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Faculdade de Administração, Contabilidade, Economia e Gestão de Poĺıticas
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Biases in Machine Learning
(Vieses em Aprendizagem de Máquinas)
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Econômicas.

Orientador: Prof. Dr. Daniel Oliveira Ca-
jueiro
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no exerćıcio da Ciência Econômica. Agradecimento particular ao meu orientador, Prof. Dr.
Daniel Oliveira Cajueiro que, no momento que mais precisei, me guiou e aconselhou.

Agradeço também aos amigos Gabriel Miranda Couto, Lúısa Miranda Tauffer Padilha e
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Abstract

We present a review of Machine Learning metrics, addressing the challenge of balancing
bias mitigation with increasing model accuracy, focusing on the pursuit of fair ML models.
We begin by defining bias, listing possible forms of occurrence, as well as the contexts
in which they arise. We then analyze potential criteria that can serve as the basis for
defining fairness, in order to establish possible metrics for implementation in algorithms.
Each metric only partially represents fairness criteria, and the developer must choose which
ones to prioritize depending on the context in which the ML tool will be used. Finally, we
present a statistical analysis of the main metrics, aiming to ensure the conciliation between
technical, ethical-philosophical, and legal criteria.
Keywords: Machine Learning, Bias, Fairness, Metrics.
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1 Introduction

Xiao (2022) defines Artificial Intelligence (AI) as a field of computer science aimed at enabling
machines to perform intelligent activities, that is, capable of receiving and understanding infor-
mation from the environment, performing logical and computational analysis, and then making
decisions autonomously. McCarthy et al. (2007) defines Artificial Intelligence more broadly,
constituting the science and engineering of making machines, especially computer programs,
capable of achieving goals in the world, not necessarily as humans and animals do, but also
through computational procedures that only machines can perform.

In our daily routine, we may not realize all the moments when AI has influenced our way of
acting and making decisions, but there are numerous examples: customer service systems that
simulate human language; personalized assistants like Amazon’s Alexa, Microsoft’s Cortana,
Google Assistant, and iPhone’s Siri; targeted advertising based on your daily activities; content
offerings on social media aligned with your social circle; and suggestions for music and movies
on streaming platforms.

Xiao (2022) states that AI tools can be organized into two subsets:

• Machine Learning: a set of mathematical algorithms capable of analyzing data in an
automated way. It can be subdivided into:

– Supervised learning : models are trained with labeled data. The algorithm constantly
adjusts parameters to reduce the error between the calculated result and the desired
result (contained in the database). The most well-known algorithms include support
vector machines, naive Bayes, linear discriminant analysis, decision trees, Random
forest, k-nearest neighbor algorithm, neural networks (multilayer perceptron), and
similarity learning, regression algorithms (linear, logistic, and polynomial are the
main ones);

– Unsupervised learning : models are trained with unlabeled data. The algorithm di-
vides the data into groups (clustering) or aims to find relationships in the database
that describe the largest portion of the data. The most well-known algorithms include
Hierarchical clustering, K-means clustering, K-NN, Principal component analysis,
Singular-value decomposition, Independent component analysis;

– Semi-supervised learning : uses labeled and unlabeled data, widely used in speech
analysis, internet content classification, and protein sequence classification. The most
well-known algorithms include self-training, generative methods, mixture models,
and graph-based methods;

– Reinforcement learning : algorithms learn through trial and error to perform tasks
based on rewards, commonly used in robotics, video gaming, natural language pro-
cessing, and navigation;

• Deep Learning: a special type of neural network with more than one hidden layer. It
is considered a subset of machine learning and is divided into two types:

– Convolutional neural networks: usually used in image analysis, recommendation sys-
tems, natural language processing, brain-computer interfaces, and financial time se-
ries;

– Recurrent neural networks: specialized in sequence processing.

AI tools have increasingly gained space in various fields of knowledge and a wide range
of applications, whether in the corporate world, in the provision of public services, or even
by non-governmental organizations. Among the benefits are the growing speed of information

1



processing, the ability to identify patterns in unstructured data, and the possibility of greater
accuracy in predictive models.

Applications of AI can be found, for example, in areas such as social identification in the
criminal justice system, price prediction in financial markets, candidate selection in education
systems, prioritization in disease treatment, identification of promising payers for loan approval,
personnel recruitment, customized online advertising, monitoring of pedestrian and vehicle traf-
fic, and the list continues to grow daily.

Although the expectation is that the gains will increase over time, the associated risks are
still a little-explored topic, with solutions that are even less consensual among experts (Pagano
et al., 2023). In addition to the intentional use of AI to produce outcomes that harm others,
current AI technology must deal with undesirable or difficult-to-predict outcomes. The learning
and feedback capacity of information has the potential to propagate and even amplify possible
biases present in the database, in the algorithms’ procedures, and in the information generated
from user interaction (Mehrabi et al., 2021). Almost every sizable database contains sensitive
information about people, institutions, or countries, which, if not used correctly, can lead to
biased conclusions or perpetuate prejudiced behaviors already embedded in recorded data.

Pagano et al. (2023) presents a systematic review of bias and unfairness in machine learn-
ing models, listing the possible types of biases, tools for identifying injustice, bias mitigation
techniques, the most commonly used databases for bias analysis, the main metrics used to an-
alyze bias, and respective statistical approaches. The author presents one limitation regarding
AI studies: the existence of few metrics that consider multiple classes of biases and sensitive
information, as most existing studies present an approach focused on binary methods.

Carey andWu (2023) presents an evaluation approach for the most commonly used metrics in
machine learning studies, incorporating not only technical criteria but also ethical-philosophical
and legal criteria. The author points out that the aim of his research is to fill a gap that allows AI
practitioners to implement algorithms with designs that meet societal interests, while enabling
social science experts to understand the reasoning behind the use of specific metrics.

The present work aims to list the main fair metrics in machine learning, as well as ana-
lyze them from the perspectives of motivation, practicality, and purpose. Thus, the Section
2 provides the foundation for the motivation to study fair metrics in machine learning, where
the main concepts of bias (definition and types) are explained. The Section 3 explores the
practicality and purpose of using metrics by defining technical, legal, and ethical-philosophical
criteria that support measures aimed at correcting various types of bias. Also in section 3, the
main metrics found in the machine learning literature are listed. The Section 4 presents results
that allow machine learning practitioners to use the metrics safely, as they are aligned with
technical, ethical-philosophical, and legal criteria. Finally, the Section 6 presents a summary of
the findings, as well as proposals for future studies.

