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Resumo

O Energy-Based Flow Classifier (EFC) é um modelo de classificagdo de fluxos de rede
fundamentado em estatistica inversa, inspirado no modelo de Potts, e originalmente pro-
posto para aplicagoes em sistemas de deteccao de intrusao. Apesar de sua aplicabilidade
comprovada em diferentes contextos, a literatura carece de estudos que investiguem a
sensibilidade do modelo a variacao de seus hiperparametros. Este trabalho propoe uma
analise sistematica do impacto dos principais hiperparametros do EFC — o limiar quan-
tilico de classificacao, o nimero de niveis de discretizacao e os pesos de pseudocontagens
— sobre seu desempenho em tarefas de classificacao binaria e multiclasse. Utilizando os
conjuntos de dados CICIDS2017 e CICDD0S2019, foram conduzidos experimentos com
multiplas combinagoes de valores para esses parametros. Os resultados obtidos sao dis-
cutidos com base nas métricas AUC-ROC e F1-Score, permitindo propor diretrizes para

uma calibragem mais eficiente do modelo, otimizando sua precisao e robustez.

Palavras-chave: Energy-Based Flow Classifier, hiperparametros, deteccao de intrusao,

estatistica inversa, classificacao de fluxos.



Abstract

The Energy-Based Flow Classifier (EFC) is a network flow classification model based on
inverse statistical mechanics, inspired by the Potts model, and originally proposed for use
in intrusion detection systems. Although its effectiveness has been demonstrated across
various domains, few studies have addressed the sensitivity of the model to changes in
its hyperparameters. This work presents a systematic analysis of the impact of key EFC
hyperparameters — quantilic classification threshold, discretization levels, and pseudo-
count weights — on its performance in both binary and multiclass classification tasks.
Experiments were conducted using the CICIDS2017 and CICDDoS2019 datasets, test-
ing multiple parameter configurations. The results, evaluated through AUC-ROC and
F1-Score metrics, support the proposal of guidelines for a more effective hyperparameter

tuning strategy, enhancing both accuracy and robustness of the model.
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Capitulo 1
Introducao

Neste capitulo sao apresentadas a contextualizacao e a justificativa para o estudo de
calibragem de hiperparametros do Energy-based Flow Classifier, além dos objetivos gerais

e das contribuicoes deste projeto de pesquisa.

1.1 Contextualizacao

As ameacas cibernéticas tém-se tornado cada vez mais sofisticadas e frequentes, acom-
panhando o crescimento exponencial da conectividade digital. Segundo o Relatoério de
Ameacas Cibernéticas de 2025 da Radware, houve um aumento de 550% em ataques de
negacao de servigo distribuidos (DDoS, do inglés, Distributed Denial of Service) ano apds
ano quando comparados aos nimeros de 2023 [1], reportando também casos recentes em
que houve um pico de 16 milhoes de requisi¢oes por segundo. Esse cendario é agravado
pela transformacao digital de dados pessoais e corporativos, aliada a proliferacdo de
dispositivos de Internet das Coisas (do inglés, Internet of Things) os quais, devido a sua,
baixa robustez em termos de seguranca, sao frequentemente explorados como vetores em
ataques cibernéticos [2].

Neste contexto, sistemas de detecgao de intrusao em redes (NIDS, Network Intrusion
Detection Systems) sdo ferramentas tteis para lidar com as ameagas cibernéticas. NIDS
sao softwares utilizados em conjunc¢ao com firewalls e antivirus para proteger dispositivos
conectados a rede de diversas ameagas [3]. Suas aplica¢oes podem variar, podendo executar
diversas fungoes em uma rede, tais como detectar ou classificar anomalias [4]. Assim, um
sistema deste tipo, capaz de discernir entre diferentes tipos maliciosos de trafego de rede,
pode ser associado a respostas automatizadas de mitigacao, garantindo maior resiliéncia a
rede [5].

Uma abordagem comum para a elaboracao de ferramentas dedicadas a deteccao de

intrusao é a analise de fluxos de rede, isto é, de conjuntos de pacotes trafegados pela



rede, que podem ser agrupados levando em consideracao as suas caracteristicas em comum
(como enderego [P de origem e destino, niimero de pacotes, nimero de bytes e porta de
origem, por exemplo) [6]. Estes pacotes, entdo, agrupados em fluxos, podem ser analisados
como um todo, reduzindo drasticamente o volume de dados a ser analisado, mostrando-se
como uma abordagem adequada para a elaboracao de NIDS que operem em tempo real [7].

Com isso em mente, foi elaborado em um estudo recente de Pontes et al.[8], o Energy-
based Flow Classifier (do inglés, Classificador de Fluxos baseado em Energia, EFC), um
classificador de fluxos de redes direcionado para a aplicacdo em NIDS. O modelo se baseia
na utilizacao de técnicas de estatistica inversa utilizadas na biofisica para a andlise direta
de acoplamentos de proteinas, adaptando-as para o contexto de classificacdo de fluxos
de pacotes em redes computacionais. O modelo inicialmente foi elaborado para ser um
classificador bindrio, sendo posteriormente adaptado por De Souza et al.[4] para ser capaz
de tratar de multiplas classes.

O EFC realiza a inferéncia de um modelo estatistico para cada classe presente no
conjunto de dados de fluxos de rede utilizados em seu treinamento [4]. Os modelos
estatisticos inferidos, entao, podem ser usados para identificar se novos fluxos pertencem
ou nao a classe utilizada para a inferéncia. Este modelo, portanto, se caracteriza como um
classificador baseado em anomalias, isto ¢, um classificador capaz de identificar quando
uma nova amostra a ele apresentada nao pertence a nenhuma das classes de amostras
utilizadas em seu treinamento [8]. Esta caracteristica intrinseca confere ao modelo uma
capacidade de melhor adaptacao a diferentes dominios de treino e teste, tornando-o uma
abordagem simples, que nao requer grandes transformagoes nos dados para operar, o que

o torna um algoritmo promissor para classificacao baseada em fluxos de rede [8].

1.2 Justificativa e objetivos

Entre os trabalhos vistos na literatura, nota-se que o foco central é confirmar o potencial
de aplicacao do Energy-based Flow classifier em diferentes cendrios para o monitoramento
de trafego de rede. O modelo ja teve sua capacidade de deteccao testada em trabalhos
relacionados a: detecgao de botnets [9]; detecgdo de anomalias em redes moveis [10];
aprendizado federado [11] [12] [13]; entre outros. E vélido ressaltar que, nestes trabalhos,
o algoritmo em questao teve seu desempenho comparado com modelos tradicionais de
aprendizado de maquina (tais como Random Forest, Multilayer Perceptron, Support Vector
Machine, etc.), modelos de redes neurais e de aprendizado federado e, em geral, apresentou
um desempenho equiparavel ou superior a esses modelos, se destacando especialmente em
classificagoes com diferentes dominios de treino e teste. Contudo, apesar dos resultados

promissores obtidos, os estudos do modelo de classificagdo se limitaram principalmente a



novos cenarios de aplicagdo. Portanto, ainda nao hé trabalhos direcionados a avaliar quesi-
tos mais intrinsecos do comportamento do modelo, tal como a influéncia da configuragao
dos hiperparametros do EFC no seu desempenho.

Hiperparametros, no contexto de machine learning (do inglés, aprendizado de méquina,
ML) sao valores definidos como pardmetros externos ao processo de aprendizagem que,
comumente, devem ser cuidadosamente otimizados para que um modelo de classificacao
consiga alcangar um desempenho otimizado [14]. Nos trabalhos mencionados, comumente,
a configuragao dos hiperparametros do EFC é um tépico nao abordado, raramente sendo
explicitados quais valores foram atribuidos a cada parametro. Em geral, nos casos em que
ha essa informacgao, sdo comumente utilizados os valores padrao, ou seja, os valores genéricos
atribuidos por quem implementou o modelo em codigo. Isso pode ser problematico, dado
que nem sempre esta configuragdo é a mais adequada ao tipo de conjunto de dados que se
esta utilizando.

O trabalho a seguir busca, portanto, realizar uma andlise sobre como a defini¢ao de
diferentes valores destes parametros de configuracao para o EFC afeta os resultados da
classificacdo. Para isso, serao treinadas diversas instancias do modelo com diferentes
configuracoes de hiperparametros, as quais serao utilizadas para um conjunto de classifica-
¢oOes binarias e multiclasse com os mesmos dados de treino e teste. Posteriormente, serdao
analisados os resultados obtidos para essas classificagdes, com o objetivo de tragar uma

estratégia para a otimizagao dos hiperparametros do EFC.

1.3 Objetivos e estrutura do trabalho

Desta forma, os principais objetivos deste trabalho se resumem a:

« Avaliacao do impacto dos hiperparametros no modelo: Analisar como os
hiperpardmetros do modelo (limiar de classificagdo, niveis de discretizagao e pesos de
pseudocontagens) influenciam o comportamento do EFC, por meio da experimentacao

com variadas combinagoes de hiperpardmetros em datasets consolidados (CICIDS2017
e CICDDoS19).

o Estratégia para otimizacao de hiperparametros: Proposicao de um método
para a selecao de valores para os hiperperametros baseando-se na analise das con-

figuracdes que obtiveram os melhores resultados nos experimentos em termos de
AUC-ROC e F1-Score.

O restante do trabalho a seguir estd organizado da seguinte forma: o Capitulo 2 (O
Energy-based Flow Classifier) detalha o funcionamento do EFC em todas as etapas da

classificagao, especificando em que pontos do algoritmo cada hiperparametro é utilizado.



No Capitulo 3 (Trabalhos Relacionados), sao discutidos os trabalhos ja existentes na litera-
tura que utilizaram o EFC para a classificacao de fluxos de rede e deteccao de anomalias,
buscando quais valores de hiperparametros ja foram utilizados para o modelo, bem como
as principais contribui¢oes dos trabalhos. No Capitulo 4 (Metodologia), sao descritos os
procedimentos experimentais, como a metodologia de ajuste de hiperpardmetros (limiar de
classificagdo, niveis de discretizagdo e pesos de pseudocontagens), as métricas de avaliagdo
(AUC-ROC e F1-Score), os datasets CICIDS2017 e CICDD0S2019, técnicas de balancea-
mento de dados para cenarios binarios e multiclasse, além dos recursos computacionais
utilizados. J& o Capitulo 5 (Resultados e Discussido) apresenta andlises comparativas
dos experimentos, explorando o impacto dos hiperparametros no desempenho do modelo
e discutindo suas implicagoes praticas. Por fim, o Capitulo 6 (Conclusdo) sintetiza as
contribuigoes do estudo, suas limitagoes e perspectivas futuras. Essa estrutura visa guiar
o leitor de forma logica desde os fundamentos tedricos até a validacao empirica do modelo

proposto.



Capitulo 2
O Energy-based Flow Classifier

O Classificador de Fluxos baseado em Energia (EFC, do inglés Energy-based Flow Classi-
fier), proposto inicialmente em Pontes et al. [8], é um classificador baseado em estatistica
inversa, cujo objetivo principal é inferir uma distribuicao estatistica que descreva o com-
portamento de uma classe especifica de dado. Posteriormente, o modelo foi estendido em
Souza et al. [4] de modo a conferir ao modelo a capacidade de classificagdo multiclasse.
O restante deste capitulo condensa o arcabougo tedrico apresentado nesses estudos,
fundamentando-se neles e em suas respectivas referéncias. O capitulo esta estruturado da
seguinte forma: a Secao 2.1 apresenta como se baseia a abstracao de fluxos de rede para que
seja possivel inferir seu comportamento por meio da inversa do modelo de Potts; a Se¢ao
2.2 detalha o processo de inferéncia do modelo estatistico; na Secao 2.3, discute-se como
o modelo realiza a classificagao de novos fluxos com base nas energias calculadas; e, por
fim, a Secao 2.4 formaliza a defini¢ao algoritmica do EFC, incluindo sua representagao em
pseudocodigo e a identificagao dos pontos em que os hiperparametros atuam no processo

de inferéncia.

