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Abstract

Active Learning (AL) techniques enable the creation of efficient models with
minimal annotation effort by deciding which portions of the available data
are worth learning. Pool-based AL (PAL) is a specific scenario in which
instances within a pool of unlabeled data must be selected, labeled by an
oracle, and incorporated into a subset of the pool to be used as a training
set. The goal of PAL is to build a growing subset that is increasingly more
representative of the problem at hand. However, the proper strategy for
an optimal query of such instances is still an open question. In this paper,
we resort to Hardness Measures (HMs) to enrich the current repertoire of
PAL strategies available to address this question. HMs are metrics that em-
ploy the Instance Hardness (IH) concept to identify instances with a higher
probability of being misclassified and have been successfully applied in ar-
eas such as meta-learning and explainable AI. Likewise, this study adds to
this collective effort by exploring the use of IH in the context of AL, ex-
amining HMs as informativeness criteria for PAL, which led to a new PAL
strategy called Hardness Sampling (HardS). We tested HardS across multiple
datasets and learners, demonstrating its competitive performance compared
to classical strategies such as Uncertainty Sampling, Expected Error Reduc-
tion, and Density-weighted methods. The results also highlighted the success
of neighborhood-based measures, especially the ratio of the intra-class and
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extra-class distances at an instance level. Additionally, some tree-based and
likelihood-based measures also showed promising performance.

Keywords: Pool-based active learning, Instance hardness, Hardness
measures, Hardness sampling, Query strategies

1. Introduction

The task of labeling instances is increasingly important as new data has
been generated across a wider range of applications each day. However,
building datasets can be expensive depending on the labeling costs. For
instance, a physician may be hired to correctly determine the class of each
patient whose data will be used to train a Machine Learning (ML) algorithm.
In the more general case, such a specialist is called an oracle, which is often
a highly skilled person [1]. Notwithstanding, any tool or process able to
provide a ground truth for the problem at hand can be the oracle: a machine,
a chemical process, a probe in space or under the ocean waters, an expensive
calculation, among others.

Active Learning (AL) techniques can be employed to address the issue
of managing the inherent costs of building new datasets. They provide the
learning algorithm with a strategy of curiosity analogously to human active
learning, i.e., the power to efficiently select which parts of the available data
are more interesting or worth learning. Consequently, AL allows such algo-
rithms to use less training data without affecting performance [2]. In this
study, we focus on Pool-based AL (PAL) [3], which deals with a small la-
beled data set L and a large pool of unlabeled data U . A typical PAL process
selects a subset of instances contained in U to be labeled by the oracle to
increase the size of L. The method used to select these instances relies on
the query strategy applied, which, in turn, defines the criteria for categoriz-
ing a certain instance as critical or not to induce a predictive model able to
generalize beyond the available data for the problem.

Additionally, PAL strategies can be classified as agnostic or non-agnostic
regarding their dependency on the learner’s predictions. Strategies following
the agnostic approach do not assume the correctness of the separation sur-
face established by the predictive model induced. In contrast, non-agnostic
strategies rely on the decision boundary estimated by the active learner to as-
sign a specific degree of informativeness to the unlabeled instances [4]. Thus,
due to their reliance on the learner’s estimated classification, non-agnostic
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strategies tend to be more prospective. Namely, they focus on the most
promising regions of the input space [4]. As a result, these strategies lean to
be useful in the later stages of the sampling process, as the decision boundary
is generally more reliable with a larger number of labeled instances. How-
ever, an exploratory bias in PAL involves querying instances from dense and
unknown regions of the feature space [4]. Consequently, combining this bias
with prospective approaches may lead to better results.

Another important concept that forms the basis for this work is Instance
Hardness (IH). Specifically in classification problems, IH can be referred to
as a property that indicates the probability of each instance in the dataset
being misclassified [5]. However, according to the work of Smith et al. [5],
this property can only be obtained through the performance evaluation of
various classifiers on a given instance and it does not help identify reasons for
such hardness. With this in mind, the authors propose Hardness Measures
(HM), which are intended to indicate the reason why an instance is harder
to classify. In addition, recent studies [6, 7] have also summarized instance
hardness approaches and introduced new HMs.

Although HMs have been applied for different purposes in literature [6,
8, 9, 10, 11, 12], their applicability within PAL remains unexplored to the
extent of our knowledge. To address this gap, this work presents the following
contributions:

• Explore the use of HMs as informativeness measures in PAL.

• Propose Hardness Sampling (HardS), a non-agnostic query strategy for
PAL based on HMs.

• Perform a comprehensive evaluation of the HardS strategy on a diverse
set of datasets and learning algorithms, comparing its performance with
classical strategies from the literature.

These contributions represent an innovative approach to PAL. Specifi-
cally, our strategy selects instances based on their potential hardness, i.e. the
value attributed by some HM to instances in U . Since the measures require
labeled instances, we address this limitation by assigning labels according
to the learner’s predictions on those instances. Through the application of
HardS, we aim to determine whether HMs can serve as effective informa-
tiveness measures in the domain of PAL and whether they offer a viable
alternative to other non-agnostic strategies found in the literature. Further-
more, we aim to investigate the individual behavior of these measures in
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terms of performance and their influence on the balance between exploratory
and prospective sampling biases.

Given that many query strategies reported in the literature are often
evaluated on specific datasets that highlight their effectiveness [13], we set
out to conduct a more detailed and comprehensive evaluation of our ap-
proach. To this end, the HardS strategy was evaluated on 90 classification
datasets, considering all combinations of 19 HMs and 4 different learning
algorithms. Moreover, methods within classical frameworks such as Uncer-
tainty Sampling [14], Expected Error Reduction [15] and Density Weighted
Methods [16, 17] were also included for comparison purposes. The perfor-
mance of each method was evaluated based on the overall mean rank achieved
by them, as well as through the graphical analysis of their ranking curves [18].

The results suggest that while HardS is a competitive strategy, its per-
formance depends on both the group of the HM used and the specific HM
itself. Markedly, measures belonging to the neighborhood-based, tree-based,
and likelihood-based groups presented the best average ranks. On top of
that, some measures stood out within these groups, showing potential for
balancing prospection and exploration across learners.

Regarding the structure of this work, Section 2 will present the group of
non-agnostic query strategies for PAL, which we classify as classical in this
study, along with the main methods for their implementation. This section
will also discuss other relevant works in the field and recent advances. Sec-
tion 3 will define the concept of instance hardness and introduce the HMs
used in the experiments. Section 4 formally introduces the HardS strategy,
while Section 5 describes the methodology employed to conduct the experi-
ments. Section 6 presents the results obtained. Finally, Section 7 concludes
this study by summarizing the findings and offering suggestions for future
research.

2. Non-agnostic Query Strategies for PAL

ML predictive models can mimic the human curiosity of a student by
querying the instances where they are least certain or, generally, querying
the instances that are more informative in a given dataset. In this way,
it can establish a “line of inquiry” that can accelerate the generalization
process for a particular problem [19] while avoiding the costs of unnecessary
labels. In a pool-based scenario [3], an AL strategy must be able to select
the most informative instance(s) from a pool of unlabeled data U , so that
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the oracle can be queried about its true label. However, the approach to
querying the oracle directly depends on the strategy employed to characterize
an informative instance.

More formally, given the instance space X and the class set Y , consider
the dataset D = {⟨xi, yi⟩ |xi ∈ X ∧ yi ∈ Y}, which maps instances in X to
their respective classes in Y . Additionally, let there be a pool of unlabeled
instances U ⊂ X and a labeled set of instances L ⊂ D. A generic AL query
strategy can then be described by Equation 1.

xS = argmax
xi∈U

S(xi) (1)

In this case, xS represents the most informative example in U based on
some utility measure S. This utility measure assigns a degree of informa-
tiveness to all instances in the pool. Therefore, xS can be queried for label
annotation, and then a new labeled set L′ = ⟨xS, yS⟩∪L is produced. Hence,
the set of strategies dependent on S is as diverse as there are different choices
for S.

Based on the previous formulation, this section discusses several non-
agnostic strategies in the literature and explains the rationale for including
them in the analysis. Specifically, Section 2.1 provides a more detailed expla-
nation of the main methods that comprise the Uncertainty Sampling strategy.
While Section 2.2 discusses density-weighted methods, Section 2.3 presents
the Expected Error Reduction strategy. Finally, Section 2.4, highlights other
relevant strategies within PAL, as well as advancements made regarding the
comparison of methods.

