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Resumo

O Energy-Based Flow Classifier (EFC) é um modelo de classificação de fluxos de rede
fundamentado em estatística inversa, inspirado no modelo de Potts, e originalmente pro-
posto para aplicações em sistemas de detecção de intrusão. Apesar de sua aplicabilidade
comprovada em diferentes contextos, a literatura carece de estudos que investiguem a
sensibilidade do modelo à variação de seus hiperparâmetros. Este trabalho propõe uma
análise sistemática do impacto dos principais hiperparâmetros do EFC — o limiar quan-
tílico de classificação, o número de níveis de discretização e os pesos de pseudocontagens
— sobre seu desempenho em tarefas de classificação binária e multiclasse. Utilizando os
conjuntos de dados CICIDS2017 e CICDDoS2019, foram conduzidos experimentos com
múltiplas combinações de valores para esses parâmetros. Os resultados obtidos são dis-
cutidos com base nas métricas AUC-ROC e F1-Score, permitindo propor diretrizes para
uma calibragem mais eficiente do modelo, otimizando sua precisão e robustez.

Palavras-chave: Energy-Based Flow Classifier, hiperparâmetros, detecção de intrusão,
estatística inversa, classificação de fluxos.
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Abstract

The Energy-Based Flow Classifier (EFC) is a network flow classification model based on
inverse statistical mechanics, inspired by the Potts model, and originally proposed for use
in intrusion detection systems. Although its effectiveness has been demonstrated across
various domains, few studies have addressed the sensitivity of the model to changes in
its hyperparameters. This work presents a systematic analysis of the impact of key EFC
hyperparameters — quantilic classification threshold, discretization levels, and pseudo-
count weights — on its performance in both binary and multiclass classification tasks.
Experiments were conducted using the CICIDS2017 and CICDDoS2019 datasets, test-
ing multiple parameter configurations. The results, evaluated through AUC-ROC and
F1-Score metrics, support the proposal of guidelines for a more effective hyperparameter
tuning strategy, enhancing both accuracy and robustness of the model.
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Capítulo 1

Introdução

Neste capítulo são apresentadas a contextualização e a justificativa para o estudo de
calibragem de hiperparâmetros do Energy-based Flow Classifier, além dos objetivos gerais
e das contribuições deste projeto de pesquisa.

1.1 Contextualização

As ameaças cibernéticas têm-se tornado cada vez mais sofisticadas e frequentes, acom-
panhando o crescimento exponencial da conectividade digital. Segundo o Relatório de
Ameaças Cibernéticas de 2025 da Radware, houve um aumento de 550% em ataques de
negação de serviço distribuídos (DDoS, do inglês, Distributed Denial of Service) ano após
ano quando comparados aos números de 2023 [1], reportando também casos recentes em
que houve um pico de 16 milhões de requisições por segundo. Esse cenário é agravado
pela transformação digital de dados pessoais e corporativos, aliada à proliferação de
dispositivos de Internet das Coisas (do inglês, Internet of Things) os quais, devido à sua
baixa robustez em termos de segurança, são frequentemente explorados como vetores em
ataques cibernéticos [2].

Neste contexto, sistemas de detecção de intrusão em redes (NIDS, Network Intrusion
Detection Systems) são ferramentas úteis para lidar com as ameaças cibernéticas. NIDS
são softwares utilizados em conjunção com firewalls e antivírus para proteger dispositivos
conectados à rede de diversas ameaças [3]. Suas aplicações podem variar, podendo executar
diversas funções em uma rede, tais como detectar ou classificar anomalias [4]. Assim, um
sistema deste tipo, capaz de discernir entre diferentes tipos maliciosos de tráfego de rede,
pode ser associado a respostas automatizadas de mitigação, garantindo maior resiliência à
rede [5].

Uma abordagem comum para a elaboração de ferramentas dedicadas à detecção de
intrusão é a análise de fluxos de rede, isto é, de conjuntos de pacotes trafegados pela
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rede, que podem ser agrupados levando em consideração as suas características em comum
(como endereço IP de origem e destino, número de pacotes, número de bytes e porta de
origem, por exemplo) [6]. Estes pacotes, então, agrupados em fluxos, podem ser analisados
como um todo, reduzindo drasticamente o volume de dados a ser analisado, mostrando-se
como uma abordagem adequada para a elaboração de NIDS que operem em tempo real [7].

Com isso em mente, foi elaborado em um estudo recente de Pontes et al.[8], o Energy-
based Flow Classifier (do inglês, Classificador de Fluxos baseado em Energia, EFC), um
classificador de fluxos de redes direcionado para a aplicação em NIDS. O modelo se baseia
na utilização de técnicas de estatística inversa utilizadas na biofísica para a análise direta
de acoplamentos de proteínas, adaptando-as para o contexto de classificação de fluxos
de pacotes em redes computacionais. O modelo inicialmente foi elaborado para ser um
classificador binário, sendo posteriormente adaptado por De Souza et al.[4] para ser capaz
de tratar de múltiplas classes.

O EFC realiza a inferência de um modelo estatístico para cada classe presente no
conjunto de dados de fluxos de rede utilizados em seu treinamento [4]. Os modelos
estatísticos inferidos, então, podem ser usados para identificar se novos fluxos pertencem
ou não à classe utilizada para a inferência. Este modelo, portanto, se caracteriza como um
classificador baseado em anomalias, isto é, um classificador capaz de identificar quando
uma nova amostra a ele apresentada não pertence a nenhuma das classes de amostras
utilizadas em seu treinamento [8]. Esta característica intrínseca confere ao modelo uma
capacidade de melhor adaptação a diferentes domínios de treino e teste, tornando-o uma
abordagem simples, que não requer grandes transformações nos dados para operar, o que
o torna um algoritmo promissor para classificação baseada em fluxos de rede [8].

1.2 Justificativa e objetivos

Entre os trabalhos vistos na literatura, nota-se que o foco central é confirmar o potencial
de aplicação do Energy-based Flow classifier em diferentes cenários para o monitoramento
de tráfego de rede. O modelo já teve sua capacidade de detecção testada em trabalhos
relacionados a: detecção de botnets [9]; detecção de anomalias em redes móveis [10];
aprendizado federado [11] [12] [13]; entre outros. É válido ressaltar que, nestes trabalhos,
o algoritmo em questão teve seu desempenho comparado com modelos tradicionais de
aprendizado de máquina (tais como Random Forest, Multilayer Perceptron, Support Vector
Machine, etc.), modelos de redes neurais e de aprendizado federado e, em geral, apresentou
um desempenho equiparável ou superior a esses modelos, se destacando especialmente em
classificações com diferentes domínios de treino e teste. Contudo, apesar dos resultados
promissores obtidos, os estudos do modelo de classificação se limitaram principalmente a
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novos cenários de aplicação. Portanto, ainda não há trabalhos direcionados a avaliar quesi-
tos mais intrínsecos do comportamento do modelo, tal como a influência da configuração
dos hiperparâmetros do EFC no seu desempenho.

Hiperparâmetros, no contexto de machine learning (do inglês, aprendizado de máquina,
ML) são valores definidos como parâmetros externos ao processo de aprendizagem que,
comumente, devem ser cuidadosamente otimizados para que um modelo de classificação
consiga alcançar um desempenho otimizado [14]. Nos trabalhos mencionados, comumente,
a configuração dos hiperparâmetros do EFC é um tópico não abordado, raramente sendo
explicitados quais valores foram atribuídos a cada parâmetro. Em geral, nos casos em que
há essa informação, são comumente utilizados os valores padrão, ou seja, os valores genéricos
atribuídos por quem implementou o modelo em código. Isso pode ser problemático, dado
que nem sempre esta configuração é a mais adequada ao tipo de conjunto de dados que se
está utilizando.

O trabalho a seguir busca, portanto, realizar uma análise sobre como a definição de
diferentes valores destes parâmetros de configuração para o EFC afeta os resultados da
classificação. Para isso, serão treinadas diversas instâncias do modelo com diferentes
configurações de hiperparâmetros, as quais serão utilizadas para um conjunto de classifica-
ções binárias e multiclasse com os mesmos dados de treino e teste. Posteriormente, serão
analisados os resultados obtidos para essas classificações, com o objetivo de traçar uma
estratégia para a otimização dos hiperparâmetros do EFC.

1.3 Objetivos e estrutura do trabalho

Desta forma, os principais objetivos deste trabalho se resumem a:

• Avaliação do impacto dos hiperparâmetros no modelo: Analisar como os
hiperparâmetros do modelo (limiar de classificação, níveis de discretização e pesos de
pseudocontagens) influenciam o comportamento do EFC, por meio da experimentação
com variadas combinações de hiperparâmetros em datasets consolidados (CICIDS2017
e CICDDoS19).

• Estratégia para otimização de hiperparâmetros: Proposição de um método
para a seleção de valores para os hiperperâmetros baseando-se na análise das con-
figurações que obtiveram os melhores resultados nos experimentos em termos de
AUC-ROC e F1-Score.

O restante do trabalho a seguir está organizado da seguinte forma: o Capítulo 2 (O
Energy-based Flow Classifier) detalha o funcionamento do EFC em todas as etapas da
classificação, especificando em que pontos do algoritmo cada hiperparâmetro é utilizado.
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No Capítulo 3 (Trabalhos Relacionados), são discutidos os trabalhos já existentes na litera-
tura que utilizaram o EFC para a classificação de fluxos de rede e detecção de anomalias,
buscando quais valores de hiperparâmetros já foram utilizados para o modelo, bem como
as principais contribuições dos trabalhos. No Capítulo 4 (Metodologia), são descritos os
procedimentos experimentais, como a metodologia de ajuste de hiperparâmetros (limiar de
classificação, níveis de discretização e pesos de pseudocontagens), as métricas de avaliação
(AUC-ROC e F1-Score), os datasets CICIDS2017 e CICDDoS2019, técnicas de balancea-
mento de dados para cenários binários e multiclasse, além dos recursos computacionais
utilizados. Já o Capítulo 5 (Resultados e Discussão) apresenta análises comparativas
dos experimentos, explorando o impacto dos hiperparâmetros no desempenho do modelo
e discutindo suas implicações práticas. Por fim, o Capítulo 6 (Conclusão) sintetiza as
contribuições do estudo, suas limitações e perspectivas futuras. Essa estrutura visa guiar
o leitor de forma lógica desde os fundamentos teóricos até a validação empírica do modelo
proposto.

4



Capítulo 2

O Energy-based Flow Classifier

O Classificador de Fluxos baseado em Energia (EFC, do inglês Energy-based Flow Classi-
fier), proposto inicialmente em Pontes et al. [8], é um classificador baseado em estatística
inversa, cujo objetivo principal é inferir uma distribuição estatística que descreva o com-
portamento de uma classe específica de dado. Posteriormente, o modelo foi estendido em
Souza et al. [4] de modo a conferir ao modelo a capacidade de classificação multiclasse.

