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ABSTRACT

Estimators for the α-F composite fading distribution are presented in this work, in which the maximum-
likelihood (ML) method is used to estimate the parameters of the distribution under analysis and the method
of moments (MoM) is adopted to estimate the signal-to-noise (SNR). In our study, an orthogonal frequency
division multiplexing (OFDM) signal is considered. The performance of the new estimators are examined
and several mean and variance curves are shown considering different channel parameters and SNR range.
To the best of the authors’ knowledge, this is the first work that address the estimation considering the α-F
fading channels.

Keywords: α-F distribution, estimators, ML, MoM, OFDM signals.
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1 INTRODUCTION

This chapter presents the state-of-the-art of the topic in study; the main contributions obtained by us as
well as the organization of this work.

1.1 OVERVIEW

The fifth generation (5G) of mobile communications has attracted the attention of several researchers,
primarily owing to its capability to deliver notable advancements in speed, latency, and reliability in con-
trast to earlier generations. In the 5G systems, estimation is a fundamental step as it is directly related to
performance optimization, dynamic adaptation, improvement of spectral efficiency and support for new
features.

Studies have been presented in the literature concerning estimation. Many of them aim to estimate the
channel parameters or the signal-to-noise ratio (SNR), and are usually obtained using the maximum like-
lihood (ML) or moments (MoM) methods. ML-based estimators are proposed in [1] and [2] respectively,
for the parameters of the α-η-µ and α-κ-µ distributions. The estimators derived in the mentioned works
are validated by computational simulations. In [3], a simple and closed-form expression for a maximum a
posteriori (MAP)-based estimator for the parameter m of the Nakagami-m distribution is presented. MoM-
based estimators are presented for the parameters of the κ-µ, η-µ [4] and α-µ [5] distributions. An asymp-
totically efficient moment-based estimator for the parameter κ of the κ-µ distribution is also presented
in [6] and compared with [4]. In [7], a new and exact expression is presented in order to estimate the SNR
under Nakagami-m channels for M - and Θ-ary quadrature amplitude modulations (QAM). Expressions
to evaluate the variance and mean of the estimates are also derived by the authors in the mentioned work.
In [8], new expressions are presented for the SNR estimation and for the mean, variance, and normalized
mean square error (NMSE) of the estimates. The authors in [8] uses MoM for SNR estimation, under η-µ
and κ-µ fading channels.

In this work, ML and MoM-based estimators are presented for the α-F composite fading distribution.
In our study, ML is considered as it is optimal and is used by us in order to obtain estimates for the pa-
rameters of the distribution under analysis. In turn, MoM is considered to estimate the SNR for orthogonal
frequency division multiplexing (OFDM) signals. This occur because the likelihood function for this task
is intricate and thus, MoM is an alternative to ML technique. It should be mentioned that MoM provides
good estimates and is simple, when compared to ML. However, it has the disadvantage of requiring a large
number of samples to converge to the real value. In our wok, the α-F channel model is adopted, that
has been extensively supported by experimental results in the technical literature and is written in terms
of physical parameters. In addition, the α-F jointly considers the multipath fading, shadowing and the
non-linearity of the propagation medium, that makes this distribution able to model realistic environments.
It should be mentioned that the α-F distribution is generalist. Thus, many works previously presented in
the technical literature can be easily found as particular cases of the studies carried out by us (i.e, the α-F
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fading model can be used for more general channel characterization if compared to other works). Thus,
our study marks a significant contribution to the existing body of knowledge.

1.2 CONTRIBUTIONS OF THIS WORK

This is the first work where estimators for the α-F distribution are presented. Our work open new fronts
for further investigations, since we provide analytical and simulation results to reveal how the channel
parameters and SNR range impact the estimator performance. The main contributions of this studies are:

• A ML-based estimator is proposed for the α-F distribution and validated by means of computational
simulations.

• A simple and tractable expression for the SNR estimation is derived, without the need of training
sequences, based on the statistical moments of the received signal. This made the estimator proposed
by us appropriate for practical applications.

1.3 ORGANIZATION OF THIS WORK

The remaining of the work is organized as follows. Chapter 2 describes the system, channel and SNR
models adopted. Estimators for the fading parameters and SNR under α-F channels are presented in
Chapter 3. Chapter 4 shows the numerical results and discussions. Chapter 5 brings the conclusions of the
study.

2



2 SYSTEM, CHANNEL AND SNR MODELS

In this chapter, the system, channel and SNR models considered in our work are presented.

