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Resumo

Com o rápido aumento na popularidade de dispositivos vestíveis, como smartwatches,
aplicativos de monitoramento de saúde estão ganhando destaque. Esses aplicativos cos-
tumam utilizar dispositivos vestíveis para captar sinais úteis no diagnóstico das condições
de saúde de um indivíduo, como o fotopletismograma. O método de obtenção desse
tipo de sinal, a fotopletismografia, é compacto, não-invasivo e econômico. Apesar desses
benefícios, a fotopletismografia é particularmente suscetível a artefatos de movimento e
interferências ambientais. Esses problemas podem deteriorar a qualidade do sinal, o que
prejudica significativamente a eficácia dos aplicativos que o consomem. Portanto, avaliar
a qualidade dos sinais é essencial nas aplicações de monitoramento de saúde. Para esse
fim, algoritmos de aprendizado de máquina podem ser aplicados. Este trabalho apresenta
um método inovador para avaliar a qualidade dos sinais de fotopletismografia, realizado
através da fusão de projeções de sinais e técnicas de visão computacional. Para ser mais
preciso, o sinal unidimensional é projetado em um conjunto de representações bidimen-
sionais. Isso pode ser feito usando técnicas de imagem de séries temporais, como Gramian
Angular Field, Markov Transition Field e Recurrence Plots, além de agregar seus resulta-
dos, o que chamamos de “Projection Mix”. Essas projeções foram combinadas com vários
modelos de visão computacional. Então, esses modelos foram treinados e testados na
base de dados de sinais fotopletismográficos de smartphones da Universidade de Brun,
com hiperparâmetros selecionados através de busca heurística. Os resultados indicaram
que o Recurrence Plot e o Projection Mix geralmente superaram as outras projeções us-
adas no estudo. Além disso, os métodos baseados em projeção alcançaram resultados
comparáveis a classificadores 1D de séries temporais. Por exemplo, a combinação de
Wide ResNet com Projection Mix alcançou uma pontuação média de Cohen Kappa de
95,5% (remapeada de [−1, 1] para [0, 1]) com um desvio padrão de 0,101.

Palavras-chave: Inteligência Artificial, Aprendizado de Máquina, Aprendizagem Pro-
funda, Visão Computacional, Avaliação da Qualidade de Sinais, Sinais Biológicos, Foto-
pletismografia, Projeção de Séries Temporais
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Abstract

With the rapid rise in popularity of wearable devices like smartwatches, health monitoring
applications are gaining traction. Those applications commonly utilize wearable devices
to record signals that are useful in the individual’s health condition diagnostic, such as
the photoplethysmogram. That signal extraction method, the photoplethysmography, is
compact, non-invasive, and economical. Despite those benefits, the photoplethysmogra-
phy is particularly susceptible to motion artifacts and environmental interferences. Those
issues can greatly impair quality of the signal, which compromises the performance of the
applications that consume it. Therefore assessing the signal quality is essential for en-
abling health monitoring applications. To achieve this, machine learning algorithms can
be applied. This work presents an innovative method for assessing the quality of photo-
plethysmograph signals, accomplished through a fusion of signal projections and computer
vision techniques. To be more precise, the one-dimensional photoplethysmograph signal
is projected to a set of bidimensional representations. This can be accomplished using
time series imaging techniques, such as Gramian Angular Field, Markov Transition Field
and Recurrence Plot, and by aggregating their results, which is referred to as “Projec-
tion Mix”. We combined those projections with several computer vision models. Then, we
trained and tested them on the Brno University of Technology smartphone PPG database,
with hyperparameters selected through heuristic searching. The results indicate that the
Recurrence Plot and Projection Mix generally outperformed Gramian Angular Field and
Markov Transition Field across most compute vision models. Additionally, projection-
based methods achieved results comparable to 1D time series classifiers. For instance, the
combination of Wide ResNet with Projection Mix achieved a K-Fold mean Cohen Kappa
score of 95.5% (rescaled from [−1, 1] to [0, 1]) with a standard deviation of 0.101.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Computer Vision,
Signal Quality Assessment, Biological Signals, Photoplethysmography, Time Series Imag-
ing
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Chapter 1

Introduction

The human civilization constantly seeks improvements in life longevity and quality. One
of the main research areas in that regard is medicine, which provides means of preventing
and remedying accidents and diseases. Diseases, specifically, can deteriorate a person’s
health silently. An example of that is the presence of atheromas, which, when untreated,
can lead to lethal events such as strokes [1]. For that reason, it is important to periodically
search for professional medical advice to detect diseases at early stages. Some diseases
depend on early diagnosis to be even treatable, such as cardiac amyloidosis [2]. However,
individual professional service is expensive for some people and is unresponsive to sudden
changes when the patient is not in a hospital dependecy. Therefore, there is a demand
for an automatic and constant health monitoring method.

A promising solution for that demand is the continuous healthcare monitor applica-
tions enabled by wearables. That approach is particularly possible due to the advent of
internet of things (IoT), which is, in concept, a scalable network of interconnected devices
that exchange information possibly acquired by sensors [3]. It is interesting for healthcare
when those sensors extract environmental and physiological data that can hint the patient
conditions. For example, certain ECG patterns can indicate a post-ischemic state [4]. Ex-
amples of such data are body temperature, blood pressure and neural activity. We can
obtain those indicators in the patient’s daily life through wearable devices that resemble
quotidian objects, with the shape of belts, bracelets, rings, shoe soles, clothing, etc. [5]. A
popular example of such wearables is the smartwatch that, similarly to the smartphone,
can execute multiple applications, such as recording physiological data. Since devices like
those support wireless connection, they can send that data either directly to a medical
staff or, as the now popular big data trend promotes, to an automatic intelligent system
in the cloud. That intelligent system can, among countless patients, choose special cases
that need attention. Therefore, the remote healthcare promises easier than ever access to
key physiological signal data.

1



Despite the advantages of continuous health monitoring using smart wearables, the ex-
traction of physiological signals is not free of interferences. Photoplethysmograph (PPG)
signals, for instance, is under the influence of changes in illumination, low sensor quality,
user skin physiognomy, adverse sensor positioning, etc. These influences can impair the
signal to the point that its use becomes unfeasible. Moreover, PPG signals are highly sus-
ceptible to artifacts generated by motion or noise sources. For instance, wrist movements
can disrupt the signal in a smartwatch PPG sensor [6], though the degree of distortion
varies with the signal power and wavelength. These variation can cause high-amplitude
distortions that not only can destroy the core information, but can also produce mislead-
ing events. These events are unacceptable in healthcare applications since misdiagnosis
can expose the healthy patient to unnecessary risk, while lack of diagnosis can leave the
unhealthy patient unattended. For those reasons, it is of extreme importance to verify
the quality of the signal before proceeding to further analysis on the signal. That task is
known as signal quality assessment (SQA) and this thesis proposes a method to achieve
that goal for PPG signals.

1.1 Problem description

Traditionally, the two most frequently used methods for evaluating the cardiac cycle and
monitoring heart rate are electrocardiogram and photoplethysmograph. The electrocar-
diogram (ECG) has long been considered the gold standard for detecting heart rate and
diagnosing cardiovascular conditions. It monitors the electrical impulses responsible for
heart muscle contractions through electrodes attached to the body, usually positioned
on the chest. Although ECG is the mainstay for cardiac assessments, it is not typi-
cally suitable for long-term monitoring or challenging environments due to its intricate
data collection process. Conversely, PPG offers a more practical approach for observing
cardiorespiratory metrics. It employs compact optical sensors and a light source to de-
tect variations in skin color caused by blood flow following each heartbeat. The PPG
measures the blood flow rate in tissues (e.g. wrist), influenced by the heart’s pumping
action, making it particularly effective for peripheral circulation monitoring, especially
with wrist-worn or finger-mounted devices. Since both ECG and PPG gauge cardiovas-
cular and circulatory parameters, they are interconnected, as depicted in Figure 1.1. The
similarity in the signal periods of both methods suggests that either can be used to ana-
lyze metrics such as the inter-beat interval (IBI). Additionally, Figure 1.1 emphasizes the
reference points often utilized to assess health indicators related to blood pressure, oxygen
saturation, and more. Thus, the PPG is potentially a good alternative to the ECG.

2



PPG

ECG

Time

Figure 1.1: Inter-beat interval estimation using RR interval from electrocardiogram and
the corresponding peak-to-peak interval from photoplethysmograph.

In more detail, PPG signals are optical signals that result from the interaction of light
with human tissue. To extract the signal, two basic components are needed. The first is
a light source, which emits light towards the tissue. An example of a light source is the
light-emitting diode (LED). The second component is a light receptor, which measures the
light intensity. While a photodiode is commonly used for this purpose, cameras have also
been employed. For signal extraction, these two types of devices are positioned to exploit
one of two light interaction principles, as illustrated in Figure 1.2. The first principle
is light reflectance, where human tissue reflects incoming light rays. In this case, the
devices should be positioned so that the tissue is not between them. An example of this
application is smartwatches, where all devices are positioned below the main structure of
the watch. The second principle is light permeability, where light can traverse the human
tissue. Here, the devices should be placed such that the tissue is between them. An
example of this setup is fingertip pulse oximeters. Once the setup is complete, the PPG
signal can be extracted.

Typically, PPG signals are prone to degradation due to various factors, being motion
artifact a relevant one among them [6]. Excessive movement of the PPG sensor can cause
significant distortion in the waveform, which affects the accuracy of subsequent signal
analysis. These artifacts obscure or distort vital information within the signal. Figure 1.3
illustrates examples of both reliable and distorted PPG signals. In that figure, the reliable

3



Figure 1.2: Schematic illustration of a photoplethysmograph sensor. On the left, the
signal is obtained through the reflectivity of light by human tissue, while on the right,
it is obtained through the permeability of light through human tissue. This figure is a
courtesy of Lucafó et al. [7].

signals exhibits symmetrical, well-defined, and more consistent patterns. In contrast, the
distorted signals present irregular, asymmetrical patterns with reduced consistency and
greater variability between periods. Those distorted signals can lead to incorrect decisions
and misclassification, which is unacceptable in health and wellness applications. As a
result, methods for assessing PPG signal quality are essential to prevent misinterpretation
by differentiating between reliable and noisy data.
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Figure 1.3: Example of reliable (in blue) and distorted (in red) photoplethysmograph
signals. These signals belong to the Brno University of Technology smartphone PPG
database [8].

1.2 Contributions of this work

This work elaborates a quality assessment framework for PPG signals which leads to
several key contributions. Firstly, it proposes a new and effective approach for encoding
time series into a set of 2D images. More specifically, the proposed method aggregates
different projections into a composite hyperspectral image. This approach is based on the
assumption that this aggregation provides better descriptiveness than using only a single
projection. Additionally, this work evaluates the proposed approach in combination with
a wide range of computer vision (CV) models, which previous works have not done. This
evaluation provides insights into which types of models perform well with the time series
matrix embedding technique. Thirdly, the thesis explores a novel idea of transfer learning
using a dataset outside the SQA domain, specifically the ImageNet dataset [9]. Finally,
the thesis reports experiments conducted on a publicly available labeled dataset, named
Brno University of Technology smartphone PPG database (BUTPPG) [8], which enhances
the reproducibility and comparability of the experiments. The lack of reproducibility is
a noticeable problem in the field currently, and the systematic empirical study conducted
in this work can be useful for the community.

1.3 Organization of this thesis

This undergraduate thesis is organized in five chapters, including this introduction. Chap-
ter 2 contains an overview of the SQA ecosystem and its quality assessment methods.
[blue]Chapter 3 describes the contributions of this thesis, containing all the proposed qual-
ity assessment methods. Chapter 4 contains the experimental setup, simulation results

5



and comparisons of the proposed SQA quality assessment methods and other state-of-
the-art methods. Finally, Chapter 5 presents the conclusions of this work.
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Chapter 2

Literature review

This chapter is dedicated to exploring similar case studies and works in the area of signal
quality assessment (SQA), especially for cardiological signals. SQA involves a wide range
of problems in signal processing technologies, and it is not exclusive to the medical domain.
Actually, its origins relate to the old communication systems, when researchers published
their first works on the information theory in the 1920s and 1930s. One example of such
foundational publications is the work of Rice [10], in which he analyzes the statistical
properties of communication device noises. Another example is the work of Shannon [11],
which introduces fundamental concepts in communication systems. In that millennium,
studies already used the concept of SQA [12, 13]. We can see samples of this in the 1980s,
such as the work of Stehle [12], which proposed an algorithm for assessing the quality of
shortwave broadcast signals, trying to objectively measure the human perception of the
signal message intelligibility. Some of its conclusions are useful in the SQA in clinical
contexts, such as the high degree of subjectivity in the human idea of quality. This makes
labeling datasets properly fundamental to reflect this concept of quality in the proper
evaluation of the developed SQA algorithms.

Past the 20th century, the SQA of physiological signals begin to become popular.
Particularly, the early 2000s had several works in the subject. One of them is the work of
Wang et al. [14], which proposed a ECG SQA method based on the difference between
the areas of distinct QRS complexes. The work proposed comparing the cumulative
histograms of different ECG leads to assess its qualities. Later, Li et al. [15] suggested
the combination of multiple quality indices and heart rate (HR) to assess ECG. Another
work, by Deshmane et al. [16], posed the thresholding based on the Hjorth parameters [17]
to assess the quality of PPG signals. Afterwards, Zhang et al. [18] elaborated an arterial
blood pressure (ABP) signal quality assessment metric based on the end diastole slope
sum (EDSS) and slow ejection slope sum (SESS) features. Through those works, the
researchers proposed quantifying the SQA in a metric [15, 16, 18]. A name that they used
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to refer to this metric was signal quality index (SQI) [15, 16].

2.1 Quality assessment of physiological signals

Among the variety of physiological signals, the ECG is prevalent in the literature. This
signal has multiple applications, such as disease classification, heartbeat type detection,
biometric detection and emotion recognition [19]. There are plenty of works in the SQA
of ECG signals. In one of them, Naseri et al. [20] proposed two features for the estima-
tion of a classification SQI of multi-channeled ECGs. One feature consists of verifying if
two energy-like indices, measured in decibels, are within an admissible range. The other
feature result from randomly choosing a target lead, feeding a feed-forward neural net-
work (FFNN) with array of derivatives of all leads to reconstruct the targeted lead and
finally comparing the original target lead to its artificial version with correlation analysis.
Therefore, the ECG is present in the SQA literature.

Also, there are other publications on the ECG SQA. For instance, in 2017, Orphanidou
et al. [21] introduced a feature based on the extraction of the heart rate variability (HRV)
of ECG signals. The method decomposes this new signal into wavelets with different
frequency ranges and calculates the entropy of each of them, forming a feature vector.
This vector feeds a support vector machine (SVM), which classifies the signal as acceptable
or not. Later, Shahriari et al. [22] developed an image-based feature that measures
the structural similarity measure between the input plot image, containing each signal
channel Cartesian graph, and multiple template plot images of similar shape selected
from the training dataset by using clustering analysis. One year later, Moeyersons et al.
[23] proposed transforming the signal using the auto correlation function and extracting
simple features from it. In 2024, Huerta et al. [24] generated phase space plots, such
as Poincaré plots, and discretized them into a grid where each cell is the logarithm of
the number of points contained in that cell. Thus, the SQA literature for ECG ranges
multiple works.