2 Bias

2.1 Definitions of Bias

Many authors understand that the terms bias and unfairness can be interchangeable (Booth
et al., 2021). Di Noia et al. (2022) defines unfairness as the disparity between how the world
should be and how it is, while they define bias as the disparity between how the world is and how
the world is structured across various systems. The authors delve deeper into the concepts by
describing unfairness as a subjective concept of social justice that can vary between countries,
cultures, and even within institutions (such as schools, hospitals, companies, etc.), while bias
refers to a systematic error that alters people’s behavior or judgment about other individuals
due to them having specific attributes that, when misused, may distinguish them in a harmful
way.
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Every system aiming to impact human behavior, positively or not, will encounter ethical,
social, political, legal, and technical limits for its implementation; limits that may be surpassed
when AI tools produce unexpected or undesirable results. In this sense, studying possible
ways of identifying and mitigating biases becomes essential. Otherwise unfairness results may
be unintentionally produced, potentially going unnoticed, since the complexity of AI models
distances the user and developer from the results achieved (Jones et al., 2020). Such results,
when undesirable, are a source of unfairness, which can have different understandings depending
on the context, culture, and time of a given society.

There are various techniques for recognizing bias and unfairness in models and databases,
each associated with a different metric, whose suitability to the practical case is a challenge
in mitigating undesirable effects (Nielsen, 2020; Kordzadeh and Ghasemaghaei, 2021). For
example, we may find a database where a certain social group is underrepresented due to
poorly conducted data collection, so the model’s accuracy will be compromised when dealing
with the identifying or predicting attributes associated with such individuals. However, the
underrepresentation may be merely a consequence of collective social behavior. In the first case
(poor collection), the problem could be solved by adding more information about individuals
from the underrepresented group to the database. In contrasto, in the second case (collective
behavior), attempting to add more information could distort the sample or raise ethical and
moral questions about the model’s predicted results.

Suppose we have a database with information about loan applicants, where only 1/4 of
the observations correspond to individuals with favorable characteristics for loan approval. A
Machine Learning model with good accuracy will tend to approve 1/4 of the loans. The model
cannot be considered biased because the loan is denied in about 3/4 of the cases. Now, suppose
that after more careful analysis of the database, we find that the 3/4 of individuals classified as
bad payers share the characteristic of being Black or poor. We still cannot categorically state
that the model is biased, but we certainly cannot claim it is fair either. On the other hand, the
database may be a good representation of the population distribution, leading us to suspect that
the data merely reflect a real scenario, i.e., the data captured the consequences of population’s
prejudiced behavior over time. Situations like this raise questions about the database’s quality
and the sample’s statistical representativeness. Finally, even if all of this could be ignored, the
question of whether the results align with what is expected in a given context would remain.

This simple reasoning exercise about biases in artificial intelligence raises some questions:

• How to identify if the data are capturing some unethical behavior from the population?

• How to ensure that the data statistically represent the population?

• Should or can protected attributes (such as gender, race, social class, illnesses, address,
kinship, etc.) be used in predicting results by AI?

• Is not using protected attributes enough to avoid undesirable outcomes?

• How to develop algorithms that identify the context in which the results are undesirable?

Paaßen et al. (2019) points out that many classification models inherently already carry
human bias, so they tend to repeat and escalate the segregation of certain groups through a
vicious cycle.

A well-known example, if not the most, is the so-called Correctional Offender Management
Profiling for Alternative Sanctions (COMPAS), software used in some states in the United States
in criminal judicial processes, which aims to measure the probability of a person committing a
crime again if granted parole. An investigation conducted by Angwin et al. (2016), published
in 2016, found bias in the parole system against African Americans. Despite the enormous
advantages of using artificial intelligence in processes involving large amounts of information,
there is evidence that its use may not always be beneficial. In this line, Dressel and Farid (2018)
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found that COMPAS software, when compared to the judgment of a non-expert human, did
not achieve better results than a normal human. Additionally, despite COMPAS having more
than 137 variables, only seven were used by people in their analyses. Finally, these authors
also highlight that COMPAS performs worse when compared to a simple logistic regression in
decision-making.

2.2 Types of Bias

Biases can originate from various sources, but in a way, we can affirm that everything begins
and ends with human behavior (Mehrabi et al., 2021). People are social beings, and therefore
internalize information as they interact with others or as they observe third-party interactions.
Thus, the knowledge already learned and the context in which the individual is embedded form
the basis for learning new concepts and prejudices.

In this way, biases may arise depending on the stage and manner in which human knowledge
is transferred to the Artificial Intelligence tool:

• in database: during the collection and gathering of information in a database, several
issues may arise, such as underrepresentation of individuals, direct and indirect social prej-
udices, absence of relevant information, biased information due to a lack of randomness,
etc.;

• in algorithm development: the developer’s worldview and knowledge limitations may
lead them to encode procedures that become noticeable only after many iterations or on
a large scale;

• in the interaction between user and algorithm: users may make decisions or react
based on the AI tool’s result. This user’s action may serve as information to feed back
into the database, and depending on the interaction between the algorithm and the user,
biased information may emerge. For example, Twitter (now X) is known for presenting
users with only content aligned with their preferences, producing real information bubbles
and polarizing debates Kowald and Lex (2018).

Mehrabi et al. (2021), Suresh and Guttag (2019), and Olteanu et al. (2019) present the main
sources of biases in the AI field, which are summarized in the following topics.

