
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

PVS Formalization of Proofs of the Infinitude of
Primes

(Formalização em PVS de Demonstrações da
Infinitude dos Primos)

Bruno Berto de Oliveira Ribeiro

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Orientador
Prof. Dr. Mauricio Ayala-Rincón

Coorientadora
Prof.a Dr.a Thaynara Arielly de Lima

Brasília
2025



Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

PVS Formalization of Proofs of the Infinitude of
Primes

(Formalização em PVS de Demonstrações da
Infinitude dos Primos)

Bruno Berto de Oliveira Ribeiro

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Prof. Dr. Mauricio Ayala-Rincón (Orientador)
CIC/Universidade de Brasília

Prof. Dr. Flavio Leonardo Cavalcanti Moura Dr. Mariano Miguel Moscato
CIC/Universidade de Brasília AMA/NASA LaRC Formal Methods

Prof.a Dr.a Thaynara Arielly de Lima
IME/Universidade Federal de Goiás

Prof. Dr. Marcelo Grandi Mandelli
Coordenador do Bacharelado em Ciência da Computação

Brasília, 21 de Fevereiro de 2025



Dedicatória

Dedico este trabalho aos meus pais, que me apoiaram nos momentos mais difíceis ao longo
de toda a minha graduação. Também dedico à minha avó paterna, que, apesar de sua
condição atual, sempre sonhou em ver o neto se formando. Não poderia deixar de dedicar
aos meus amigos de longa data, que, mesmo de forma indireta, contribuíram para essa
jornada.

I dedicate this work to my parents, who supported me during the most challenging
moments throughout my entire undergraduate journey. I also dedicate it to my paternal
grandmother, who, despite her current condition, always dreamed of seeing her grandson
graduate. I cannot forget to dedicate it to my long-time friends, who, even indirectly,
have contributed to this journey.

iii



Agradecimentos

Primeiramente, gostaria de agradecer a Deus, por me conceder forças e sabedoria ao
longo dessa jornada. Sua orientação foi essencial em cada etapa desse trabalho. Agradeço
profundamente à minha família, especialmente aos meus pais, por todo o amor, paciên-
cia e apoio. Sem vocês, eu não teria chegado até aqui. Obrigado por acreditarem
em mim e me incentivarem a seguir meus sonhos, mesmo nos momentos mais desafi-
adores. Aos meus amigos, que me acompanharam em todos os momentos, oferecendo
apoio emocional, risadas e conforto, meu muito obrigado. Vocês fizeram toda a diferença
na minha caminhada. Aos meus orientadores, Mauricio Ayala-Rincón e Thaynara Arielly
de Lima, agradeço imensamente pela orientação dedicada, pelos ensinamentos valiosos e
pela paciência ao longo do desenvolvimento deste trabalho.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periódicos.

First, I would like to thank God for granting me strength and wisdom throughout this
journey. His guidance was essential at every stage of this work. I deeply thank my family,
especially my parents, for all the love, patience, and support. Without you, I wouldn’t
have made it this far. Thank you for believing in me and encouraging me to follow my
dreams, even in the most challenging moments. To my friends, who accompanied me at all
times, offering emotional support, laughter, and comfort, my heartfelt thanks. You made
all the difference in my journey. To my advisors, Mauricio Ayala-Rincón and Thaynara
Arielly de Lima, I am immensely grateful for the dedicated guidance, valuable teachings,
and patience throughout the development of this work.

This work was carried out with the support of the Coordination for the Improvement of
Higher Education Personnel – Brazil (CAPES), through access to the Periodicals Portal.

iv



Resumo

Este trabalho apresenta a mecanização de cinco abordagens diferentes para provar a in-
finitude dos números primos usando o assistente de prova Prototype Verification System
(PVS). As técnicas de prova analítica abrangem várias áreas da matemática, como álgebra,
teoria dos números, topologia e análise, e são baseadas nas elegantes provas selecionadas
por Martin Aigner e Günter Ziegler no seu famoso livro "Proofs from THE BOOK". Nesse
livro, são apresentadas seis diferentes provas da infinitude dos números primos, sendo a
primeira a prova clássica de Euclides, que já está formalizada na biblioteca NASALib da
NASA. Como resultado, nosso trabalho concentra-se na especificação e formalização das
cinco provas restantes.

A mecanização das provas faz uso de outras bibliotecas de PVS, como NASALib e
prelude, que abstraem estruturas matemáticas como grupos, produtos Cartesianos, series e
conjuntos, entre outras. No entanto, a importação de provas que assumem a infinitude dos
números primos foram evitadas para prevenir circularidade. Além disso, o trabalho visa
corrigir abusos notacionais e informalidades presentes nas provas do livro, se aproveitando
do sistema de tipos do PVS, que é robusto o suficiente para revelar falhas nas formulações.

Palavras-chave: Infinitude dos Primos, Dedução Automática, Prova de Teoremas, Pro-
totype Verification System, Métodos Formais, Formalização de Teoremas, Verificação de
Algoritmos
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Abstract

This work presents the mechanization of five different approaches to proving the infinitude
of prime numbers using the Prototype Verification System (PVS) proof assistant. The
analytical proof techniques span various areas of mathematics, such as algebra, number
theory, topology, and analysis, and are based on the elegant proofs selected by Martin
Aigner and Günter Ziegler in their famous book "Proofs from THE BOOK". They present
six different proofs of the infinitude of prime numbers, the first being the classical proof
by Euclid, which is already specified in the NASA library NASALib. As a result, our
work focuses on specifying and formalizing the remaining five proofs from the book.

The mechanization of the proofs makes use of other libraries such as NASALib and
prelude, which abstract mathematical structures like groups, Cartesian products, series,
sets, and others. However, the importing of proofs that assume the infinitude of prime
numbers were avoided to prevent circularity. Additionally, the work aims to correct
notational abuses and informalities present in the proofs from the book, as the PVS type
system is robust enough to reveal flaws in the formalisms.

Keywords: Infinitude of Primes, Automated Deduction, Proof of Theorems, Prototype
Verification System, Formal Methods, Formalization of Theorems, Algorithm Verification.
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Chapter 1

Introduction

The Euclid’s proof of the infinitude of primes [1] is a classic and highly illustrative result.
As the concept of primality is typically introduced in basic Math courses, this proof
offers an excellent example of how to approach problems involving the notion of infinity.
Over the years, many mathematicians, such as Paul Erdős, have provided new proofs of
this result, each drawing from different areas of mathematics. These proofs are not only
valuable for showcasing the tools of these diverse fields, but they also serve as a reminder
that mathematics is a deeply interconnected discipline, where concepts and techniques
from various branches often come together to solve fundamental problems.

In the context of formalizing mathematical proofs, proof assistants offer invaluable
tools to ensure rigor and correctness. Various proof assistants, including PVS, Coq,
Isabelle/HOL, Lean, and others, have been developed to aid in the mechanization of
proofs across diverse mathematical domains. Not only in the case of proving infinitude,
proof assistants provide a structured and reliable approach to formalizing and verifying
such classical results, ensuring that the proof is free of errors and ambiguities.

This work aims to extend beyond Euclid’s original proof by specifying and formalizing
five alternative proofs of the infinitude of primes using the Prototype Verification System
(PVS) [2]. These formalizations explore different proof techniques derived from various
areas of mathematics, such as algebra, number theory, topology, and analysis. Each
proof will be constructed carefully to ensure logical consistency and rigor. The proofs are
derived from those in "Proofs from THE BOOK" by Martin Aigner and Günter Ziegler
[3], which offers six different proofs. The first, Euclid’s classical proof, is omitted here as
it is already included in NASALib. ý

The mechanization will be based on established libraries like prelude and NASA’s
PVS library, the NASALib, which provide useful abstractions for mathematical structures
such as sets, groups, and Cartesian products. Importantly, the formalization does not
assume the infinitude of primes beforehand, as we are trying to avoid circular reasoning.
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Circularity can arises in theorem proving, when trying to proof Theorem A by using
the Theorem B, but Theorem A is a prerequisite for proving B, for example, trying to
use Gödel Completeness Theorem [4] to prove the Compactness Theorem. In the book,
notations such as p1, p2, p3, . . . was used for prime enumeration, but notice that this type
of notation assumes infinitude of primes beforehand.

For dealing with the prime enumeration informality, a new definition of a function that
enumerates primes will be discussed, as well as a new form to model the Fundamental
Theorem of Arithmetic [5] in PVS, using the new prime enumeration and avoiding prob-
lems with assuming the infinitude of primes. This approach to formalizing prime-related
concepts is just one example of the broader objectives of this study, which also focuses
on identifying and correcting notational errors and informalities in "Proofs from THE
BOOK". PVS’s robust type system plays a critical role in highlighting and addressing
these flaws, ensuring that the formalisms remain both precise and rigorous. Furthermore,
the work underscores the educational value of using PVS to formalize mathematical proofs.

By breaking down the proofs into step-by-step files, this study not only demonstrates
various formal proof techniques but also serves as a pedagogical resource. It offers readers
the opportunity to learn how to structure and validate proofs within a proof assistant,
fostering a deeper understanding of formal methods in mathematics. Thus, the mecha-
nization of these proofs serves both as a study of mathematical reasoning and as a guide
to using proof assistants effectively in diverse mathematical contexts.

1.1 Related work

Since we are utilizing the NASALib library, a significant number of the necessary theo-
rems for fields such as algebra, number theory, analysis, and topology have already been
established [6][7][8]. These theorems were imported when the code was initially set up,
which greatly streamlines our work. This allows us to build on a solid foundation, avoid-
ing the need to reprove or reimplement basic results, and instead focus on more advanced
or specific aspects of the problem at hand.

Euclid’s classic proof of the infinitude of primes has been formalized in various proof
assistants, each presenting different approaches. One notable collection of such formal-
izations can be found in the “Formalizing 100 Theorems” project [9], which aims to for-
malize 100 important mathematical theorems across different proof assistants. The usual
strategies employed in these formalizations often revolve around two key techniques. One
approach uses the product of primes plus one variant of Euclid’s proof, as seen in proofs
formalized in systems like Naproche [10] and PVS’ NASALib. The other approach employs
a factorial plus one method, which is used in the Isabelle/HOL and Coq proofs.
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In addition to the classical Euclid’s proof of the infinitude of primes, other proofs have
been developed in different proof assistants, such as those found in Isabelle. Such proofs
are Fürstenberg’s topology proof [11] and the one involving the zeta function [12]. The
topology-based proof is simpler to formalize, as it relies on fewer mathematical structures
compared to other proofs in the book, leaving less room for alternative approaches. As a
result, the existing formalization differs primarily in how it is handled by different proof
assistants, rather than in the structure of the proof itself. However, it remains valuable
to include this proof in our collection, as it offers an opportunity to showcase topology
theory in NASALib. On the other hand, the proof of the zeta function, which is also
presented in "Proofs from THE BOOK" and will be covered here as well, diverges more
from ours since it takes a more complex analytical approach, such as using the analytic
continuation of the zeta function and then employing the divergence at s “ 1 to prove
the infinitude of primes.