Besides the relevance of the ECG, the PPG has increased in popularity as an alterna-
tive to it. In fact, its number of related articles published from 2013 to 2023 has increased
by 176% [6]. However, as previously presented in Chapter 1, the PPG is also suscepti-
ble to noise, fact that led to the development of PPG SQA methods. A sample of this
literature is the work of Li et al. [25], which poses the measurement of a SQI through
the application of the dynamic time warping (DTW) technique to measure the signal
disparity to an established template. These authors then fed this SQI and some others
to a multi-layer perceptron (MLP) and to a self-made rule function, predicting a unique
SQI. Experiments on private annotations on the MIMIC II dataset resulted on the MLP
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achieving the highest accuracy, 95.2%. Another sample is the work of Papini et al. [26], in
which they proposed a method that first segments the input signal by finding all negative
local minima points. Then, the method creates a template signal by calculating the DTW
barycenter average of the signal segments. Finally, it calculates the SQI for each beat
by comparing them to the template. This method obtained above 95% sensitivity and
positive predictive values on two public datasets. Therefore, it is possible to achieve good
predictive quality in the SQA of PPGs.

According to Such [27], SQA methods in biomedical signals generally fall into two
categories: single-parameter and multiparameter approaches. Unlike single-parameter
methods, multiparameter techniques utilize additional sensors that provide information
related to the motion or the PPG itself. Examples of these additional sensors include
accelerometers [28, 29] and optical source-detector pairs with peak responses beyond the
red-infrared wavelength spectrum [30]. Some studies generate reference noise signals in-
ternally from the impaired PPG segments, reducing the need for extra hardware [31, 32].
Additional sensor channels can also transmit data about the same or a similar physio-
logical indicator that reacts differently to artifacts. Nevertheless, the use of measured or
synthetic reference signals to detect contaminated PPG segments often involves adaptive
filtering, which, aside from its high computational and mathematical complexity, may
require significant amounts of data and time to reach an optimal solution.

In contrast to the techniques mentioned earlier, SQA methods that do not rely on
measured or synthetic reference signals (i.e. referenceless methods) may be better suited
for wearable, real-time applications, since they eliminate the need for additional data
collection and processing. In this context, machine learning (ML) has made significant
strides in this area by enabling the classification of PPG signals into “reliable” or “unreli-
able” based on the extraction of distinguishing information and the recognition of complex
patterns, either automatically or with minimal human involvement [33].

One characteristic of the PPG SQA literature is the presence of both supervised and
unsupervised machine learning approaches. Supervised learning involves learning features
with the presence of labels. This allows the machine learning model to have access to more
information in the learning process, but at the cost of more training computational ex-
pense. Multiple works in the SQA literature are supervised. Per example, Mohagheghian
et al. [34] introduced a method to improve feature selection algorithms by ensembling fea-
ture subsets into a majority voting schema. A machine learning algorithm determines the
voting threshold, such as AdaBoost, SVM, k-nearest neighbors (KNN) and discriminant
analysis. Among those predictors, the AdaBoost presented the best performance in terms
of area under receiver operating characteristics curve (ROC AUC) and accuracy. Furthe-
more, the method achieved accuracies of 91.55%, 92.29% and 95.86% on, respectively, the
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DeepBeat, UMMC Simband, and MIMICIII datasets. This result is competitive to other
three compared methods, despite the labeled quality scores are not publicly available.
As another example, Tiwari et al. [35] proposed transforming the signal into a modula-
tion spectrogram representation and, then, extracting features from it for subsequently
feeding them to a machine learning model. Experiments compared the method to vari-
ous SQIs by feeding them to a logistic regressor. Tests involved three wavelengths: red,
green and infrared. The results showed that the method outperformed the others SQIs
by 21.3% balanced accuracy (BACC) for green, 21.6% BACC for red, and 19.0% BACC
for infrared wavelengths. A final example is the work of Miranda et al. [36], in which the
SQA results from the application of a interval type-2 fuzzy logic system. Experiments on
a private dataset lead to 77% and 93.72% Matthew’s correlation coefficient (MCC) and
accuracy (ACC), respectively. However, one observation is that most of the experiments
used originally unlabeled datasets, which make those results unreproducible.

On the other hand, unsupervised learning dismisses labels in the learning process.
Even though this approach gives less information to the trained model, this makes the
model independent of specialists guidance and its biases. As opposed to most works in
the SQA literature, some works present unsupervised methods. For example, Singha et
al. [37] propose extracting entropy and statistical features from the input signal and
feeding them to a self-organizing map. Experiments on a private dataset resulted in
92.01% accuracy in ternary classification. As another example, Mahmoudzadeh et al. [38]
proposed extracting features from the time and frequency domains and feeding them to a
elliptical envelope algorithm. This method achieved 97% and 93% F1-Score on “reliable”
label for, respectively, intra and inter subject testing on a private dataset. Additionally,
the combination of the supervised and unsupervised methods can produce semi-supervised
methods, such as the method of Feli et al. [39], which feeds features to a semi-supervised
one class SVM, training it only on samples labeled as “reliable”. Comparing this semi-
supervised approach to rule-based, unsupervised, supervised and deep learning methods
lead to the proposed method surpassing all of them in terms of F1-Score for “reliable”
class with 99% value on a private dataset. However, likewise the supervised works, most
datasets and its testing labeling are not public.

Another characteristic of the PPG SQA literature is the existence of the cardiac ar-
rhythmia (CA) identification problem. The CA is the presence of an anomalous cardiac
rate or rhythm without a physiological reason [40]. This medical condition is an obstacle
in the design of SQI, since, in contrast to arrhythmic individuals, normal cardiac signals
are periodic. Some features assume that the signal is periodic. This assumption can re-
sult in signals with arrhythmia being rejected as unreliable signals, leaving patients with
the CA condition misdiagnosed. Pereira et al. [41] conducted experiments on a private
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dataset that contains cases of atrial fibrillation (AF), a type or arrhythmia. In this ex-
periment, 40 features used in previous studies fed a SVM, which achieved an average
accuracy superior to 94%. That accuracy was far higher than other existing methods,
which the researchers also tested. Therefore, abundant feeding a machine learning algo-
rithm with features and training it on datasets with arrhythmia cases already present an
improvement in the detection of those special cases.

In sequence, two studies adopted a similar approach to the one mentioned in the past
paragraph to attack the arrhythmia problem. In the first study, Pereira et al. [42] fed
several features to three classifiers: SVM, KNN and decision tree. Similarly to their
previous study, experiments on a private dataset demonstrated that the SVM was the
best of all classifiers and it obtained above 95% surpassing the methods of other studies.
The second study, by Pereira et al. [43], also included the SVM method, but added to the
experiment deep learning models. The study contemplated both one-dimensional (1D)
and bidimensional (2D) deep learning models, with the first receiving the raw signal and
the second receiving its Cartesian plot image. Experiments on private data with presence
of AF showed that the ResNet18 model was the best, with 98.5% accuracy. That last
study highlighted that deep learning models have the potential to surpass conventional
methods even with the presence of arrhythmic events. The next section further explores
the use of deep learning in the literature.

2.2 Signal quality assessment using deep learning

Methods based on deep learning (DL) have demonstrated the potential to achieve a higher
accuracy when compared with feature-based models, even in the presence of CA [42]. On
one hand, differently of hand-crafted features, DL automatically extracts features from
the input signal, creating models that are adaptable to different dataset training contexts.
Additionally, a high quality dataset can provide resources for the DL model to be robust
to variations on the signal conditions. On the other hand, not only it creates a black-
box that does not explain the reasons why the model attributed a certain SQI, but also
requires large amounts of data to properly adjust the model parameters. Despite this,
DL is worth exploring since it can provide the accuracy and robustness that the medical
applications require.

In this context, several studies proposed the application convolutional neural networks
(CNNs) receiving the one-dimensional input signal. For instance, Naeini et al. [44] de-
signed a 1D CNN to extract a binary SQI. Tests on a private dataset with data of three
devices lead to 85% F1-score for the “reliable” class. Alike, Zanelli et al. [45] employed a
self-made 1D CNN, but examined the effect of transfer learning as well. They conducted
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the experiment on three private datasets. It starts training the model mostly on one
dataset, in which it achieved an accuracy of 99.8%. Then, for each remaining database,
they fine-tuned the the model with little training and tested on it. This procedure resulted
on the 93% and 81% accuracies on the second and third datasets, respectively. Addition-
ally, the model trained solely on the second database scored lower, 86%. Those results
indicate that not only 1D CNNs can achieve high accuracy in SQA but also it is possible
to transfer its learned features over different databases to improve its performance.

In a different light, some works go beyond the simple application of such CNNs.
The research of Lucafo et al. [7], per example, introduced a hybrid-model for quality
assessment, which combines a 1D CNN with a rule-based approach. This rule can bypass
the utilization of the CNN by verifying if the min-to-max distance of the signal is less than
an threshold. They determined the threshold by methods such as Last Value Thresholding
and Nearest Value Thresholding. The researchers did it to avoid the unnecessary power
demanded by the DL model. The method proved to be functional since it avoided the
usage of the CNN for 3.27% of the input samples, while maintaining similar prediction
scores if compared to the CNN without the rule component. Therefore, combining the
1D CNN with other methods can achieve particular advantages.

Besides the 1D CNNs mentioned at this point, works explored the use of alternative
DL models for the SQA of PPG. An example of this is recurrent networks, as we can
see in the work of Gao et al. [46], in which they proposed the application of a long-
short-term memory network for real time SQA, giving a SQI for each point in the signal.
For the experiments, they labeled private and public datasets by applying Blind Source
Separation to generate from each PPG signal one high-quality signal and one low-quality
signal. When compared to baseline SQIs and existing models, it achieved competitive
accuracy, while being light-weighted and enoughly fast to predict in real-time. Another
example of alternative model is the combination of a stack denoising auto-encoder and a
MLP, as seen in the work of Singha et al. [47]. This model achieved 95% accuracy on a
private dataset, better than baseline classifiers. A final example is the application of 2D
CNNs through the projection of the signal into a image using Gramian Angular Fields
(GAFs) by Naeini et al. [48]. Even though three 2D CNNs achieved above 90% accuracy,
F1-Score, and ROC AUC scores on a private dataset, a proposed 1D CNN overperformed
all of them. Thus, several approaches show results that compete with 1D CNNs. The
usage of 2D CNNs, in particular, increased in interest in this last decade.
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2.3 Methods based on time series imaging

Several works in the literature propose transforming the input signal into an image and
then feeding it to a CV model. Figure 2.1 shows some of those transformations. Some
works used 2D CNNs as a classifier of the SQI. One of those, Chen et al. [49], proposed the
construction of a short-time Fourier transform spectrogram as the signal transformation
method. The researchers annotated the VitalDB database1 [50] and, then, conducted
experiments that lead to the proposed method achieving a better accuracy than four
chosen baseline models. Its value was 98.3%. Another work, by Chatterjee et al. [51],
transformed the signal into quantum pattern recognition images for PPG SQA. This
resulted in 98.3% accuracy on the University of Queensland vital signs dataset2 [52] with
labels from the researchers, scoring above baseline models and an existing DL method.
Roh et al. [53] embedded the signal into a Recurrence Plot (RP) matrix for PPG SQA.
On a private dataset, the method achieved 97.5% accuracy. Based on these results, it
is noticeable that the application of time series image proved to be effective in the SQA
literature.

One particular method present in the SQA literature is the time series matrix embed-
ding, which encodes time relationships of the original signal into a square matrix. For
instance, Freitas et al. [58] fed a Vision Transformer with a RP or a Markov Transition
Field (MTF), achieving, respectively, 89.9% and 90.3% accuracy on a private dataset.
Freitas et al. [59] also fed images with a Vision Transformer, but used GAFs. The pro-
posed approach reached 92.2% accuracy on a private dataset. Liu et al. [56] proposed to
input Multiscale Markov Transition Fields, MTF version which concatenates the signal
first and second derivatives, to a self-made CV model. Experiments with pre-training
on the MIMIC-III and UCI databases, and fine-tuning and testing on the Queensland
dataset resulted in 99.1% accuracy for binary classification. Thus, the combination of a
generic CV model with a projection method, such as RP, GAF or MTF, can achieve a
decent accuracy, while it is possible to apply the multiscaling technique to improve some
of those projections accuracy.

1Accessible at https://osf.io/uq2p2/ or at https://vitaldb.net/dataset/.
2Accessible at http://dx.doi.org/102.100.100/6914.
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(a)
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(f) (g) (h)

Figure 2.1: A signal (a) and its various projection obtained by several methods. They are:
(b) Gramian Angular Diference Field [54], (c) Gramian Angular Summation Field [54],
(d) Markov Transition Field [54] and (e) Recurrence Plot [55], (f) Poincaré Plot Density
Map [24], (g) Multiscale Markov Transition Field [56] and (h) Short Time Fourier Trans-
form Spectogram [57, 49].

2.4 Final considerations

Accurate identification of PPG sequences contaminated with artifacts is crucial for en-
abling reliable smart health applications, and ML techniques have brought outstanding
progress in the field. Nevertheless, none of the previous studies presented in this chapter
have provided an in-depth discussion of these methods. This chapter synthesized the
current state-of-the-art approaches applying ML algorithms to assess PPG signals. Even
though there are only a few datasets where signal data are labeled, supervised learning
models are more used than their unsupervised counterparts, with SVM and CNN being
the most widely. Although feature-engineered and deep learning methods demonstrate
similar performance levels in some scenarios, deep learning may be more advantageous
for addressing the limitations of manual feature engineering. In the current literature,
there is also a need for a standardized series of experiments to test and validate the
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2D DL approach against 1D ML methods. This thesis describes our efforts to fill that
gap by experimenting with various existing methods for time series, aiming to conduct a
comprehensive study of the field.
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Chapter 3

The projection-based approach

As Chapter 2 presented, several works in the SQA literature employed the time series
imaging method as a manner to allow CV models to be used in the SQI estimation.
Figure 3.1 presents a generic framework of such method, which we qualify as “projection-
based”. It first converts the 1D signal into a 2D projection and afterwards feeds it to a
CV model. Finally the CV estimates the SQI. The framework can use several projection
algorithms, but we restrain our scope to four time series embedding methods presented by
this chapter: Gramian Angular Field (GAF), which generates the variants Gramian An-
gular Summation Field (GASF) and Gramian Angular Difference Field (GADF); Markov
Transition Field (MTF); and Recurrence Plot (RP). Moreover, this chapter introduces a
new projection algorithm which we call Projection Mix (PMix).

Figure 3.1: The time series imaging (or projection-based) approach.

3.1 Existing projection methods

This section provides an analysis of the existing projections methods that this thesis
used to convert the one-dimensional PPG signal into a 2D representation. For example
purposes, we will use the signal in Figure 3.2. Additionally, this section also explores the
influence of noise in the projections result.
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Figure 3.2: The example signal, with function f(t) = sin(15πt
500 ) + t

500 . The t variable
correspond to the time instant, while the f(t) function gives the magnitude of the signal.

3.1.1 Recurrence Plot

The work of Eckmann et al. [55], of 1987, introduced the RP method as a tool for repre-
senting visually useful properties and behaviors of a time series. Since then its application
expanded to various domains, ranging areas such as earth sciences, finances, engineering,
chemistry and physics [60]. It is also applicable in life sciences, with attempts on iden-
tifying the presence of Parkinson’s disease [61], epileptic seizure [62], fetal hypoxia [63],
and Alzheimer’s disease [64]. Particularly, considering this thesis’ scope, we employ RP
in tasks involving cardiological signal processing. Thus, it is likely to be useful for SQA
of cardiological signals.