2.2.1 Data-to-algorithm bias

This section presents the first class of bias, which corresponds to the situation where the
database used to train the model is biased, such that the algorithm will learn these biases
and reflect them in its results, possibly even amplifying and perpetuating them (Mehrabi et al.,
2021):

1. Measurement Bias: bias stemming from how the information was chosen, recorded,
or measured in the database (Suresh and Guttag, 2019). For example, in the COMPAS
project database, one of the variables corresponded to a proxy for ”crime risk,” which
was measured by the number of family members’ arrests. It turns out that marginalized
groups are more frequently monitored by the police ( whether due to historical prejudice or
having fewer resources for security investment), which strongly correlates with the number
of arrests;

2. Omitted Variable Bias: occurs when important variables are not recorded or not con-
sidered by the algorithm (Clarke, 2005; Mustard, 2003; Riegg, 2008). For example, the
emergence of a competing company may represent information that the model was not
previously prepared to learn.
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3. Representation Bias: relates to how the information is collected (Suresh and Guttag,
2019);

4. Aggregation Bias: corresponds to using group information as a proxy for individual
information (Suresh and Guttag, 2019). For example, a model aimed at assisting diabetes
treatment may have its accuracy decreased if it does not consider individual information
within the various gender and ethnic groups (Suresh and Guttag, 2019).

(a) Simpson’s Paradox : heterogeneous data, when clustered or disaggregated into sub-
groups, may alter analysis results, sometimes even inverting them (Blyth, 1972);

(b) Modifiable Areal Unit Problem: bias obtained by the algorithm when trained on
different levels of spatial aggregation (Gehlke and Biehl, 1934)

5. Sampling Bias: Similar to representation bias, but here the sample presents a problem
due to a lack of randomness in the subgroups of data (Mehrabi et al., 2021);

6. Longitudinal Data Fallacy: individuals followed in research over several years may
exhibit biased behavior, so cross-sectional and longitudinal analyses may diverge signifi-
cantly (Mehrabi et al., 2021). Barbosa et al. (2016) presents the case where an analysis on
the length of comments made by individuals on Reddit apparently decreased over time.
However, upon deepening the analysis, the author concluded that the length of each in-
dividual’s comments had been growing over time, but the individuals in each time period
varied considerably, causing the result in mentioned result in the analysis of the grouped
data.

2.2.2 Algorithm-to-User bias

The second type of bias results from the optimization and classification that models perform
on the database, even if they accurately represent the population, through processes that ac-
centuate segregations between groups or individuals (Pagano et al., 2023). Biases produced
by algorithms can potentially modify user behaviors, generating behavioral biases in future
databases (Mehrabi et al., 2021). In this class of biases, we have:

1. Algorithmic Bias: when the bias is produced by the design of the algorithm (Baeza-
Yates, 2018), which can occur for various reasons, such as when the algorithm analyzes
only part of the data, uses biased estimators, or through the combination of optimization,
classification, regularization, and clustering procedures (Danks and London, 2017);

2. User Interaction Bias: resulting from the interface imposed on the user or from the
behavioral bias caused by the user when interacting with the algorithm (Baeza-Yates,
2018):

(a) Presentation Bias: a consequence of how information is presented to the user (Baeza-
Yates, 2018) ;

(b) Ranking Bias: the presentation of ranked information may induce the user to limit
their analysis to the top-ranked options, attracting more clicks to those options and
reinforcing their position among the top-ranked (Mehrabi et al., 2021).

3. Popularity Bias: options that are more popularly known tend to receive greater expo-
sure, even without representing better quality (Mehrabi et al., 2021). Popularity metrics
can be manipulated, for example, by social bots (Ciampaglia et al., 2018);

4. Emergent Bias: a consequence of changes in population characteristics and collective
cultural values over time, as well as the complexity of interactions between users and
algorithms (Friedman and Nissenbaum, 1996).
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5. Evaluation Bias: caused by the use of improper references during the evaluation stage
of the algorithm (Suresh and Guttag, 2019). .

2.2.3 User-to-data bias

The third type of bias concerns how the user chooses and uses the model. The user may not
be aware of how the tool processes the data, so their actions translate into a biased interaction,
thus compromising the results (Pagano et al., 2023). Many machine learning applications use a
set of user-generated data models as their data source, meaning that the user’s behavior and the
way the algorithm influences them may introduce biases into the data (Mehrabi et al., 2021).
In this class, we have:

1. Historical Bias: even if the sample data is a statistical population representation, it may
contain biases resulting from prejudices and socio-technical issues (Suresh and Guttag,
2019). An example pointed out by Suresh and Guttag (2019) relates to the generation of
images of female CEOs, whose results are biased due to the fact that only about 5% of
Fortune 500 CEOs were women in 2018;

2. Population Bias: refers to the lack of representativeness of the algorithm when applied
to a population demographically different from the one it was trained on (Olteanu et al.,
2019). An example presented by Mehrabi et al. (2021) is the difference in preferences
regarding the use of social media, where women tend to prefer platforms like Facebook
and Instagram, while men are more active on forums like Reddit and Twitter (now X).

3. Self-selection Bias: occurs when the use of the algorithm or the insertion of information
into the data reflects the user’s self-selection process, as seen in electoral polls, where sup-
porters tend to engage more in opinion polls about the candidates they support (Mehrabi
et al., 2021).

4. Social Bias: occurs when an individual’s judgment is influenced by the actions of others
(Baeza-Yates, 2018).

5. Behavioral Bias: occurs when users’ behavior diverges across platforms, contexts, or
different datasets (Olteanu et al., 2019); Miller et al. (2021) show that differences in
emojis across platforms lead users to different behaviors on those platforms, sometimes
causing communication errors.

6. Temporal Bias: Olteanu et al. (2019) explain that this refers to the change in behavior
over time, such as when people use a certain hashtag to draw attention to a topic, but as
the conversation progresses, the hashtag falls out of use.

7. Content Production Bias: arises when an individual’s context involves structural,
lexical, semantic, and syntactic differences in the content (Olteanu et al., 2019). For
example, the difference in the meaning of certain linguistic expressions between people of
different ages and genders (Nguyen et al., 2013).

3 Fairness

3.1 Definition of Fairness

Systems that use Machine Learning may present biases or unfair results for various reasons, for
example, to the social bias present in the database used during the training stage, to social bias
embedded (intentionally or not) in the algorithm’s design, or even due to biases emerging from
the interaction between the user and the algorithm over time. One way to address this issue is
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to try to measure the bias or fairness of the results produced by Machine Learning. However,
while some metrics may indicate the existence of bias in a certain model, others may suggest
that the results are fair (Pagano et al., 2023).