O restante deste capítulo condensa o arcabouço teórico apresentado nesses estudos,
fundamentando-se neles e em suas respectivas referências. O capítulo está estruturado da
seguinte forma: a Seção 2.1 apresenta como se baseia a abstração de fluxos de rede para que
seja possível inferir seu comportamento por meio da inversa do modelo de Potts; a Seção
2.2 detalha o processo de inferência do modelo estatístico; na Seção 2.3, discute-se como
o modelo realiza a classificação de novos fluxos com base nas energias calculadas; e, por
fim, a Seção 2.4 formaliza a definição algorítmica do EFC, incluindo sua representação em
pseudocódigo e a identificação dos pontos em que os hiperparâmetros atuam no processo
de inferência.

2.1 Abstração de fluxos de rede para o modelo de
Potts

Como mencionado anteriormente, no modelo proposto em Pontes et al. [8], a inferência
estatística do EFC é fundamentada no modelo de Potts, o qual descreve matematicamente
as interações entre spins de elétrons em uma rede cristalina. Para tornar esse modelo
compatível com a análise de fluxos de rede, é introduzida uma abstração que representa os
fluxos de forma adequada ao arcabouço estatístico adotado. Nesta, um fluxo individual k
é representado por uma configuração específica de um grafo Gk(η, ε). Neste, cada nó do
grafo representa um atributo de um fluxo, sendo η o conjunto de todos os nós/atributos
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Figura 2.1: Imagem ilustrativa do grafo Gk(η, ε). A imagem à esquerda exibe um fluxo
com 4 atributos completamente conectados. Na imagem à direita são exibidos os valores
associados aos atributos e acoplamentos.
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do fluxo. Em cada fluxo k, cada atributo i ∈ η assume um valor aki, o qual estará contido
em Ωi, um conjunto que contém todos os valores possíveis para aquele atributo específico.

É importante destacar que, para a realização da inferência no modelo, os valores dos
atributos aki devem pertencer a uma grandeza discreta. Assim, é necessário que esses
valores sejam mapeados para inteiros pertencentes ao conjunto Ω = {1, 2, . . . , Q}, onde
Q representa o número total de categorias discretas. Dessa forma, assume-se que os
alfabetos de todos os atributos são iguais, ou seja, Ωi = Ω, mesmo nos casos em que um
atributo específico possa assumir apenas M valores distintos, com M < Q. Nesses casos,
os valores M + 1, . . . , Q simplesmente não ocorrem na prática, tendo probabilidade nula
de ocorrência.

Ademais, o grau de granularidade adotado na discretização dos atributos influencia
diretamente a capacidade do modelo de identificar padrões nos dados de entrada. Como
o modelo não impõe restrições quanto à definição de Q, esse valor é tratado como um
hiperparâmetro que deve ser estabelecido previamente à etapa de treinamento.

Prosseguindo, as arestas do grafo Gk são representadas por ε = {(i, j) | i, j ∈ η; i 6= j},
correspondendo a todos os pares possíveis de atributos distintos. Para cada par (i, j),
existe um valor de acoplamento associado, determinado pela função eij(aki, akj). Além
disso, cada atributo i possui um valor associado ao seu campo local, representado por
hi(aki).

Dessa forma, a energia total associada a um fluxo k, análoga ao conceito de Hamiltoniano
na mecânica estatística, pode ser expressa pelo Hamiltoniano H(ak1, . . . , akN), o qual
depende de todos os valores dos campos locais e dos acoplamentos definidos sobre os pares
de atributos.
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2.2 Inferência do modelo estatístico

Uma vez definida a abstração para os fluxos de rede, propõe-se a inferência de um modelo
estatístico P (a1, . . . , aN) para cada sequência de atributos (a1, . . . , aN) associada a um
fluxo k ∈ B, sendo B um conjunto arbitrário de fluxos observados. Supõe-se então o
conjunto K, que representa o espaço de todas as combinações possíveis de atributos
par-a-par, com K = Ω2, de forma que B ⊆ K.

A partir disso, propõe-se o uso de estatística inversa para inferir um modelo que
atribua uma probabilidade P (ak1, . . . , akN) a cada fluxo k ∈ K, com base nas observações
empíricas contidas em B. O objetivo, nesse contexto, é encontrar uma distribuição de
Máxima Entropia

S(ak1, . . . , akN) = −
∑
k∈K

P (ak1, . . . , akN)log(P (ak1, . . . , akN)), (2.1)

a qual deve ser compatível com as estatísticas observadas nos dados. Para isso, a
distribuição está sujeita a restrições impostas pelas frequências empíricas de ocorrência
individual de cada valor dos atributos, bem como pelas frequências conjuntas de ocorrência
dos pares. Essas restrições são expressas da seguinte forma:

∀i ∈ η; ∀ai ∈ Ω :

Pi(ai) =
∑

k∈K|aki=ai

P (ak1, . . . , akN) ≡ fi(ai) (2.2)

e

∀(i, j) ∈ η2; ∀(ai, aj) ∈ Ω :

Pij(aij) =
∑

k∈K|aki=ai,akj=aj

P (ak1, . . . , akN) ≡ fij(ai, aj). (2.3)

Em que fi(ai) representa a frequência empírica do valor ai no atributo i, e fij(ai, aj) corres-
ponde à frequência empírica do par de valores (ai, aj) nos atributos i e j, respectivamente.

Ambas as frequências empíricas simples e duplas são obtidas a partir do conjunto B,
realizando a contagem das ocorrências de um dado valor de atributo ai ou de pares de
atributos (ai, aj), respectivamente, e dividindo pelo número total de fluxos em B. Contudo,
dada a diferença de tamanho entre os conjuntos B e K, inferências baseadas em B estão
sujeitas a efeitos de subamostragem (undersampling). Então, para que sejam limitados
os efeitos de subamostragem, utiliza-se a inclusão de um fator de pseudocontagem α no
cálculo das frequências, resultando nas correções

fi(ai)←− (1− α)fi(ai) + α

Q
(2.4)
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fij(ai, aj)←− (1− α)fij(ai, aj) + α

Q2 , (2.5)

com (i, j) ∈ η2 (ai, aj) ∈ Ω2 e 0 ≤ α ≤ 1. A inclusão das pseudocontagens é equivalente
a assumir que o conjunto B seja estendido, de forma a conter uma fração extra de fluxos
com valores de atributos uniformemente distribuídos. Este valor é capaz, portanto, de
"diluir"o comportamento dos atributos observados em B para que seja possível inferir o
modelo estatístico. Assim, o valor de α foi implementado como um valor configurável,
sendo um dos hiperparâmetros do EFC, uma vez que impacta diretamente na capacidade
de inferência do modelo, dado que valores baixos demais podem inviabilizar a inferência
do modelo, enquanto valores altos demais podem "diluir"o comportamento dos dados,
implicando em inferências mais imprecisas.

Em sequência, uma vez definidas as restrições, busca-se a distribuição que maximiza
a entropia sob tais condições. Aplicando-se o Princípio da Máxima Entropia, obtém-se
a distribuição que impõe o menor número de suposições adicionais além das informa-
ções fornecidas pelos dados. Como resultado, a distribuição P ∗(ak1, . . . , akN) assume a
forma de uma distribuição de Boltzmann (ainda que não necessariamente independente e
identicamente distribuída)

P ∗(ak1, . . . , akN) = exp {−βH(ak1, . . . , akN)}
Z

. (2.6)

com temperatura inversa β = 1 sem perda de generalidade. Aqui, Z representa a função
de partição que normaliza a distribuição, porém, dado que o objetivo aqui não é calcular a
probabilidade para fluxos específicos, esta função será desconsiderada. Prosseguindo, o
valor de energia da distribuição de um fluxo é determinado pelo Hamiltoniano H calculado
utilizando a forma generalizada do Modelo de Potts

H(ak1, . . . , akN) = −
∑
i,j|i<j

eij(aki, akj)−
∑
i

hi(aki). (2.7)

O Hamiltoniano aqui é completamente determinado pelos multiplicadores de Lagrange
hi e eij, associados às restrições 2.2 e 2.3, respectivamente. No contexto do modelo de
Potts, o multiplicador {eij(ai, aj)|(ai, aj) ∈ Ω2} corresponde ao conjunto de todos os
valores possíveis de acoplamentos entre dois atributos i e j, enquanto {hi(ai)|ai ∈ Ω}
corresponde ao conjunto de todos os possíveis campos locais associados a um atributo i.

Em seguida, os parâmetros do modelo foram ajustados de modo que as restrições 2.2
e 2.3 sejam satisfeitas. Nesse procedimento de ajuste, deve-se considerar que a Eq. 2.6
contém mais parâmetros livres do que há condições independentes nas restrições, o que
permite modificar acoplamentos e campos locais conjuntamente sem alterar a soma no
expoente. Portanto, múltiplas soluções equivalentes para o ajuste são possíveis. Para
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eliminar essa liberdade, consideraram-se todos os acoplamentos e campos locais medidos
em relação ao último fluxo, definindo então, sem perda de generalidade que:

∀(i, j) ∈ η2; ∀a ∈ Ω :
eij(a,Q) = eij(Q, a) = hi(Q) = 0,

(2.8)

de forma que não há necessidade de calcular eij(ai, aj) caso ai ou aj sejam iguais a Q.
A inferência dos acoplamentos par-a-par é realizada por aproximação Gaussiana, a

partir da inversão da matriz de correlações dos atributos; assim, os valores resultantes são
normalizados. A inferência dos acoplamentos par-a-par é definida da seguinte forma:

∀(i, j) ∈ η2, ∀(ai, aj) ∈ Ω2, ai, aj 6= Q :

eij(ai, aj) = −(C−1)ij(ai, aj),
(2.9)

onde

Cij(ai, aj) = fij(ai, aj)− fi(ai)fj(aj) (2.10)

é a matriz de correlações obtida a partir das frequências empíricas simples e conjuntas.
A inversão da matriz de correlações é realizada como forma de remover os efeitos de
correlações indiretas nos dados.

Já a inferência dos campos locais hi(ai) é realizada utilizando uma aproximação de
campo médio. Neste método, a interação de um atributo com seus vizinhos é substituída
pela interação aproximada com a média dos atributos, resultando em um valor aproximado
para o campo local associado a ele. Esse cálculo é realizado da seguinte forma:

∀i ∈ η; ai ∈ Ω; ai 6= Q :

fi(ai)
fi(Q) = exp

hi(ai) +
∑
j,aj

eij(ai, aj)fj(aj)
 , (2.11)

onde fi(Q) é a frequência do último elemento ai = Q para qualquer atributo i,
utilizada aqui para a normalização. É relevante ressaltar que o elemento Q foi escolhido
arbitrariamente, podendo ser substituído por qualquer outro valor ai ∈ Ω, contanto que o
elemento seja mantido o mesmo para o cálculo de campos locais para todos os atributos
i ∈ η. Assim, os campos locais podem ser calculados a partir dos valores já conhecidos de
frequências simples empíricas fi(ai) e de acoplamentos eij(ai, aj) da seguinte forma:

hi(ai) = ln
(
fi(ai)
fi(Q)

)
−
∑
j,aj

eij(ai, aj)fj(aj) (2.12)
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Assim, com a introdução do arcabouço teórico utilizado para a elaboração do EFC,
segue, então, a explicação de como este arcabouço é utilizado para a classificação de fluxos
de rede em benignos ou maliciosos.