The RP represents the occurrence of recurrences between the phase space values of time
instant pairs. For this end, the first step is to embed the time series X = {x1, x2, ..., xn},
with xi ∈ R and n ∈ N samples, into a phase space, creating a new time series S =
{s⃗1, s⃗2, ..., s⃗m}, with s⃗i ∈ Rd and m ∈ N elements. We can employ the time delays
method to represent each element s⃗i of this new sequence S as follows:

s⃗i = (xi, xi+τ , xi+2·τ ..., xi+(d−1)·τ ), (3.1)

where d ∈ N is the dimension and τ ∈ N is the time delay of the phase space. Notice that
the length m of the sequence S depends on both d and τ by the equation m = n−(d−1)·τ .
Also notice that this embedding is optional, since the choice of the dimension d = 1 results
in S = X, the original time series. Figure 3.3 depicts the phase space of the example
signal of Figure 3.2.
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Figure 3.3: On the left, we have the signal of the figure 3.2 on the time delay phase space,
without temporal information. Its parameters are dimension d = 2 and delay τ = 10. On
the right, we have almost the same figure, but with the recurrences represented by red
lines s⃗i − s⃗j that links the pair of near points that have a distance bellow ε = 0.05. That
figure omits the recurrences to the point itself.

Then, the second step is to build a m×m matrix RP of recurrences where each cell
RPi,j ∈ {0, 1} represents the presence or the absence of a recurrence in a pair of points
s⃗i, s⃗j of the phase space S. We can represent this concept by measuring the distance
||s⃗i − s⃗j|| between the points of the pair and verifying if it is smaller than a threshold
ε ∈ R, as the following equation:

RPi,j = H(ε− ||s⃗i − s⃗j||), (3.2)

where H : R 7→ {0, 1} is the Heaviside function. Alternativelly, we can produce an
unthresholded version RP ′

m×m by attributing to each cell RP ′
i,j ∈ R the points distance:

RP ′
i,j = ||s⃗i − s⃗j||. (3.3)

Figure 3.4 exhibits both RP and RP ′ of the example signal.

3.1.2 Gramian Angular Field

The work of Oates et al. [54] introduced the GAF method. This method, in summary,
encodes the signal into angular relationships between pair of points. The first step to do
this is to convert the signal X = {x1, x2, ..., xn}, with xi ∈ R, n ∈ N samples, and time
instants {t1, t2, ..., tn}, into a polar coordinate series P = {p1, p2, ..., pn} with pi ∈ R. One
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(a) Thresholded (b) Unthresholded

Figure 3.4: The resulting recurrence plots of the signal in Figure 3.2, in coherence with
the phase space of the Figure 3.3. On the left (a) we have the thresholded version, while
on the right (b) we have the unthresholded version.

manner to do that is to associate the time i ∈ N to the radius ri ∈ R and the value xi ∈ R
to the angle by the inverse of the cosine as follows:

pi(ri, ϕi) = fpolar(ti, xi) =

ϕi = arccos(xi), −1 ≤ xi ≤ 1

ri = ti

N
, N ∈ R

, (3.4)

where N is a rescaling factor. Notice that it might be necessary to rescale the signal to
fit each xi in the range [−1, 1]. Figure 3.5 shows the application of the function fpolar

over the example signal. The polar coordinate system has one property of interest: the
fpolar : N × {x ∈ R| − 1 ≤ x ≤ 1} 7→ R × {ϕ ∈ R|0 ≤ ϕ ≤ π} is bijective, since it
has the inverse function f−1

polar(ri, ϕi) = (ri ·N, cos(ϕi)) = (ti, xi). This indicates that the
application of the function fpolar does not result in loss of information.

Figure 3.5: The example signal in its polar coordinate shape, with N = 1.
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The second step is to construct the temporal relationship matrix. We can achieve
that by two methods that exploit trigonometric properties. One of them is calculating
the cosine of the summation of the pairs of angles, constructing the matrix GASFn×n:

GASFi,j = cos(ϕi + ϕj)
= cos(ϕi) · cos(ϕj)− sin(ϕi) · sin(ϕj)

= xi · xj −
√

1− x2
i ·
√

1− x2
j ,

(3.5)

where GASF is the final matrix. Due to the inversibility of the arccos function, it is
possible to express that calculation without trigonometric operations, as expressed by the
equality 3.5. Thus, we can calculate GASF using matrix operations, as follows:

GASF = XT ·X − ◦2
√
1−X◦2T

· ◦2
√
1−X◦2, (3.6)

where M◦2 and ◦2
√

M represents the element-wise square power and square root of the
matrix M , respectively, and 1 is a matrix in which all elements are 1. The other method
is analogous, but uses the sine of the difference of the pairs of angles, constructing the
following matrix GADFn×n:

GADFi,j = sin(ϕi − ϕj)
= sin(ϕi) · cos ϕj − cos(ϕi) · sin(ϕj)

=
√

1− x2
i · xj − xi ·

√
1− x2

j ,

(3.7)

Also similarly, by the equality 3.7, we can express GADF by matrix operations:

GADF = ◦2
√
1−X◦2T

·X −XT · ◦2
√
1−X◦2. (3.8)

Figure 3.6 shows the GASF and the GADF of the example signal.

3.1.3 Markov Transition Field

Oates et al. [54] proposed the MTF as well, based on a signal to graph mapping of
Campanharo et al. [65]. In fact, that mapping is the first step of this method. We map
the signal X = {x1, x2, ..., xn}, with xi ∈ R, to a graph G = (N, W ), with nodes set
N and edges weights adjacency matrix W . Its nodes N corresponds to m ∈ N quantile
bins Qi ⊆ {xi|i ∈ {1, 2, ..., n}}, that is, |Q1| = |Q2| = ... = |Qn| and, ∀q1 ∈ Q1,∀q2 ∈
Q2, ...,∀qn ∈ Qn, we have that q1 ≤ q2 ≤ ... ≤ qn. In other words, those quantiles bins
separate the signal X into bands Qi with equal amount of samples xi. Figure 3.7 pictures
this concept for the example signal. The other graph component, its edges, are directed
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(a) GADF (b) GASF

Figure 3.6: The example signal corresponding Gramian Angular Difference Field (a) and
Gramian Angular Summation Field (b).

and corresponds to the probability of a sample xk+1, consecutive to a uniformly randomly
chosen sample of a certain quantile xk ∈ Qi (must have a consecutive), belonging to a
certain quantile Qj. Those edges are akin to transitions of first-order Markov chains, since
the probabilities summation of the transitions that sources from a state is always equal
to 100%. We can express the adjacency matrix Wm×m as follows:

Wi,j =

∑
xk∈Qi,xk+1∈X

fin(xk+1, Qj)∑
Ql∈Q

∑
xk∈Qi,xk+1∈X

fin(xk+1, Ql)
, (3.9)

where

fin(x, Q) =

0, x ̸∈ Q

1, x ∈ Q
. (3.10)

Figure 3.8 depicts the graph of the example signal. That graph G allows a probabilistic
representation X ′ = {x′

1, x′
2, ..., x′

n} of the input signal X by procedurally choosing a
sample of the current quantile node and then transitioning to the next node according
to the transitions probabilities. Algorithm 1 explicits that representation and Figure 3.7
exemplifies it applied to the example signal. Therefore, the signal conversion to that
graph representation is probabilistically reversible, meaning that it preserves statistical
information of the signal, even though that means the successful recovery is not certain.

Since that graph does not retain temporal relationships, the second step of the MTF
method is to build the matrix MTFn×n:

MTFi,j = Wu,v|xi ∈ Qu, xj ∈ Qv, (3.11)
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Figure 3.7: Original signal segmented into quantile bins.
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Figure 3.8: The graph of the Markov chain representing the transitions of the signal
depicted in Figure 3.7.

that is, each cell MTFi,j contains the transition probability between the quantiles Qu, Qv

to which the samples xi, xj belong. Figure 3.9 pictures the final result of the method
applied to the example signal.
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Algorithm 1 The probabilistic signal representation algorithm.
Require: Graph G = (N = {Q1, Q2, ..., Qm}, W )
Ensure: Reconstructed Signal X ′ = x′

1, x′
2, ..., x′

n

Qcurrent ← Q ∈R N
for k ∈ 1, 2, ..., n do

x′
k ← x ∈R Qcurrent

Qcurrent ← Qnext, with probability Wcurrent,next

end for

Figure 3.9: The Markov Transition Field of the example signal, with the number of
quantile bins m = 8.

3.1.4 Projections comparison

The main idea of the projection methods is to reflect properties and shapes of the signal
into visual patterns. That concept applies too to the inspection of the signal quality. Fig-
ure 3.10 presents examples of the influence of different type of noises over the projections
aspect. On observation is that the presence of low-frequency or high-frequency noises
tend to produce, respectively, big or small scale structures. We can see in the effects of
that observation in the figure, where the baseline wander figures manifest two to four big
structures and the high-frequency noise figures contain small dot-like structures. Another
observation is that noises concentrated in a certain region tend to disturb the projection
onto a cross-like structure, as we can see in the figure local noise column. We can see that
property of “reflection” for usual noises, such as Gaussian, and salt and pepper noises.
In the figure, the Gaussian noise still preserves the high-level structures and destroys
low-level structures, while the salt and pepper noise produces vertical and horizontal lines
with void or full colors in places corresponding to, respectively “salts” and “peppers” of
the source signal. Therefore, those projections are likely to be useful in SQI tasks for CV
approaches, since they present the noise and its characteristics as visual patterns that
humans can recognize, raising the hypothesis that CV could learn them as well.
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Base signal Gaussian Noise Salt-and-Pepper Baseline Wander HFN Local Noise

Figure 3.10: The signal, its impaired versions, and their corresponding 2D projections.
From top to bottom: Gramian Angular Difference Field, Gramian Angular Summation
Field, Recurrence Plot, and Markov Transition Field.

3.2 Computer vision using Projection Mix

Since each projection has its unique characteristics, they are combined into an ensem-
ble. For this end, all projections are fused to create an aggregated tensor. This tensor is
analogous to a hyperspectral image, i.e., unlike a typical color image, which consists of
only three bands (red, green, and blue), the produced tensor provides additional spectral
information for each pixel. The aggregation, which we call PMix, consists in the assign-
ment of each projection to a particular channel of a single input layer. Then, we “mix”
that aggregation by performing a pointwise (1 × 1 kernel-sized) convolution operation.
Formally, the tensor Tinp×n×m used as input in the CV models is constructed by stacking
the p projections {M1, M2, ..., Mp}, all with same dimensions n×m, as defined as follows:

Tink,i,j
= Mki,j

. (3.12)
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Then, the tensor Tin is “mixed” into a new tensor Tmixq×n×m defined as:

Tmixk,i,j
= factv

( p∑
l=1

Tinl,i,j
· w(k,i,j);l

)
, (3.13)

where w(k,i,j);l ∈ R is the weight applied to the link between the final tensor cell Tmixk,i,j

and the input tensor cell Tinl,i,j
, while factv : R 7→ R is an activation function, such as

ReLU, logistic sigmoid and Softmax. We can define the same tensor by directly assigning
to the input projections:

Tmixk,i,j
= factv

( p∑
l=1

Mli,j
· w(k,i,j);l

)
. (3.14)

We can observe that, for each cell with indexes i, j, the summation
p∑

l=1
Mli,j

· w(k,i,j);l

“mixes” the p projections by adding its values Mli,j
, while attributing different degrees of

contribution for each l-th projection depending on the weight w(k,i,j);l. Then, we can use
the factv function to mainly achieve binary distinguishability, leading to the final tensor
value Tmixk,i,j

. Figure 3.11 illustrates the implementation framework of that mixture in
the context of models pre-trained in three-channeled datasets. That process may require
resizing, since pointwise convolution does not change the width and height dimensions.

Figure 3.11: The three-channeled computer vision model feeding process. The figure
begins in the left, in its input, and progresses to the right.
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3.3 The proposed method

Based on the PMix projection method, this work proposes a new SQA framework pre-
sented by Figure 3.12. First, we transform the signal into four projections using the three
before-mentioned algorithms: GAF, MTF, and RP. Afterwards, we aggregate those pro-
jections using composition, that is, we assign each of them to a different channel of a new
input layer. Then, that layer feeds the computer vision model, which contained weights
pre-trained on the ImageNet [9] dataset. Finally, that model classifies the signal into a
binary SQI, which indicates if the signal is “good” or “bad”.

Figure 3.12: Proposed photoplethysmograph signal quality assessment framework.
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Chapter 4

Experiments

In Chapter 3, we introduced the proposed technique for assessing PPG signals. In line
with the goals outlined in Chapter 1, the aim of the current chapter is to investigate the
effects of different methods on predicting whether a given input PPG signal is reliable or
not. To achieve this aim, the chapter first presents the experimental setup, then discusses
the experimental results, and finally addresses the limitations of the experiments.

4.1 Experimental setup

This section discusses the experimental setup, analyzing the elements used in the exper-
iments, such as datasets, programming libraries, and predictive models. Additionally, it
clarifies the metrics to be evaluated and the approaches used to measure them.

4.1.1 The dataset

As with any machine learning task, we require a dataset to supply data for feeding the
predictive models during parameter fitting, shaping them to the specific task’s domain.
In this work, assessing the quality of the signal is framed as a supervised classification
problem, which can be described as the task of finding a function that best fits a predefined
set of pairs of variables and labels, (X, y). In this context, the pair corresponds to the
signal mapped to its quality label, either “good” or “bad”. To train the predictive methods
and evaluate their performance in classifying the quality of heartbeat time series, the
BUTPPG [8] dataset was employed.

The Brno University of Technology smartphone PPG database is a publicly available1

database produced by the Department of Biomedical Engineering at Brno University of
Technology. It contains samples of PPG signals, their quality labels, and heart rate

1Available at https://physionet.org/content/butppg/2.0.0/
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estimations. These signals were extracted using a low-cost method: recording with a
smartphone camera. Specifically, the researchers recorded the subject’s index finger while
it covered the camera lens and its LED light. For each video frame, they measured the
average intensity of the red channel across all image pixels, resulting in a time series of
averages. Finally, the signal was inverted.

They performed this method of obtaining PPG signals 48 times, with the samples dis-
tributed equally among 12 subjects—4 measurements per subject. Moreover, the record-
ings were taken in two situations: one where the subject was seated and remained static,
a case in which the quality label “good” was likely; and another where the subject was
walking, a case likely to result in a “bad” recording. This distinction is relevant because
the walking condition occurred only once for each subject, resulting in approximately 25%
of the recordings being labeled as “bad”. Therefore, this dataset is imbalanced, a factor
that was addressed in our experiment.

For the definition of signal quality labels, specialists were designated to estimate the
heart rate associated with the PPG signals using specialized software developed by the
researchers. The organizers then compared the specialists’ estimates with those provided
by a gold standard method, which used an ECG recording as a reference instead of the
PPG signal. The ECG was manually synchronized by the measurer. If the specialist’s
measurement had an error of 5 beats per minute (bpm) or less, the estimate was considered
correct. Finally, if 3 out of 5 specialists provided correct estimates, the PPG signal quality
was labeled as “good”. Thus, the “good” labels in the dataset essentially indicate whether
a signal is human-readable.