While our primary focus is on the first topic of "Proofs from THE BOOK", which ad-
dresses the infinitude of primes, it is also worth noting that there are other formalizations
in the book beyond this first topic. These include proofs of the irrationality of certain
numbers [13] and Fermat’s two-square theorem [14].

1.2 Main contributions

The main contributions of this work is listed below:

• Five additional proofs for the infinitude of primes for PVS, which can be used for new
users as an example of usage of various NASALib’s theories, such as ints, algebra,
analysis and topology.

• Discussion and formalization of omitted details in "Proofs from THE BOOK".

• New approach for the PVS standard prime factorization theorem and general struc-
ture specification.

• Improvements in algebra library such as the Z{pZ coset manipulation and type
checking related problems.

• Minor improvements in integer manipulation in PVS, specially related with gcd

function
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1.3 Organization of the document

In the next Chapter, we are going to tell about PVS for the newcomers. The following
Chapters 3 to 7 correspond to the proofs in "Proofs from THE BOOK", with each Chapter
focusing on a different proof. Each proof Chapter will include an overview of the proof’s
general context, a step by step breakdown of the proof’s structure as presented in "Proofs
from THE BOOK", and a "Specification Details" section, where we discuss the formal
mathematical approach used and provide commentary on its specifications in PVS. And
last but not least, a conclusion Chapter will be presented. To be more specific:

• Chapter 2 will have a brief explanation of what the proof assistant PVS is, its
architecture and some of its terminology.

• Chapters 3 and 4 present proofs that use special numbers for asserting the in-
finitude of primes, that numbers being: Fermat numbers and Mersenne numbers,
respectively. In particular, Chapter 3 uses the NASALib algebra library to handle
group-theoretic proofs.

• Chapters 5 and 7 contain analysis-related proofs, with Chapter 5 addressing the
divergence of the sum of reciprocals of positive integers (the Riemann zeta function
at 1), and Chapter 7 dealing with the sum of reciprocals of the prime numbers.

• Chapter 6 uses topological notions, such as open and closed sets, to prove the
infinitude of the set of primes.

• Chapter 8 contains future work and the conclusion of this document.

4



Chapter 2

Prototype Verification System (PVS)

2.1 Introduction

The Prototype Verification System [2] (Figure 2.1) is an open source integrated and in-
teractive environment for formal specification and verification. The PVS was developed
at the Software Research Institute (SRI) International in Menlo Park, CA, and is sup-
ported by the Formal Methods Team at NASA Langley Research Center[15], where it is
widely used in formal verification projects. The PVS tutorials and documentation can be
downloaded from the PVS web site[16].

PVS has been used in many fields in academia and industry, including, but not limited
to, the design of flight control software and real-time systems[17].

Figure 2.1: PVS User Interface
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The PVS core system is implemented in Common LISP[18] with a front-end based on
the Emacs1[19] editor (Figure 2.2) plus Tcl/Tk2 based GUI extensions that display proof
trees, theory hierarchies and proof commands (Figure 2.3), as well as browsing tools, and
LATEX, HTML, and XML output capabilities.

Figure 2.2: Emacs Editor

Figure 2.3: Visual representation of a proof script.
1https://www.gnu.org/software/emacs/
2https://www.tcl-lang.org/
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There is also the VSCode-PVS [20][21], which is more user friendly PVS interface
based on Microsoft Visual Studio Code3. As described by Masci and Muñoz [20],

"It provides functionalities that developers expect to find in modern verification
tools, but are not available in the standard Emacs frontend of PVS, such as auto-
completion, point-and-click navigation of definitions, live diagnostics for errors, and
literate programming."

Figure 2.4: VSCode-PVS

2.2 PVS Environment

The PVS Environment (Figure 2.5) consists primarily of:

• Specification Language: a strongly typed specification language based on classi-
cal higher-order logic4. It is used to specify libraries of theories[22];

• Parser: The parser checks theories for syntactic consistency and builds an internal
representation that is used by other components of the system[23];

• Type Checker: analyzes theories for semantic consistency and adds semantic in-
formation to the internal representation built by the parser[23];

3https://visualstudio.microsoft.com
4Functions can take functions as arguments and return them as values, and quantification can be

applied to function variables
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• Theorem Prover: The proof engine is based on Gentzen’s sequent calculus [24],
and supports the use of proof strategies for automated analysis. It is composed
by a collection of basic inference rules and high-level proof strategies. Applied
interactively within a sequent calculus framework. The proof engine yield proof
scripts for manipulating and replaying proofs[25];

• Specification Libraries: allows files and theories from one context to be used in
another, thus allowing for general reuse, and making it easier to standardize theories
that are frequently used. There are two ways that the library facility can be used:
by explicitly importing a theory from a different PVS context within a specification,
or by issuing a command that effectively extends the prelude[23];

• Various browsing tools: allows displaying and navigation of cross reference defi-
nition and uses[23];

8



Figure 2.5: PVS System Overview



PVS is based on higher-order logic facilitates the specification of functions, predicates,
and relations. For our case, this is specially useful, as the problem of infinitude of primes
is a higher-order problem, as it is about a relation. PVS also supports the definition of re-
cursive functions and inductive predicates. For a comprehensive and detailed explanation
of PVS semantics, refer to the official documentation [26].

To ensure the correctness of recursive functions in PVS, it is crucial to prove their
termination. A key aspect of this correctness is providing a termination proof for the
function. This requires the user to define a measure over the function arguments that
decreases with each recursive call, following a well-founded relation.

Once the measure is provided, PVS performs static analysis and generates proof obli-
gations in the form of lemmas, which ensure the correctness of the argument types used
in the function specification. These lemmas are known as Type Correctness Conditions
(TCC).

While PVS attempts to discharge all lemmas automatically, any that remain unproved
must be handled by the user.

10



Chapter 3

Fermat numbers

The second proof from the book (and our first proof) uses number theory [27]. More
precisely it uses the infinitude of the Fermat numbers [28] to proof that the primes are
infinite. The Fermat numbers are of the form:

Fn “ 22n

` 1, where n P Zě0 (3.1)

The main idea is to show that Fermat numbers are pairwise relatively prime. In other
words, each Fermat number must have at least one distinct prime divisor. Since we can
find infinitely many Fermat numbers, it follows that there must be infinitely many prime
numbers.

Since the NASALib and the PVS’ prelude libraries provide a strong set of theorems in
number theory, this proof turned out to be one of the shortest.

3.1 Proof structure

The proof found in the book can be divided into the following steps.
1) Show that the product of Fermat numbers is of the form Fn ´ 2

n´1
ź

k“0
Fk “ Fn ´ 2 (3.2)

2) Use the product formula to prove that two non-equal Fermat numbers are relative
primes

gcdpFi, Fjq “ 1 where i ‰ j (3.3)

3) Since the set of Fermat numbers is infinite, we can find an arbitrary number of distinct
primes from the prime factorization of these Fermat numbers. Therefore, the set of primes
is infinite.

11



3.2 Specification details

Lemma 3.2.1. ý Let n P Zą0, the product from 0 to n ´ 1 of the Fermat numbers has
a closed form:

n´1
ź

k“0
Fk “ Fn ´ 2

Proof. This formula can be proven via induction.
Case n “ 1, we have

F0 “ 220
` 1 “ 3

F1 ´ 2 “ 221
` 1 ´ 2 “ 3

ñ F0 “ F1 ´ 2

Case n ą 1, by inductive hypothesis, we have

n´1
ź

k“0
Fk “ Fn ´ 2

ñ

n
ź

k“0
Fk “ ¨Fn ¨ pFn ´ 2q

“ p22n

` 1qp22n

` 1 ´ 2q “ p22n

q
2

´ 1

“ 22n`1
´ 1 “ 22n`1

` 1 ´ 2

“ Fn`1 ´ 2

As for the PVS specification, the PVS ints library already includes a recursive function
for manipulating integer products. By importing this function, it generates trivial TCCs
that PVS can solve automatically. Regarding algebraic manipulation, it’s worth noting
that it can be solved almost instantly using the "grind" command, which performs various
tasks, such as attempting to rewrite arithmetic identities until it no longer finds a valid
match.

The next Lemma can be proven trivially by analytical means, but still was needed for
our PVS proof.

Lemma 3.2.2. ý The nth Fermat number divides the Fermat numbers’ product from 0
to k, where k ě n.

Fn |

k
ź

i“0
Fi
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Proof. Notice that k ě n is equivalent of supposing there is exist x P Zě0, such that
k “ n ` x, this new variable x will be chosen for the induction.

Case x “ 0, we have
n`0
ź

i“0
Fi “ Fn ¨

n´1
ź

i“0
Fi

which trivially satisfies our assumption
Case x ą 0, we have by inductive hypothesis

Fn |

n`x
ź

i“0
Fi

ñ Fn |

n`x
ź

i“0
Fi ¨ Fn`x`1

ñ Fn |

n`x`1
ź

i“0
Fi

With these Lemmas in hand, we can prove that Fermat numbers are indeed relative
primes.

Lemma 3.2.3. ý Two different Fermat numbers are relative primes:

gcdpFi, Fjq “ 1 where i ‰ j

Proof. Since the gcd operation is symmetric, the problem of proving for i ‰ j can be
rephrased as proving for arbitrary i, j with i ă j. Using the Euclid’s algorithm:

gcdpFi, Fjq “ gcdpFi, modpFj, Fiqq

By the Lemma 3.2.2, Fi divides the product of Fermat numbers from 0 to j ´ 1,
therefore

j´1
ź

k“0
Fk ” 0 (mod Fi)

Using the Lemma 3.2.1 this means

j´1
ź

k“0
Fk “ Fj ´ 2 ” 0 (mod Fi)

Fj ” 2 (mod Fi)

13
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Since a Fermat number is an odd number greater than one.

modpFj, Fiq “ 2

ñ gcdpFi, Fjq “ gcdpFi, 2q “ 1

During the tool assisted proof, the particular property of a Fermat number being an
odd number greater than one appeared in different TCCs and proofs, as a result, it was
advantageous to add an explicit specification of this property ý. It’s also necessary for
this proof to use the property of Euclid’s algorithm, fortunately, this was in the same file
as for the definition of gcd ý.

To conclude the proof, we must prove that the set of primes is infinite. First, it’s
important to note that Fermat numbers are infinite by definition, as they are defined by
a function that takes values from the infinite set of non negative integers. We can then
use the infinitude of Fermat numbers to show that the set of primes is also infinite.

The link between Fermat numbers and prime numbers arises from the fact that every
natural number greater than one has at least one prime divisor. This observation led to
the definition of another function and set.

Definition 1 ý Let n P Zě0 and P the set of prime numbers

fprimepnq “ minptp P P : p | Fnuq

Fprime “ tp P P : Dn P Zě0, p “ fprimepnqu

In the remaining of the document, the notation P will be used for denoting the set of
prime numbers.

