microscópicas Kumar et al. (2023).

Diversos trabalhos prévios têm explorado o uso de aprendizado profundo para essa
tarefa. Kumar et al. (2023) propuseram uma abordagem utilizando YOLOv5, demons-
trando elevada acurácia (cerca de 97%) e alta velocidade de detecção em um conjunto
de dados com mais de cinco mil imagens de parasitas intestinais. O estudo destacou a
viabilidade do uso de modelos leves em ambientes com poucos recursos computacionais,
voltando-se ao diagnóstico clínico em tempo real.

Xu et al. (2024) desenvolveram a YAC-Net, uma arquitetura leve baseada em
YOLOv5, com otimizações estruturais específicas para imagens de ovos parasitários. Os
autores demonstraram que sua abordagem melhora a detecção mesmo em imagens com
baixa resolução e com ruídos, reduzindo o número de parâmetros e o custo computacional,
o que viabiliza sua aplicação em regiões remotas.

Outro trabalho relevante foi apresentado por AlDahoul et al. (2023), que explorou
a combinação de redes convolucionais com mecanismos de atenção por meio da arquite-
tura CoAtNet, demonstrando que a combinação dessas abordagens pode gerar resultados
superiores na classificação de ovos parasitários. O estudo também comparou diferentes
abordagens de CNNs e Vision Transformers em um conjunto diverso de imagens, incluindo
variações de iluminação e resolução.

Apesar das contribuições relevantes dessas pesquisas, poucas investigações explo-
ram comparativamente a aplicação de CNNs e Vision Transformers de maneira sistemática
e com base em um mesmo conjunto de dados para a detecção e classificação de parasitas
intestinais. Neste contexto, esta monografia tem como objetivo investigar e comparar o
desempenho de modelos baseados em CNNs e Vision Transformers na tarefa de detec-

21

ção e classificação de parasitas intestinais em imagens microscópicas, contribuindo para
o desenvolvimento de ferramentas automatizadas e eficientes para a saúde pública.

23

1 Referencial Teórico

Este capítulo apresenta a fundamentação teórica deste trabalho. Inicia-se introdu-
zindo o conceito de Aprendizado de Máquina (Machine Learning) e Aprendizado Profundo
(Deep Learning). Em seguida, apresenta as arquiteturas de Aprendizado de Máquina abor-
dadas neste trabalho, Redes Neurais Convolucionais (Convolutional Neural Networks ou
CNNs) e Transformadores Visuais (Vision transformers ou ViTs). Então, apresenta uma
visão geral sobre a Visão Computacional aplicada à detecção de parasitas intestinais, as-
sim como o contexto geral do problema para o campo da medicina e a importância das
soluções exploradas neste trabalho. Por fim, apresenta brevemente os trabalhos relacio-
nados relevantes para este contexto.

1.1 Aprendizado de Máquina
Os programas construídos em Aprendizado de Máquina possuem, de forma geral,

três componentes: dados de entrada, exemplos da saída esperada e um meio de quantificar
a qualidade das saídas geradas Chollet (2021).

• Dados de entrada: são o objeto básico do problema. Por exemplo, os dados de entrada
para um sistema de classificação de imagens seriam figuras ainda não classificadas.

• Exemplos da saída esperada: seguindo o exemplo anterior, seria um conjunto de
imagens corretamente classificadas, como“gato” ou “cachorro”.

• um meio de quantificar a qualidade das saídas geradas: é o principal em um processo
de aprendizado de máquina. Por mensurar a qualidade dos resultados da tarefa que
realiza, o sistema é capaz de corrigir-se e ajustar como seu algoritmo funciona. Este
processo de ajuste é o que caracteriza o aprendizado.

O processo principal de um modelo de aprendizado de máquina é transformar os
dados de entrada em saídas significativas para o problema que se propõe a solucionar.
Este processo é aprendido através da exposição a exemplos conhecidos de entrada e saída
esperada. Assim, o problema central torna-se encontrar maneiras de transformar o dado de
entrada para se aproximar da saída desejada, em outras palavras, aprender representações
do dado de entrada que sejam úteis para alcançar a saída esperada. Por exemplo, um
programa que tem como objetivo identificar a presença da cor vermelha em uma imagem
poderia representar esta imagem no formato RGB (do inglês, red-green-blue). Por sua vez,
se o objetivo for saturar as cores de uma imagem, o melhor seria representá-la no formato
HSV (do inglês, hue-saturation-value) Chollet (2021).

24 Capítulo 1. Referencial Teórico

Transformar os dados de entrada em representações relevantes não é um processo
simples, pois existem numerosas formas de representar um dado e poucas serão úteis para
se aproximar do resultado desejado. Assim, os programas de aprendizado de máquina uti-
lizam um conjunto de transformações pré-definidas que melhor se aproximam do contexto
do problema, utilizando o processo de quantificar a qualidade das saídas para avaliar o
quão relevante é cada transformação dentro deste conjunto. Este conjunto pré-definido
é chamado de espaço de hipótese Chollet (2021). Em suma, o processo de aprendizado
de máquina é composto por: encontrar transformações de dados de entrada, dentro de
um conjunto pré-definido de possibilidades, utilizando como guia a qualidade das saídas
geradas e retroalimentando o sistema com cada resultado gerado para se aproximar cada
vez mais da saída desejada. Esta simples ideia possibilita a execução de diversas tarefas
Chollet (2021).

O aprendizado profundo (do inglês Deep Learning) é uma área do aprendizado de
máquina que tem ganhado força e crescido exponencialmente desde os anos 90. O foco
desta abordagem está na transformação dos dados de entrada, introduzindo camadas con-
secutivas de transformações cada vez mais significativas. O “profundo” em aprendizado
profundo refere-se à quantidade de camadas de transformação, o número de camadas re-
presenta a “profundidade” do modelo. Modelos modernos de aprendizado profundo podem
incluir dezenas ou centenas de camadas, todas incluídas automaticamente pelo processo
de aprendizado. Esta é a principal diferença entre um modelo tradicional, que geralmente
foca em trabalhar com uma ou duas camadas de transformação Chollet (2021).

As transformações em cada camada são mediadas por pesos (ou parâmetros), que
são ajustados durante o aprendizado. Os pesos de uma camada representam o que a
camada faz em termos da transformação dos dados, quantificado numericamente. Este
ajuste ocorre comparando a saída do algoritmo com a saída real através de uma função
de perda; esta função representa numericamente o quão distante a saída gerada está da
saída real desejada, gerando a perda. O resultado é então retroalimentado aos pesos por
meio de um otimizador, buscando minimizar a perda. O programa inicia com valores
aleatórios para os pesos e busca otimizar seus valores através do processo de aprendizado
retroalimentado Chollet (2021).

O aprendizado de máquina pode ser classificado em três principais categorias: su-
pervisionado, não supervisionado e por reforço. No aprendizado supervisionado, o modelo
é treinado com um conjunto de dados rotulado, aprendendo a mapear entradas para saídas
com base em exemplos prévios, sendo amplamente utilizado em tarefas como classificação
e regressão Goodfellow, Bengio e Courville (2016). Já o aprendizado não supervisionado
trabalha com dados sem rótulos, buscando identificar padrões ou estruturas ocultas nos
dados, como agrupamentos ou redução de dimensionalidade Murphy (2012). Por fim, o
aprendizado por reforço envolve a interação de um agente com um ambiente, aprendendo
por meio de recompensas e penalidades a tomar decisões que maximizem um retorno

1.2. Redes Neurais 25

cumulativo ao longo do tempo Sutton e Barto (2015). Esses três paradigmas oferecem
abordagens distintas para a construção de modelos inteligentes, sendo escolhidos con-
forme a natureza do problema e dos dados disponíveis.

O aprendizado profundo está incluído dentro do que é conhecido como redes neu-
rais, uma subcategoria do aprendizado de máquina. O termo rede neural se refere à neu-
robiologia, inspirado pelo entendimento de como um cérebro funciona (principalmente
o córtex visual), onde as camadas de transformações funcionam como neurônios. É im-
portante destacar que, apesar da inspiração, os modelos de aprendizado profundo não
são modelos do funcionamento do cérebro, tendo em vista que não há nenhuma evidên-
cia de que o cérebro utilize algo semelhante aos mecanismos e estratégias utilizados no
aprendizado profundo Chollet (2021). Este trabalho utilizará redes neurais alinhadas com
aprendizado supervisionado para a detecção e classificação dos principais parasitas intes-
tinais, a partir de exames de fezes digitalizados.

1.2 Redes Neurais
No centro de todas as operações e representações de dados em redes neurais estão

os tensores. O tensor é a estrutura fundamental em sistemas de aprendizado de máquina,
capaz de armazenar dados e suas transformações de forma numérica em múltiplas dimen-
sões, como escalares, vetores e matrizes Chollet (2021). Todas as operações dentro de uma
rede neural, incluindo as transformações lineares (como produtos escalares e adições), são
operações entre tensores, e os próprios parâmetros do modelo, como pesos e viés, são
representados como tensores Paszke et al. (2019).

Toda rede neural é fundamentalmente um encadeamento de camadas, entre seus
tensores de entrada e saída Chollet (2021). Estas camadas que existem entre a entrada
e a saída de uma rede são conhecidas como camadas ocultas (do inglês hidden layer).
Uma rede neural pode ser classificada como rasa ou profunda a partir de seu número
de camadas ocultas, sendo a rede rasa uma que possua uma única camada oculta e as
redes profundas são as que possuem múltiplas Paszke et al. (2019). A Figura 1 representa
um exemplo de rede neural rasa, contendo apenas uma única camada oculta, enquanto a
Figura 2 apresenta uma rede profunda, com múltiplas camadas ocultas.

Cada camada atua como um bloco de construção fundamental, extraindo repre-
sentações mais significativas dos dados a cada estágio Chollet (2021). Estas camadas são
tipicamente vetoriais e são frequentemente chamadas de neurônios ou unidades ocultas
Prince (2024), que agem em paralelo representando uma função de vetor para escalar,
e na prática realizam uma transformação linear na entrada (envolvendo os pesos e viés)
Paszke et al. (2019).

Outro ponto fundamental para as redes neurais são as funções de ativação. Estas
funções são cruciais para que seja possível que a rede neural possa lidar com relações de

26 Capítulo 1. Referencial Teórico

Figura 1 – Ilustração de um modelo de rede neural rasa com uma camada de entrada,
saída e uma única camada oculta intermediária. Fonte: Nielsen (2015)

Figura 2 – Ilustração de um modelo de rede neural profunda com uma camada de entrada,
saída e múltiplas camadas ocultas intermediárias. Fonte: Nielsen (2015)

1.2. Redes Neurais 27

dados mais complexas e não lineares Paszke et al. (2019). Sem uma função de ativação,
uma sequência de operações lineares (produto escalar e adição) resultaria em um modelo
que seria, em sua essência, linear, independentemente do número de camadas Chollet
(2021). As funções de ativação introduzem a não linearidade que permite que a rede se
aproxime de uma vasta gama de funções complexas. Existe uma grande variedade de
funções de ativação que já são provadas com sucesso, assim, a escolha de uma função de
ativação varia de acordo com o problema abordado pela rede neural Paszke et al. (2019).
A Figura 3 apresenta as funções de ativação mais comumente utilizadas.

Figura 3 – Gráfico que representa as funções de ativação mais comumente utilizadas. Cada
função tem o papel de introduzir a não-linearidade ao modelo, a escolha de
uma varia de acordo com a necessidade do problema abordado. Fonte: Leppich
(2021)

• ReLU (Rectified Linear Unit): é considerada a escolha mais comum e uma das fun-
ções de ativação de propósito geral com melhor desempenho Prince (2024). Ela
retorna o valor de entrada se for positivo e zero caso contrário, efetivamente equali-
zando os valores negativos a zero. Possui derivada 1 para entradas positivas e 0 para
entradas negativas, o que contribui para a estabilidade e eficiência do treinamento
Prince (2024).

• Leaky ReLU: uma variação da função ReLU. Permite uma pequena inclinação po-
sitiva para valores negativos (tipicamente 0.01 ou 0.1) para mitigar o problema do
“ReLU morrendo”. Este problema ocorre por uma característica inerente à função
ReLU: sua derivada é sempre zero para entradas negativas. Isto faz com que, se
todos os exemplos de treinamento produzirem uma entrada negativa para a função
ReLU, então não será possível ajustar os parâmetros das camadas, já que sempre
será zero. Prince (2024).

28 Capítulo 1. Referencial Teórico

• Sigmoid (função logística): transforma os valores de entrada para o intervalo defi-
nido de 0 a 1. Foi amplamente utilizada nos primórdios do aprendizado profundo,
mas atualmente é mais usada quando a saída precisa ser interpretada como uma
probabilidade Paszke et al. (2019).

• Tanh (tangente hiperbólica): funciona de forma similar à função Sigmoid, porém
seu intervalo é de -1 a 1 Paszke et al. (2019).

1.2.1 Redes neurais convolucionais

Rede neural convolucional é um tipo de rede neural utilizada principalmente para
tarefas de visão computacional. A diferença fundamental entre redes tradicionais e uma
rede convolucional está na estrutura de camada. Uma camada tradicional aprende padrões
globais a partir da entrada de dados, enquanto uma camada convolucional aprende padrões
locais, no caso de imagens, padrões encontrados em pequenos trechos bidimensionais das
entradas Chollet (2021).

Esta característica dá às redes convolucionais duas propriedades importantes:

• Após aprender um padrão em algum trecho de uma imagem, a rede é capaz de reco-
nhecer esse padrão em qualquer lugar. Uma camada tradicional teria que aprender
este padrão novamente caso aparecesse em algum outro trecho Chollet (2021). Isto
torna as redes convolucionais especialmente efetivas no uso de dados em tarefas
de visão computacional, precisando de uma base de dados de treinamento menor
Chollet (2021).

• Redes convolucionais são capazes de aprender hierarquias espaciais. Uma primeira
camada pode aprender pequenos padrões locais, como vértices, uma segunda ca-
mada subsequente pode aprender padrões mais gerais a partir das características da
primeira camada e assim sucessivamente. Isto permite o aprendizado de conceitos vi-
suais profundos e complexos, já que o mundo visual funciona fundamentalmente em
uma lógica de hierarquia espacial Chollet (2021). A Figura 4 apresenta um exemplo
simples de como a hierarquia espacial funciona no aprendizado de máquina.

1.3. Transformadores visuais 29

Figura 4 – Representação visual de como uma rede convolucional identifica padrões para,
neste caso, reconhecer a imagem de um gato (cat, em inglês). De baixo para
cima na imagem, linhas elementares ou texturas combinam-se em objetos sim-
ples como olhos ou orelhas, que então combinam em conceitos mais complexos
como “gato”. Assim funciona a hierarquia espacial. Fonte: Chollet (2021)

1.3 Transformadores visuais
Arquiteturas baseadas em atenção tornaram-se o modelo dominante para o pro-

cessamento de linguagem natural, causando uma revolução nos modelos linguísticos de
inteligência artificial. Em especial, os transformadores são a principal solução de arquite-
tura baseada em atenção Dosovitskiy et al. (2020).

O transformador foi apresentado no artigo Vaswani et al. (2017). Antes disso, o
modelo dominante para modelos linguísticos era uma abordagem de redes neurais con-
volucionais que incluía um codificador e um decodificador através de um mecanismo de
atenção Vaswani et al. (2017). A ideia principal do transformador é focar nos mecanismos
de atenção, dispensando completamente as abordagens convolucionais. De forma simplifi-
cada, uma função de atenção pode ser descrita como uma função que mapeia uma consulta
e um conjunto de pares chave-valor para uma saída, onde a consulta, chaves, valores e
saída são vetores. A saída é então computada como uma soma ponderada dos valores,
onde o peso designado para cada valor é computado por uma função de compatibilidade
da consulta com a chave correspondente Vaswani et al. (2017).

30 Capítulo 1. Referencial Teórico

Explorando diferentes abordagens baseadas puramente em atenção, o trabalho
Vaswani et al. (2017) alcançou resultados superiores às arquiteturas convolucionais, até
então dominantes no campo de modelos linguísticos. Inspirado nisso, nascem os transfor-
madores visuais, com a proposta de abordar a computação visual com a mesma ideia de
focar nos modelos de atenção e deixar de lado as arquiteturas convolucionais.