2.1. Uncertainty Sampling

Uncertainty Sampling (US) [3] is possibly the most popular AL strategy
in practice [20]. Its core idea is to make the utility measure a function of
the model’s confidence. Therefore, to estimate the confidence of model θ,
generated from L, in its predictions, US-based methods use its predictive
distribution Pθ. By doing so, the probability Pθ(y|xi) represents the model’s
uncertainty regarding xi having the label y. Consequently, the learner can
avoid querying instances it is already confident about, allowing it to focus
on the more challenging ones [20].

Equation 2 presents a basic query strategy that employs the Least Con-
fident (LC) utility measure. Given that ŷ = argmaxy Pθ(y|xi), this strategy
aims to query instances whose predicted output is least confident [20].
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xLC = argmax
xi∈U

[ 1− Pθ(ŷ|xi)] (2)

However, in a multiclass problem, LC is limited in measuring the uncer-
tainty of ambiguous instances, which have similar probabilities assigned for
their most likely classes. Such a limitation is addressed by Margin Sampling
(MS), introduced by Equation 3. This method takes into account the differ-
ence between the probabilities assigned to the two most likely classes, ŷ1 and
ŷ2, respectively [20].

xM = argmax
xi∈U

[Pθ(ŷ2|xi)− Pθ(ŷ1|xi)] (3)

Finally, the notion presented in MS can be generalized using the entropy
function [21] as a utility measure. This leads to the Entropy Sampling (ES)
method, expressed by Equation 4.

xE = argmax
xi∈U

[
−

∑
y ∈Y

Pθ(y|xi) logPθ(y|xi)

]
(4)

Other PAL strategies also aim to select instances based on model uncer-
tainty. Some of these approaches leverage specific models to exploit their
properties for selecting instances, like SVM-based strategies [22, 23]. Oth-
ers adopt a model-agnostic stance, such as Query by Committee [24], where
multiple models are trained simultaneously, and the divergence among pre-
dictions reflects collective uncertainty over an instance. Nevertheless, the US
strategy likely owes its popularity to being intuitive and easy to implement,
while adding minimal overhead to the AL process [20]. Therefore, it is im-
portant to compare it with the strategy presented in this work to see if they
behave similarly or if our strategy can overcome some of US’s shortcomings,
such as its poor performance when dealing with a small amount of labeled
data.

2.2. Density Weighted Methods

Some AL strategies are limited by the fact that the instances are ana-
lyzed individually, running the risk of selecting poor query choices, such as
outliers [25]. To mitigate this risk, Settles and Craven [16] presented the
information density framework. The methods within this framework assume
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that informative instances should not only have a high information content
but also be representative of the data distribution [25].

Equation 5 presents a generic method for the framework. The main idea
of this approach is to increase the informativeness value of the most repre-
sentative instances in U .

xID = argmax
xi∈U

ΦA(xi)×

 1

|U|
∑

xj∈U\{xi}

sim(xi,xj)

β
 (5)

Therefore, the utility ΦA(·) of an instance xi according to method A
should be weighted by the average similarity of xi relative to the other unla-
beled instances. Moreover, the function sim represents any similarity mea-
sure that can be derived from cosine similarity, Euclidean distance, Pearson’s
correlation coefficient, etc.

Equation 6 extends the generic method through the use of the training
utility (TU) function [17]. In addition to considering the similarity between
instances in U , the strategy inversely weights the value of the instances by
their similarity to labeled data. This creates a more exploratory bias, en-
couraging queries to shift away from previously queried regions.

xTU = argmax
xi∈U

ΦID(xi)×

 1

|L|
∑
xj∈L

sim(xi,xj)

−δ
 (6)

Besides agnostic strategies like Hierarchical Sampling [26], and Core-
set [27], other strategies aim to incorporate the structure of unlabeled data
into the sampling process. For instance, Adaptive Active Learning [28] seeks
to address this need through a self-adjusting mechanism, while Active Learn-
ing by Learning [29] is designed to choose the most appropriate strategy for
a given problem. Strategies such as Graph Density [30], Querying Infor-
mative and Representative Examples [31] and Representative Sampling [32]
also consider both informativeness and representativeness. However, given
the simplicity of ID and TU, it is appropriate to evaluate the performance of
any new strategy against them to determine whether the proposed approach
offers a more effective solution.
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2.3. Expected Error Reduction

Although effective in many cases, the presented strategies do not aim to
optimize the learner’s performance directly. In fact, uncertainty and density-
based methods query instances that are considered to be informative regard-
less of whether labeling these instances will result in improved model perfor-
mance. Conversely, methods based on expected error reduction (EER) [15]
aim to select instances that, once labeled, have a higher probability of reduc-
ing the future error [33]. Thus, given that P (y|xi) is the unknown conditional
distribution of the input data xi ∈ X and classes y ∈ Y and P (xi) is the dis-
tribution of the input data, the expected error of the learner can be defined
in function of Pθ(y|xi) by Equation 7:

EPθ
=

∫
xi

L(P (y|xi), Pθ(y|xi))× P (xi) (7)

where L is any loss function responsible for measuring the degree of disap-
pointment. However, not all distributions presented in the formulation above
are known during the AL process. Therefore, instead of estimating the error
over the complete distribution P (xi), Roy and McCallum [15] propose mea-
suring it over the sample in the pool. Additionally, they also suggest using
the distribution Pθ(y|xi) to estimate P (y|xi), so that the learner’s expected
error can be approximated by:

ẼPθ
=

1

|U|
∑
xi ∈U

L(Pθ(y|xi), Pθ(y|xi)) (8)

Based on this formulation, the EER strategy aims to select instances that
have a lower expected value for the learner’s expected error:

xEER = argmax
xi∈U

[
−

∑
y ∈Y

Pθ(y|xi)× ẼPθ′

]
(9)

where Pθ′ represents the posterior distribution predicted by the learner θ′

generated from the set L+ = L ∪ ⟨xi, y⟩ . The main difference between
EER methods is the loss function L. In their work, Roy and McCallum [15]
adopted the binary loss and log loss functions (equations 10 and 11) as loss
functions.

Lbin =
∑
y ∈Y

P (y|xi)(1− δ(y, argmax
y′ ∈Y

Pθ(y
′|xi))) (10)
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Lent =
∑
y ∈Y

P (y|xi) log(Pθ(y|xi)) (11)

In Equation 10, δ represents the Kronecker delta, which equals 1 if its
two arguments are equal and 0 otherwise. Notably, the use of log loss in
Equation 8 results in estimating the expected error based on the entropy of
distribution Pθ(y|xi).

Other variants of EER aim to minimize the model’s variance rather than
the expected error [34]. Additionally, Konyushkova et al. [35], focuses on
predicting the expected error reduction of an instance by treating the query
procedure as a regression problem. Still, the near-optimal nature of EER
makes it a significant benchmark to surpass. However, due to its compu-
tational complexity, the strategy can be infeasible in certain scenarios [33].
Therefore, a more practical strategy that still matches its performance would
represent a notable improvement.

2.4. Novel Approaches and Comparative Experiments

Recent studies [36, 37] have introduced the use of meta-learning to en-
hance the process of selecting unlabeled instances for annotation. By lever-
aging experience acquired from previous tasks, meta-learning adapts the ML
process to develop efficient models and solutions [38]. Additionally, Zhu
et al. [39] proposed a novel approach that aims to reformulate AL by uni-
fying the instance selection and model training stages to optimize a single
objective for statistical learning.

Regarding strategy analysis, Pereira-Santos et al. [4] compared the per-
formance of several strategies across a large number of datasets, considering
different learning algorithms, and highlighted the existence of a relationship
between the chosen strategy and the learning algorithm used. Conversely,
Nguyen et al. [40] analyzed the use of a variety of uncertainty measures inside
the US framework. Finally, Zhan et al. [41] seek to establish the limits of
studies in PAL by developing a benchmark with a variety of datasets and a
quantitative metric. Similarly, Lu et al. [42] present a new transparent and
reproducible benchmark for the community, aiming to address the shortcom-
ings of existing benchmarks.
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3. Hardness Measures

In their work, Smith et al. [5] aim to identify a property that makes
an instance difficult to classify in ML problems. This property, referred to
as IH, is based on the probability of an instance being misclassified by a
generic classifier [5]. Formally, given the data set D, we define a hypothesis
as a function of the type h : X → Y , with H being the set of all possible
hypotheses. Thus, Equation 12 defines the hardness value of an instance
⟨xi, yi⟩ ∈ t concerning a given hypothesis h.