2.3 Classificação baseada em energia

Como dito anteriormente, a energia de um fluxo é calculada conforme a Equação 2.7,
utilizando-se dos valores de atributos de um conjunto de fluxos e dos hiperparâmetros
definidos na subseção anterior. Dado que a energia de um fluxo é a soma negativa das
energias locais e de acoplamentos, tem-se como resultado que fluxos mais semelhantes
aos utilizados para a inferência do modelo têm valores de energia mais baixos. Assim,
é possível definir um limiar para classificar novas amostras de fluxos como pertencentes
ou não à classe utilizada para a inferência do modelo. O EFC opera com base neste
princípio, podendo ser empregado em duas modalidades distintas de classificação: binária
e multiclasse.

2.3.1 Classificação binária (EFC Single-Class)

A classificação binária pode ser formalmente descrita da seguinte forma: seja F` ⊆ B o
subconjunto de fluxos rotulados com a classe ` ∈ L, tal que L = {1, . . . , n} corresponde
ao conjunto de todas as classes de fluxo presentes no conjunto de treinamento B. Para
cada fluxo em F`, infere-se os parâmetros de acoplamento e`ij e os campos locais h`i . Em
seguida, calcula-se o vetor {H`(f)|∀f ∈ F`}, que corresponde ao Hamiltoniano calculado
para as amostras de treino F`, obtidas com base nos acoplamentos e`ij e campos locais h`i .

A partir dessa distribuição de valores, define-se o limiar de classificação como:

τ` = Qp({H`(f)|∀f ∈ F`}), (2.13)

onde τ` é o limiar energético de classificação para a classe ` e Qp({H`(f)|∀f ∈ F`})
representa o p-ésimo quantil das energias calculadas para as amostras em F`. Desta
forma, o limiar é estabelecido de forma diretamente relacionada à distribuição de energias
dos fluxos do treinamento, ajustando-se ao comportamento dos dados. Por influenciar
diretamente a sensibilidade e a especificidade do modelo, o limiar quantílico de classificação
p é implementado como um dos hiperparâmetros do EFC, dado que assim é possível ajustar
o modelo de acordo com o comportamento de classificação que se deseja obter.

A seguir, os valores calculados para e`ij, h`i e τ` são armazenados em uma estrutura de
dados denominada estimador, a qual representa o modelo estatístico para a classe ` e será
utilizada no processo de classificação de novos fluxos. Então, para se atribuir uma classe a
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um novo fluxo suspeito s, utiliza-se a função

R`(s) =

`, H`(s) ≤ τ`;

Ψ, H`(s) > τ`;
(2.14)

onde a classe é atribuída conforme o valor calculado para o Hamiltoniano associado
à classe ` calculado para s. Assim, se H`(s) ≤ τ`, o fluxo é atribuído à classe `; caso
contrário, é atribuído o rótulo arbitrário Ψ , tal que Ψ /∈ L, que simplesmente representa
o fato de que o fluxo s pertence a uma classe desconhecida. Por conseguinte, o EFC
originalmente opera como um modelo de classe única (single-class), isto é, um classificador
que realiza classificações com base apenas no comportamento de uma classe de dados.

2.3.2 Classificação multiclasse (EFC Multi-class)

No modelo de classificação multiclasse proposto em Souza et al. [4] para o EFC, empregam-
se as mesmas técnicas utilizadas no algoritmo de classificação binária. Assim, o parâmetro
central para determinar se um fluxo pertence a uma determinada classe continua sendo seu
valor de energia. A principal diferença entre as abordagens reside na quantidade de classes
consideradas durante a inferência: enquanto a versão binária infere o comportamento de
uma única classe, a versão multiclasse realiza a inferência para múltiplas classes de dados,
permitindo que sejam comparados os valores de energia calculados para cada classe para a
atribuição de um rótulo.

Dessa forma, o processo de treinamento do EFC ocorre conforme ilustrado na Figura 2.2,
onde para cada ` ∈ L é inferido um estimador com base nos subconjuntos F` ⊂ B. Cada
estimador armazena os parâmetros do modelo estatístico para sua respectiva classe `, ou
seja, os valores de acoplamento e`ij, os campos locais h`i e o limiar de classificação τ`. Na
fase de classificação, ilustrada na Figura 2.3, calcula-se para um novo fluxo s o vetor de
energias {H`(s) | ∀` ∈ L}, em que cada H`(s) é o Hamiltoniano obtido para o fluxo s
com base nos parâmetros do estimador correspondente à classe `. Com isso, é possível
determinar a função

RL(s) =

r, Hr(s) ≤ τr | r = arg min`∈LH`(s);

Ψ, Hr(s) > τr | r = arg min`∈LH`(s);
(2.15)

para atribuir um rótulo ao fluxo s. Nesta, a classe à qual pertence s é determinada com
base em r, que corresponde ao rótulo da classe que calculou o menor valor de energia para
o fluxo s. Assim, de forma semelhante ao EFC single-class, avalia-se se o s é anômalo com
base no valor de energia calculado com base na classe r. Portanto, se Hr(s) ≤ τr, atribui-se
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Figura 2.2: Processo de treinamento multiclasse para o EFC.

Dados rotulados de treino

Computar
acoplamentos
para classe 1

...
Computar

acoplamentos
para classe n

Computar
campos locais
para classe 1

...
Computar

campos locais
para classe n

Obter limiar
para classe 1

... Obter limiar
para classe n

Estimadores

ao fluxo a classe r; caso contrário, o fluxo é rotulado como Ψ, ou seja, pertencente a uma
classe desconhecida.

Na seção a seguir, este processo pode ser melhor compreendido pela versão em pseudo-
código do modelo, onde são explicitados os hiperparâmetros vistos nas últimas duas seções
e é ordenado em forma algorítmica o procedimento matemático descrito na Seção 2.2.

2.4 Definição algorítmica do EFC

Como modo de simplificar a compreensão do modelo, é elaborada a seguir uma imple-
mentação escrita em pseudocódigo de forma simplificada. A princípio, estabelecem-se os
hiperparâmetros para o modelo:

1: Hiperparâmetros para o EFC:
2: α |0 ≤ α ≤ 1 : peso das pseudocontagens para o cálculo das frequências empíricas;
3: p |0 ≤ p ≤ 1: quantil em percentual para o limiar de energia utilizado para a

classificação;
4: Q |Q ∈ Z e Q > 0: número de níveis utilizado para discretização de atributos;

Em seguida, pode-se ver o Algoritmo 1, que contém a função InferirModelo utilizada
para computar a inferência de um estimador. A função apresentada recebe F`, uma
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Figura 2.3: Classificação multiclasse com o EFC.
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matriz de tamanho (K ×N), composta por K fluxos associados à mesma classe ` e que
possuem o número N de atributos. Ademais, o procedimento retorna um estimador,
que aqui representa meramente uma estrutura de dados que contém os valores de e`ij,h`i
e τ` calculados para as amostras de treino. A partir desse estimador, pode-se, poste-
riormente, acessar os valores de acoplamentos e campos locais para calcular a energia
de um fluxo. Para computar esses valores, são usadas as funções SiteFreq, PairFreq,
Couplings, LocalFields, ComputeEnergies e CutoffQuantile. Essas funções não serão
explicitamente escritas, mas adaptam o processo descrito na Seção 2.2, ficando explícito
nos comentários do pseudocódigo qual cálculo está sendo realizado.

Algorithm 1 Inferência do modelo estatístico para o EFC
1: importar todas as funções de inferência do modelo
2: function InferirModelo(F`)
3: fi ← SiteFreq(F`, Q, α); . calcula as frequências individuais dos atributos
4: fij ← PairFreq(F`, fi, Q, α); . calcula as frequências par-a-par dos atributos
5: e`

ij ← Couplings(fi, fij , Q, ); . calcula os acoplamentos conforme as eqs.2.9 e 2.10
6: h`

i ← LocalFields(e`
ij , fi, Q); . calcula os campos locais conforme a eq.2.12

7: energias← ComputeEnergies(F`, e
`
ij , h

`
i); . computa o vetor {H`(f) | f ∈ F`}

8: τ` ← CutoffQuantile(energias,p); . computa o p-ésimo quantil para energias conforme a eq. 2.13
9: return estimador(e`

ij , h
`
i , τ`);

10: end function

Adiante, para representar o processo de treinamento do classificador, tem-se o Algoritmo
2, que contém a função Train. Nesta, há os parâmetros de entrada da função B e L,
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respectivamente correspondendo ao conjunto de fluxos de treino na forma de uma matriz
de forma K × N , e um vetor de rótulos de tamanho N associados aos fluxos de B. Já
base_class é um parâmetro opcional apenas usado para identificar qual classe de fluxo
será utilizada para treinar em cenários de classificação binária. Aqui é válido citar que cada
estimador gerado pela saída da função InferirModelo é armazenado de forma global em
estimadores, para que possa(m) ser acessado(s) posteriormente na função de classificação.
É válido destacar a presença da função Tamanho, aqui usada para determinar o tamanho
de um vetor.

Algorithm 2 Procedimento de treino para o Energy-Based Flow Classifier
1: function Train(B,L,base_class)
2: B ← valores de atributos em B discretizados quantilicamente em Q níveis;
3: L← rótulos distintos presentes em L
4: if Tamanho(L) = 2 then
5: if base_class não especificada then
6: base_class ← primeiro rótulo presente em L;
7: end if
8: Fbase_class ← todas as amostras de B rotuladas como base_class;
9: estimadores[base_class]← InferirModelo(Fbase_class);
10: else
11: for all ` in L do
12: F` ← todas as amostras de B rotuladas como `;
13: estimadores[`] ← InferirModelo(F`);
14: end for
15: end if
16: end function

Por fim, o Algoritmo 3, que inclui a função Classify, que representa o processo de
classificação utilizando os estimadores treinados. Esta função, de forma similar às demais,
recebe como parâmetro uma matriz de forma K × N com fluxos que serão testados,
representada pelo parâmetro S. Pode ser observado também que o pseudocódigo em
questão retorna um vetor de rótulos, que é representado pela variável predictions (do
inglês, predições). Note que no algoritmo, o rótulo arbitrário escolhido como equivalente
a Ψ, visto nas eqs. 2.14 e 2.15, foi "unknown", do inglês, desconhecido. Ademais, os
métodos InsereNoFim utilizados no pseudocódigo meramente representam a inserção de
um elemento no fim de um vetor, sendo "[]"a representação de um vetor vazio.

É válido notar que nenhuma característica intrínseca do Energy-based Flow Classifier
limita-o a ser exclusivamente um classificador de fluxos de rede, sendo plausível sua
aplicação a outras áreas. Contudo, aplicações do modelo em outras áreas do conhecimento
ainda não foram vistas na literatura.

