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Abstract—Analyzing food composition is a challenging task
mainly due to the wide diversity of ingredients and nutrients
in food samples, resulting in complex data presenting both cat-
egorical and numerical attributes. Moreover, the ever-growing
volume of food composition data makes data analysis difficult
and time-consuming for nutritionists. This scenario motivated
us to propose FoodVis, an interactive web-based tool that allows
nutritionists to gain insights and extract meaningful knowledge
by interpreting visualizations of food composition data. The
tool was devised by taking into account activities commonly
performed by nutritionists, such as identifying similar food
products, analyzing nutrient distributions, exploring ingredient
relationships, and labeling products based on specific attributes.
In this sense, FoodVis incorporates interactive visualizations
based on dimensionality reduction, graphs, and parallel coor-
dinates, each one conveying specific patterns and properties of
data in both global and local analysis. We performed exper-
iments to validate FoodVis, focusing on the effectiveness and
quality of visualizations. Moreover, interviews with nutritionists
were conducted to assess the usability of FoodVis, providing
valuable insights into its practical applications in nutrition.

Index Terms—food composition data, data visualization, data
analysis, interactive tool, point placement strategies, web appli-
cation

I. INTRODUCTION

Food is composed of various compounds essential for
maintaining health and supporting bodily functions [1].
These compounds include macronutrients like proteins, fats,
and carbohydrates, as well as micronutrients like calcium,
potassium, and vitamin C [2]. Additionally, information
regarding the nutritional composition of food can be obtained
through laboratory analysis or food composition tables. How-
ever, for consumers, this information is usually available on
nutritional labels, which provide details about their nutrients
and ingredients [3].

In the field of nutrition, understanding the particularities of
food components and the relationship between them is not an
easy task. The wide diversity of foods and their constituent
nutrients and ingredients presents significant challenges to di-
etitians, nutritionists, and other health-related professionals,
here called the domain specialists. Therefore, analyzing the
large amount of data associated with various food products
can be overwhelming and time-consuming when performed
manually by them. In this sense, technology comes in handy
to provide innovative solutions to face these challenges [4].

In the last two decades, several researchers have explored
food data analysis using automatic or semi-automatic in-
telligent strategies [5]. Some works have proposed food
embeddings to represent food items as continuous vectors

[6], data mining techniques in the animal and food industries
[7], and a scalable platform for recognizing traditional food
knowledge using deep learning models [8]. Whilst those
techniques accomplished their proposal, the interpretability
of machine learning models and the produced results might
not be intuitive and simple to understand by nutritionists.

A promising approach involves combining visualization
techniques and natural language processing (NLP) to present
complex data understandably and conveniently. Visualization
techniques aim at generating intuitive graphical representa-
tions of data, enabling researchers to identify trends, patterns,
and connections that, otherwise, might be overlooked. NLP
techniques are employed to extract meaningful information
from textual data, such as food descriptions, labels, and
nutritional content, enhancing the data analysis process. For
instance, visualization-based approaches have been intro-
duced to improve fraud detection in e-commerce transactions
[9], explore demographic representation in clinical trials [10],
and visualize high-dimensional data using bi-kernel t-SNE
[11].

To the best of our knowledge, there is a lack in the
literature regarding data visualization approaches designed
for analyzing food composition data. Most current methods
are not suitable to address the challenges posed by food
datasets, which are characterized by mixed and hetero-
geneous attributes related to nutrients (fat, calories, iron,
etc) and ingredients (lists of text spans). Nutritionists and
researchers would greatly benefit from interactive visual-
ization tools that can make the analytical process of food
composition data more efficient while retaining user control.
Visualization and NLP approaches also provide advantages in
this regard, providing intuitive ways to explore and interpret
large amounts of food-related data, enhancing the decision-
making process, and facilitating the process of knowledge
discovery.

Taking that into consideration, an interactive web-based
tool, named FoodVis, has been developed specifically for
domain specialists to address these challenges. This tool
employs advanced visualization techniques such as Principal
Component Analysis (PCA) [12], Uniform Manifold Ap-
proximation and Projection (UMAP) [13], a Graph-based
visualization [14], and Parallel Coordinates [15]. By lever-
aging these methods, we provide an intuitive and interactive
platform to explore food datasets. Furthermore, the tool uti-
lizes NLP to process product descriptions and ingredient lists
from the dataset, enhancing the visualizations and clustering



techniques. To ensure the tool’s relevance to specialists, we
formulated four tasks that guided its development: identi-
fying similar products, finding relationships between ingre-
dients, analyzing overall nutrient distribution, and labeling
the dataset using the graphical representation according to
specific ingredients.