4.1.2 The dataset split

Machine learning tasks also require the dataset to be split into fragments. One of these is
the training dataset, used for fitting the model’s parameters. Another is the test dataset,
used for evaluating the model’s efficiency. An additional split is the validation dataset,
used to select the best set of hyperparameters for the trained model or conducting the
learning process. A direct way one could achieve the training-test split is randomly
partitioning the dataset into both fragments. However, that method never uses the data
in the training set for testing and vice-versa. Since the BUTPPG is small and it is
desirable to reuse data, our experiments defined the training-test splits by using a cross-
validation method called leave-one-subject-out (LOSO), which partitions the dataset into
K train-test splits. The k-th train-test split assigns the k-th segment as the test dataset,
leaving the remaining K−1 segments as the training dataset. In the case of BUTPPG, K

equals 12, which corresponds to the number of subjects. In our experiment, the smallest
unit of division was the subject, not the individual signals associated with each subject,
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because having signals of the same subject in both training and testing datasets would
introduce biases. This approach has the advantage of increasing the distinction between
training and testing samples, since having the same subject in both training and test
sets could also introduce biases into the results. Since the dataset is small, this splitting
method increases the use of available resources by ensuring every sample is used as a test
case at least once. Additionally, the training dataset was further divided using random
partitioning to produce a validation dataset of size 3, used for early stopping.

4.1.3 The models

To evaluate the proposed projection-based framework and identify specific cases of supe-
rior performance, it was necessary to involve a large number of machine learning models.
Firstly, this work compared the projection-based framework with other time series clas-
sification approaches using the Aeon-toolkit Python library2, with the models listed in
Table 4.1. Furthermore, the proposed method was combined with a wide variety of clas-
sification CV models, utilizing the PyTorch Python library3, which supports a diverse
range of neural network architectures. These architectures vary from simple convolu-
tional networks to vision transformers. Table 4.2 lists all the CV models involved in the
experiment, which are briefly described in the following subsections of this section.

Transformers

The experiments tested four transformers: Vision Transformer (ViT), Multi-axis Vision
Transformer (MaxViT), Shifted Windows Transformer (SwinT), and its second version,
Shifted Windows Transformer Version 2 (SwinTV2). The ViT transforms visual input into
a sequence where each element is a linear embedding of subimage patches obtained by par-
titioning the original image into a grid-like pattern [96]. Subsequent models build on this
base by incorporating additional layers and altering attention mechanisms. For example,
the MaxViT utilizes architectural blocks that alternate between two self-attention modes:
grid attention, which operates with high granularity, and block attention, which operates
with low granularity [97]. The SwinT modifies attention at both the layer level—by merg-
ing patches from the previous layer—and at the block level—by shifting self-attention win-
dows to different positions [98]. The SwinTV2 introduces several specific improvements
over the earlier version [99].

2Documented at https://www.aeon-toolkit.org/en/stable/.
3Documented at https://pytorch.org/docs/stable/index.html.
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Table 4.1: Non-computer vision models list, containing its references.
Classification Model Reference
Convolution-Based Arsenal [66]

Rocket Classifier [67]
Deep Learning Zhao’s CNN Classifier [68]

Wang’s FCN Classifier [69]
Wang’s MLP Classifier [69]
Inception Time Classifier [70][71]
Individual Inception Classifier [70][71]
LITE Time Classifier [72]

Dictionary-Based BOSS Ensemble [73]
Contractable BOSS [74]
Individual BOSS [73]
Individual TDE [75]
MUSE [76]
TemporalDictionaryEnsemble [75]
WEASEL [77]
WEASEL V2 [78]
REDCOMETS [79][80]

Distance-Based Elastic Ensemble [81]
K-Neighbors Time Series Classifier —
Shape DTW [82]

Feature-Based Catch-22 Classifier [83]
Summary Classifier —
TS Fresh Classifier [84]

Inverval-Based Canonical Interval Forest Classifier [85]
DrCIFClassifier [66]
Random Interval Spectral Ensemble Classifier [86]
Supervised Time Series Forest [87]
Time Series Forest Classifier [88]
Random Interval Classifier —

Shapelet-Based Shapelet Transform Classifier [89][90]
RDST Classifier [91][92]

Ordinal Classification Individual Ordinal TDE [93]
Ordinal TDE [93]

Other Continuous Interval Tree [94]
Rotation Forest Classifier [95]
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Table 4.2: Computer vision models list, containing its citations.
Classification Model Reference
Transformer Vision Transformer [96]

MaxViT [97]
Swin Transformer [98]
Swin Transformer V2 [99]

Residual Net ResNet [100]
ResNeXt [101]
WideResNeXt [102]

Extreme Net DenseNet [103]
VGG [104]
SqueezeNet [105]

Mobile-Oriented MNASNet [106]
MobileNet V2 [107]
MobileNet V3 [108]

Efficiency-Oriented EfficientNet [109]
EfficientNet V2 [110]
ShuffleNet V2 [111]

Diverse AlexNet [112]
ConvNeXt [113]
RegNet [114]

Residual nets

This thesis defines the residual nets as the ResNet model and its variations. ResNet in-
troduced residual connections, which are links between non-adjacent layers that bypass
intermediate layers [100]. The two variations considered are Wide ResNet and ResNeXt.
Wide ResNet expands the original network by increasing the number of channels per block,
offering an alternative to increasing layer depth [102]. In contrast, ResNeXt employs a
multipath approach, aggregating paths through an additive operation [101]. Instead of
increasing width and depth, ResNeXt introduces an additional dimension for enhance-
ment.

Mobile-oriented models

This thesis defines mobile-oriented models as networks that are designed specifically to
address mobile hardware constraints. Three models were tested: MNASNet [106], Mo-
bileNet V2 [107], and MobileNet V3 [108]. MobileNet V2, introduced first, incorporates
architectural changes to reduce memory usage while maintaining accuracy, including in-
verted residual blocks [107]. This alteration swaps high- and low-channel layers, con-
necting layers with fewer channels and thus reducing the number of parameters in the
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block [107]. MNASNet selects blocks to fit a predefined architectural skeleton, optimizing
model performance on real-world mobile hardware [106]. MobileNet V3 combines these
approaches and introduces additional changes, such as incorporating the NetAdapt [115]
algorithm into the architectural search [108].

Extreme nets

This thesis defines as extreme nets neural models that focus on maximizing specific con-
cepts, such as layer depth [104], model compression [105], or residual connections [103],
include VGG, DenseNet, and SqueezeNet. VGG employs 3× 3 filters to allow for deeper
network architectures by adding more layers, thus increasing model depth [104]. DenseNet
uses skipping connections among all pairs of architectural blocks in the network, which
brings each layer closer to both the input and output, enhancing model performance [103].
SqueezeNet focuses on minimizing memory usage through model compression techniques
and by introducing a new architectural module that reduces the number of channels in a
layer before applying large convolution filters, such as 3 × 3 filters [105]. This approach
significantly reduces its number of parameters when comparing to convolutions applied
over a layer with a high amount of channels [105].

Efficiency-oriented

This thesis defines efficiency-oriented networks as models designed for efficient resource
utilization aiming to maximize performance with fewer parameters, such as ShuffleNet V2
[111], EfficientNet [109], and EfficientNet V2 [110]. ShuffleNet V2 is an advancement of
ShuffleNet, introducing the channel shuffle operator to facilitate information exchange
among channels [111]. It improves upon its predecessor by incorporating a channel split
operation within each block, which avoids the use of costly grouped convolutions [111].
EfficientNet focuses on model scaling through a compound resizing method that propor-
tionally increases multiple dimensions, such as depth, number of channels, and resolu-
tion [109]. This approach creates a highly efficient base model that can be scaled up to
larger variants while preserving the original model’s advantages [109]. EfficientNet V2
builds on the original EfficientNet by proposing non-proportional scaling and utilizing
network architecture search [110]. It also introduces progressive learning, which involves
gradually increasing dataset regularization [110].

Diverse

The remaining models not included in the anterior groups were reunited in this cate-
gory. It includes the following models: AlexNet, ConvNeXt, and RegNet. Introduced in
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2012, AlexNet was one of the earliest deep learning models designed to be trained across
multiple GPUs, which accelerated the training process and utilized dropout to mitigate
overfitting [112]. In contrast, ConvNeXt, a modern model from 2022, integrates various
convolutional techniques from recent years, such as patchified convolutions, inverted bot-
tlenecks, and grouped convolutions, with the goal of advancing traditional convolutional
networks [113]. On the other hand, RegNet departs from designing individual networks
by focusing on creating network families defined by linear parameter spaces, facilitat-
ing architectural search within these defined populations [114]. The experiments in that
category encompassed networks with significant variations among them.

4.1.4 Defining the hyperparameters

However, defining the models alone is insufficient, as the selection of their hyperparam-
eters is also required. Hyperparameters are parameters related to the learning process,
rather to the model itself. For the Aeon models, the default hyperparameters provided
by the library were used for convenience reasons, even though they are not the optimal
ones. For the computational vision models, while most hyperparameters were set to their
defaults, our experiments employed hyperparameter search for the learning rate, used by
the optimization algorithm to search for better hyperparameters than the defaults pro-
vided by the PyTorch library. The Optuna Python library4 conducted this search by
heuristically exploring the parameter space dynamically defined in the user code. Optuna
prunes the search-space tree using various methods, and in our experiments, the median
pruning method was applied. In this case, the guiding metric for the heuristic search
was the accuracy score, defined as the ratio of correct predictions to the total number
of samples. It was chosen since maximizing that ratio is desired, as the more correct
predictions, the better. The accuracy was measured on a validation dataset of size equal
to 2 subjects, created through a simple random split. This functionality allowed us to
find a near-optimal combination of parameters without exhaustively testing all possible
cases, using the model’s validation dataset score as a heuristic.

4.1.5 Training strategy

Given the aforementioned models, dataset, and its divisions, it was necessary to establish
the training method for adjusting the models’ parameters. Since the Aeon implementa-
tion already contained a default training procedure, which our experiments used for con-
venience reasons, our experiments only established the fitting framework for the PyTorch
computer vision models and the data feeding method. Our experiment involved feeding

4Documented at https://optuna.readthedocs.io/en/stable/.
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the models by loading the signals data, applying random oversampling before transform-
ing them, as the dataset was unbalanced. After performing the projection transform, our
experiment loaded pre-trained model weights provided by PyTorch, which were originally
trained on the ImageNet5 [9] dataset. Such choice was made because this work hypothe-
sizes that a model trained in a dataset with real word images might already be familiar
with the basic shapes present in the 2D projection methods. Following that, we fitted
the PyTorch models using the Adam optimization algorithm [116] to minimize the cross-
entropy loss function. A reason to use that algorithm is that it surpassed some of the
other options present in the PyTorch library when tested in several datasets [116]. The
implementation of the training strategy performed this optimization cycle with a num-
ber of epochs determined by a median-deviation-based early stopping technique, through
the assumption that a low dispersion on the last epochs indicates a convergence to a
local-optimal in the search space. The formula below gives the score of the n-th epoch:

EarlyStopScore(n) = med([|ln−i −med([ln−i]9i=0)|]9i=0), (4.1)

where lk is the loss value (i.e., cross-entropy loss) of the k-th epoch, med is the median
and [f(i)]pi=0 is the sequence generated by f(i) when varying i from 0 to p. In other words,
the formula calculates the median of the absolute deviations of the medians of the last 10
loss values using the central value. If EarlyStopScore(n) ≤ 0.1, the training stops in the
n-th epoch. With that established, it remains to determine the metrics to be measured
for smoother readability.

4.1.6 Performance measurements

Being established the training procedure, it is needed to choose metrics to evaluate the
efficacy of the solution after the training of the model. For these experiments, we can
categorize the metrics into two groups: prediction metrics, which measure the quality
of the model’s signal quality assessments, and benchmarking metrics, which measure
resource usage and the model speed. As the prediction metrics, our experiments used the
Cohen kappa score, the F1-score, and the precision, considering that they are capable
of estimating the quality of binary classification through different perspectives. All of
them can be evaluated using confusion matrix values, presented in Table 4.3. The Cohen
kappa score [117], in binary classification tasks, measures the agreement between the
obtained accuracy acco and the expected accuracy acce. The following equations define

5Available at https://image-net.org/.
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those accuracies and the Cohen kappa score:

acco = TP + TN

N
, (4.2)

acce =
(

TP + FP

N
· TP + FN

N

)
+
(

TN + FP

N
· TN + FN

N

)
, (4.3)

and
CohenKappa(R) = acco − acce

1− acce

, (4.4)

where N = TP + TN + FP + FN is the total number of samples. For the purpose of
aligning this metric with others, we can rescale that metric from [−1, 1] to [0, 1]:

CohenKappaRescaled(R) = CohenKappa(R) + 1
2 . (4.5)

In sequence, the precision is a metric that measures the ratio of hits in the set of positive
predictions. In our context, a higher precision implies that the predictor avoided mistak-
enly labeling “bad” signals as “good”, which is desirable in applications where we do not
want to show to the user measurements based on unreliable signals. From the precision
and from the recall, the ratio of hits in the set of all existing positives, we can obtain
the F1-Score. Precisely, the F1-Score is the harmonic mean between those two metrics.
In other words, a high F1-Score indicates a good balance between precision and recall
scores. In our application, it measures the same as the precision plus the recall, which
would measure the amount of “good” signals that would feed the application. This is an
desirable quality when we want to provide constant feedback to the user. The following
equations define those metrics:

Precision = TP

TP + FP
, (4.6)

Recall = TP

TP + FN
, (4.7)

and
F1 = HarmonicMean(Precision, Recall) = 2 · TP

2 · TP + FP + FN
. (4.8)

Therefore, the Cohen kappa score provides an overall sense of accuracy, the F1-Score
suggests the model’s usability level, and precision indicates the predictor’s reliability.

Regarding the benchmarking metrics, our experiment measured the memory usage of
the model in bytes and the inference time (including the 1D-to-2D projection time for
projection-based models) in seconds. Memory usage is crucial because practical appli-
cations for heart rate estimation often impose hardware constraints that limit allowable
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Table 4.3: Binary classification confusion matrix, where each cell resulting from the inter-
section between the i-th line and the j-th colum correspond to the amount of data which
was predicted as the i-th line label and had the j-th column label as the true value.

Predicted label
True label Positive Negative

Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)

memory usage. Additionally, inference time is important for achieving near-instantaneous
evaluations, which enhances the application’s responsiveness.

4.1.7 Overall schema

Figure 4.1 illustrates the experiment framework applied to each combination of com-
puter vision model and projection algorithm. One notable difference from the framework
used for non-CV models is that the 1D-to-2D conversion acts as a boundary between the
dataset and the other components. So the experiment for non-CV models is represented
using a similar schema by omitting the conversion block. The experiment began with
hyperparameter selection, involving the splitting of the BUTPPG dataset through a sim-
ple division method to subsequently select the optimal learning rate for the CV models.
With the best learning rates chosen, all models, including non-CV models, will be eval-
uated using the LOSO strategy. For each fold, our experiments subjected the model to
a training procedure that iterates through epochs of training and validation until early
stopping is triggered. The model is then tested to produce the metrics for that fold.

4.1.8 The implementation details

The dataset sourcing procedure was carried out using the PyTorch multithreading data
feeding solution, Data Loader6. This was configured to load batches of size 32 for all
CV models to make the comparison more uniform, since that variable can change their
performance. Prior to loading the batches, the training dataset was balanced using the
Imbalanced Learn library7 and its random oversampling method8, since it is a open source
implementation of an algorithm that equalizes the proportion of labels in the learning
process, avoiding an label unbalance that our experiment design hypothesizes that it

6Documentation available at https://pytorch.org/docs/stable/data.html#torch.utils.data.
DataLoader.