2.1 SYSTEM AND CHANNELS MODELS

The received signal r[n] in the discrete domain, considering a communication system subject to fading
and noise, can be written as [9]

r[n] = h[n]s[n] + w[n], (2.1)

in which h[n] is a random variable (RV) that characterizes the fading and [10]

s[n] =
1√
N

N−1∑
l=0

x[l]ej
2πnl
N (2.2)

is the OFDM transmitted signal, where N is the number of subcarriers and x[l] is a symbol Ai, from a
M -ary QAM constellation, with probability pi. In turn, w[n] is the additive white Gaussian noise with zero
mean and variance 2σ2

W .

The PDF of |s[n]| is characterized by the Rayleigh distribution with zero mean and unit variance,
written as [10]

f|s[n]|(s) = 2se−s2 , (2.3)

due to the fact that s[n] is a Gaussian random variable with unitary mean and variance σ.

In turn, the fading is modeled in this work by the α-F distribution, whose PDF is given by [11, Eq.
(1)]

f|h[n]|(h) =
α

B(µ,ms)

(
r̂α

Ψ

)ms

hαµ−1

(
hα +

r̂α

Ψ

)−(µ+ms)

, (2.4)

in which Ψ = µ/(m−1), r̂ = α
√
E[Hα

f ] denotes the α-root mean value, α characterizes the non-linearity of
the propagation medium, µ represents the number of multipath clusters, m is the shadowing parameter and
B(·, ·) is the Beta function [12, Eq. (06.18.02.0001.01)]. From the α-F model, a lot of models presented
in the literature can be encompassed. In fact, by properly selecting the fading parameters α, ms and µ, the
models presented in Table 2.1 can be obtained. Fig. 2.1 presents envelope PDF curves for the special cases
of the α-F fading model.
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Table 2.1: Special cases.

Fading Models Parameters
Fisher-Snedecor α = 2, µ = µ, ms = ms

α-µ α = α, µ = µ, ms → ∞
Weibull α = α, µ = 1, ms → ∞

Nakagami-m α = 2, µ = m, ms → ∞
Rayleigh α = 2, µ = 1, ms → ∞

One-Gaussian α = 2, µ = 0.5, ms → ∞

Figure 2.1: Envelope PDF curves for the special cases of the α-F fading model.

2.2 SNR RECEIVED

The SNR, in the received signal model presented in (2.1), is defined as the ratio between the signal
power and the noise power. Mathematically,

SNR =
Psignal

Pnoise
, (2.5)

in which
Pnoise = 2σ2

W , (2.6)

and
Psignal = E[|h[n]|2]E[|s[n]|2], (2.7)

with E[|h[n]|2] = σ2
H and E[|s[n]|2] =

∑M
i=1 |Ai|2pi.

4



Using (2.6) and (2.7) in (2.5), it follows that the SNR is given by

SNR =
σ2
H

2σ2
W

M∑
i=0

|Ai|2pi. (2.8)

For a normalized constellation and equiprobable symbols, it follows that
∑M

i=0 |Ai|2pi = 1 and thus,

SNR =
σ2
H

2σ2
W

=
γ

2
. (2.9)

Note in (2.9) that γ = σ2
H/σ2

W is the SNR parameter to be estimated. The estimate is denoted by γ̂ in
our work and can be calculated from a function f(γ), defined as the ratio between the square of the second
moment and the fourth moment of the received signal.
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3 MAXIMUM-LIKELIHOOD AND MOMENT-BASED
ESTIMATORS FOR THE α-F COMPOSITE DISTRIBUTION

ML and MoM-based SNR estimators under α-F fading channels are presented in this chapter, in which
exact and algebraically simple expressions are presented.

3.1 MAXIMUM-LIKELIHOOD ESTIMATOR FOR THE α-F COMPOSITE DISTRI-
BUTION

Assuming H1, H2, H3, · · · , HNs as independent and identically distributed (i.i.d.) RVs, the α-F joint
PDF (JPDF) can be written as the Ns-fold product of α-F distributions, i.e,

fH(h1, h2, · · · , hNs ;Θ) =

Ns∏
i=1

α

B(µ,ms)

(
r̂α

Ψ

)ms

hαµ−1
i

(
hαi +

r̂α

Ψ

)−(µ+ms)

. (3.1)

In our problem, the ML technique is applied of the α-F distribution in order to find the estimate for the
parameters Θ̂ = [α̂, µ̂, m̂s]. For this, we can maximize (3.1) or the log-likelihood function L(h,Θ), given
by

L(h,Θ) =

Ns∑
i=1

ln[fH(hi,Θ)]. (3.2)