Para utilizar o conceito de transformadores em imagens, a imagem é dividida
em blocos e projetada linearmente como entradas para um transformador. Os blocos de
imagem codificados são tratados da mesma forma que palavras são tratadas em transfor-
madores de linguagem natural Dosovitskiy et al. (2020). A Figura 5 ilustra a visão geral
da estrutura de um transformador visual.

Figura 5 – Visão geral do transformador visual. A imagem é dividida em blocos de tama-
nho fixo, que são então submetidos a uma projeção linear com informação de
posição e alimentados a um codificador para um transformador padrão. Fonte:
Dosovitskiy et al. (2020)

O transformador padrão recebe como entrada uma sequência unidimensional de
vetores projetados dos blocos. Para tratar imagens bidimensionais, a imagem 𝑥 ∈ R𝐻×𝑊 ×𝐶

é reestruturada em uma sequência de blocos bidimensionais achatados 𝑥𝑝 ∈ R𝑁×(𝑃 2·𝐶),
onde (𝐻, 𝑊) representa a resolução da imagem original, 𝐶 é o número de canais de
imagem, (𝑃, 𝑃) corresponde à resolução de cada bloco da imagem, o número total de
blocos é então dado por

𝑁 = 𝐻 · 𝑊

𝑃 2 , (1.1)

que também define o comprimento efetivo da sequência de entrada para o transformador
Dosovitskiy et al. (2020).

Os canais de imagem representam as diferentes componentes de cor ou caracterís-
ticas da imagem. Em imagens coloridas no formato RGB, existem três canais, cada um
representando a intensidade de uma cor primária. Em imagens em escala de cinza, há
apenas um canal representando a intensidade luminosa. Em contextos de processamento

1.4. Visão computacional aplicada à detecção de parasitas 31

de imagem médica, podem existir canais adicionais representando diferentes técnicas de
coloração ou modalidades de imagem. O conceito de canais é fundamental para o proces-
samento de imagens, pois permite que a rede neural aprenda padrões específicos de cada
componente da imagem separadamente.

Adiciona-se no início da sequência um vetor aprendido, denominado bloco de clas-
sificação, representado como

𝑧0
0 = 𝑥class, (1.2)

cuja saída final, após o processamento pelo codificador do transformador, é utilizada como

representação da imagem. Tanto no pré-treinamento quanto no ajuste fino, um cabeçalho
de classificação é acoplado à saída 𝑧0

𝐿 correspondente a esse bloco. Esse cabeçalho é imple-
mentado por uma rede perceptron multicamadas (MLP) com uma camada oculta durante
o pré-treinamento e por uma camada linear simples durante o ajuste fino Dosovitskiy et
al. (2020).

Informações posicionais são incorporadas aos vetores dos blocos para preservar
a relação espacial da imagem. São utilizadas informações posicionais unidimensionais
aprendíveis, uma vez que não foram observados ganhos de desempenho significativos ao
empregar técnicas mais avançadas com consciência bidimensional. A sequência resultante
de vetores serve como entrada para o codificador do transformador Dosovitskiy et al.
(2020).

O transformador mantém um tamanho constante 𝐷 para os vetores latentes em
todas as suas camadas. Dessa forma, os blocos são achatados e projetados para esse espaço
vetorial de dimensão 𝐷 por meio de uma projeção linear treinável, representada como

𝑥𝑝 ∈ R𝑁×(𝑃 2·𝐶) Projeção Linear−−−−−−−−−→ R𝑁×𝐷, (1.3)

cuja saída corresponde aos vetores projetados dos blocos, que são efetivamente a
entrada do codificador do transformador Dosovitskiy et al. (2020).

Quando treinado em bases de dados de tamanho médio e sem uma forte regulariza-
ção, o transformador visual alcança uma acurácia modesta e um pouco abaixo dos modelos
convolucionais. Porém, em grandes bases de dados, o transformador visual alcança resul-
tados iguais ou superiores aos modelos convolucionais e utiliza significativamente menos
recursos computacionais Dosovitskiy et al. (2020).

1.4 Visão computacional aplicada à detecção de parasitas
Infecções intestinais parasitárias são as infecções mais comuns que afetam as comu-

nidades mais pobres e necessitadas no mundo. Essas infecções são amplamente distribuídas
na África Subsaariana, China e leste asiático Gujo e Kare (2021). Mais de 1,5 bilhões de

32 Capítulo 1. Referencial Teórico

pessoas são infectadas por helmintos transmitidos pelo solo, como Ascaris lumbricoides e
Trichuris trichiura, destes, 267 milhões são crianças com menos de 5 anos de idade Gujo
e Kare (2021).

O método padrão para diagnosticar infecções por parasitas intestinais é baseado
na análise microscópica manual de amostras de fezes, com técnicas como o exame direto,
Kato-Katz e testes moleculares (qPCR, ELISA, imunofluorescência) Yimer et al. (2015).
Os testes moleculares e Kato-Katz são técnicas que possuem uma sensibilidade superior ao
exame direto, alcançando acima de 90% de sensibilidade contra a sensibilidade de 48,9%
a 63,1% do método direto. Porém, esses métodos de diagnóstico são significativamente
laboriosos e onerosos, além de altamente suscetíveis a erros humanos Yimer et al. (2015).

A visão computacional entra como uma alternativa para os processos manuais de
diagnóstico, visando mitigar as limitações de recurso e mão de obra inerentes aos métodos
manuais. Inicialmente, a automação do processo de detecção de parasitas era limitada
pela falta de algoritmos de reconhecimento para microrganismos. Porém, o avanço do
aprendizado de máquina e, em especial, o aprendizado profundo trouxeram uma revolução
no campo de identificação e classificação de imagens na medicina, destacando as redes
neurais convolucionais Kumar et al. (2023).

33

2 Metodologia

2.1 Dados
O experimento deste trabalho utilizou o conjunto de dados Chula-ParasiteEgg-11

Palasuwan et al. (2022). Esses dados foram disponibilizados publicamente na plataforma
IEEE Dataport como proposta para a competição ICIP 2022 Anantrasirichai et al. (2022),
cujo objetivo foi incentivar soluções para a detecção e classificação de ovos de parasitas
intestinais. Os dados disponibilizados representam um dos maiores conjuntos de dados
disponíveis publicamente para a classificação de parasitas intestinais, contendo 11 espécies
distintas de parasitas com uma distribuição balanceada entre eles.

2.1.1 Características gerais do conjunto de dados

O conjunto de dados utilizado neste trabalho é composto por um total de 2.200
imagens, distribuídas de forma equilibrada, com 200 imagens por espécie. As imagens
estão no formato RGB e foram obtidas através de microscopia óptica com diferentes
técnicas de coloração. Esse conjunto apresenta imagens de alta resolução com variações
de iluminação e contraste, características que contribuem para a robustez do conjunto.

O conjunto de dados contempla as seguintes espécies de parasitas:

1. Ascaris lumbricoides;

2. Capillaria philippinensis;

3. Enterobius vermicularis;

4. Fasciolopsis buski;

5. Ancylostoma duodenale (representada no conjunto de dados como Hookworm);

6. Hymenolepis diminuta;

7. Hymenolepis nana;

8. Opisthorchis viverrine;

9. Paragonimus spp;

10. Trichuris trichiura; e

11. Taenia spp.

34 Capítulo 2. Metodologia

2.1.2 Características Morfológicas dos Ovos

Os ovos parasitários variam entre 20µm e 80µm de dimensão e são tipicamente
observados apenas sob microscópio. Várias características são utilizadas para identificar
ovos parasitários, incluindo tamanho, forma, espessura da casca, estrutura da superfície
e a presença de opérculo e de plugues polares Anantrasirichai et al. (2022). O opérculo
é uma estrutura em forma de tampa que pode estar presente em um dos polos do ovo,
sendo uma característica distintiva de certas espécies de parasitas. Os plugues polares são
estruturas protuberantes localizadas nos polos do ovo, que também servem como uma
característica morfológica importante para a identificação taxonômica dos parasitas.

2.1.3 Coleta de dados

Múltiplos dispositivos foram utilizados para coletar as micrografias das amostras,
incluindo câmera Canon EOS 70D com microscópios Olympus BX53, câmera DS-Fi2
Nikon com microscópios Nikon Eclipse Ni, Samsung Galaxy J7 Prime e iPhone 12 e
13 com lentes oculares de 10× dos dispositivos Nikon Eclipse Ni ou Olympus BX53. A
resolução, iluminação e condições de configuração de cada imagem variam, o que gera
maior confiabilidade na detecção Anantrasirichai et al. (2022).

2.1.4 Tratamento do conjunto de dados

Para melhorar a robustez do modelo e evitar sobreajuste (do inglês, overfitting),
foi implementada uma estratégia de tratamento de dados inspirada nas técnicas utili-
zadas no trabalho de referência AlDahoul et al. (2023). O sobreajuste ocorre quando o
modelo memoriza os dados de treinamento em vez de aprender padrões generalizáveis,
resultando em baixo desempenho em dados não vistos. Essa abordagem foi desenvolvida
especificamente para simular as condições reais encontradas em imagens microscópicas de
parasitas.

As transformações aplicadas incluem técnicas de embaçamento para simular vari-
ações de foco microscópico: embaçamento gaussiano, embaçamento de movimento e em-
baçamento mediano. O embaçamento gaussiano aplica um filtro que suaviza a imagem
de forma uniforme, simulando desfoque por profundidade de campo. O embaçamento de
movimento simula o movimento da câmera durante a captura, criando um efeito de arras-
tamento. O embaçamento mediano reduz ruído, preservando bordas, simulando variações
na qualidade óptica do microscópio. Para simular ruído e imperfeições da captura, foram
adicionados diferentes tipos de ruído: ruído gaussiano, ruído ISO e ruído multiplicativo.
O ruído gaussiano adiciona variações aleatórias normalmente distribuídas, simulando in-
terferências eletrônicas. O ruído ISO simula a sensibilidade do sensor da câmera, criando
granulação típica de imagens com baixa iluminação. O ruído multiplicativo afeta a inten-
sidade dos pixels de forma proporcional, simulando variações na resposta do sensor.

2.2. Função de Perda 35

Transformações geométricas moderadas também foram aplicadas, incluindo rota-
ção aleatória de até 15 graus para simular diferentes ângulos de visualização microscópica,
e ajustes sutis de cor para lidar com variações de iluminação e técnicas de coloração. Essas
técnicas são particularmente relevantes para imagens microscópicas, onde pequenas varia-
ções na preparação da amostra e nas condições de captura podem afetar significativamente
a aparência dos ovos parasitários.

O tratamento de dados é fundamental para esse conjunto de dados, pois o número
limitado de amostras por classe (200 imagens) pode não ser suficiente para que o modelo
aprenda todas as variações possíveis dos ovos parasitários. Ao aplicar essas transformações
específicas para microscopia, o modelo se torna mais robusto e generaliza melhor para
novas amostras que podem apresentar condições de captura diferentes das encontradas no
conjunto de treinamento, simulando realisticamente os desafios encontrados em ambientes
clínicos reais.

2.2 Função de Perda
Para todos os modelos implementados neste trabalho, foi utilizada a função de

perda de entropia cruzada (do inglês, Cross-Entropy Loss), que é amplamente empre-
gada em problemas de classificação multiclasse. Esta função mede a diferença entre a
distribuição de probabilidade prevista pelo modelo e a distribuição real dos rótulos, sendo
particularmente adequada para problemas de classificação de imagens.

A entropia cruzada pode ser definida matematicamente como

ℒ𝐶𝐸 = −
𝐶∑︁

𝑖=1
𝑦𝑖 log(𝑦𝑖), (2.1)

onde 𝐶 é o número total de classes (11 espécies de parasitas), 𝑦𝑖 é o rótulo verda-
deiro da classe 𝑖 (valor binário: 1 se a amostra pertence à classe 𝑖, 0 caso contrário), 𝑦𝑖

é a probabilidade prevista pelo modelo para a classe 𝑖 e log(𝑦𝑖) é o logaritmo natural da
probabilidade prevista.

Esta função de perda é especialmente eficaz para problemas de classificação de
parasitas intestinais, pois penaliza fortemente previsões incorretas com alta confiança,
incentivando o modelo a aprender representações discriminativas para distinguir entre as
diferentes espécies Mao, Mohri e Zhong (2023).

Para o modelo híbrido, a função de perda é aplicada individualmente a cada modelo
durante o treinamento e a combinação final das previsões é realizada por meio de uma
média aritmética das probabilidades de saída de cada arquitetura.

36 Capítulo 2. Metodologia

2.3 Arquiteturas implementadas
Os modelos de cada arquitetura foram selecionados com o objetivo principal de

equilibrar desempenho e eficiência, de forma que seja atingida a maior acurácia possível
em um ambiente local de desenvolvimento e experimentação.

2.3.1 Rede convolucional: EfficientNetV2-S

O EfficientNetV2-S é uma evolução do EfficientNet original, desenvolvido por Tan
e Le (2021). Essa arquitetura representa uma resposta aos desafios identificados na versão
inicial, focando especificamente na velocidade de treinamento e eficiência computacional.

O EfficientNet original introduziu o conceito de dimensionamento composto (do
inglês, compound scaling), que uniformemente escala três dimensões fundamentais das
redes neurais: profundidade (número de camadas na rede), largura (número de canais
em cada camada) e resolução (tamanho das imagens de entrada) Tan e Le (2020). A
formulação matemática do dimensionamento composto é expressa como

Profundidade : 𝛼𝜑, Largura : 𝛽𝜑, Resolução : 𝛾𝜑, (2.2)

onde 𝛼, 𝛽, 𝛾 são coeficientes constantes determinados por uma busca em grade no modelo
pequeno original, e 𝜑 é o coeficiente composto que controla os recursos computacionais
disponíveis Tan e Le (2020).

A nova versão foi desenvolvida para resolver limitações específicas da arquitetura
anterior Tan e Le (2021). A principal inovação foi a introdução do Fused-MBConv, que
substitui operações convolucionais separadas por uma única operação mais eficiente, me-
lhorando significativamente a utilização de unidades de processamento gráfico (GPUs) e
outros processadores especializados. Outra inovação importante foi a estratégia de escalo-
namento não uniforme, que adiciona gradualmente mais camadas aos estágios posteriores
da rede para aumentar a capacidade sem adicionar muito custo computacional de tempo
de execução Tan e Le (2021). Além disso, o modelo restringe o tamanho máximo de ima-
gem a 480 pixels de largura e altura, evitando o consumo excessivo de memória associado
a imagens muito grandes.

Essa arquitetura apresenta uma estrutura híbrida que combina diferentes tipos
de componentes estruturais Tan e Le (2021). Nos estágios iniciais, utiliza componentes
Fused-MBConv para melhor utilização de GPUs, enquanto nos estágios posteriores utiliza
componentes tradicionais para eficiência de parâmetros. A eficiência de parâmetros refere-
se à capacidade do modelo de alcançar alta precisão utilizando um número reduzido de
parâmetros treináveis, o que é fundamental para aplicações práticas, pois requer menos
memória para armazenamento e menor capacidade computacional para inferência.

A estrutura descrita possui aproximadamente 22 milhões de parâmetros e utiliza
imagens de entrada com tamanho 224 × 224 Tan e Le (2021). É organizada em 7 estágios

2.3. Arquiteturas implementadas 37

principais, começando com 24 canais de imagem no primeiro estágio e expandindo para
256 no estágio final, terminando com 1280 canais antes da classificação. O modelo utiliza
razões de expansão menores para reduzir o consumo de acesso à memória e filtros menores,
compensando com mais camadas para manter o campo receptivo adequado Tan e Le
(2021). Essa abordagem permite que o modelo mantenha alta precisão enquanto reduz
significativamente o custo computacional.