The main contributions of this paper are described as
follows:

• Development of an interactive visual exploration system
that allows users to analyze food composition data using
visualization techniques and participate in the process
of knowledge discovery;

• Presentation of a structured representation of food data
that integrates both categorical and numerical columns
to be used as input to the visualizations and clustering
techniques;

• Integration of NLP techniques to extract meaningful
information from text-based food descriptions, labels,
and nutritional content.

This paper is structured as follows. Section II presents the
related works on the use of visualization and data mining
strategies for food data. Section III presents the task analysis,
detailing the steps considered to evaluate the visualization
tool’s usability. Section IV provides a thorough explanation
of each visual component. Section V describes the method-
ology employed in the development of the tool. Section VI
describes the experimental results focusing on the evaluation
of multidimensional projections and expert feedback. Section
VII and VIII conclude this paper discussing the findings and
limitations of our tool as well as possibilities for future work.

II. RELATED WORK

Several works in the field of data analysis have attempted
to develop visualization tools and techniques that would sim-
plify the extraction of significant information from complex
datasets. This section presents related works that have signifi-
cantly contributed to this area, focusing on both visualization
tools and techniques that are particularly relevant to food data
analysis.

Visualization tools have proven to be useful in various con-
texts, as proposed by Maçãs et al. [9]. The authors designed
ATOVis to improve the detection of Account Takeover fraud
in e-commerce transactions. This specific fraud is challeng-
ing due to the existence of fraudulent activity patterns that are
not identified by a machine learning algorithm when a fraud-
ster adapts his approach. To overcome this issue, the tool em-
ploys three innovative visualization approaches to highlight
the detailed fraud model. Specifically, task abstraction for
ATO detection, visualization models for transactional data,
and a multiscale timeline for a comprehensive overview of
the data are used to develop the model. To validate the tool,
a dataset with over 4 million e-commerce transactions was
considered. Furthermore, the results showed that, compared
to using spreadsheets alone, the tool significantly increased
the speed of detecting specific fraud patterns.

Similarly, another visualization tool, developed now by
Carmeli et al. [10], explores demographic representation in
clinical trials of FDA-approved medicinal products between
2015 and 2021. The authors were motivated by the diverse
representation of clinical trials for assessing drug safety and

efficacy, using publicly available data from the FDA’s Drug
Trials Snapshots (DTS) and disease incidence data from the
National Cancer Institute and Centers for Disease Control
and Prevention. Moreover, by scraping and aggregating data
from FDA sources and validating it against DTS reports,
the interactive web-based tool allows users to explore 339
FDA drug and biologic approvals across different aspects
such as demographics, approval year, and indication. It was
observed that this proposal not only improved the under-
standing and communication about clinical trial diversity but
also suggested improvements for data access, reporting, and
stakeholder engagement to enhance trial inclusion and health
outcomes.

Eftimov et al. [6] introduced a method for represent-
ing food items as vectors of continuous numbers (food
embeddings) to allow advanced food data analysis using
machine learning approaches. For that purpose, the authors
have applied the food embeddings in four tasks: automated
determination of food groups, detection of food classes
(raw, derivative, or composite), identification of similar food
concepts, and qualitative evaluation by an expert in the area.
The results demonstrated that these vector representations
significantly outperform traditional methods used in food
data analysis, highlighting the potential of food embeddings
to advance knowledge discovery in the field.

Dimensionality reduction techniques can be useful for
visualizing high-dimensional data since they map multidi-
mensional data into lower dimensions by preserving the re-
lationships between data instances [16]. Zhang et al. [11] pro-
posed a method for visualizing high-dimensional data with
out-of-sample extensions using bi-kernel t-SNE. It employs
Gaussian kernel functions and principal component analysis
(PCA) to approximate projections from high-dimensional to
low-dimensional spaces and effectively separate inliers and
outliers. The results show that bi-kernel t-SNE can extend
t-SNE projections to new data points with high accuracy,
achieving better outlier detection and visualization compared
to other dimensionality reduction methods. Finally, it demon-
strates that the proposed method significantly improves vi-
sualization quality and computational efficiency for handling
out-of-sample data.

Ana Belén Garcı́a [7] explored the use of Data Min-
ing (DM) techniques for obtaining valuable insights from
datasets in the animal and food industries, focusing on
examples within the cattle industry. This problem was ad-
dressed by a DM-based method, which involved collect-
ing, analyzing, and interpreting data to implement effective
controls in food safety, animal health, public health, and
environmental programs. Furthermore, Garcı́a detailed how
these techniques can manage and analyze data from various
sources, including animal identification systems, movement
records, and health data, to enhance traceability and food
supply chain management.

Mursanto et al. [8] proposed the development of a scal-
able platform for gathering and recognizing traditional food
knowledge using deep learning models. The techniques em-
ployed include collecting high-quality images of traditional
Indonesian foods, developing an automatic and scalable food
recognition system, and implementing multiprocess inference
services to handle efficiently simultaneous requests. The



results showed that the model with the best performance
achieved an AUROC score of 0.99, and the multiprocess
inference service improved the request success rate by up
to 70%. These findings indicate that the platform effectively
recognizes traditional foods and can be extended to include
additional food types and handle higher user requests.