By the well-ordering principle, the function fprime is indeed well defined. The proof
of infinitude can be finished by establishing an injection from the set Fprime to the set of
prime numbers P.

Theorem 3.2.4. ý There are infinite primes

Proof. By definition of Fprime, this is the image of the function fprime. Using Lemma
3.2.3, for any two n, k P Zě0, n ‰ k, there is no common prime factor of Fn and Fk. In
other words, fprimepnq ‰ fprimepkq. Therefore, the function fprime is an injection, mapping
Zě0 Ñ Fprime Ď P, since the set Zě0 is infinite, P is also infinite.
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For completion, the set theoretic properties, such as the transition of infinitude via
injective mapping, can be found in sets_aux from NASALib. By importing this library,
we have to specify the types of the set, PVS can transform a set into a type, which
means that the sets Fprime and P were used as types for this particular proof. No further
TCC has appeared because of the import of sets_aux, as these sets were defined on the
well-behaved integer type.
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Chapter 4

Mersenne numbers

The third proof uses another family of numbers from number theory, the Mersenne
numbers[28]. These numbers are defined as

Mn “ 2n
´ 1 (4.1)

and its function domain may vary depending on the author. Some authors use n P Zě0;
others use n P P, which is the case of "Proofs from THE BOOK" and our case.

Nevertheless, the main idea of the proof is to consider the case where n equals a prime
p, it turns out that there exists a prime divisor q of Mp, such that q is greater than p. If
we assume that there are finite primes, there must exist a maximum prime pmax, as we
can find a greater prime from the set of divisors of Mpmax , we have a contradiction.

For this proof, "Proofs from THE BOOK" uses a modern algebra approach, such as
using Lagrange’s Theorem [29] and the fact that Zqzt0u forms a group under multiplica-
tion. Because of that, we decided to import NASALib’s algebra library [6], being more
specific the theory ring_zn.pvs, which includes a specification of a ring isomorphic to Zn.

4.1 Proof structure

The proof can be structured as follows:
1) Let p be an arbitrary prime and q be one prime factor of Mp “ 2p ´ 1, notice that

q must be odd as 2p ´ 1 is odd.

q | 2p
´ 1, q P Pzt2u (4.2)

2) Because q is odd, it must be relative prime to 2. By Fermat’s Little Theorem:

2q´1
” 1(mod q) (4.3)
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3) Since q divides 2p ´ 1, this implies that 2p ” 1(mod q), since p is a prime number,
it must be the order of the element 2 in Zqzt0u.

ordp2q “ p (4.4)

4) Since an element a P Zqzt0u of order n generates a subgroup xay “ tai : i P

Zě0u with |xay| “ n. In particular, by applying Lagrange’s Theorem, |x2y| “ p divides
|Zqzt0u| “ q ´ 1, then:

p | q ´ 1 (4.5)

5) Assume there exists a maximum prime pmax, then there exists q P P such that
pmax | q ´ 1, as a divisor is smaller than or equal the number it divides, pmax ď q ´ 1, or
pmax ă q, a contradiction. Therefore, there exist infinite primes.

4.2 Specification details

To apply group-related theorems, we decided to use the algebra library from NASALib.
First, we must decide how to define the multiplicative group Zpzt0u.

While there is an implementation for the ring Z{nZ, there exist no direct imple-
mentation for the multiplicative group Z{nZztnZu. Unfortunately, for the group-related
theorems we need to use, the theories we must import rely on a postponed assumption.
Specifically, the type we apply the theory to must satisfy a finite group predicate. In
other words, when we import these theories, they introduce a TCC that checks whether
the type consists of a complete set of elements forming a finite group. Essentially, we need
to demonstrate that the set of all elements of a given type forms a group. This means
that we cannot simply use the fact that Z{nZ is a field, and thus, that Z{pZztpZu forms a
group under multiplication. Instead, we must define the type for this multiplicative group
first and then prove that it satisfies the group properties, which leads to the definition of
a specific type for Z{pZztpZu, named nz_coset(p) ý.

After its specification, it was necessary to prove that nz_coset(p), for a given p P

P, is really a finite group. Fortunately, it could be done by expanding the definition
enough times and using the field property of Z{pZ, which was already in PVS. Still, some
TCCs appeared during the manipulation of elements of type nz_coset(p); for this reason,
additional utility lemmas were proved and separated in the ring_zn_extra.pvs file, as they
could be used in more general situations. The content of this file ranges from lemmas
of equivalence of the operations in Zn and Z{nZ to some direct ring properties, such as
product and summation closure, and the characteristic of the ring Zp being p.
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It’s worth mentioning that some type-related proofs can be avoided; instead of using
generic definitions such as the power function specified in the group file, we can define a
specialized function for handling this new nz_coset type. This could be done by forcing
the type to be nz_coset instead of the PVS-deduced coset type. For example, the power
function was specialized and instead of using pow : Z{pZ ˆ Zě0 Ñ Z{pZ for its function
signature, it was used pow : Z{pZztpZu ˆ Zě0 Ñ Z{pZztpZu ý.

With these preliminaries explained, we can discuss the proof of the infinitude of prime
numbers.

Lemma 4.2.1. ý If d is a divisor of Mp where p P P, then d is odd

Proof. Since p is a prime number, p ě 2, implying that Mp “ 2 ¨ 2p´1 ´ 1 is odd. Suppose
that d is even. Since it is a divisor of Mp, we have

Mp “ d ¨ k1, k1 P Z

By the evenness of d

Mp “ 2 ¨ k2 ¨ k1, k2 P Z

This is a contradiction since Mp is odd.

Lemma 4.2.2. ý Let q, p P P, where q is a divisor of Mp, then

p2 ` qZq
q´1

“ 1 ` qZ

Proof. By Lemma 4.2.1, q is an odd number since q is a prime q ě 3; in particular, this
means that q ∤ 2. By Fermat’s Little Theorem

2q´1
” 1(mod q)

ñ p2 ` qZq
q´1

“ 1 ` qZ

The last equation comes from the ring isomorphism Z{nZ – Zn.

During the PVS specification, the equivalence in the modular arithmetic formulation
and quotient ring formulation was proved directly ý. It was also necessary to adapt
Fermat’s Little Theorem to the requirements in our proof: it was specified in the ap ”

a (mod p) form, not in the ap´1 ” 1 (mod p) form. The adaptations resulted in the file
Fermats_little_theorem_extra.pvs
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Lemma 4.2.3. ý Let q, p P P, where q is a divisor of Mp, then

p2 ` qZq
p

“ 1 ` qZ

Proof. Since q divides Mp, we have

Mp ” 0 (mod q)

2p
´ 1 ” 0 (mod q)

2p
” 1 (mod q)

Using the isomorphism Z{nZ – Zn.

p2 ` qZq
p

“ 1 ` qZ

Theorem 4.2.4. ýThere are infinite primes

Proof. Suppose there exist finite primes, then there exists a maximum prime pmax. Let
q P P be the divisor of Mpmax , using Lemma 4.2.3, we have

p2 ` qZq
pmax “ 1 ` qZ

In particular, from the definition of order, it follows that ordp2 ` qZq | pmax, but that
is only possible if ordp2 ` qZq “ 1 or ordp2 ` qZq “ pmax. If ordp2 ` qZq “ 1, then
2 ` qZ “ 1 ` qZ, impossible, since q ą 1. Therefore ordp2 ` qZq “ pmax.

Using Lemma 4.2.2
p2 ` qZq

q´1
“ 1 ` qZ

Again by definition of order

ordp2 ` qZq | q ´ 1

pmax | q ´ 1

Since a divisor is smaller or equal to the number it divides, we have pmax ď q ´ 1,
more specifically, pmax ă q. Therefore, q is a prime greater than the maximum prime, a
contradiction.

It turns out that Lagrange’s Theorem was not necessary. In fact, if it had been used, it
would have been necessary to proof additional lemmas on group orders, but these proofs
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can be quite tedious. Instead, we used the classical theorem that states if an element a

from a group G satisfies an “ 1 for some integer n, then the order of a, denoted ordpaq,
divides n. This theorem was not in the NASALib’s algebra library, as such, it was proved
and added in its own separate file finite_group_extra.pvs.

Related to TCCs, since the definition of structures in the NASALib’s algebra library,
such as ring, is built upon the group definition, and these upon monoid (and so on), type
dependencies become an exhaustive issue. The problem arises because they require a
significant number of TCCs. If such structures are imported naively, each new algebraic
structure used in a proof could generate around five new TCCs. Consequently, there is
room for improvement in the algebra library from various angles, such as through new
utility theorems, PVS strategies (essentially LISP code for automating proofs), and pos-
sibly PVS judgments, which provide more information to the type checker. Nevertheless,
the algebra library contains many powerful theorems, including classic results from group
and ring theory like Lagrange’s Theorem, Sylow’s Theorems, and many others, some of
which made our proof easier.
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Chapter 5

Euler product formula

The fourth proof in the book relies on analytic number theory[30]. As a side effect of
the Euler’s Formula[31], proved in the 18th century by Leonhard Euler, this proof has a
deep connection to the Riemann zeta function [32]. The key idea is to demonstrate that
the zeta function can be factored into a product over primes. With this connection, we
can estimate the number of primes as large as we wish, confirming that primes are indeed
infinite.

The Riemann-zeta function is defined as:

ζpsq “

8
ÿ

n“1

1
ns

for s P C, Repsq ą 1

The Euler’s product formula, on the other hand, relates the primes in the following
way:

ζpsq “
ź

p prime

ˆ

1 ´
1
ps

˙´1

for s P C, Repsq ą 1

Notice that, from the definition of zeta function, s must have real part greater than
one, it turns out that this Euler product also works for s “ 1, but the zeta function at
this value tends to infinity, something that should not happen if there are finite primes.

In particular, we can estimate the prime-counting function by the product of the
primes according to the Euler formula, which by itself can be estimated by the natural
logarithm function in the following way:

logpnq ď
ź

p prime

ˆ

1 ´
1
p

˙´1

ď πpnq ` 1

where logpnq is the natural logarithm function and πpnq is the function that counts
the number of prime numbers less than or equal to a given number n.
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As is typical in analytical number theory proofs, this chapter proof heavily relies on
concepts from analysis, such as limits and series; for that reason, we decided to import
the NASALib’s analysis library [7].

5.1 Proof structure

The structure of the proof given by the book can be divided into the following parts.
1) Let πpxq be the prime-counting function, suppose we have an enumeration of prime

numbers in increasing order in P.
2) The harmonic numbers can be estimated with natural logarithm.

logpnq ď Hn “ 1 `
1
2 `

1
3 ` ¨ ¨ ¨ `

1
n

(5.1)

3) The product of geometric series of inverse prime numbers less than or equal to n is
equal to another series which contains every 1

k
from Hn “ 1 ` 1

2 ` . . . ` 1
n
.