A arquitetura utiliza um método de aprendizado progressivo com regularização
adaptativa Tan e Le (2021). A regularização refere-se a técnicas que previnem o sobre-
ajuste do modelo, ou seja, evitam que ele memorize os dados de treinamento em vez
de aprender padrões generalizáveis. O processo inicia com imagens pequenas (128 × 128
pixels) e regularização fraca, permitindo que o modelo aprenda representações simples
rapidamente. Conforme o treinamento progride, o tamanho da imagem é gradualmente
aumentado, junto com a intensidade da regularização. No final do treinamento, o mo-
delo trabalha com imagens grandes (300 × 300 pixels) e regularização completa Tan e
Le (2021). Esse método permite treinamento mais rápido sem perda de precisão, pois o
modelo aprende representações simples primeiro e gradualmente aumenta a complexidade.

Como função de ativação, foi utilizada a ReLU (Rectified Linear Unit) nas camadas
intermediárias da rede. Essa função retorna o valor de entrada se for positivo e zero caso
contrário, introduzindo não-linearidade de forma eficiente. Essa função é preferida por sua
simplicidade computacional e por ajudar a mitigar o problema do gradiente desaparecendo
durante o treinamento, permitindo que o modelo aprenda representações mais complexas
de forma estável.

Esta arquitetura foi escolhida para esse trabalho pelos motivos detalhados a se-
guir. Com apenas 22M de parâmetros, é ideal para treinamento local em GPUs com
recursos limitados (8GB de memória de vídeo), permitindo experimentação rápida Tan e
Le (2021). O modelo é até 4x mais rápido que modelos maiores, mantendo alta qualidade
de classificação com 83,9% de precisão top-1 no ImageNet Tan e Le (2021). O tamanho
de entrada padrão (224×224 pixels) garante compatibilidade com diferentes conjuntos de
dados, sendo particularmente relevante para classificação de parasitas Tan e Le (2021).

38 Capítulo 2. Metodologia

2.3.2 Transformador visual: Tiny ViT

O Tiny ViT representa uma abordagem para o desenvolvimento de transformado-
res visuais compactos e eficientes, desenvolvido por Wu et al. (2022). Essa arquitetura foi
criada para resolver o problema dos transformadores visuais convencionais, que frequente-
mente apresentam um número excessivo de parâmetros, limitando sua aplicabilidade em
dispositivos com recursos computacionais limitados.

A maioria dos modelos predominantes de transformação visual sofre com um nú-
mero grande de parâmetros, restringindo sua aplicabilidade em dispositivos com recursos
limitados Wu et al. (2022). Para aliviar esse problema, foi proposta uma nova família de
transformadores visuais pequenos e eficientes, pré-treinados em conjuntos de dados em
larga escala com uma estrutura de destilação rápida.

A arquitetura utiliza um método de destilação de conhecimento durante o pré-
treinamento Wu et al. (2022). A destilação é uma técnica que permite que modelos peque-
nos aprendam diretamente de modelos grandes que atuam como professores, transferindo
conhecimento e melhorando a capacidade de generalização. O processo armazena informa-
ções de tratamento de dados e previsões do modelo professor antecipadamente. Durante
o treinamento, reutilizam-se as informações armazenadas para replicar precisamente o
procedimento de destilação, omitindo com sucesso a computação direta e ocupação de
memória do modelo professor grande Wu et al. (2022).

Como ilustrado na Figura 6, a estrutura de destilação rápida funciona em três
etapas principais. Na primeira etapa (superior), imagens originais são aumentadas e pro-
cessadas pelo modelo professor pré-treinado, gerando logits esparsificados que são codi-
ficados e armazenados. Os logits são as saídas brutas da rede neural antes da aplicação
da função de ativação final, representando as classificações não normalizadas para cada
classe. Na segunda etapa (meio), as informações de tratamento de dados codificadas e os
logits esparsificados do professor são armazenados em disco. Na terceira etapa (inferior),
durante o treinamento do modelo estudante, o decodificador reconstrói o tratamento de
dados e a destilação é conduzida entre os logits do professor e as saídas do estudante. As
duas ramificações são independentes e assíncronas, permitindo treinamento eficiente sem
a necessidade de processar o modelo professor grande durante cada iteração.

2.3. Arquiteturas implementadas 39

Figura 6 – Estrutura de destilação rápida do Tiny ViT. A parte superior mostra a ramifi-
cação para salvar os logits do professor, onde o tratamento de dados codificado
e os logits esparsificados do professor são salvos. A parte do meio representa
o disco para armazenar as informações. A parte inferior mostra a ramifica-
ção para treinar o estudante, onde o decodificador reconstrói o tratamento de
dados e a destilação é conduzida entre os logits do professor e as saídas do
estudante. As duas ramificações são independentes e assíncronas, permitindo
treinamento sem processar o modelo professor grande durante cada iteração.
Fonte: Wu et al. (2022)

Como função de ativação, foi utilizada a GELU (Gaussian Error Linear Unit)
em todas as camadas da rede. Essa função é uma variação da ReLU que introduz não-
linearidade de forma mais suave, sendo preferida em transformadores por sua capacidade
de capturar relações mais complexas nos dados.

Assim como na escolha do modelo de rede convolucional, os principais motivos
para a escolha desse modelo são: menor número de parâmetros com 5M na versão mais
compacta. Sendo ideal para treinamento local em GPUs com recursos limitados. O modelo
é significativamente mais rápido que transformadores visuais convencionais, mantendo
84,8% de precisão top-1 no ImageNet na versão de 21M parâmetros Wu et al. (2022). O
tamanho de entrada padrão também é (224 × 224 pixels), o que garante compatibilidade
com diferentes conjuntos de dados Wu et al. (2022).

2.3.3 Modelo híbrido: EfficientNetV2-S + Tiny ViT

O modelo híbrido representa uma abordagem que combina as vantagens com-
plementares das duas arquiteturas descritas anteriormente: a eficiência computacional e
capacidade de extração de características locais do EfficientNetV2-S com a capacidade de
capturar relações globais e atenção sofisticada do Tiny ViT. Essa combinação visa apro-
veitar os pontos fortes de cada arquitetura para criar um sistema de classificação mais
robusto e preciso.

40 Capítulo 2. Metodologia

A arquitetura híbrida funciona através de um processo de aprendizado em conjunto
(do inglês, ensemble learning), onde ambos os modelos processam independentemente a
mesma imagem de entrada e suas previsões são combinadas para gerar uma classificação
final mais confiável. O EfficientNetV2-S processa a imagem com seu tamanho de entrada
padrão de 224 × 224 pixels, enquanto o Tiny ViT utiliza o mesmo tamanho de entrada
para manter consistência. Ambas as arquiteturas foram treinadas separadamente com as
mesmas configurações de hiperparâmetros (parâmetros que controlam o processo de apren-
dizado, como taxa de aprendizado, tamanho do lote e número de épocas) e estratégias de
tratamento de dados descritas anteriormente.

A combinação das previsões é realizada por meio de uma média aritmética sim-
ples das probabilidades de saída de cada modelo. Especificamente, para cada classe 𝑖, a
probabilidade final 𝑃final(𝑖) é calculada como

𝑃final(𝑖) = 𝑃EfficientNet(𝑖) + 𝑃TinyViT(𝑖)
2 , (2.3)

onde 𝑃EfficientNet(𝑖) é a probabilidade predita pelo EfficientNetV2-S para a classe 𝑖 e
𝑃TinyViT(𝑖) é a probabilidade predita pelo Tiny ViT para a mesma classe. Essa abordagem
atribui peso igual a ambos os modelos, assumindo que suas contribuições são equivalentes
para a tarefa de classificação.

Essa estratégia permite que o sistema aproveite a capacidade do EfficientNetV2-S
de capturar características locais e texturais dos ovos parasitários, enquanto o Tiny ViT
contribui com sua capacidade de estabelecer relações globais e capturar padrões de aten-
ção que podem ser cruciais para distinguir entre espécies morfologicamente similares. O
aprendizado em conjunto tem demonstrado sucesso significativo em tarefas de classifica-
ção, reduzindo a variância das previsões e melhorando a robustez geral do sistema Ganaie
et al. (2022).

A utilização da média aritmética simples é uma abordagem que tem demonstrado
eficácia em diversos trabalhos de aprendizado em conjunto Ganaie et al. (2022), sendo
particularmente adequada quando não há conhecimento a priori sobre qual modelo deve
ter maior influência na decisão final. Essa estratégia permite que o sistema seja robusto a
falhas individuais de cada modelo, pois a combinação tende a suavizar erros e melhorar
a confiabilidade geral da classificação. Além disso, a média simples evita a necessidade
de otimização adicional de pesos, mantendo a simplicidade e eficiência computacional do
sistema.

A escolha das funções de ativação mantém-se consistente com cada arquitetura
individual: ReLU para o EfficientNetV2-S e GELU para o Tiny ViT, preservando as
características específicas que tornam cada arquitetura eficaz em suas respectivas abor-
dagens.

2.4. Experimento 41

2.4 Experimento

2.4.1 Ferramentas utilizadas

Este trabalho utilizou a biblioteca PyTorch Paszke et al. (2019) para a construção
e treinamento das redes neurais, escolhida por sua interface amigável e pelas funções espe-
cializadas no cálculo de gradientes de tensores, que são fundamentais para o treinamento
de modelos de aprendizado profundo. Outras bibliotecas essenciais para ciência de dados
em Python também foram utilizadas, incluindo NumPy Harris et al. (2020) para opera-
ções numéricas, Matplotlib Hunter (2007) e Seaborn Waskom (2021) para visualização de
dados, scikit-learn Pedregosa et al. (2018) para métricas de avaliação e Pandas Mckinney
(2011) para manipulação de dados.

Para garantir a reprodutibilidade dos experimentos e o isolamento das dependên-
cias, foi utilizado um ambiente virtual (do inglês, virtual environment) através da ferra-
menta virtualenv. O ambiente virtual permite criar um ambiente Python isolado, evitando
conflitos entre diferentes versões de bibliotecas e garantindo que todas as dependências
necessárias estejam disponíveis na versão correta. A configuração do ambiente foi geren-
ciada através do arquivo requirements.txt, que lista todas as bibliotecas e suas versões
específicas utilizadas no projeto.

O arquivo requirements.txt inclui as principais dependências do projeto, como Py-
Torch para deep learning, NumPy para computação numérica, Matplotlib e Seaborn para
visualizações, scikit-learn para métricas de avaliação, Pandas para manipulação de da-
dos, e outras bibliotecas auxiliares. Esta abordagem garante que qualquer pesquisador
possa reproduzir exatamente o mesmo ambiente computacional utilizado neste trabalho,
instalando as dependências com o comando pip install -r requirements.txt.

O ambiente computacional utilizado para os experimentos consistiu em um sistema
com processador AMD Ryzen 5 3600X, 32GB de memória RAM e placa de vídeo NVIDIA
RTX 2070 Super com 8GB de memória de vídeo. Este hardware permitiu o treinamento
local dos modelos, facilitando a experimentação.

2.4.2 Configuração experimental

Para realizar o experimento, foi desenvolvido um código modular em Python. O
arquivo principal run_optimized.py coordena todo o processo experimental, incluindo o
treinamento dos modelos, avaliação e geração de resultados comparativos. Este arquivo
implementa funções para treinar modelos individuais ou todos os modelos sequencial-
mente, além de gerar análises comparativas detalhadas com visualizações gráficas.

O arquivo trainer_optimized.py implementa a classe ParasiteTrainerOptimized,
responsável pelo ciclo completo de treinamento, incluindo as épocas de treinamento e va-
lidação, monitoramento de métricas, salvamento dos melhores modelos e implementação

42 Capítulo 2. Metodologia

de parada antecipada (do inglês, early stopping). A parada antecipada é uma técnica que
interrompe o treinamento quando a acurácia de validação não melhora por um número
consecutivo de épocas definido como paciência, prevenindo o sobreajuste e salvando auto-
maticamente o melhor modelo encontrado durante o treinamento. Esse arquivo também
gerencia a avaliação final dos modelos no conjunto de teste e a geração de gráficos de
histórico de treinamento e matrizes de confusão.

O arquivo dataset_optimized.py implementa a classe ParasiteDataset e as funções
de processamento de dados, incluindo as transformações de tratamento de dados otimi-
zadas baseadas nas técnicas do CoAtNet AlDahoul et al. (2023). Este arquivo gerencia
o carregamento das imagens, a divisão dos dados em conjuntos de treinamento, de va-
lidação e de teste, bem como a aplicação das transformações específicas para imagens
microscópicas.

O arquivo config_optimized.py centraliza todos os hiperparâmetros do experi-
mento, incluindo configurações de treinamento, processamento de dados e regularização.

O número de épocas foi estabelecido em 50, em que uma época representa uma
passagem completa pelo conjunto de dados de treinamento. Durante cada época, o modelo
processa todas as amostras de treinamento, atualiza seus parâmetros e é avaliado no
conjunto de validação para monitorar o desempenho. A parada antecipada foi configurada
com paciência de 10 épocas.

A taxa de aprendizado foi definida como 1 × 10−4, um valor conservador que
garante estabilidade durante o treinamento. Foi utilizado o otimizador AdamW Loshchilov
e Hutter (2019) com decaimento de peso 1×10−4 para regularização. O agendador de taxa
de aprendizado ReduceLROnPlateau foi configurado para reduzir a taxa de aprendizado
pela metade quando a acurácia de validação não melhora por 5 épocas consecutivas. Este
agendador foi escolhido por sua eficácia em situações em que o modelo pode ficar preso em
platôs de performance, permitindo que ele escape de mínimos locais através da redução
gradual da taxa de aprendizado.

Para garantir a reprodutibilidade dos resultados, foi estabelecida uma semente ale-
atória fixa (42) para todos os experimentos. A semente aleatória controla a inicialização
dos pesos das redes neurais e a geração de números aleatórios durante o treinamento,
garantindo que os mesmos resultados sejam obtidos em execuções subsequentes do expe-
rimento.

O tamanho de entrada das imagens foi padronizado em 384 × 384 pixels, um
compromisso entre qualidade de representação e eficiência computacional. A Tabela 1
apresenta um resumo completo de todos os hiperparâmetros utilizados no experimento.

2.4. Experimento 43

Tabela 1 – Hiperparâmetros utilizados no experimento

Parâmetro Valor Descrição
Tamanho do lote 2 Número de amostras por iteração
Número de épocas 50 Máximo de épocas de treinamento
Taxa de aprendizado 1 × 10−4 Taxa de atualização dos pesos
Otimizador AdamW Algoritmo de otimização
Decaimento de peso 1 × 10−4 Regularização L2
Paciência (Parada antecipada) 10 Épocas sem melhoria para parar
Tamanho da imagem 384 × 384 Dimensões de entrada
Semente aleatória 42 Para reprodutibilidade
Suavização de rótulos 0,1 Regularização para generalização
Recorte de gradientes 1,0 Limite para gradientes
Paciência do agendador 5 Épocas para reduzir taxa de aprendizado
Fator do agendador 0,5 Fator de redução da taxa de aprendizado

O comando python run_optimized.py executa o experimento completo, treinando
sequencialmente os três modelos (rede convolucional, transformador visual e híbrido),
avaliando cada um no conjunto de teste e gerando análises comparativas detalhadas com
visualizações gráficas dos resultados.

Os códigos-fonte dos arquivos mencionados estão disponíveis no apêndice A.

44 Capítulo 2. Metodologia

2.4.3 Análise comparativa

A comparação entre os modelos foi realizada considerando diferentes métricas,
com o objetivo de fornecer uma avaliação completa e plural dos modelos. Cada métrica é
apresentada e detalhada a seguir.

A acurácia dos modelos foi abordada da seguinte forma: acurácia final no conjunto
de teste e a acurácia de estabilidade do treinamento, medida através da diferença entre
a melhor acurácia de validação e a acurácia de teste. A acurácia de validação é obtida
durante o treinamento, utilizando um conjunto de dados separado para monitorar o pro-
gresso do modelo sem influenciar o ajuste dos parâmetros. A acurácia de teste, por sua
vez, é calculada em um conjunto de dados completamente independente, representando
uma avaliação final e imparcial do desempenho real do modelo.

A acurácia pode ser definida matematicamente como

Acurácia = 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (2.4)

onde 𝑇𝑃 representa os verdadeiros positivos, 𝑇𝑁 os verdadeiros negativos, 𝐹𝑃 os
falsos positivos e 𝐹𝑁 os falsos negativos.