2.1 Abstracao de fluxos de rede para o modelo de
Potts

Como mencionado anteriormente, no modelo proposto em Pontes et al. [8], a inferéncia
estatistica do EFC é fundamentada no modelo de Potts, o qual descreve matematicamente
as interacoes entre spins de elétrons em uma rede cristalina. Para tornar esse modelo
compativel com a andlise de fluxos de rede, é introduzida uma abstracdo que representa os
fluxos de forma adequada ao arcabouco estatistico adotado. Nesta, um fluxo individual k
é representado por uma configuragao especifica de um grafo G (n, €). Neste, cada n6 do

grafo representa um atributo de um fluxo, sendo 7 o conjunto de todos os nds/atributos



Figura 2.1: Imagem ilustrativa do grafo G(n,€). A imagem a esquerda exibe um fluxo
com 4 atributos completamente conectados. Na imagem a direita sao exibidos os valores
associados aos atributos e acoplamentos.
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do fluxo. Em cada fluxo k, cada atributo ¢ € n assume um valor a;, o qual estard contido
em {2;, um conjunto que contém todos os valores possiveis para aquele atributo especifico.

E importante destacar que, para a realizacio da inferéncia no modelo, os valores dos
atributos a;; devem pertencer a uma grandeza discreta. Assim, é necessario que esses
valores sejam mapeados para inteiros pertencentes ao conjunto 2 = {1,2,..., @}, onde
() representa o numero total de categorias discretas. Dessa forma, assume-se que os
alfabetos de todos os atributos sao iguais, ou seja, €2; = €2, mesmo nos casos em que um
atributo especifico possa assumir apenas M valores distintos, com M < (). Nesses casos,
os valores M + 1,..., () simplesmente nao ocorrem na pratica, tendo probabilidade nula
de ocorréncia.

Ademais, o grau de granularidade adotado na discretizacao dos atributos influencia
diretamente a capacidade do modelo de identificar padroes nos dados de entrada. Como
o modelo nao impoe restricoes quanto a definicao de @), esse valor é tratado como um
hiperparametro que deve ser estabelecido previamente a etapa de treinamento.

Prosseguindo, as arestas do grafo Gy, sdo representadas por € = {(i,7) | i,7 € n; i # j},
correspondendo a todos os pares possiveis de atributos distintos. Para cada par (1, j),
existe um valor de acoplamento associado, determinado pela funcao e;;(ax;, ax;). Além
disso, cada atributo ¢ possui um valor associado ao seu campo local, representado por

Dessa forma, a energia total associada a um fluxo k, analoga ao conceito de Hamiltoniano
na mecénica estatistica, pode ser expressa pelo Hamiltoniano H(agi,...,axy), 0 qual
depende de todos os valores dos campos locais e dos acoplamentos definidos sobre os pares

de atributos.



2.2 Inferéncia do modelo estatistico

Uma vez definida a abstracao para os fluxos de rede, propoe-se a inferéncia de um modelo
estatistico P(aq,...,ay) para cada sequéncia de atributos (ai,...,ay) associada a um
fluxo k € B, sendo B um conjunto arbitrario de fluxos observados. Supode-se entao o
conjunto I, que representa o espaco de todas as combinacdes possiveis de atributos
par-a-par, com K = 2, de forma que B C K.

A partir disso, propoe-se o uso de estatistica inversa para inferir um modelo que
atribua uma probabilidade P(ag1, ..., ary) a cada fluxo k € I, com base nas observagoes
empiricas contidas em B. O objetivo, nesse contexto, é encontrar uma distribuicao de

Maxima Entropia

S(akl, ce ,CLkN> = — Z P(akl, Ce ,CLkN)lOg<P(CLk1, e ,akN)), (21)
kek

a qual deve ser compativel com as estatisticas observadas nos dados. Para isso, a
distribuicao esta sujeita a restrigoes impostas pelas frequéncias empiricas de ocorréncia
individual de cada valor dos atributos, bem como pelas frequéncias conjuntas de ocorréncia

dos pares. Essas restri¢coes sao expressas da seguinte forma:

Vi € n;Va,; € Q) :
Pa;))= > Plags,....an) = fi(a)

k6K|aki:ai

(2.2)

V(i,7) € n*;V(ai,a;) € Q-
Pj(ai;) = Z Plagy, . ..,axn) = fija;, aj). (2.3)

keKl|agi=a;,apj=a;

Em que f;(a;) representa a frequéncia empirica do valor a; no atributo 7, e f;;(a;, a;) corres-
ponde a frequéncia empirica do par de valores (a;, a;) nos atributos i e j, respectivamente.

Ambas as frequéncias empiricas simples e duplas sdo obtidas a partir do conjunto B,
realizando a contagem das ocorréncias de um dado valor de atributo a; ou de pares de
atributos (a;, a;), respectivamente, e dividindo pelo niimero total de fluxos em B. Contudo,
dada a diferenca de tamanho entre os conjuntos B e IC, inferéncias baseadas em B estao
sujeitas a efeitos de subamostragem (undersampling). Entao, para que sejam limitados
os efeitos de subamostragem, utiliza-se a inclusao de um fator de pseudocontagem a no

calculo das frequéncias, resultando nas corregoes

filas) «— (1 - a)fila;) + g (2.4)



fij(ai, Clj) — (1 — oz)fij(ai, Clj) + g;, (25)

com (i,7) € n* (a;,a;) € 2 e 0 < a < 1. A inclusdo das pseudocontagens é equivalente
a assumir que o conjunto B seja estendido, de forma a conter uma fracdo extra de fluxos
com valores de atributos uniformemente distribuidos. Este valor é capaz, portanto, de
"diluir"o comportamento dos atributos observados em B para que seja possivel inferir o
modelo estatistico. Assim, o valor de a foi implementado como um valor configuravel,
sendo um dos hiperparametros do EFC, uma vez que impacta diretamente na capacidade
de inferéncia do modelo, dado que valores baixos demais podem inviabilizar a inferéncia
do modelo, enquanto valores altos demais podem "diluir'o comportamento dos dados,
implicando em inferéncias mais imprecisas.

Em sequéncia, uma vez definidas as restrigoes, busca-se a distribuicao que maximiza
a entropia sob tais condigoes. Aplicando-se o Principio da Maxima Entropia, obtém-se
a distribuicdo que impoe o menor nimero de suposi¢oes adicionais além das informa-
¢oes fornecidas pelos dados. Como resultado, a distribuigdo P*(aky,...,ary) assume a
forma de uma distribuicdo de Boltzmann (ainda que nao necessariamente independente e
identicamente distribuida)

exp {—BH(ak1, ..., axn)}

P*(akl,...,akN) == 7 . (26)

com temperatura inversa 5 = 1 sem perda de generalidade. Aqui, Z representa a funcao

de parti¢do que normaliza a distribuicao, porém, dado que o objetivo aqui nao é calcular a
probabilidade para fluxos especificos, esta funcao sera desconsiderada. Prosseguindo, o
valor de energia da distribuicao de um fluxo é determinado pelo Hamiltoniano H calculado

utilizando a forma generalizada do Modelo de Potts

H(akl, . ,akN) = — Z eij(aki, akj) — Z hl(akl) (27)

1,7]i<j

O Hamiltoniano aqui é completamente determinado pelos multiplicadores de Lagrange
h; e e;;, associados as restricoes 2.2 e 2.3, respectivamente. No contexto do modelo de
Potts, o multiplicador {e;;(a;,a;)|(a;,a;) € Q*} corresponde ao conjunto de todos os
valores possiveis de acoplamentos entre dois atributos i e j, enquanto {h;(a;)|a; € Q}
corresponde ao conjunto de todos os possiveis campos locais associados a um atributo .

Em seguida, os pardmetros do modelo foram ajustados de modo que as restri¢gdes 2.2
e 2.3 sejam satisfeitas. Nesse procedimento de ajuste, deve-se considerar que a Eq. 2.6
contém mais parametros livres do que ha condi¢oes independentes nas restrigoes, o que
permite modificar acoplamentos e campos locais conjuntamente sem alterar a soma no

expoente. Portanto, miultiplas solugoes equivalentes para o ajuste sao possiveis. Para



eliminar essa liberdade, consideraram-se todos os acoplamentos e campos locais medidos
em relagao ao ultimo fluxo, definindo entao, sem perda de generalidade que:
V(i,5) € n*sVa € Q:
eij(a, Q) = e;(Q,a) = hi(Q) = 0,

de forma que ndo hé necessidade de calcular e;;(a;, a;) caso a; ou a; sejam iguais a Q).

(2.8)

A inferéncia dos acoplamentos par-a-par ¢é realizada por aproximac¢ao Gaussiana, a
partir da inversao da matriz de correlacoes dos atributos; assim, os valores resultantes sao

normalizados. A inferéncia dos acoplamentos par-a-par é definida da seguinte forma:

V(i,j) € "729V(aivaj) € Qz?aivaj #Q:
eij(ai, a;) = —(C™")ij(as, a;),

(2.9)

onde

Cij(ai, a;) = fij(ai, a5) — fi(a:) fi(a;) (2.10)

¢ a matriz de correlagoes obtida a partir das frequéncias empiricas simples e conjuntas.

A inversao da matriz de correlagoes é realizada como forma de remover os efeitos de
correlacoes indiretas nos dados.

Ja a inferéncia dos campos locais h;(a;) é realizada utilizando uma aproximagao de

campo médio. Neste método, a interagao de um atributo com seus vizinhos é substituida

pela interagao aproximada com a média dos atributos, resultando em um valor aproximado

para o campo local associado a ele. Esse cédlculo é realizado da seguinte forma:

Vi€ nsa; € Q5a; # Q:

fi(as) (2.11)
=exp | hi(a;) + > ei(ai, a;) fi(a;) |,
£(Q) JZ% j 7)1\
onde f;(Q) é a frequéncia do ultimo elemento a; = @ para qualquer atributo i,

utilizada aqui para a normalizacio. E relevante ressaltar que o elemento Q foi escolhido
arbitrariamente, podendo ser substituido por qualquer outro valor a; € €2, contanto que o
elemento seja mantido o mesmo para o calculo de campos locais para todos os atributos
i € m. Assim, os campos locais podem ser calculados a partir dos valores ja conhecidos de

frequéncias simples empiricas f;(a;) e de acoplamentos e;;(a;, a;) da seguinte forma:

() = (F9) S fas
o) = (Fi651) - Sewten o te) 212



Assim, com a introduc¢ao do arcabouco tedrico utilizado para a elaboracao do EFC,
segue, entao, a explicacao de como este arcabougo é utilizado para a classificacao de fluxos

de rede em benignos ou maliciosos.