These related works demonstrate different applications and
benefits of visualization tools and data analysis techniques
shown in various contexts and for different purposes.

III. TASK ANALYSIS

Nutritionists face the challenging task of analyzing the
composition of food, which is essential to promoting healthy
eating habits [17], formulating balanced diets [18], and even
evaluating the nutritional quality of food [19]. The growing
number of available food composition datasets is a concern
for nutritionists once they are able to analyze smaller datasets
considering the current practices. Specifically, the detailed
nutritional values and ingredients contained within these data
require efficient and accurate analysis methods.

Through a review of literature approaches for food com-
position data analysis and consultations with nutritionists
collaborating with this research, we identified some practical
difficulties and gaps in current analysis methods. To address
these challenges, FoodVis aims to support nutritionists and
researchers in four distinct tasks. These tasks are designed
to make it easier to identify patterns, trends, and complex
relationships within the data samples as follows:

T1: Identification of similar products: The specialist
should be able to identify and compare products
with similar nutritional content and composition.
This task provides a broad overview of the dataset,
enabling users to explore and detect clusters or
patterns within all the data. This global perspective
is important as it is the foundation for more focused
analysis.

T2: Analysis of nutrient distribution: The specialist
should be able to observe the distribution of nutri-
ents among products and identify patterns or out-
liers. This task allows users to explore deeper into
the nutritional aspects, highlight trends in nutrient
concentration, detect outliers, and compare nutrient
profiles within specific categories.

T3: Finding relations between ingredients: The spe-
cialist should be able to explore relationships be-
tween pairs of ingredients and identify common
combinations. This task aims to help the nutritionist
discuss the significance of the ingredient pairings
and understand how they might influence the nutri-
tional value and composition of food items.

T4: Labeling and coloring products: The specialist
should be able to label and color the products based
on different criteria to enhance the analysis of the
other tasks. It is integral to the entire workflow, en-
abling users to categorize and distinguish products
based on various descriptive attributes.

IV. VISUALIZATION TECHNIQUES

In this section, we describe each visual component that
are incorporated into FoodVis, in which Figure 1 reveals a

complete overview. The first visualization is the Global View,
composed of a Point Placement strategy, which displays the
entire dataset. The other two visualizations, Parallel Coor-
dinates and Graph-based Visualization, require a filtering
step to be properly used, which can be performed by cross-
filtering Visualization 1 and then selecting the points based
on their color or ingredients.

A. Point placement Visualization

The goal of point placement visualizations is to map high
dimensional objects to lower dimensional points in two-
dimensional space in such a way that similar objects are
placed by nearby points and dissimilar objects are placed
by distant points in the visual space [20]. As a result, the
visual analysis of the generated layout takes advantage of the
human perception system to interpret and identify the global
and local patterns of the underlying data according to their
similarity relationships. Two state-of-the-art were considered
to be included in the visualization: Principal Component
Analysis (PCA) [12] and Uniform Manifold Approximation
and Projection (UMAP) [13].

PCA is a statistical technique that reduces data dimen-
sionality by performing a linear mapping of the data in
a high dimensional space to a lower dimensional space
by taking into account the variances of each attribute and
their relations to generate the transformed data. Differently,
UMAP computes a weighted graph based on the similarity
relations for each pairwise distance, in which the graph’s
weights are determined in an optimization process that
defines the low dimensional embedding. Due to the distinct
approaches underlying these techniques, PCA proves to be
preferable when the data exhibits linear relationships, while
UMAP is more suitable for datasets with complex and non-
linear structures. In PCA, the axes represent the principal
components, which capture the most variance in the data.
In contrast, the axes in UMAP do not have a specific
meaning, as the technique focuses on preserving the relative
distances between points rather than aligning them to specific
components.

Figure 2 (a) and (b) illustrates a scenario when the
specialist selected to analyze only the macronutrients of the
food products (Protein, Carbohydrate, Fats, Fiber, and Sugar)
as well as the Energy (kcal) obtained [21]. It is possible
to see that categories are more distinctly separated in 2(b)
UMAP, “Protein Food” are mostly spread on the top of the
visualization while “Mixed Dishes” can be mostly observed
in the middle. Now for 2(a) PCA, the groups of points show
more overlap but it is still possible to see products from the
same categories tightly close together.

Furthermore, the specialist can interact with the visual-
ization to enhance their experience. These include zooming
in and out, panning across the plot, selecting groups of
points, and even downloading it as an image. Figure 2 also
shows a few interaction examples: 2(c) users can click on
legend items to show or hide specific categories or groups
of data points; 2(d) users can explore original information
such as the nutrients and ingredients, which can be useful
for understanding the composition of a food product.