In (3.2), H = [H1H2H3 · · ·HNs ] is a set of Ns i.i.d. RVs that represent the samples from the α-F
distribution and Θ = [Θ1Θ2Θ3 · · ·ΘNs ] is the vector of parameters of the mentioned distribution. Thus,
considering that the marginal PDF is given by (2.4), it is possible to write (3.2) as

L(h,Θ) = Ns ln

[
α

B(µ,ms)

]
+Nsms ln

[
r̂α

Ψ

]
+ (αµ− 1)

Ns∑
i=1

ln[hi]− (µ+ms)

Ns∑
i=1

ln

[
hαi +

r̂α

Ψ

]
. (3.3)

From (3.3), it is possible to estimate the parameters of the α-F distribution taking the derivatives of
the mentioned equation in respect to α, µ and ms, and equals them zero simultaneously. Mathematically,

∂L(h,Θ)

∂Θk
= 0. (3.4)
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Proceeding with some mathematical simplifications, it follows that

∂L(h,Θ)

∂α
=

Ns

α
+Nsms ln[r̂] + µ

Ns∑
i=1

ln[hi]

− (µ+ms)

Ns∑
i=1

hαi ln[hi][
hαi + r̂α

Ψ

] − (µ+ms)

Ns∑
i=1

r̂α ln[r̂]

Ψ
[
hαi + r̂α

Ψ

] , (3.5)

∂L(h,Θ)

∂µ
= −NsB′(µ,ms)

B(µ,ms)
− Nsms

µ
+ α

Ns∑
i=1

ln[hi]

−
Ns∑
i=1

ln

[
hαi +

r̂α

Ψ

]
+ (µ+ms)

Ns∑
i=1

r̂α(ms − 1)

µ2
[
hαi + r̂α

Ψ

] (3.6)

and

∂L(h,Θ)

∂ms
= −NsB′(µ,ms)

B(µ,ms)
+Ns ln

[
r̂α

Ψ

]
+

Nsms

(ms − 1)

−
Ns∑
i=1

ln

[
hαi +

r̂α

Ψ

]
− (µ+ms)

Ns∑
i=1

r̂α

µ
[
hαi + γ̂α

Ψ

] , (3.7)

with B′(·, ·) being the derivative of B(·, ·).

It should be mentioned that (3.5), (3.6) and (3.7) are contributions of this article. Note that (3.4) is
solved in order to find the parameter values that together maximize (3.3). For this task, the Matlab software
is used by us.

3.2 MOMENTS-BASED SNR ESTIMATOR FOR THE α-F COMPOSITE DISTRIBU-
TION

Firstly in this section, the k-th moment of |r[n]| is calculated and, in sequence, an exact and alge-
braically simple expression for the SNR estimator in α-F fading channels for OFDM signals is derived,
without the need of training sequences.

3.2.1 Higher-Order Moments of |r[n]|

The PDF of |r[n]| conditioned on |h[n]| and |s[n]| is a well know problem. This is similar of calculating
the PDF of a RV which has Rice distribution, i.e,

f|r[n]|(r
∣∣h, s) = r

σ2
W

e
−
(

r2+h2s2

2σ2
W

)
I0

(
rhs

σ2
W

)
, (3.8)
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in which I0(·) represents the modified Bessel function of zero order. The PDF f|r[n]|(r
∣∣h) can be derived

by taking the mean of (3.8) with respect to (2.3), as

f|r[n]|(r
∣∣h) = r

σ2
W

exp

(
− r2

2σ2
W

)∫ ∞

0
e
−v

(
1+ h2

2σ2
W

)
I0

(
rh

σ2
W

√
v

)
dv. (3.9)

The k-th moment of |r[n]| conditioned on the channel gain, denoted by E
[
|r[n]|k

∣∣|h[n]|], can be
calculated from (3.9) as

E
[
|r[n]|k

∣∣|h[n]|] =

∫ ∞

0
rkfr[n](r

∣∣h)dr. (3.10)

Replacing (3.9) in (3.10) and using [13], it follows that

E
[
|r[n]|k

∣∣|h[n]|] = 2
k
2
(
σ2
W

) k
2 Γ

(
k

2
+ 1

)∫ ∞

0
e
−v

(
1+ h2

2σ2
W

)
1F1

[
k

2
+ 1, 1;

h2

2σ2
W

v

]
dv. (3.11)

Finally,

E
[
|r[n]|k

]
= Mk =

∫ ∞

0
E
[
|r[n]|k

∣∣|h[n]|] f|h[n]|(h)dh. (3.12)