Neste capítulo, foi detalhado o arcabouço teórico do EFC, abordando a abstração
dos fluxos de rede em grafos, o método de inferência do modelo estatístico por meio de
estatística inversa e o cálculo da Hamiltoniana utilizado para estimar a energia de cada
fluxo, a qual fundamenta o processo de classificação. Também foram explicitados os pontos
do modelo em que cada hiperparâmetro influencia diretamente seu comportamento, além
da formalização do método de classificação baseado em energias. Por fim, foi apresentado o
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Algorithm 3 Classificação de fluxos com o Energy-Based Flow Classifier
1: function Classify(S)
2: S ← S discretizado quantilicamente em Q níveis;
3: predictions ← [];
4: energias ← []
5: for all s in S do
6: hamiltonianas←[]
7: for all estimador in estimadores do
8: hamiltonianas.InsereNoFim(Hestimador(s))
9: end for
10: energias.InsereNoFim(hamiltonianas)
11: end for
12: for all hamiltonianas in energias do
13: if Tamanho(hamiltonianas)= 1 then . classificação binária, equivalente à eq. 2.14
14: Hbase_class ← valor de energia calculado para o único estimador;
15: if Hbase_class ≤ τbase_class then
16: predictions.InsereNoFim(rótulo da classe base_class);
17: else
18: predictions.InsereNoFim("unknown"); . Ψ="unknown"
19: end if
20: else . classificação multiclasse, equivalente à eq. 2.15
21: Encontrar o estimadormin que calculou o menor valor Hmin em hamiltonianas;
22: if Hmin > τmin then
23: predictions.InsereNoFim("unknown"); . Ψ="unknown"
24: else
25: predictions.InsereNoFim(rótulo da classe associada ao estimadormin);
26: end if
27: end if
28: end for
29: return predictions;
30: end function

pseudocódigo que estrutura, de forma algorítmica, as etapas de treinamento e classificação,
destacando onde cada hiperparâmetro atua no processo.

Assim, com a fundamentação teórica sobre o funcionamento do modelo estabelecida,
o próximo capítulo abordará a metodologia adotada para a realização dos testes com os
hiperparâmetros do modelo, detalhando os experimentos planejados, os conjuntos de dados
selecionados e as especificações do sistema utilizado para a execução dos testes.
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Capítulo 3

Trabalhos Relacionados

Nos últimos anos, diversos trabalhos foram produzidos com o intuito de explorar cenários
de aplicação para o Energy-based Flow Classifier(EFC). Esta seção abordará alguns desses
estudos relevantes para a presente pesquisa. Primeiramente, será apresentado o trabalho
original que propôs o EFC, seguido pela extensão que introduziu sua versão multiclasse.
Em seguida, serão discutidos estudos que analisam o desempenho do modelo em diferentes
cenários de aplicação, bem como pesquisas que o integraram a sistemas de aprendizado
federado. Na sequência, abordam-se investigações que utilizaram o EFC como base de
referência para avaliar modelos propostos. Por fim, será discutida a aparente lacuna na
literatura quanto à calibragem de seus hiperparâmetros.

3.1 Proposição original do modelo de classificação e
sua versão multiclasse

Como mencionado anteriormente, o Energy-based Flow Classifier (EFC) foi inicialmente
proposto em [8] como uma abordagem de detecção de intrusão baseada em fluxos de
rede que dispensa amostras maliciosas para seu treinamento. Inspirado no modelo de
Potts da física quântica, o método infere um modelo estatístico exclusivamente a partir de
fluxos benignos, calculando uma “energia” para cada fluxo com base em acoplamentos
entre características (portas, protocolos, duração etc.) e campos locais. Fluxos cujo valor
energético ultrapassa um limiar (percentil 95 da distribuição de energia de treinamento)
são sinalizados como anômalos. O EFC foi validado empiricamente em três conjuntos
de dados (CIDDS-001, CICIDS17 e CICDDoS19), demonstrando desempenho adequado
(F1-score em torno de 0.97 e AUC próximo de 0.99 em testes intrasset) e destacando-se
em cenários com treino e teste realizados em conjuntos diferentes de dados, onde supera
classificadores tradicionais como SVM e MLP em até 52% de ganho de F1. Além disso,
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o modelo apresenta interpretabilidade, uma vez que permite decompor a energia em
contribuições de pares de características, facilitando a análise de decisões e a identificação
de padrões específicos de ataque.

De Souza et al. [4] estendem o EFC original para um cenário multiclasse e open-set,
isto é, de modo a tratar não só de tráfego benigno e diferentes classes de ataques (DDoS,
PortScan, Bot etc.), mas também identificar ataques desconhecidos. Mantendo a mesma
formulação energética, o EFC multiclasse infere um modelo estatístico para cada classe
— benigna e cada tipo de ataque conhecido — e aplica limiares energéticos individuais
(percentil 95) para atribuir rótulos. Validado no CICIDS2017, o classificador multiclasse
alcança macro-F1 de 0.752 quando não se avalia a detecção de uma classe desconhecida,
superando o segundo maior pontuador, Decision Tree (0.731), em 8 de 13 classes, e
demonstra capacidade de detecção para classes de ataque desconhecido, detectando mais
de 80% dos ataques não vistos, com AUPRC média de 0,993, superior a redes neurais
avançadas como OCN [15]. O estudo também ressalta a eficiência computacional em
termos de tempo de treinamento do modelo, o que viabiliza a implantação em sistemas de
monitoramento de alto desempenho em tempo real.

Esses artigos apresentam a fundamentação teórica do algoritmo EFC, incluindo a
formulação matemática do processo de inferência do modelo estatístico. O conteúdo foi
sintetizado e será exposto no Capítulo 2 deste trabalho, acompanhado de uma repre-
sentação em pseudocódigo do algoritmo e pela indicação precisa dos pontos em que os
hiperparâmetros intervêm na inferência do modelo.

3.2 Trabalhos que avaliam o desempenho do modelo
em diferentes aplicações

Uma vez proposto, o Energy-Based Flow Classifier tem sido explorado em distintas
aplicações com foco na detecção de anomalias de maneira supervisionada. No contexto
de segurança de rede, Lopes et al. [9] aplicou o EFC para reconhecer comportamento de
botnets em fluxos de rede, comparando-o sistematicamente com classificadores binários
(KNN, SVM, MLP, Random Forest etc.) e unários (OCSVM, Isolation Forest, LOF e
Elliptic Envelope). Os experimentos em cenários intra-domínio (CTU-13 e ISOT HTTP)
revelaram F1-score acima de 0,98 e AUC acima de 0,99 em ISOT HTTP, e 0,87/0,96 em
CTU-13, sendo superado apenas pelo algoritmo Local Outlier Factor (LOF). Enquanto
nos testes inter-domínio o EFC manteve desempenho superior aos métodos comparados
em termos de F1-score em um dos experimentos, com pontuação de 0.66 e em outro,
obteve a maior pontuação em termos de AUC 0.73, evidenciando robustez a variações de
distribuição dos fluxos.
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Já no contexto de detecção de intrusão em redes móveis, de Almeida et al. [10] empregou
o EFC integrado a técnicas de agrupamento (clustering) para segmentar regiões urbanas,
suburbanas e rurais a partir de registros de detalhe de chamada (CDR). Validado em
62 dias de dados de Milão, utilizando registros de referência de eventos em estádios, o
método alcançou F1-score de 0.96, pontuação essa mais de 35% acima do melhor detector
comparado (método de agrupamento baseado em K-médias). Esses trabalhos reafirmam a
aplicabilidade do EFC em cenários realistas e diversos, desde redes de computadores com
tráfego potencialmente malicioso até redes móveis com padrões de uso regionais distintos.

3.3 Utilização do EFC como componente em apren-
dizado federado

Ademais, o EFC tem sido empregado como componente auxiliar em diversos sistemas
recentes de detecção de intrusão, especialmente no contexto de aprendizado federado
(Federated Learning, FL) e redes heterogêneas. Seu uso mostra-se promissor para aprimorar
a capacidade de generalização e reduzir a necessidade de supervisão em cenários onde os
dados não são independentes nem identicamente distribuídos (non-IID).

O trabalho de Bertoli et al. [11] propõe uma arquitetura de detecção de intrusão
baseada em aprendizado federado não supervisionado com uma abordagem empilhada,
combinando um autoencoder profundo (Deep Autoencoder, DAE) com o EFC como fonte
de novas features. A proposta é avaliada em quatro bases de dados (UNSW-NB15, CSE-
CIC-IDS-2018, Bot-IoT e ToN-IoT), simulando um ambiente federado do tipo interdomínio
(cross-silo). Os autores mostram que sua abordagem supera métodos tradicionais de
aprendizado local e bases de referência como Isolation Forest e LOF, obtendo F1-score
médio de 0.84 no 10º round de FL. Ademais, o trabalho demonstra como o uso do EFC
tem impacto significativo no desempenho do modelo, evidenciado pelo F1-score de 0.47
obtido pelo Deep Autoencoder no mesmo estágio de treinamento quando não associado ao
EFC.

Em outro trabalho relevante, Zhu et al. [12], o EFC é utilizado em combinação com
um modelo de Gaussian Mixture Model (GMM) no contexto de aprendizado federado
em redes heterogêneas. Neste esquema, cada cliente local obtém novas features por meio
do uso do EFC e utiliza-as somadas ao conjunto de dados para o treinamento do GMM,
utilizando a estratégia FedAdagrad. A proposta é avaliada com os mesmos conjuntos
de dados e metodologia propostos em Bertoli et al. [11], dessa vez obtendo F1-score de
84.94% no 10º round de FL, superando significativamente o GMM isolado (52.47%) e
algoritmos de detecção clássicos. Os resultados em diferentes datasets confirmam a eficácia
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da abordagem mesmo sob forte desbalanceamento de classes e variação de distribuição
entre as organizações.

Já Wan et al. [13], apresentam o STIN-IDS, um sistema voltado para redes integradas
satélite-terrestres, no qual satélites LEO realizam a coleta e pré-processamento dos dados,
enquanto satélites GEO participam de um esquema de FL não supervisionado. Neste
sistema, o EFC é utilizado para extrair a energia de cada fluxo de rede e adicioná-
la ao conjunto de características processadas por um autoencoder. Os testes mostram
desempenho consistente em diferentes bases de dados, com F1-score superior a 0.91 e
acurácia de até 0.97, demonstrando que a arquitetura é capaz de lidar com variações
regionais e mobilidade na rede. O modelo também se mostra resiliente a mudanças abruptas
na distribuição dos dados ao longo do tempo.

Esses trabalhos demonstram que o EFC contribui significativamente para a generaliza-
ção e adaptação a diferentes domínios em modelos de aprendizado federado, consolidando-se
como um componente essencial para o funcionamento dessas propostas.

3.4 O EFC usado como modelod de referência para
avaliação de outros modelos

Ademais, o Energy-based Flow Classifier tem sido utilizado como modelo de referência em
estudos recentes voltados para a detecção de intrusões em redes, especialmente pela sua
capacidade de adaptação a novos domínios sem a necessidade de um processo complexo de
treinamento como o de redes neurais. Diversos trabalhos se apoiam no EFC para avaliar a
eficácia de modelos mais complexos, com foco em robustez e capacidade de generalização.
A seguir, são apresentados três estudos que utilizam os resultados obtidos pelo EFC em
seus respectivos trabalhos como referência para validar suas propostas.