IH h(⟨xi, yi⟩) = 1− p(yi|xi, h) (12)

This value is essentially determined by the probability that the instance
is classified incorrectly by the hypothesis in question, given that its true label
is known. However, Smith et al. [5] suggest that the dependence of IH based
on a specific hypothesis could be hypothetically lessened by aggregating IH
values across all members of the set H in order to better understand what
affects IH in general. This is achieved in Equation 13 by summing IH values
associated with each hypothesis, weighted by their probabilities.

IH (⟨xi, yi⟩) = 1−
∑
h∈H

p(yi|xi, h)p(h|D) (13)

However, since hypothesis h would be generated by an algorithm a, ap-
plied to the data set D, using a set of hyperparameters α (i.e. h = a(D, α)),
calculating the presented IH measure becomes impractical due to its depen-
dence on the entire set H — specifically, all combinations between algorithms
and respective hyperparameters [5]. Notwithstanding, Smith et al. [5] assume
that IH can be estimated by focusing on a carefully selected set of algorithms
(and hyperparameters) A. Accordingly, Equation 14 defines the hardness of
an instance concerning the set A, where aj represents a selected algorithm
and αj its respective hyperparameters.

IHA(⟨xi, yi⟩) = 1− 1

|A|

|A|∑
j=1

p(yi|xi, aj(D, αj)) (14)

It is important to notice that, although the elements in A are selected
based on their utility and adoption degree, the set is constantly evolving and
there is no definitive solution for it [5]. Based on this, we will use the terms
IH and IHA interchangeably through this work, for simplicity’s sake.
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While calculating IH is ideal for identifying instances that are hard to
classify, it does not explain hardness. Therefore, Smith et al. [5] also pro-
posed a set of HMs that assess aspects contributing to why an instance might
be misclassified, thereby offering key insights for its analysis, detection, and
processing [5]. Additionally, Arruda et al. [7] expanded this set of measures
by adapting metrics originally designed to assess dataset complexity in clas-
sification problems [43] to the domain of IH. Furthermore, Lorena et al. [6]
reviewed these measures and categorized them into 5 categories, as shown in
Table 1. Accordingly, this section will briefly describe these categories and
their corresponding measures.

Category Measure Acron.

Neighborhood

k-Disagreeing Neighbors kDN
Frac. nearby instances different class at instance-level N1I
Ratio of intra-extra class distances at instance level N2I
Local set cardinality at instance-level LSCI
Local set radius LSR
Usefulness U
Harmfulness H

Likelihood
Class Likelihood CL
Class Likelihood Difference CLD

Feature-based
Frac. features in overlapping areas F1I
Min. distance to overlapping areas of features F2I
Mean distance to overlapping areas of features F3I
Max. distance to overlapping areas of features F4I

Tree-based

Disjunct Size DS
Disjunct Class Percentage DCP
Tree Depth (pruned) TDp

Tree Depth (unpruned) TDu

Class Balance
Class Balance CB
Majority Value MV

Table 1: Hardness measures as categorized by Lorena et al. [6].

3.1. Neighborhood-based

Neighborhood-based measures rely on the instance’s neighbors to deter-
mine its hardness. In more detail, instances surrounded by examples from
other classes in the input space are harder to classify than those located in
regions with a higher density of their own class [6].

A prime example of a neighborhood-based measure is the k-disagreeing
neighbors (kDN) measure [5]. This measure represents the percentage of
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the k-nearest neighbors of an instance that do not share the same label,
as described by Equation 15, where kNN (xi) denotes the set of k-nearest
neighbors of instance xi and yi represents the label of instance xi.

kDN (xi) =
|{xj|xj ∈ kNN (xi) ∧ yj ̸= yi}|

k
(15)

Similarly, Arruda et al. [7] took advantage of the fraction of nearby in-
stances of different classes at an instance level to produce the N1I mea-
sure. Unlike kDN, this measure employs a minimum spanning tree MST
constructed from D, where an instance xi corresponds to a vertex, and two
instances are connected based on their distance. Given that nearby elements
in the input space are likely to be connected in this structure, N1I returns the
percentage of instances from different classes among the connections of xi in
the tree [6] as shown in Equation 16. Furthermore, high values for N1I (xi)
indicate that xi is close to instances from a different class, either because it
lies on a classification boundary or due to being a noisy instance.

N1I(xi) =
|{xj|(xi,xj) ∈ MST (D) ∧ yj ̸= yi}|

|{xj|(xi,xj) ∈ MST (D)}|
(16)

Given that the instance xj closest to xi, whose class yj differs from yi,
is called the nearest enemy of xi (NE (xi)), the N2I measure [7] considers
the ratio of the intra-class and extra-class distances, defined by the function
presented in Equation 17. In this context, d represents a distance function
(e.g. Euclidean distance), while NN(xi) ∈ yi denotes the nearest example to
xi belonging to the same class.

IntraInter(xi) =
d(xi, NN(xi) ∈ yi)

d(xi, NE(xi))
(17)

Based on that, Equation 18 defines the N2I measure relying on the value
of Equation 17 for xi. This approach ensures that its computed value falls
within the [0, 1] interval and that higher values represent instances that are
harder to classify. Furthermore, the metric suggests that the harder instances
are those closer to examples from opposing classes (enemies) or farther away
from instances of its own class [6].

N2I(xi) = 1− 1

IntraInter(xi) + 1
(18)
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In addition to the HMs presented so far, more measures can be proposed
based on the local set concept. Equation 19 describes the local set of an
instance xi as the set of instances whose distance to xi is smaller than the
distance of xi to its nearest enemy.

LS (xi) = {xj|d(xi,xj) < d(xi,NE (xi))} (19)

From this conception, a natural extension is to use the cardinality of
the LS (xi) set to measure the hardness of instance xi. Hence, the local set
cardinality at an instance level (LSCI) measure [7], defined in Equation 20,
is based on the complement of the relative cardinality of an instance’s local
set [6]. As a result, an easy instance will present lower values for LSCI, since
most members of class yi will belong to its local set.

LSCI (xi) = 1− |LS(xi)|
|{xj|yi = yj}|

(20)

A smoother version of LSCI is the local set radius (LSR) measure [7]. It
takes the normalized radius of the local set, by calculating the distance of xi

to its nearest enemy:

LSR(xi) = 1−min

{
1,

d(xi,NE (xi))

max(d(xi,xj)|yi = yj)

}
(21)

In contrast to LSCI, the usefulness (U) measure [7] considers the rela-
tionship of xi with the local sets of other instances in its class. Equation 22
presents the measure as U(xi), which corresponds to the complement of its
usefulness, i.e. the fraction of instances that include xi in their local set [6].
This approach assumes that more useful instances are easier to classify, as
they are closer to instances of their own class. Thus, high values of U can
indicate outliers in the data set [6].

U(xi) = 1− |{xj|d(xi,xj) < d(xj,NE (xj)}|
|{xj|yi = yj}|

(22)

Finally, the harmfulness (H) measure [7], defined in Equation 23 is related
to the number of instances that have xi as their nearest enemy. In this
definition, outliers located in regions dominated by examples of another class
and instances near classification boundaries will tend to have higher H values
and are therefore harder to classify [6].
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H(xi) =
|{xj|NE (xj) = xi)}|

|{xj|yi ̸= yj}|
(23)

3.2. Likelihood-based

Class likelihood-based HMs leverage the degree of similarity between an
instance and the general patterns associated with its class to assess its hard-
ness [6]. These measures use the posterior probability P (xi|yi) to perform this
calculation. This probability, in turn, is calculated similarly to the approach
used in the Naive Bayes classification algorithm, where the likelihood of an
instance belonging to a class is derived from the probability distributions
generated for each of its features, which are analyzed independently [44, 6].

Therefore, Equation 24 presents the class likelihood (CL) measure [5],
which identifies instances with a low probability of belonging to their own
class as hard instances. In this setting, for a given number of classes c, P (yi)
is the prior of class yi, and it is assumed to be 1

c
for all instances. When this

posterior probability is low, it indicates that the instance xi does not conform
to the patterns exhibited by most instances in class yi. Consequently, xi is
considered hard to classify, resulting in a high CL(xi) value.