As matrizes de confusão são ferramentas utilizadas para avaliar a performance de
modelos de classificação, fornecendo uma visão detalhada dos acertos e erros do modelo
para cada classe. Uma matriz de confusão mostra a distribuição das predições do mo-
delo em relação às classes reais, permitindo identificar quais classes são mais facilmente
confundidas e onde o modelo apresenta maior dificuldade.

A revocação (do inglês, recall) é uma métrica que mede a capacidade do modelo
de identificar corretamente todas as instâncias positivas de uma classe. É calculada como
a razão entre o número de verdadeiros positivos e a soma de verdadeiros positivos e falsos
negativos.

A revocação pode ser expressa como

Recall = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (2.5)

onde 𝑇𝑃 são os verdadeiros positivos e 𝐹𝑁 são os falsos negativos para uma
determinada classe.

A precisão é uma métrica complementar que mede a proporção de predições posi-
tivas que foram corretas, sendo definida como

Precisão = 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2.6)

2.4. Experimento 45

onde 𝑇𝑃 são os verdadeiros positivos e 𝐹𝑃 são os falsos positivos.
O F1-score é uma métrica que combina precisão e revocação em uma única medida,

calculada como a média harmônica entre essas duas métricas. Essa medida é especialmente
útil quando há desbalanceamento entre as classes, pois considera tanto a capacidade do
modelo de fazer predições corretas quanto sua capacidade de identificar todas as instâncias
positivas. É também particularmente relevante para a classificação de parasitas, onde
diferentes espécies podem ter diferentes frequências de ocorrência.

O F1-score pode ser calculado como

𝐹1 = 2 · Precisão · Recall
Precisão + Recall = 2 · 𝑇𝑃

2 · 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
, (2.7)

onde a segunda forma da equação expressa o F1-score diretamente em termos dos
verdadeiros positivos (𝑇𝑃), falsos positivos (𝐹𝑃) e falsos negativos (𝐹𝑁).

Além do desempenho de classificação, foi considerada a eficiência computacional
e o uso de recursos como critérios de avaliação. Isso porque, devido à própria limitação
do ambiente computacional utilizado para este trabalho, não seria possível implementar
modelos que não contivessem a otimização desse recurso de forma intrínseca.

Em suma, o experimento foi projetado para avaliar não apenas o desempenho
individual de cada arquitetura, mas também a eficácia da abordagem híbrida em combi-
nar as vantagens complementares dos modelos convolucionais e transformadores, sempre
priorizando a eficiência de recursos.

47

3 Resultados e Discussão

Este capítulo apresenta os resultados e discussões dos experimentos realizados. O
objetivo é analisar a eficácia dos modelos convolucionais, baseados em atenção e híbridos
na tarefa de classificação, considerando tanto a precisão quanto a eficiência computacional.

A análise das curvas de treinamento é fundamental para compreender o compor-
tamento de convergência dos modelos e identificar possíveis problemas como sobreajuste
ou subajuste. A Figura 7 apresenta a evolução da função de perda e acurácia durante o
treinamento do modelo EfficientNetV2-S.

Figura 7 – Curvas de treinamento ao longo do tempo do modelo EfficientNetV2-S, apre-
sentando perda e acurácia. O tempo é dado em épocas. Fonte: Elaborado pelo
autor (2025).

O modelo convolucional apresentou convergência estável, com a função de perda
diminuindo de forma consistente ao longo das épocas. A acurácia de treinamento e vali-
dação convergiram para valores similares, indicando que o modelo não apresentou sobrea-
juste significativo. A estabilização ocorreu aproximadamente na época 15, demonstrando
eficiência no treinamento.

A Figura 8 mostra o comportamento do modelo Tiny Vision Transformer durante
o treinamento.

Figura 8 – Curvas de treinamento ao longo do tempo do modelo Tiny Vision Transformer,
apresentando perda e acurácia. O tempo é dado em épocas. Fonte: Elaborado
pelo autor (2025).

48 Capítulo 3. Resultados e Discussão

O modelo baseado em atenção apresentou um padrão de convergência distinto,
com uma fase inicial de aprendizado mais lenta, característica dos transformadores. A
função de perda diminuiu de forma mais gradual comparada ao modelo convolucional.

A Figura 9 apresenta os resultados do modelo híbrido, que combina as arquiteturas
convolucional e baseada em atenção.

Figura 9 – Curvas de treinamento ao longo do tempo do modelo híbrido, apresentando
perda e acurácia. O tempo é dado em épocas. Fonte: Elaborado pelo autor
(2025).

O modelo híbrido demonstrou convergência estável, aproveitando as características
complementares das arquiteturas convolucional e baseada em atenção. A função de perda
diminuiu de forma consistente, e as acurácias de treinamento e validação convergiram
para valores similares, indicando boa capacidade de generalização.

A comparação direta entre os modelos é apresentada na Figura 10, que mostra a
acurácia de teste de cada arquitetura.

Figura 10 – Comparação da acurácia de teste entre o modelo de rede convolucional
EfficientNetV2-S, transformador visual Tiny ViT e híbrido. Fonte: Elabo-
rado pelo autor (2025).

O modelo híbrido alcançou a melhor performance, mas de forma apenas marginal-
mente superior ao modelo convolucional. Esta superioridade limitada pode ser atribuída
à capacidade do modelo de combinar as características locais capturadas pelas camadas
convolucionais com os padrões globais identificados pelo mecanismo de atenção. Contudo,

49

a diferença é sutil, sugerindo que, para este conjunto de dados específico, as características
locais são predominantemente suficientes.

A Figura 11 apresenta a análise detalhada e por classes da acurácia de teste do
modelo EfficientNetV2-S.

Figura 11 – Análise detalhada da acurácia de teste do modelo EfficientNetV2-S. Apre-
senta acurácia e perda geral, precisão, revocação e F1-Score por classe espe-
cífica. Fonte: Elaborado pelo autor (2025).

O modelo convolucional demonstrou boa performance geral, com algumas varia-
ções entre as classes. A análise revela que o EfficientNetV2-S apresenta maior dificuldade
em distinguir entre espécies morfologicamente similares, como Hymenolepis nana e Hyme-
nolepis diminuta, o que é esperado considerando a complexidade da tarefa de classificação
de parasitas.

A Figura 12 mostra a análise detalhada da acurácia de teste do modelo Tiny Vision
Transformer.

Figura 12 – Análise detalhada da acurácia de teste do modelo Tiny Vision Transformer.
Apresenta acurácia e perda geral, precisão, revocação e F1-Score por classe
específica. Fonte: Elaborado pelo autor (2025).

O modelo baseado em atenção apresentou performance significativamente inferior

50 Capítulo 3. Resultados e Discussão

aos outros modelos, demonstrando limitações na captura de características específicas dos
ovos parasitários. Esta observação sugere que, para este conjunto de dados específico, as
características locais capturadas pelas camadas convolucionais são mais relevantes do que
os padrões globais identificados pelo mecanismo de atenção.

A Figura 13 apresenta a análise detalhada da acurácia de teste do modelo híbrido.

Figura 13 – Análise detalhada da acurácia de teste do modelo híbrido. Apresenta acurácia
e perda geral, precisão, revocação e F1-Score por classe específica. Fonte:
Elaborado pelo autor (2025).

O modelo híbrido apresentou a melhor performance geral ainda que ligeiramente,
demonstrando a eficácia da combinação de arquiteturas complementares. A análise revela
que a combinação de características locais e globais melhora a capacidade de discrimina-
ção, embora os ganhos sejam modestos comparados ao modelo convolucional isolado.

A Figura 14 apresenta a matriz de confusão do modelo convolucional.

Figura 14 – Matriz de confusão do modelo EfficientNetV2-S. Apresenta em números o
resultado da previsão do modelo, comparando o valor real com o previsto.
Fonte: Elaborado pelo autor (2025).

51

O modelo convolucional demonstrou boa capacidade de discriminação entre as
classes, com algumas confusões ocorrendo principalmente entre espécies que apresentam
características morfológicas semelhantes. Esta é uma limitação esperada, considerando a
complexidade da tarefa de classificação de parasitas.

A Figura 15 mostra a matriz de confusão do modelo baseado em atenção.

Figura 15 – Matriz de confusão do modelo Tiny Vision Transformer. Apresenta em nú-
meros o resultado da previsão do modelo, comparando o valor real com o
previsto. Fonte: Elaborado pelo autor (2025).

O modelo baseado em atenção apresentou padrões de confusão similares ao modelo
convolucional, mas com algumas diferenças na distribuição dos erros. Esta observação
sugere que ambos os modelos capturam características complementares dos dados, embora
o modelo convolucional tenha apresentado performance geral superior.

52 Capítulo 3. Resultados e Discussão

A Figura 16 apresenta a matriz de confusão do modelo híbrido.

Figura 16 – Matriz de confusão do modelo híbrido. Apresenta em números o resultado da
previsão do modelo, comparando o valor real com o previsto. Fonte: Elaborado
pelo autor (2025).

O modelo híbrido apresentou a menor taxa de confusão entre classes, demonstrando
que a combinação de características locais e globais melhora a capacidade de discrimina-
ção. Contudo, a melhoria é sutil comparada ao modelo convolucional, sugerindo que, para
esta tarefa específica, as características locais são predominantemente suficientes.

Além da precisão, a eficiência computacional é um aspecto crucial para aplicações
práticas em ambientes clínicos. A Tabela 2 apresenta uma comparação dos tempos de
treinamento e inferência dos modelos.

Tabela 2 – Comparação da eficiência computacional dos modelos

Modelo Tempo de Treinamento (min) Tempo de Inferência (ms)
EfficientNetV2-S 45 12
Tiny ViT 52 18
Modelo Híbrido 78 25

Fonte: Elaborado pelo autor (2025).

O modelo EfficientNetV2-S apresentou o melhor equilíbrio entre precisão e eficiên-
cia, com menor tempo de treinamento e inferência. O modelo híbrido, apesar de apresentar
a melhor precisão, requer significativamente mais recursos computacionais, o que pode ser
uma limitação em ambientes com recursos limitados. A Figura 17 apresenta um exemplo
de inferência do modelo convolucional para a classe Ascaris lumbricoides, comparado com
a fonte de verdade que foi referência para treinar todos os modelos.

53

Figura 17 – Comparação entre base (esquerda) e inferência do modelo de rede convoluci-
onal (direita) para a classe Ascaris lumbricoides. Fonte: Elaborado pelo autor
(2025).

A comparação com trabalhos existentes na literatura permite contextualizar os
resultados obtidos e identificar as contribuições específicas desta pesquisa. O trabalho de
Xu et al. (2024) propõe o YAC-Net, um modelo leve baseado em YOLOv5n modificado
para detecção de ovos de parasitas. Modificam o modelo com AFPN (Asymptotic Fea-
ture Pyramid Network) e módulo C2f para redução de parâmetros, atingindo acurácia de
97,8%, revocação de 97,7% e F1-score de 0,9773. O AFPN é uma rede de característi-
cas piramidais que utiliza conexões assintóticas para melhorar a fusão de características
em diferentes escalas, enquanto o módulo C2f (Cross-Concatenation) substitui o módulo
C3 tradicional, reduzindo parâmetros por meio de conexões cruzadas mais eficientes. O
modelo híbrido deste trabalho apresenta acurácia de teste de 86,7%.

AlDahoul et al. (2023) utiliza CoAtNet (Convolution and Attention Network) Dai
et al. (2021) para classificação de ovos de parasitas, apresentando uma abordagem que
combina redes convolucionais e mecanismos de atenção. Utilizam o CoAtNet0 com 25
milhões de parâmetros, atingindo acurácia média de 93% e F1-score de 93%.

A comparação com esses trabalhos revela que os modelos explorados neste trabalho
apresentam em média uma perda de acurácia de 8%, pode-se atribuir essa perda à natureza
da simplicidade computacional buscada pelos modelos.

É importante notar que os trabalhos utilizam o mesmo conjunto de dados tratado
de formas diferentes, o que pode influenciar a comparação direta de resultados. Cada
trabalho tem objetivos específicos, seja detecção, classificação ou eficiência, o que justifica
as diferentes abordagens.

O modelo híbrido apresentou a melhor performance geral, mas de forma apenas
marginalmente superior ao modelo convolucional. Essa observação é particularmente inte-
ressante e merece uma análise mais profunda. A superioridade limitada do modelo híbrido
pode ser atribuída a vários fatores, incluindo a natureza específica do conjunto de dados
e as características particulares da tarefa de classificação de parasitas.

A análise das curvas de treinamento revela que tanto o modelo convolucional
quanto o híbrido apresentaram performance significativamente superior ao modelo Tiny

54 Capítulo 3. Resultados e Discussão

Vision Transformer. Esta diferença substancial sugere que, para este conjunto de da-
dos específico, as características locais capturadas pelas camadas convolucionais são mais
relevantes do que os padrões globais identificados pelo mecanismo de atenção.

A análise detalhada por classe, apresentada nas Figuras 11, 12 e 13, revela padrões
importantes sobre o comportamento dos modelos. O modelo Tiny Vision Transformer
apresentou performance particularmente baixa em algumas espécies, como Hymenolepis
nana, o que pode explicar sua performance geral inferior.

Esta limitação do modelo baseado em atenção pode estar relacionada ao tamanho
reduzido do conjunto de dados ou à natureza específica das características morfológicas
dos ovos de parasitas, que podem ser mais adequadamente capturadas por operações con-
volucionais locais. Os transformadores, que dependem de mecanismos de atenção global,
podem requerer conjuntos de dados maiores para atingir o correspondente desempenho
ótimo.

A análise das matrizes de confusão revelou que as principais dificuldades de clas-
sificação ocorrem entre espécies morfologicamente similares, como Hymenolepis nana e
Hymenolepis diminuta. Esta é uma limitação esperada, considerando a complexidade da
tarefa e a variabilidade natural entre espécies. A performance inferior do modelo Tiny
Vision Transformer em algumas dessas classes pode estar relacionada à sua dificuldade
em capturar diferenças sutis que são mais facilmente identificadas por operações con-
volucionais locais. A Figura 18 representa a comparação entre a inferência do modelo
transformador visual com a base de referência para a classe Hymenolepis nana.

55

Figura 18 – Comparação entre base (esquerda) e inferência do modelo Tiny Vision Trans-
former (direita) para a classe Hymenolepis nana. Fonte: Elaborado pelo autor
(2025).

A eficiência de recursos, aspecto fundamental deste trabalho, foi demonstrada atra-
vés da comparação dos tempos de treinamento e inferência. O modelo EfficientNetV2-S
apresentou o melhor equilíbrio entre precisão e eficiência, sendo particularmente adequado
para implementação em ambientes com recursos computacionais limitados.

Os resultados sugerem que, para conjuntos de dados de tamanho moderado como o
utilizado neste trabalho, arquiteturas convolucionais otimizadas podem oferecer a melhor
relação custo-benefício. A abordagem híbrida, apesar de apresentar ganhos modestos em
precisão, requer significativamente mais recursos computacionais, o que pode não ser
justificado para todas as aplicações práticas.

57

4 Conclusão

Este trabalho apresentou uma abordagem para a classificação automatizada de
ovos de parasitas intestinais voltada para a eficiência computacional, combinando arquite-
turas convolucionais e baseadas em atenção através de um modelo híbrido. Os resultados
demonstraram que todas as arquiteturas avaliadas são capazes de realizar a classifica-
ção com um nível de acurácia superior a 70%. O modelo híbrido apresentou a melhor
performance (86,7%), seguido por um resultado bem próximo do modelo convolucional
EfficientNetV2-S (86,5%). A acurácia de menor resultado foi a do Tiny Vision Transfor-
mer (71%).

A normalização e o tratamento de dados específicos para imagens microscópicas
permitiram estender a robustez dos modelos e melhorar a generalização para novas amos-
tras. O código desenvolvido é estável e reproduzível, garantindo que os mesmos resultados
sejam obtidos em execuções subsequentes do experimento.

A eficiência de recursos, aspecto fundamental desse trabalho, foi demonstrada atra-
vés da comparação dos tempos de treinamento e inferência. O modelo EfficientNetV2-S
apresentou o melhor equilíbrio entre precisão e eficiência, sendo particularmente adequado
para implementação em ambientes clínicos com recursos computacionais limitados.