2.3 Classificacao baseada em energia

Como dito anteriormente, a energia de um fluxo ¢ calculada conforme a Equacao 2.7,
utilizando-se dos valores de atributos de um conjunto de fluxos e dos hiperparametros
definidos na subsecao anterior. Dado que a energia de um fluxo é a soma negativa das
energias locais e de acoplamentos, tem-se como resultado que fluxos mais semelhantes
aos utilizados para a inferéncia do modelo tém valores de energia mais baixos. Assim,
é possivel definir um limiar para classificar novas amostras de fluxos como pertencentes
ou nao a classe utilizada para a inferéncia do modelo. O EFC opera com base neste
principio, podendo ser empregado em duas modalidades distintas de classificacdo: binaria

e multiclasse.

2.3.1 Classificacao binaria (EFC Single-Class)

A classificacao binaria pode ser formalmente descrita da seguinte forma: seja F, C B o
subconjunto de fluxos rotulados com a classe ¢ € L, tal que L = {1,...,n} corresponde
ao conjunto de todas as classes de fluxo presentes no conjunto de treinamento B. Para
cada fluxo em F}, infere-se os parametros de acoplamento efj e os campos locais hf. Em
seguida, calcula-se o vetor {H.(f)|Vf € F;}, que corresponde ao Hamiltoniano calculado
para as amostras de treino Fy, obtidas com base nos acoplamentos efj e campos locais hy, .

A partir dessa distribuicao de valores, define-se o limiar de classificagdo como:

7 = QUHANIVS € Fi}), (2.13)

onde 7, é o limiar energético de classificagdo para a classe £ e Q,({H.(f)|Vf € Fi})
representa o p-ésimo quantil das energias calculadas para as amostras em Fj. Desta
forma, o limiar é estabelecido de forma diretamente relacionada a distribuicdo de energias
dos fluxos do treinamento, ajustando-se ao comportamento dos dados. Por influenciar
diretamente a sensibilidade e a especificidade do modelo, o limiar quantilico de classificagao
p é implementado como um dos hiperpardametros do EFC, dado que assim é possivel ajustar

o modelo de acordo com o comportamento de classificacdo que se deseja obter.
¢

i)
dados denominada estimador, a qual representa o modelo estatistico para a classe £ e sera

A seguir, os valores calculados para e, hf e 7, sio armazenados em uma estrutura de

utilizada no processo de classificagdo de novos fluxos. Entao, para se atribuir uma classe a
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um novo fluxo suspeito s, utiliza-se a funcao

(, H < Ty;
Ro(s) = tls) < 7 (2.14)
U, He(s) > 7

onde a classe é atribuida conforme o valor calculado para o Hamiltoniano associado
a classe ¢ calculado para s. Assim, se H(s) < 74, o fluxo é atribuido a classe ¢; caso
contrério, é atribuido o rétulo arbitrario W , tal que W ¢ L, que simplesmente representa
o fato de que o fluxo s pertence a uma classe desconhecida. Por conseguinte, o EFC
originalmente opera como um modelo de classe tnica (single-class), isto é, um classificador

que realiza classificagoes com base apenas no comportamento de uma classe de dados.

2.3.2 Classificagdo multiclasse (EFC Multi-class)

No modelo de classificagdo multiclasse proposto em Souza et al. [4] para o EFC, empregam-
se as mesmas técnicas utilizadas no algoritmo de classificacao binaria. Assim, o pardmetro
central para determinar se um fluxo pertence a uma determinada classe continua sendo seu
valor de energia. A principal diferenca entre as abordagens reside na quantidade de classes
consideradas durante a inferéncia: enquanto a versao binaria infere o comportamento de
uma Unica classe, a versao multiclasse realiza a inferéncia para miultiplas classes de dados,
permitindo que sejam comparados os valores de energia calculados para cada classe para a
atribuicao de um roétulo.

Dessa forma, o processo de treinamento do EFC ocorre conforme ilustrado na Figura 2.2,
onde para cada ¢ € L é inferido um estimador com base nos subconjuntos F, C B. Cada

estimador armazena os parametros do modelo estatistico para sua respectiva classe ¢, ou

¢
15
fase de classificacao, ilustrada na Figura 2.3, calcula-se para um novo fluxo s o vetor de

seja, os valores de acoplamento ef;, os campos locais k! e o limiar de classificacdo 7,. Na
energias {H,(s) | ¥/ € L}, em que cada H,(s) ¢ o Hamiltoniano obtido para o fluxo s
com base nos parametros do estimador correspondente a classe . Com isso, é possivel

determinar a funcao

s H?" S r - i H )
Ru(s) = r (s) < 7 | r = argminger, Hy(s) (2.15)
U, H,(s)>7 |r=argminer, He(s);

para atribuir um rétulo ao fluxo s. Nesta, a classe a qual pertence s é determinada com
base em r, que corresponde ao rétulo da classe que calculou o menor valor de energia para
o fluxo s. Assim, de forma semelhante ao EFC single-class, avalia-se se 0 s é andmalo com

base no valor de energia calculado com base na classe r. Portanto, se H,(s) < 7,., atribui-se

11



Figura 2.2: Processo de treinamento multiclasse para o EFC.

—/ Dados rotulados de treino / ——————

Computar v Computar
acoplamentos [ } acoplamentos
para classe 1 . para classe n

7 i y

Computar * Computar

campos locais { } campos locais

para classe n

T

para classe 1

I :

Obter limiar Obter limiar
para classe 1 para classe n

€ — — — 4

ao fluxo a classe r; caso contrario, o fluxo é rotulado como V¥, ou seja, pertencente a uma
classe desconhecida.

Na secao a seguir, este processo pode ser melhor compreendido pela versao em pseudo-
c6digo do modelo, onde sao explicitados os hiperparametros vistos nas tultimas duas se¢oes

e é ordenado em forma algoritmica o procedimento matematico descrito na Secao 2.2.

2.4 Definicao algoritmica do EFC

Como modo de simplificar a compreensao do modelo, é elaborada a seguir uma imple-
mentacao escrita em pseudocodigo de forma simplificada. A principio, estabelecem-se os

hiperparametros para o modelo:

1: Hiperparametros para o EFC:

2: a |0 < a <1: peso das pseudocontagens para o calculo das frequéncias empiricas;

3: p |0 < p < 1: quantil em percentual para o limiar de energia utilizado para a
classificacao;

4: Q |Q € Z e Q > 0: ntimero de niveis utilizado para discretizagdo de atributos;

Em seguida, pode-se ver o Algoritmo 1, que contém a func¢ao InferirModelo utilizada

para computar a inferéncia de um estimador. A funcdo apresentada recebe Fjy, uma
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Figura 2.3: Classificacao multiclasse com o EFC.

/ Fluxo s a ser classificado /

vl e L:
Computar 8 |e-------=------
energia Hy(s)

Usando a menor energia calculada

Aplica o
limiar para 7 Te

l

Retorna o
resultado de
classificacao

matriz de tamanho (K x N), composta por K fluxos associados a mesma classe £ e que
possuem o numero N de atributos. Ademais, o procedimento retorna um estimador,
que aqui representa meramente uma estrutura de dados que contém os valores de efj,hf
e 71, calculados para as amostras de treino. A partir desse estimador, pode-se, poste-
riormente, acessar os valores de acoplamentos e campos locais para calcular a energia
de um fluxo. Para computar esses valores, sao usadas as fun¢oes SiteFreq, PairFreq,
Couplings, LocalFields, ComputeEnergies e CutoffQuantile. Essas fungoes nao serao
explicitamente escritas, mas adaptam o processo descrito na Secao 2.2, ficando explicito

nos comentarios do pseudocoddigo qual célculo esta sendo realizado.

Algorithm 1 Inferéncia do modelo estatistico para o EFC

1: importar todas as funcdes de inferéncia do modelo
2: function INFERIRMODELO(F))

3: fi < SiteFreq(Fy, Q, a); > calcula as frequéncias individuais dos atributos
4: fij < PairFreq(Fy, fi, Q, a); > calcula as frequéncias par-a-par dos atributos
5 efj < Couplings(f;, fij, Q,); > calcula os acoplamentos conforme as eqs.2.9 e 2.10
6: hf — LocalFields(efj7 fi,Q); > calcula os campos locais conforme a eq.2.12
7 energias < ComputeEnergies(Fy, efj, hf); > computa o vetor {H¢(f) | f € Fu}
8 T¢ <— CutoffQuantile(energias,p); > computa o p-ésimo quantil para energias conforme a eq. 2.13
9 return estimador(efj7 e, 7o)

10: end function

Adiante, para representar o processo de treinamento do classificador, tem-se o Algoritmo

2, que contém a funcao Train. Nesta, ha os pardmetros de entrada da funcao B e L,
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respectivamente correspondendo ao conjunto de fluxos de treino na forma de uma matriz
de forma K x N, e um vetor de rétulos de tamanho N associados aos fluxos de B. Ja
base_class é um paradmetro opcional apenas usado para identificar qual classe de fluxo
sera utilizada para treinar em cendrios de classificacao binaria. Aqui é valido citar que cada
estimador gerado pela saida da funcdo InferirModelo é armazenado de forma global em
estimadores, para que possa(m) ser acessado(s) posteriormente na fungio de classificacao.
E vélido destacar a presenca da funcio Tamanho, aqui usada para determinar o tamanho

de um vetor.

Algorithm 2 Procedimento de treino para o Energy-Based Flow Classifier

1: function TRAIN(B,L,base_class)

2 B < valores de atributos em B discretizados quantilicamente em @ niveis;
3 L <+ rétulos distintos presentes em £

4 if Tamanho(L) =2 then

5 if base_class nao especificada then

6: base_class < primeiro rétulo presente em L;

7 end if

8 Frase_c1ass < todas as amostras de B rotuladas como base_class;
9: estimadores[base_class|<— InferirModelo(Fpase_class);

10: else

11: for all £ in L do

12: F; < todas as amostras de B rotuladas como #;

13: estimadores[l] < InferirModelo (Fy);

14: end for

15: end if

16: end function

Por fim, o Algoritmo 3, que inclui a func¢ao Classify, que representa o processo de
classificagao utilizando os estimadores treinados. Esta funcao, de forma similar as demais,
recebe como pardmetro uma matriz de forma K x N com fluxos que serdao testados,
representada pelo parametro S. Pode ser observado também que o pseudocddigo em
questao retorna um vetor de rétulos, que é representado pela variavel predictions (do
inglés, predigdes). Note que no algoritmo, o rétulo arbitrario escolhido como equivalente
a U, visto nas egs. 2.14 e 2.15, foi "unknown', do inglés, desconhecido. Ademais, os
métodos InsereNoFim utilizados no pseudocdédigo meramente representam a insergao de
um elemento no fim de um vetor, sendo "[]"a representagao de um vetor vazio.

E vélido notar que nenhuma caracteristica intrinseca do Energy-based Flow Classifier
limita-o a ser exclusivamente um classificador de fluxos de rede, sendo plausivel sua
aplicacao a outras areas. Contudo, aplicagoes do modelo em outras areas do conhecimento
ainda nao foram vistas na literatura.