CL(xi) = 1− P (xi|yi)P (yi) (24)

Similarly, another approach known as class likelihood difference (CLD) [5]
is described by Equation 25, where the conditional probabilities are also
estimated by considering each of the input features independent from each
other. This measure involves analyzing the difference between the likelihood
of xi belonging to its own class and the maximum likelihood of xi belonging to
any other class. Therefore, easier instances are those that not only align with
the patterns expressed by the majority of cases in their class but also lack
significant similarity with instances from any other class [6]. Additionally,
according to Smith et al. [5], the prior presented in equations 24 and 25 can
be ignored to prevent class skewness from influencing the results, although
the overall effect remains [6].

CLD(xi) =
1− (P (xi|yi)P (yi)−maxyj ̸=yi [P (xi|yj)P (yj)])

2
(25)

3.3. Feature-based

Feature-based HMs try to quantify the fact that instances with feature
values outside the overlapping regions of the classes are generally easy to
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classify [6]. With this in mind, Arruda et al. [7] suggested using the frac-
tion of features in overlapping areas to measure the hardness of an instance
through the F1I measure, as presented in Equation 28. In this formulation,
m corresponds to the number of features. At the same time, xij represents
the value of the j-th feature of instance xi and fj is the vector containing
all values taken by this feature in the dataset. Nevertheless, the limits of
the overlapping areas for feature j are obtained by the functions defined in
equations 26 and 27, where max(fyij ) and min(fyij ) are the maximum and
minimum values in fj for class yi ∈ c1, c2, respectively. Therefore, higher val-
ues of F1I are assigned to instances with many features lying in overlapping
regions.

min max(fj) = min(max(f c1j ),max(f c2j )) (26)

max min(fj) = max(min(f c1j ),min(f c2j )) (27)

F1I(xi) =

∑m
j=1 δ(xij ≥ max min(fj) ∧ xij ≤ min max(fj))

m
(28)

Additionally, three other measures proposed by Arruda et al. [7] rely
on calculating the distance of each instance from the central points of the
feature overlap regions. This calculation is accomplished by using the formula
presented in Equation 29, which is transformed by Equation 30 to ensure that
maximum hardness values are obtained for instances located at the center of
an overlapping region.

do(xi, fj) =
min max(fj)− xij

min max(fj)−max min(fj)
(29)

d t
o(xi, fj) =

1

(1 + |0.5− do(xi, fj)|)
(30)

Thus, the F2I, F3I e F4I measures [7] are presented by equations 31, 32
and 33. They calculate the minimum, average, and maximum distances of
instance xi to the center of the overlapping regions.

F2I(xi) =
m

min
j=1

d t
o(xi, fj) (31)
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F3I(xi) =
1

m

m∑
j=1

d t
o(xi, fj) (32)

F4I(xi) =
m

max
j=1

d t
o(xi, fj) (33)

Finally, although feature-based measures assume the presence of only two
classes, multiclass problems can be addressed by using the one-versus-one
strategy [45].

3.4. Tree-based

Tree-based HMs are derived from some decision tree [46] DT generated
from D. These measures are based on the assumption that harder instances
lead to a greater number of decisions to classify them and, consequently,
a larger number of splits in the tree [6]. In this context, the disjunct size
(DS) measure [5] stipulates IH based on the relative size of the disjunct (leaf
node) where this instance is placed. This is presented in Equation 34, where
Disjunct(xi) represents the set of instances contained in the leaf node where
xi is located. Following this definition, easier instances are located in larger
disjuncts, while the harder ones tend to fall into smaller disjuncts due to the
greater number of splits required for correctly classifying them.

DS(xi) = 1− |Disjunct(xi)|
maxxj∈D |Disjunct(xj)|

(34)

On the other hand, the disjunct class percentage (DCP) measure [5], is
obtained by fitting a pruned decision tree on D and estimating the percent-
age of instances that have the same class as xi in its disjunct, as stated
in Equation 35. In this manner, instances that are easier to classify tend to
form a clear majority within the disjunct used for their classification, thereby
exhibiting lower DCP values [6].

DCP (xi) = 1− |{xj|xj ∈ Disjunct(xj) ∧ yj = yi}|
|Disjunct(xi)|

(35)

Finally, the tree depth (TD) measure [5] considers the depth of the node
that classifies xi in the decision tree DT . This depth is calculated by the
depthDT (xi) function, which is then normalized by the maximum depth of the
tree, as shown in Equation 36. In this context, the hardness of an instance
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is determined by the proximity of the disjunct classifying it to the deepest
level of the tree. Therefore, instances closer to this level exhibit higher TD
values [6]. Moreover, this measure can be presented in two versions, TDP

and TDU , which differ based on whether DT is pruned or unpruned.

TD(xi) =
depthDT (xi)

maxxj∈D(depthDT (xj))
(36)

3.5. Class Balance

Another factor to consider when it comes to IH is the distribution of the
instance’s class in the dataset. Instances belonging to a minority class are
considered harder to classify, as they are more susceptible to classification
errors, while instances belonging to a majority class tend to be easier to clas-
sify [6]. Therefore, Smith et al. [5] introduced two measures that characterize
the difficulty of an example based on its class distribution.

Equation 37 presents the class balance (CB) measure [5] adapted by
Lorena et al. [6] to fit within the [0, 1] interval in such a way that harder
instances have higher CB values. This metric takes into account all C classes
that make up the dataset D, interpreting all instances in the dataset as very
easy to classify (e.g. CB(xi) ≈ 0) if the problem is balanced.

CB(xi) =

(
1− |{xj|yj = yi}|

n
+

1

C

)(
C

C + 1

)
(37)

In contrast, the majority value (MV) measure [5], presented in Equa-
tion 38, considers only the proportion between the number of instances that
have the same class as xi and the number of instances belonging to the most
representative class in D. As a result, higher values are assigned to points
belonging to rarer classes.

MV (xi) = 1− |{xj|yj = yi}|
maxyi∈Y |{xj|xj ∈ yj}|

(38)

4. Hardness Sampling

To explore the use of HMs in the context of PAL, we propose HardS, a
new query strategy designed to sample instances that are potentially hard to
classify. This strategy extends Equation 1 by making use of some hardness
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measure HM as a utility function representing the degree of informativeness
of a given instance xi, as stated in Equation 39.

xHardS = argmax
xi∈U

HM (xi) (39)

Notwithstanding, it is important to notice that all HMs presented in Sec-
tion 3 rely on knowledge about the true label yi of instance xi, which limits
their applicability in PAL. To overcome this issue, we have opted to use the
predictions made by the active learner as instance labels. By doing so, we
expect HardS to sample instances based on the model’s assumptions about
the hardness of unlabeled data. Moreover, the hardness degree of instance
xi depends not only on its predicted label ŷi, but also on the labels ŷj as-
signed to all other instances xj ∈ U . Consequently, the proposed strategy
distinguishes itself from most classical approaches, presented in Section 2,
by considering model predictions within their complex interdependence —
not in isolation. Rather than using the predicted label likelihoods directly,
the strategy leverages these labels to compute a certain HM, reflecting a
more integrated use of predictions. Therefore, in the sampling context, the
confidence concerning an instance’s true label is less relevant than its poten-
tial hardness, the degree of hardness for any model to correctly classify an
example, given that the learner’s assumptions about the problem are cor-
rect. Although this approach may be more susceptible to bias introduced by
the learner, the resulting shift in the model’s interpretation over successive
iterations is expected to positively impact its application in PAL.

Another constraint that arises from the application of HMs in query
strategies is that they assume that the problem at hand involves more than
one class. However, when it comes to AL, the learner is prone to classify
all unlabeled instances as belonging to the same class. This happens more
frequently in the early stages of the process when the initial amount of infor-
mation is limited. To address this issue, random sampling (Rnd) was adopted
as a fallback method for cases where the learner’s predictions prevent HMs
from being extracted. Since this method is based only on the random selec-
tion of unlabeled instances, it avoids adding more bias to the process. As
a result, Rnd is frequently employed as a baseline when comparing different
PAL methods.
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5. Methodology and Experimental Configuration

To appropriately evaluate HardS, comparing it against some benchmarks
is crucial. To this end, we assessed its performance alongside methods em-
ploying diverse strategies across various datasets and learning algorithms.
Specifically, we adopted a collection of datasets represented by S, a set A of
learning algorithms, and a set Q of distinct PAL methods. As a result, the
tuple (D, a, q) ∈ S ×A×Q represents a specific configuration.