Fig. 1. The system is composed of some components: (a) the attribute selection area where users can upload datasets, select attributes, and configure
visualization options; (b) overview of number of instances in the global and local view respective; (c) the point placement visualization displaying high-
dimensional data in a two-dimensional space; (d) selection options for visualization 2 and 3; (e) the parallel coordinates view allowing for the comparison
of nutritional attributes; and (f) the graph-based view illustrating relationships between pairs of ingredients.

B. Parallel Coordinates

The parallel coordinates view is a multivariate visualiza-
tion technique that displays data attributes as parallel axes,
with data points represented as polylines connecting across
these axes. It allows for the exploration and analysis of
relationships and patterns across multiple attributes simul-
taneously [15]. One of the benefits of this technique is
the ability to see groups of polylines converging to certain
value ranges on different axes. This analysis can be further
enhanced by using different colors for the lines and adding
interactive tools. Nonetheless, this visualization presents lim-
itations for very large datasets, which may cause too much
visual cluttering, making visual interpretation unfeasible.

In our tool, this visualization is designed to allow spe-
cialists to explore the distribution of various nutritional

components across different food items. In Figure 3 we can
see examples of the two different displays option discussed
in Section V-C. The user can observe either (a) all selected
points across parallel axes or (b) the mean of attributes cate-
gorized by color. In the first scenario all products categorized
as “Fats and Oils” were selected, whereas in the second
one, products from “Condiments and Sauces”, “Fruit”, “Milk
and Dairy”, “Mixed Dishes” and “Protein Foos” were also
considered.

Figure 3 also shows different ways the specialist can inter-
act with the visualization. They can 3(c) drag the polylines
along the axes to filter intervals, or 3(d) drag the axis names
across the plot to rearrange the order of the attributes. As
we can infer from these images, the high amount of “Energy
(kcal)” is directly associated with the quantity of “Total Fats”
in the selected category.



(a) (b)

(c) (d)

Fig. 2. Layouts produced by the point placement visualization considering only macro nutrients: (a) PCA; (b) UMAP. Interaction example on a PCA
Layout: (c) legend filtering; (d) hover information capture.

(a) (b)

(c) (d)

Fig. 3. Layouts produced by parallel coordinates considering display options: (a) all selection; (b) mean values. Interaction example on a parallel coordinates
layout where the user can: (c) filter by the range of attribute values; (d) rearrange the the order of attributes.



C. Graph-based Visualization

(a)

(b)

Fig. 4. Examples of sub graphs that can be observed in the Graph-based
Visualization when “Protein Foods” category is selected.

Graph theory is a branch of mathematics focused on the
study of graphs, which are structures used to model pairwise
relationships between objects [22]. A graph consists of nodes
(or vertices) representing entities, and edges (or links) con-
necting pairs of nodes, symbolizing the relationships between
them.

In the context of FoodVis, ingredients are represented as
nodes, and the edges denote the co-occurrence of these in-
gredients in different food items. This visualization technique
is useful for mapping complex networks of relationships, al-
lowing for the identification of connections and associations
that may not be easily seen through other forms of analysis.

Figure 4 illustrates a scenario where all products from
“Protein Foods” were selected. Analyzing the entire visual-
ization can be somewhat overwhelming if a great amount
of products is selected, but when we focus on nodes we
can note some patterns. For instance, in this selection, it
is possible to observe that (a) “fish” appear several times
and with different types like “tuna”, “salmon” or “perch”.
Similarly, (b) “egg omelet or scrambled egg” is also quite
common, when made with “margarine”, “butter” and “oil”.
The user can gain this insight by increasing and decreasing
the zoom in the visualization as well as clicking and dragging
on the plot.

V. METHODOLOGY

In this section, we outline the methodology employed in
the development of the FoodVis tool. We begin by detailing

the proposed workflow to display the visualizations, includ-
ing the steps from data upload to final output. We considered
two datasets to validate the visualizations and to guide the
tool’s development. They were chosen due to their focus on
nutrition and ingredient analysis for various food products.
After that, we explore the user interface, highlighting the
customization options available to enhance their experience.
Also, we describe the pre-processing techniques applied to
the data to improve the quality of the visualizations so that
we can finally provide a comprehensive analysis of each
visual component, emphasizing their unique purpose within
the system.

The system was developed with Python, leveraging Mat-
plotlib and Plotly for dynamic visualizations, while the
Streamlit framework ensures a smooth interface for navi-
gation and exploration. Furthermore, it incorporates scikit-
learn 1 for handling the dataset, offering natural language
processing capabilities for analyzing textual data.