Nguyen et al. [16] propõe um sistema de detecção de intrusão baseado em uma aborda-
gem sequencial utilizando o modelo BERT, originalmente aplicado em Processamento de
Linguagem Natural. O sistema modela a sequência temporal de fluxos de rede como sen-
tenças, permitindo que padrões de comportamento contextualizados sejam capturados. A
arquitetura do sistema utiliza o BERT para extrair vetores de características de sequências
de fluxos e um classificador MLP para a tomada de decisão. Em testes realizados com os
conjuntos CIDDS-001 e CIDDS-002, o modelo proposto apresentou desempenho superior
ao EFC, especialmente em ambientes de domínio distinto, evidenciado por métricas como
F1-score e acurácia. Ainda assim, o EFC se destacou como o segundo melhor modelo
em diversos cenários, mostrando sua eficácia relativa mesmo diante de arquiteturas mais
complexas.
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Outro trabalho relevante é o de de Melo et al. [17], que propõe o framework Anomaly-
Flow, voltado à detecção de ataques de negação de serviço distribuídos (Distributed Denial
of Service, DDoS) em ambientes multi-domínio (multi-silo), utilizando uma combina-
ção de Aprendizado Federado e Redes Generativas Adversariais (GANs). A proposta
baseia-se em treinar localmente modelos GANomaly adaptados a dados tabulares de
fluxo de rede, compartilhando apenas parâmetros agregados entre os domínios (silos), o
que preserva a privacidade dos dados. Após o treinamento, os modelos são utilizados
para gerar fluxos sintéticos, que alimentam classificadores heterogêneos em ambientes
externos. O EFC foi empregado como modelo de comparação nos experimentos de detec-
ção inter-domínio com conjuntos CICIDS2018, Bot-IoT e TON-IoT. O EFC demonstra
resultados competitivos, sendo o terceiro melhor classificador em geral com F1-score de
0.648; contudo, o Anomaly-Flow demonstrou maior capacidade de generalização ao integrar
dados distribuídos, alcançando o maior F1-score relatado (0.747).

Em outro trabalho, Melo et al. [18] explora também a generalização de classificadores
de ataques DDoS por meio de Aprendizado Federado, aplicando-o a múltiplos domínios de
dados (silos) extraídos de redes distintas (TON-IoT, CICIDS2018 e Bot-IoT). A proposta
consiste no treinamento distribuído de modelos de regressão logística com técnicas de
balanceamento (subamostragem e SMOTE) e seleção de atributos, sem compartilhamento
direto de dados entre os domínios. O EFC foi utilizado como referência de comparação em
todos os experimentos. Os resultados mostram que a combinação de FL com subamos-
tragem e seleção de atributos produziu F1-score médio comparável ao do EFC, obtendo
a pontuação de 0.50 de F1-score, enquanto o EFC apresentou os maiores resultados do
trabalho pontuando 0.53 na mesma métrica.

Esses estudos evidenciam a importância do EFC como base comparativa sólida na
literatura de detecção de intrusão. Embora não seja sempre o modelo com melhor
desempenho absoluto, seu equilíbrio entre simplicidade e robustez o torna um candidato
adequado para testes comparativos.

3.5 A lacuna de pesquisa identificada

Apesar dos trabalhos apresentados evidenciarem a versatilidade do EFC em cenários
heterogêneos e variados, quase nenhum destes aborda a configuração de hiperparâmetros
utilizada para a realização de seus experimentos. De forma resumida, o EFC possui
três hiperparâmetros: o limiar de classificação, o peso de pseudocontagens e o número
de níveis de discretização para os dados (mais informações sobre estes parâmetros são
apresentadas no próximo capítulo). Dentre os estudos trabalhados neste capítulo, apenas
o estudo de Souza et al. [4] menciona quais foram os valores utilizados para todos estes
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parâmetros, especificando os seguintes valores: 95º percentil das energias calculadas como
limiar de classificação, peso de 0.5 para as pseudocontagens de frequências e 30 níveis
de discretização para os dados. Não por acaso, esses são os valores padrão atribuídos
aos hiperparâmetros do classificador, conforme verificado na implementação disponível na
plataforma GitHub [19]. Diante disso, é razoável supor que os trabalhos que adotaram o
EFC como base tenham utilizado essa configuração ou variações muito próximas, o que
indica a possibilidade de existirem oportunidades de otimização de desempenho ainda
não investigadas. Para uma investigação desta hipótese, torna-se necessário aprofundar a
fundamentação teórica do modelo, a fim de compreender de forma mais precisa o papel e
o impacto de seus hiperparâmetros no processo de inferência, tema este que será abordado
no próximo capítulo.
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Capítulo 4

Metodologia

Como relatado no capítulo anterior, o Energy-based Flow classifier possui três hiperparâ-
metros: α, Q e p; sendo necessária a atribuição de valores a estes antes do treinamento
do modelo. Neste capítulo, então, será descrito o método utilizado para a avaliação do
desempenho de classificação sob diferentes configurações para estes parâmetros globais.
Para isto, primeiramente serão descritos os experimentos planejados. Em seguida, serão
apresentados os conjuntos de dados que serão utilizados nos experimentos e as técnicas de
balanceamento aplicadas a estes. Por fim, será descrito o ambiente de execução utilizado
para a realização dos experimentos.

4.1 Metodologia de teste para o impacto dos hiper-
parâmetros nos resultados de classificação

Dado que o modelo é capaz de realizar tanto classificações binárias quanto multiclasse,
conforme destacado na Seção 2.3, ambas as modalidades serão contempladas nos expe-
rimentos. Para cada uma delas, serão conduzidas múltiplas iterações de classificação
com diferentes configurações dos hiperparâmetros, com o objetivo de avaliar as variações
no desempenho do modelo em função das combinações de valores dentro de uma faixa
previamente definida. Ainda, em cada iteração de classificação, serão usados 80% dos
dados dos datasets para treino e 20% para teste.

A primeira etapa planejada para os experimentos aborda dois dos hiperparâmetros do
modelo, que serão avaliados em conjunto: o p, responsável por determinar o quantil das
energias de treino utilizado como limiar de classificação, e o número de níveis utilizados
na discretização dos atributos dos dados de treino (Q). A segunda etapa, por sua vez,
busca avaliar o impacto de diferentes pesos para as pseudocontagens (α), que também
serão analisados junto ao parâmetro Q, por razões que serão justificadas na subseção
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dedicada a este experimento. A seguir, são descritas as faixas de valores analisadas para
cada parâmetro, além das especificidades de cada experimento realizado.

4.1.1 Experimentos com o limiar de classificação e com o nú-
mero de níveis de discretização dos dados

A escolha das faixas de valores para os hiperparâmetros do modelo foi baseada em torno
dos valores selecionados como padrão para o modelo visto no GitHub [19] e em Souza et
al.[4]. Estes valores são, especificamente: 0.95 para o limiar de classificação (p) e 30 para
o número de níveis de discretização (Q).

A faixa de valores escolhida para a experimentação com o limiar de classificação foi
definida entre 0.90 e 0.99, com incremento uniforme de 0.01 a cada iteração. De forma
similar, a faixa de valores inteiros de 10 a 100, com incremento de 10 em cada iteração,
será utilizada para a avaliação de diferentes níveis de discretização para os dados. Todos
os valores escolhidos para cada parâmetro são apresentados por extenso na Tabela 4.1,
como forma de facilitar sua visualização.

Tabela 4.1: Faixa de valores testados para os hiperparâmetros do modelo EFC.

Hiperparâmetro Valores Testados
p {0.90, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, 0.99}
Q {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

A cada iteração de teste, dois valores dentro das faixas estabelecidas (um para cada
hiperparâmetro) serão selecionados e empregados no treinamento do modelo. O desem-
penho de cada modelo treinado será avaliado com base nos dados reservados para teste.
Esse processo será repetido para todos os pares de valores possíveis dentro das faixas
estabelecidas para os hiperparâmetros, garantindo que os mesmos dados serão usados em
todas as iterações de treino e teste.

4.1.2 Experimentos com os pesos de pseudocontagens

Para avaliar como os pesos de pseudocontagens de frequência α afetam os resultados de
classificação, foram elaborados dois experimentos:

Experimentos com os pesos de pseudocontagens e com o número de níveis de
discretização dos dados

Primeiramente, serão realizados testes de classificação sobre o hiperparâmetro α, que define
o peso atribuído às pseudocontagens das frequências durante a etapa de inferência do modelo
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estatístico. Como descrito na seção 2.2, a introdução destes pesos é realizada para evitar
problemas de subamostragem (undersampling) nos dados de treino, equivalendo à adição
de uma fração extra de fluxos com valores distribuídos uniformemente. Para a avaliação
do impacto deste parâmetro na classificação, foram realizadas múltiplas classificações
utilizando diferentes valores para α e para níveis de discretização dos atributos.

Assim como nos experimentos sobre Q e p, é estabelecida uma faixa de valores a
serem testados para α e Q. A faixa testada para alpha contempla valores de 0.1 a 0.9,
incrementados em 0.1 a cada iteração. Os níveis de discretização foram avaliados na faixa
de 10 a 100, incrementados em 10 a cada iteração, assim como no experimento anterior. A
Tabela 4.2 apresenta as faixas estabelecidas para o experimento por extenso.

Tabela 4.2: Faixa de valores testados para os hiperparâmetros do modelo EFC.

Hiperparâmetro Valores Testados
α {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
Q {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

A combinação de diferentes valores de α com os níveis de discretização Q foi realizada
para investigar possíveis interações entre esses parâmetros. A escolha de valores baixos
para α resulta em um modelo mais precisamente adaptado aos dados de treino; contudo,
supõe-se o risco de que esta escolha venha a inviabilizar o treinamento do modelo em
cenários de alta discretização dos dados. Isso supostamente ocorreria em casos em que
a baixa frequência de determinados valores de atributos possa resultar no determinante
da matriz de correlações ser nulo. O que, por sua vez, ocasiona a impossibilidade de
realizar a inversão de matriz presente na eq. 2.9, então tornando impossível o processo
de treinamento do modelo. Ademais, supõe-se a possibilidade de que esse ajuste aos
dados prejudique a capacidade de adaptação a diferentes domínios de dados, o que será
investigado no próximo experimento.

Avaliação com o objetivo de verificar se valores menores de α tendem a provo-
car perda de adaptabilidade no modelo.

Para confirmar se há problemas relacionados à perda de adaptabilidade, foi realizado um
teste cruzado utilizando dois conjuntos de dados distintos. Em cada experimento, um dos
conjuntos foi usado integralmente para treinamento e o outro integralmente para teste,
invertendo-se os papéis dos conjuntos em uma segunda iteração. Quanto à configuração
de hiperparâmetros definida para estes experimentos, buscou-se avaliar diferentes valores
apenas para os pesos das pseudocontagens de frequências, sendo testados três valores: 0.1,
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0.5 e 0.9. Os níveis de discretização e o limiar de classificação permaneceram fixos nos
valores padrão (30 e 0.95, respectivamente).