Regarding the collection S, we chose one similar to that employed in the
work of Pereira-Santos et al. [4]. This selection evaluated the strategies under
various conditions, such as dataset size and class imbalance. In particular,
90 datasets from the UCI Machine Learning Repository [47] were chosen.
Table 2 provides an overview of such datasets and their key characteristics.

The classification problems ranged from 2 to 30 classes, with the majority
containing up to 5. Dataset sizes vary significantly, spanning from hundreds
to tens of thousands of instances. In terms of attributes, the datasets feature
between 2 and 167 attributes, with most consisting primarily of numerical
attributes. To ensure compatibility with the learning algorithms employed,
nominal attributes were converted to numerical form through one-hot encod-
ing.

As for the set A, four learning algorithms were deliberately selected for
their diversity. The chosen algorithms were Gaussian Naive Bayes (NB) [48];
Support Vector Machines (SVM) [49], with the RBF kernel, C = 1 and
γ set to the inverse of the product between the number of features and
the variance of the data; K-nearest Neighbors [48] with k = 5 (5NN) and
Euclidean distance as the distance metric; and Classification and Regression
Trees (CART) [50] with no pruning and the Gini impurity as the splitting
criterion. The default hyperparameters from the adopted implementation
were kept for each algorithm.

Finally, the Q set was structured to include methods representing various
classical strategies, along with those introduced by the HardS strategy. More
precisely, the set can be decomposed as Q = QC∪QHardS, where QC contains
methods associated with classical strategies, and QHardS encompasses the
methods derived from HardS. To form QC , methods representing strategies
discussed in Section 2 were gathered. For the US strategy, the MS method,
presented in Equation 3, was chosen. In the domain of density-weighted
methods, ID and TU (equations 5 e 6) were selected, with both parameters
α and β set to 1, along with the use of Euclidean distance to measure sim-
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Name #in #cl #at #no

1-abalone-3class 4177 3 8 1
2-artificial-charac... 10218 10 7 0
3-autoUniv-au1-1000 1000 2 20 0
4-autoUniv-au6-cd1-... 400 8 40 3
5-autoUniv-au7-300-... 1100 5 12 4
6-autoUniv-au7-700 700 3 12 4
7-autoUniv-au7-cpd1... 500 5 12 4
8-balance-scale 625 3 4 0
9-banana 5300 2 2 0
10-banknote-authent... 1372 2 4 0
11-bupa 345 2 6 0
12-car-evaluation 1728 4 6 6
13-cardiotocography... 2126 3 35 0
14-climate-simulati... 540 2 20 0
15-connectionist-mi... 208 2 60 0
16-connectionist-vo... 990 11 13 0
17-ecoli 336 8 7 0
18-eeg-eye-state 14980 2 14 0
19-first-order-theo... 6118 6 51 0
20-flare 1389 6 12 2
21-glass 214 6 9 0
22-habermans-survival 306 2 3 0
23-heart-disease-pr... 303 5 13 2
24-heart-disease-pr... 294 2 13 0
25-heart-disease-pr... 200 5 13 0
26-hepatitis 155 2 19 13
27-hill-valley-with... 1212 2 100 0
28-horse-colic-surg... 300 2 27 14
29-indian-liver-pat... 583 2 10 1
30-ionosphere 351 2 33 0
31-iris 150 3 4 0
32-kr-vs-kp 3196 2 36 36
33-leaf 340 30 15 0
34-lymphography 148 4 18 15
35-magic 19020 2 10 0
36-mammographic-mass 961 2 5 0
37-mfeat-fourier 2000 10 76 0
38-molecular-splice... 3190 3 60 60
39-monks1 556 2 6 0
40-monks3 554 2 6 0
41-movement-libras 360 15 90 0
42-mushroom 8124 2 21 21
43-musk 6598 2 167 1
44-nursery 12960 5 8 8
45-optdigits 5620 10 62 0

Name #in #cl #at #no

46-ozone-eighthr 2534 2 72 0
47-page-blocks 5473 5 10 0
48-parkinsons 195 2 22 0
49-pendigits 10992 10 16 0
50-phoneme 5404 2 5 0
51-pima-indians-dia... 768 2 8 0
52-qsar-biodegradat... 1055 2 41 0
53-ringnorm 7400 2 20 0
54-robot-failure-lp5 164 5 90 0
55-robot-nav-sensor... 5456 4 2 0
56-saheart 462 2 9 1
57-seeds 210 3 7 0
58-spambase 4601 2 57 0
59-spect-heart 267 2 22 22
60-statlog-australi... 690 2 14 6
61-statlog-german-c... 1000 2 20 13
62-statlog-heart 270 2 13 0
63-statlog-image-se... 2310 7 18 0
64-statlog-vehicle-... 846 4 18 0
65-steel-plates-fau... 1941 2 33 0
66-systhetic-control 600 6 60 0
67-texture 5500 11 40 0
68-thyroid-ann 3772 3 21 0
69-thyroid-hypothyr... 3163 2 25 18
70-thyroid-newthyroid 215 3 5 0
71-thyroid-sick-eut... 3163 2 25 18
72-tic-tac-toe 958 2 9 9
73-turkiye-student 5820 13 32 0
74-twonorm 7400 2 20 0
75-user-knowledge 403 5 5 0
76-vertebra-column-2c 310 2 6 0
77-vertebra-column-3c 310 3 6 0
78-volcanoes-a3 1521 5 3 0
79-volcanoes-b5 9989 5 3 0
80-volcanoes-d1 8753 5 3 0
81-volcanoes-e1 1183 5 3 0
82-voting 435 2 16 16
83-waveform-v2 5000 3 40 0
84-wdbc 569 2 30 0
85-wholesale-channel 440 2 7 0
86-wilt 4839 2 5 0
87-wine 178 3 13 0
88-wine-quality-red 1599 6 11 0
89-wine-quality-whi... 4873 5 11 0
90-yeast-4class 1299 4 8 0

Table 2: Datasets used in the experiments. The first column shows the dataset name,
followed by columns that represent the number of instances, the number of classes, the
total number of attributes, and the number of nominal attributes.

ilarity between instances. Moreover, the EER strategy was represented by
the EERent method, which minimizes the entropy-based loss function defined
in Equation 11. As a baseline, Rnd was included to assess whether any of
the methods presented offered an advantage over the random selection of
unlabeled instances. In addition, QHardS was composed through the use of
HMs presented in Table 1 as utility measures, as outlined in Equation 39.

Therefore, Figure 1 shows the steps taken to evaluate a given configura-
tion (D, a, q). First, the datasetD was split intoD = Dtrain ∪Dtest, where the
training set Dtrain was employed to simulate the PAL process, while the test
set Dtest served to evaluate its respective performance. To ensure a more re-
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liable evaluation of each configuration, stratified 5-fold cross-validation was
adopted, where one fold was used for testing and the remaining folds for
training.

Figure 1: Diagram illustrating the steps to perform the experiment on dataset D.

Regarding the initial set of labeled data L0, it was established that
it should contain at least one example from each class, such that |L0| =
max(5, c). Moreover, the decision to have a minimum of 5 labeled instances
in total — regardless of class — at the beginning of the PAL process was
influenced by the inclusion of the 5NN algorithm in the set A.

Given the initial conditions for each configuration, the AL loop was car-
ried out over 100 iterations. For each iteration i, where 0 ≤ i < 100, a new
instance xq was selected from the pool Ui based on method q. Subsequently,
the label yq for this instance was revealed to mimic the annotation process,
resulting in an updated labeled dataset Li+1 = Li ∪ {(xq, yq)}.

As a new labeled dataset Li was obtained, a new model θi was induced
by algorithm a. The performance of θi was then evaluated on Dtest using
Cohen’s Kappa coefficient [51], denoted as κi, which ranges from -1 to 1.
This metric was chosen due to its robustness, as it accounts for the possibility
of θi achieving correct predictions by chance while considering the true and
predicted labels as distinct distributions [52]. Values close to 1 indicate strong
agreement between the model’s predictions and the true labels, while values
near 0 suggest that any similarity is likely due to chance. Moreover, negative
values reflect a disagreement between predictions and actual labels.
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Accordingly, the performance scores were recorded for i ∈ [1, 100], with κ0

not being recorded. After evaluating a single configuration, 100 performance
records were available for each test fold. Consequently, the κi values for all
folds could be summarized by κ̄i, which represents the average performance
of the learner on the i-th query of the AL loop. From that, it was possible
to identify the performance associated with a certain configuration given the
number of queries made. Moreover, we were able to obtain the learning curve
associated with a specific configuration by treating κ̄i as a function of the
number of queries made.