A. Workflow

The workflow of FoodVis involves data loading, pre-
processing, and rendering visualizations based on user se-
lection as shown in Figure 5. Here is an overview of the
different components and their respective roles within the
system:

1. Dataset Upload: The tool enables users to upload
their food composition datasets. It is designed to
handle datasets that contain information on nutri-
ents, ingredients, and product descriptions.

2. Attribute Selection: Once the dataset is uploaded,
users select specific attributes they wish to analyze.
This step allows users to focus on relevant aspects
of the data, adjusting the visualizations to their
analytical needs.

3. Data Pre-processing: The data is pre-processed to
ensure it is in a suitable format for visualization.
This may include handling missing values, nor-
malizing data ranges, and transforming categorical
variables into numerical representations.

4. Visualization Generation: The tool then generates
up to three visualizations: a Global View and two
Local Views that are resulted from a filtering step,
all described in Section IV.

B. Datasets

Two food composition datasets presenting similar aspects
regarding their attributes were considered to design the
proposed method.

1) Vegan Food Composition Dataset: This dataset was
built according to the nutrition facts of vegan products labels
that are commercialized in Brazil. It is a small dataset
which presents only 276 data instances, described by 15
attributes as shown in Table I. The attribute [Ingredients]
refers to a list of ingredients (separated by comma) and the
attribute {Nutrients} corresponds to a set of single attributes
constituted by minerals, vitamins, protein, fat, etc. Moreover,
the food products were categorized as three types of meat,
three types of poultry, two types of fish, three types of dairy
and two types of pork.

1https://scikit-learn.org/

https://scikit-learn.org/


Fig. 5. Workflow of the interactive food data analysis tool. The workflow starts with (1) dataset upload from a excel file which is followed by (2) the
selection of attributes, including food components and visualization options. The next step is (3) preprocessing, which involves normalizing numerical and
categorical values. Finally, (4) the data is visualized through three different visual components.

TABLE I
DESCRIPTION OF THE VEGAN FOOD COMPOSITION DATASET.

Attributes Type Cardinality
Food category Nominal 1
Product’s name Nominal 1
[Ingredients] List of Nominals 1
{Nutrients} Numerical 12

2) USDA Food Composition Dataset: The United States
Department of Agriculture’s (USDA) Food Composition
Database2 contains information for various types of food
including the amounts of different vitamins and minerals
found in the foods as well as macronutrient percentages. This
dataset is a lot bigger, presenting 5, 431 data instances which
are characterized by 49 attributes. Table II describes the types
of all attributes. Each food code contained in the dataset is
linked to one WWEIA (What We Eat In America)3 category
number. A pre-processing step was required to access the
category name for each product.

TABLE II
DESCRIPTION OF THE USDA FOOD COMPOSITION DATASET.

Attributes Type Cardinality
Food category Nominal 1

Food code Nominal 1
[Ingredients] List of Nominals 1
{Nutrients} Numerical 46

The datasets used in this study consist of detailed nutri-
tional information and ingredient lists for a variety of food
items. These datasets were chosen to align with the tool’s
focus on nutrition and ingredient analysis, providing a rich
source of data for visualization and exploration. However,
it is possible to manually upload any dataset with similar
characteristics. By allowing users to upload a personalized
dataset, the tool becomes versatile and flexible to a wide
range of food composition datasets with diverse goals.

C. User Selection Interface

We designed a selection interface to allow users to cus-
tomize the visualizations according to their specific goals,
which can be seen on Figure 1(a). This step defines the scope
of the analysis, as it ensures that the generated visualizations

2USDA Food and Nutrient Database for Dietary Studies
3What We Eat in America (WWEIA) Food Categories

are aligned with the user’s goals, providing more relevant
insights [23].

The process begins with the categorization of products.
Users can assign colors to each product based on predefined
categories in the dataset, such as food groups or nutrient pro-
files. Alternatively, users can set the colors of symbols associ-
ated with the visualizations to the data instances according to
their criteria. This feature can be useful when the input data
is not originally labeled, but the user needs to incorporate
some type of categorization into the visualizations, such
as coloring points by combining ingredients. This strategy
enables nutritionists to include additional information based
on data attributes in the visualization, thus creating visual
distinctions to reflect their research focus.

Next, the user should select the food components to
analyze within the visualization according to his particular
goals. This step is essential for gradually selecting the most
relevant attributes in the dataset, such as specific nutrients,
ingredients, or other food characteristics. By focusing on par-
ticular components, users can interact with the visualizations
to highlight the most relevant data properties to their analysis.

Finally, the tool offers multiple customization options for
each type of visualization, which are further detailed. For
the point placement visualization, users can choose between
two dimensionality reduction techniques, PCA or UMAP,
depending on which method better fits their data. In the
Parallel Coordinates visualization, users can either display all
points across parallel axes for detailed comparison or view
the mean of attributes categorized by color, allowing for a
summarized view. For the graph-based visualization, users
can filter out specific ingredients they consider irrelevant and
set a threshold to display only ingredient pairs that co-occur
at least the defined number of times. Therefore, these three
levels of customization enable the proposed web-based tool
to meet a wide range of user needs, making it versatile and
robust for exploring food composition data.