Carey and Wu (2023) argue that many studies have achieved good results in explaining the
mathematical and algorithmic aspects of machine learning tools, but without delving into the
philosophical and legal details that are fundamental to adapting the technique to the social
system (which he calls the sociotechnical system). On the other hand, several studies have de-
tailed the philosophical and legal foundations in proposing fair metrics for machine learning but
disconnected from the mathematical and algorithmic aspects, making their technical implemen-
tation in the social system impossible. In their research, Carey and Wu (2023) aim to bridge
this gap, allowing machine learning practitioners to understand all these aspects, presenting
how fair ML metrics work while linking them to the foundation of social sciences. The following
subsections present a summary of the criteria outlined by Carey in his literature review.

3.1.1 Technical Criteria (Mathematical-Statistical)

Barocas and Selbst (2016) emphasized that most proposed fairness criteria concern the prop-
erties of the joint distributions of the protected attribute S (S = 0 non-marginalized, S = 1
marginalized) regarding a marginalized group (e.g., gender or race), the actual attribute Y , and
the classification resulting from the model Ŷ .

Independence: occurs when the protected attribute S has no relation to the classification
outcome Ŷ . In mathematical terms: Ŷ ⊥ S. For the binary case, Barocas and Selbst
(2016) present two possible formulations:

Exact: P [Ŷ = 1|S = 0] = P [Ŷ = 1|S = 1]

Relaxed:
P [Ŷ = 1|S = 0]

P [Ŷ = 1|S = 1]
≥ 1− ϵ

.

The metrics that meet this criterion do not consider any relationship with the variable
that stores the actual value Y , which limits the model’s accuracy and creates incentives
for using lazy metrics (Carey and Wu, 2023). For example, equal random selection among
students from marginalized and non-marginalized groups satisfies the independence crite-
rion without considering individual characteristics, such as effort and knowledge.

Separation: This criterion considers that, in many scenarios, it is desirable for the character-
istic S that defines the marginalized group to be correlated with the actual value of the
target variable Y . In other words, conditional on the values of Y , it is expected that the
classification Ŷ be independent of the characteristic S: Ŷ ⊥ S|Y (Barocas and Selbst,
2016). Mathematically, this is equivalent to stating that all groups should have the same
true positive and false positive rates (Carey and Wu, 2023):

TP: P [Ŷ = 1|Y = 1 ∩ S = 0] = P [Ŷ = 1|Y = 1 ∩ S = 1]

FP: P [Ŷ = 1|Y = 0 ∩ S = 0] = P [Ŷ = 0|Y = 1 ∩ S = 1]

Sufficiency: This criterion is met when, for the purpose of predicting Y , the value of S does
not need to be used if Ŷ is provided (Barocas and Selbst, 2016). For example, in the case
of student admissions, if students’ GPA and SAT scores are sufficient in relation to race,
then the admissions committee does not need to actively consider race when making their
decision (Carey and Wu, 2023). Formally, Y ⊥ S|Ŷ (i.e., Y is conditionally independent
of S, given Ŷ ). In binary classification, this is equivalent to requiring parity of positive
and negative values between groups ŷ ∈ Ŷ = {0, 1} (Carey and Wu, 2023):

P [Y = 1|Ŷ = ŷ ∩ S = 0] = P [Y = 1|Ŷ = ŷ ∩ S = 1].
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Metrics based solely on statistical grounds are not sufficient to guarantee fairness for in-
dividuals or marginalized groups Corbett-Davies et al. (2023). On the contrary, such metrics
only provide reasonable guarantees for the ”average” members of marginalized groups and are
often conflicting with each other (Carey and Wu, 2023). For example, among the metrics pre-
sented in section 3.2, it is impossible to simultaneously satisfy false-positive rates, false-negative
rates, and positive predictive value across marginalized groups (Carey and Wu, 2023). This ob-
servation was exposed by Barocas and Selbst (2016), demonstrating that the fairness criteria
of representational independence, separation, and sufficiency constitute statistical limits that
cannot be implemented simultaneously.

3.1.2 Ethical-Philosophical Criteria

Carey and Wu (2023) presents the notion of Equality of Opportunity (EOP) in three ways:
formal EOP, substantive EOP, and luck-egalitarian EOP. EOP explores the idea of equality of
competition among all members of society. The author warns that the concept of formal EOP
is important for understanding the other forms but does not constitute a good foundation for
constructing fair metrics.

Formal EOP: Any desirable position must be within reach of all, and selection should be based
on relevant individual qualifications, so that the most qualified achieves the result (Carey
and Wu, 2023). In machine learning, this criterion has been implemented as fairness
through blindness or fairness through unawareness (Kusner et al., 2018).

While formal EOP has the benefit of excluding protected information in the classification
process, its application does not imply the correction of arbitrary privileges (Carey and
Wu, 2023). Individuals belonging to marginalized groups are disproportionately impacted
by the correlation between the protected attribute and challenges such as poverty, racism,
bullying, and discrimination. In other words, the impacts of these challenges represent a
tax on individuals’ cognitive abilities (Berk et al., 2017).

As Carey and Wu (2023) states, the problem of not accounting for arbitrary privileges
can be divided into two components:

• before the classification, arbitrary privileges allow some individuals to better develop
the qualifications that will be relevant for selection;

• after the classification, the winners will be in even more advantageous positions to
compete in future selections.

Formal EOP introduces a ”snowball” component where winners win faster, but losers lose
faster (Khan et al., 2021). From a symmetrical perspective, formal EOP amplifies both
advantages and disadvantages, which is commonly known as discrimination laundering
(Green, 2016).

Substantive (Rawls’) EOP: This criterion addresses the problem of discrimination launder-
ing, as it requires that all individuals have the same opportunities to develop qualifications
(Carey and Wu, 2023). However, the assumption that talents are equally distributed is
often not verified in real life. Rawls’ EOP has been implemented in fair machine learning
in the sense that a candidate should be selected based only on characteristics that are not
related to unequal opportunities for qualification prior to selection Khan et al. (2021).