To ensure a more accurate comparison, we chose to use the average rank
as an evaluation metric, similar to the approach taken by Pereira-Santos
et al. [4]. Although measures like the area under the learning curve (ALC) are
useful for assessing individual configurations, they are not ideal for evaluating
overall performance across the entire collection. This is because comparisons
of average ALC values obtained by a pair method-algorithm can be unreliable
due to the varying difficulty levels presented by each dataset [4]. Additionally,
ranking curves [18] were employed to visually compare the performance of
different methods applied with various learners across multiple datasets.

The experiments were conducted on the Ubuntu 22.04 LTS GNU/Linux
operating system, with kernel version 6.8.0-36-generic, using Python 3.8.19.
The learning algorithms were sourced from the scikit-learn library [53],
while most of the methods inQC were implemented by the modAL [54] module.
Additional extensions were developed to fully implement the TU and ID
methods. The HardS strategy was applied using modAL in combination with
the HMs provided by the PyHard package [10]. All experiments used the
default parameters from the respective libraries, ensuring consistency in the
implementation.

6. Results and Discussion

In this Section, we analyze the performance scores for each method-
algorithm pair evaluated. First, we split the presentation into a general,
higher-level quantitative analysis (Section 6.1) and a more detailed qualita-
tive view of how the methods’ performance curves compare visually to each
other (Section 6.2). The former focuses on average rank positions as the end
result of PAL, while the latter focuses on the number of queries to reach com-
petitive prediction performance earlier in the PAL process. In Section 6.3,
we highlight the relationship between HMs groups and learning algorithms
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through an extended version of the ranking curves showing details like the
best and worst performers within each group of interest. Finally, Section 6.4
makes a general overview by explaining the observed behaviors, concluding
with a hypothesis on how HardS may contribute to regulating sampling bias
in PAL.

6.1. General Analysis

To establish an overview of the performance of each method-algorithm
pair, we begin by summarizing their ranks across all queries and datasets.
Therefore, Table 3 presents the average ranking and standard deviation for
each pair, divided into two halves. For each algorithm, the best and worst
rankings are highlighted in bold. For distinction purposes, the best ranks
are also marked with an asterisk. The occurrences of random sampling, the
baseline technique, are underlined for an easier comparison to the others.
Additionally, for variants based on HardS, the Group column specifies the
group to which the employed HM belongs. As for rows describing classical
methods, the Group column is filled with the ‘-’ character.

The table suggests that the choice of the learning algorithm significantly
impacts performance. In greater detail, methods paired with CART and
NB tended to achieve better average ranks than those paired with 5NN and
SVM, regardless of the strategy in use. All pairs that employed CART se-
cured positions in the first half of the table, with ranks falling between those
presented by the TU and MS methods. In the case of NB, Rnd was depicted
as the best approach whereas ID had the lowest performance, being one of
the few methods to appear in the second half of the table for this algorithm.
Conversely, most pairs containing 5NN fell into the second half of the table,
with ID presenting the worst rank overall. However, a small number of ex-
ceptions is displayed at the bottom of the first half, where Rnd emerged as
the best approach for 5NN. Although, all SVM pairs are located in the sec-
ond half of the table, with N2I and ID achieving the best and worst average
ranks, respectively.

With the exception of the N2I-SVM pair, all HardS variants had an av-
erage performance below the baseline. Nevertheless, they were still capable
of outperforming at least one of their classical alternatives for a given al-
gorithm. For CART, only TU and Rnd achieved better average ranks than
those assigned to HardS. This pattern is demonstrated by a broad range of
ranks displayed for CART in the first half of the table, which includes only
HardS methods and is led by N2I, LSR, and kDN. For NB, a similar pattern
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Avg. Rank Pos. Method-Learner Group

25.65 ± 23.38 TU-CART* -
26.18 ± 21.55 Rnd-CART -
27.09 ± 24.72 Rnd-NB* -
27.88 ± 24.38 N2I-CART Neighbor-based
30.79 ± 26.76 TU-NB -
31.10 ± 23.17 LSR-NB Neighbor-based
31.81 ± 25.08 N2I-NB Neighbor-based
32.66 ± 25.23 LSR-CART Neighbor-based
33.77 ± 24.11 kDN-CART Neighbor-based
34.54 ± 26.63 H-CART Neighbor-based
35.23 ± 24.80 CLD-CART Likelihood-based
35.95 ± 24.38 kDN-NB Neighbor-based
36.21 ± 23.32 TDU -NB Tree-based
36.32 ± 23.38 N1I-CART Neighbor-based
36.32 ± 23.78 LSCI-CART Neighbor-based
36.44 ± 24.69 CL-CART Likelihood-based
36.46 ± 24.10 U-CART Neighbor-based
36.68 ± 23.21 F4I-CART Feature-based
37.53 ± 24.62 LSCI-NB Neighbor-based
38.60 ± 27.20 H-NB Neighbor-based
38.85 ± 25.74 U-NB Neighbor-based
39.83 ± 26.77 CLD-NB Likelihood-based
39.91 ± 25.02 N1I-NB Neighbor-based
40.11 ± 23.98 MV-CART Class-Balance
40.54 ± 24.53 F2I-CART Feature-based
40.61 ± 24.16 CB-CART Class-Balance
41.30 ± 22.85 DS-CART Tree-based
41.39 ± 25.92 DS-NB Tree-based
41.45 ± 24.43 DCP-NB Tree-based
41.57 ± 25.28 TDP -NB Tree-based
41.60 ± 23.60 TDU -CART Tree-based
41.65 ± 26.04 F4I-NB Feature-based
41.90 ± 27.03 CL-NB Likelihood-based
42.06 ± 25.86 F3I-CART Feature-based
42.31 ± 22.12 F1I-CART Feature-based
42.82 ± 24.23 TDP -CART Tree-based
43.27 ± 24.73 DCP-CART Tree-based
43.80 ± 25.94 Rnd-5NN* -
44.43 ± 24.47 N2I-5NN Neighbor-based
45.26 ± 26.54 F3I-NB Feature-based
45.62 ± 28.48 MS-NB -
46.22 ± 24.93 EERent-CART -
46.29 ± 25.38 F2I-NB Feature-based
46.58 ± 26.88 ID-CART -
47.81 ± 22.87 TDU -5NN Tree-based
47.92 ± 26.87 F1I-NB Feature-based
47.95 ± 25.22 MS-CART -
48.24 ± 24.72 MV-NB Class-Balance

Avg. Rank Pos. Method-Learner Group

48.41 ± 28.59 EERent-NB -
48.85 ± 29.75 N2I-SVM* Neighbor-based
48.91 ± 27.81 CB-NB Class-Balance
49.48 ± 24.54 MS-5NN -
50.65 ± 24.46 CLD-5NN Likelihood-based
50.71 ± 24.19 H-5NN Neighbor-based
51.18 ± 25.30 LSR-5NN Neighbor-based
51.38 ± 28.94 MS-SVM -
51.39 ± 24.07 kDN-5NN Neighbor-based
53.57 ± 20.70 TDP -5NN Tree-based
53.61 ± 28.97 H-SVM Neighbor-based
53.62 ± 29.47 Rnd-SVM -
53.70 ± 28.24 CLD-SVM Likelihood-based
54.70 ± 29.10 ID-NB -
54.73 ± 24.23 DS-5NN Tree-based
54.73 ± 28.01 TDU -SVM Tree-based
54.75 ± 23.75 LSCI-5NN Neighbor-based
54.92 ± 30.20 LSR-SVM Neighbor-based
55.30 ± 30.62 kDN-SVM Neighbor-based
55.37 ± 24.39 CL-5NN Likelihood-based
55.50 ± 24.61 N1I-5NN Neighbor-based
55.67 ± 27.42 CL-SVM Likelihood-based
56.37 ± 24.14 DCP-5NN Tree-based
57.23 ± 23.60 U-5NN Neighbor-based
57.85 ± 22.38 CB-5NN Class-Balance
58.03 ± 23.82 F4I-5NN Feature-based
58.49 ± 28.21 DS-SVM Tree-based
58.51 ± 28.77 U-SVM Neighbor-based
58.77 ± 25.52 TU-5NN -
58.91 ± 23.22 MV-5NN Class-Balance
59.00 ± 26.12 TDP -SVM Tree-based
59.17 ± 29.51 N1I-SVM Neighbor-based
59.92 ± 28.57 LSCI-SVM Neighbor-based
60.84 ± 23.27 F3I-5NN Feature-based
60.97 ± 23.84 F1I-5NN Feature-based
61.34 ± 23.92 F2I-5NN Feature-based
61.63 ± 28.10 DCP-SVM Tree-based
62.82 ± 22.87 EERent-5NN -
63.56 ± 24.77 EERent-SVM -
63.66 ± 26.12 F4I-SVM Feature-based
64.37 ± 25.61 MV-SVM Class-Balance
65.10 ± 24.02 CB-SVM Class-Balance
65.11 ± 23.51 F2I-SVM Feature-based
65.94 ± 21.28 TU-SVM -
66.10 ± 24.73 F1I-SVM Feature-based
66.40 ± 22.75 F3I-SVM Feature-based
70.79 ± 21.14 ID-SVM -
74.77 ± 21.44 ID-5NN -