Hn ď

πpnq
ź

i“1

8
ÿ

k“0

1
pk

i

“
ÿ

kPZą0,
k“1 _ DpPP,
ppďn ^ p|kq

1
k

(5.2)

4) Since the geometric series has closed form and as pi ě i ` 1 (which implies that
pi

pi´1 ď i`1
i

), we can estimate the product of series through the following inequality:

πpnq
ź

i“1

8
ÿ

k“0

1
pk

i

“

πpnq
ź

i“1

pi

pi ´ 1 ď

πpnq
ź

i“1

i ` 1
i

“ πpnq ` 1 (5.3)

5) By arranging inequalities, we find that the prime-counting function is greater than
or equal to the natural logarithm; the latter being a strictly increasing function means
that the π function is unbound, in other words, the prime-counting is infinite.

logpnq ď πpnq ` 1 (5.4)

5.2 Specification details

5.2.1 Prime enumeration

The definition given by the book has the problem of assuming when using the notation
"P “ tp1, p2, p3, . . .u", that the prime numbers P are infinite beforehand, and the sequence
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should be undefined otherwise. For simplicity, during the PVS specification, we decided
to set the undefined cases to the number zero, meaning that if the prime numbers have
an end at the nth value, then pi “ 0 for i ą n. Another thing to consider is that as the
natural numbers in PVS start from zero, the specification has a starting index of zero,
meaning that the first three values are:

p0 “ 2 p1 “ 3 p2 “ 5

The proper definition of prime sequence is given by the following function ρ.

Definition 2 ý Let ρ : Zě0 Ñ Zě0

ρpiq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2 if i “ 0

minptp P P : p ą ρpi ´ 1quq if i ą 0 ^ Dp P P, p ą ρpi ´ 1q

0 if i ą 0 ^ Ep P P, p ą ρpi ´ 1q

0 if ρpi ´ 1q “ 0

Given this definition, it remains to prove that, indeed, for a subset of the domain
S Ď Zě0, this function is an enumeration. For this purpose, we will need to demonstrate
some properties of ρ first.

Corollary 5.2.0.1. ý ρpi ` 1q ą ρpiq _ ρpi ` 1q “ 0

Proof. From the definition of the function ρ, it only returns a prime or 0. Case ρpiq “ 0,
by the last case of the definition ρpi`1q “ 0. Case ρpiq P P, if ρpi`1q “ 0 then is trivially
true, otherwise, by the second case of the definition ρpi ` 1q ą ρpiq.

Lemma 5.2.1. ý @ρpiq, ρpjq P P, ρpiq “ ρpjq ñ i “ j

Proof. When i “ j, this is trivial. Since the proposition is symmetric, without loss of
generality, we can choose i ă j. Notice that if there existed a number k, such that
i ď k ď j, ρpkq “ 0, by the fourth case of the ρ definition, we could prove via recursion
that ρpjq “ 0, this can not be the case, because ρpjq P P. Using the Corollary 5.2.0.1, as
there is no intermediary value ρpkq “ 0, in this domain, this function is strictly increasing.
Therefore, ρpiq ă ρpjq.

Lemma 5.2.2. ý @p P P, Di P Zě0, ρpiq “ p
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Proof. Proving this statement is equivalent of showing that for every n P Zě0, every
element q of the set Pn “ tp P P : p ď nu can be written as ρpiq “ q, for some i P Zě0.
This can be done by recursion on the variable n.

For the case n ď 1, Pn “ H.
For the case n “ 2, we have P2 “ t2u, its only element can be written as ρp0q “ 2.
If all elements of Pn can be written as ρpiq, considering ρpjq “ maxpPnq.
Case n ` 1 is prime, then it is the minimum prime greater than ρpjq; otherwise, there

would exist a prime r ă n ` 1 such that maxpPnq ă r, an absurd. In other words,
ρpj ` 1q “ n ` 1.

Case n ` 1 is not a prime, then Pn`1 “ Pn, trivially satisfying the recursion.

Lemma 5.2.3. ý Let i, n P Zě0, i ă πpnq ñ ρpiq P P

Proof. As proved during the Lemma 5.2.2, all values Pn can be written by some ρpiq,
and using Lemma 5.2.0.1, this enumeration is strictly increasing while ρpiq is a prime,
which is the case as all elements of Pn are primes. In particular, that means that
ρp0q, ρp1q, . . . , ρpπpnq ´ 1q is an enumeration in ascending order of prime numbers.

With those properties proved, the ρ function is indeed an enumeration for a subset of
the domain. In particular, if there are infinite primes, all primes will appear in ascending
order in the domain Zě0. Otherwise, for the domain S “ tn P Zě0 : n ă πppmaxqu, all
primes will also appear in ascending order and in its complement set Zě0zS the function
will be identically zero, as we expected.

In the following proofs, it will be necessary to use the Fundamental Theorem of Arith-
metic [5]. This theorem is in NASALib, but it was specified in a more generic sense, which
made a new specification necessary.

The NASALib’s original specification of Fundamental Theorem of Arithmetic describes
that any positive natural number greater than one can be written as a product of a prime
sequence, for example,

360 “ 2 ¨ 3 ¨ 2 ¨ 5 ¨ 2 ¨ 3

But for our purpose, it is convenient to use this Theorem in the form of sorted powers
of primes, i.e.

360 “ 23
¨ 32

¨ 5
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Because we already define a prime enumeration, we can use it to specify the prime
powers in sorted form, but if you pay attention, by knowing beforehand that there are
infinite primes, one should be tempted to describe the Fundamental Theorem as the
existence of the infinite product, with large enough terms having exponent zero, such as

360 “ ρp0q
3

¨ ρp1q
2

¨ ρp2q
1

¨ ρp3q
0

¨ ρp4q
0 ...

But we would be making the same mistake of assuming that there are infinite primes in
a circular way. Because of that, we chose to change the description of the Fundamental
Theorem.

Given a family of sets Ep “ tn P Z : Dk P Zě0, n “ pku, where p P P, we can define the
set Dn as a finite Cartesian product. ý

Dn “

πpnq´1
ą

i“0
Eρpiq

The Fundamental Theorem can be rewritten as the existence of a unique element
pρp0qϵ0 , ρp1qϵ1 , . . . , ρpπpnq ´ 1qϵπpnq´1q P Dn, such that product of its entries ý equals n for
every n P Z, n ą 1. i.e. ý

n “

πpnq´1
ź

i“0
ρpiqϵi

Since the greatest prime divisor of a number is the number itself, the upper limit of
the product, πpnq ´ 1, guarantees that all prime divisors will appear in the product.

It’s worth mentioning that the definition of prime enumeration and prime factorization
is going to be reused for the last proof of infinitude of primes, because of that, these
proofs, alongside other general purpose ρ function manipulation, were separated to a new
file called prime_extra.pvs.

Using this new framework for the proof of the Fundamental Theorem of Arithmetic,
the application of lemmas related to integer numbers was useful. Among these lemmas,
some properties related to the gcd function were not available in the NASALib. For that
reason another file was created number_util.pvs

5.2.2 A few inequalities

For the completion of our proof we must demonstrate a few inequalities, starting from a
classic one.

Lemma 5.2.4. ý @n P Zě0, logpnq ď Hn
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Proof. This can be done by considering the inequality

1
x

ď
1
k

for x P rk, k ` 1s

Considering the inequalities of integral, for a finite summation

logpn ` 1q “

ż n`1

1

1
x

dx “

n
ÿ

k“1

ż k`1

k

1
x

dx ď

n
ÿ

k“1

ż k`1

k

1
k

dx

ñ logpn ` 1q ď

n
ÿ

k“1

1
k

“ Hn

Since the log function is an increasing function.

logpnq ď logpn ` 1q ď Hn

This inequality, despite being well known, was not explicitly enunciated in the NASALib,
but all its prerequisites were already proven in the NASALib’s analysis theory. This makes
its assisted proof relatively easy. The only small problem was a TCC related to the in-
tegrability of each integral expression required in the proof; as we sum over slices of the
bigger integral, it was necessary to guarantee that everything is indeed integrable. But
lemmas for these steps were also in the files defining the logarithmic function and integral
operations.

For the next inequality, we need to define two functions.

Definition 3 ý Let n P Zě0, n ě 2

ξpnq “

πpnq´1
ź

i“0

8
ÿ

k“0

1
ρpiqk

µpnq “
ÿ

kPZą0,
k“1 _ DpPP,
ppďn ^ p|kq

1
k

One thing to notice is that in the ξ definition, we are dividing by ρpiq, which can have
zero value if we try to use a nonexistent prime number, but as we are taking the product
from i “ 0 to i “ πpnq ´ 1, using Lemma 5.2.3 all ρpiq values are primes, i.e., non zero
numbers.
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It is not completely obvious from the definition, but these two functions are the same.
For proving this statement some non-trivial lemmas must be proven first.

Given the Cauchy product [33], we can express the product of two convergent series a

and b as another series.
˜

8
ÿ

n“0
ai

¸

¨

˜

8
ÿ

n“0
bi

¸

“

8
ÿ

n“0

n
ÿ

k“0
an´kbk (5.5)

That formula has the restriction of one of the series being absolutely convergent, but in
our case, the series is defined over positive numbers, making this restriction trivially valid.
The last series in the formula can be flattened in such a way it maintains its convergence,
but to prove this, first, we need to define another function.

Definition 4 ý Let n P Zě0

θpnq “ max

ˆ"

k P Zě0 : kpk ` 1q

2 ď n

*˙

τpnq “ n ´
θpnqpθpnq ` 1q

2

Corollary 5.2.4.1. ý Let n, k P Zě0, 0 ď k ď n, then θp
npn`1q

2 `kq “ n and τp
npn`1q

2 `kq

Proof. Since 0 ď k, we have

npn ` 1q

2 ď
npn ` 1q

2 ` k

Since k ď n, we have

npn ` 1q

2 ` k ď
npn ` 1q

2 ` n ă
npn ` 1q

2 ` n ` 1 “
pn ` 1qpn ` 2q

2

Therefore, by the definition of θ, we must have θp
npn`1q

2 ` kq “ n, implying that

τ

ˆ

npn ` 1q

2 ` k

˙

“
npn ` 1q

2 ` k ´
θ

´

npn`1q

2 ` k
¯ ´

θ
´

npn`1q

2 ` k
¯

` 1
¯

2

“
npn ` 1q

2 ` k ´
npn ` 1q

2 “ k
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Lemma 5.2.5. ý Let n, k P Zě0, 0 ď k ď n, then

n
ÿ

k“0
an´kbk “

npn`1q

2 `n
ÿ

k“
npn`1q

2

apθpkq´τpkqq ¨ bτpkq

Proof. Using Corollary 5.2.4.1, we have that θp
npn`1q

2 ` kq “ n and τp
npn`1q

2 ` kq “ k,
therefore, by change of basis.

npn`1q

2 `n
ÿ

k“
npn`1q

2

apθpkq´τpkqq ¨ bτpkq “

n
ÿ

k“0
a

pθp
npn`1q

2 `kq´τp
npn`1q

2 `kqq
¨ b

τp
npn`1q

2 `kq
“

n
ÿ

k“0
an´kbk

Lemma 5.2.6. ý Let N P Zě0

N
ÿ

n“0

n
ÿ

k“0
an´kbk “

NpN`1q

2 `N
ÿ

n“0
apθpkq´τpkqq ¨ bτpkq

Proof. This can be proven through induction on the variable N .
Case N “ 0, by Corollary 5.2.4.1, we have θp0q “ 0 and τp0q “ 0, therefore

a0b0 “ apθp0q´τp0qq ¨ bτp0q

Case N ą 0, by inductive hypothesis

N
ÿ

n“0

n
ÿ

k“0
an´kbk “

NpN`1q

2 `N
ÿ

n“0
apθpkq´τpkqq ¨ bτpkq

ñ

N`1
ÿ

n“0

n
ÿ

k“0
an´kbk “

n`1
ÿ

k“0
an´kbk `

NpN`1q

2 `N
ÿ

n“0
apθpkq´τpkqq ¨ bτpkq

By Lemma 5.2.5

N`1
ÿ

n“0

n
ÿ

k“0
an´kbk “

pN`1qpN`2q

2 `N`1
ÿ

k“
pN`1qpN`2q

2

apθpkq´τpkqq ¨ bτpkq `

NpN`1q

2 `N
ÿ

n“0
apθpkq´τpkqq ¨ bτpkq

“

pN`1qpN`2q

2 `N`1
ÿ

n“0
apθpkq´τpkqq ¨ bτpkq
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The last equality comes from the fact that pN`1qpN`2q

2 “

´

NpN`1q

2 ` N ` 1
¯

For the next Theorem, we need to prove one more Lemma.