Esta perda de adaptabilidade pode ser melhor visualizada ao montar um histograma
das energias calculadas na eq. 2.7 para cada um dos fluxos classificados. Neste histograma,
se não houver uma distinção entre os níveis de energia da classe utilizada no treinamento
do modelo e os níveis das demais classes, pode-se dizer que o modelo não foi capaz de
inferir o comportamento da classe utilizada para treino.

Este segundo experimento foi realizado apenas na modalidade de classificação binária,
dado que os tipos de classes de ataque dos dois conjuntos de dados escolhidos não são
compatíveis. Ademais, a visualização da separação entre os níveis de energia das classes
no histograma é mais simples na classificação binária, dado que só é necessário observar as
energias calculadas por um estimador.

4.1.3 Métricas de Avaliação de Desempenho: AUC-ROC e F1-
score

Para a avaliação de desempenho do modelo de classificação, foram escolhidas duas métricas
comumente utilizadas: AUC-ROC e F1-Score. Ambas são calculadas utilizando as predições
realizadas pelo classificador ao atribuir uma classe aos fluxos de teste. As métricas
escolhidas fornecem informações sobre a capacidade do modelo de discriminação entre as
classes e o equilíbrio entre precisão e revocação.

AUC-ROC

A métrica AUC-ROC (Área sob a Curva Característica de Operação do Receptor) quantifica
a habilidade do modelo em classificar corretamente as instâncias entre as classes. A curva
ROC é construída a partir da Taxa de Verdadeiros Positivos (TPR) em relação à Taxa de
Falsos Positivos (FPR) para diferentes limiares de classificação. A AUC é a área sob essa
curva e varia entre 0 e 1. A fórmula para calcular a AUC é:

AUC =
∫ 1

0
TPR(FPR) dFPR

F1-score

A métrica F1-score, por sua vez, é definida como a média harmônica entre a precisão e a
revocação, considerando o desempenho do modelo em relação a falsos positivos e falsos
negativos. A fórmula do F1-score é:
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F1 = 2× Precisão× Revocação
Precisão + Revocação

Onde a precisão (Precisão) é calculada como:

Precisão = TP

TP + FP

E a revocação (Revocação) é calculada como:

Revocação = TP

TP + FN

Onde TP representa os Verdadeiros Positivos, FP os Falsos Positivos e FN os Falsos
Negativos. O valor do F1-score varia de 0 a 1, com valores mais próximos de 1 indicando
um melhor equilíbrio entre precisão e revocação.

4.2 Os datasets
Primeiramente, para a escolha dos conjuntos de dados que serão utilizados, foi dada
preferência a datasets amplamente utilizados na literatura que já houvessem sido utilizados
em experimentos inter-dataset utilizando o EFC. Portanto, foram escolhidos dois dos
conjuntos de dados utilizados no estudo de Pontes et al.[8], o CICIDS17 [20] e o CICDDoS19
[21]; ambos publicados pelo Canadian Institute of Cybersecurity.

Ambos os datasets foram gerados a partir de dados de tráfego simulado de rede
armazenados em arquivos de captura (PCAP). Estes, então, tiveram as informações dos
fluxos extraídas pela ferramenta CICFlowMeter, que define e rotula os fluxos de rede
baseando-se nas informações de Timestamp, IPs de origem e destino, portas, protocolos
e ataques. Essas informações são armazenadas em um arquivo do formato CSV, onde
cada linha corresponde a um dos fluxos de rede identificados, rotulado apropriadamente
conforme a classe de tráfego que ele representa. Os arquivos de dados utilizados neste
trabalho foram os CSV, por estarem em um formato já compatível para o uso do EFC.

Ambos os conjuntos de dados compartilham o método de geração de tráfego benigno,
no qual é simulado o comportamento abstrato de 25 usuários para atuar como tráfego de
fundo, cobrindo protocolos como HTTP, HTTPS, FTP, SSH e e-mail; garantindo que
há um padrão de comportamento benigno que possa ser aprendido pelo EFC. Contudo,
apesar de haver semelhanças entre os dados, os conjuntos trabalhados possuem suas
particularidades, fazendo com que seja necessário que se discorra brevemente sobre suas
características e as abordagens de tratamento de dados aplicadas a cada um deles.
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4.2.1 CICIDS17

O dataset CICIDS2017 contém dados benignos e de ataques cibernéticos comuns e atua-
lizados. Neste estão contidos dados de tráfego de ataques cibernéticos simulados, sendo
eles: Brute Force ( baseado em FTP e baseado em SSH ), DoS, Heartbleed, Web Attack,
Infiltration, Botnet e DDoS. O arquivo CSV deste conjunto de dados é composto por
78 colunas correspondentes às características dos fluxos extraídos, além de uma coluna
dedicada a rotular a categoria à qual cada fluxo pertence. Para este trabalho, todas as
colunas de características deste foram utilizadas.

Para este conjunto de dados, foi realizada uma re-rotulagem dos fluxos inicialmente
rotulados para a categoria "Web Attack", nominalmente: "Web Attack - Brute Force", "Web
Attack - XSS"e "Web Attack - SQL Injection". Estes fluxos foram rotulados para apenas
"Web Attack", para que as amostras desta categoria não fossem descartadas por falta de
amostras suficientes para a classificação. Desta forma, tem-se que o número de amostras
de cada categoria de fluxo deste dataset pode ser visto na Tabela 4.3.

Tabela 4.3: Distribuição original das amostras de fluxo do dataset CICIDS2017

CICIDS2017

Classe número de
amostras

BENIGN 2271320
DoS Hulk 230124
PortScan 158804
DDoS 128025
DoS GoldenEye 10293
FTP-Patator 7935
SSH-Patator 5897
DoS slowloris 5796
DoS Slowhttptest 5499
Web Attack 2180
Bot 1956
Infiltration 36
Heartbleed 11

4.2.2 CICDDoS19

Já quanto ao conjunto de dados CICDDoS19, este possui dados benignos e de ataques
DDoS. Este contém os dados de diversos ataques DDoS baseados em protocolos da camada
de aplicação (por exemplo: NetBIOS, LDAP, MSSQL, DNS, SNMP, NTP, TFTP e
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WebDDoS), em vulnerabilidades de protocolos da camada de transporte (UDP Lag, UDP
Flood e SYN Flood), assim como ataques de enumeração de porta (PortMap).

O arquivo CSV deste dataset, diferentemente do CICIDS17, é composto por 82 colunas
correspondentes às características dos fluxos extraídos, além de uma coluna dedicada a
rotular a categoria à qual cada fluxo pertence. Uma vez que este conjunto possui colunas
que não estão presentes no CICIDS17, algumas colunas foram descartadas para que fosse
possível realizar testes cruzados entre os dois. Especificamente, foram removidas as colunas
"Source Port", "SimillarHTTP", "Inbound"e "Protocol".

Ademais, foi necessário que houvesse uma re-rotulação dos dados deste conjunto, uma
vez que a rotulação original possuía inconsistências na seleção de nomes para os rótulos,
como pode ser notado na Tabela 4.4. Para tal re-rotulação dos fluxos, foi consultado o
trabalho de Sharafaldin et al.[21] no qual o conjunto de dados foi proposto. Com base
nele, foram feitos os seguintes ajustes:

• primeiramente, os fluxos rotulados como "UDP-lag"e "UDPLag"foram interpretados
como representando a mesma classe de fluxos, portanto tiveram seu rótulo ajustado
para uniformizar a grafia como "UDPLag";

• ademais, não foi identificada nenhuma razão para que houvesse uma distinção entre
os fluxos rotulados com o prefixo "DrDoS_"e sua contraparte rotulada sem tal
prefixo (por exemplo: "DrDoS_MSSQL"e "MSSQL"), uma vez que tal diferença não
é exposta em nenhum momento na publicação associada ao dataset. Portanto os
fluxos assim rotulados tiveram esse prefixo removido na re-rotulação.

Enfim, é válido mencionar que a categoria de ataque "UDP"é ambígua e não é pro-
priamente descrita no trabalho de Sharafaldin et al.[21], então não é possível confirmar
que tipo de ataque ela representa. Porém, considerando o que é apresentado no trabalho,
supõe-se que esta classe corresponda ao ataque UDP-flood, portanto a classe não será
removida.

4.2.3 Balanceamento dos conjuntos de dados para a classificação
binária

Para os experimentos de classificação binária com o EFC, os datasets foram balanceados de
forma a conter 10,000 amostras de fluxos benignos e uma soma de 10,000 amostras de fluxos
maliciosos, buscando manter uma proporção de representatividade similar entre todas as
classes, embora algumas destas possuam menos amostras de fluxos que o necessário para
que se mantenha o mesmo número das demais. Estas classes que possuem um número
menor que o mínimo necessário para se igualar com a proporção das outras classes foram
descartadas da classificação.
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Tabela 4.4: Distribuição original das amostras de fluxo do dataset CICDDoS19

CICDDoS2019

Classe número de
amostras

BENIGN 113828
DrDoS_DNS 5071011
DrDoS_LDAP 2179930
DrDoS_MSSQL 4522492
DrDoS_NTP 1202642
DrDoS_NetBIOS 4093279
DrDoS_SNMP 5159870
DrDoS_SSDP 2610611
DrDoS_UDP 3134645
LDAP 1915122
MSSQL 5787453
NetBIOS 3657497
Portmap 186960
Syn 6473789
TFTP 20082580
UDP 3867155
UDP-lag 366461
UDPLag 1873
WebDDoS 439

Isto é, para o dataset CICIDS17, as amostras das classes "Infiltration"e "Heart-
bleed"foram descartadas. Enquanto que para o CICDDoS19, somente as amostras da
categoria "WebDDoS"foram descartadas. O balanceamento final para ambos os datasets
para os experimentos de classificação binária pode ser visto na Tabela 4.5.

4.2.4 Balanceamento dos conjuntos de dados para a classificação
multiclasse

Para o balanceamento dos dados para classificação multiclasse, foi estabelecido o limite
máximo de 5,000 amostras para cada categoria de fluxo. Para as classes com número de
amostras inferior a 5,000, foram consideradas apenas aquelas que possuíam mais de 1,000
amostras. As classes que possuem menos de mil amostras foram descartadas, uma vez que
não seria possível realizar um treinamento de detecção adequado para estas. Desta forma,
as amostras classificadas como "Infiltration", "Heartbleed"e "WebDDoS"foram descartadas
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Tabela 4.5: Número de amostras por classe nos datasets CICDS2017 e CICDDoS2019 após
o balanceamento para experimentos de classificação binária

CICIDS2017

Classe número de
amostras

BENIGN 10000
DoS Hulk 1000
PortScan 1000
DDoS 1000
DoS GoldenEye 1000
FTP-Patator 1000
SSH-Patator 1000
DoS slowloris 1000
DoS Slowhttptest 1000
Web Attack 1000
Bot 1000

CICDDoS2019

Classe número de
amostras

BENIGN 10000
DNS 834
LDAP 834
MSSQL 834
NetBIOS 834
NTP 833
SNMP 833
SSDP 833
UDP 833
Portmap 833
Syn 833
TFTP 833
UDPLag 833

destes experimentos também. O balanceamento final para ambos os datasets para os
experimentos de classificação multiclasse pode ser visto na Tabela 4.6.