Table 3: Average ranking and standard deviation obtained by each method-algorithm
pair across all datasets. The best and worst rankings are highlighted in bold face for each
algorithm, while the best is also marked with an asterisk (*). Occurrences of the baseline
method (random sampling) are underlined. For variants of the HardS strategy, the group
to which the employed HM belongs is shown instead of a method name.

occurs: Rnd and TU held the top positions, followed by a series of HardS
methods. In this case, LSR, N2I, and kDN ranked highest within this se-
ries. However, unlike with CART, this sequence is interrupted at the final
positions by MS, as seen at the bottom of the table’s first half. Even so, the
remaining HardS methods managed to outperform EER or ID.

For 5NN, N2I achieved second place, with a slight difference from the
baseline, followed by TDU , in the third position. Although the remaining

24



HardS’s methods were surpassed by MS, they consistently outperformed the
remaining classical approaches. A small exception is observed with TU, which
managed to surpass only the four lowest-ranked HardS methods. Finally, for
SVM, two methods from our strategy — namely N2I and H — exceeded
the baseline. Additionally, N2I emerged as an outstanding measure, placing
MS in second. Although surpassed by Rnd, the remaining HardS methods
consistently occupied the subsequent positions. At the final ranks, only six
of our methods were surpassed by EERent or TU. Still, all of them managed
to outperform ID.

6.2. Ranking Curves Analysis

Despite introducing a good overview of pairs’ performance, Table 3 does
not consider the various stages of PAL. To address this issue, figures 2 to 5
present ranking curves for the different learners tested. These curves comple-
ment the results by providing a graphical overview of the methods’ behavior
across all iterations of the AL loop. In all these figures, each line represents
the average rank achieved by a method in a given stage, which is described
by the number of queries already made. Although each figure refers to a
specific learner, the mean ranking position presented on the y-axis pertains
to the overall average ranking of a pair. Therefore, the integration of these
graphs reflects the performance of all pairs tested in our experiments. In
these figures, Rnd is depicted with dashed lines, while classical methods are
shown with dash-dotted lines. Methods that compose HardS are represented
by solid lines with markers, where curves sharing the same marker shape
denote methods using HMs from the same group. Additionally, a moving
average was applied to all curves to improve visualization. A sliding window
width of 5 queries was chosen to provide a good balance between smoothness
and detail preservation.

Figure 2 exhibits the ranking curves recorded for the CART algorithm.
All curves show a declining trend, which is often expected due to the overall
improvement of other competing methods as the training set increases in
size. The competition between TU and Rnd for the top positions is evident.
Additionally, N2I’s curve remains relatively close to them, even securing the
highest scores at the beginning and near the 80th query, while maintaining
a considerable distance from the other curves. The steadier trend of N2I
causes this gap to widen as the number of queries increases, allowing N2I
to re-enter competition with Rnd and TU around the 75th query. In the
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Figure 2: Ranking curves for methods tested with the CART algorithm. Curves with the
same marker shape present HMs from the same group. Dash-dotted lines depict classical
methods, and the cyan dashed line shows random sampling. The legend is sorted by the
ALC scores.

end, N2I finishes on par with the other two alternatives, despite showing a
sharper downward trend after the 80th query.

The chart also highlights the poor execution of the other classical meth-
ods tested, which lagged behind HardS for most queries. In contrast, the
HardS measures exhibited highly variable performance, occupying a wide
range in the central portion of the graph. At the top of this region, methods
derived from neighborhood-based and likelihood-based HMs were predom-
inant. Meanwhile, feature-based, tree-based, and class balance measures
appeared more frequently at the lower end.

Regarding the overall method performance of NB, the curves in Figure 3
show a general trend of an initial rise in average ranks, followed by a pro-
longed stabilization phase. Up to about the 10th query, LSR stood out as the
leading candidate. After that, its improvement rate slows, and it is quickly
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Figure 3: Ranking curves for methods tested with the NB algorithm. Curves with the
same marker shape present HMs from the same group. Dash-dotted lines depict classical
methods, and the cyan dashed line shows random sampling. The legend is sorted by the
ALC scores.

surpassed by TU and Rnd, with TU taking the lead. However, around the
20th query, TU and Rnd enter a brief stabilization phase before their paths
diverge. While Rnd’s curve resumes an upward trend, taking the leading po-
sition, TU’s curve defies the general trend and presents a declining behavior
that persists through the end of the process. This decline allowed N2I and
LSR, whose ranks had already been stabilized, to surpass TU near the 50th
and 60th queries, respectively.

Similar to the CART scenario, there was an extensive range of HM-based
measures in the central portion of the graph. In this case, however, two clas-
sical methods also occupied this region, though at its lower end. Most HardS
methods surpassed MS, although it managed to consistently outperform a
small group of them, which included only feature-based and class balance
methods. On the other hand, EERent is present at the bottom of the chart,
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competing with the CB and MD methods. Moreover, ID exhibited the worst
performance, trailing significantly behind the other curves.

Figure 4: Ranking curves for methods tested with the 5NN algorithm. Curves with the
same marker shape present HMs from the same group. Dash-dotted lines depict classical
methods, and the cyan dashed line shows random sampling. The legend is sorted by the
ALC scores.

Figure 4 presents the ranking curves for 5NN, where an upward trend
is noticeable right at the beginning. This trend gradually diminishes across
all curves, with some stabilizing at a certain point. In the first 10 queries,
H, TDU , and Rnd competed for the top position. Although TDU initially
showed a slight advantage, it is rapidly surpassed by Rnd and loses second
place to N2I. However, TDU maintained an upward trend until near the 25th
query, where it experienced a slight decline and further stabilization. Si-
multaneously, N2I closes in on Rnd, overtaking it for the first time around
the 50th query and maintaining a narrow lead until around the 80th query,
where both methods reached similar ranks. Meanwhile, as TUU had stabi-

28



lized, MS continued to improve, eventually surpassing it near the 55th query.
Nevertheless, TDU achieved a higher ALC than MS by the end of the process.

The figure also shows that most methods within HardS outperformed
TU. Some of these methods had even achieved better ranks than MS at the
beginning but were surpassed by it around queries 30 and 45. Even so, they
managed to maintain positions very close to TDU Additionally, the poor
performance of EERent and ID is evident at the bottom part of the graph.

Figure 5: Ranking curves for methods tested with the SVM algorithm. Curves with the
same marker shape present HMs from the same group. Dash-dotted lines depict classical
methods, and the cyan dashed line shows random sampling. The legend is sorted by the
ALC scores.

The behavior of the strategies concerning the SVM learner is depicted
in Figure 5. All methods show an initial downward trend, likely influenced
by the model’s initial predictions generated by SVM. However, after this
initial drop, the methods’ behavior varied significantly. N2I, which already
ranked higher in the early stages, exhibited the fastest growth and maintained
the top positions throughout most of the graph, despite being overtaken by
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MS at the final queries. Even with its poor early performance, MS had a
good recovery, eventually surpassing the baseline and all HardS methods.
Notwithstanding the good initial performance of CLD, LSR, and H, they
remained in a similar ranking range and were eventually surpassed by the
baseline. Rnd, which had a lower performance compared to figures 2 to 4,
showed a consistent upward trend, frequently acting as an upper limit for
the remaining methods evaluated.

Some proposed methods, exhibited similar behavior to Rnd, staying rel-
atively close to its trajectory, while others remained closer to the middle
portion of the graph. Additionally, at the lower end of the graph, some
curves were unable to recover from the initial downward trend or showed
only minimal recovery. For instance, EERent’s curve took time to regain
upward momentum, ultimately failing to surpass other HardS methods be-
yond the feature-based and class-balance approaches. As for TU and ID,
their ranks consistently dropped since the early stages, being sooner or later
overtaken by the others.