Neste capitulo, foi detalhado o arcabouco tedrico do EFC, abordando a abstracgao
dos fluxos de rede em grafos, o método de inferéncia do modelo estatistico por meio de
estatistica inversa e o calculo da Hamiltoniana utilizado para estimar a energia de cada
fluxo, a qual fundamenta o processo de classificacao. Também foram explicitados os pontos
do modelo em que cada hiperparametro influencia diretamente seu comportamento, além

da formalizagdo do método de classificagao baseado em energias. Por fim, foi apresentado o
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Algorithm 3 Classificacao de fluxos com o Energy-Based Flow Classifier

1: function CLASSIFY(S)

: S + S discretizado quantilicamente em @) niveis;
3 predictions <+ [J;
4 energias < ||
5: for all s in S do
6: hamiltonianas<]]
T
8
9

for all estimador in estimadores do
hamiltonianas.InsereNoFim(Hestimador (S))

end for
10: energias.InsereNoFim(hamiltonianas)
11: end for
12: for all hamiltonianas in energias do
13: if Tamanho(hamiltonianas)= 1 then > classificacao bindria, equivalente a eq. 2.14
14: Hpoase_class < valor de energia calculado para o tnico estimador;
15: if Hbase_class S Tbase_class then
16: predictions.InsereNoFim(rétulo da classe base_class);
17: else
18: predictions.InsereNoFim("unknown"); > U="unknown"
19: end if
20: else > classificagdo multiclasse, equivalente & eq. 2.15
21: Encontrar o estimadory,;n que calculou o menor valor H,,;, em hamiltonianas;
22: if Hymin > Tmin then
23: predictions.InsereNoFim("unknown"); > W="unknown"
24: else
25: predictions.InsereNoFim(rétulo da classe associada ao estimadormin);
26: end if
27: end if
28: end for
29: return predictions;

30: end function

pseudocddigo que estrutura, de forma algoritmica, as etapas de treinamento e classificacao,
destacando onde cada hiperparametro atua no processo.

Assim, com a fundamentacao tedrica sobre o funcionamento do modelo estabelecida,
o préximo capitulo abordara a metodologia adotada para a realizacao dos testes com os
hiperparametros do modelo, detalhando os experimentos planejados, os conjuntos de dados

selecionados e as especificagoes do sistema utilizado para a execucao dos testes.
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Capitulo 3

Trabalhos Relacionados

Nos ultimos anos, diversos trabalhos foram produzidos com o intuito de explorar cenarios
de aplicagao para o Energy-based Flow Classifier(EFC). Esta se¢ao abordara alguns desses
estudos relevantes para a presente pesquisa. Primeiramente, sera apresentado o trabalho
original que propos o EFC, seguido pela extensao que introduziu sua versao multiclasse.
Em seguida, serao discutidos estudos que analisam o desempenho do modelo em diferentes
cenarios de aplicagao, bem como pesquisas que o integraram a sistemas de aprendizado
federado. Na sequéncia, abordam-se investigacoes que utilizaram o EFC como base de
referéncia para avaliar modelos propostos. Por fim, serd discutida a aparente lacuna na

literatura quanto a calibragem de seus hiperparametros.

3.1 Proposicao original do modelo de classificacao e

sua versao multiclasse

Como mencionado anteriormente, o Energy-based Flow Classifier (EFC) foi inicialmente
proposto em [8] como uma abordagem de detecgao de intrusdo baseada em fluxos de
rede que dispensa amostras maliciosas para seu treinamento. Inspirado no modelo de
Potts da fisica quéntica, o método infere um modelo estatistico exclusivamente a partir de
fluxos benignos, calculando uma “energia” para cada fluxo com base em acoplamentos
entre caracteristicas (portas, protocolos, duracdo etc.) e campos locais. Fluxos cujo valor
energético ultrapassa um limiar (percentil 95 da distribuigdo de energia de treinamento)
sao sinalizados como anémalos. O EFC foi validado empiricamente em trés conjuntos
de dados (CIDDS-001, CICIDS17 e CICDDo0S19), demonstrando desempenho adequado
(F1-score em torno de 0.97 ¢ AUC préximo de 0.99 em testes intrasset) e destacando-se
em cenarios com treino e teste realizados em conjuntos diferentes de dados, onde supera
classificadores tradicionais como SVM e MLP em até 52% de ganho de F1. Além disso,
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o modelo apresenta interpretabilidade, uma vez que permite decompor a energia em
contribuicoes de pares de caracteristicas, facilitando a analise de decisoes e a identificagao
de padroes especificos de ataque.

De Souza et al. [4] estendem o EFC original para um cenario multiclasse e open-set,
isto é, de modo a tratar nao s6 de trafego benigno e diferentes classes de ataques (DDoS,
PortScan, Bot etc.), mas também identificar ataques desconhecidos. Mantendo a mesma
formulacao energética, o EFC multiclasse infere um modelo estatistico para cada classe
— benigna e cada tipo de ataque conhecido — e aplica limiares energéticos individuais
(percentil 95) para atribuir rétulos. Validado no CICIDS2017, o classificador multiclasse
alcanca macro-F1 de 0.752 quando nao se avalia a deteccao de uma classe desconhecida,
superando o segundo maior pontuador, Decision Tree (0.731), em 8 de 13 classes, e
demonstra capacidade de detecgao para classes de ataque desconhecido, detectando mais
de 80% dos ataques nao vistos, com AUPRC média de 0,993, superior a redes neurais
avancadas como OCN [15]. O estudo também ressalta a eficiéncia computacional em
termos de tempo de treinamento do modelo, o que viabiliza a implantacao em sistemas de
monitoramento de alto desempenho em tempo real.

Esses artigos apresentam a fundamentacao teodrica do algoritmo EFC, incluindo a
formulagao matematica do processo de inferéncia do modelo estatistico. O contetudo foi
sintetizado e sera exposto no Capitulo 2 deste trabalho, acompanhado de uma repre-
sentacao em pseudocodigo do algoritmo e pela indicagao precisa dos pontos em que os

hiperparametros intervém na inferéncia do modelo.

3.2 Trabalhos que avaliam o desempenho do modelo

em diferentes aplicacoes

Uma vez proposto, o Energy-Based Flow Classifier tem sido explorado em distintas
aplicagoes com foco na deteccdo de anomalias de maneira supervisionada. No contexto
de seguranga de rede, Lopes et al. [9] aplicou o EFC para reconhecer comportamento de
botnets em fluxos de rede, comparando-o sistematicamente com classificadores binarios
(KNN, SVM, MLP, Random Forest etc.) e unarios (OCSVM, Isolation Forest, LOF e
FElliptic Envelope). Os experimentos em cendrios intra-dominio (CTU-13 e ISOT HTTP)
revelaram Fl-score acima de 0,98 e AUC acima de 0,99 em ISOT HTTP, e 0,87/0,96 em
CTU-13, sendo superado apenas pelo algoritmo Local Outlier Factor (LOF). Enquanto
nos testes inter-dominio o EFC manteve desempenho superior aos métodos comparados
em termos de Fl-score em um dos experimentos, com pontuacao de 0.66 e em outro,
obteve a maior pontuac¢ao em termos de AUC 0.73, evidenciando robustez a varia¢oes de

distribuicao dos fluxos.
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Ja no contexto de deteccao de intrusdo em redes moveis, de Almeida et al. [10] empregou
o EFC integrado a técnicas de agrupamento (clustering) para segmentar regides urbanas,
suburbanas e rurais a partir de registros de detalhe de chamada (CDR). Validado em
62 dias de dados de Milao, utilizando registros de referéncia de eventos em estadios, o
método alcangou Fl-score de 0.96, pontuagao essa mais de 35% acima do melhor detector
comparado (método de agrupamento baseado em K-médias). Esses trabalhos reafirmam a
aplicabilidade do EFC em cendrios realistas e diversos, desde redes de computadores com

trafego potencialmente malicioso até redes moveis com padroes de uso regionais distintos.

3.3 Utilizacao do EFC como componente em apren-

dizado federado

Ademais, o EFC tem sido empregado como componente auxiliar em diversos sistemas
recentes de deteccdo de intrusdo, especialmente no contexto de aprendizado federado
(Federated Learning, FL) e redes heterogéneas. Seu uso mostra-se promissor para aprimorar
a capacidade de generalizacao e reduzir a necessidade de supervisao em cenarios onde os
dados nao sao independentes nem identicamente distribuidos (non-11D).

O trabalho de Bertoli et al. [11] propoe uma arquitetura de detecgdo de intrusao
baseada em aprendizado federado nao supervisionado com uma abordagem empilhada,
combinando um autoencoder profundo (Deep Autoencoder, DAE) com o EFC como fonte
de novas features. A proposta é avaliada em quatro bases de dados (UNSW-NB15, CSE-
CIC-IDS-2018, Bot-IoT e ToN-IoT), simulando um ambiente federado do tipo interdominio
(cross-silo). Os autores mostram que sua abordagem supera métodos tradicionais de
aprendizado local e bases de referéncia como Isolation Forest e LOF, obtendo F1-score
médio de 0.84 no 10° round de FL. Ademais, o trabalho demonstra como o uso do EFC
tem impacto significativo no desempenho do modelo, evidenciado pelo Fl-score de 0.47
obtido pelo Deep Autoencoder no mesmo estégio de treinamento quando nao associado ao
EFC.

Em outro trabalho relevante, Zhu et al. [12], o EFC ¢ utilizado em combinagao com
um modelo de Gaussian Mizture Model (GMM) no contexto de aprendizado federado
em redes heterogéneas. Neste esquema, cada cliente local obtém novas features por meio
do uso do EFC e utiliza-as somadas ao conjunto de dados para o treinamento do GMM,
utilizando a estratégia FedAdagrad. A proposta é avaliada com os mesmos conjuntos
de dados e metodologia propostos em Bertoli et al. [11], dessa vez obtendo F1-score de
84.94% no 10° round de FL, superando significativamente o GMM isolado (52.47%) e

algoritmos de deteccao classicos. Os resultados em diferentes datasets confirmam a eficicia
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da abordagem mesmo sob forte desbalanceamento de classes e variagao de distribuicao
entre as organizacoes.

J& Wan et al. [13], apresentam o STIN-IDS, um sistema voltado para redes integradas
satélite-terrestres, no qual satélites LEO realizam a coleta e pré-processamento dos dados,
enquanto satélites GEO participam de um esquema de FL nao supervisionado. Neste
sistema, o EFC ¢ utilizado para extrair a energia de cada fluxo de rede e adicioné-
la ao conjunto de caracteristicas processadas por um autoencoder. Os testes mostram
desempenho consistente em diferentes bases de dados, com F1l-score superior a 0.91 e
acuracia de até 0.97, demonstrando que a arquitetura é capaz de lidar com variagoes
regionais e mobilidade na rede. O modelo também se mostra resiliente a mudangas abruptas
na distribuicao dos dados ao longo do tempo.

Esses trabalhos demonstram que o EFC contribui significativamente para a generaliza-
¢ao e adaptacgao a diferentes dominios em modelos de aprendizado federado, consolidando-se

como um componente essencial para o funcionamento dessas propostas.

3.4 O EFC usado como modelod de referéncia para

avaliacao de outros modelos

Ademais, o Energy-based Flow Classifier tem sido utilizado como modelo de referéncia em
estudos recentes voltados para a detecgao de intrusdes em redes, especialmente pela sua
capacidade de adaptagao a novos dominios sem a necessidade de um processo complexo de
treinamento como o de redes neurais. Diversos trabalhos se apoiam no EFC para avaliar a
eficacia de modelos mais complexos, com foco em robustez e capacidade de generalizagao.
A seguir, sdo apresentados trés estudos que utilizam os resultados obtidos pelo EFC em
seus respectivos trabalhos como referéncia para validar suas propostas.