7Documentation at https://imbalanced-learn.org/stable/.
8Documentation available at https://imbalanced-learn.org/stable/references/generated/

imblearn.over_sampling.RandomOverSampler.html#imblearn.over_sampling.RandomOverSampler.
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Figure 4.1: The framework of the experiment. Red dotted arrows indicates data flow
that sources from the Brno University of Technology smartphone PPG database dataset,
while the full black lines, labeled with an verb, represent a relationship “A do B”, where
the arrow starts on A and end on B. Notice that the figure presents the training-testing
cycle for only one of the twelve folds.
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could overfit the model to a specific label, which is undesirable. The batches were then
transformed from 1D signals into 2D images using the projection algorithms of the PyTS
library9 [118], which allows the reproducibility of such transformations for being open
source. Although the signals are now 2D, their width and height might not be compatible
with the original network’s input dimensions, especially considering pre-trained weights.
To address this issue, the PyTorch resize transform10 was applied to adjust the width and
height. Additionally, a new convolutional layer corresponding to the PMix method was
incorporated.

The CV models were trained using a single NVIDIA RTX 3090 TI. For training, our
implementation used the Pytorch implementation of the Adam optimization algorithm11,
which uses the gradients evaluated by the Pytorch autograd engine [119]. The loss class
(which, in our case, is the torch.nn.CrossEntropyLoss12, used for being an open source
implementation of the cross entropy loss function) backpropagates the gradients based
on the model forward pass errors. For the models testing, our implementation used
the Sklearn’s13 metrics14, since they are open source. For model memory measurement,
our implementation counted the summation of the size of each parameter and buffer
tensors in the CV models, while for the non-CV models, our implementation used the
asizeof function15 of the Pympler library16. Finally, we describe the inference time
measurement, for which our implementation extracted 500 measurement samples. For
the non-CV models, our implementation used the time method17 of the Python’s time
module, from its standard library, to measure two time instants: the moment right before
the model testing predictions, when the model is already trained; and the moment right
after those predictions. Our implementation evaluates the time interval between those
instants to estimate the inference time of the non-CV model. For the CV models, our
implementation marked the time instants by using CUDA events interface provided by
Pytorch18, while, before measuring, performing 500 iterations to warm-up the GPU.

9Documentation available at https://pyts.readthedocs.io/en/stable/.
10Documentation available at https://pytorch.org/vision/stable/generated/torchvision.

transforms.Resize.html.
11Documentation available at https://pytorch.org/docs/stable/generated/torch.optim.Adam.

html#torch.optim.Adam
12Documentation available at https://pytorch.org/docs/stable/generated/torch.nn.

CrossEntropyLoss.html#torch.nn.CrossEntropyLoss
13Documented at https://scikit-learn.org/.
14Documentation at https://scikit-learn.org/stable/modules/classes.html#

module-sklearn.metrics
15Documentation at https://pympler.readthedocs.io/en/latest/library/asizeof.html
16Documented at https://pympler.readthedocs.io/en/latest/.
17Documentation at https://docs.python.org/3/library/time.html#time.time
18Documentation at https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
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4.2 Experimental results

The results were analyzed by comparing the score metrics of the models and assessing their
trade-offs with respect to memory consumption and inference time. The score metrics are
presented like the example in Table 4.4, in which the results of each combination of model
and projection are shown in the format mean±std, with values up to three decimal places.
Additionally, considering a particular column of mean or standard deviation, it is used a
coloring system where the red color represents values worse or equal than the first quartile,
the green color highlights values better or equal than the third quartile, and the blue color
paints values in between the other colors. Given the large number of models considered,
the analysis was organized into sections. First, each section focused on one of the CV
model families listed in Table 4.2: Transformers, Residual Nets, Mobile-Oriented, Extreme
Nets, Efficiency-Oriented, and Diverse. Within each category, the analysis identified the
best combinations of model variants and projection methods. Subsequently, the top non-
CV models from the Aeon toolkit library were selected. Finally, the overall best choices
were determined, and differences between the projection methods were discussed.

Table 4.4: Example of the score-displaying system.
Model Projection Example metric 1 Example metric 2
Example model 1 Example projection 1 0.999 ± 0.333 0.777 ± 0.111
Example model 2 Example projection 2 0.333 ± 0.999 0.999 ± 0.333
Example model 3 Example projection 3 0.777 ± 0.111 0.111 ± 0.777
Example model 4 Example projection 4 0.111 ± 0.777 0.333 ± 0.999

4.2.1 Analysis by computer vision model family

This analysis covers each CV model family listed in Table 4.2.

Transformers

One metric table was generated for each type of transformer. Table 4.5 presents the ViT
scores, with variants categorized as Base (B), Large (L), or Huge (H) in parameter size and
patch sizes of 14, 16, or 32. The table shows that the PMix and RP projection methods
achieved the best scores across all metrics. In most cases, PMix was equal to or better
than RP, except for the H 14 variant, where RP was superior. Among the combinations
of variants and projections, RP and PMix with B 16 and L 16, as well as PMix with B 32
and L 32, yielded the best scores. Table 4.6 shows the MaxViT scores. For this model,
the PMix method achieved the highest scores for the Cohen Kappa and precision metrics,
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while the RP surpassed it for the F1-Score, despite PMix having the smallest dispersion
for that metric.

Table 4.7 exhibits the SwinT scores, with variants categorized as Base (B), Small
(S), or Tiny (T) based on parameter count. The RP method achieved the best scores
for the B and S variants, while the PMix method resulted in better scores for the T
variant. Specifically, the PMix method with the T variant attained the highest Cohen
Kappa and precision scores, but ranked second for the F1-Score, which was surpassed
by the RP method with the S variant. Table 4.8 displays the SwinTV2 scores, with
variants categorized as Base (B), Small (S), or Tiny (T). The PMix method achieved
better scores for the B and S variants, while the RP method performed better for the T
variant, despite RP having the largest dispersion for the F1-Score in this case. Specifically,
the PMix method with the S variant resulted in the highest Cohen Kappa and F1 scores,
and the second-best precision, where the RP method with the T variant was superior.

When considering all Tables 4.5, 4.6, 4.7, and 4.8, the RP and PMix methods with
ViT B 16 and ViT L 16, as well as PMix with ViT B 32 and ViT L 32, and the SwinTV2
S with PMix, generally achieved better scores. The benchmarking metrics for these com-
binations are summarized next. Table 4.9 shows that the SwinT V2 S variant uses con-
siderably less memory than the ViT variants. Therefore, the SwinT V2 S with PMix can
achieve high scores while utilizing less memory. However, Figure 4.2 indicates that the
SwinT V2 S variant has a slower inference speed compared to the ViT variants. Among
the ViT variants, the B 32 variant was the fastest, suggesting that the combination of
PMix with ViT B 32 can produce high scores with lower inference time. Therefore, we
select the following methods for this section:

• SwinT V2 S with PMix;

• and ViT B 32 with PMix.
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Table 4.5: Averages and standard deviations of the folds evaluation for the Vision Trans-
former variants.

Model Projection Cohen Kappa F1 Score Precision
ViT: B 16 GAF 0.562 ± 0.155 0.833 ± 0.090 0.771 ± 0.167

MTF 0.518 ± 0.040 0.771 ± 0.163 0.773 ± 0.175
RP 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

ViT: B 32 GAF 0.583 ± 0.163 0.844 ± 0.074 0.785 ± 0.148
MTF 0.515 ± 0.207 0.790 ± 0.167 0.729 ± 0.155
RP 0.883 ± 0.184 0.913 ± 0.154 0.944 ± 0.130
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

ViT: H 14 GAF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
MTF 0.477 ± 0.075 0.799 ± 0.154 0.708 ± 0.144
RP 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
PMix (proposed) 0.833 ± 0.222 0.931 ± 0.087 0.903 ± 0.146

ViT: L 16 GAF 0.667 ± 0.246 0.873 ± 0.117 0.812 ± 0.188
MTF 0.594 ± 0.254 0.851 ± 0.118 0.736 ± 0.284
RP 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

ViT: L 32 GAF 0.674 ± 0.257 0.868 ± 0.119 0.819 ± 0.173
MTF 0.612 ± 0.196 0.828 ± 0.141 0.811 ± 0.167
RP 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

Table 4.6: Averages and standard deviations of the folds evaluation for the MaxViT
variants.

Model Projection Cohen Kappa F1 Score Precision
MaxViT GAF 0.653 ± 0.261 0.857 ± 0.132 0.806 ± 0.192

MTF 0.544 ± 0.190 0.706 ± 0.186 0.788 ± 0.222
RP 0.854 ± 0.225 0.932 ± 0.111 0.910 ± 0.172
PMix (proposed) 0.875 ± 0.169 0.921 ± 0.098 0.944 ± 0.130

Table 4.7: Averages and standard deviations of the folds evaluation for the Swin Trans-
former V2 variants.

Model Projection Cohen Kappa F1 Score Precision
SwinT: B GAF 0.625 ± 0.226 0.861 ± 0.110 0.792 ± 0.179

MTF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
RP 0.883 ± 0.184 0.913 ± 0.154 0.944 ± 0.130
PMix (proposed) 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129

SwinT: S GAF 0.696 ± 0.236 0.838 ± 0.160 0.854 ± 0.198
MTF 0.568 ± 0.226 0.820 ± 0.181 0.750 ± 0.194
RP 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
PMix (proposed) 0.792 ± 0.234 0.919 ± 0.087 0.882 ± 0.148

SwinT: T GAF 0.571 ± 0.216 0.765 ± 0.187 0.771 ± 0.198
MTF 0.514 ± 0.166 0.806 ± 0.110 0.736 ± 0.154
RP 0.727 ± 0.261 0.897 ± 0.127 0.833 ± 0.195
PMix (proposed) 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
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Table 4.8: Averages and standard deviations of the folds evaluation for the Swin Trans-
former V2 variants.

Model Projection Cohen Kappa F1 Score Precision
SwinTV2: B GAF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129

MTF 0.568 ± 0.162 0.860 ± 0.085 0.764 ± 0.132
RP 0.833 ± 0.222 0.931 ± 0.087 0.931 ± 0.127
PMix (proposed) 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130

SwinTV2: S GAF 0.611 ± 0.239 0.829 ± 0.134 0.785 ± 0.183
MTF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
RP 0.833 ± 0.195 0.910 ± 0.097 0.924 ± 0.140
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

SwinTV2: T GAF 0.674 ± 0.257 0.868 ± 0.119 0.819 ± 0.173
MTF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
RP 0.842 ± 0.210 0.901 ± 0.152 0.951 ± 0.115
PMix (proposed) 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129

Table 4.9: Memory size in Mega Bytes of each Transformers family model variant.
Neural Network Memory

Size (MB)
SwinT: T 110.083712
SwinTV2: T 110.336672
MaxViT 122.144800
SwinT: S 195.355424
SwinTV2: S 195.880352
ViT: B 16 343.200824

Neural Network Memory
Size (MB)

SwinT: B 346.981336
SwinTV2: B 347.632024
ViT: B 32 349.827128
ViT: H 14 1213.214776
ViT: L 16 1213.214776
ViT: L 32 1222.049848
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Figure 4.2: Inference time in milliseconds of each Transformers family model variant.
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Residual nets

The experiments produced three score tables. Table 4.10 presents the ResNet scores for
variants with 18, 34, 50, 101, and 152 layers. Among these, the PMix and RP methods
outperformed the other projection methods. Specifically, the PMix method achieved the
best scores when combined with the 50 and 101-layer variants. Table 4.11 displays the
ResNeXt scores for variants with 50 or 101 layers, cardinality of 32 or 64, and bottleneck
width of 4 or 8. Among these, the PMix and RP methods achieved the best scores.
Notably, the RP method with the ResNeXt 101 32× 8d variant achieved the highest
scores. Table 4.12 lists the Wide ResNet scores for variants with 50 or 101 layers and a
widening factor of 2. The PMix and RP methods consistently performed better across
all metrics. Notably, the PMix method with the Wide ResNet 101-2 variant achieved
the best scores for Cohen kappa and F1-Score, and the second-best score for precision.
Observing Tables 4.10, 4.11, and 4.12 together reveals that the Wide ResNet 101-2 with
PMix was the top-performing combination in terms of scoring. However, this combination
had the highest memory usage, according to Table 4.13, and was the fourth slowest in
inference time, as seen in Figure 4.3. An alternative with nearly the second-best scores
but significantly lower memory usage and inference time is the ResNet 50 with PMix.
Thus, the two methods below were chosen for this section:

• ResNet 50 with PMix;

• and Wide ResNet 101-2 with PMix.

Table 4.10: Averages and standard deviations of the folds evaluation for the ResNet
variants.

Model Projection Cohen Kappa F1 Score Precision
ResNet: 101 GAF 0.558 ± 0.223 0.848 ± 0.106 0.708 ± 0.279

MTF 0.500 ± 0.000 0.825 ± 0.074 0.729 ± 0.129
RP 0.667 ± 0.244 0.851 ± 0.147 0.867 ± 0.185
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

ResNet: 152 GAF 0.609 ± 0.266 0.874 ± 0.123 0.729 ± 0.291
MTF 0.557 ± 0.168 0.787 ± 0.135 0.785 ± 0.183
RP 0.792 ± 0.234 0.925 ± 0.089 0.894 ± 0.149
PMix (proposed) 0.875 ± 0.199 0.913 ± 0.154 0.931 ± 0.166

ResNet: 18 GAF 0.661 ± 0.256 0.807 ± 0.172 0.861 ± 0.182
MTF 0.547 ± 0.188 0.799 ± 0.148 0.771 ± 0.155
RP 0.854 ± 0.198 0.926 ± 0.093 0.924 ± 0.140
PMix (proposed) 0.771 ± 0.249 0.908 ± 0.109 0.868 ± 0.176

ResNet: 34 GAF 0.599 ± 0.210 0.799 ± 0.148 0.799 ± 0.165
MTF 0.500 ± 0.000 0.833 ± 0.098 0.725 ± 0.142
RP 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
PMix (proposed) 0.854 ± 0.225 0.932 ± 0.111 0.931 ± 0.127

ResNet: 50 GAF 0.510 ± 0.254 0.772 ± 0.178 0.681 ± 0.293
MTF 0.470 ± 0.067 0.806 ± 0.110 0.715 ± 0.130
RP 0.818 ± 0.226 0.931 ± 0.087 0.882 ± 0.148
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
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Table 4.11: Averages and standard deviations of the folds evaluation for the ResNeXt
variants.

Model Projection Cohen Kappa F1 Score Precision
ResNeXt: 101; 32x8d GAF 0.729 ± 0.271 0.853 ± 0.179 0.847 ± 0.204

MTF 0.568 ± 0.162 0.844 ± 0.102 0.771 ± 0.167
RP 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
PMix (proposed) 0.758 ± 0.230 0.877 ± 0.145 0.882 ± 0.148

ResNeXt: 101; 64x4d GAF 0.479 ± 0.188 0.752 ± 0.159 0.708 ± 0.169
MTF 0.511 ± 0.198 0.580 ± 0.217 0.806 ± 0.257
RP 0.758 ± 0.204 0.856 ± 0.149 0.917 ± 0.144
PMix (proposed) 0.833 ± 0.222 0.915 ± 0.115 0.903 ± 0.146

ResNeXt: 50; 32x4d GAF 0.542 ± 0.144 0.794 ± 0.161 0.750 ± 0.158
MTF 0.568 ± 0.162 0.860 ± 0.085 0.764 ± 0.132
RP 0.750 ± 0.282 0.870 ± 0.183 0.847 ± 0.204
PMix (proposed) 0.792 ± 0.234 0.919 ± 0.087 0.882 ± 0.148

Table 4.12: Averages and standard deviations of the folds evaluation for the Wide ResNet
variants.