Luck-Egalitarian EOP: This criterion requires that an individual’s selection should be based
solely on their choices and not their circumstances (Segall, 2013), but making this sep-
aration is not trivial and is, in fact, very difficult to implement (Carey and Wu, 2023).
Another issue is the simultaneous influence between choices and circumstances (Khan
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Figure 1: Difference beetwen DI and DT. Fonte: Carey and Wu (2023)
Graphical depiction of disparate impact vs. disparate treatment. For the disparate impact (left) side,

while both people were given boxes to stand on to see over the fence, the person on the left is

disproportionately impacted by being shorter. For disparate treatment, the person on the left if

directly being discriminated against by not being given a box to stand on. (Carey and Wu, 2023)

et al., 2021); for example, wealthy students may choose to dedicate more time to studies
because they have better conditions (Carey and Wu, 2023).

3.1.3 Legal Criteria

Carey and Wu (2023) points out some legal principles commonly used in machine learning, due
to legal requirements contained in the United States anti-discrimination legislation. Among
them, the anti-classification and anti-subordination criteria are the principles that motivated
the creation of such legislation (Xiang and Raji, 2019; Balkin and Siegel, 2003).

Disparate Impact (DI): This refers to avoiding the undesirable consequence of using neutral
policies, where individuals from marginalized groups are more affected than others (Pes-
sach and Shmueli, 2020). In fair machine learning, this occurs when, even unintentionally,
the number of positive outcomes differs drastically between different groups (Lipton et al.,
2019).

Disparate Treatment (DT): This refers to avoiding negative consequences arising from in-
tentionally different treatment between individuals from marginalized and non-marginalized
groups. Carey and Wu (2023) provided Figure 1 in their work, which clearly summarizes
the difference between DI and DT.

A common approach to implementing DT is the exclusion of protected attributes from
the input arguments of algorithms (Carey and Wu, 2023). This approach is also known as
equal treatment, as equal individuals are treated equally, regardless of which group they
belong to (Corbett-Davies et al., 2023).

Anti-classification: This principle imposes that the U.S. government cannot classify people
using protected attributes (Carey andWu, 2023). Any metric that meets the independence
criterion also satisfies anti-classification, as Ŷ ⊥ S.

Anti-subordination: This refers to the ideal that laws should address existing social hierar-
chies, in the sense that it is inappropriate for any group to be subordinated to others.
Thus, the law must aim to empower marginalized groups, even if at the expense of non-
marginalized groups (Colker, 1986).

9



3.2 Fairness metrics

Machine Learning models have been improved with bias and fairness measurement method-
ologies (Paaßen et al., 2019). However, when it comes to long-term decisions, models have
produced unsatisfactory results despite the vast number of metrics already developed, as stated
by Pagano et al. (2023). The authors argue that some measurement metrics are insufficient be-
cause they either only consider the impact on the individual, or only on the group, or because
the metrics are incapable of predicting the model’s behavior over time.

Most existing metrics use the concepts of true positive (TP), false positive (FP), true negative
(TN), and false negative (FN). These values are obtained by counting the number of errors and
correct predictions the model is capable of producing. In supervised machine learning models,
this involves comparing the predicted or classified results with the labeled data in the database.
In unsupervised machine learning models, this involves comparing the results with some reward
criterion embedded in the algorithm.

Let Y be the variable that represents the actual value of an observation. For example, if a
banking institution intends to use an AI tool to select good payers, good payers are those with a
positive classification, represented by Y = 1. Bad payers are those with a negative classification,
represented by Y = 0. Now, let Ŷ be the result obtained by the ML model. What the models do
is attempt to classify or predict to which group of payers individuals belong, so that a positive
result corresponds to Ŷ = 1 and a negative result to Ŷ = 0.

Thus, the measure TP corresponds to the number of observations where the model provides
a positive result that coincides with the actual value (Y = 1 ∩ Ŷ = 1); FP corresponds to
the number of observations where the model provides a positive result, but it diverges from
the actual value (Y = 0 ∩ Ŷ = 1). TN corresponds to the number of observations where the
model provides a negative result that coincides with the actual value (Y = 0 ∩ Ŷ = 0); FN
corresponds to the number of observations where the model provides a negative result, but it
diverges from the actual value (Y = 1 ∩ Ŷ = 0).

These measures are sufficient to understand bias and fairness metrics for models with binary
outcomes. To understand metrics for problems with multiple classes, the concepts of TP, FP,
TN, and FN need to be explained more thoroughly. In these cases, the values are assigned and
counted relative to each class (see fig. 2). Let’s use an example to better explain. Continuing
with the hypothetical scenario of loan approval, suppose now we intend to classify individuals
into three types of possible payers: low risk (class 1), medium risk (class 2), and high risk (class
3). Let’s now restrict our attention to group 1, the low-risk group, i.e., those individuals who
have this classification originally in the database. When using a machine learning model in the
training stage, an individual will either be classified in group 1 or in the other groups. In this
case, if the individual is classified correctly, we have a TP result; regarding class 1, the other
classes correspond to negative values, so if the individual is classified in group 2 or 3, the model
will present a negative result that does not match reality, i.e., it is a case of FN; regarding class
1, individuals from classes 2 and 3, when classified in class 1, receive a positive result from
the model, but this does not match reality, i.e., it is a case of FP; the other cases (individuals
from group 2 who are classified in group 3 and vice versa) are not related to class 1, so they
correspond to TN.

Pagano et al. (2023), among all the metrics used for evaluating fairness and bias, highlights
the most frequently mentioned in the works analyzed in their literature review: Equalized
Odds (EO), Equality of Opportunity (EOP), Demographic Parity (DP), Individual Differential
Fairness. In addition to these, Pagano et al. (2023) and Carey and Wu (2023) present other
metrics, specified below, whose references can be found in Table 1:

1. Positive Predctive Value (PPV) or precision:

PPV =
TP

TP + FP
10



Figure 2: Matrix Multiclass

2. Negative Predictive Value (NPV):

NPV =
TN

TN + FN

3. Predictive Value Parity (PVP) - also called Conditional Use Accuracy, it is satisfied
when both PPV and NPV are similar in both marginalized and non-marginalized groups.
In notation, for y ∈ 0, 1: y ∈ {0, 1}:

P
[
Y = y|Ŷ = y ∩ S = 0

]
= P

[
Y = y|Ŷ = y ∩ S = 1

]
4. Predctive Parity (PP) - also known as the Outcome Test, this metric requires that PVP

be equal for both marginalized and non-marginalized groups. In notation, for y ∈ {0, 1}:

P
[
Y = y|Ŷ = 1 ∩ S = 0

]
= P

[
Y = y|Ŷ = 1 ∩ S = 1

]
Predictive Parity corresponds to PVP when Ŷ = 1.