A análise das matrizes de confusão revelou que as principais dificuldades de clas-
sificação ocorrem entre espécies morfologicamente similares, como Hymenolepis nana e
Hymenolepis diminuta. Essa é uma limitação esperada, considerando a complexidade da
tarefa e a variabilidade natural entre espécies. A performance inferior do modelo Tiny
Vision Transformer em algumas dessas classes pode estar relacionada à sua dificuldade
em capturar diferenças sutis que são mais facilmente identificadas por operações convo-
lucionais locais. Os transformadores, que dependem de mecanismos de atenção global,
podem requerer conjuntos de dados maiores para atingir seu desempenho ótimo.

A comparação com trabalhos existentes na literatura, como o YAC-Net de (XU
et al., 2024) e o CoAtNet de (ALDAHOUL et al., 2023), demonstrou que a modelagem
desenvolvida neste trabalho, apesar de não atingir os mesmos níveis de acurácia, apresenta
uma boa performance com um custo operacional muito inferior. Destaca-se a abordagem
híbrida aplicada, que não havia sido contemplada nos demais trabalhos de referência.

As possibilidades de se trabalhar com diferentes arquiteturas neurais abrem es-
paço para a generalização de diversos problemas de classificação médica. Apesar de haver
outras formas de soluções tanto para classificação quanto para detecção de parasitas, uma
abordagem híbrida permite combinar as vantagens de diferentes arquiteturas ao mesmo
tempo que mantém a flexibilidade para diferentes aplicações.

Trabalhos futuros acerca desse tema podem envolver testes com conjuntos de da-
dos maiores e mais diversos, aplicação das técnicas apresentadas aqui em outras áreas da

58 Capítulo 4. Conclusão

biomédica, como a classificação de outros tipos de células ou microorganismos, e tam-
bém o refino da técnica de modo a contornar os problemas intrínsecos das redes neurais
demonstrados nesse trabalho, como a necessidade de grandes conjuntos de dados para
transformadores e a otimização de hiperparâmetros.

Outro exemplo de futuro trabalho com aplicação biomédica similar seria reprodu-
zir a aplicação de arquiteturas neurais para exames em fezes, porém com o enfoque de
detecção de sangue em vez da classificação de parasitas.

A combinação de diferentes arquiteturas por meio de técnicas de aprendizado em
conjunto (do inglês, ensemble learning) mais sofisticadas, como média ponderada (do
inglês, weighted averaging) ou empilhamento (do inglês, stacking) (GANAIE et al., 2022),
pode melhorar ainda mais a performance dos modelos. A exploração de arquiteturas mais
recentes, como modelos de atenção especializados em microscopia, também representa
uma direção promissora para futuras investigações.

Em conclusão, este trabalho demonstrou a viabilidade e eficácia da aplicação de
técnicas de aprendizado profundo para a classificação automatizada de ovos de parasitas
intestinais, oferecendo uma solução equilibrada entre precisão e eficiência computacional,
adequada para implementação em ambientes clínicos com recursos limitados.

59

Referências

ALDAHOUL, N. et al. Parasitic egg recognition using convolution and attention
network. Scientific Reports, Nature Research, v. 13, 12 2023. ISSN 20452322. Citado 5
vezes nas páginas 20, 34, 42, 53 e 57.

ANANTRASIRICHAI, N. et al. ICIP 2022 Challenge on Parasitic Egg Detection and
Classification in Microscopic Images: Dataset, Methods and Results. 2022. Disponível
em: <https://arxiv.org/abs/2208.06063>. Citado 2 vezes nas páginas 33 e 34.

CHOLLET, F. Deep Learning with Python. [S.l.]: Manning Publications Co., 2021.
Citado 8 vezes nas páginas 9, 19, 23, 24, 25, 27, 28 e 29.

DAI, Z. et al. CoAtNet: Marrying Convolution and Attention for All Data Sizes. 2021.
Disponível em: <https://arxiv.org/abs/2106.04803>. Citado na página 53.

DOSOVITSKIY, A. et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arxiv, 10 2020. Disponível em: <http://arxiv.org/abs/2010.11929>.
Citado 5 vezes nas páginas 9, 19, 29, 30 e 31.

GANAIE, M. et al. Ensemble deep learning: A review. Engineering Applications of
Artificial Intelligence, Elsevier BV, v. 115, p. 105151, out. 2022. ISSN 0952-1976.
Disponível em: <http://dx.doi.org/10.1016/j.engappai.2022.105151>. Citado 2 vezes
nas páginas 40 e 58.

GOODFELLOW, I.; BENGIO, Y.; COURVILLE, A. Deep Learning. [S.l.]: MIT Press,
2016. <http://www.deeplearningbook.org>. Citado na página 24.

GUJO, A. B.; KARE, A. P. Prevalence of intestinal parasite infection and its association
with anemia among children aged 6 to 59 months in sidama national regional state,
southern ethiopia. Clinical Medicine Insights: Pediatrics, SAGE Publications, v. 15, p.
117955652110292, 1 2021. ISSN 1179-5565. Citado 2 vezes nas páginas 31 e 32.

HARRIS, C. R. et al. Array programming with NumPy. [S.l.]: Nature Research, 2020.
357-362 p. Citado na página 41.

HUNTER, J. D. Matplotlib: A 2d graphics environment. Computing in Science
Engineering, v. 9, n. 3, p. 90–95, 2007. Citado na página 41.

KUMAR, S. et al. An efficient and effective framework for intestinal parasite
egg detection using yolov5. National Library of Medicine, 2023. Disponível em:
<https://doi.org/10.3390/diagnostics13182978>. Citado 2 vezes nas páginas 20 e 32.

LECUN, Y. et al. Gradient-based learning applied to document recognition. Proceedings
of the IEEE, v. 86, n. 11, p. 2278–2324, 1998. Citado na página 19.

LEPPICH, R. Pre-training of deep transformer encoders for time series representation
models. 2021. Disponível em: <https://www.researchgate.net/publication/353346900>.
Citado 2 vezes nas páginas 9 e 27.

LOSHCHILOV, I.; HUTTER, F. Decoupled Weight Decay Regularization. 2019.
Disponível em: <https://arxiv.org/abs/1711.05101>. Citado na página 42.

https://arxiv.org/abs/2208.06063
https://arxiv.org/abs/2106.04803
http://arxiv.org/abs/2010.11929
http://dx.doi.org/10.1016/j.engappai.2022.105151
http://www.deeplearningbook.org
https://doi.org/10.3390/diagnostics13182978
https://www.researchgate.net/publication/353346900
https://arxiv.org/abs/1711.05101

60 Referências

MAO, A.; MOHRI, M.; ZHONG, Y. Cross-Entropy Loss Functions: Theoretical Analysis
and Applications. 2023. Disponível em: <https://arxiv.org/abs/2304.07288>. Citado
na página 35.

MCKINNEY, W. pandas: a Foundational Python Library for Data Analysis and Statistics.
[S.l.], 2011. Disponível em: <https://www.researchgate.net/publication/265194455>.
Citado na página 41.

MITCHELL, T. M. Machine Learning. [S.l.]: McGraw-Hill, 1997. 414 p. ISBN
0070428077. Citado na página 19.

MURPHY, K. P. Machine learning : a probabilistic perspective. [S.l.]: MIT Press, 2012.
1067 p. ISBN 9780262018029. Citado na página 24.

NIELSEN, M. A. Neural Networks and Deep Learning. [S.l.]: Determination Press, 2015.
Citado 2 vezes nas páginas 9 e 26.

PALASUWAN, D. et al. Parasitic egg detection and classification in microscopic images.
IEEE Dataport, 2022. Disponível em: <https://dx.doi.org/10.21227/vyh8-4h71>.
Citado na página 33.

PASZKE, A. et al. PyTorch: An Imperative Style, High-Performance Deep Learning
Library. [S.l.], 2019. Citado 4 vezes nas páginas 25, 27, 28 e 41.

PEDREGOSA, F. et al. Scikit-learn: Machine Learning in Python. 2018. Disponível em:
<https://arxiv.org/abs/1201.0490>. Citado na página 41.

PRINCE, S. J. D. Understanding Deep Learning. [S.l.]: MIT Press, 2024. Citado 2 vezes
nas páginas 25 e 27.

SUTTON, R. S.; BARTO, A. G. Reinforcement Learning: An Introduction Second
edition, in progress. [S.l.], 2015. Citado na página 25.

TAN, M.; LE, Q. V. EfficientNet: Rethinking Model Scaling for Convolutional Neural
Networks. 2020. Disponível em: <https://arxiv.org/abs/1905.11946>. Citado na página
36.

TAN, M.; LE, Q. V. EfficientNetV2: Smaller Models and Faster Training. 2021.
Disponível em: <https://arxiv.org/abs/2104.00298>. Citado 2 vezes nas páginas 36
e 37.

VASWANI, A. et al. Attention Is All You Need. [S.l.], 2017. Citado 2 vezes nas páginas
29 e 30.

WASKOM, M. L. seaborn: statistical data visualization. Journal of Open Source
Software, The Open Journal, v. 6, n. 60, p. 3021, 2021. Disponível em: <https:
//doi.org/10.21105/joss.03021>. Citado na página 41.

WU, K. et al. TinyViT: Fast Pretraining Distillation for Small Vision Transformers.
2022. Disponível em: <https://arxiv.org/abs/2207.10666>. Citado 3 vezes nas páginas
9, 38 e 39.

XU, W. et al. A lightweight deep-learning model for parasite egg detection in microscopy
images. Parasites vectors, v. 17, p. 454, 12 2024. ISSN 17563305. Citado 3 vezes nas
páginas 20, 53 e 57.

https://arxiv.org/abs/2304.07288
https://www.researchgate.net/publication/265194455
https://dx.doi.org/10.21227/vyh8-4h71
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2104.00298
https://doi.org/10.21105/joss.03021
https://doi.org/10.21105/joss.03021
https://arxiv.org/abs/2207.10666

Referências 61

YIMER, M. et al. Evaluation performance of diagnostic methods of intestinal parasitosis
in school age children in ethiopia. BMC Research Notes, BioMed Central, v. 8, 12 2015.
ISSN 17560500. Citado na página 32.

Apêndices

65

APÊNDICE A – Código Fonte

A.1 Arquivo Principal: run_optimized.py

Listing A.1 – Arquivo principal do experimento
1 #!/ usr/bin/env python3

2

3 import torch

4 import numpy as np

5 import matplotlib . pyplot as plt

6 import seaborn as sns

7 import pandas as pd

8 from sklearn . metrics import classification_report

9 import json

10 import os

11 import sys

12 import argparse

13

14 from trainer_optimized import ParasiteTrainerOptimized

15 from models import get_model_summary

16 import config_optimized

17

18 def set_random_seed (seed =42):

19 # Definir semente aleatória para reprodu ção

20 torch. manual_seed (seed)

21 torch.cuda. manual_seed (seed)

22 torch.cuda. manual_seed_all (seed)

23 np. random .seed(seed)

24 torch. backends .cudnn. deterministic = True

25 torch. backends .cudnn. benchmark = False

26

27 def train_single_model (model_type : str , force_train =False):

28 # Treinar um único modelo

29 set_random_seed ()

30

31 print(f"\n{ ’= ’*60}")

32 print(f" TREINANDO MODELO { model_type .upper ()}")

33 print(f"{ ’= ’*60}")

34

66 APÊNDICE A. Código Fonte

35 cfg = config_optimized . config

36 trainer = ParasiteTrainerOptimized (model_type , cfg)

37

38 # Verificar se existe um modelo salvo e se o treinamento é

→˓ forçado

39 model_path = f"{cfg. model_save_dir }/{ model_type }_best.pth"

40 if os.path. exists (model_path) and not force_train :

41 print(f" Modelo { model_type .upper ()} já treinado

→˓ encontrado em { model_path }")

42 print(" Pulando treinamento e indo direto para avalia ção

→˓ ...")

43 print("Use --force -train para treinar novamente .")

44 checkpoint = torch.load(model_path , map_location =’cpu ’)

45 trainer . best_val_accuracy = checkpoint .get(’

→˓ best_val_accuracy ’, 0.0)

46 print(f" Melhor acurácia de valida ção carregada : { trainer .

→˓ best_val_accuracy :.4f}")

47 else:

48 if force_train and os.path. exists (model_path):

49 print(f"Forçando retreinamento do modelo { model_type .

→˓ upper () }...")

50 else:

51 print(f" Treinando modelo { model_type .upper () }...")

52 trainer .train ()

53

54 # Avaliar no conjunto de teste

55 print(f"\ nAvaliando modelo { model_type .upper ()} no conjunto

→˓ de teste ...")

56 test_results = trainer . evaluate ()

57

58 trainer . save_results (test_results)

59

60 # Plotar histórico de treinamento

61 trainer . plot_training_history ()

62

63 # Plotar matriz de confus ão

64 class_names = list(trainer . class_to_idx .keys ())

65 trainer . plot_confusion_matrix (test_results [’confusion_matrix ’

→˓], class_names)

66

67 # Plotar análise detalhada de acurácia de teste

68 trainer . plot_test_accuracy_analysis (test_results)

A.1. Arquivo Principal: run_optimized.py 67

69

70 print(f" Resultados do Modelo { model_type .upper ()}:")

71 print(f"Acurácia de Teste: { test_results [’ accuracy ’]:.4f}")

72 print(f"Perda de Teste: { test_results [’loss ’]:.4f}")

73 print(f" Melhor Acurácia de Valida ção: { trainer .

→˓ best_val_accuracy :.4f}")

74

75 return {

76 ’accuracy ’: test_results [’accuracy ’],

77 ’loss ’: test_results [’loss ’],

78 ’classification_report ’: test_results [’

→˓ classification_report ’],

79 ’best_val_accuracy ’: trainer . best_val_accuracy

80 }

81

82 def train_all_models (force_train =False):

83 # Treinar todos os três modelos

84 set_random_seed ()

85

86 models = [’cnn ’, ’vit ’, ’hybrid ’]

87 results = {}

88

89 for model_type in models :

90 print(f"\n{ ’= ’*60}")

91 print(f" TREINANDO MODELO { model_type .upper ()}")

92 print(f"{ ’= ’*60}")

93

94 cfg = config_optimized . config

95 trainer = ParasiteTrainerOptimized (model_type , cfg)

96

97 model_path = f"{cfg. model_save_dir }/{ model_type }_best.pth

→˓ "

98 if os.path. exists (model_path) and not force_train :

99 print(f" Modelo { model_type .upper ()} já treinado

→˓ encontrado em { model_path }")

100 print(" Pulando treinamento e indo direto para avalia ç

→˓ ão...")

101 print("Use --force -train para treinar novamente .")

102 checkpoint = torch.load(model_path , map_location =’cpu

→˓ ’)

103 trainer . best_val_accuracy = checkpoint .get(’

→˓ best_val_accuracy ’, 0.0)

68 APÊNDICE A. Código Fonte

104 print(f" Melhor acurácia de valida ção carregada : {

→˓ trainer . best_val_accuracy :.4f}")

105 else:

106 if force_train and os.path. exists (model_path):

107 print(f"Forçando retreinamento do modelo {

→˓ model_type .upper () }...")

108 else:

109 print(f" Treinando modelo { model_type .upper () }..."

→˓)

110 trainer .train ()

111

112 print(f"\ nAvaliando modelo { model_type .upper ()} no

→˓ conjunto de teste ...")

113 test_results = trainer . evaluate ()

114

115 trainer . save_results (test_results)

116

117 trainer . plot_training_history ()

118

119 class_names = list(trainer . class_to_idx .keys ())

120 trainer . plot_confusion_matrix (test_results [’

→˓ confusion_matrix ’], class_names)

121

122 trainer . plot_test_accuracy_analysis (test_results)

123

124 results [model_type] = {

125 ’accuracy ’: test_results [’accuracy ’],

126 ’loss ’: test_results [’loss ’],

127 ’classification_report ’: test_results [’

→˓ classification_report ’],

128 ’best_val_accuracy ’: trainer . best_val_accuracy

129 }

130

131 print(f" Resultados do Modelo { model_type .upper ()}:")

132 print(f"Acurácia de Teste: { test_results [’ accuracy ’]:.4f}

→˓ ")

133 print(f"Perda de Teste: { test_results [’loss ’]:.4f}")

134 print(f" Melhor Acurácia de Valida ção: { trainer .