Model Projection Cohen Kappa F1 Score Precision
WiResNet: 101-2 GAF 0.625 ± 0.226 0.826 ± 0.158 0.803 ± 0.172

MTF 0.508 ± 0.110 0.702 ± 0.189 0.750 ± 0.194
RP 0.842 ± 0.210 0.905 ± 0.159 0.970 ± 0.101
PMix (proposed) 0.955 ± 0.101 0.967 ± 0.078 0.944 ± 0.130

WiResNet: 50-2 GAF 0.486 ± 0.117 0.737 ± 0.154 0.713 ± 0.196
MTF 0.550 ± 0.145 0.786 ± 0.142 0.773 ± 0.175
RP 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

Table 4.13: Memory size in Mega Bytes of each Residual nets family model variant.
Neural Network Memory

Size (MB)
ResNet: 18 44.710680
ResNet: 34 85.143704
ResNeXt: 50; 32x4d 91.937328
ResNet: 50 94.049840
ResNet: 101 170.019576

Neural Network Memory
Size (MB)

ResNet: 152 232.595392
WiResNet: 50-2 267.354672
ResNeXt: 101; 64x4d 325.644024
ResNeXt: 101; 32x8d 346.988280
WiResNet: 101-2 499.369720
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Figure 4.3: Inference time in milliseconds of each Residual Nets family model variant.
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Mobile-oriented

Three metric tables were generated for mobile-oriented family of CV models. Table 4.14
records the scores obtained by the MNASNet variants, which can have depth multipliers
of 0.5, 0.75, 1.0, or 1.3, affecting the number of channels. Notably, the combination of
MNASNet 1.0 with PMix achieved the best scores across all metrics. Table 4.15 presents
the scores for MobileNet V2. The RP projection achieved the best Cohen kappa and
precision scores, while PMix obtained the highest F1-Score. However, RP demonstrated
greater consistency, with lower variability in results compared to the standard deviations
of PMix. Table 4.16 lists the MobileNet V3 variants, which include Small and Large
configurations in terms of resource usage. Notably, PMix with the Large variant achieved
the best Cohen kappa and precision scores, while RP with the Small variant excelled in the
F1-Score metric. From the Tables 4.14, 4.15 and 4.16, the combination of MNASNet 1.0
with PMix emerges as the overall best case. This combination demonstrates a competent
inference time when comparing to the other models in the category, as shown in Figure 4.4,
but its memory consumption was not among the best models in the category, according
to Table 4.17. Nonetheless, we elect only one method as the best models of this section:

• MNASNet 1.0 with PMix.

Table 4.14: Averages and standard deviations of the folds evaluation for the MNASNet
variants.

Model Projection Cohen Kappa F1 Score Precision
MNASNet: 0.5 GAF 0.513 ± 0.211 0.812 ± 0.167 0.552 ± 0.367

MTF 0.480 ± 0.133 0.798 ± 0.136 0.681 ± 0.263
RP 0.619 ± 0.260 0.787 ± 0.222 0.843 ± 0.197
PMix (proposed) 0.691 ± 0.220 0.866 ± 0.147 0.848 ± 0.148

MNASNet: 0.75 GAF 0.500 ± 0.000 0.830 ± 0.072 0.750 ± 0.144
MTF 0.524 ± 0.097 0.689 ± 0.142 0.771 ± 0.212
RP 0.854 ± 0.225 0.932 ± 0.111 0.910 ± 0.172
PMix (proposed) 0.674 ± 0.298 0.796 ± 0.225 0.811 ± 0.230

MNASNet: 1.0 GAF 0.588 ± 0.213 0.698 ± 0.235 0.861 ± 0.220
MTF 0.527 ± 0.185 0.839 ± 0.236 0.750 ± 0.433
RP 0.521 ± 0.072 0.830 ± 0.064 0.750 ± 0.125
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

MNASNet: 1.3 GAF 0.583 ± 0.163 0.842 ± 0.078 0.765 ± 0.139
MTF 0.530 ± 0.164 0.833 ± 0.114 0.743 ± 0.153
RP 0.523 ± 0.075 0.848 ± 0.073 0.743 ± 0.109
PMix (proposed) 0.604 ± 0.249 0.884 ± 0.107 0.750 ± 0.312
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Table 4.15: Averages and standard deviations of the folds evaluation for the MobileNet V2
variants.

Model Projection Cohen Kappa F1 Score Precision
MobileNet V2 GAF 0.565 ± 0.214 0.776 ± 0.164 0.788 ± 0.294

MTF 0.485 ± 0.200 0.773 ± 0.201 0.708 ± 0.193
RP 0.875 ± 0.199 0.927 ± 0.116 0.924 ± 0.140
PMix (proposed) 0.854 ± 0.249 0.951 ± 0.086 0.889 ± 0.296

Table 4.16: Averages and standard deviations of the folds evaluation for the MobileNet V3
variants.

Model Projection Cohen Kappa F1 Score Precision
MobileNet V3: Large GAF 0.507 ± 0.140 0.758 ± 0.146 0.765 ± 0.178

MTF 0.561 ± 0.227 0.777 ± 0.185 0.806 ± 0.195
RP 0.683 ± 0.272 0.838 ± 0.191 0.818 ± 0.318
PMix (proposed) 0.792 ± 0.234 0.908 ± 0.109 0.910 ± 0.135

MobileNet V3: Small GAF 0.473 ± 0.090 0.807 ± 0.153 0.639 ± 0.283
MTF 0.474 ± 0.091 0.731 ± 0.165 0.697 ± 0.150
RP 0.727 ± 0.236 0.912 ± 0.087 0.848 ± 0.148
PMix (proposed) 0.667 ± 0.246 0.822 ± 0.174 0.833 ± 0.207

Table 4.17: Memory size in Mega Bytes of each Mobile-Oriented family model variant.
Neural Network Memory

Size (MB)
MNASNet: 0.5 3.761592
MNASNet: 0.75 7.568376
MobileNet V2 8.907032

Neural Network Memory
Size (MB)

MNASNet: 1.0 12.420792
MobileNet V3: Large 16.819528
MNASNet: 1.3 20.016568
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Figure 4.4: Inference time in milliseconds of each Mobile-Oriented family model variant.
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Extreme nets

Three metric tables were constructed, each corresponding to a model within the CV family.
Table 4.18 presents the DenseNet results, where the variants include depths of 121, 161,
169, or 201 layers. For the 169 and 201 layer variants, the PMix method achieved superior
performance, whereas the RP method was the best for the 161 layer variant. For the 121
layer variant, the PMix method obtained the highest Cohen kappa score, while the RP
method excelled in the F1-Score and achieved perfect precision. Overall, the DenseNet
161 with RP, DenseNet 201 with PMix, and DenseNet 121 with RP achieved the best
scores in terms of Cohen kappa, F1-Score, and precision metrics, respectively. Notably,
the DenseNet 161 with RP demonstrated a good balance across metrics, attaining the best
Cohen kappa score and the second-best F1 and precision scores. Table 4.19 exhibits the
SqueezeNet results for versions 1.0 and 1.1. The optimized version 1.1 achieved the highest
scores when paired with the PMix method, attaining the best Cohen kappa and F1 scores.
When combined with the RP method, the optimized version 1.1 achieved the best precision
score. Both combinations demonstrated generally strong performance across all metrics.
Table 4.20 details the VGG scores across variants with 11, 13, 16, or 19 layers, with or
without Batch Normalization (BN). The RP and PMix methods achieved the best scores
for all variants, though some cases exhibited higher dispersion. Notably, the combination
of VGG 16 with RP excelled in Cohen kappa and precision metrics, while VGG 16 BN
with PMix achieved the highest F1-Score. However, the VGG 16 with RP combination
showed considerable dispersion in the F1-Score metric, making VGG 16 BN with PMix a
more reliable choice. the combinations SqueezeNet 1.1 with PMix and VGG 16 BN with
PMix stand out. Specifically, SqueezeNet 1.1 with PMix achieved the best Cohen kappa,
while VGG 16 BN with PMix attained the highest F1-score among all Extreme Nets CV
family models. The Figure 4.5 illustrates that SqueezeNet 1.1 with PMix outperforms
most other variants in terms of inference speed. Additionally, Table 4.21 shows that this
combination also ranks as the smallest in memory consumption. Thence, we choose two
methods as representative of this section:

• VGG 16 BN with PMix;

• and SqueezeNet 1.1 with PMix.
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Table 4.18: Averages and standard deviations of the folds evaluation for the DenseNet
variants.

Model Projection Cohen Kappa F1 Score Precision
DenseNet: 121 GAF 0.621 ± 0.248 0.795 ± 0.190 0.799 ± 0.196

MTF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
RP 0.771 ± 0.225 0.917 ± 0.099 1.000 ± 0.000
PMix (proposed) 0.862 ± 0.212 0.902 ± 0.167 0.931 ± 0.166

DenseNet: 161 GAF 0.557 ± 0.168 0.724 ± 0.191 0.788 ± 0.191
MTF 0.676 ± 0.239 0.818 ± 0.167 0.847 ± 0.204
RP 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
PMix (proposed) 0.750 ± 0.238 0.907 ± 0.085 0.861 ± 0.148

DenseNet: 169 GAF 0.480 ± 0.103 0.700 ± 0.211 0.767 ± 0.188
MTF 0.653 ± 0.261 0.857 ± 0.132 0.806 ± 0.192
RP 0.636 ± 0.275 0.848 ± 0.133 0.799 ± 0.153
PMix (proposed) 0.833 ± 0.222 0.938 ± 0.088 0.917 ± 0.144

DenseNet: 201 GAF 0.600 ± 0.256 0.861 ± 0.116 0.729 ± 0.291
MTF 0.558 ± 0.223 0.854 ± 0.058 0.701 ± 0.351
RP 0.683 ± 0.183 0.773 ± 0.179 0.889 ± 0.175
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

Table 4.19: Averages and standard deviations of the folds evaluation for the SqueezeNet
variants.

Model Projection Cohen Kappa F1 Score Precision
SqueezeNet: 1.0 GAF 0.591 ± 0.231 0.804 ± 0.192 0.771 ± 0.198

MTF 0.586 ± 0.194 0.742 ± 0.197 0.812 ± 0.217
RP 0.787 ± 0.206 0.816 ± 0.194 0.958 ± 0.144
PMix (proposed) 0.729 ± 0.271 0.838 ± 0.210 0.856 ± 0.211

SqueezeNet: 1.1 GAF 0.500 ± 0.000 0.819 ± 0.080 0.700 ± 0.105
MTF 0.450 ± 0.112 0.794 ± 0.161 0.646 ± 0.249
RP 0.904 ± 0.181 0.914 ± 0.168 0.972 ± 0.096
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
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Table 4.20: Averages and standard deviations of the folds evaluation for the VGG variants.
Model Projection Cohen Kappa F1 Score Precision
VGG: 11 GAF 0.659 ± 0.257 0.840 ± 0.182 0.811 ± 0.201

MTF 0.500 ± 0.174 0.790 ± 0.116 0.729 ± 0.155
RP 0.829 ± 0.192 0.855 ± 0.188 0.944 ± 0.130
PMix (proposed) 0.833 ± 0.222 0.931 ± 0.087 0.903 ± 0.146

VGG: 11 BN GAF 0.562 ± 0.155 0.848 ± 0.073 0.764 ± 0.132
MTF 0.545 ± 0.151 0.849 ± 0.101 0.750 ± 0.151
RP 0.875 ± 0.169 0.921 ± 0.098 0.944 ± 0.130
PMix (proposed) 0.854 ± 0.198 0.926 ± 0.093 0.924 ± 0.140

VGG: 13 GAF 0.667 ± 0.244 0.863 ± 0.121 0.819 ± 0.173
MTF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
RP 0.896 ± 0.198 0.944 ± 0.110 0.931 ± 0.166
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

VGG: 13 BN GAF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
MTF 0.530 ± 0.164 0.833 ± 0.114 0.743 ± 0.153
RP 0.833 ± 0.246 0.921 ± 0.131 0.896 ± 0.198
PMix (proposed) 0.873 ± 0.189 0.913 ± 0.154 0.924 ± 0.140

VGG: 16 GAF 0.583 ± 0.163 0.860 ± 0.052 0.780 ± 0.113
MTF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
RP 0.904 ± 0.181 0.930 ± 0.151 0.972 ± 0.096
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

VGG: 16 BN GAF 0.541 ± 0.196 0.861 ± 0.090 0.701 ± 0.257
MTF 0.569 ± 0.177 0.828 ± 0.090 0.778 ± 0.152
RP 0.625 ± 0.199 0.856 ± 0.087 0.799 ± 0.125
PMix (proposed) 0.896 ± 0.198 0.960 ± 0.075 0.951 ± 0.115

VGG: 19 GAF 0.568 ± 0.117 0.855 ± 0.052 0.778 ± 0.109
MTF 0.479 ± 0.078 0.776 ± 0.139 0.736 ± 0.154
RP 0.854 ± 0.225 0.932 ± 0.111 0.910 ± 0.172
PMix (proposed) 0.688 ± 0.217 0.879 ± 0.077 0.840 ± 0.144

VGG: 19 BN GAF 0.549 ± 0.199 0.790 ± 0.152 0.757 ± 0.172
MTF 0.553 ± 0.262 0.764 ± 0.211 0.743 ± 0.215
RP 0.875 ± 0.199 0.927 ± 0.116 0.931 ± 0.166
PMix (proposed) 0.708 ± 0.257 0.885 ± 0.123 0.833 ± 0.195

Table 4.21: Memory size in Mega Bytes of each Extreme nets family model variant.
Neural Network Memory

Size (MB)
SqueezeNet: 1.1 2.894136
SqueezeNet: 1.0 2.945848
DenseNet: 121 27.826576
DenseNet: 169 49.955344
DenseNet: 201 72.391952
DenseNet: 161 105.909584
VGG: 11 515.098168

Neural Network Memory
Size (MB)

VGG: 11 BN 515.120376
VGG: 13 515.836216
VGG: 13 BN 515.860008
VGG: 16 537.075000
VGG: 16 BN 537.109104
VGG: 19 558.313784
VGG: 19 BN 558.358200

51



0 20 40 60 80 100
Inference Time (ms)

                       VGG: 11

                    VGG: 11 BN

                       VGG: 13

                    VGG: 13 BN

                       VGG: 16

                    VGG: 16 BN

                       VGG: 19

                    VGG: 19 BN

VGG

GAF

MTF

RP

PMix (proposed)

0 20 40 60 80 100
Inference Time (ms)

                 DenseNet: 121

                 DenseNet: 161

                 DenseNet: 169

                 DenseNet: 201

DenseNet

GAF

MTF

RP

PMix (proposed)

0 20 40 60 80 100
Inference Time (ms)

               SqueezeNet: 1.0

               SqueezeNet: 1.1

SqueezeNet

GAF

MTF

RP

PMix (proposed)

Figure 4.5: Inference time in milliseconds of each Extreme Nets family model variant.
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Efficiency-oriented

Three score tables were constructed for the Efficiency-Oriented CV family. Table 4.22 lists
the results for EfficientNet variants ranging from B0, the smallest, to B4, the largest, in
terms of parameter scaling. The PMix projection achieved the highest scores for variants
B0, B1, and B2. For the B3 variant, the MTF method excelled in the F1-score, while
the RP method performed better for the other metrics. Overall, the combination of
EfficientNet B1 with PMix emerged as the top performer. Table 4.23 presents the scores
for EfficientNet V2, with the PMix projection outperforming all other methods. Table 4.24
displays the metrics for ShuffleNet V2 variants, which include multipliers of ×0.5, ×1.0,
×1.5, and ×2.0 on the number of channels in each architectural block. Across all variants,
the PMix projection method outperformed all others. Specifically, the best scores for
ShuffleNet V2 were achieved with the ×0.5 and ×1.0 variants combined with the PMix
method. When analyzing the results from Tables 4.22, 4.23, and 4.24, it is evident that
the usage of EfficientNet V2, ShuffleNet V2 ×0.5, and ShuffleNet V2 ×1.0 with PMix
achieved high scores across all metrics, including the best Cohen kappa and F1 scores, as
well as the second-best precision. Among these, the ShuffleNet V2 ×0.5 with PMix was
the most efficient in terms of memory usage, as shown in Table 4.25, while being one of
the fastest in inference, as visible in the Figure 4.6. Thus, only the following method was
selected for this section:

• ShuffleNet V2×0.5 with PMix.