Lemma 5.2.7. ý For every n P Zě0, there exists m, r P Zě0, where 0 ď r ď m, such
that n “

m¨pm`1q

2 ` r

Proof. This can be done with induction on variable n.
Case n “ 0, m “ r “ 0 satisfy our hypothesis.
Case n ą 0, by inductive hypothesis.

n “
m ¨ pm ` 1q

2 ` r

If r “ m, this implies

n ` 1 “
m ¨ pm ` 1q

2 ` m ` 1 “
pm ` 1qpm ` 2q

2 “
pm ` 1qrpm ` 1q ` 1s

2 ` 0

If r ă m, this implies
n ` 1 “

m ¨ pm ` 1q

2 ` pr ` 1q

Since r ă m and both r, m are integers r ` 1 ď m.

Now we can prove that the flattened version of the series is indeed equal to the original
series in our case.

Theorem 5.2.8. Let an and bn be positive sequences and let
ř8

n“0
řn

k“0 an´kbk be con-
vergent, then

8
ÿ

n“0

n
ÿ

k“0
an´kbk “

8
ÿ

n“0
apθpkq´τpkqq ¨ bτpkq

Proof. Letting L “
ř8

n“0
řn

k“0 an´kbk, for every real ϵ ą 0, for larger enough n ě N , we
want

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

n
ÿ

k“0
apθpkq´τpkqq ¨ bτpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ϵ

Using Lemma 5.2.7, rewrite n as n “
m¨pm`1q

2 ` r, where 0 ď r ď m, we can estimate
our difference as

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m¨pm`1q

2 `r
ÿ

k“0
apθpkq´τpkqq ¨ bτpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
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“

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m¨pm`1q

2 `m
ÿ

k“0
apθpkq´τpkqq ¨ bτpkq `

m¨pm`1q

2 `m
ÿ

k“
m¨pm`1q

2 `r`1

apθpkq´τpkqq ¨ bτpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m¨pm`1q

2 `m
ÿ

k“0
apθpkq´τpkqq ¨ bτpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

m¨pm`1q

2 `m
ÿ

k“
m¨pm`1q

2 `r`1

apθpkq´τpkqq ¨ bτpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

By Corollary 5.2.4.1

ď

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m¨pm`1q

2 `m
ÿ

k“0
apθpkq´τpkqq ¨ bτpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“r`1
am´k ¨ bk

ˇ

ˇ

ˇ

ˇ

ˇ

By Lemma 5.2.6

ď

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m
ÿ

n“0

n
ÿ

k“0
an´kbk

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

m
ÿ

k“r`1
am´kbk

ˇ

ˇ

ˇ

ˇ

ˇ

Since both an and bn sequences are positive.

ď

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m
ÿ

n“0

n
ÿ

k“0
an´kbk

ˇ

ˇ

ˇ

ˇ

ˇ

`

m
ÿ

k“r`1
am´kbk

ď

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m
ÿ

n“0

n
ÿ

k“0
an´kbk

ˇ

ˇ

ˇ

ˇ

ˇ

`

m
ÿ

k“0
am´kbk

Since
ř8

n“0
řn

k“0 an´kbk is convergent, limnÑ8

řn
k“0 an´kbk “ 0. Meaning, for every

ϵ ą 0, there exists N1 ď n, N2 ď n, such that
ˇ

ˇ

ˇ

ˇ

ˇ

L ´

m
ÿ

n“0

n
ÿ

k“0
an´kbk

ˇ

ˇ

ˇ

ˇ

ˇ

ă
ϵ

2

m
ÿ

k“0
am´kbk ă

ϵ

2

Therefore, for N “ maxpN1, N2q

ˇ

ˇ

ˇ

ˇ

ˇ

L ´

n
ÿ

k“0
apθpkq´τpkqq ¨ bτpkq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ϵ

With that in mind, during the PVS specification, there was no previous specification
of the Cauchy product. Being a well-known theorem and due to its specification being
very time-consuming, we chose to use the theorem as an axiom in PVS.
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That series flattening process ý can be generalized for the product of more series.

Lemma 5.2.9. ý Let n P Zą0, then

n´1
ź

i“0

8
ÿ

k“0
aipkq “

ÿ

k,jlPZě0
j0`j1`¨¨¨`jn´1“k

n´1
ź

i“0
aipjiq

Proof. That can be done through induction on the variable n. For case n “ 1, this
trivially says that

8
ÿ

k“0
a0pkq “

8
ÿ

k“0
a0pkq

For case n ą 1, using the inductive hypothesis.

n´1
ź

i“0

8
ÿ

k“0
aipkq “

ÿ

k,jlPZě0
j0`j1`¨¨¨`jn´1“k

n´1
ź

i“0
aipjiq

ñ

n
ź

i“0

8
ÿ

k“0
aipkq “

˜

8
ÿ

k“0
anpkq

¸

¨

¨

˚

˝

ÿ

k,jlPZě0
j0`j1`¨¨¨`jn´1“k

n´1
ź

i“0
aipjiq

˛

‹

‚

By Cauchy product (Formula 5.5).

“

8
ÿ

m“0

ÿ

jlPZě0
j0`j2`¨¨¨`jn“m

anpm ´ pj0 ` j1 ` ¨ ¨ ¨ ` jn´1qq ¨

n´1
ź

i“0
aipjiq

“

8
ÿ

m“0

ÿ

jlPZě0
j0`j2`¨¨¨`jn“m

anpjnq ¨

n´1
ź

i“0
aipjiq

“

8
ÿ

m“0

ÿ

jlPZě0
j0`j2`¨¨¨`jn“m

n
ź

i“0
aipjiq

Finally, using the flattening process of Theorem 5.2.8.

“
ÿ

k,jlPZě0
j1`j2`¨¨¨`jn“k

n
ź

i“0
aipjiq

A more step-by-step proof of this theorem was given in the PVS specification. We can
finally show that, indeed, the functions ξ and µ are equal.
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Theorem 5.2.10. ξpnq “ µpnq

Proof. Using Lemma 5.2.9, we have

πpnq´1
ź

i“0

8
ÿ

k“0

1
ρpiqk

“
ÿ

k,jlPZě0
j1`j2`¨¨¨`jpπpnq´1q“k

πpnq´1
ź

i“0

1
ρpiqji

Notice that every term of the right series is of the form

1
ρp0qϵ1

¨
1

ρp1qϵ2
¨ ¨ ¨

1
ρpmqϵm

, m “ πpnq ´ 1

By the Fundamental Theorem of Arithmetic, this product results in a unique number
1
n
. In particular, 1

1 appears in the right series (ϵi “ 0) and since we are summing over all
possibilities of exponents, every 1

n
, for a n that’s divisible by some p P P, p ď n is in the

summation. As a result

ÿ

k,jlPZě0
j1`j2`¨¨¨`jpπpnq´1q“k

πpnq´1
ź

i“0

1
ρpiqji

“
ÿ

kPZą0,
k“1 _ DpPP,
ppďn ^ p|kq

1
k

In PVS, it was not necessary to prove directly this property, it was faster to use Lemma
5.2.9 and associate it each factor of the sum in the next proof. But for completion, we
chose to write the analytic proof for this Theorem.

Lemma 5.2.11. ý Let n P Zą0, Hn ď µpnq

Proof. Notice from the definition of µ function.

µpnq “
ÿ

kPZą0,
k“1 _ DpPP,
ppďn ^ p|kq

1
k

If for every 1
k
, 1 ă k ď n, there exists a prime p | k, p ď n, since µpnq is an absolutely

convergent series, we can order the series such that.

µpnq “

n
ÿ

k“1

1
k

`
ÿ

kPZąn,
k“1 _ DpPP,
ppďn ^ p|kq

1
k

Which trivially results in Hn ď µpnq.
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Since 1 ă k ď n and since a divisor is less than or equal to the number it divides, all
of k’s prime divisors have the inequality p ď k, therefore, the max prime divisor k can
get is p ď n.

During the PVS specification, this series rearrange needed to be expressed in a more
explicit form; for that reason, we created a file called sequence_extra.pvs, in which we
have a more formal description of the function which orders by common summed values.

Lemma 5.2.12. ý Let n, i P Zě0, for i ă πpnq

ρpiq

ρpiq ´ 1 ď
i ` 2
i ` 1

Proof. Notice that
ρpiq

ρpiq ´ 1 ď
i ` 2
i ` 1

ðñ 1 `
1

ρpiq ´ 1 ď 1 `
1

i ` 1
ðñ i ` 1 ď ρpiq ´ 1

ðñ i ` 2 ď ρpiq

This can be proven through induction. For case i “ 0, we have

0 ` 2 ď 2

For case i ą 0, by inductive hypothesis

i ` 1 ď ρpi ´ 1q

ñ i ` 2 ď ρpi ´ 1q ` 1

Because of Lemma 5.2.3 ρpiq ‰ 0, using Lemma 5.2.0.1, we have ρpi ´ 1q ă ρpiq, since
ρpi ´ 1q is a integer, ρpi ´ 1q ` 1 ď ρpiq, therefore

i ` 2 ď ρpiq

Lemma 5.2.13. ý ξpnq ď πpnq ` 1
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Proof. Since the geometric series has a closed form, we can simplify ξpnq

πpnq´1
ź

i“0

8
ÿ

k“0

1
ρpiqk

“

πpnq´1
ź

i“0

ρpiq

ρpiq ´ 1

Using Lemma 5.2.12, we have the inequality

πpnq´1
ź

i“0

ρpiq

ρpiq ´ 1 ď

πpnq´1
ź

i“0

i ` 2
i ` 1

Notice that the product
śπpnq´1

i“0
i`2
i`1 is a telescoping product ý, therefore we have

πpnq´1
ź

i“0

i ` 2
i ` 1 “

pπpnq ´ 1q ` 2
0 ` 1 “ πpnq ` 1

Theorem 5.2.14. ý There are infinite primes

Proof. Composing the inequalities from Lemmas 5.2.4, 5.2.10, 5.2.13 and 5.2.11, we have

logpnq ď ξpnq “ µpnq ď πpnq ` 1

Because the logarithm is a strictly increasing function, there can’t be a maximum πpnq

value.