→˓ best_val_accuracy :.4f}")

135

136 return results

137

A.1. Arquivo Principal: run_optimized.py 69

138 def compare_models (results):

139 # Comparar e visualizar resultados de todos os modelos

140 model_names_pt = {

141 ’cnn ’: ’CNN ’,

142 ’vit ’: ’ViT ’,

143 ’hybrid ’: ’Hibrido ’

144 }

145

146 comparison_data = []

147 for model_type , result in results .items ():

148 comparison_data . append ({

149 ’Model ’: model_names_pt .get(model_type , model_type .

→˓ upper ()),

150 ’Test Accuracy ’: result [’accuracy ’],

151 ’Test Loss ’: result [’loss ’],

152 ’Best Val Accuracy ’: result [’best_val_accuracy ’]

153 })

154

155 df = pd. DataFrame (comparison_data)

156 print("\ nCompara ção de Performance dos Modelos :")

157 print(df. to_string (index=False))

158

159 # Criar gráficos de compara ção

160 fig , ((ax1 , ax2), (ax3 , ax4)) = plt. subplots (2, 2, figsize

→˓ =(16 , 12))

161

162 # Compara ção de acurácia

163 models = [data[’Model ’] for data in comparison_data]

164 test_accuracies = [data[’Test Accuracy ’] for data in

→˓ comparison_data]

165 val_accuracies = [data[’Best Val Accuracy ’] for data in

→˓ comparison_data]

166

167 x = np. arange (len(models))

168 width = 0.35

169

170 bars1 = ax1.bar(x - width /2, test_accuracies , width , label=’

→˓ Acurácia de Teste ’, alpha =0.8 , color=’#2 E86AB ’)

171 bars2 = ax1.bar(x + width /2, val_accuracies , width , label=’

→˓ Acurácia de Valida ção’, alpha =0.8 , color=’# A23B72 ’)

172 ax1. set_xlabel (’Modelos ’)

173 ax1. set_ylabel (’Acurácia ’)

70 APÊNDICE A. Código Fonte

174 ax1. set_title (’Compara ção de Acurácia dos Modelos ’)

175 ax1. set_xticks (x)

176 ax1. set_xticklabels (models)

177 ax1. legend ()

178 ax1.grid(True , alpha =0.3)

179

180 # Adicionar rótulos de valores

181 for bar , acc in zip(bars1 , test_accuracies):

182 height = bar. get_height ()

183 ax1.text(bar.get_x () + bar. get_width ()/2., height + 0.01 ,

184 f’{acc :.3f}’, ha=’center ’, va=’bottom ’,

→˓ fontweight =’bold ’)

185

186 for bar , acc in zip(bars2 , val_accuracies):

187 height = bar. get_height ()

188 ax1.text(bar.get_x () + bar. get_width ()/2., height + 0.01 ,

189 f’{acc :.3f}’, ha=’center ’, va=’bottom ’,

→˓ fontweight =’bold ’)

190

191 # Compara ção de perda

192 test_losses = [data[’Test Loss ’] for data in comparison_data]

193 bars3 = ax2.bar(models , test_losses , alpha =0.8 , color=’#

→˓ F18F01 ’)

194 ax2. set_xlabel (’Modelos ’)

195 ax2. set_ylabel (’Perda ’)

196 ax2. set_title (’Compara ção de Perda dos Modelos ’)

197 ax2.grid(True , alpha =0.3)

198

199 # Adicionar rótulos de valores

200 for bar , loss in zip(bars3 , test_losses):

201 height = bar. get_height ()

202 ax2.text(bar.get_x () + bar. get_width ()/2., height + 0.05 ,

203 f’{loss :.3f}’, ha=’center ’, va=’bottom ’,

→˓ fontweight =’bold ’)

204

205 # Análise detalhada por classe

206 accuracy_data = []

207 for model_type , result in results .items ():

208 report = result [’classification_report ’]

209 for class_name , metrics in report .items ():

210 if isinstance (metrics , dict) and ’precision ’ in

→˓ metrics :

A.1. Arquivo Principal: run_optimized.py 71

211 accuracy_data . append ({

212 ’Model ’: model_names_pt .get(model_type ,

→˓ model_type .upper ()),

213 ’Class ’: class_name ,

214 ’Precision ’: metrics [’precision ’],

215 ’Recall ’: metrics [’recall ’],

216 ’F1 -Score ’: metrics [’f1 -score ’]

217 })

218

219 accuracy_df = pd. DataFrame (accuracy_data)

220

221 # Compara ção de F1 -Score por classe

222 pivot_f1 = accuracy_df .pivot(index=’Class ’, columns =’Model ’,

→˓ values =’F1 -Score ’)

223 pivot_f1 .plot(kind=’bar ’, ax=ax3 , alpha =0.8 , color =[’#2 E86AB ’

→˓ , ’# A23B72 ’, ’# F18F01 ’])

224 ax3. set_title (’F1 -Score por Classe e Modelo ’)

225 ax3. set_xlabel (’Classes ’)

226 ax3. set_ylabel (’F1 -Score ’)

227 ax3. legend (title=’Modelo ’)

228 ax3. tick_params (axis=’x’, rotation =45)

229 ax3.grid(True , alpha =0.3)

230

231 # Gráfico de dispers ão de precis ão vs revoca ção

232 for i, model in enumerate (models):

233 model_data = accuracy_df [accuracy_df [’Model ’] == model]

234 ax4. scatter (model_data [’Precision ’], model_data [’Recall ’

→˓],

235 s=100 , alpha =0.7 , label=model ,

236 color =[’#2 E86AB ’, ’# A23B72 ’, ’# F18F01 ’][i])

237

238 ax4. set_title (’Precis ão vs Revoca ção por Classe ’)

239 ax4. set_xlabel (’Precis ão’)

240 ax4. set_ylabel (’Revoca ção’)

241 ax4. legend ()

242 ax4.grid(True , alpha =0.3)

243

244 # Adicionar linha diagonal de referência

245 ax4.plot ([0, 1], [0, 1], ’k--’, alpha =0.5 , label=’Linha de

→˓ Referência ’)

246

247 plt. tight_layout ()

72 APÊNDICE A. Código Fonte

248 cfg = config_optimized . config

249 plt. savefig (f"{cfg. results_dir }/ model_comparison_optimized .

→˓ png", dpi =300 , bbox_inches =’tight ’)

250 plt.show ()

251

252 comparison_path = f"{cfg. results_dir }/

→˓ model_comparison_optimized .json"

253 with open(comparison_path , ’w’) as f:

254 json.dump(results , f, indent =4)

255

256 print(f"\ nResultados da compara ção salvos em { comparison_path

→˓ }")

257

258 # Imprimir melhor modelo

259 best_model = max(results .items (), key= lambda x: x[1][’

→˓ accuracy ’])

260 print(f"\ nMELHOR MODELO : { best_model [0]. upper ()}")

261 print(f" Acurácia de Teste: { best_model [1][’ accuracy ’]:.4f}

→˓ ")

262 print(f" Perda de Teste: { best_model [1][’ loss ’]:.4f}")

263

264 # Analisar sobreajuste

265 print(f"\ nANALISE DE SOBREAJUSTE :")

266 for model_type , result in results .items ():

267 val_acc = result [’best_val_accuracy ’] / 100.0

268 test_acc = result [’accuracy ’]

269 overfitting_gap = val_acc - test_acc

270 print(f" { model_type .upper ()}: Valida ção { val_acc :.3f}

→˓ -> Teste { test_acc :.3f} (Gap: { overfitting_gap :.3f})

→˓ ")

271

272 def main ():

273 parser = argparse . ArgumentParser (description =’Treinar modelos

→˓ de detecção de parasitas ’)

274 parser . add_argument (’--model ’, type=str , choices =[’cnn ’, ’vit

→˓ ’, ’hybrid ’, ’all ’],

275 default =’all ’, help=’Modelo a ser treinado

→˓ (padrão: all)’)

276 parser . add_argument (’--force -train ’, action =’store_true ’,

→˓ help=’Forçar retreinamento de modelos que já existem ’)

277

278 args = parser . parse_args ()

A.2. Treinador Otimizado: trainer_optimized.py 73

279

280 print(f"\n{ ’= ’*70}")

281 print(" EXPERIMENTO ")

282 print(f"{ ’= ’*70}")

283 print(" Configura ções:")

284 cfg = config_optimized . config

285 print(f" - Tamanho da imagem : {cfg. image_size }x{cfg.

→˓ image_size }")

286 print(f" - Tamanho do batch: {cfg. batch_size }")

287 print(f" - Taxa de aprendizado : {cfg. learning_rate }")

288 print(f" - Taxa de decaimento : {cfg. weight_decay }")

289 print(f" - Suavizacao de rotulos : {cfg. label_smoothing }")

290 print(f" - Gradiente : {cfg. gradient_clip }")

291 print(f" - Agendador de taxa de aprendizado :

→˓ ReduceLROnPlateau ")

292 print(f" - Tratamento de dados: Embaç amento + Ruído")

293 print(f"{ ’= ’*70}")

294

295 if args.model == ’all ’:

296 results = train_all_models (args. force_train)

297 compare_models (results)

298 else:

299 result = train_single_model (args.model , args. force_train)

300 compare_models ({ args.model: result })

301

302 if __name__ == " __main__ ":

303 main ()

A.2 Treinador Otimizado: trainer_optimized.py

Listing A.2 – Classe do treinador otimizado
1 import torch

2 import torch.nn as nn

3 import torch.optim as optim

4 from torch.optim. lr_scheduler import ReduceLROnPlateau

5 import numpy as np

6 import matplotlib . pyplot as plt

7 import seaborn as sns

8 from sklearn . metrics import classification_report ,

→˓ confusion_matrix

74 APÊNDICE A. Código Fonte

9 import json

10 import os

11 from tqdm import tqdm

12 import config_optimized

13 from dataset_optimized import get_dataloaders_optimized

14 from models import get_model , get_model_summary

15

16 class ParasiteTrainerOptimized :

17 def __init__ (self , model_type : str , config):

18 self. model_type = model_type

19 self. config = config

20 self. device = torch. device (config . device)

21

22 # Obter dataloaders

23 self. train_loader , self.val_loader , self. test_loader ,

→˓ self. class_to_idx = get_dataloaders_optimized (config

→˓)

24

25 self.model = self. _create_model ()

26 self.model.to(self. device)

27

28 # Função de perda com suaviza ção de rótulos

29 self. criterion = nn. CrossEntropyLoss (label_smoothing =

→˓ config . label_smoothing)

30

31 # Otimizador

32 self. optimizer = optim.AdamW(

33 self.model. parameters (),

34 lr= config . learning_rate ,

35 weight_decay = config . weight_decay

36)

37

38 # Agendador de taxa de aprendizado

39 self. scheduler = ReduceLROnPlateau (

40 self.optimizer ,

41 mode=’max ’,

42 factor = config . scheduler_factor ,

43 patience = config . scheduler_patience ,

44 min_lr = config . scheduler_min_lr

45)

46

47 self. train_losses = []

A.2. Treinador Otimizado: trainer_optimized.py 75

48 self. val_losses = []

49 self. train_accuracies = []

50 self. val_accuracies = []

51 self. best_val_accuracy = 0.0

52 self. patience_counter = 0

53

54 def _create_model (self):

55 # Criar modelo com base no tipo

56 from models import get_model , get_model_summary

57 model = get_model (self.model_type , self. config)

58 get_model_summary (model , input_size =(3, self. config .

→˓ image_size , self. config . image_size))

59 return model

60

61 def get_model_name_pt (self):

62 # Traduzir

63 model_names = {

64 ’cnn ’: ’CNN ’,

65 ’vit ’: ’ViT ’,

66 ’hybrid ’: ’Híbrido ’

67 }

68 return model_names .get(self.model_type , self. model_type .

→˓ upper ())

69

70 def train_epoch (self):

71 # Treinar por uma época

72 self.model.train ()

73 total_loss = 0.0

74 correct = 0

75 total = 0

76

77 progress_bar = tqdm(self. train_loader , desc=f" Treinando {

→˓ self. model_type .upper ()}")

78

79 for batch_idx , (data , target) in enumerate (progress_bar):

80 data , target = data.to(self. device), target .to(self.

→˓ device)

81

82 self. optimizer . zero_grad ()

83 output = self.model(data)

84 loss = self. criterion (output , target)

85

76 APÊNDICE A. Código Fonte

86 torch.nn.utils. clip_grad_norm_ (self.model. parameters

→˓ (), self. config . gradient_clip)

87

88 loss. backward ()

89 self. optimizer .step ()

90

91 total_loss += loss.item ()

92 pred = output . argmax (dim =1, keepdim =True)

93 correct += pred.eq(target . view_as (pred)).sum ().item ()

94 total += target .size (0)

95

96 progress_bar . set_postfix ({

97 ’Loss ’: f’{loss.item () :.4f}’,

98 ’Acc ’: f’{100. * correct / total :.2f}%’

99 })

100

101 return total_loss / len(self. train_loader), correct /

→˓ total

102

103 def validate_epoch (self):

104 # Validar época

105 self.model.eval ()

106 total_loss = 0.0

107 correct = 0

108 total = 0

109

110 with torch. no_grad ():

111 for data , target in tqdm(self.val_loader , desc=f"

→˓ Validando {self. model_type .upper ()}"):

112 data , target = data.to(self. device), target .to(

→˓ self. device)

113 output = self.model(data)

114 loss = self. criterion (output , target)

115

116 total_loss += loss.item ()

117 pred = output . argmax (dim =1, keepdim =True)

118 correct += pred.eq(target . view_as (pred)).sum ().

→˓ item ()

119 total += target .size (0)

120

121 return total_loss / len(self. val_loader), correct / total

122

A.2. Treinador Otimizado: trainer_optimized.py 77

123 def train(self):

124 # Treinar com parada antecipada

125 print(f"\n{ ’= ’*60}")

126 print(f" TREINANDO MODELO {self. model_type .upper ()}")

127 print(f"{ ’= ’*60}")

128

129 for epoch in range(self. config . num_epochs):

130 print(f"\ nEpoca {epoch +1}/{ self. config . num_epochs }")

131

132 train_loss , train_acc = self. train_epoch ()

133

134 val_loss , val_acc = self. validate_epoch ()

135

136 self. scheduler .step(val_acc)

137

138 # Armazenar histórico

139 self. train_losses . append (train_loss)

140 self. val_losses . append (val_loss)

141 self. train_accuracies . append (train_acc)

142 self. val_accuracies . append (val_acc)

143

144 print(f"Perda de Treino : { train_loss :.4f}, Acurácia

→˓ de Treino : { train_acc :.4f}")

145 print(f"Perda de Valida ção: { val_loss :.4f}, Acurácia

→˓ de Valida ção: { val_acc :.4f}")

146 print(f"Taxa de Aprendizado : {self. optimizer .

→˓ param_groups [0][’ lr ’]:.2e}")

147

148 # Parada antecipada

149 if val_acc > self. best_val_accuracy :

150 self. best_val_accuracy = val_acc

151 self. patience_counter = 0

152 # Salvar melhor modelo

153 torch.save(self.model. state_dict (),

154 f"{self. config . model_save_dir }/{ self.

→˓ model_type }_best.pth")

155 print(f"Novo melhor modelo salvo! Acurácia: {

→˓ val_acc :.4f}")

156 else:

157 self. patience_counter += 1

158 print(f" Parada Antecipada : {self. patience_counter

→˓ }/{ self. config . patience }")

78 APÊNDICE A. Código Fonte

159

160 if self. patience_counter >= self. config . patience :

161 print(f" Parada Antecipada ativada após {epoch

→˓ +1} épocas")

162 break

163

164 print(f"\ nMelhor acurácia de valida ção: {self.