5. False Discovery Rate (FDR):

FDR =
FP

TP + FP

6. False Omission Rate (FOR):

FOR =
FN

TN + FN

7. True Positive Rate (TPR) or Recall Score:

TPR =
TP

TP + FN

8. False Positive Rate (FPR):

FPR =
FP

FP + TN
11



9. False-Positive Error Rate Balance (FPERB) - also known as Predictive Equality, it
requires that the FPR (False Positive Rate) be similar across different groups. In notation,
for y ∈ {0, 1}:

P
[
Ŷ = ŷ|Y = 0 ∩ S = 0

]
= P

[
Ŷ = ŷ|Ŷ = 0 ∩ S = 1

]
10. False Negative Rate (FNR):

FNR =
FN

TP + FN

11. False-Negative Error Rate Balance (FNERB): - also known as Equal Opportunity,
it is the opposite of FPERB. Here, it requires that the FNR (False Negative Rate) be
similar across groups. In notation, for y ∈ {0, 1}:

P
[
Ŷ = ŷ|Y = 1 ∩ S = 0

]
= P

[
Ŷ = ŷ|Ŷ = 1 ∩ S = 1

]
12. True Negative Rate (TNR):

TNR =
TN

FP + TN

13. Treatment Equality (TE) - it requires that the ratio of FN (False Negatives) and FP
(False Positives) be equal across groups:

FNS=0

FPS=0
=

FNS=1

FPS=1

14. Equalized Odds (EO) - also called Conditional Procedure Accuracy Equality and Dis-
parate Mistreatment, it aims to ensure that (i) the probability of an individual in the
positive class receiving a positive estimate in the protected group is the same as in the non-
protected group; and (ii) the probability of an individual in the negative class erroneously
receiving a positive estimate in the protected group is the same as in the non-protected
group:

EO =
1

2
·
(∣∣∣ FPp

FPp + TNp
− FPu

FPu + TNu

∣∣∣+ ∣∣∣ TPp

TPp + FNp
− TPu

TPu + FNu

∣∣∣)
In notation, for y ∈ {0, 1}:

P
[
Ŷ = 1|Y = y ∩ S = 0

]
= P

[
Ŷ = 1|Y = y ∩ S = 1

]
15. Equality of Opportunity (EOP) - It aims to ensure that the probability of an indi-

vidual in the positive class receiving a positive result is the same in both the protected
group and the non-protected group:

EOP =
TPp

TPp + FNp
− TPu

TPu + FNu

16. Demographic Parity (DP) - also known as Statistical Parity, Statistical Fairness, Equal
Acceptance Rate, or Benchmarking. It represents the probability of being classified posi-
tively for both marginalized and non-marginalized groups:

DP =
TP + FP

N

In notation, it is expected to obtain:

P
[
Ŷ = 1|S = 0

]
= P

[
Ŷ = 1|S = 1

]
12



17. Conditional Statistical Parity (CSP) - it constitutes a relaxation of Statistical Parity,
where the results may be related to other sets of attributes (whether correlated or not
with the actual values of Y ). This condition is satisfied when both marginalized and non-
marginalized groups have equal probabilities of being classified positively, after controlling
for a set of factors, say L:

P
[
Ŷ = 1|L = ℓ ∩ S = 0

]
= P

[
Ŷ = 1|L = ℓ ∩ s = 1

]
In some cases, CSP has the ability to bypass Simpson’s paradox, since the conditional
information added to the statistic can mitigate the aggregation of the original classification
labels (Carey and Wu, 2023).

18. Disparate Impact (DI) - compares the proportion of individuals who receive a positive
outcome between groups with protected and non-protected characteristics:

DI =

TPp+FPp

Np

TPu+FPu
Nu

19. K-Nearest Neighbors Consistency (KNNC) - an individual fairness metric that aims
to measure the sensitivity of an attribute between similar individuals:

KNNC = 1− 1

n

n∑
i=1

∣∣∣∣∣ŷi − 1

k

∑
j∈Nk(xi)

ŷj

∣∣∣∣∣
20. Absolute Balanced Accuracy Difference (ABAD) - represents the accuracy differ-

ence between the protected and non-protected groups:

ABAD =
1

2
·
∣∣∣(TPRp + TNRp)− (TPRu + TNRu)

∣∣∣
21. Absolute Average Odds Difference (AAOD) - represents the difference between

TPR (True Positive Rate) and FPR (False Positive Rate) between two protected groups:

AAOD =
1

2
·
∣∣∣(FPRp + FPRp

)
−
(
TPRu + TPRu

)∣∣∣
22. Absolute Equal Opportunity Rate Difference (AEORD) - the difference between

Recall Scores between the protected and non-protected groups:

AEORD =
∣∣TPRp − TPRu

∣∣
23. Statistical Parity Difference (SPD) - the difference between the Statistical Parity of

the protected group and the non-protected group:

SPD =
TPp + FPp

Np
− TPu + FPu

Nu

24. F1-score - it constitutes a weighted average between precision and recall:

F1− score = 2 · recall · precision
recall + precision

13



25. Overall Accuracy Equality or Accuracy - represents the number of correct classifi-
cations by the model:

accuracy =
TN + TP

TN + TP + FN + FP

In notation, for y, ŷ ∈ {0, 1}:

P
[
Ŷ = y|Y = y ∩ S = 0

]
= P

[
Ŷ = y|Y = y ∩ S = 1

]
26. Number of Positive Instances (NIP):

NIP = TP + FP

27. Number of Negative Instances (NIN):

NIN = TN + FN

28. Base Rate (BR):

BR =
NIP

N

29. Test fairness (TF) - also known as Calibration, Equal Calibration, and Matching
Conditional Frequencies:

P [Y = 1|P = p ∩ S = 0] = P [Y = 1|P = p ∩ S = 1]

30. Well Calibration (WC):

P [Y = 1|P = p ∩ S = 0] = P [Y = 1|P = p ∩ S = 1] = p

31. Balance for the Positive Class (BPC):

E[P|Y = 1 ∩ S = 0] = E[P|Y = 1 ∩ S = 1]

32. Balance for the Negative Class (BNC):

E[P|Y = 0 ∩ S = 0] = E[P|Y = 0 ∩ S = 1]

4 Statistical analysis

In this section, we will present a summary of the results developed by Carey and Wu (2023),
concerning the adequacy of fair machine learning metrics to the ethical-philosophical, legal, and
technical criteria presented in subsections 3.1.1, 3.1.2 e 3.1.3. However, we will leave aside the
formal proofs, which we recommend reading directly from the authors’ article.