Nguyen et al. [16] propoe um sistema de detecgao de intrusdao baseado em uma aborda-
gem sequencial utilizando o modelo BERT, originalmente aplicado em Processamento de
Linguagem Natural. O sistema modela a sequéncia temporal de fluxos de rede como sen-
tencas, permitindo que padrdes de comportamento contextualizados sejam capturados. A
arquitetura do sistema utiliza o BERT para extrair vetores de caracteristicas de sequéncias
de fluxos e um classificador MLP para a tomada de decisdao. Em testes realizados com os
conjuntos CIDDS-001 e CIDDS-002, o modelo proposto apresentou desempenho superior
ao EFC, especialmente em ambientes de dominio distinto, evidenciado por métricas como
F1-score e acuracia. Ainda assim, o EFC se destacou como o segundo melhor modelo
em diversos cendrios, mostrando sua eficacia relativa mesmo diante de arquiteturas mais

complexas.
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Outro trabalho relevante é o de de Melo et al. [17], que propoe o framework Anomaly-
Flow, voltado & detecgdo de ataques de negacao de servigo distribuidos (Distributed Denial
of Service, DDoS) em ambientes multi-dominio (multi-silo), utilizando uma combina-
¢ao de Aprendizado Federado e Redes Generativas Adversariais (GANs). A proposta
baseia-se em treinar localmente modelos GANomaly adaptados a dados tabulares de
fluxo de rede, compartilhando apenas pardmetros agregados entre os dominios (silos), o
que preserva a privacidade dos dados. Apds o treinamento, os modelos sao utilizados
para gerar fluxos sintéticos, que alimentam classificadores heterogéneos em ambientes
externos. O EFC foi empregado como modelo de comparagao nos experimentos de detec-
¢ao inter-dominio com conjuntos CICIDS2018, Bot-IoT e TON-IoT. O EFC demonstra
resultados competitivos, sendo o terceiro melhor classificador em geral com F1-score de
0.648; contudo, o Anomaly-Flow demonstrou maior capacidade de generalizacao ao integrar
dados distribuidos, alcangando o maior F1l-score relatado (0.747).

Em outro trabalho, Melo et al. [18] explora também a generalizacao de classificadores
de ataques DDoS por meio de Aprendizado Federado, aplicando-o a multiplos dominios de
dados (silos) extraidos de redes distintas (TON-IoT, CICIDS2018 e Bot-IoT). A proposta
consiste no treinamento distribuido de modelos de regressao logistica com técnicas de
balanceamento (subamostragem e SMOTE) e selegao de atributos, sem compartilhamento
direto de dados entre os dominios. O EFC foi utilizado como referéncia de comparacao em
todos os experimentos. Os resultados mostram que a combinac¢ao de FL com subamos-
tragem e selecao de atributos produziu F1l-score médio comparavel ao do EFC, obtendo
a pontuacao de 0.50 de F1l-score, enquanto o EFC apresentou os maiores resultados do
trabalho pontuando 0.53 na mesma métrica.

Esses estudos evidenciam a importancia do EFC como base comparativa sélida na
literatura de deteccao de intrusao. Embora nao seja sempre o modelo com melhor
desempenho absoluto, seu equilibrio entre simplicidade e robustez o torna um candidato

adequado para testes comparativos.

3.5 A lacuna de pesquisa identificada

Apesar dos trabalhos apresentados evidenciarem a versatilidade do EFC em cenarios
heterogéneos e variados, quase nenhum destes aborda a configuragdo de hiperparametros
utilizada para a realizacao de seus experimentos. De forma resumida, o EFC possui
trés hiperparametros: o limiar de classificagao, o peso de pseudocontagens e o ntimero
de niveis de discretizacdo para os dados (mais informagoes sobre estes pardmetros sao
apresentadas no préximo capitulo). Dentre os estudos trabalhados neste capitulo, apenas

o estudo de Souza et al. [4] menciona quais foram os valores utilizados para todos estes
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parametros, especificando os seguintes valores: 95° percentil das energias calculadas como
limiar de classificacao, peso de 0.5 para as pseudocontagens de frequéncias e 30 niveis
de discretizagao para os dados. Nao por acaso, esses sao os valores padrao atribuidos
aos hiperparametros do classificador, conforme verificado na implementagao disponivel na
plataforma GitHub [19]. Diante disso, é razoavel supor que os trabalhos que adotaram o
EFC como base tenham utilizado essa configuracao ou varia¢cdes muito proximas, o que
indica a possibilidade de existirem oportunidades de otimizacao de desempenho ainda
nao investigadas. Para uma investigacao desta hipotese, torna-se necessario aprofundar a
fundamentacao tedrica do modelo, a fim de compreender de forma mais precisa o papel e
o impacto de seus hiperparametros no processo de inferéncia, tema este que sera abordado

no proximo capitulo.
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Capitulo 4
Metodologia

Como relatado no capitulo anterior, o Energy-based Flow classifier possui trés hiperpara-
metros: «a, () e p; sendo necessaria a atribuicao de valores a estes antes do treinamento
do modelo. Neste capitulo, entao, sera descrito o método utilizado para a avaliacao do
desempenho de classificagao sob diferentes configuragoes para estes parametros globais.
Para isto, primeiramente serao descritos os experimentos planejados. Em seguida, serao
apresentados os conjuntos de dados que serao utilizados nos experimentos e as técnicas de
balanceamento aplicadas a estes. Por fim, sera descrito o ambiente de execucao utilizado

para a realizacao dos experimentos.

4.1 Metodologia de teste para o impacto dos hiper-

parametros nos resultados de classificacao

Dado que o modelo é capaz de realizar tanto classificagoes binarias quanto multiclasse,
conforme destacado na Secao 2.3, ambas as modalidades serao contempladas nos expe-
rimentos. Para cada uma delas, serdo conduzidas multiplas iteracoes de classificagao
com diferentes configuracoes dos hiperparametros, com o objetivo de avaliar as variagoes
no desempenho do modelo em fun¢ao das combinacoes de valores dentro de uma faixa
previamente definida. Ainda, em cada iteracao de classificacdo, serdo usados 80% dos
dados dos datasets para treino e 20% para teste.

A primeira etapa planejada para os experimentos aborda dois dos hiperpardmetros do
modelo, que serao avaliados em conjunto: o p, responsavel por determinar o quantil das
energias de treino utilizado como limiar de classificacao, e o nimero de niveis utilizados
na discretizagao dos atributos dos dados de treino (Q)). A segunda etapa, por sua vez,
busca avaliar o impacto de diferentes pesos para as pseudocontagens («), que também

serao analisados junto ao pardmetro (), por razdes que serao justificadas na subsecao
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dedicada a este experimento. A seguir, sdo descritas as faixas de valores analisadas para

cada parametro, além das especificidades de cada experimento realizado.

4.1.1 Experimentos com o limiar de classificacao e com o nii-

mero de niveis de discretizacao dos dados

A escolha das faixas de valores para os hiperparametros do modelo foi baseada em torno
dos valores selecionados como padrao para o modelo visto no GitHub [19] e em Souza et
al.[4]. Estes valores sdo, especificamente: 0.95 para o limiar de classificagdo (p) e 30 para
o nimero de niveis de discretizagao (Q).

A faixa de valores escolhida para a experimentacao com o limiar de classificacao foi
definida entre 0.90 e 0.99, com incremento uniforme de 0.01 a cada iteracao. De forma
similar, a faixa de valores inteiros de 10 a 100, com incremento de 10 em cada iteragao,
sera utilizada para a avaliagdo de diferentes niveis de discretizagao para os dados. Todos
os valores escolhidos para cada parametro sao apresentados por extenso na Tabela 4.1,

como forma de facilitar sua visualizagao.

Tabela 4.1: Faixa de valores testados para os hiperparametros do modelo EFC.

Hiperparametro Valores Testados
P {0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99}
Q {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

A cada iteragao de teste, dois valores dentro das faixas estabelecidas (um para cada
hiperpardmetro) serao selecionados e empregados no treinamento do modelo. O desem-
penho de cada modelo treinado sera avaliado com base nos dados reservados para teste.
Esse processo sera repetido para todos os pares de valores possiveis dentro das faixas
estabelecidas para os hiperparametros, garantindo que os mesmos dados serao usados em

todas as iteragoes de treino e teste.

4.1.2 Experimentos com os pesos de pseudocontagens

Para avaliar como os pesos de pseudocontagens de frequéncia a afetam os resultados de
classificacao, foram elaborados dois experimentos:

Experimentos com os pesos de pseudocontagens e com o niimero de niveis de

discretizacao dos dados

Primeiramente, serao realizados testes de classificaciao sobre o hiperparametro «, que define

o peso atribuido as pseudocontagens das frequéncias durante a etapa de inferéncia do modelo
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estatistico. Como descrito na se¢ao 2.2, a introducao destes pesos é realizada para evitar
problemas de subamostragem (undersampling) nos dados de treino, equivalendo a adigao
de uma fracao extra de fluxos com valores distribuidos uniformemente. Para a avaliagao
do impacto deste parametro na classificacao, foram realizadas multiplas classificagoes
utilizando diferentes valores para « e para niveis de discretizacao dos atributos.

Assim como nos experimentos sobre () e p, é estabelecida uma faixa de valores a
serem testados para a e (). A faixa testada para alpha contempla valores de 0.1 a 0.9,
incrementados em 0.1 a cada iteragdo. Os niveis de discretizacao foram avaliados na faixa
de 10 a 100, incrementados em 10 a cada iteracao, assim como no experimento anterior. A

Tabela 4.2 apresenta as faixas estabelecidas para o experimento por extenso.

Tabela 4.2: Faixa de valores testados para os hiperparametros do modelo EFC.

Hiperparametro Valores Testados
! {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Q {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

A combinacao de diferentes valores de o com os niveis de discretizacao () foi realizada
para investigar possiveis interagoes entre esses parametros. A escolha de valores baixos
para « resulta em um modelo mais precisamente adaptado aos dados de treino; contudo,
supoe-se o risco de que esta escolha venha a inviabilizar o treinamento do modelo em
cenarios de alta discretizacao dos dados. Isso supostamente ocorreria em casos em que
a baixa frequéncia de determinados valores de atributos possa resultar no determinante
da matriz de correla¢des ser nulo. O que, por sua vez, ocasiona a impossibilidade de
realizar a inversao de matriz presente na eq. 2.9, entdao tornando impossivel o processo
de treinamento do modelo. Ademais, supoe-se a possibilidade de que esse ajuste aos
dados prejudique a capacidade de adaptagao a diferentes dominios de dados, o que serd

investigado no préximo experimento.

Avaliacao com o objetivo de verificar se valores menores de o tendem a provo-

car perda de adaptabilidade no modelo.

Para confirmar se ha problemas relacionados a perda de adaptabilidade, foi realizado um
teste cruzado utilizando dois conjuntos de dados distintos. Em cada experimento, um dos
conjuntos foi usado integralmente para treinamento e o outro integralmente para teste,
invertendo-se os papéis dos conjuntos em uma segunda iteracdo. Quanto a configuracao
de hiperparametros definida para estes experimentos, buscou-se avaliar diferentes valores

apenas para os pesos das pseudocontagens de frequéncias, sendo testados trés valores: 0.1,
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0.5 e 0.9. Os niveis de discretizacao e o limiar de classificacdo permaneceram fixos nos
valores padrao (30 e 0.95, respectivamente).