We are done with the proof, but if you look closely, this proof also gives an estimation
of how large the prime-counting function increases. Still, that is not the best approxima-
tion, theorems such as Prime number theorem [34] estimate πpxq „

x

logpxq
, which is an

estimation that grows faster than logpxq.
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Chapter 6

Fürstenberg’s topological proof

The Fürstenberg proof of the infinitude of primes is an elegant and non-traditional ap-
proach to proving that there are infinitely many prime numbers. Hillel Fürstenberg in-
troduced this proof in 1955 [35], and it uses concepts from topology [36].

The main idea is to use a family of integer sets, Na,b “ ta`bn : n P Zu, where b ą 0, to
define a topology on Z. From this family of sets, one should expect to reconstruct almost
all of Z set through a union of prime family, to be more precise. Zzt´1, 1u “

Ť

pPP N0,p.
It turns out that by this topology properties, this construction forces the prime set to be
infinite.

Since we are dealing with topological definitions, we chose to import the NASALib’s
topology library [8].

6.1 Proof structure

The structure of the proof given by the book can be divided into the following parts.
1) Given a, b P Z, where b ą 0, define the set family Na,b “ ta ` bn : n P Z, b ą 0u.

2) An open set will a set O Ď Z, if either O “ H or if for every element a P O, there
exists some b P Z, b ą 0 with Na,b Ď O. Also a closed set is defined as a complement of
open set, as usual in topology.

3) Notice that by this definition of open set, the union of two open sets O1, O2 is
another open set.

4) We can also prove that the intersection of two open sets is another open set. This
can be verified by letting a P O1 X O2, we have that Na,b1 Ď O and Na,b2 Ď O then
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a P Na,b1b2 Ď O1 X O2. Therefore, this definition of open set indeed forms a topology.

5) By the definition of an open set O, there exists Na,b Ď O, where Na,b is an infinite
set. Therefore, any non-empty open set is infinite.

6) The set Na,b can be rewritten as the complement of the finite union of others Nc,d

sets, in other words, it is a closed set.

Na,b “ Zz

b´1
ď

i“1
Na`i,b (6.1)

7) Since every number n ‰ 1, ´1 has a prime divisor p, implies that n is contained in
N0,p. Meaning that we can recover the set Zzt´1, 1u through union of N0,p sets.

Zzt´1, 1u “
ď

pPP
N0,p (6.2)

8) From topology theory, a finite union of closed sets is also closed, as such, Zzt´1, 1u

is closed, which implies that the set t´1, 1u is open, which is a contradiction since all
open sets in this topology are infinite.

6.2 Specification details

This proofs give us a definition of open and close sets, we first need to check if the check
if a finite union/intersection of open sets is also an open set.

Lemma 6.2.1. ý The union of two open sets is an open set

Proof. Given open sets A, B, if any of them is an empty set, this is trivially true because
the union equals the remaining set, otherwise, for every element a P A Y B, implies
a P Na,b Ď A or a P Na,c Ď B, for both cases, there exists d ą 0, with a P Na,d Ď AYB.

Corollary 6.2.1.1. ý The union of finite open sets is an open set

Proof. This can be proved by induction, for the base case we have an open set O1 which
is trivially an open set. By inductive hypothesis, the union of n open sets

Ťn
i“1 Oi is open,

using Lemma 6.2.1, if On`1 is an open set than

On`1 Y

n
ď

i“1
Oi “

n`1
ď

i“1
Oi

is also an open set.
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Lemma 6.2.2. ý The intersection of two open sets is an open set

Proof. If any of the open sets is an empty set, the intersection is also an empty set, which
is open. Otherwise, for every element a P O1 X O2, where O1, O2 are open sets, there
exists Na,b1 and Na,b2 , such that a P Na,b1 Ď O1 and a P Na,b2 Ď O2.

For every element c P Na,b1¨b2 , we have for some n P Z

c “ a ` b1 ¨ b2 ¨ n

Therefore c P Na,b1 Ď O1 and c P Na,b2 Ď O2, in other words, Na,b1¨b2 Ď O1 X O2. Also
notice that a “ a ` b1 ¨ b2 ¨ 0 P Na,b1¨b2 . Therefore for every element a P O1 X O2, there
exists a P Na,b1¨b2 Ď O1 X O2, which means that O1 X O2 is open.

Corollary 6.2.2.1. ý The intersection of finite open sets is an open set

Proof. Once again, this can also be proved by induction, for the base case we have an
open set O1 which is trivially an open set. By inductive hypothesis, the intersection of n

open sets
Şn

i“1 Oi is open, using Lemma 6.2.1, if On`1 is an open set than

On`1 X

n
č

i“1
Oi “

n`1
č

i“1
Oi

is also an open set.

With that Lemmas, we can properly use the NASALib’s topology theory, as the fam-
ilies of open sets O fulfil the criterion for being a topology ý.

We can also prove three more properties:

Lemma 6.2.3. ý Any non-empty open set is infinite

Proof. Let O be the open set, for every element of a P O, we have Na,b Ď O, where b ą 0.
The elements of Na,b is a both sides linear progression a ` b ¨ n, since b ą 0, the function
f : Z Ñ Na,b, such that

fpxq “ a ` b ¨ x

is an increasing function, as a result f is an injective function, since Z is infinite, that
implies that Na,b is also infinite and thus O is also infinite.

Lemma 6.2.4. ý Na,b is a closed set and can be expressed as Na,b “ Zz
Ťb´1

i“1 Na`i,b

Proof. Every element of Na,b, is of the form n “ a ` b ¨ k, meaning that n ” a mod(b) and
vice-versa.
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That means that every value n, such that n R Na,b, must be in one of the b´1 remaining
equivalent classes. In particular, let 0 ď i ă j ă b, suppose that a ` j ” a ` i mod(b),
this implies that

j ´ i ” 0 mod(b)

ñ b | pj ´ iq ñ b ď j ´ i

But the maximum difference is when

maxpjq ´ minpiq “ pb ´ 1q ´ 0 “ b ´ 1

ñ b ą j ´ i

thus we have a contradiction. Therefore, any two Na`i,b, Na`j,b, where i ‰ j is a different
set.

That means the union
b´1
ď

i“1
Na`i,b

contains every element n R Na,b, as a result, Na,b “ Zz
Ťb´1

i“1 Na`i,b. By the definition of
an open set, Na`i,b is an open set, since the union of open sets is open (Corollary 6.2.1.1),
remember that a closed set is the complement of an open set, therefore Na,b is also a
closed set.

With this last Lemma, we have that Na,b is a closed set. We need one more Lemma
for building our main Theorem.

Lemma 6.2.5. ý Zzt´1, 1u “
Ť

pPP N0,p

Proof. For every element m of Zzt´1, 1u, there exists a prime divisor q, therefore

m “ q ¨ k, k P Z

which is the form of an element of N0,q, therefore Zzt´1, 1u Ď N0,q Ď
Ť

pPP N0,p. For
n P

Ť

pPP N0,p, there exists a prime p such that

n “ p ¨ k, k P Z

Since n is an integer, we just need to ensure that n ‰ 1 and n ‰ ´1. Notice that

|n| “ |p| ¨ |k| “ p ¨ |k|
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Since p is a prime, p ą 1. If k “ 0 then n “ 0, otherwise |k| ě 1, which implies that
|n| ą 1. As a result, n is neither 1 nor -1. Therefore

Ť

pPP N0,p Ď Zzt´1, 1u.

Theorem 6.2.6. ý There are infinite primes

Proof. By Lemmas 6.2.4 and 6.2.5, we have that Zzt´1, 1u is a union of closed sets, since
a finite union of closed sets is also a closed set, if the prime set is finite, Zzt´1, 1u must
be close, which means that t´1, 1u is an open set, a contradiction considering Lemma
6.2.3.
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Chapter 7

Prime reciprocal series

The sixth and last proof was originally proved by Paul Erdős in the 20th century [37] and
can be viewed as inspired by the fourth proof found in Chapter 5. The main idea is to
consider another series of reciprocal numbers, but instead of using the positive integers,
the prime numbers are used, i.e.,

ř8

i“1
1
pi

.
As a finite summation of numbers converges, if this series diverges, our set of primes

must be infinite.
To show that this series diverges, we can divide the prime numbers into two types:

the Small primes (primes which are smaller or equal to a prime pk) and Big primes (the
remaining primes). Using this classification, other sets can be defined: Npnq, the set of
positive numbers less than or equal to n; Nspn, kq, the numbers from Npnq with only Small
primes divisors; Nbpn, kq the numbers from Npnq with at least one Big prime divisor. It
can be shown that Npnq “ Nspn, kq Y Nbpn, kq.

The proof focuses on showing that if the series converges, we can find a k, such that
we can estimate the size of Nspn, kq, Nbpn, kq such that |Nspn, kq| ` |Nbpn, kq| ă |Npnq|,
a contradiction.

7.1 Proof structure

1) Consider a prime enumeration pi, suppose that the series of primes reciprocals converge.

lim
NÑ8

N
ÿ

i“1

1
pi

ă 8 (7.1)

2) Therefore exists a κ such that the series starting from κ ` 1 is less than one half.

8
ÿ

i“κ`1

1
pi

ă
1
2 (7.2)
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3) Defining Small primes as all primes which are smaller than pk and Big primes, the
rest. Then define Npnq, Nspn, kq and Nbpn, kq as previously mentioned.