The following variables will be used: S = 1 to denote individuals who have the protected
attribute or belong to the marginalized group; S = 0 for individuals who do not have the
protected attribute and do not belong to the marginalized group; Ŷ corresponds to the predicted
value or classification label by the model, and Y is the actual value or true classification label.

14



Statistical Metrics References

PPV or precision Verma and Rubin (2018)

NPV Verma and Rubin (2018)

PVP Berk et al. (2021)

PP Chouldechova (2016)

FDR Verma and Rubin (2018)

FOR Verma and Rubin (2018)

TPR or recall score
Verma and Rubin (2018), Quadrianto and Sharmanska (2017),

Georgopoulos et al. (2021)

FPR
Verma and Rubin (2018), Chiappa and Isaac (2019), Yang et al. (2020)

Adel et al. (2019), Quadrianto and Sharmanska (2017), Grari et al. (2019),

Jain et al. (2019)

FPERB Chouldechova (2016)

FNR
Verma and Rubin (2018), Chiappa and Isaac (2019), Yang et al. (2020),

Adel et al. (2019), Grari et al. (2019), Jain et al. (2019)

FNERB Chouldechova (2016)

TNR Verma and Rubin (2018)

TE Berk et al. (2021)

EO
Mehrabi et al. (2021), Georgopoulos et al. (2021), Radovanovic et al. (2020),

Du et al. (2021), Reddy et al. (2021), Hardt et al. (2016)

EOP
Mehrabi et al. (2021), Li et al. (2022), Amend and Spurlock (2021)

Radovanovic et al. (2020), Reddy et al. (2021)

DP
Mehrabi et al. (2021), Jalal et al. (2021), Li et al. (2022),

Amend and Spurlock (2021), Du et al. (2021), Reddy et al. (2021),

Dwork et al. (2012), Kusner et al. (2018)

CSP Corbett-Davies et al. (2023)

DI Bryant et al. (2019)

KNNC Bryant et al. (2019)

ABAD Jang et al. (2021)

AAOD Jang et al. (2021)

AEORD Jang et al. (2021)

SPD Bryant et al. (2019), Jang et al. (2021)

accuracy
Das et al. (2019), Amend and Spurlock (2021), Reddy et al. (2021),

Berk et al. (2021)

precision Das et al. (2019)

recall Das et al. (2019)

F1-score Das et al. (2019)

NIP Bryant et al. (2019)

NIN Bryant et al. (2019)

BR Bryant et al. (2019)

TF Chouldechova (2016)

WC Kleinberg et al. (2016)

BPC Kleinberg et al. (2016)

BNC Kleinberg et al. (2016)

Table 1: Statistical Metrics References. Fonte: Pagano et al. (2023); Carey and Wu (2023)
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Definition 1 (Rawls’ EOP and luck-egalitarian EOP for supervised learning (Heidari et al.,
2018)). A predictive model h satisfies Rawlsian/luck-egalitarian EOP if for every s ∈ S = {0, 1}
and y, ŷ ∈ Y, Ŷ = {0, 1} the following conditions are satisfied:

Rawls’: F h
(
U ≤ u|S = 0 ∩ Y = y

)
= F h

(
U ≤ u|S = 1 ∩ Y = y

)
LE: F h

(
U ≤ u|S = 0 ∩ Ŷ = ŷ

)
= F h

(
U ≤ u|S = 1 ∩ Ŷ = ŷ

)
where F h

(
U ≤ u

)
corresponds to the distribution of the utility U of individuals under the model

h, that is, it is the difference between the individual’s actual effort A and their circumstances
D, U = A−D.

Carey and Wu (2023) organizes fairness metrics into three groups:

1. Predicted Outcomes: This group contains the simplest metrics, using predicted values,
in which marginalized and non-marginalized classes have the same probability of receiving
a positive prediction from the model (Verma and Rubin, 2018):

(a) Statistical Parity: P
[
Ŷ = 1|S = 0

]
= P

[
Ŷ = 1|s = 1

]
(b) Conditional Statistical Parity: P

[
Ŷ = 1|L = ℓ ∩ S = 0

]
= P

[
Ŷ = 1|L = ℓ ∩ s = 1

]
2. Predicted and actual outcomes: now the metrics are related to the actual values.

(a) Predictive Value Parity or COnditional Use Accuracy: P
[
Y = y|Ŷ = y ∩ S = 0

]
=

P
[
Y = y|Ŷ = y ∩ S = 1

]
(b) Predctive Parity (PP): P

[
Y = y|Ŷ = 1 ∩ S = 0

]
= P

[
Y = y|Ŷ = 1 ∩ S = 1

]
(c) Equalized Odds: P

[
Ŷ = 1|Y = y ∩ S = 0

]
= P

[
Ŷ = 1|Y = y ∩ S = 1

]
(d) False-positive error rate balance: P

[
Ŷ = ŷ|Y = 0 ∩ S = 0

]
= P

[
Ŷ = ŷ|Ŷ = 0 ∩ S =

1
]

(e) False-negative error rate balance: P
[
Ŷ = ŷ|Y = 1 ∩ S = 0

]
= P

[
Ŷ = ŷ|Ŷ = 1 ∩ S =

1
]

(f) Overall Accuracy Equality: P
[
Ŷ = y|Y = y ∩ S = 0

]
= P

[
Ŷ = y|Y = y ∩ S = 1

]
(g) Treatment Equality (TE):