6.3. HMs Groups and Learning Algorithms

The results presented so far suggest that more promising methods stem
from HMs belonging to neighborhood-based, likelihood-based, or tree-based
groups. In contrast, methods derived from HMs within the feature-based or
class-balance groups tend to present lower average ranks. To tackle these
aspects in more detail and to better asses whether the effectiveness of a
certain group depends on the chosen learning algorithm, Figure 6 provides
an alternative visualization of the previously presented ranking curves. In
this visualization, each band represents the best and worst rankings achieved
by methods derived from HMs within the same group for a given learner
whereas alternatives outside HardS are represented by dotted lines.

Although the figure shows superior performance from methods derived
from neighborhood-based HMs, the width of the bands assigned to this group
is boosted by ranks achieved by N2I. Similar behavior occurred with tree-
base and likelihood-based bands, where TDU and CLD were responsible for
drawing its upper limits. The figure also indicates greater overlap among
the average rankings obtained by methods within the neighborhood-based,
likelihood-based, and tree-based groups for the 5NN and SVM algorithms.
For the CART algorithm, tree-based HMs did not perform well, even being
surpassed by the feature-based group, which was among the worst-performing
groups for all learners. In contrast, for NB, the neighborhood-based measures
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Figure 6: Comparison of average rankings across different HM groups for different learning
algorithms. Each plot provides an alternative view of Figures 4, 2, 3, and 5, respectively.
The bands represent the rankings curves obtained by each HardS method derived from
an HM within a certain group. The upper and lower bounds indicate the best and worst
average rankings achieved by these methods. Other tested methods as well as random
sampling are represented by dotted lines.
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prevailed, although there is some overlapping concerning some measures from
the tree-based group.

Another notable observation is that the bands corresponding to the
Likelihood-based methods tend to remain within the bound set by the tree-
based ones for 5NN, NB, and SVM, although they are more centered within
the band for 5NN, lower for NB, and higher for SVM. However, in the case
of CART, the tree-based measures underperformed, while the Likelihood-
based methods stayed within the limits established by the neighborhood-
based band, demonstrating more robust behavior.

Despite outperforming some of the classical strategies tested, measures
from the feature-based and class-balance groups showed the worst average
ranks during the experiments. Nevertheless, it is important to highlight the
performance of the F4I measure, which stood out compared to others within
its group, being the primary contributor to the higher ranks assigned to the
feature-based group in Figure 6, especially for CART.

6.4. Discussion

The presented results show that the HardS derived from measures within
the neighborhood-based, tree-based, and likelihood-based groups achieved
the highest rankings. This trend can be attributed to an increased effective-
ness in identifying informative instances when certain data characteristics
are considered. Moreover, methods derived from feature-based and class-
balance groups could still surpass some of the classic methods used. While
feature-based measures may have been affected by the high dimensionality of
the experimental data, the performance of class balance measures was likely
influenced by the arbitrary selection of instances from the minority class.

Some measures performed even better than their group’s average. Meth-
ods associated with measures N2I, LSR, and kDN achieved some of the high-
est positions overall, while also demonstrating strong performance within
the neighborhood-based group. Notably, N2I reached the top average rank-
ings among all methods within HardS. Furthermore, the TDU measure from
the tree-based group and the CLD measure from the likelihood-based group
also stood out for their consistently high average ranks. Finally, within the
feature-based group, the F4 measure achieved performance levels comparable
to those of the top-performing groups.

Additionally, we observed that the learning algorithm influenced the per-
formance of certain HMs. For tree-based measures, a decline in performance
was noted in conjunction with CART. A similar, though less pronounced,
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effect was seen with likelihood-based measures when paired with NB. Both
incidents are likely due to the similarities between the algorithms’ operations
and the measures in these groups. On the other hand, the neighborhood-
based measure H performed significantly better paired with 5NN and SVM.
Such improvement may be due to H’s ability to select instances that are
potentially decisive for the classification of the neighboring instances. Since
both SVM and 5NN classify data based on the delimitation of regions in the
input space, discovering the labels of these instances might have contributed
to model performance.

During the experiments, Rnd often outperformed most other methods
tested. One possible explanation for this performance could be the com-
plexity of the classification problems used, as well as the number of queries
made. Nevertheless, since Rnd is inherently exploratory — meaning it tends
to cover a wide range of the data space without any specific bias — its
early-stage proximity of certain methods within HardS, especially N2I, may
suggest progress in controlling prospective and exploratory biases. In greater
detail, by assuming Rnd’s bias, we expect methods that effectively incorpo-
rate some exploratory bias to initially achieve similar ranks to it. Ineffective
methods though, are prone to negatively impact initial model performance,
as observed with TU when applied to SVM and 5NN. Furthermore, more
prospective methods like MS and EERent tend to take longer to make proper
choices, starting to achieve better ranks as they gather more information.
Still, the same HardS methods also proved competitive with them during
the later stages, which further supports our hypothesis. Nonetheless, addi-
tional research is necessary to fully understand the behavior and impact of
these methods in different contexts.

7. Conclusion and Further Work

PAL is a specific scenario within AL where data is sampled from a pool
of unlabeled instances to be labeled by an oracle, with the goal of creating
efficient models using minimal annotated data to be used by ML algorithms.
To achieve this, it focuses on instances that have a greater capacity to gener-
alize the problem, making it crucial to establish a metric that distinguishes
between more and less informative instances within the pool. Since informa-
tion is a wide concept, only certain characteristics of an instance ought to be
considered, as well as how to measure them. In contrast, HMs aim to identify
why certain instances are harder to classify than others, rather than simply
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marking an instance as hard to classify. Each group of HMs focuses on eval-
uating specific aspects that might increase the likelihood of misclassification,
with different measures within each group employing distinct approaches to
assess the same aspect.

This study proposes to investigate the use of HMs as information mea-
sures in the PAL context. Additionally, it aimed to analyze the individ-
ual behavior of these measures, asses their potential advantages over exist-
ing strategies, and explore their performance regarding the balance between
prospection and exploitation biases. With this in mind, classical strategies
for PAL and their corresponding methods were revisited, as well as the HMs
found in the current literature. Based on this, a new query strategy called
Hardness Sampling (HardS) was proposed. This strategy is based on the use
of a fixed HM to employ the potential hardness of an instance as an informa-
tiveness measure for instances inside the pool. This value is then calculated
through the use of the labels assigned by the learner to the unlabeled data.
Subsequently, experiments were conducted using multiple datasets and four
different learners to evaluate HardS. Furthermore, the strategy was also com-
pared with methods from other classical strategies and random sampling to
assess its performance.

The results indicate that the group to which the employed HM belongs
directly affects HardS’s performance. One possible explanation is that, in
this context, a group represents the aspect that determines whether unla-
beled instances are informative once labeled by the model. Thus, the aspect
analyzed by neighborhood-based measures proved to be the most suitable.
Additionally, tree-based and likelihood-based measures also demonstrated
satisfactory performance, despite being more sensitive to the learning algo-
rithm used. On the other hand, feature-based and class-balance measures
showed inferior performance compared to other groups, indicating that the
aspects analyzed by them may not be the most reliable for indicating the
informativeness of an instance in PAL.

Furthermore, the specific HM used within a group proved to be another
influential factor, since its goal is to summarize a certain aspect. Measures
such as N2I, TDU , CLD, and F4I presented themselves as the best in cap-
turing such aspects within their groups. Additionally, some methods were
able to select instances that ensured the best performance for the respective
leaner, while in others, they remained close to the top performers. Neverthe-
less, all measures proved to be better or at least comparable alternatives to at
least one of the classical methods discussed, indicating that HardS is a com-
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petitive strategy. Additionally, the stable performance of the top-performing
methods suggests that their use may indicate progress in regulating the bal-
ance between prospective and exploratory biases, although we do note that
further studies are needed to confirm this hypothesis.

Further work might compare HardS with a broader range of query strate-
gies for PAL, as well as evaluate it on a more diverse collection of datasets,
ML algorithms, and additional evaluation metrics. This would provide a
clear picture of the true impact of our approach and assist in confirming
our hypothesis regarding its ability to balance prospection and exploration.
Moreover, it would be valuable to conduct these experiments using other
benchmarks from the community.
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