D. Preprocessing

As food datasets can present attributes from different
types (numerical and nominal), a preprocessing is required
to generate a new structured representation that properly fits
as input to the visualization techniques [24].

After the dataset is uploaded, a text cleaning step is
required for nominal attributes to eliminate inconsistencies
that could otherwise lead to errors or misinterpretations.
When it comes to the Point placement Visualization, we
employed the one-hot encoding approach to transform the



“Ingredients” component to binary attributes once each food
product can present a variable number of values (ingredients).
The procedure consists of mapping each value of “Ingredi-
ents” to a new binary attribute indicating the presence or
absence of the underlying characteristic. For example, if a
food product has the “water” and “onion” as ingredients but
does not have soy flour then both water and onion will be
represented as 1 while soy flour 0. This step is necessary
since only numerical attributes are allowed as input to this
visualization. Moreover, the remaining numerical attributes
presenting real values were normalized, in which all obtained
values for each attribute are in the range [0, 1].

The Parallel Coordinates does not require data preprocess-
ing since this technique handles fewer attributes than the
other visualization techniques considered. Moreover, Parallel
Coordinates maps each attribute to a vertical axis in the
visual space so that it is straightforward to draw the polylines
representing each sample of the dataset.

The Graph-based Visualization demanded an additional
data preprocessing step. The goal of this visualization is to
create a graph where each node represents an ingredient,
and the edges indicate other ingredients that co-occur in the
food items, with the weight reflecting the frequency of these
connections, as can be illustrated on Figure 6. To achieve
this, each pair of ingredients is processed, and a threshold
is applied so that only ingredient pairs that co-occur more
than a user-defined number of times are displayed. Users
may also filter out specific ingredients to do not appear in
the visualization if they judge to be irrelevant in the context
of the analysis. For example, the specialist can omit “water”
as it appears in most products.

Fig. 6. Example of a generated graph representing co-occurrence of
ingredients in distinct foods of the dataset.

VI. EXPERIMENTAL RESULTS

The specialist’s performance using the proposed tool de-
pends on the quality of the produced layouts. Thus, we
performed experiments aiming to evaluate the quality of the
visualization techniques discussed previously in Section ??.
The experiments used both Vegan and USDA food composi-
tion datasets, and state-of-the-art metrics in the visualization
field were considered for that purpose.

A. Evaluation of Multidimensional Projections

For the multidimensional projections introduced on Figure
1(c), four state-of-the-art and recent dimension reduction
techniques were assessed: Principal Component Analysis
(PCA) [12], Uniform Manifold Approximation and Projec-
tion (UMAP) [13], t-Distributed Stochastic Neighbor Embed-
ding (t-SNE) [25] and TriMap [26]. PCA was chosen due to
its popularity in data analysis tasks, while t-SNE, UMAP
and TriMap were considered due to the their abilities when

dealing with data that contain different types of attributes
and good discriminability when forming groups in the layout
[27].

In order to evaluate the quality of the selected visualization
techniques, we followed two steps: finding the best choices
of hyperparameters in each method and then comparing
the results with two state-of-the-art evaluation metrics. Fol-
lowing the quality assessment strategy presented in related
researches [28], we chose the Silhouette Coefficient (SC)
to compute the separability between groups of points [29]
and the Trustworthiness to measure the preservation of the
local structure and similarity relations between neighbor data
instances [30].

To compute SC, the points in the visual space must be
clustered using an algorithm. Here, we chose K-Medoids
algorithm to determine K clusters since medoid centers are
more appropriate representatives than mean centers due to the
presence of categorical values in the dataset. The Euclidean
distance is considered for K-Medoids and for computing
the silhouette coefficient. The analysis of the clustering
results was performed by running K-Medoids and varying K
within the range [2, 30], in which the silhouette coefficient is
computed for each obtained clustering. Finally, we compute
the mean and standard deviation from those values.

Table III describes the obtained SCs for the visualization
techniques on the Vegan Food Dataset. TriMap and UMAP
achieved the higher silhouette scores, while PCA and t-
SNE obtained lower scores. These results indicate that the
clusters formed are the most distinct and well-separated for
TriMap and UMAP. It is worth noting that SC is independent
regarding the label “Category”, thus emphasizing that the
focus is to analyze the separability between the groups of
points in the layout.