Table 4.22: Averages and standard deviations of the folds evaluation for the EfficientNet
variants.

Model Projection Cohen Kappa F1 Score Precision
EfficientNet: B0 GAF 0.569 ± 0.177 0.828 ± 0.090 0.778 ± 0.152

MTF 0.507 ± 0.206 0.806 ± 0.155 0.694 ± 0.257
RP 0.736 ± 0.199 0.856 ± 0.142 0.882 ± 0.148
PMix (proposed) 0.841 ± 0.231 0.916 ± 0.134 0.896 ± 0.198

EfficientNet: B1 GAF 0.517 ± 0.247 0.755 ± 0.178 0.688 ± 0.278
MTF 0.503 ± 0.131 0.735 ± 0.186 0.757 ± 0.172
RP 0.694 ± 0.294 0.841 ± 0.196 0.856 ± 0.211
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

EfficientNet: B2 GAF 0.436 ± 0.161 0.729 ± 0.168 0.546 ± 0.344
MTF 0.473 ± 0.117 0.671 ± 0.228 0.750 ± 0.217
RP 0.682 ± 0.276 0.858 ± 0.179 0.806 ± 0.192
PMix (proposed) 0.854 ± 0.198 0.926 ± 0.093 0.924 ± 0.140

EfficientNet: B3 GAF 0.583 ± 0.163 0.841 ± 0.082 0.792 ± 0.163
MTF 0.579 ± 0.229 0.863 ± 0.116 0.719 ± 0.339
RP 0.696 ± 0.210 0.817 ± 0.151 0.868 ± 0.176
PMix (proposed) 0.604 ± 0.225 0.788 ± 0.181 0.792 ± 0.209
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Table 4.23: Averages and standard deviations of the folds evaluation for the Efficient-
Net V2 variants.

Model Projection Cohen Kappa F1 Score Precision
EfficientNet V2 GAF 0.600 ± 0.200 0.826 ± 0.167 0.800 ± 0.197

MTF 0.545 ± 0.151 0.849 ± 0.101 0.750 ± 0.151
RP 0.708 ± 0.234 0.895 ± 0.080 0.840 ± 0.144
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

Table 4.24: Averages and standard deviations of the folds evaluation for the ShuffleNet V2
variants.

Model Projection Cohen Kappa F1 Score Precision
ShuffleNet V2: x0.5 GAF 0.523 ± 0.208 0.784 ± 0.199 0.736 ± 0.210

MTF 0.473 ± 0.090 0.851 ± 0.090 0.667 ± 0.280
RP 0.821 ± 0.231 0.876 ± 0.190 0.910 ± 0.172
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

ShuffleNet V2: x1.0 GAF 0.504 ± 0.194 0.744 ± 0.180 0.688 ± 0.285
MTF 0.591 ± 0.202 0.862 ± 0.122 0.775 ± 0.184
RP 0.727 ± 0.236 0.932 ± 0.095 0.885 ± 0.160
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

ShuffleNet V2: x1.5 GAF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
MTF 0.489 ± 0.156 0.772 ± 0.122 0.659 ± 0.248
RP 0.592 ± 0.220 0.792 ± 0.207 0.767 ± 0.301
PMix (proposed) 0.800 ± 0.198 0.868 ± 0.148 0.951 ± 0.115

ShuffleNet V2: x2.0 GAF 0.625 ± 0.226 0.861 ± 0.110 0.792 ± 0.179
MTF 0.527 ± 0.199 0.700 ± 0.230 0.778 ± 0.234
RP 0.480 ± 0.235 0.789 ± 0.189 0.629 ± 0.358
PMix (proposed) 0.729 ± 0.249 0.896 ± 0.106 0.847 ± 0.173

Table 4.25: Memory size in Mega Bytes of each Efficiency-oriented family model variant.
Neural Network Memory

Size (MB)
ShuffleNet V2: x0.5 1.376760
ShuffleNet V2: x1.0 5.024008
ShuffleNet V2: x1.5 9.924088
EfficientNet: B0 16.041664
ShuffleNet V2: x2.0 21.397768

Neural Network Memory
Size (MB)

EfficientNet: B1 26.064688
EfficientNet: B2 30.816952
EfficientNet: B3 42.799144
EfficientNet V2 80.722888
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Figure 4.6: Inference time in milliseconds of each Efficiency-Oriented family model variant.

55



Further architectures

Three score tables were generated for the remaining computer vision models. The Table
4.27 contains the scores of AlexNet. Notably, the PMix projection earned the best scores
for all metrics in that table. Table 4.28 presents the results for the ConvNeXt model,
with variants including Tiny, Small, Base, and Large in terms of parameter size. Among
these variants, the RP and PMix methods achieved the best scores overall, though some
instances, such as RP with the Tiny variant, exhibited higher dispersion, particularly for
the Cohen kappa score. Specifically, the PMix method with the ConvNeXt Tiny variant
achieved the highest F1-score, while the PMix method with the ConvNeXt Small variant
obtained the best Cohen kappa and precision scores, and also secured the second best F1-
score. Table 4.26 exhibits the results for RegNet variants, categorized into RegNetX and
RegNetY design spaces [114], with varying float operations per second rates such as 400
Mega Flops (MF) or 16 Giga Flops (GF). Among these variants, several achieved scores
above the third quartile across all metrics. For the X space, notable cases include RP with
the 400 MF and 800 MF variants, and PMix with the 800 MF, 3.2 GF, 8 GF, and 16 GF
variants. For the Y space, noteworthy cases are RP with the 400 MF, 1.6 GF, 16 GF, and
32 GF variants, and PMix with the 800 MF, 3.2 GF, and 16 GF variants. Among these
high-scoring variants, the PMix method with the RegNet X 3.2 GF, RegNet X 800 MF,
RegNet Y 400 MF, and RegNet Y 800 MF variants achieved the best Cohen kappa and
F1 scores, and the third best precision score. Of these top-performing combinations, the
RegNet Y 400 MF with PMix had the lowest memory usage, as shown in Table 4.29,
while the RegNet X 800 MF with PMix had the fastest inferences of the model variants,
as seen in Figure 4.7. When evaluating the top-performing models from each type within
the Diverse CV family, the RegNet Y 400 MF with RP, and the RegNet X 800 MF and
AlexNet with PMix achieved the highest scores. Notably, the RegNet Y 400 MF with RP
exhibited the lowest memory usage, as shown in Table 4.29, while AlexNet had the fastest
inference times across all projections, as illustrated in Figure 4.7. Hence, two methods
were chosen for this section:

• AlexNet with PMix;

• and RegNet Y 400 MF with RP.
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Table 4.26: Averages and standard deviations of the folds evaluation for the RegNet
variants.

Model Projection Cohen Kappa F1 Score Precision
RegNet: X; 16 GF GAF 0.668 ± 0.226 0.837 ± 0.167 0.841 ± 0.202

MTF 0.542 ± 0.226 0.771 ± 0.154 0.736 ± 0.303
RP 0.729 ± 0.198 0.838 ± 0.142 0.902 ± 0.178
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

RegNet: X; 1.6 GF GAF 0.515 ± 0.174 0.817 ± 0.123 0.736 ± 0.154
MTF 0.553 ± 0.176 0.829 ± 0.114 0.764 ± 0.170
RP 0.768 ± 0.233 0.865 ± 0.195 0.955 ± 0.101
PMix (proposed) 0.854 ± 0.225 0.918 ± 0.151 0.910 ± 0.172

RegNet: X; 32 GF GAF 0.508 ± 0.095 0.830 ± 0.094 0.735 ± 0.117
MTF 0.527 ± 0.185 0.812 ± 0.157 0.705 ± 0.292
RP 0.862 ± 0.184 0.896 ± 0.154 0.944 ± 0.130
PMix (proposed) 0.896 ± 0.198 0.930 ± 0.151 0.931 ± 0.166

RegNet: X; 3.2 GF GAF 0.461 ± 0.095 0.810 ± 0.088 0.657 ± 0.278
MTF 0.550 ± 0.098 0.772 ± 0.122 0.800 ± 0.197
RP 0.896 ± 0.198 0.914 ± 0.168 0.931 ± 0.166
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

RegNet: X; 400 MF GAF 0.523 ± 0.075 0.831 ± 0.104 0.778 ± 0.150
MTF 0.479 ± 0.113 0.773 ± 0.095 0.729 ± 0.155
RP 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
PMix (proposed) 0.550 ± 0.098 0.791 ± 0.119 0.792 ± 0.163

RegNet: X; 800 MF GAF 0.594 ± 0.278 0.857 ± 0.145 0.720 ± 0.306
MTF 0.402 ± 0.117 0.656 ± 0.238 0.667 ± 0.173
RP 0.875 ± 0.199 0.943 ± 0.086 0.951 ± 0.115
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

RegNet: X; 8 GF GAF 0.545 ± 0.151 0.849 ± 0.101 0.750 ± 0.151
MTF 0.530 ± 0.164 0.812 ± 0.157 0.742 ± 0.169
RP 0.854 ± 0.198 0.932 ± 0.095 0.970 ± 0.101
PMix (proposed) 0.875 ± 0.199 0.951 ± 0.086 0.939 ± 0.135

RegNet: Y; 16 GF GAF 0.612 ± 0.196 0.811 ± 0.149 0.818 ± 0.197
MTF 0.477 ± 0.118 0.778 ± 0.117 0.727 ± 0.163
RP 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

RegNet: Y; 1.6 GF GAF 0.636 ± 0.259 0.846 ± 0.173 0.799 ± 0.217
MTF 0.500 ± 0.000 0.837 ± 0.090 0.729 ± 0.129
RP 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
PMix (proposed) 0.795 ± 0.218 0.914 ± 0.092 0.882 ± 0.148

RegNet: Y; 32 GF GAF 0.583 ± 0.222 0.822 ± 0.158 0.764 ± 0.170
MTF 0.568 ± 0.226 0.823 ± 0.173 0.750 ± 0.185
RP 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
PMix (proposed) 0.667 ± 0.222 0.883 ± 0.074 0.819 ± 0.137

RegNet: Y; 3.2 GF GAF 0.712 ± 0.280 0.881 ± 0.143 0.826 ± 0.199
MTF 0.547 ± 0.246 0.753 ± 0.206 0.758 ± 0.212
RP 0.826 ± 0.234 0.910 ± 0.119 0.896 ± 0.155
PMix (proposed) 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140

RegNet: Y; 400 MF GAF 0.590 ± 0.260 0.823 ± 0.173 0.771 ± 0.211
MTF 0.475 ± 0.112 0.690 ± 0.193 0.729 ± 0.198
RP 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
PMix (proposed) 0.773 ± 0.236 0.919 ± 0.087 0.861 ± 0.148

RegNet: Y; 800 MF GAF 0.521 ± 0.072 0.832 ± 0.061 0.742 ± 0.121
MTF 0.486 ± 0.191 0.660 ± 0.240 0.713 ± 0.196
RP 0.792 ± 0.257 0.902 ± 0.121 0.868 ± 0.296
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

RegNet: Y; 8 GF GAF 0.508 ± 0.029 0.790 ± 0.123 0.750 ± 0.158
MTF 0.482 ± 0.166 0.738 ± 0.158 0.648 ± 0.303
RP 0.875 ± 0.199 0.927 ± 0.116 0.924 ± 0.140
PMix (proposed) 0.771 ± 0.249 0.908 ± 0.109 0.868 ± 0.176
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Table 4.27: Averages and standard deviations of the folds evaluation for the AlexNet
variants.

Model Projection Cohen Kappa F1 Score Precision
AlexNet GAF 0.545 ± 0.151 0.849 ± 0.101 0.750 ± 0.151

MTF 0.598 ± 0.247 0.827 ± 0.174 0.773 ± 0.163
RP 0.704 ± 0.204 0.819 ± 0.168 0.910 ± 0.135
PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

Table 4.28: Averages and standard deviations of the folds evaluation for the ConvNeXt
variants.

Model Projection Cohen Kappa F1 Score Precision
ConvNeXt: Base GAF 0.536 ± 0.157 0.792 ± 0.137 0.764 ± 0.170

MTF 0.473 ± 0.144 0.789 ± 0.159 0.667 ± 0.268
RP 0.883 ± 0.184 0.913 ± 0.154 0.944 ± 0.130
PMix (proposed) 0.854 ± 0.198 0.926 ± 0.093 0.924 ± 0.140

ConvNeXt: Large GAF 0.611 ± 0.239 0.845 ± 0.124 0.785 ± 0.183
MTF 0.545 ± 0.151 0.849 ± 0.101 0.750 ± 0.151
RP 0.862 ± 0.184 0.896 ± 0.154 0.944 ± 0.130
PMix (proposed) 0.862 ± 0.184 0.896 ± 0.154 0.944 ± 0.130

ConvNeXt: Small GAF 0.708 ± 0.257 0.885 ± 0.123 0.833 ± 0.195
MTF 0.611 ± 0.239 0.845 ± 0.124 0.785 ± 0.183
RP 0.854 ± 0.198 0.926 ± 0.093 0.924 ± 0.140
PMix (proposed) 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130

ConvNeXt: Tiny GAF 0.688 ± 0.241 0.884 ± 0.101 0.826 ± 0.168
MTF 0.523 ± 0.075 0.833 ± 0.090 0.750 ± 0.151
RP 0.778 ± 0.257 0.903 ± 0.113 0.875 ± 0.157
PMix (proposed) 0.875 ± 0.199 0.951 ± 0.086 0.939 ± 0.135

Table 4.29: Memory size in Mega Bytes of each Diverse family model variant.
Neural Network Memory

Size (MB)
RegNet: Y; 400 MF 15.618528
RegNet: X; 400 MF 20.385968
RegNet: Y; 800 MF 22.598608
RegNet: X; 800 MF 26.354432
RegNet: X; 1.6 GF 33.118416
RegNet: Y; 1.6 GF 41.264048
RegNet: X; 3.2 GF 57.161352
RegNet: Y; 3.2 GF 71.708240
ConvNeXt: Tiny 111.286712

Neural Network Memory
Size (MB)

RegNet: Y; 8 GF 149.476520
RegNet: X; 8 GF 150.624888
ConvNeXt: Small 197.824952
RegNet: X; 16 GF 208.937392
AlexNet 228.048184
RegNet: Y; 16 GF 322.287328
ConvNeXt: Base 350.274104
RegNet: Y; 32 GF 565.367496
ConvNeXt: Large 784.933688
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Figure 4.7: Inference time in milliseconds of each Diverse family model variant.
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4.2.2 Non-computer vision models comparison

Table 4.30 presents the scores for non-computationally-visual baseline models. The mod-
els Individual Ordinal TDE, Random Interval Classifier, random interval spectral en-
semble classifier (RISEC), TS Fresh Classifier, temporal dictionary ensemble (TDE), and
WEASEL V2 achieved high scores across all metrics. Among these, RISEC and TDE sur-
passed the other models in every score metric. Specifically, RISEC demonstrated faster
inference, as shown in Figure 4.8,while TDE had lower memory consumption, according
to Table 4.31. So, we elect the two methods below as the best models of this section:

• RISEC;

• and TDE.