Esta perda de adaptabilidade pode ser melhor visualizada ao montar um histograma
das energias calculadas na eq. 2.7 para cada um dos fluxos classificados. Neste histograma,
se nao houver uma distin¢ao entre os niveis de energia da classe utilizada no treinamento
do modelo e os niveis das demais classes, pode-se dizer que o modelo nao foi capaz de
inferir o comportamento da classe utilizada para treino.

Este segundo experimento foi realizado apenas na modalidade de classificagdo binaria,
dado que os tipos de classes de ataque dos dois conjuntos de dados escolhidos nao sao
compativeis. Ademais, a visualizacao da separacao entre os niveis de energia das classes
no histograma é mais simples na classificagdo binaria, dado que s6 é necessario observar as

energias calculadas por um estimador.

4.1.3 Meétricas de Avaliagcao de Desempenho: AUC-ROC e F1-

score

Para a avaliacao de desempenho do modelo de classificacao, foram escolhidas duas métricas
comumente utilizadas: AUC-ROC e F1-Score. Ambas sdo calculadas utilizando as predigoes
realizadas pelo classificador ao atribuir uma classe aos fluxos de teste. As métricas
escolhidas fornecem informagoes sobre a capacidade do modelo de discriminacao entre as

classes e o equilibrio entre precisao e revocacao.

AUC-ROC

A métrica AUC-ROC (Area sob a Curva Caracteristica de Operagao do Receptor) quantifica
a habilidade do modelo em classificar corretamente as instancias entre as classes. A curva
ROC é construida a partir da Taxa de Verdadeiros Positivos (TPR) em relagao a Taxa de
Falsos Positivos (FPR) para diferentes limiares de classificagdo. A AUC é a drea sob essa

curva e varia entre 0 e 1. A formula para calcular a AUC é:
1

AUC = / TPR(FPR) dFPR
0

F1-score

A métrica Fl-score, por sua vez, é definida como a média harmonica entre a precisao e a
revocacao, considerando o desempenho do modelo em relagao a falsos positivos e falsos

negativos. A férmula do Fl-score é:
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Fl— 9« Precisao x Revocacgao

Precisao + Revocacao

Onde a precisdo (Precisdo) é calculada como:

brocing TP
recisio = o s
E a revocagao (Revocacao) é calculada como:
R . TP
evocacio = ——————
VOO = TP FN

Onde TP representa os Verdadeiros Positivos, F'P os Falsos Positivos e F'N os Falsos
Negativos. O valor do Fl-score varia de 0 a 1, com valores mais préximos de 1 indicando

um melhor equilibrio entre precisao e revocacao.

4.2 Os datasets

Primeiramente, para a escolha dos conjuntos de dados que serao utilizados, foi dada
preferéncia a datasets amplamente utilizados na literatura que ja houvessem sido utilizados
em experimentos inter-dataset utilizando o EFC. Portanto, foram escolhidos dois dos
conjuntos de dados utilizados no estudo de Pontes et al.[8], o CICIDS17 [20] ¢ o CICDDoS19
[21]; ambos publicados pelo Canadian Institute of Cybersecurity.

Ambos os datasets foram gerados a partir de dados de trafego simulado de rede
armazenados em arquivos de captura (PCAP). Estes, entdo, tiveram as informagoes dos
fluxos extraidas pela ferramenta CICFlowMeter, que define e rotula os fluxos de rede
baseando-se nas informacoes de Timestamp, IPs de origem e destino, portas, protocolos
e ataques. Essas informacoes sao armazenadas em um arquivo do formato CSV, onde
cada linha corresponde a um dos fluxos de rede identificados, rotulado apropriadamente
conforme a classe de trafego que ele representa. Os arquivos de dados utilizados neste
trabalho foram os CSV, por estarem em um formato ja compativel para o uso do EFC.

Ambos os conjuntos de dados compartilham o método de geragao de trafego benigno,
no qual é simulado o comportamento abstrato de 25 usuarios para atuar como trafego de
fundo, cobrindo protocolos como HTTP, HT'TPS, FTP, SSH e e-mail; garantindo que
h& um padrao de comportamento benigno que possa ser aprendido pelo EFC. Contudo,
apesar de haver semelhancas entre os dados, os conjuntos trabalhados possuem suas
particularidades, fazendo com que seja necessario que se discorra brevemente sobre suas

caracteristicas e as abordagens de tratamento de dados aplicadas a cada um deles.
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4.2.1 CICIDS17

O dataset CICIDS2017 contém dados benignos e de ataques cibernéticos comuns e atua-
lizados. Neste estao contidos dados de trafego de ataques cibernéticos simulados, sendo
eles: Brute Force ( baseado em FTP e baseado em SSH), DoS, Heartbleed, Web Attack,
Infiltration, Botnet e DDoS. O arquivo CSV deste conjunto de dados é composto por
78 colunas correspondentes as caracteristicas dos fluxos extraidos, além de uma coluna
dedicada a rotular a categoria a qual cada fluxo pertence. Para este trabalho, todas as
colunas de caracteristicas deste foram utilizadas.

Para este conjunto de dados, foi realizada uma re-rotulagem dos fluxos inicialmente
rotulados para a categoria ' Web Attack", nominalmente: "Web Attack - Brute Force", " Web
Attack - XSS"e "Web Attack - SQL Injection'. Estes fluxos foram rotulados para apenas
"Web Attack", para que as amostras desta categoria nao fossem descartadas por falta de
amostras suficientes para a classificagao. Desta forma, tem-se que o niimero de amostras

de cada categoria de fluxo deste dataset pode ser visto na Tabela 4.3.

Tabela 4.3: Distribuigdo original das amostras de fluxo do dataset CICIDS2017

| CICIDS2017 |

Classe namero de
amostras

BENIGN 2271320
DoS Hulk 230124
PortScan 158804
DDoS 128025
DoS GoldenEye 10293
FTP-Patator 7935
SSH-Patator 5897
DoS slowloris 5796
DoS Slowhttptest 5499
Web Attack 2180
Bot 1956
Infiltration 36
Heartbleed 11

4.2.2 CICDDoS19

J& quanto ao conjunto de dados CICDDo0S19, este possui dados benignos e de ataques
DDoS. Este contém os dados de diversos ataques DDoS baseados em protocolos da camada
de aplicagao (por exemplo: NetBIOS, LDAP, MSSQL, DNS, SNMP, NTP, TFTP e
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WebDDoS), em vulnerabilidades de protocolos da camada de transporte (UDP Lag, UDP
Flood e SYN Flood), assim como ataques de enumeracao de porta (PortMap).

O arquivo CSV deste dataset, diferentemente do CICIDS17, é composto por 82 colunas
correspondentes as caracteristicas dos fluxos extraidos, além de uma coluna dedicada a
rotular a categoria a qual cada fluxo pertence. Uma vez que este conjunto possui colunas
que nao estao presentes no CICIDS17, algumas colunas foram descartadas para que fosse
possivel realizar testes cruzados entre os dois. Especificamente, foram removidas as colunas
"Source Port", "SimillarHTTP", "Inbound"e "Protocol".

Ademais, foi necessario que houvesse uma re-rotulacao dos dados deste conjunto, uma
vez que a rotulagao original possuia inconsisténcias na selecao de nomes para os rétulos,
como pode ser notado na Tabela 4.4. Para tal re-rotulacao dos fluxos, foi consultado o
trabalho de Sharafaldin et al.[21] no qual o conjunto de dados foi proposto. Com base

nele, foram feitos os seguintes ajustes:

e primeiramente, os fluxos rotulados como "UDP-lag"e " UDPLag"foram interpretados
como representando a mesma classe de fluxos, portanto tiveram seu rétulo ajustado

para uniformizar a grafia como "UDPLag";

o ademais, nao foi identificada nenhuma razao para que houvesse uma distin¢ao entre
os fluxos rotulados com o prefixo "DrDoS "e sua contraparte rotulada sem tal
prefixo (por exemplo: "DrDoS MSSQL"e "MSSQL"), uma vez que tal diferenga nao
¢é exposta em nenhum momento na publicacao associada ao dataset. Portanto os

fluxos assim rotulados tiveram esse prefixo removido na re-rotulacao.

Enfim, é valido mencionar que a categoria de ataque "UDP"é ambigua e nao é pro-
priamente descrita no trabalho de Sharafaldin et al.[21], entdo nao é possivel confirmar
que tipo de ataque ela representa. Porém, considerando o que é apresentado no trabalho,
supoe-se que esta classe corresponda ao ataque UDP-flood, portanto a classe nao serd

removida.

4.2.3 Balanceamento dos conjuntos de dados para a classificacao
binaria

Para os experimentos de classificacao binaria com o EFC, os datasets foram balanceados de

forma a conter 10,000 amostras de fluxos benignos e uma soma de 10,000 amostras de fluxos

maliciosos, buscando manter uma proporcao de representatividade similar entre todas as

classes, embora algumas destas possuam menos amostras de fluxos que o necesséario para

que se mantenha o mesmo nimero das demais. Estas classes que possuem um niimero

menor que o minimo necessario para se igualar com a proporgao das outras classes foram

descartadas da classificacao.
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Tabela 4.4: Distribuicao original das amostras de fluxo do dataset CICDDo0S19

I CICDD0S2019 |
Classe numero de
amostras

BENIGN 113828
DrDoS DNS 5071011
DrDoS LDAP 2179930
DrDoS_MSSQL 4522492
DrDoS NTP 1202642
DrDoS NetBIOS 4093279
DrDoS SNMP 5159870
DrDoS_SSDP 2610611
DrDoS UDP 3134645
LDAP 1915122
MSSQL 5787453
NetBIOS 3657497
Portmap 186960
Syn 6473789
TEFTP 20082580
UDP 3867155
UDP-lag 366461
UDPLag 1873
WebDDoS 439

Isto é, para o dataset CICIDS17, as amostras das classes "Infiltration'e "Heart-
bleed'foram descartadas. Enquanto que para o CICDDo0S19, somente as amostras da
categoria "WebDDoS"foram descartadas. O balanceamento final para ambos os datasets

para os experimentos de classificacdo binaria pode ser visto na Tabela 4.5.

4.2.4 Balanceamento dos conjuntos de dados para a classificacao

multiclasse

Para o balanceamento dos dados para classificacdo multiclasse, foi estabelecido o limite
maximo de 5,000 amostras para cada categoria de fluxo. Para as classes com ntimero de
amostras inferior a 5,000, foram consideradas apenas aquelas que possuiam mais de 1,000
amostras. As classes que possuem menos de mil amostras foram descartadas, uma vez que
nao seria possivel realizar um treinamento de deteccao adequado para estas. Desta forma,

as amostras classificadas como "Infiltration", " Heartbleed"e " WebDDoS"foram descartadas
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Tabela 4.5: Numero de amostras por classe nos datasets CICDS2017 e CICDD0S2019 apds

o balanceamento para experimentos de classificagao binéria

|  CICDDoS2019 |
I CICIDS2017 | imero do
nuamero de Classe amostras

Classe

amostras BENIGN 10000
BENIGN 10000 DNS 834
DoS Hulk 1000 LDAP 834
PortScan 1000 MSSQL 834
DDoS 1000 NetBIOS 834
DoS GoldenEye 1000 NTP 833
FTP-Patator 1000 SNMP 833
SSH-Patator 1000 SSDP 833
DoS slowloris 1000 UDP 833
DoS Slowhttptest 1000 Portmap 833
Web Attack 1000 Syn 833
Bot 1000 TFTP 833
UDPLag 833

destes experimentos também. O balanceamento final para ambos os datasets para os

experimentos de classificacdo multiclasse pode ser visto na Tabela 4.6.