4) By defining the subset Ndivpd, nq of all elements of Npnq which is a multiple of a
d P N, d ě 1. It can be proven that |Ndivpd, nq| “ t

|Npnq|

d
u “ tn

d
u. Noticing that Nbpn, kq is

the union of all Ndivppi, nq, where i ą k, we can estimate the size of Nbpn, κq by:

|Nbpn, κq| ď

8
ÿ

i“κ`1

Z

n

pi

^

ď

8
ÿ

i“κ`1

n

pi

ă
n

2 (7.3)

5) Noticing that an element m P Nspn, kq can be written as m “ a ¨ b, where
a, b P Nspn, kq and a is a square-free part of m and b is a perfect square of an ele-
ment of Nspn, kq. We can define two more sets Sfreepn, kq, composed of all elements a,
and Sdivpn, kq, composed of all elements b. With these considerations, we can estimate
the size of Nspn, kq:

|Nspn, kq| ď |Sfreepn, kq ˆ Sdivpn, kq| “ |Sfreepn, kq| ¨ |Sdivpn, kq| (7.4)

6) Since m “ a ¨ b for all m P Nspn, kq, we can estimate the number of elements
of Sdivpn, kq by setting a “ 1 and using the definition of b, i.e. b “ r2 for r P Nspn, kq.
Finding the size of Sdivpn, kq turns into a problem of counting the numbers of valid m “ r2.
Noticing that Nspn, kq Ď Npnq, the estimation is:

|Sdivpn, kq| ď
a

|Nspn, kq| ď
a

|Npnq| “
?

n (7.5)

7) The Sfreepn, kq is the set of all elements less than or equal n, with only Small
primes divisors and square-free. In others words, an element of Sfreepn, kq is of the form
m “ pϵ1

1 ¨ pϵ2
2 ¨ ¨ ¨ pϵk

k , where ϵi P t0, 1u. This can be estimated with:

|Sfreepn, kq| ď 2k (7.6)

8) Since Npnq “ Nspn, kq Y Nbpn, kq, for every k. Using the last item estimations, we
must have:

|Npnq| ď |Nspn, κq| ` |Nbpn, κq| ă 2κ
?

n `
n

2 (7.7)

9) Choosing n “ 22κ`2, our inequality simplifies to |Npnq| ă 22κ`2 “ n, an absurd,
since |Npnq| “ n. Therefore, our original consideration of the convergence of a series of
prime reciprocals must be false. That’s only possible if there are infinite primes.
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7.2 Specification details

The proof given by the book uses a prime enumeration pi and considers its reciprocal
series, but it doesn’t explicitly consider the case where there are finite primes, as there
shouldn’t be a value greater than a certain i, this makes the sequence not well-defined. A
mistake was also made in the proof of the Chapter 5. To avoid this circularity, we should
redefine what sequence pi means, and by consequence, what is the sequence 1

pi
.

In Chapter 5, we defined a prime enumeration function ρ, as well as we proved some
theorems with it, these theory was separated in its own file and will be reused here. By
considering the series of reciprocal of prime numbers, we should account for the case
where the prime set is finite. This can be done naturally from our definition of the prime
enumerating function, as it returns zero if we try to enumerate a nonexistent prime. This
natural definition is:

Definition 5 ý Let ι : Zě0 Ñ Zě0

ιpnq “

$

’

&

’

%

1
ρpnq

if ρpnq ą 0

0 otherwise

It follows from this definition that this sequence and its series are not only well-defined,
this can be overcome if we turn the series into a finite sum in the case where there are
finite primes, i.e.

8
ÿ

i“0
ιpiq “

$

’

’

’

&

’

’

’

%

k´1
ÿ

i“0

1
ρpiq

if |P| “ k

8
ÿ

i“0

1
ρpiq

otherwise

Just as in Chapter 5, remember that our enumeration starts from zero, meaning our
proofs from here on will have potentially shifted indices compared to the original proof.
This was done with the intention of simplifying the proofs inside the PVS, as many proved
lemmas, such as the ones involving sums and series, start with index zero.

For example:

8
ÿ

i“0
ιpiq “

$

’

’

’

&

’

’

’

%

k
ÿ

i“1

1
pi

if |P| “ k

8
ÿ

i“1

1
pi

otherwise
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With our ρ function defined, we can prove our first inequality.

Lemma 7.2.1. ý Suppose that the series
ř8

i“0 ιpiq converges, then there exists an κ,
such that

ř8

i“κ ιpiq ă 1
2

Proof. This lemma follows from the definition of convergence, that is, for every ϵ P R, ϵ ą

0, there exists a N P Z, such that for every n P Z, n ě N :
ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“0
ιpiq ´

n
ÿ

i“0
ιpiq

ˇ

ˇ

ˇ

ˇ

ˇ

ă ϵ

By letting ϵ “ 1
2 and renaming κ “ n ` 1.

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“0
ιpiq ´

n
ÿ

i“0
ιpiq

ˇ

ˇ

ˇ

ˇ

ˇ

ă
1
2

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“n`1
ιpiq

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

i“κ

ιpiq

ˇ

ˇ

ˇ

ˇ

ˇ

“

8
ÿ

i“κ

ιpiq ă
1
2

The last inequality comes from the fact that ιpiq is greater than or equal to zero.

Now, given a positive integer k, it will be useful to divide the prime numbers into the
categories of Small and Big primes. Based on the book’s definition, we should call a value
ρpiq a Small prime if i ă k and Big prime if i ě k. Notice that this definition is close
to what was given by the book, and it is still not formally defined when we have finite
primes, for i larger enough, ρpiq “ 0, which is not a prime zero.

We can overcome this problem by formally defining Small and Big primes as sets of
numbers in the following way.

Definition 6 ý Let k P Zě0

Smallpkq “ tp P P : p ă ρpkq _ ρpkq “ 0u

Bigpkq “ tp P P : p ě ρpkq ^ ρpkq ‰ 0u

As mentioned in Section 5.2.1, about prime enumeration, for all prime values this ρ

function enumerates the primes in ascending order, meaning that for all p P P, there exists
i P Zě0, such that p “ ρpiq, where it maintains the ordering of the prime numbers. In
particular, if ρpiq ă ρpkq, then i ă k (ý), otherwise we have ρpiq ě ρpkq, then i ě k (ý).
As such, this definition behaves analogous with the one given by the book.
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With this new definition, instead of talking about an enumeration pi, pi`1, ¨ ¨ ¨, as
mentioned in the book, we will be using the Small and Big prime sets. First, we can
assert it really divides the primes into two different sets.

Corollary 7.2.1.1. Smallpkq and Bigpkq are disjoint sets with P “ Smallpkq Y Bigpkq

Proof. It is noticeable that the restriction in the definition of the big primes set is the
logical negation of the Small prime set restriction, and vice versa. In other words, each
set is the complement of the other under the prime set, therefore their union is the whole
P.

This can be proven in PVS by a simple "grind" command. But it will be helpful to
have this last Corollary for later citation.

With the Small primes and Big primes sets defined, other useful sets can be also
defined.

Definition 7 ý ý Let k P Zě0 and n P Zą0

Npnq “ tm P Zą0 : m ď nu

Nspn, kq “ tm P Npnq : @p P P, p | m ñ p P Smallpkqu

Nbpn, kq “ tm P Npnq : Dp P Bigpkq, p | mu

Corollary 7.2.1.2. ý Nspn, kq and Nbpn, kq are disjoint sets with Npnq “ Nspn, kq Y

Nbpn, kq

Given an element m P Npnq, if m “ 1, it does not have a prime divisor, meaning
m P Nspn, kq and m R Nbpn, kq. If m ą 1, if it has a Big prime divisor than m P Nbpn, kq

by Corollary 7.2.1.1, the Big and Small primes are disjoint, therefore m R Nspn, kq. The
last case is m ą 1, and it does not have a Big prime, again by Corollary 7.2.1.1, the prime
divisor must be a Small prime, meaning m P Nspn, kq and m R Nbpn, kq.

7.2.1 Big primes multiple set Nbpn, kq

For estimating the Nbpn, kq, we should define another set of numbers, the set of positive
multiples of a number d, less or equal to n.
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Definition 8 ý Let d, n P Zą0

Ndivpd, nq “ tm P Npnq : d | mu

Lemma 7.2.2. ý For d, n P Zą0, |Ndivpd, nq| “

Yn

d

]

Notice that the elements of Ndivpd, nq are of the form m “ d ¨ x, x P Zą0, therefore
the minimum value is found with x “ 1 and for the max value, it must be a value such
x ď n

d
, x P Z, which is exactly the definition of tn

d
u. Meaning all possible values are

restricted to d ¨ 1 ď d ¨ x ď d ¨ tn
d
u, on other words, Ndivpd, nq “ tn

d
u.

With this lemma proved, we are ready to estimate Nbpn, kq:

Theorem 7.2.3. ý |Nbpn, kq| ď n ¨

8
ÿ

i“k

ιpiq

Proof. From the definition of Nbpn, kq, its elements must be divisible by some Big prime,
meaning that for all m P Nbpn, kq, there exists a Big prime ρpiq, such that m P Ndivpρpiq, nq.
As such, we can find an injection from Nbpn, kq to

Ť8

i“k Ndivpρpiq, nq by the identity func-
tion. It’s worth mentioning that this infinite union is well defined for finite primes, as
Ndivpρpiq, nq will be equal to the empty set if ρpiq “ 0, as there are no positive integer
which is divisible by zero. In conclusion, this injection leads to

|Nbpn, kq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

8
ď

i“k

Ndivpρpiq, nq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

8
ÿ

i“k

|Ndivpρpiq, nq|

Now notice that if Ndivpρpiq, nq “ H, this is only possible in the case ρpiq “ 0 or if
ρpiq ą n.

If ρpiq “ 0, then by definition of ι function, ιpiq “ 0, meaning

|Ndivpρpiq, nq| “ 0 “ n ¨ ιpiq

If ρpiq ą n, then n ą 0 and ιpiq ą 0, meaning

|Ndivpρpiq, nq| “ 0 ď n ¨ ιpiq

Now considering the case Ndivpρpiq, nq ‰ H, by Lemma 7.2.2

|Ndivpρpiq, nq| “

Z

n

ρpiq

^

ď
n

ρpiq
“ n ¨ ιpiq

In other words, we have for all cases
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|Ndivpρpiq, nq| ď n ¨ ιpiq

ñ |Nbpn, kq| ď

8
ÿ

i“k

|Ndivpρpiq, nq| ď

8
ÿ

i“k

n ¨ ιpiq “ n ¨

8
ÿ

i“k

ιpiq

7.2.2 Small primes multiple set Nspn, kq

With the estimation of the set Nbpn, κq size completed, it remains to estimate the size of
Nspn, κq; for that, we must define two more sets.

Definition 9 ý Let k P Zě0 and n P Zą0

Sdivpn, kq “ tm P Nspn, kq : Dd P Zą0, m “ d2
u

Sfreepn, kq “ tm P Nspn, kq : Ed P Zą0, d ą 1, d2
| mu

Corollary 7.2.3.1. ý For every m P Nspn, kq, there exists a P Sfreepn, kq and b P

Sdivpn, kq, such that m “ a ¨ b.

Proof. There are finite possible divisors of the number n, take the maximum divisor b

such that b P Sdivpn, kq, this value always exists as x “ 1, if the number is square-free.
By the definition of divisor m “ a ¨ b, it remains to show that a P Sfreepn, kq. For that,
suppose there exists a d ą 1, such that d2 | a, this implies that exists

a “ y ¨ d2

m “ y ¨ d2
¨ x2

“ y ¨ pdxq
2

By the divisor inequality pdxq2 ď m, since m P Nspn, kq we have pdxq2 ď m ď n, therefore
pdxq2 P Sdivpn, kq and pdxq2 ą b, an absurd since b is maximal. In conclusion a is square-
free, by similar argument the condition a ď m ď n is also true, meaning a P Sfreepn, kq.