Table 4.30: Averages and standard deviations of the folds evaluation for the Non-CV
variants.

Model Cohen Kappa F1 Score Precision
Arsenal 0.639 ± 0.252 0.804 ± 0.140 0.819 ± 0.204
BOSS Ensemble 0.688 ± 0.241 0.884 ± 0.101 0.826 ± 0.168
Zhao’s CNN Classifier 0.875 ± 0.199 0.951 ± 0.086 0.939 ± 0.135
Canonical Interval Forest Classifier 0.862 ± 0.184 0.896 ± 0.154 0.944 ± 0.130
Catch 22 Classifier 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
Continuous Interval Tree 0.632 ± 0.240 0.856 ± 0.112 0.799 ± 0.165
Contractable BOSS 0.792 ± 0.234 0.919 ± 0.087 0.882 ± 0.148
DrCIF Classifier 0.904 ± 0.181 0.930 ± 0.151 0.972 ± 0.096
Elastic Ensemble 0.812 ± 0.188 0.893 ± 0.097 0.924 ± 0.140
Wang’s FCN Classifier 0.842 ± 0.210 0.901 ± 0.152 0.924 ± 0.140
Inception Time Classifier 0.799 ± 0.242 0.898 ± 0.116 0.896 ± 0.155
Individual BOSS 0.875 ± 0.169 0.921 ± 0.098 0.944 ± 0.130
Individual Inception Classifier 0.694 ± 0.228 0.858 ± 0.111 0.875 ± 0.163
Individual Ordinal TDE 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
Individual TDE 0.862 ± 0.184 0.896 ± 0.154 0.944 ± 0.130
K-Neighbors Time Series Classifier 0.875 ± 0.199 0.927 ± 0.116 0.931 ± 0.166
LITE Time Classifier 0.771 ± 0.249 0.908 ± 0.109 0.868 ± 0.176
Wang’s MLP Classifier 0.485 ± 0.050 0.821 ± 0.102 0.722 ± 0.130
MUSE 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
Ordinal TDE 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
RDST Classifier 0.633 ± 0.196 0.842 ± 0.125 0.819 ± 0.137
REDCOMETS 0.508 ± 0.095 0.817 ± 0.101 0.743 ± 0.153
Random Interval Classifier 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
RISEC 0.938 ± 0.155 0.971 ± 0.068 0.972 ± 0.096
Rocket Classifier 0.729 ± 0.225 0.859 ± 0.122 0.868 ± 0.176
Rotation Forest Classifier 0.854 ± 0.225 0.932 ± 0.111 0.910 ± 0.172
Shape DTW 0.729 ± 0.225 0.875 ± 0.106 0.868 ± 0.176
Shapelet Transform Classifier 0.625 ± 0.199 0.873 ± 0.067 0.803 ± 0.131
Summary Classifier 0.883 ± 0.184 0.913 ± 0.154 0.944 ± 0.130
Supervised Time Series Forest 0.862 ± 0.184 0.896 ± 0.154 0.972 ± 0.096
TS Fresh Classifier 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
TDE 0.938 ± 0.155 0.971 ± 0.068 0.972 ± 0.096
Time Series Forest Classifier 0.896 ± 0.167 0.938 ± 0.093 0.944 ± 0.130
WEASEL 0.875 ± 0.199 0.943 ± 0.086 0.924 ± 0.140
WEASEL V2 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130

60



Table 4.31: Memory size in Mega Bytes of each Non-CV family model variant.
Neural Network Memory

Size (MB)
Continuous Interval Tree 0.011384
Individual Ordinal TDE 0.019264
Individual TDE 0.019264
Individual BOSS 0.079880
Summary Classifier 0.244776
Catch 22 Classifier 0.245600
WEASEL 0.424416
WEASEL V2 0.486456
TDE 0.586264
Ordinal TDE 0.587536
Rocket Classifier 0.651192
TS Fresh Classifier 0.665896
MUSE 0.776376
RDST Classifier 0.971184
RISEC 1.171312
Zhao’s CNN Classifier 1.602328
Contractable BOSS 1.902736
Wang’s MLP Classifier 1.911008

Neural Network Memory
Size (MB)

Arsenal 3.320648
Wang’s FCN Classifier 3.353256
REDCOMETS 3.890264
K-Neighbors Time Series Classifier 4.943104
Elastic Ensemble 5.229568
Random Interval Classifier 5.303208
Time Series Forest Classifier 6.495832
Shape DTW 7.591056
BOSS Ensemble 8.204624
Canonical Interval Forest Classifier 9.487720
Supervised Time Series Forest 10.044264
Individual Inception Classifier 10.378496
DrCIF Classifier 13.327184
Shapelet Transform Classifier 17.377296
LITE Time Classifier 25.222448
Rotation Forest Classifier 33.036872
Inception Time Classifier 51.942384
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Figure 4.8: Inference time in milliseconds of each Non-CV family model variant.
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4.2.3 Comparison of the top-performing models

The best combinations between models and projections from previous analyses are ag-
gregated in Table 4.32. The top-performing models include the TDE, the RISEC, and
the Wide ResNet 100-2 with PMix. While the Wide ResNet achieved the highest Cohen
kappa score, it is notable that this model was the second largest in terms of memory
usage, as indicated in Table 4.33. Additionally, it did not achieve the highest F1-Score or
precision and was the second slowest in terms of inference speed, as shown in Figure 4.9.
In contrast, the TDE and RISEC models excelled in usability and security metrics, in-
cluding F1-Score and precision. They also demonstrated superior performance in terms of
inference speed and memory efficiency. Consequently, while the CV approach, represented
by the Wide ResNet 100-2 with PMix, achieved higher accuracy, the non-CV approach,
embodied by the TDE and RISEC, offers better resource efficiency and speed, making it
a more practical choice for applications requiring lower resource consumption and faster
performance.

Table 4.32: Averages and standard deviations of the folds evaluation for the best models
variants.

Model Projection Cohen Kappa F1 Score Precision
AlexNet PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
MNASNet: 1.0 PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
RISEC Not projected 0.938 ± 0.155 0.971 ± 0.068 0.972 ± 0.096
RegNet: Y; 400 MF RP 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
ResNet: 50 PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
ShuffleNet V2: x0.5 PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
SqueezeNet: 1.1 PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
SwinTV2: S PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
TDE Not projected 0.938 ± 0.155 0.971 ± 0.068 0.972 ± 0.096
VGG: 16 BN PMix (proposed) 0.896 ± 0.198 0.960 ± 0.075 0.951 ± 0.115
ViT: B 32 PMix (proposed) 0.917 ± 0.163 0.955 ± 0.083 0.944 ± 0.130
WiResNet: 101-2 PMix (proposed) 0.955 ± 0.101 0.967 ± 0.078 0.944 ± 0.130

Table 4.33: Memory size in Mega Bytes of each best models family model variant.
Neural Network Memory

Size (MB)
TDE 0.586264
RISEC 1.171312
ShuffleNet V2: x0.5 1.376760
SqueezeNet: 1.1 2.894136
MNASNet: 1.0 12.420792
RegNet: Y; 400 MF 15.617376

Neural Network Memory
Size (MB)

ResNet: 50 94.049840
SwinTV2: S 195.880352
AlexNet 228.048184
ViT: B 32 349.827128
WiResNet: 101-2 499.369720
VGG: 16 BN 537.109104
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Figure 4.9: Inference time in milliseconds of each best models family model variant.

4.3 Limitations

Despite the promising results, some limitations can be considered. The experiments
utilized only the BUTPPG dataset for testing. This has a series of implications in our
context. Firstly, even though the proposed method allowed the use of CV models with a
good performance in the BUTPPG dataset, the same could not necessarily be concluded
for different datasets. This is because different methods of measurement, sensor qualities,
signal lengths, and individual medical conditions could lead to alterations on the obtained
performance. One evidence of that is the absence of confirmed CA cases in the BUTPPG
dataset, which could be present in external data. Furthermore, the small size of the dataset
resulted in a reduced testing dataset, which makes the obtained results less general, that
is, unreliable when we consider the possible variability of data that is external to the
dataset. A small dataset size also implies that the deep learning models had less data
samples to effectively learn. This contrasts with the usual treatment for deep learning,
where usually large amounts of data feed the training of the model, allowing the proper
adjustment of the large set of parameters. Therefore, our experiments would be more
complete if our experiments tested on different and larger datasets.

Another constraint is that the experiments did not explore all available options in
terms of models. For instance, our experiments left out some of the models of the Py-
torch and the Aeon libraries. Examples of them are the GoogLeNet [120], from the
Pytorch library, and the Hydra Classifier [121], from the Aeon library. Additionally, mod-
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els external to these libraries, such as Xception [122] available in the Keras library19,
were not tested. Furthermore, not all variants of the tested models were evaluated, such
as EfficientNet B7. Additionally, the hyperparameters of the projection methods, such
as the number of dimensions in RP, were not optimized. Exploring a broader range of
options, including different libraries and hyperparameter search techniques like Optuna,
could yield more comprehensive results.

Finally, additional limitations were identified at the implementation level. Firstly, the
implementation utilized random oversampling to balance the dataset. However, alterna-
tive methods specifically designed for time series data, such as those described in [123],
could have been employed. These methods not only balance the dataset but also can
augment it. Secondly, resizing transforms were used to adapt projection images to model
inputs, potentially leading to significant loss of information for matrix images that encode
pixel relationships. As a consequence, the CV models probably did not performed as good
as they could. Thirdly, there was no research for the early stop method that our imple-
mentation used. Consequently, there is a chance that this method prematurely stopped
the training for models that required more epochs. Lastly, benchmarking metrics were
measured using the Python standard API, which may be limited by the interpreter. Addi-
tionally, our measurements did not control the environment where measured the inference
time. This could imply that external users have scheduled tasks that competed with mine
measurements. Therefore, improvements at the implementation level could include ap-
plying time series augmentation techniques, resizing images without distortion by using
integer multipliers and padding, researching and optimizing early stopping methods, and
conducting measurements in a more controlled environment using low-level interfaces.

19Accessible at https://keras.io/.
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Chapter 5

Conclusion

This work, named “Projection-Based Photoplethysmography Signal Quality Assessment”,
presented a study on SQA for PPG signals, mainly focused on the 1D-to-2D-projection
approach. The investigated projection-based approach involved transforming 1D signals
onto 2D images using the RP, GAF, and MTF methods. In addition to these methods,
we proposed a mixed approach combining them. The results indicate that the RP and
PMix projection methods outperformed the GAF and MTF methods, with RP and PMix
yielding similar outcomes. Although the set of machine learning models was extensive, the
BUTPPG dataset was small and unbalanced, limiting the conclusiveness of the results.
Consequently, the experiment should be replicated on a larger dataset, either by using data
augmentation techniques to balance and expand the BUTPPG dataset or by utilizing a
different dataset with more samples. Nonetheless, the method of this work was published
on the Anais do XXIV Simpósio Brasileiro de Computação Aplicada à Saúde through the
peer-reviewed work “On the Performance of Composite 1D-to-2D Projections for Signal
Quality Assessment” [124], in which we tested the proposed method and the RP, MTF,
and GAF methods in the same BUTPPG dataset with a smaller set of CV models.

The experiments in Chapter 4 provide insights into the importance of the novel projec-
tion method proposed in Chapter 3. One key finding is that the PMix method appeared
more frequently among the best-performing results compared to the other projection
methods. Specifically, in the projection-based ensembles listed in Table 4.32, all but one
used the PMix method. This suggests that the proposed method can enhance the per-
formance of a set of isolated projection methods. However, it should be noted that this
method increases memory requirements due to the cumulative size of the individual pro-
jections. The same experiments also demonstrate the overall effectiveness of projection
methods. Notably, in the best-performing models listed in Table 4.32, the PMix method
combined with Wide ResNet outperformed the baseline time series classification models
in terms of the Cohen Kappa score. This indicates that a projection-based approach
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can be highly accurate for both binary SQI classes. While this highlights the viability
of the projection-based approach alongside other time series classifiers, the conventional
time series classifiers achieved higher F1 and Precision scores, suggesting they performed
better for the positive SQI class. An additional drawback is that combining projection-
based methods with CV models is computationally more expensive and requires more
memory than using 1D classifiers. Nevertheless, the projection-based approach proved to
be effective for SQA, fulfilling our original objective described in Section 1.1.

The results reveal that the proposed method is a promising tool for real-life applica-
tions, as presented in Chapter 1. One could envision this thesis technique as a tool for
artificial intelligence (AI) engineers, offering a trade-off between memory and computa-
tional cost in exchange for improved accuracy. This is achieved by combining various
projection methods, which respectively increase image size and incur the 1D-to-2D con-
version cost of each projection. For that reason, even though the CV models incorporated
into the proposed method have sufficiently low latency to support a responsive appli-
cation, they may not be advisable for wearable devices, such as smartwatches, due to
memory constraints. It is necessary to process the signal on a remote device with greater
memory capacity, such as a server in a remote healthcare environment. Therefore, this
method is suitable for remote healthcare applications.

When considering the experimental results and the decisions that produced them, it
is possible to understand the place of this work in the literature reviewed in Chapter 2.
Regarding the proposed projection method, there is no known work suggesting this ap-
proach, which makes our work innovative. However, since our experiments did not directly
compare the method with existing SQA approaches, the position of the PMix method in
the literature remains uncertain. In addition to its originality, our experiments tested an
unusually wide variety of 2D and 1D models, which is not common in the literature. This
positions our work as a valuable reference for identifying models that synergize well with
the SQA task, despite the limitation of testing on only a small dataset. Furthermore,
in contrast to most works in the literature, our experiments can be reproduced. Our
implementation uses open-source libraries for both the ML models and projection meth-
ods and works with a publicly available dataset with established labeling. Moreover, our
software implementation is also publicly available1. Although it is not yet fully refined or
thoroughly documented for external use, it is accessible for review. Therefore, this work
is innovative, useful and reproducible, as the Section 1.2 exposed.

There are several improvement points, some already presented in the Section 4.3,
for which future works could seek their corresponding solutions. For instance, we used
only a single dataset, which is limited in size, data quality, variety, and recording length.

1https://gitlab.com/lisa-unb/projection-based-biological-signal-processing
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Future work could involve experiments with larger and more diverse datasets, and cross-
dataset validation would yield more reliable results. Conversely, the experiments did
not explore many 1D and 2D models with open-source implementations, nor did they
vary the parameters of the projections and ML models. Exploring these aspects could
reveal new relationships among the models and their parameters. Increasing the model
options, another improvement point is to test the proposed method against specialized
methods from the SQA literature. This would assess the real relevance of the proposed
method. Another idea related to the SQA literature would be to combine the proposed
method with other existing SQA techniques, such as the signal multiscaling technique of
Liu et al. [56]. That would possibly further increase performance of the PMix. Finally,
the implementation could be further refined not only by selecting more effective pre-
processing techniques and ML training strategies but also by improving the experimental
setup and environment. Hence, there is significant potential for improvement in future
work regarding both the experimental setup and the proposed method.
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