→˓ best_val_accuracy :.4f}")

165

166 def evaluate (self):

167 # Avaliar no conjunto de teste

168 print(f"\ nAvaliando modelo {self. model_type .upper ()} no

→˓ conjunto de teste ...")

169

170 # Carregar melhor modelo

171 best_model_path = f"{self. config . model_save_dir }/{ self.

→˓ model_type }_best.pth"

172 if os.path. exists (best_model_path):

173 self.model. load_state_dict (torch.load(best_model_path

→˓ , map_location =self. device))

174 print(" Modelo melhor carregado para avalia ção")

175

176 self.model.eval ()

177 test_loss = 0.0

178 all_predictions = []

179 all_targets = []

180

181 with torch. no_grad ():

182 for data , target in tqdm(self. test_loader , desc="

→˓ Avaliando "):

183 data , target = data.to(self. device), target .to(

→˓ self. device)

184 output = self.model(data)

185 loss = self. criterion (output , target)

186

187 test_loss += loss.item ()

188 pred = output . argmax (dim =1, keepdim =True)

189

190 all_predictions . extend (pred.cpu ().numpy (). flatten

→˓ ())

191 all_targets . extend (target .cpu ().numpy ())

192

A.2. Treinador Otimizado: trainer_optimized.py 79

193 test_loss /= len(self. test_loader)

194 test_accuracy = sum (1 for x, y in zip(all_predictions ,

→˓ all_targets) if x == y) / len(all_targets)

195

196 # Relatório de classifica ção

197 class_names = list(self. class_to_idx .keys ())

198 report = classification_report (all_targets ,

→˓ all_predictions ,

199 target_names = class_names ,

→˓ output_dict =True)

200

201 # Matriz de confus ão

202 cm = confusion_matrix (all_targets , all_predictions)

203

204 return {

205 ’accuracy ’: test_accuracy ,

206 ’loss ’: test_loss ,

207 ’classification_report ’: report ,

208 ’confusion_matrix ’: cm ,

209 ’predictions ’: all_predictions ,

210 ’targets ’: all_targets

211 }

212

213 def save_results (self , results):

214 # Salvar resultados em JSON

215 results_path = f"{self. config . results_dir }/{ self.

→˓ model_type } _results .json"

216

217 # Função auxiliar para converter tipos numpy para tipos

→˓ nativos Python

218 def convert_numpy_types (obj):

219 if isinstance (obj , np. ndarray):

220 if obj.size == 1:

221 return obj.item ()

222 else:

223 return obj. tolist ()

224 elif isinstance (obj , np. integer):

225 return int(obj)

226 elif isinstance (obj , np. floating):

227 return float(obj)

228 elif isinstance (obj , dict):

80 APÊNDICE A. Código Fonte

229 return {key: convert_numpy_types (value) for key ,

→˓ value in obj.items ()}

230 elif isinstance (obj , list):

231 return [convert_numpy_types (item) for item in obj

→˓]

232 else:

233 return obj

234

235 # Converter todos os resultados para formato JSON -

→˓ serializ ável

236 results_to_save = {

237 ’acuracia ’: convert_numpy_types (results [’accuracy ’]),

238 ’perda ’: convert_numpy_types (results [’loss ’]),

239 ’relatorio_classificacao ’: convert_numpy_types (

→˓ results [’classification_report ’]),

240 ’matriz_confusao ’: convert_numpy_types (results [’

→˓ confusion_matrix ’]),

241 ’predicoes ’: convert_numpy_types (results [’predictions

→˓ ’])

242 }

243

244 with open(results_path , ’w’, encoding =’utf -8’) as f:

245 json.dump(results_to_save , f, indent =4, ensure_ascii =

→˓ False)

246

247 print(f" Resultados salvos em { results_path }")

248

249 def plot_training_history (self):

250 # Plotar histórico de treinamento

251 fig , (ax1 , ax2) = plt. subplots (1, 2, figsize =(15 , 5))

252 num_epochs = len(self. train_losses)

253 epochs = list(range (1, num_epochs + 1))

254

255 def get_epoch_ticks (num_epochs):

256 if num_epochs <= 20:

257 return list(range (1, num_epochs + 1))

258 elif num_epochs <= 50:

259 ticks = list(range (1, num_epochs + 1, 5))

260 else:

261 ticks = list(range (1, num_epochs + 1, 10))

262 if ticks [-1] != num_epochs :

263 ticks. append (num_epochs)

A.2. Treinador Otimizado: trainer_optimized.py 81

264 return ticks

265 epoch_ticks = get_epoch_ticks (num_epochs)

266

267 # Plotar perda

268 ax1.plot(epochs , self. train_losses , label=’Treino ’, color

→˓ =’blue ’, marker =’o’)

269 ax1.plot(epochs , self.val_losses , label=’Valida ção’,

→˓ color=’red ’, marker =’o’)

270 ax1. set_title (f’Histórico de Perda - {self.

→˓ get_model_name_pt ()}’)

271 ax1. set_xlabel (’Epoca ’)

272 ax1. set_ylabel (’Perda ’)

273 ax1. legend ()

274 ax1.grid(True , alpha =0.3)

275 max_loss = max(self. train_losses + self. val_losses) if (

→˓ self. train_losses and self. val_losses) else 1

276 ax1. set_ylim (0, max_loss * 1.1)

277 ax1. set_xticks (epoch_ticks)

278

279 # Plotar acurácia

280 train_acc_pct = [acc * 100 for acc in self.

→˓ train_accuracies]

281 val_acc_pct = [acc * 100 for acc in self. val_accuracies]

282 ax2.plot(epochs , train_acc_pct , label=’Treino ’, color=’

→˓ blue ’, marker =’o’)

283 ax2.plot(epochs , val_acc_pct , label=’Valida ção’, color=’

→˓ red ’, marker =’o’)

284 ax2. set_title (f’Histórico de Acurácia - {self.

→˓ get_model_name_pt ()}’)

285 ax2. set_xlabel (’Epoca ’)

286 ax2. set_ylabel (’Acurácia (%) ’)

287 ax2. legend ()

288 ax2.grid(True , alpha =0.3)

289 ax2. set_ylim (0, 100)

290 ax2. set_yticks ([0, 20, 40, 60, 80, 100])

291 ax2. set_yticklabels ([’0%’, ’20% ’, ’40% ’, ’60% ’, ’80% ’, ’

→˓ 100% ’])

292 ax2. set_xticks (epoch_ticks)

293

294 plt. tight_layout ()

295 save_path = f"{self. config . results_dir }/{ self. model_type }

→˓ _training_history .png"

82 APÊNDICE A. Código Fonte

296 plt. savefig (save_path , dpi =300 , bbox_inches =’tight ’)

297 plt.close ()

298 print(f"Gráfico de histórico salvo em { save_path }")

299

300 def plot_confusion_matrix (self , cm , class_names):

301 # Plotar matriz de confus ão

302 plt. figure (figsize =(12 , 10))

303 sns. heatmap (cm , annot=True , fmt=’d’, cmap=’Blues ’,

304 xticklabels = class_names , yticklabels =

→˓ class_names)

305 plt.title(f’Matriz de Confus ão - {self. get_model_name_pt

→˓ ()}’)

306 plt. xlabel (’Predição’)

307 plt. ylabel (’Real ’)

308 plt. xticks (rotation =45)

309 plt. yticks (rotation =0)

310

311 save_path = f"{self. config . results_dir }/{ self. model_type }

→˓ _confusion_matrix .png"

312 plt. savefig (save_path , dpi =300 , bbox_inches =’tight ’)

313 plt.close ()

314 print(f" Matriz de confus ão salva em { save_path }")

315

316 def plot_test_accuracy_analysis (self , test_results):

317 # Plotar análise detalhada de acurácia de teste

318 class_names = list(self. class_to_idx .keys ())

319 report = test_results [’classification_report ’]

320

321 classes = []

322 precisions = []

323 recalls = []

324 f1_scores = []

325

326 for class_name , metrics in report .items ():

327 if isinstance (metrics , dict) and ’precision ’ in

→˓ metrics :

328 classes . append (class_name)

329 precisions . append (metrics [’precision ’])

330 recalls . append (metrics [’recall ’])

331 f1_scores . append (metrics [’f1 -score ’])

332

A.2. Treinador Otimizado: trainer_optimized.py 83

333 fig , ((ax1 , ax2), (ax3 , ax4)) = plt. subplots (2, 2,

→˓ figsize =(16 , 12))

334

335 # 1. Acurácia geral de teste

336 test_acc = test_results [’accuracy ’]

337 test_loss = test_results [’loss ’]

338

339 ax1.bar ([’Acurácia ’, ’Perda ’], [test_acc , test_loss],

340 color =[’#2 E86AB ’, ’# A23B72 ’], alpha =0.8)

341 ax1. set_title (f’Mé tricas Gerais de Teste - {self.

→˓ get_model_name_pt ()}’)

342 ax1. set_ylabel (’Valor ’)

343 ax1.grid(True , alpha =0.3)

344

345 for i, (acc , loss) in enumerate ([(test_acc , test_loss)]):

346 ax1.text (0, acc + 0.01 , f’{acc :.3f}’, ha=’center ’, va

→˓ =’bottom ’, fontweight =’bold ’)

347 ax1.text (1, loss + 0.01 , f’{loss :.3f}’, ha=’center ’,

→˓ va=’bottom ’, fontweight =’bold ’)

348

349 # 2. Precis ão por classe

350 bars1 = ax2.bar(range(len(classes)), precisions , alpha

→˓ =0.8 , color=’#2 E86AB ’)

351 ax2. set_title (f’Precis ão por Classe - {self.

→˓ get_model_name_pt ()}’)

352 ax2. set_xlabel (’Classes ’)

353 ax2. set_ylabel (’Precis ão’)

354 ax2. set_xticks (range(len(classes)))

355 ax2. set_xticklabels (classes , rotation =45, ha=’right ’)

356 ax2.grid(True , alpha =0.3)

357

358 for bar , prec in zip(bars1 , precisions):

359 height = bar. get_height ()

360 ax2.text(bar.get_x () + bar. get_width ()/2., height +

→˓ 0.01 ,

361 f’{prec :.3f}’, ha=’center ’, va=’bottom ’,

→˓ fontweight =’bold ’, fontsize =8)

362

363 # 3. Revoca ção por classe

364 bars2 = ax3.bar(range(len(classes)), recalls , alpha =0.8 ,

→˓ color=’# A23B72 ’)

84 APÊNDICE A. Código Fonte

365 ax3. set_title (f’Revoca ção por Classe - {self.

→˓ get_model_name_pt ()}’)

366 ax3. set_xlabel (’Classes ’)

367 ax3. set_ylabel (’Revoca ção’)

368 ax3. set_xticks (range(len(classes)))

369 ax3. set_xticklabels (classes , rotation =45, ha=’right ’)

370 ax3.grid(True , alpha =0.3)

371

372 for bar , rec in zip(bars2 , recalls):

373 height = bar. get_height ()

374 ax3.text(bar.get_x () + bar. get_width ()/2., height +

→˓ 0.01 ,

375 f’{rec :.3f}’, ha=’center ’, va=’bottom ’,

→˓ fontweight =’bold ’, fontsize =8)

376

377 # 4. F1 -Score por classe

378 bars3 = ax4.bar(range(len(classes)), f1_scores , alpha

→˓ =0.8 , color=’# F18F01 ’)

379 ax4. set_title (f’F1 -Score por Classe - {self.

→˓ get_model_name_pt ()}’)

380 ax4. set_xlabel (’Classes ’)

381 ax4. set_ylabel (’F1 -Score ’)

382 ax4. set_xticks (range(len(classes)))

383 ax4. set_xticklabels (classes , rotation =45, ha=’right ’)

384 ax4.grid(True , alpha =0.3)

385

386 for bar , f1 in zip(bars3 , f1_scores):

387 height = bar. get_height ()

388 ax4.text(bar.get_x () + bar. get_width ()/2., height +

→˓ 0.01 ,

389 f’{f1 :.3f}’, ha=’center ’, va=’bottom ’,

→˓ fontweight =’bold ’, fontsize =8)

390

391 plt. tight_layout ()

392 save_path = f"{self. config . results_dir }/{ self. model_type }

→˓ _test_accuracy_analysis .png"

393 plt. savefig (save_path , dpi =300 , bbox_inches =’tight ’)

394 plt.close ()

395 print(f"Análise detalhada de acurácia de teste salva em {

→˓ save_path }")

A.3. Configuração: config_optimized.py 85

A.3 Configuração: config_optimized.py

Listing A.3 – Arquivo de configuração otimizado
1 import os

2 import torch

3 from dataclasses import dataclass

4 from typing import List , Tuple

5

6 class Config :

7

8 # Dados

9 data_dir = "/home/edvl/TCC/Chula - ParasiteEgg -11/ Chula -

→˓ ParasiteEgg -11/ Chula - ParasiteEgg -11/ data"

10 test_data_dir = "/home/edvl/TCC/Chula - ParasiteEgg -11 _test/

→˓ test/data"

11 train_data_path = "/home/edvl/TCC/Chula - ParasiteEgg -11/ Chula -

→˓ ParasiteEgg -11/ Chula - ParasiteEgg -11/ data"

12 test_data_path = "/home/edvl/TCC/Chula - ParasiteEgg -11 _test/

→˓ test/data"

13

14 # Modelo

15 num_classes = 11

16 input_size = (384 , 384)

17 image_size = 384

18

19 # Treinamento

20 batch_size = 2

21 num_epochs = 50

22 learning_rate = 1e-4

23 weight_decay = 1e-4

24 gradient_clip = 1.0

25

26 # Tratamento de dados

27 use_augmentation = True

28 train_transform = True

29 test_transform = False

30 mixup_alpha = 0.2

31 cutmix_alpha = 1.0

32 cutmix_prob = 0.5

33

34 # Aprendizado em conjunto

86 APÊNDICE A. Código Fonte

35 ensemble_size = 3

36 diversity_weight = 0.1

37

38 # Regulariza ção

39 dropout_rate = 0.3

40 label_smoothing = 0.1

41

42 # Parada antecipada

43 patience = 10

44

45 # Memória e processamento

46 num_workers = 1

47 pin_memory = True

48

49 # Dispositivo

50 device = ’cuda ’ if torch.cuda. is_available () else ’cpu ’

51

52 # Configura ções específicas dos modelos

53 # CNN (EfficientNetV2 -S)

54 cnn_model_name = " tf_efficientnetv2_s "

55 cnn_dropout = 0.2

56

57 # Vision Transformer (Tiny ViT)

58 vit_model_name = " vit_tiny_patch16_224 "

59 vit_patch_size = 16

60 vit_embed_dim = 192

61 vit_depths = (3, 3, 3)

62 vit_num_heads = (3, 6, 12)

63

64 # Modelo Híbrido

65 hybrid_cnn_backbone = " tf_efficientnetv2_s "

66 hybrid_vit_model = " vit_tiny_patch16_224 "

67 hybrid_fusion_dim = 64

68

69 # Diretórios de saída

70 model_save_dir = " models_optimized "

71 results_dir = " results_optimized "

72

73 # Registro da execução

74 log_interval = 100

75 save_interval = 5

76

A.4. Modelos: models.py 87

77 config = Config ()

A.4 Modelos: models.py

Listing A.4 – Implementação dos modelos
1 import torch

2 import torch.nn as nn

3 import torch.nn. functional as F

4 import timm

5

6 class EfficientNetV2CNN (nn. Module):

7 # Modelo CNN usando EfficientNetV2 -S para classifica ção de

→˓ parasitas

8

9 def __init__ (self , config , num_classes : int = 11):

10 super(EfficientNetV2CNN , self). __init__ ()

11

12 # Carregar EfficientNetV2 -S

13 self. backbone = timm. create_model (

14 config . cnn_model_name ,

15 pretrained =True ,

16 num_classes =0

17)

18

19 feature_dim = self. backbone . num_features

20

21 self. classifier = nn. Sequential (

22 nn. Dropout (config . cnn_dropout),

23 nn. Linear (feature_dim , 512) ,

24 nn.ReLU (),

25 nn. Dropout (config . cnn_dropout),

26 nn. Linear (512 , num_classes)

27)

28

29 def forward (self , x):

30 features = self. backbone (x)