This Corollary motivates us to divide the approximation into two steps, finding the
estimation |Sdivpn, kq| and |Sfreepn, kq|. This step is done loosely in the original book’s
proof, but during the specification, it was necessary to prove there exists an injection from
Nspn, kq to Sdivpn, kq ˆ Sfreepn, kq, which is related to our next Lemma.

Lemma 7.2.4. ý The decomposition of m P Nspn, kq, as m “ a ¨ b for a P Sfreepn, kq

and b P Sdivpn, kq, is unique.
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Proof. This can be done via induction over the variable m; the basis case is when m “ 1,
since a ě 1 and b ě 1, the only way 1 “ a ¨ b is when a “ 1 and b “ 1. For m larger than
one, a ą 1 or b ą 1. Suppose there exists another c P Sfreepn, kq and d P Sdivpn, kq with
m “ c ¨ d.
Case a ą 1 there exists a prime p which divides a, in particular

p | a ^ a | m

ñ p | m “ c ¨ d

Since p is prime, p | c or p | d. Case p | c, we have

a “ p ¨ x1 ^ c “ p ¨ x2

ñ

$

&

%

m “ p ¨ x1 ¨ b

m “ p ¨ x2 ¨ d
ñ

$

&

%

m
p

“ x1 ¨ b

m
p

“ x2 ¨ d

But by inductive hypothesis b “ d and x1 “ x2, therefore a “ c.
Case p | d, we must have p2 | d, since d is a perfect square, therefore p2 | m, in other

words, d “ p2 ¨ x3 and a “ p ¨ x1, which means

p2
¨ x3 “ p ¨ x1 ¨ b

p ¨ x3 “ x1 ¨ b

p | x1 ¨ b

Notice that p does not divide x1, otherwise a P Sfreepn, kq would have a square factor,
meaning p | b, since b is a perfect square p2 | b, as a result.

b “ p2
¨ x4 ^ d “ p2

¨ x3

ñ

$

&

%

m “ p2 ¨ x4 ¨ a

m “ p2 ¨ x3 ¨ c
ñ

$

&

%

m
p2 “ x4

m
p2 “ x3

But by inductive hypothesis a “ c and x3 “ x4, therefore b “ d. The last remaining
case is when b ą 1, which means there exists p | b; since b is a perfect square, we could
use the same argumentation as case p | d to prove the equality.

Now we can prove the following Theorem.

Theorem 7.2.5. ý |Nspn, kq| ď |Sdivpn, kq| ¨ |Sfreepn, kq|
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Proof. Using the Corollary 7.2.3.1 and Lemma 7.2.4, we can define a function.

f : Nspn, kq Ñ Sdivpn, kq ˆ Sfreepn, kq

fpmq “ pa, bq

Indeed this function is an injection by the uniqueness of Lemma 7.2.4, meaning that:

|Nspn, kq| ď |Sfreepn, kq ˆ Sdivpn, kq| “ |Sfreepn, kq| ¨ |Sdivpn, kq|

It now remains to estimate these two sets. Let’s start with the easy one.

Lemma 7.2.6. ý |Sdivpn, kq| ď
?

n

Proof. Using the definition of the Sdivpn, kq, every element of the set is of the form m “ d2,
with the restriction 1 ď m ď n, in particular, this implies that 1 ď

?
m ď

?
n, in other

words the square root function is a function that takes Sdivpn, kq to Np
?

nq, since the
square root function for real numbers is injective, |Sdivpn, kq| ď

?
n.

The next inequality is easy to prove through analytical methods, but during the spec-
ification, some extra problems appeared.

Lemma 7.2.7. ý |Sfreepn, kq| ď 2k

Proof. Since ρ enumerates the primes, by the Fundamental Theorem of Arithmetic, all
elements m P Sfreepn, kq are of the form m “ ρp0qϵ1 ¨ρp1qϵ2 ¨¨¨ρplqϵk , for some l P Zě0. Notice
that ϵ ď 1, otherwise m would not be a square-free number. To prove the inequality, we
can consider an injection function γ : Sfreepn, kq Ñ

Śl
i“0t1, ρpiqu.

γpmq “ pρp0q
ϵ1 , ρp1q

ϵ2 , ¨ ¨ ¨, ρplqϵlq

Since the Fundamental Theorem of Arithmetic guarantees that the factorization is
unique under multiplication commutativity, this is indeed an injection, but we need to
make sure two more things: first, we need to find l such that this factorization from 0 to
l have all prime factors of m; second, we need to guarantee that for i, where 0 ď i ď l,
this i value does not try to enumerate a non-existent prime, i.e, ρpiq “ 0.

This can be done considering the definition of Sfreepn, kq, as all of its prime divisors
p are p ă ρpkq, l “ k ´ 1 satisfies the factors property. If there is infinite primes, by the
definition of ρ, ρpiq ‰ 0, for any i P Zě0. For the case where there is finite prime, than
πppmaxq corresponds for the maximum quantity of primes, by Lemma 5.2.3, the sequence
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ρp0q, ρp1q, . . . , ρpπppmaxq ´ 1q contains all primes, then l “ minpπppmaxq ´ 1, k ´ 1q serves
our purpose. Therefore, we have

|Sfreepn, kq| ď

ˇ

ˇ

ˇ

ˇ

ˇ

l
ą

i“0
t1, ρpiqu

ˇ

ˇ

ˇ

ˇ

ˇ

“ 2l`1
ď 2k

This lemma relies heavily on the Fundamental Theorem of Arithmetic, as discussed
in Chapter 5. The original NASALib approach was insufficient for our proof, which led
to the decision to switch to the Cartesian product approach. In this specific case, this
change made it significantly easier to estimate cardinality, as there is already a theorem
in NASALib regarding the cardinality of the Cartesian product of finite sets ý.

7.2.3 Proof by contradiction

With all the estimations in hand, we can finally face the problem of the infinitude of
primes directly.

Theorem 7.2.8. ý The series
ř8

i“0 ιpiq diverges

Proof. Let k P Zě0 and n P Zą0 be arbitrary. Using Lemma 7.2.1.2

|Npnq| ď |Nspn, kq| ` |Nbpn, kq|

By Theorem 7.2.5 and Lemmas 7.2.7, 7.2.6, we have |Nspn, kq| ď
?

n¨2k. By the definition
of Npnq, we have |Npnq| “ n, therefore

n ď
?

n ¨ 2k
` |Nbpn, kq|

Assuming the series converges, by Theorem 7.2.3 and Lemma 7.2.1, |Nbpn, κq| ă n
2 ,

thus, by choosing k “ κ.
n ă

?
n ¨ 2κ

`
n

2
Now considering an arbitrary n “ 22κ`2

22κ`2
ă 2κ`1

¨ 2κ
` 22κ`1

22κ`2
ă 2 ¨ 22κ`1

22κ`2
ă 22κ`2

A contradiction
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Now for the infinitude of primes.

Corollary 7.2.8.1. ý There are infinite primes

Proof. If there is only k finite primes by definition of the ι function, the series
ř8

i“0 ιpiq

must be equal to
řk´1

i“0
1

ρpiq
, which converges, by Theorem 7.2.8 this is a contradiction.
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Chapter 8

Conclusion and Future Work

Proof assistants have not yet achieved widespread adoption in formal mathematics. This
work serves multiple purposes, being a central one to demonstrate that technical proofs
can be accomplished using computer software. To this end, proofs from various branches
of mathematics were specified and mechanically proven, leading to the creation of a diverse
PVS library focused on wonderful and brilliant proofs of the infinitude of primes.

We designed five new complete formalizations of the infinitude of prime numbers in
the Prototype Verification System (PVS). The formalizations are based on the thoughtful
selection of the famous book "Proofs from THE BOOK" [3]. In general, improvements
were made to the manipulation theorems, especially those related to number theory and
algebra, as a beneficial side effect of this formalization effort.

There remains a minor issue with the formalization of the Cauchy product formula,
which is unavailable in PVS libraries (as far as we know). The Cauchy product formula is
required in the fourth proof of the infinitude of prime numbers in Chapter 5, "Divergence
of Zeta(1)". This issue is addressed assuming the Cauchy product formula, letting its
formalization be a future work that will improve the PVS libraries on analysis.

During the formalization process, several omissions, informalities and notational in-
consistencies we detected in the pen-and-paper proofs in [3] were identified and corrected.
Such imprecisions arise because of the loose use of a sequence to enumerate the prime
numbers (e.g., see the discussion in Subsection 5.2.1 and Section 7.2). In this respect, one
significant outcome of this work is constructing a theory for prime enumeration that does
not assume the infinitude of prime numbers, thereby avoiding circular reasoning.

Additionally, to facilitate further mathematical manipulations in the proofs in Chap-
ter 5 "Divergence of Zeta(1)" and Chapter 7 "Divergence of primes reciprocal series", a
new approach for the Fundamental Theorem of Arithmetic was formalized. The original
form, available in PVS, had issues with how it was specified. In particular, it had a prob-
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lem when trying to exhibit the existence of a specific prime power. Our new approach
addresses this issue (see the discussion after Lemma 5.2.3).

PVS proved a valuable tool for proving theorems, as its type-checking system could
identify inconsistencies. However, this also led to some challenges, such as the type cor-
rectness conditions, which sometimes required repetitive statements to complete a specific
proof or theory in Chapter 4. While this could often be avoided by defining new lemmas,
it occasionally became more time-consuming, especially when working with the algebra
library, which relies heavily on the type hierarchy of algebraic structures (ring depends on
groups, which depends on monoid, and so on). On the positive side, arithmetic and more
complex symbolic manipulations were optimized through the usage of powerful commands
of PVS, such as the "grind" command, which makes certain technical proofs that would
be tedious by hand almost trivial, such as in the Lemma 3.2.1 in Chapter 3.

As the Chapter 4 suggest, there remains room for optimization in the NASALib’s
algebra library, such as reworking on the algebra library and trying to automate the type
check related proof, such as the TCC that appears when importing algebra theories, this
could be done by adding new PVS strategies and PVS judgements, or maybe refining
abstractions and generalizing theorems. General reusable abstraction, such as used in
the prime enumeration Section 5.2.1, may also appear in other parts of the NASALib.
Investigation of this kind is something worth future work.

We also plan to formalize the Cauchy product to strengthen the NASALib’s analysis
library and to complete this proof collection. Another direction for future work is incor-
porating into the corpora of formalizations additional topics covered in "Proofs from THE
BOOK" [3]. As mentioned in the Chapter 1, some particular proofs besides Chapter 1
from "Proofs from THE BOOK" were done, but not the entirety of it. For example, a
possible work for the future is to formalize the geometry section, which would expand
further the mathematical proofs available in PVS to another Math topic. Furthermore,
exploring proofs of the infinitude of prime numbers from different fields of mathematics
that may not be mentioned in this work would be a valuable addition to this collection,
enhancing the diversity and depth of our mechanized proof repository.
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