FNS=0

FPS=0
=

FNS=1

FPS=1

3. Predicted probabilities and actual outcomes:

(a) Test fairness: P [Y = 1|P = p ∩ S = 0] = P [Y = 1|P = p ∩ S = 1]

(b) Well calibration: P [Y = 1|P = p ∩ S = 0] = P [Y = 1|P = p ∩ S = 1] = p

(c) Balance for the positive class: E[P|Y = 1 ∩ S = 0] = E[P|Y = 1 ∩ S = 1]

(d) Balance for the negative class: E[P|Y = 0 ∩ S = 0] = E[P|Y = 0 ∩ S = 1]

Proposition 1 (Statistical parity as Rawls’ EOP (Heidari et al., 2018)). Consider the binary
classification task where Y, Ŷ = {0, 1}. Suppose that U = A − D, A = Ŷ , and D = Y = 1
(i.e., the utility based on the effort of all individuals is assumed to be the same). Then, the
conditions for Rawls’ EOP to be satisfied are equivalent to Statistical Parity when Ŷ = 1.

Proposition 2 (Conditional use accuracy as luck-egalitarian EOP (Heidari et al., 2018)).
Consider the binary classification task where Y, Ŷ = 0, 1. Suppose that U = A−D, A = Ŷ , and
D = Y (here, we do not need to have Y = 1). Then, the conditions that satisfy luck-egalitarian
EOP are equivalent to those that satisfy PVP.
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Proposition 3 (Equalized Odds as Rawls’ EOP (Heidari et al., 2018)). Consider the binary
classification task where Y, Ŷ = {0, 1}. Suppose that U = A−D, A = Ŷ , and D = Y . Then, the
conditions that satisfy Rawls’ EOP are equivalent to those that satisfy EO (Equalized Odds).

Proposition 4 (Overall accuracy equality as Rawls’ EOP (Heidari et al., 2018)). Consider
the binary classification task where Y, Ŷ = {0, 1}. Suppose that U = A − D, A = (Ŷ − Y )2,
and D = 0. Then, the conditions that satisfy Rawls’ EOP are equivalent to those that satisfy
Overall Accuracy Equality.

Proposition 5 (Test Fairness as luck-egalitarian EOP (Carey and Wu, 2023)). Test fairness
satisfies luck-egalitarian EOP.

Remark. Predictive Parity corresponds to PVP when ŷ = 1, so it falls into the same philo-
sophical category as PVP, which is luck-egalitarian EOP.

Remark. False-positive error rate balance can be seen as a relaxed version of EO (Equalized
Odds), and thus it satisfies Rawls’ EOP.

Remark. Treatment Equality can be seen as the ratio between FPERB (False Positive Error
Rate Balance) and FNERB (False Negative Error Rate Balance), and thus it satisfies Rawls’
EOP.

5 Mitigation techniques

Given the diversity of existing biases, the scientific community has advanced in the development
of fair methods for mitigating machine learning, with attempts depending on the respective
domains of AI . (Mehrabi et al., 2021).

Pagano et al. (2023); Meher and Panda (2021); Carey and Wu (2023); Agarwal and Mishra
(2021) present a categorization of bias elimination methods into three groups: pre-processing,
in-processing, and post-processing.

Pre-processing techniques aim to eliminate biases through the manipulation of the dataset
d’Alessandro et al. (2017), which can be performed through various treatment methods: filter-
ing biased data, standardizing missing values, changing the dataset’s proportions after replac-
ing NaN values, removing sensitive data, removing proxy variables, generating synthetic data,
reweighting the dataset, fair representation learning, and relabeling (Calders et al., 2009; Kearns
and Roth, 2019; He et al., 2008; ?; Feldman et al., 2015; Yang et al., 2020; Bryant et al., 2019;
Zemel et al., 2013; Paviglianiti and Pasero, 2020; Pedreshi et al., 2008; Jang et al., 2021; Geor-
gopoulos et al., 2021).

In-processing techniques aim to adapt the algorithm during model training, either by
incorporating fairness constraints and criteria or by implementing changes in the objective
function (d’Alessandro et al., 2017; Berk et al., 2017): reweighting, neutralizing the sensitive
attribute, fairness constraints, adversarial debiasing, fairness regularization, Bayesian fairness,
and fair ensemble learning. (Ashokan and Haas, 2021; Neda et al., 2021; Jain et al., 2019;
Radovanovic et al., 2020; Reddy et al., 2021; Du et al., 2021);

Post-processing techniques involve a validation step, using data not present during the
model’s training (d’Alessandro et al., 2017). This is very common in the analysis of algorithms
known as ”black boxes,” which, because their mathematical complexity, are difficult for prac-
titioners to understand well (Loyola-González, 2019). In this group, we have the following
mitigation techniques: threshold adjustment, transformation, and reject option.classification
(Das et al., 2019; Hardt et al., 2016; Baumann et al., 2023; Wei et al., 2020; Kamiran et al.,
2018).
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6 Conclusion

In this research, we address a recurring problem for Machine Learning practitioners, both im-
plementers and users, concerning the association between metrics and biases aimed at achieving
fairness objectives. Well-developed algorithms can perform excellent prediction and classifica-
tion tasks, but their use in an inappropriate context can have severe impacts on people’s lives.
This concern motivated the study of the possible types of biases existing in the production chain
of ML tools.

Given the variety of bias sources, some beyond the control of the developer or user, ML
practitioners must choose, based on the real-world context, which fairness objectives to achieve,
knowing that (so far) there is no way to satisfy all aspects of fairness without compromising
model accuracy.

The statistical analysis of metrics aims to provide a safe ground for developers to understand
the ethical and legal fairness criteria that their algorithms are producing, while also allowing
users and social scientists to comprehend the impossibility of implementing certain metrics due
to the limitations imposed by context.

Finally, during the review of metrics found in the literature, we noted the absence of method-
ologically organized works containing a broad economic analysis of Machine Learning tools.
Some studies analyze economic contexts, but they are restricted to specific problems. There-
fore, it is suggested that this work be expanded by incorporating fairness criteria through the
lens of economic science.
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