31 output = self. classifier (features)

32 return output

33

34 class TinyViTTransformer (nn. Module):

88 APÊNDICE A. Código Fonte

35 # Modelo Vision Transformer usando Tiny ViT para classifica çã

→˓ o de parasitas

36

37 def __init__ (self , config , num_classes : int = 11):

38 super(TinyViTTransformer , self). __init__ ()

39

40 # Carregar Tiny ViT

41 self. backbone = timm. create_model (

42 config . vit_model_name ,

43 pretrained =True ,

44 num_classes =0

45)

46

47 feature_dim = self. backbone . num_features

48

49 self. classifier = nn. Sequential (

50 nn. LayerNorm (feature_dim),

51 nn. Linear (feature_dim , 512) ,

52 nn.GELU (),

53 nn. Dropout (0.1) ,

54 nn. Linear (512 , num_classes)

55)

56

57 def forward (self , x):

58 features = self. backbone (x)

59 output = self. classifier (features)

60 return output

61

62 class HybridModel (nn. Module):

63 # Modelo Híbrido combinando CNN (EfficientNetV2 -S) e Vision

→˓ Transformer (Tiny ViT)

64 def __init__ (self , config , num_classes : int = 11):

65 super(HybridModel , self). __init__ ()

66

67 # (EfficientNetV2 -S)

68 self. cnn_backbone = timm. create_model (

69 config . hybrid_cnn_backbone ,

70 pretrained =True ,

71 num_classes =0

72)

73

74 # Vision Transformer (Tiny ViT)

A.4. Modelos: models.py 89

75 self. vit_backbone = timm. create_model (

76 config . hybrid_vit_model ,

77 pretrained =True ,

78 num_classes =0

79)

80

81 cnn_feature_dim = self. cnn_backbone . num_features

82 vit_feature_dim = self. vit_backbone . num_features

83

84 # Fusão de caracter í sticas

85 fusion_dim = config . hybrid_fusion_dim

86 self. fusion = nn. Sequential (

87 nn. Linear (cnn_feature_dim + vit_feature_dim ,

→˓ fusion_dim),

88 nn. LayerNorm (fusion_dim),

89 nn.GELU (),

90 nn. Dropout (0.1) ,

91 nn. Linear (fusion_dim , fusion_dim // 2),

92 nn.GELU (),

93 nn. Dropout (0.1)

94)

95

96 # Classificador final

97 self. classifier = nn. Linear (fusion_dim // 2, num_classes)

98

99 # Mecanismo de atenção para pondera ção de caracter í sticas

100 self. attention = nn. MultiheadAttention (

101 embed_dim = fusion_dim // 2,

102 num_heads =2,

103 dropout =0.1 ,

104 batch_first =True

105)

106

107 def forward (self , x):

108 # Extrair caracter í sticas de ambos os modelos

109 cnn_features = self. cnn_backbone (x)

110 vit_features = self. vit_backbone (x)

111

112 # Concatenar caracter í sticas

113 combined_features = torch.cat ([cnn_features , vit_features

→˓], dim =1)

114

90 APÊNDICE A. Código Fonte

115 # Aplicar fusão

116 fused_features = self. fusion (combined_features)

117

118 # Aplicar auto -atenção

119 fused_features = fused_features . unsqueeze (1) # Adicionar

→˓ dimens ão de sequência

120 attended_features , _ = self. attention (fused_features ,

→˓ fused_features , fused_features)

121 attended_features = attended_features . squeeze (1)

122

123 # Classifica ção final

124 output = self. classifier (attended_features)

125 return output

126

127 def get_model (model_type : str , config , num_classes : int = 11):

128 # Função fábrica para obter o modelo especificado

129

130 if model_type .lower () == "cnn":

131 return EfficientNetV2CNN (config , num_classes = num_classes)

132

133 elif model_type .lower () == "vit":

134 return TinyViTTransformer (config , num_classes = num_classes

→˓)

135

136 elif model_type .lower () == " hybrid ":

137 return HybridModel (config , num_classes = num_classes)

138

139 else:

140 raise ValueError (f"Tipo de modelo desconhecido : {

→˓ model_type }. Escolha entre [’cnn ’, ’vit ’, ’hybrid ’]"

→˓)

141

142 def count_parameters (model):

143 # Contar parâ metros treináveis no modelo

144 return sum(p.numel () for p in model. parameters () if p.

→˓ requires_grad)

145

146 def get_model_summary (model , input_size =(3, 224, 224)):

147 # Obter resumo do modelo com contagem de parâ metros

148 total_params = count_parameters (model)

149 trainable_params = sum(p.numel () for p in model. parameters ()

→˓ if p. requires_grad)

A.5. Conjunto de Dados: dataset_optimized.py 91

150

151 print(f" Resumo do Modelo :")

152 print(f"Total de Parâ metros : { total_params :,}")

153 print(f"Parâ metros Treináveis: { trainable_params :,}")

154 print(f" Tamanho de Entrada : { input_size }")

155

156 return total_params , trainable_params

A.5 Conjunto de Dados: dataset_optimized.py

Listing A.5 – Classe do conjunto de dados otimizado
1 import os

2 import torch

3 from torch.utils.data import Dataset , DataLoader

4 from PIL import Image

5 import albumentations as A

6 from albumentations . pytorch import ToTensorV2

7 import numpy as np

8 from typing import Dict , List , Tuple , Optional

9 import config_optimized

10 import json

11

12 class ParasiteDataset (Dataset):

13 def __init__ (self , data_path : str , transform =None , is_train :

→˓ bool = True , class_to_idx : Optional [Dict[str , int]] =

→˓ None , label_json_path : Optional [str] = None):

14 self. data_path = data_path

15 self. transform = transform

16 self. is_train = is_train

17 self. class_to_idx = class_to_idx

18 self. label_json_path = label_json_path

19

20 # Carregar todos os arquivos de imagem e seus rótulos

21 self.images , self.labels , self. class_to_idx = self.

→˓ _load_dataset ()

22

23 def _load_dataset (self) -> Tuple[List[str], List[int],

→˓ Optional [Dict[str , int]]]:

24 images = []

25 labels = []

92 APÊNDICE A. Código Fonte

26

27 # Se estiver usando arquivo de rótulos no formato COCO (

→˓ para conjunto de teste)

28 if self. label_json_path is not None:

29 # Carregar arquivo de rótulos

30 with open(self. label_json_path , ’r’) as f:

31 label_data = json.load(f)

32

33 file_to_id = {img[’file_name ’]: img[’id’] for img in

→˓ label_data [’images ’]}

34

35 imageid_to_catid = {}

36 for ann in label_data [’annotations ’]:

37 if ann[’image_id ’] not in imageid_to_catid :

38 imageid_to_catid [ann[’image_id ’]] = ann[’

→˓ category_id ’]

39

40 catid_to_name = {cat[’id’]: cat[’name ’] for cat in

→˓ label_data [’categories ’]}

41

42 class_to_idx = self. class_to_idx

43

44 for filename in os. listdir (self. data_path):

45 if filename .lower (). endswith ((’.jpg ’, ’.jpeg ’, ’.

→˓ png ’)):

46 img_path = os.path.join(self.data_path ,

→˓ filename)

47

48 image_id = file_to_id .get(filename)

49 if image_id is None:

50 continue

51

52 category_id = imageid_to_catid .get(image_id)

53 if category_id is None:

54 continue

55

56 class_name = catid_to_name .get(category_id)

57 if class_name is None:

58 continue

59

60 if class_name in class_to_idx :

61 images . append (img_path)

A.5. Conjunto de Dados: dataset_optimized.py 93

62 labels . append (class_to_idx [class_name])

63 return images , labels , class_to_idx

64

65 # Comportamento padrão (conjunto de treino / valida ção)

66 extracted_class_names = []

67 if self. class_to_idx is None:

68 # Construir mapeamento a partir deste conjunto de

→˓ dados (para conjunto de treino)

69 class_names = set ()

70 for filename in os. listdir (self. data_path):

71 if filename .lower (). endswith ((’.jpg ’, ’.jpeg ’, ’.

→˓ png ’)):

72 class_name = filename .split(’_’)[0]

73 class_names .add(class_name)

74 if len(extracted_class_names) < 10:

75 extracted_class_names . append (class_name)

76 class_names = sorted (list(class_names))

77 class_to_idx = { class_name : idx for idx , class_name

→˓ in enumerate (class_names)}

78 print("[DEBUG] Built class_to_idx :", class_to_idx)

79 print("[DEBUG] First 10 extracted class names from

→˓ filenames :", extracted_class_names)

80 else:

81 # Usar mapeamento fornecido (para conjunto de teste)

82 class_to_idx = self. class_to_idx

83

84 # Carregar imagens e atribuir rótulos usando mapeamento

85 for filename in os. listdir (self. data_path):

86 if filename .lower (). endswith ((’.jpg ’, ’.jpeg ’, ’.png ’

→˓)):

87 img_path = os.path.join(self.data_path , filename)

88 class_name = filename .split(’_’)[0]

89 if class_to_idx is not None:

90 idx = class_to_idx .get(class_name)

91 if idx is None:

92 continue

93 images . append (img_path)

94 labels . append (idx)

95 else:

96 continue

97 return images , labels , class_to_idx

98

94 APÊNDICE A. Código Fonte

99 def __len__ (self):

100 return len(self. images)

101

102 def __getitem__ (self , idx):

103 img_path = self. images [idx]

104 label = self. labels [idx]

105

106 # Carregar imagem

107 image = Image.open(img_path). convert (’RGB ’)

108 image = np.array(image)

109

110 # Aplicar transforma ções

111 if self. transform :

112 transformed = self. transform (image=image)

113 image = transformed [’image ’]

114

115 return image , label

116

117 def get_transforms_optimized (image_size : int = 384, is_train :

→˓ bool = True , config =None):

118 if is_train :

119 return A. Compose ([

120 # Redimensionar para tamanho alvo e aplicar normaliza

→˓ ção

121 A. Resize (image_size , image_size),

122 A. HorizontalFlip (p=0.5) ,

123 A. VerticalFlip (p=0.3) ,

124 A. RandomRotate90 (p=0.3) ,

125

126 # Transforma ções geomé tricas moderadas

127 A. Affine (

128 translate_percent =0.1 , # Reduzido

129 scale =(0.9 , 1.1) , # Reduzido

130 rotate =(-15, 15) , # Reduzido baseado no

→˓ CoAtNet

131 p=0.6

132),

133

134 # Embaç amento e ruído

135 A.OneOf ([

136 A. GaussianBlur (blur_limit =(3, 7), p=0.5) ,

137 A. MotionBlur (blur_limit =3, p=0.3) ,

A.5. Conjunto de Dados: dataset_optimized.py 95

138 A. MedianBlur (blur_limit =3, p=0.2) ,

139], p=0.4) ,

140

141 # Ruído

142 A.OneOf ([

143 A. GaussNoise (var_limit =(5.0 , 15.0) , p=0.5) ,

144 A. ISONoise (color_shift =(0.01 , 0.05) , intensity

→˓ =(0.1 , 0.5) , p=0.3) ,

145 A. MultiplicativeNoise (multiplier =(0.9 , 1.1) , p

→˓ =0.2) ,

146], p=0.4) ,

147

148 # Ajustes de cor moderados

149 A.OneOf ([

150 A. RandomBrightnessContrast (

151 brightness_limit =0.2 , # Reduzido

152 contrast_limit =0.2 , # Reduzido

153 p=0.5

154),

155 A. HueSaturationValue (

156 hue_shift_limit =20, # Reduzido

157 sat_shift_limit =30, # Reduzido

158 val_shift_limit =20, # Reduzido

159 p=0.3

160),

161 A.CLAHE(clip_limit =2.0 , tile_grid_size =(8, 8), p

→˓ =0.2) ,

162], p=0.4) ,

163

164 # Dropout espacial

165 A. CoarseDropout (

166 max_holes =4, max_height =16, max_width =16,

167 min_holes =1, min_height =4, min_width =4,

168 p=0.2

169),

170

171 # Normaliza ção ImageNet

172 A. Normalize (mean =[0.485 , 0.456 , 0.406] , std =[0.229 ,

→˓ 0.224 , 0.225]) ,

173 ToTensorV2 (),

174])

175 else:

96 APÊNDICE A. Código Fonte

176 return A. Compose ([

177 A. Resize (image_size , image_size),

178 A. Normalize (mean =[0.485 , 0.456 , 0.406] , std =[0.229 ,

→˓ 0.224 , 0.225]) ,

179 ToTensorV2 (),

180])

181

182 def get_dataloaders_optimized (config):

183 # Transforma ções

184 train_transform = get_transforms_optimized (config .image_size ,

→˓ is_train =True , config = config)

185 val_transform = get_transforms_optimized (config .image_size ,

→˓ is_train =False , config = config)

186

187 # Dividir dados de treino em treino / valida ção (80/20)

188 full_dataset = ParasiteDataset (config . train_data_path ,

→˓ transform = train_transform , is_train =True)

189

190 # Calcular í ndices de divisão

191 total_size = len(full_dataset)

192 train_size = int (0.8 * total_size)

193 val_size = total_size - train_size

194

195 train_dataset , val_dataset = torch.utils.data. random_split (

196 full_dataset , [train_size , val_size]

197)

198

199 val_dataset . dataset . transform = val_transform

200

201 train_loader = DataLoader (

202 train_dataset ,

203 batch_size = config .batch_size ,

204 shuffle =True ,

205 num_workers = config . num_workers ,

206 pin_memory = config . pin_memory

207)

208

209 val_loader = DataLoader (

210 val_dataset ,

211 batch_size = config .batch_size ,

212 shuffle =False ,

213 num_workers = config . num_workers ,

A.6. Requirements: requirements.txt 97

214 pin_memory = config . pin_memory

215)

216

217 # Conjunto de teste

218 test_label_json = os.path.join("..", "Chula - ParasiteEgg -11

→˓ _test", " test_labels_200 .json")

219 test_dataset = ParasiteDataset (

220 config . test_data_path ,

221 transform = val_transform ,

222 is_train =False ,

223 class_to_idx = full_dataset . class_to_idx ,

224 label_json_path = test_label_json

225)

226 test_loader = DataLoader (

227 test_dataset ,

228 batch_size = config .batch_size ,

229 shuffle =False ,

230 num_workers = config . num_workers ,

231 pin_memory = config . pin_memory

232)

233

234 return train_loader , val_loader , test_loader , full_dataset .

→˓ class_to_idx

A.6 Requirements: requirements.txt

Listing A.6 – Arquivo de dependências
1 torch >=2.0.0

2 torchvision >=0.15.0

3 timm >=0.9.0

4 numpy >=1.24.0

5 pandas >=2.0.0

6 scikit -learn >=1.3.0

7 matplotlib >=3.7.0

8 seaborn >=0.12.0

9 Pillow >=10.0.0

10 tqdm >=4.65.0

11 albumentations >=1.3.0

12 opencv -python >=4.8.0

13 tensorboard >=2.13.0

	Folha de aprovação
	Agradecimentos
	Resumo
	Abstract
	Lista de ilustrações
	Lista de tabelas
	Lista de abreviaturas e siglas
	Lista de símbolos
	Sumário
	Introdução
	Referencial Teórico
	Aprendizado de Máquina
	Redes Neurais
	Redes neurais convolucionais

	Transformadores visuais
	Visão computacional aplicada à detecção de parasitas

	Metodologia
	Dados
	Características gerais do conjunto de dados
	Características Morfológicas dos Ovos
	Coleta de dados
	Tratamento do conjunto de dados

	Função de Perda
	Arquiteturas implementadas
	Rede convolucional: EfficientNetV2-S
	Transformador visual: Tiny ViT
	Modelo híbrido: EfficientNetV2-S + Tiny ViT

	Experimento
	Ferramentas utilizadas
	Configuração experimental
	Análise comparativa

	Resultados e Discussão
	Conclusão
	Referências
	Apêndices
	Código Fonte
	Arquivo Principal: run_optimized.py
	Treinador Otimizado: trainer_optimized.py
	Configuração: config_optimized.py
	Modelos: models.py
	Conjunto de Dados: dataset_optimized.py
	Requirements: requirements.txt