TABLE III
EVALUATION METRICS FOR VEGAN FOOD COMPOSITION DATASET

Visualization Silhouette Coefficient
Techniques Mean Standard Deviation

t-SNE 0.4407 0.0727
UMAP 0.5016 0.0668
PCA 0.4176 0.0469

TriMap 0.5513 0.0425

Table IV describes the obtained silhouette coefficients for
the visualization techniques on the USDA’s dataset. TriMap
yielded a higher SCs value, while t-SNE achieved a poor
performance. We can see from Figure 8(d) that while this
tight clustering on TriMap’s projection contributed to a high
SC value, it could also limit the interpretability of the
visualization since it requires zooming in to differentiate
between the points.

TABLE IV
EVALUATION METRICS FOR USDA FOOD COMPOSITION DATASET

Visualization Silhouette Coefficient
Techniques Mean Standard Deviation

t-SNE 0.3298 0.0143
UMAP 0.4161 0.0215
PCA 0.3935 0.0236

TriMap 0.6080 0.1766



(a) (b) (c) (d)

Fig. 7. Layouts produced by the visualizations based on point placement by considering both ingredients and nutritional values of the Vegan Food Dataset:
(a) t-SNE; (b) UMAP; (c) PCA; (d) TriMap.

(a) (b) (c) (d)

Fig. 8. Layouts produced by the visualizations based on point placement by considering both ingredients and nutritional values of the USDA Food and
Nutrient Dataset: (a) t-SNE; (b) UMAP; (c) PCA; (d) TriMap.

As for the evaluation using the trustworthiness metrics, for
each object in the high dimensional space, the proportion of
its k-nearest neighbor is computed and compared in relation
to the k-neighbor points in the visual space for the corre-
sponding 2D point. Finally, we compute this neighborhood
preservation rate for a neighborhood value k by averaging
the precision for all data instances. This rate value lies in
the range [0, 1], in which higher values are related to better
preserving the neighborhood structure of data instances in
the visual space.

Figure 9 presents the results of the trustworthiness for
the considered multidimensional visualizations. Figure 9(a)
suggests that PCA and TriMap present better preservation of
original neighbors in the low dimensional space for the Vegan
Food Dataset, indicating that the local structure and similar-
ity relations were better retained than UMAP and t-SNE.
Nevertheless, Figure 9(b) indicates better results with t-SNE
for a reduced number of neighbors, while UMAP proved
to be a better choice for a larger number of neighbors. We
can observe as well that the overall value of Trustworthiness
increased for USDA Food Composition Dataset, probably
due to its considerable size.

B. Domain Expert Evaluation and Feedback

Much research in the literature considers expert reviews
to assess the usefulness of visual analytics systems [31],
[32]. Likewise, we conducted a pilot interview with three
domain experts, separately, holding a PhD in Nutrition,
and currently serving as professors and researchers at the
University of Brası́lia (UnB). Before the interviews, each
participant received a detailed tutorial to familiarize them
with the purpose of our tool, its workflow, and the datasets to
be used in the analysis. At the beginning of each interview,
we dedicated a few minutes to provide a brief tutorial to
address any remaining questions.

(a)

(b)

Fig. 9. Neighborhood preservation based on trustworthiness: (a) Vegan Food
Dataset; (b) USDA Food and Nutrient Dataset.

Each interview lasted approximately 30 minutes and was
conducted via online video conference. The participants
accessed the tool remotely through Streamlit’s Community
Cloud 4 platform. During the sessions, the experts were asked
to perform Tasks 1-4, as described earlier in Section III, with
the interviewer ensuring that all instructions were clear. After
that, we opened space for participants so that they could give
the tool their overall evaluation, impressions, criticisms, or
suggestions.

4Streamlit’s Community Cloud



1) Observations: To keep the analysis consistent, each
participant selected the same food components for analysis:
Energy, Protein, Carbohydrate, Total Sugar, and Total Fat.
The ingredients were set for hover information, and the
point placement visualization used PCA, as it was the most
intuitive technique for some participants.

For Task 1, which involved the identification of similar
products, participants were given the freedom to explore the
point placement visualization independently. They found the
process of identifying and comparing similar food items to be
both intuitive and straightforward. One participant noted that
products within the “Protein Foods” category tended to group
closely due to similar values for protein and carbohydrates,
but some outliers, such as canned beans, appeared more
distant due to lower protein content. Another participant
was satisfied to observe similarities between products from
different categories that would not be easily seen without
this type of visualization. Lastly, the final participant pointed
out how the PCA visualization showed that lower nutritional
value items were positioned to the left, with more caloric
products located towards the right, corresponding to cate-
gories like “Fats and Oils, Snacks and Sweets, and Sugars”
being situated at the extremes.