Tabela 4.6: Número de amostras por classe nos datasets CICDS2017 e CICDDoS2019 após
o balanceamento para os experimentos de classificação multiclasse

CICIDS2017

Classe número de
amostras

BENIGN 5000
DoS Hulk 5000
PortScan 5000
DDoS 5000
DoS GoldenEye 5000
FTP-Patator 5000
SSH-Patator 5000
DoS slowloris 5000
DoS Slowhttptest 5000
Web Attack 2180
Bot 1956

CICDDoS2019

Classe número de
amostras

BENIGN 5000
DNS 5000
LDAP 5000
MSSQL 5000
NetBIOS 5000
NTP 5000
SNMP 5000
SSDP 5000
UDP 5000
Portmap 5000
Syn 5000
TFTP 5000
UDPLag 5000
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4.3 Equipamentos Utilizados

Os experimentos foram realizados remotamente utilizando a plataforma Google Colab, um
ambiente de notebook Python baseado em nuvem. A plataforma disponibiliza uma unidade
virtualizada com duas CPU Intel(R) Xeon(R) CPU 2.20GHz alocadas pela plataforma e
13 GB de memória RAM. A plataforma também disponibiliza GPUs de forma gratuita,
mas para os experimentos realizados não foi necessário o uso desse equipamento. O
ambiente utiliza Python versão 3.10, sendo feito também o uso de múltiplas bibliotecas
complementares para: o manuseio dos conjuntos de dados (NumPy e Pandas), a elaboração
de imagens para a visualização dos resultados dos experimentos (Matplotlib e Seaborn), o
manuseio de arquivos dentro do ambiente virtual (Tkinter e Glob), o uso de ferramentas
gerais de aprendizado de máquina (SciKitLearn).

Neste capítulo, foram descritas as estratégias experimentais adotadas para avaliar
sistematicamente os três principais hiperparâmetros do EFC em tarefas de classificação
binária e multiclasse. Detalharam-se as faixas de valores testadas para o limiar quantílico
de classificação (p), os níveis de discretização (Q) e o peso das pseudocontagens (α), bem
como o particionamento dos dados em 80% para treino e 20% para teste, os procedimentos
de balanceamento de classes e as métricas de desempenho utilizadas (AUC-ROC e F1-
Score). Além disso, foi descrito o ambiente computacional utilizado para a execução dos
experimentos. No capítulo seguinte, são apresentados e discutidos os resultados obtidos a
partir das experimentações aqui delineadas.
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Capítulo 5

Resultados e Discussão

Neste capítulo, são apresentados os resultados dos experimentos descritos no Capítulo 4,
seguidos de uma discussão sobre os achados obtidos. Com base nesses resultados, é
sugerida uma abordagem para a calibragem dos hiperparâmetros do Energy-Based Flow
Classifier. Inicialmente, são analisados os resultados referentes aos experimentos com o
limiar de classificação e o número de níveis de discretização. Em seguida, são discutidos
os experimentos relacionados aos pesos das pseudocontagens.

5.1 Experimentos com níveis de discretização e li-
miar de classificação

Nessa seção, estão dispostas as tabelas com as pontuações de F1-Score e AUC obtidas pelo
EFC nos experimentos correspondentes à seção 4.1.1. Serão discutidos primeiramente os
resultados obtidos para o conjunto de dados CICIDS2017, então seguidos pelos resultados
para o dataset CICDDoS2019. Por fim, serão abordados os resultados dos testes sobre os
pesos de pseudocontagens, primeiro sendo abordado o experimento em conjunto com os
níveis de discretização, que é então seguido pelas classificações inter-dataset.

5.1.1 CICIDS2017

As Figuras 5.1a e 5.1b apresentam, respectivamente, os resultados dos experimentos de
classificação binária e multiclasse com o conjunto de dados CICIDS2017. Os valores das
métricas AUC e F1-Score são exibidos em forma de mapas de calor (heatmaps), construídos
a partir de diferentes combinações entre os níveis de discretização (Q) e os limiares de
classificação (p). Em cada imagem, o lado esquerdo mostra os resultados de F1-Score, nas
cores azul e laranja, enquanto o lado direito exibe os resultados de AUC, representados
em verde e rosa.

32



Figura 5.1: Resultados das classificações binária e multiclasse para o dataset CICIDS2017,
com diferentes valores para os níveis de discretização Q e diferentes limiares de classificação
(p), medidos em AUC e F1-Score

(a) Resultados para a classificação binária

(b) Resultados para a classificação multiclasse
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Nestes resultados, é possível notar que em cada tipo de classificação o EFC exibiu
comportamentos distintos durante a variação dos valores para os hiperparâmetros. Na
classificação binária, o modelo foi capaz de obter um melhor desempenho para ambas
as métricas quando configurado com o número de níveis de discretização na faixa de
50 a 70 e pareado com o limiar de classificação definido entre 0.91 e 0.93, atingindo
uma pontuação máxima de 0.80 em ambas as métricas. Ademais, foi notado que o uso
de maiores quantidades de níveis de discretização não necessariamente resulta em uma
melhora no desempenho da classificação, enquanto aumenta muito o custo computacional
em termos de uso de memória.

Já na classificação multiclasse, observa-se que o modelo alcançou sua melhor pontuação
quando configurado com 10 níveis de discretização e com o limiar de discretização definido
em 0,99, obtendo 0,90 para F1-Score e 0,94 para AUC. Ainda, nota-se que o modelo teve
uma piora considerável nos resultados conforme o aumento de níveis de discretização,
assim como nota-se que os resultados melhoram conforme o valor atribuído ao limiar de
classificação se aproxima de 1.

5.1.2 CICDDoS2019

De forma similar ao experimento anterior, as Figuras 5.2a e 5.2b apresentam, respectiva-
mente, os resultados dos experimentos de classificação binária e multiclasse realizados com
o conjunto de dados CICDDoS2019 para treino e teste do modelo. Nelas, os resultados
também são exibidos em mapas de calor (heatmaps), construídos a partir de diferentes
combinações entre os níveis de discretização (Q) e os limiares de classificação (p). O lado
esquerdo de cada figura mostra os valores de F1-Score, nas cores azul e laranja, enquanto
o lado direito apresenta os resultados de AUC, em verde.

Nos resultados para este dataset observa-se um padrão semelhante ao anterior. Para
a classificação binária, o melhor desempenho foi obtido na configuração com 30 níveis
de discretização para os dados e com o limiar de discretização na faixa de 0.90 a 0.94,
que resultou em uma pontuação de 0.89 em ambos F1-Score e AUC. Novamente, níveis
mais altos de discretização dos dados não necessariamente melhoraram o desempenho do
classificador.

Já para a classificação multiclasse, o modelo teve um desempenho consideravelmente
inferior ao que foi visto no dataset anterior. Isso pode ser causado pelo fator de o conjunto
de dados possuir principalmente fluxos de ataques de negação de serviço, que comumente
possuem atributos similares entre si, do ponto de vista da rede, como grande volume de
pacotes de mesmo tamanho vindos de apenas um dos lados do fluxo. Ainda assim, o melhor
desempenho do modelo foi obtido sob as mesmas configurações vistas no experimento
anterior. Quando configurado com apenas 10 níveis de discretização para os dados e com
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Figura 5.2: Resultados das classificações binária e multiclasse para o dataset CICDDoS2019,
com diferentes valores para os níveis de discretização Q e diferentes limiares de classificação
(p), medidos em AUC e F1-Score

(a) Resultados para a classificação binária

(b) Resultados para a classificação multiclasse
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o limiar de classificação definido para 0.99 das energias dos fluxos de treino, configuração
essa na qual o modelo pontuou 0.58 de F1-score e 0.76 de AUC.

É importante explicar que a ausência de resultados nas configurações Q = 90 e Q = 100
na Figura 5.2b se deve ao fato de que não foi possível realizar a classificação multiclasse
com 90 e 100 níveis de discretização. Isso ocorreu devido ao alto custo computacional de
memória do treinamento do modelo com essa configuração, o que ocasionou a interrupção
do programa por parte do sistema operacional em todas as tentativas de realizar a
classificação.

5.2 Experimentos com pesos de pseudocontagens

Para os experimentos relativos aos pesos de pseudocontagens (α), foram obtidos os dados
presentes nas Figuras 5.3a e 5.3b e na Tabela 5.1. Nas Figuras 5.3a e 5.3b, são apresentados
os resultados dos experimentos que avaliam os pesos de pseudocontagens juntamente a
diferentes níveis de discretização dos dados. Tal como nos experimentos anteriores, os
resultados são exibidos em forma de mapas de calor, desta vez em função de α e Q,
mostrando a variação do desempenho do classificador em termos das métricas AUC (à
direita, em verde e rosa) e F1-Score (à esquerda, em azul e laranja). Já a Tabela 5.1
sintetiza os resultados dos experimentos interdataset, permitindo observar o impacto da
calibragem de α na capacidade de adaptabilidade do modelo entre diferentes conjuntos de
dados.

Analisando os resultados obtidos nas Figuras 5.3a e 5.3b, nota-se que para ambos os
conjuntos de dados, o melhor desempenho foi obtido quando o modelo foi configurado com
30 níveis de discretização para os dados e com o peso de 0.10 para α, obtendo a pontuação
0.91 para ambos F1-Score e AUC no dataset CICIDS2017 e 0.95 para as mesmas métricas
no dataset CICDDoS2019. Este segundo conjunto, contudo, também foi obtida a mesma
pontuação quando calibrado com os níveis de discretização definidos em 40 e 50, mas ainda
com 0.10 nos pesos para pseudocontagens. Observa-se, também, que consistentemente,
menores pesos de pseudocontagens ocasionaram melhores resultados na classificação. Con-
tudo, também nota-se que os menores pesos ocasionaram a impossibilidade de treinamento
do modelo para níveis de discretização maiores que 30 no conjunto CICIDS2017 e maiores
que 50 no CICDDoS2019, tal como foi suposto na subseção 4.1.2.

Já na Tabela 5.1, são apresentados os resultados dos experimentos inter-dataset,
avaliados pelas métricas F1-Score e AUC. Complementando os dados da tabela, as Fi-
guras 5.4a, 5.4b e 5.4c ilustram a curva ROC, a matriz de confusão e o histograma das
energias dos fluxos classificados para cada configuração empregada no teste cruzado entre
datasets, no qual o modelo foi treinado com o conjunto de dados CICIDS2017 e avaliado
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Figura 5.3: Resultados da classificação binária para os datasets CICIDS2017 e CICD-
DoS2019, para diferentes valores para os níveis de discretização Q e diferentes pesos para
as pseudocontagens de frequências α (alpha), medidos em AUC e F1-Score

(a) Resultados para o dataset CICIDS2017

(b) Resultados para o dataset CICDDoS2019
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no conjunto CICDDoS2019. De forma análoga, as Figuras 5.5a, 5.5b e 5.5c apresentam
essas mesmas informações para o caso em que o modelo foi treinado com o conjunto de
dados CICDDoS2019 e testado com o conjunto CICIDS2017.