Tabela 4.6: Numero de amostras por classe nos datasets CICDS2017 e CICDDo0S2019 apds
o balanceamento para os experimentos de classificacdo multiclasse

| CICDDoS2019 |
I CICIDS2017 | mero de
numero de Classe amostras

Classe

amostras BENIGN 5000
BENIGN 5000 DNS 5000
DoS Hulk 5000 LDAP 5000
PortScan 5000 MSSQL 5000
DDoS 5000 NetBIOS 5000
DoS GoldenEye 5000 NTP 5000
FTP-Patator 5000 SNMP 5000
SSH-Patator 5000 SSDP 5000
DoS slowloris 5000 UDP 5000
DoS Slowhttptest 5000 Portmap 5000
Web Attack 2180 Syn 5000
Bot 1956 TFTP 5000
UDPLag 5000
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4.3 Equipamentos Utilizados

Os experimentos foram realizados remotamente utilizando a plataforma Google Colab, um
ambiente de notebook Python baseado em nuvem. A plataforma disponibiliza uma unidade
virtualizada com duas CPU Intel(R) Xeon(R) CPU 2.20GHz alocadas pela plataforma e
13 GB de memoéria RAM. A plataforma também disponibiliza GPUs de forma gratuita,
mas para os experimentos realizados nao foi necessario o uso desse equipamento. O
ambiente utiliza Python versao 3.10, sendo feito também o uso de multiplas bibliotecas
complementares para: o manuseio dos conjuntos de dados (NumPy e Pandas), a elaboragao
de imagens para a visualizacao dos resultados dos experimentos (Matplotlib e Seaborn), o
manuseio de arquivos dentro do ambiente virtual (Tkinter e Glob), o uso de ferramentas
gerais de aprendizado de méaquina (SciKitLearn).

Neste capitulo, foram descritas as estratégias experimentais adotadas para avaliar
sistematicamente os trés principais hiperparametros do EFC em tarefas de classificacao
binaria e multiclasse. Detalharam-se as faixas de valores testadas para o limiar quantilico
de classificagao (p), os niveis de discretizagao (Q) e o peso das pseudocontagens («), bem
como o particionamento dos dados em 80% para treino e 20% para teste, os procedimentos
de balanceamento de classes e as métricas de desempenho utilizadas (AUC-ROC e F1-
Score). Além disso, foi descrito o ambiente computacional utilizado para a execugao dos
experimentos. No capitulo seguinte, sao apresentados e discutidos os resultados obtidos a

partir das experimentagoes aqui delineadas.

31



Capitulo 5
Resultados e Discussao

Neste capitulo, sao apresentados os resultados dos experimentos descritos no Capitulo 4,
seguidos de uma discussao sobre os achados obtidos. Com base nesses resultados, é
sugerida uma abordagem para a calibragem dos hiperparametros do Energy-Based Flow
Classifier. Inicialmente, sao analisados os resultados referentes aos experimentos com o
limiar de classificacao e o niimero de niveis de discretizagdo. Em seguida, sao discutidos

os experimentos relacionados aos pesos das pseudocontagens.

5.1 Experimentos com niveis de discretizacao e li-

miar de classificacao

Nessa secao, estao dispostas as tabelas com as pontuagoes de F1-Score e AUC obtidas pelo
EFC nos experimentos correspondentes a se¢ao 4.1.1. Serao discutidos primeiramente os
resultados obtidos para o conjunto de dados CICIDS2017, entao seguidos pelos resultados
para o dataset CICDD0S2019. Por fim, serao abordados os resultados dos testes sobre os
pesos de pseudocontagens, primeiro sendo abordado o experimento em conjunto com os

niveis de discretizagdo, que é entdo seguido pelas classificagoes inter-dataset.

5.1.1 CICIDS2017

As Figuras 5.1a e 5.1b apresentam, respectivamente, os resultados dos experimentos de
classificagao binaria e multiclasse com o conjunto de dados CICIDS2017. Os valores das
métricas AUC e F1-Score sao exibidos em forma de mapas de calor (heatmaps), construidos
a partir de diferentes combinagoes entre os niveis de discretizacdo (@) e os limiares de
classificagdo (p). Em cada imagem, o lado esquerdo mostra os resultados de F1-Score, nas
cores azul e laranja, enquanto o lado direito exibe os resultados de AUC, representados

em verde e rosa.
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Figura 5.1: Resultados das classificagoes binaria e multiclasse para o dataset CICIDS2017,
com diferentes valores para os niveis de discretizacao () e diferentes limiares de classificagao
(p), medidos em AUC e F1-Score

(a) Resultados para a classificagdo binéria
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Nestes resultados, é possivel notar que em cada tipo de classificacao o EFC exibiu
comportamentos distintos durante a variagao dos valores para os hiperparametros. Na
classificacdo bindaria, o modelo foi capaz de obter um melhor desempenho para ambas
as métricas quando configurado com o ntmero de niveis de discretizacdo na faixa de
50 a 70 e pareado com o limiar de classificacdo definido entre 0.91 e 0.93, atingindo
uma pontuacao méaxima de 0.80 em ambas as métricas. Ademais, foi notado que o uso
de maiores quantidades de niveis de discretizacao nao necessariamente resulta em uma
melhora no desempenho da classificacao, enquanto aumenta muito o custo computacional
em termos de uso de memoria.

Ja na classificacao multiclasse, observa-se que o modelo alcangou sua melhor pontuacao
quando configurado com 10 niveis de discretizagdo e com o limiar de discretizacao definido
em 0,99, obtendo 0,90 para F1-Score e 0,94 para AUC. Ainda, nota-se que o modelo teve
uma piora consideravel nos resultados conforme o aumento de niveis de discretizacao,
assim como nota-se que os resultados melhoram conforme o valor atribuido ao limiar de

classificacao se aproxima de 1.

5.1.2 CICDDoS2019

De forma similar ao experimento anterior, as Figuras 5.2a e 5.2b apresentam, respectiva-
mente, os resultados dos experimentos de classificacao binaria e multiclasse realizados com
o conjunto de dados CICDD0S2019 para treino e teste do modelo. Nelas, os resultados
também sao exibidos em mapas de calor (heatmaps), construidos a partir de diferentes
combinagoes entre os niveis de discretizagao (@) e os limiares de classificagao (p). O lado
esquerdo de cada figura mostra os valores de F1-Score, nas cores azul e laranja, enquanto
o lado direito apresenta os resultados de AUC, em verde.

Nos resultados para este dataset observa-se um padrao semelhante ao anterior. Para
a classificacao binaria, o melhor desempenho foi obtido na configuracao com 30 niveis
de discretizacao para os dados e com o limiar de discretizacao na faixa de 0.90 a 0.94,
que resultou em uma pontuacgao de 0.89 em ambos F1-Score e AUC. Novamente, niveis
mais altos de discretizagao dos dados nao necessariamente melhoraram o desempenho do
classificador.

Ja para a classificacdo multiclasse, o modelo teve um desempenho consideravelmente
inferior ao que foi visto no dataset anterior. Isso pode ser causado pelo fator de o conjunto
de dados possuir principalmente fluxos de ataques de negacao de servigo, que comumente
possuem atributos similares entre si, do ponto de vista da rede, como grande volume de
pacotes de mesmo tamanho vindos de apenas um dos lados do fluxo. Ainda assim, o melhor
desempenho do modelo foi obtido sob as mesmas configuragoes vistas no experimento

anterior. Quando configurado com apenas 10 niveis de discretizacao para os dados e com
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Figura 5.2: Resultados das classifica¢oes binaria e multiclasse para o dataset CICDD0S2019,
com diferentes valores para os niveis de discretizacao () e diferentes limiares de classificagao
(p), medidos em AUC e F1-Score

(a) Resultados para a classificacao binaria
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o limiar de classificacdo definido para 0.99 das energias dos fluxos de treino, configuragao
essa na qual o modelo pontuou 0.58 de Fl-score e 0.76 de AUC.

E importante explicar que a auséncia de resultados nas configuracoes Q = 90 e Q = 100
na Figura 5.2b se deve ao fato de que nao foi possivel realizar a classificagao multiclasse
com 90 e 100 niveis de discretizacao. Isso ocorreu devido ao alto custo computacional de
memoéria do treinamento do modelo com essa configuracao, o que ocasionou a interrupg¢ao
do programa por parte do sistema operacional em todas as tentativas de realizar a

classificagao.

5.2 Experimentos com pesos de pseudocontagens

Para os experimentos relativos aos pesos de pseudocontagens («), foram obtidos os dados
presentes nas Figuras 5.3a e 5.3b e na Tabela 5.1. Nas Figuras 5.3a e 5.3b, sao apresentados
os resultados dos experimentos que avaliam os pesos de pseudocontagens juntamente a
diferentes niveis de discretizagdo dos dados. Tal como nos experimentos anteriores, os
resultados sdo exibidos em forma de mapas de calor, desta vez em funcao de a e @,
mostrando a variagdo do desempenho do classificador em termos das métricas AUC (a
direita, em verde e rosa) e F1-Score (& esquerda, em azul e laranja). Ja a Tabela 5.1
sintetiza os resultados dos experimentos interdataset, permitindo observar o impacto da
calibragem de « na capacidade de adaptabilidade do modelo entre diferentes conjuntos de
dados.

Analisando os resultados obtidos nas Figuras 5.3a e 5.3b, nota-se que para ambos os
conjuntos de dados, o melhor desempenho foi obtido quando o modelo foi configurado com
30 niveis de discretizagao para os dados e com o peso de 0.10 para a, obtendo a pontuacao
0.91 para ambos F1-Score e AUC no dataset CICIDS2017 e 0.95 para as mesmas métricas
no dataset CICDD0S2019. Este segundo conjunto, contudo, também foi obtida a mesma
pontuagdo quando calibrado com os niveis de discretizagao definidos em 40 e 50, mas ainda
com 0.10 nos pesos para pseudocontagens. Observa-se, também, que consistentemente,
menores pesos de pseudocontagens ocasionaram melhores resultados na classificagdo. Con-
tudo, também nota-se que os menores pesos ocasionaram a impossibilidade de treinamento
do modelo para niveis de discretizacao maiores que 30 no conjunto CICIDS2017 e maiores
que 50 no CICDDo0S2019, tal como foi suposto na subsecao 4.1.2.

Ja na Tabela 5.1, sdo apresentados os resultados dos experimentos inter-dataset,
avaliados pelas métricas F1-Score e AUC. Complementando os dados da tabela, as Fi-
guras 5.4a, 5.4b e 5.4c ilustram a curva ROC, a matriz de confusao e o histograma das
energias dos fluxos classificados para cada configuracao empregada no teste cruzado entre

datasets, no qual o modelo foi treinado com o conjunto de dados CICIDS2017 e avaliado
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Figura 5.3: Resultados da classificacdo binaria para os datasets CICIDS2017 e CICD-
Do0S2019, para diferentes valores para os niveis de discretizacao () e diferentes pesos para
as pseudocontagens de frequéncias « (alpha), medidos em AUC e F1-Score

(a) Resultados para o dataset CICIDS2017
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no conjunto CICDDo0S2019. De forma andaloga, as Figuras 5.5a, 5.5b e 5.5¢ apresentam
essas mesmas informagoes para o caso em que o modelo foi treinado com o conjunto de
dados CICDDo0S2019 e testado com o conjunto CICIDS2017.