For Tasks 2 and 3, participants focused on analyzing the
“Protein Foods” category. One participant mentioned that by
selecting specific ranges in the second visualization, they
could observe some patterns such as products in the range
of 200 and 300 kcal containing between 10 and 30 grams of
protein and low carbohydrates, while more caloric products
in the range of 600 to 700 tended to have the same amount
of protein although higher fat content. Some initially found
it challenging to analyze the data due to its large size (867),
but the tool’s interactivity was highly helpful. Regarding
the third visualization, all of them found it pretty intuitive
to understand the connections between the ingredients, but
could not discover many insights due to the intrinsic nature of
the dataset. They also suggested that while the USDA dataset
was large and generic, the tool would become significantly
more useful when applied to more focused datasets. One even
mentioned that the graph-based visualization would be useful
in their research to analyze the formulation of ingredients
in a specific category and verify which formulation is most
common.

For Task 4, which involved labeling and coloring products,
the feedback varied. One participant appreciated the concept
of reducing annotation time, although they felt that the
process was still somewhat manual and could benefit from
further automation. Another participant found the function-
ality useful for categorizing products more quickly after
conducting a preliminary analysis of the dataset. However, a
third participant was unsure how this feature could apply to
their current research but recognized its potential utility in
other fields.

Throughout the interviews, the participants provided sev-
eral additional comments and suggestions. All participants
found PCA more intuitive and easier to interpret compared to
other techniques. They also inquired whether the tool could
support analysis in Portuguese, as it is their first language.
Some suggested adding customizable color schemes to adapt
the tool for specific purposes, such as aligning it with some

journal format required for publication. Furthermore, the
option to switch between light and dark modes, a feature
offered by Streamlit, was well-received. Several participants
suggested improving ingredient selection by allowing users
to filter for key ingredients, such as “chicken” or “pork”
rather than selecting each specific part (e.g., legs, wings).
They also suggested adding a feature that shows which points
fall within the selected filter and mentioned the potential ben-
efit of including standard deviation when visualizing average
component values, as there could be significant variations in
certain categories. However, the overall feedback was very
positive and they expect to utilize this tool soon in their
activities.

VII. DISCUSSION

The results obtained and the feedback from experts showed
that the FoodVis tool can assist nutrition specialists in vi-
sually exploring food composition data. The visualizations
provided intuitive insights into food composition data, en-
abling the comparison of products based on their nutrients
and ingredients. However, some limitations were observed,
and potential improvements were suggested for future work.

For the point placement visualization, even though PCA
did not present the best metric results, the experts found this
dimension reduction technique to be particularly intuitive,
noting that it offered a clear and understandable representa-
tion of the data. As for the parallel coordinates view, the
experts suggested adding a cross-filtering option to allow
them to track the points selected within the corresponding
range, providing more transparency in the analysis process.
Additionally, experts suggested including standard deviation
when visualizing average component values. This enhance-
ment would allow for a more nuanced view, revealing any
significant variations within specific categories that could
otherwise be overlooked.

For the graph-based visualization, some challenges arose
due to the overlapping of nodes in the layout. Adding
new preprocessing steps, such as tokenization or stopword
removal, could minimize this issue by reducing the number
of nodes displayed. Furthermore, participants suggested im-
proving the ingredient selection process by allowing users to
filter for key ingredients, such as “chicken” or “pork” rather
than requiring them to select each specific part (e.g., legs,
wings).

Finally, regarding the feedback provided from the task of
labeling and coloring products, a promising feature to be
included in future work is incorporating machine learning
techniques to classify products based on specific prompts.
For instance, the tool could classify products as “vegetarian”
or “non-vegetarian” based on their ingredients, or group
products according to sugar content, which would greatly
enhance the tool’s ability to address specific analytical needs.

VIII. CONCLUSION

Analyzing food composition data is not a straightforward
task, but it can provide new insights into nutritional and
ingredient content. Our web-based tool uses a structured
pipeline to assist specialists for this purpose, starting from
dataset upload, preprocessing, and the generation of three
visualizations, each of them addressing specific tasks: point



placement visualizations to assist identifying similarities
between food products; parallel coordinates to visualize
nutrient distribution patterns; and graph-based visualizations
to reveal relationship between data - in our case, ingredient
co-occurrences.

Both qualitative and quantitative experiments were con-
ducted to evaluate the quality of the visualizations. The
evaluation of multidimensional projections revealed better
cluster separability for TriMap technique, while PCA and
UMAP presented better preservation of original neighbors
depending on the chosen dataset. Domain expert interviews
were conducted to complement the evaluation step and assess
the tool’s usability and utility, providing additional areas for
improvement.

Future work shall address the suggestions and comments
from the experts, and incorporate machine learning tech-
niques for product classification, aiming to further extend
the tool’s usefulness in nutrition science. Moreover, it would
be valuable to conduct further user experiments with partic-
ipants unfamiliar with the tool, to obtain impartial feedback
from a more diverse audience, including those not directly
involved with the tool’s development, and improve its overall
accessibility and usefulness.
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