Nas imagens, é possível observar os histogramas montados para as diferentes con-
figurações testadas, onde também nota-se o limiar de classificação(linha vermelha no
histograma) separando os níveis de energia classificados como benignos à esquerda e como
maliciosos à direita. Como é possível observar ao analisar em conjunto a Tabela 5.1 e as
Figuras 5.4a, 5.4b e 5.4c, o modelo alcançou um desempenho de 0,84 em ambas as métricas,
F1-Score e AUC, quando configurado com o valor de 0,1 para os pesos de pseudocontagens.
Além disso, é possível verificar visualmente que o limiar de classificação encontra-se no
vale entre as classes benign (do inglês, benigno) e malicious (do inglês, malicioso), o que
indica que o modelo conseguiu inferir com precisão o comportamento da classe benign. À
medida que o valor dos pesos de pseudocontagens é aumentado, contudo, o modelo perde a
capacidade de diferenciação entre as duas classes e o histograma das duas classes fica mais
sobreposto, como resultado. Assim, o pior desempenho foi observado ao ter o α definido
em 0.9, onde o modelo obteve 0.33 de F1-Score e 0.48 de AUC, aparentando confirmar a
suposição feita de que valores mais altos para este parâmetro prejudicam o desempenho
do modelo.

Ademais, ao analisar as Figuras 5.5a, 5.5b e 5.5c em conjunção com a Tabela 5.1,
observa-se que o comportamento do modelo foi semelhante ao observado anteriormente,
porém com maior dificuldade em separar as classes benign e malicious. Essa dificuldade
pode ser observada ao comparar o histograma correspondente a α = 0.1 das duas , onde
as distribuições das duas classes apresentam maior sobreposição. Apesar disso, o modelo
ainda demonstra uma capacidade razoável de distinção entre as classes para α = 0.1,
com F1-Score de 0.69 e AUC de 0.71. No entanto, à medida que o valor de α aumenta,
culminando em 0.9, o desempenho do modelo sofre uma deterioração significativa. Nesse
cenário, a pontuação de F1-Score cai para 0.58, enquanto o valor de AUC reduz-se para
0.60, indicando uma redução expressiva na capacidade do modelo de separar corretamente
as classes, que pode ser confirmada visualmente pelos histogramas.

5.3 Discussão dos resultados e proposição de aborda-
gem para calibragem dos hiperparâmetros

A partir dos resultados obtidos, é possível traçar alguns efeitos resultantes das variações
nos hiperparâmetros do modelo. Conforme os dados sugerem, verifica-se que o uso de
baixos valores para os pesos de pseudocontagens é recomendado, sendo preferível adotar
os menores valores possíveis que ainda mantenham o modelo funcional. É visto nos
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Figura 5.4: Curva ROC, matriz de confusão e histograma das energias dos fluxos classifi-
cados para os classificadores treinados com o conjunto de dados CICIDS2017 e testados
com o conjunto CICDDoS2019 com diferentes valores de α.

(a) α = 0.1
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(b) α = 0.5

(c) α = 0.9
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Figura 5.5: Curva ROC, matriz de confusão e histograma das energias dos fluxos classifi-
cados para os classificadores treinados com o conjunto de dados CICDDoS2019 e testados
com o conjunto CICIDS2017 com diferentes valores de α.

(a) α = 0.1
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(b) α = 0.5

(c) α = 0.9
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Tabela 5.1: Resultados da classificação binária para os testes cruzados entre os datasets CI-
CIDS2017 e CICDDoS2019, com diferentes pesos para a as pseudocontagens de frequências.
Desempenho medido em AUC e F1-Score.

Train CICIDS2017 / Train CICDDoS2019 /
Test CICDDoS2019 Test CICIDS2017

Q α F1 Score AUC F1 Score AUC
30 0.1 0.84 0.84 0.69 0.71

0.5 0.44 0.53 0.60 0.61
0.9 0.33 0.48 0.58 0.60

resultados experimentais que valores reduzidos de pseudocontagens aparentam resultar
em um controle mais refinado da discriminação entre as classes, resultando em melhor
desempenho nas métricas F1-Score e AUC.

Uma vez que o valor de pseudocontagens seja suficientemente baixo para permitir a
discretização dos dados em até 30 níveis, recomenda-se discretizar os dados em 20 ou
30 níveis, conforme o cenário. Essa abordagem equilibra uma granularidade apropriada
e o custo computacional do modelo, ao mesmo tempo que possibilita ajustes do limiar
de classificação de acordo com o tipo de tarefa. Para classificações binárias, valores
de pseudocontagens entre 0.90 e 0.95 se mostraram mais adequados, enquanto para
classificações multiclasse, é preferível utilizar valores próximos de 0.99, uma vez que essa
configuração reduz a ocorrência da classe anômala.

Por fim, recomenda-se evitar níveis altos de discretização dos dados, já que essa abor-
dagem aumenta significativamente o custo computacional, podendo até causar falhas
no modelo devido a limitações de memória. Além disso, altos níveis de discretização
não demonstraram melhorias substanciais no desempenho, reforçando a importância de
um equilíbrio entre granularidade e eficiência computacional na escolha dos parâmetros.
Adicionalmente, foi identificada uma piora no desempenho do modelo para o dataset CICD-
DoS2019 em comparação ao CICIDS2017 em classificações multiclasse. Esse fenômeno
pode ser atribuído à similaridade entre os ataques do tipo DDoS presentes no CICD-
DoS2019, que frequentemente exibem comportamentos semelhantes quando analisados sob
a perspectiva de fluxos de rede. Essa similaridade provavelmente dificulta a distinção das
classes pelo modelo, resultando na redução de desempenho.

Neste capítulo, apresentaram-se de forma comparativa os resultados obtidos nos expe-
rimentos de variação conjunta dos hiperparâmetros Q e p, bem como de α e Q, aplicados
a ambos os datasets. Analisou-se o efeito de cada hiperparâmetro sobre as métricas
AUC-ROC e F1-Score, além de investigar se configurações com valores reduzidos para os
pesos de pseudocontagens ocasionavam a perda da capacidade do modelo de adaptação a
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diferentes domínios de dados. Com base nessas evidências, propôs-se uma estratégia prática
de calibragem que busca equilibrar desempenho e custo computacional. As Tabelas 5.3, 5.2
e 5.4 apresentam as melhores configurações avaliadas em termos de F1-Score e AUC. No
capítulo seguinte, será apresentada a conclusão deste estudo, com a síntese dos principais
resultados e sugestões para trabalhos futuros.

Tabela 5.2: Tabela com as melhores configurações encontradas nos experimentos com Q e
p no dataset CICIDS2017 e sua pontuação em F1-Score e AUC

CICIDS2017
Q p F1-score AUC

Classificação
Binária

50 0.91 0.80 0.80
60 0.91-0.93 0.80 0.80
70 0.91 0.80 0.80

Classificação
Multiclasse 10 0.99 0.90 0.94

Tabela 5.3: Tabela com as melhores configurações encontradas nos experimentos com Q e
p no dataset CICDDoS2019 e sua pontuação em F1-Score e AUC

CICDDoS2019
Q p F1-score AUC

Classificação
Binária 30 0.90-0.94 0.89 0.89

Classificação
Multiclasse 10 0.95-0.99 0.58 0.79

Tabela 5.4: Tabela com as melhores configurações encontradas nos experimentos com
pseudocontagens e sua pontuação em F1-Score e AUC

Pseudocontagens
Q α F1-score AUC

CICIDS2017 30 0.1 0.91 0.91
CICDDoS2019 30-50 0.1 0.95 0.95

44



Capítulo 6

Conclusão

Neste trabalho, foi realizado um estudo de abordagens para a calibração dos hiperpa-
râmetros do Energy-based Flow Classifier (EFC), um modelo de classificação baseado
em estatística inversa elaborado para detecção de anomalias em fluxos de redes. Para
determinar uma abordagem para a calibragem dos hiperparâmetros, foram realizados
experimentos de classificação binária e multiclasse com diferentes configurações, a fim de
determinar uma possível abordagem de configuração para o modelo de classificação de
forma a obter melhores resultados em termos de F1-Score e AUC.

Os resultados obtidos sugerem que o valor estabelecido para α, referente ao hiperparâ-
metro que estabelece o peso das operações de pseudocontagens de frequências, impacta
diretamente na capacidade de inferência do modelo. Foi observado que quanto menores os
valores para α, especialmente para (α = 0.1), a capacidade de inferência do comportamento
das classes foi aguçada, aparentemente sem causar perda da capacidade de adaptação a
diferentes domínios de dados. Contudo, descobriu-se que usar valores baixos (α < 0.3)
impede que o modelo seja treinado com níveis mais altos de discretização dos dados. Ade-
mais, notou-se que a escolha de níveis mais altos para a discretização dos dados (Q > 50)
aparenta não resultar necessariamente em melhores resultados, além de impedir o modelo
de ser executado em alguns sistemas, devido a um maior uso de memória e processamento,
como foi o caso observado neste estudo. Ainda, notou-se que a configuração otimizada
para o limiar de classificação depende do contexto da classificação. Os resultados da
seção anterior sugerem que, para classificações binárias, o limiar estabelecido na faixa
0.90 ≤ p ≤ 0.95 pode gerar melhores resultados, enquanto para classificações multiclasse,
o valor de limiar estabelecido na faixa 0.95 ≤ p ≤ 0.99 pode gerar um melhor desempenho.

Cabe destacar que, como a execução dos experimentos deste trabalho foi realizada
em ambiente remoto, não foi possível aplicar validação cruzada. Isso porque o elevado
tempo de processamento necessário para tal procedimento resultaria em desconexões por
ociosidade do servidor. Ademais, a limitação dos recursos de hardware do ambiente remoto
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impossibilitou a obtenção de resultados para níveis mais elevados de discretização, uma
vez que tais experimentos demandavam quantidade de memória superior à disponibilizada
pelo Google Colab.Com isso em mente, sugere-se, como direcionamento para trabalhos
futuros envolvendo o EFC, a realização dos experimentos utilizando validação cruzada.

Além disso, a fim de evitar possíveis vieses decorrentes da inclusão dos dados de
teste no processo de balanceamento, recomenda-se que, em estudos posteriores, os dados
empregados no balanceamento sejam utilizados apenas para a etapa de validação do
modelo, reservando-se para o teste uma porção distinta dos conjuntos de dados. Além
disso, sugere-se a possibilidade de testar diferentes métodos de discretização, uma vez
que este passo é necessário para a execução do modelo e pode afetar a representatividade
dos dados. De forma similar, pode ser abordado em algum trabalho futuro a elaboração
de métodos para estimar um nível ótimo de discretização para os dados. Outro possível
aprimoramento do modelo, voltado à sua principal aplicação — a detecção de fluxos
maliciosos de rede — consiste na implementação da classificação multirrótulo (multilabel).
Tal extensão permitiria ao EFC, quando treinado para identificar múltiplas classes, isolar
e analisar fluxos suspeitos de forma mais detalhada.
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