Nas imagens, é possivel observar os histogramas montados para as diferentes con-
figuragoes testadas, onde também nota-se o limiar de classificacao(linha vermelha no
histograma) separando os niveis de energia classificados como benignos a esquerda e como
maliciosos a direita. Como é possivel observar ao analisar em conjunto a Tabela 5.1 e as
Figuras 5.4a, 5.4b e 5.4¢, o modelo alcan¢cou um desempenho de 0,84 em ambas as métricas,
F1-Score e AUC, quando configurado com o valor de 0,1 para os pesos de pseudocontagens.
Além disso, é possivel verificar visualmente que o limiar de classificagdo encontra-se no
vale entre as classes benign (do inglés, benigno) e malicious (do inglés, malicioso), o que
indica que o modelo conseguiu inferir com precisio o comportamento da classe benign. A
medida que o valor dos pesos de pseudocontagens é aumentado, contudo, o modelo perde a
capacidade de diferenciacao entre as duas classes e o histograma das duas classes fica mais
sobreposto, como resultado. Assim, o pior desempenho foi observado ao ter o a definido
em 0.9, onde o modelo obteve 0.33 de F1-Score e 0.48 de AUC, aparentando confirmar a
suposicao feita de que valores mais altos para este parametro prejudicam o desempenho
do modelo.

Ademais, ao analisar as Figuras 5.5a, 5.5b e 5.5¢ em conjun¢ao com a Tabela 5.1,
observa-se que o comportamento do modelo foi semelhante ao observado anteriormente,
porém com maior dificuldade em separar as classes benign e malicious. Essa dificuldade
pode ser observada ao comparar o histograma correspondente a @ = 0.1 das duas , onde
as distribuicoes das duas classes apresentam maior sobreposi¢ao. Apesar disso, o modelo
ainda demonstra uma capacidade razoavel de distingao entre as classes para a = 0.1,
com F1-Score de 0.69 e AUC de 0.71. No entanto, a medida que o valor de a aumenta,
culminando em 0.9, o desempenho do modelo sofre uma deterioragio significativa. Nesse
cenario, a pontuacao de F1-Score cai para 0.58, enquanto o valor de AUC reduz-se para
0.60, indicando uma redugao expressiva na capacidade do modelo de separar corretamente

as classes, que pode ser confirmada visualmente pelos histogramas.

5.3 Discussao dos resultados e proposicao de aborda-

gem para calibragem dos hiperparametros

A partir dos resultados obtidos, é possivel tracar alguns efeitos resultantes das variagoes
nos hiperpardmetros do modelo. Conforme os dados sugerem, verifica-se que o uso de
baixos valores para os pesos de pseudocontagens é recomendado, sendo preferivel adotar

os menores valores possiveis que ainda mantenham o modelo funcional. E visto nos
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Figura 5.4: Curva ROC, matriz de confusao e histograma das energias dos fluxos classifi-
cados para os classificadores treinados com o conjunto de dados CICIDS2017 e testados

com o conjunto CICDDo0S2019 com diferentes valores de «.
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Resultados da classificagao: (Cutoff:0.95,Bins:30,Pseudocounts:0.5)
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Figura 5.5: Curva ROC, matriz de confusao e histograma das energias dos fluxos classifi-
cados para os classificadores treinados com o conjunto de dados CICDD0S2019 e testados
com o conjunto CICIDS2017 com diferentes valores de a.
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Resultados da classificagao: (Cutoff:0.95,Bins:30,Pseudocounts:0.5)
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Tabela 5.1: Resultados da classificacao binaria para os testes cruzados entre os datasets CI-
CIDS2017 e CICDD0S2019, com diferentes pesos para a as pseudocontagens de frequéncias.
Desempenho medido em AUC e F1-Score.

Train CICIDS2017 / | Train CICDDo0S2019 /
Test CICDDo0S2019 Test CICIDS2017
H Q «a | F1 Score AUC F1 Score AUC

30 0.1 0.84 0.84 0.69 0.71
0.5 0.44 0.53 0.60 0.61
0.9 0.33 0.48 0.58 0.60

resultados experimentais que valores reduzidos de pseudocontagens aparentam resultar
em um controle mais refinado da discriminacdo entre as classes, resultando em melhor
desempenho nas métricas F1-Score e AUC.

Uma vez que o valor de pseudocontagens seja suficientemente baixo para permitir a
discretizacao dos dados em até 30 niveis, recomenda-se discretizar os dados em 20 ou
30 niveis, conforme o cendrio. Essa abordagem equilibra uma granularidade apropriada
e o custo computacional do modelo, ao mesmo tempo que possibilita ajustes do limiar
de classificacdo de acordo com o tipo de tarefa. Para classificacbes binarias, valores
de pseudocontagens entre 0.90 e 0.95 se mostraram mais adequados, enquanto para
classificacoes multiclasse, é preferivel utilizar valores préximos de 0.99, uma vez que essa
configuragao reduz a ocorréncia da classe andémala.

Por fim, recomenda-se evitar niveis altos de discretizacao dos dados, ja que essa abor-
dagem aumenta significativamente o custo computacional, podendo até causar falhas
no modelo devido a limitagoes de memoria. Além disso, altos niveis de discretizacao
nao demonstraram melhorias substanciais no desempenho, reforcando a importancia de
um equilibrio entre granularidade e eficiéncia computacional na escolha dos parametros.
Adicionalmente, foi identificada uma piora no desempenho do modelo para o dataset CICD-
DoS2019 em comparagao ao CICIDS2017 em classificagoes multiclasse. Esse fendmeno
pode ser atribuido a similaridade entre os ataques do tipo DDoS presentes no CICD-
Do0S2019, que frequentemente exibem comportamentos semelhantes quando analisados sob
a perspectiva de fluxos de rede. Essa similaridade provavelmente dificulta a distin¢ao das
classes pelo modelo, resultando na reducao de desempenho.

Neste capitulo, apresentaram-se de forma comparativa os resultados obtidos nos expe-
rimentos de variagao conjunta dos hiperparametros ) e p, bem como de « e @), aplicados
a ambos os datasets. Analisou-se o efeito de cada hiperparametro sobre as métricas
AUC-ROC e F1-Score, além de investigar se configuragoes com valores reduzidos para os

pesos de pseudocontagens ocasionavam a perda da capacidade do modelo de adaptacao a
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diferentes dominios de dados. Com base nessas evidéncias, propos-se uma estratégia pratica
de calibragem que busca equilibrar desempenho e custo computacional. As Tabelas 5.3, 5.2
e 5.4 apresentam as melhores configuragoes avaliadas em termos de F1-Score e AUC. No
capitulo seguinte, sera apresentada a conclusao deste estudo, com a sintese dos principais

resultados e sugestoes para trabalhos futuros.

Tabela 5.2: Tabela com as melhores configuracoes encontradas nos experimentos com () e
p no dataset CICIDS2017 e sua pontuagao em F1-Score e AUC

CICIDS2017
Q D Fl-score | AUC
Classificacao 50 0.91 0.80 0.80
Binaria 60 0.91-0.93 0.80 0.80
70 0.91 0.80 0.80
Classificacao
Multiclasse 10 0.99 0.90 0.94

Tabela 5.3: Tabela com as melhores configuracoes encontradas nos experimentos com () e
p no dataset CICDD0S2019 e sua pontuagao em F1-Score e AUC

CICDD0S2019
Q D Fl-score | AUC
Classificacdo | 5 190 004 | 089 | 0.89
Binaria
Classificacdo | | 09 099 | 058 | 0.79
Multiclasse

Tabela 5.4: Tabela com as melhores configuragoes encontradas nos experimentos com
pseudocontagens e sua pontuagao em F1-Score e AUC

Pseudocontagens
Q a | Fl-score | AUC
CICIDS2017 30 0.1 0.91 0.91
CICDDoS2019 | 30-50 0.1 0.95 0.95
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Capitulo 6
Conclusao

Neste trabalho, foi realizado um estudo de abordagens para a calibracao dos hiperpa-
rdmetros do Energy-based Flow Classifier (EFC), um modelo de classificagdo baseado
em estatistica inversa elaborado para deteccao de anomalias em fluxos de redes. Para
determinar uma abordagem para a calibragem dos hiperparametros, foram realizados
experimentos de classificagdo bindria e multiclasse com diferentes configuragoes, a fim de
determinar uma possivel abordagem de configuracao para o modelo de classificacao de
forma a obter melhores resultados em termos de F1-Score e AUC.

Os resultados obtidos sugerem que o valor estabelecido para «, referente ao hiperpara-
metro que estabelece o peso das operacoes de pseudocontagens de frequéncias, impacta
diretamente na capacidade de inferéncia do modelo. Foi observado que quanto menores os
valores para «, especialmente para (o = 0.1), a capacidade de inferéncia do comportamento
das classes foi agucada, aparentemente sem causar perda da capacidade de adaptacao a
diferentes dominios de dados. Contudo, descobriu-se que usar valores baixos (o < 0.3)
impede que o modelo seja treinado com niveis mais altos de discretizacao dos dados. Ade-
mais, notou-se que a escolha de niveis mais altos para a discretizacdo dos dados (¢ > 50)
aparenta nao resultar necessariamente em melhores resultados, além de impedir o modelo
de ser executado em alguns sistemas, devido a um maior uso de meméria e processamento,
como foi o caso observado neste estudo. Ainda, notou-se que a configuracao otimizada
para o limiar de classificacdo depende do contexto da classificacdo. Os resultados da
secao anterior sugerem que, para classificagoes binarias, o limiar estabelecido na faixa
0.90 < p < 0.95 pode gerar melhores resultados, enquanto para classificagoes multiclasse,
o valor de limiar estabelecido na faixa 0.95 < p < 0.99 pode gerar um melhor desempenho.

Cabe destacar que, como a execucao dos experimentos deste trabalho foi realizada
em ambiente remoto, nao foi possivel aplicar validacao cruzada. Isso porque o elevado
tempo de processamento necessario para tal procedimento resultaria em desconexoes por

ociosidade do servidor. Ademais, a limitagao dos recursos de hardware do ambiente remoto
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impossibilitou a obtencao de resultados para niveis mais elevados de discretiza¢ao, uma
vez que tais experimentos demandavam quantidade de meméria superior a disponibilizada
pelo Google Colab.Com isso em mente, sugere-se, como direcionamento para trabalhos
futuros envolvendo o EFC, a realizacao dos experimentos utilizando validagao cruzada.
Além disso, a fim de evitar possiveis vieses decorrentes da inclusao dos dados de
teste no processo de balanceamento, recomenda-se que, em estudos posteriores, os dados
empregados no balanceamento sejam utilizados apenas para a etapa de validacao do
modelo, reservando-se para o teste uma porcao distinta dos conjuntos de dados. Além
disso, sugere-se a possibilidade de testar diferentes métodos de discretizacao, uma vez
que este passo é necessario para a execuc¢ao do modelo e pode afetar a representatividade
dos dados. De forma similar, pode ser abordado em algum trabalho futuro a elaboracao
de métodos para estimar um nivel 6timo de discretizacao para os dados. Outro possivel
aprimoramento do modelo, voltado a sua principal aplicacdo — a deteccao de fluxos
maliciosos de rede — consiste na implementagao da classificagdo multirrétulo (multilabel).
Tal extensao permitiria ao EFC, quando treinado para identificar multiplas classes, isolar

e analisar fluxos suspeitos de forma mais detalhada.
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