Using (2.4) and proceeding with some simplifications,

Mk = 2
k
2 (σ2

W )
k
2Γ

(
k

2
+ 1

)
α

B(µ,ms)

(
r̂α

Ψ

)ms

×
∫ ∞

0
e−v

[∫ ∞

0
e
− h2

2σ2
W

v hαµ−1(
hα + r̂α

Ψ

)(µ+ms)
1F1

(
k

2
+ 1, 1;

h2

2σ2
W

v

)
dh

]
dv (3.13)

Using the fact the

1F1

(
k

2
+ 1, 1;

h2

2σ2
W

v

)
= e

h2

2σ2
W

v
Lk−1

(
− h2

2σ2
W

v

)
, (3.14)

in which [13]

Lk (x) =
1

k!
ex

dk

dxk
(xke−x) (3.15)

is the Laguerre polynomial of order k−1; and knowing [13, Eq. (3.241.4)] and [12, id (06.05.02.0001.01)],
then it is possible to deduce the moments of order 2, 4, 6 and 8 by replacing (3.14) in (3.13). Proceeding
with some simplifications, the mentioned moments can be written in terms of the SNR γ as

M2 = σ2
W (Aγ + 2)

M4 = σ4
W

(
2Bγ2 + 8Aγ + 8

)
M6 = σ6

W

(
6Cγ3 + 36Bγ2 + 72Aγ + 48

)
M8 = σ8

W

(
24Dγ4 + 192Cγ3 + 576Bγ2 + 768Aγ + 24

)
, (3.16)
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with 

A =
Γ
(
ms − 2

α

)
Γ
(
µ+ 2

α

)
Γ (ms) Γ (µ)

Ψ− 2
α

B =
Γ
(
ms − 4

α

)
Γ
(
µ+ 4

α

)
Γ (ms) Γ (µ)

Ψ− 4
α

C =
Γ
(
ms − 6

α

)
Γ
(
µ+ 6

α

)
Γ (ms) Γ (µ)

Ψ− 6
α

D =
Γ
(
ms − 8

α

)
Γ
(
µ+ 8

α

)
Γ (ms) Γ (µ)

Ψ− 8
α

γ =
σ2
H

σ2
W

. (3.17)

Note that the moments presented are theoretical and necessary to calculate the SNR estimator and its
variance.

3.2.2 SNR-based Estimator

Let be f(γ) a function defined as the ratio between the theoretical second moment squared to the fourth
moment, i.e.,

f(γ) =
M2

2

M4
. (3.18)

Using the MoM technique, the theoretical and sample moments can be equated as

f(γ) =
M2

2

M4
=

ζ22
ζ4

, (3.19)

in which

ζk =
1

N

N∑
n=1

|r[n]|k (3.20)

is the k-th sample moment.

From (3.19), the estimated SNR γ̂ can be calculated as

γ̂ = f−1

(
ζ22
ζ4

)
, (3.21)

in which fζ = ζ22/ζ4 is the ratio between the sample moments of |r[n]|. Note that the process of deriving
an expression for the SNR estimator from (3.21) consists of finding f−1(·) such that f−1(fζ) exists.

Using the expressions for M2 and M4 in (3.17), it follows from (3.18) that

f(γ) =
(Aγ + 2)2

2Bγ2 + 8Aγ + 8
. (3.22)
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Hence, the estimate γ̂ obtained after inverting (3.21) in terms of fζ can be written as

γ̂ =
2A− 4Afζ +

√
16A2f2

ζ − 8A2fζ − 8Bfζ
2Bfζ −A2

. (3.23)

Note that γ̂ depends on the statistical characteristics of the channel, which are related to the fading model
considered.

3.2.3 Evaluation of the Proposed SNR Estimator

In this subsection, the variance statistical is analyzed for the estimator proposed when the method of
moments is applied. This is important given the need to find some parameter that measures its performance.
Due to the non-linearity of the SNR estimate, it is practically impossible to find the Crammer-Rao bound
for this estimate. In this way, an expression for the variance of the estimator is presented.

Firstly, γ̂ in (3.23) is written as a function of the sample moments of |r[n]| in the form

γ̂ = −2A(2g(T1, T2)− 1)(2Bg(T1, T2)−A2)−1

+
√
16A2g2(T1, T2)− 8A2g(T1, T2)− 8Bg(T1, T2)(2Bg(T1, T2)−A2)−1. (3.24)

in which g(T1, T2) = T 2
1 /T2, such that

E[Tk] =
1

N

N∑
n=1

E[|r[n]|2k]. (3.25)

Using the results presented in [14] and [7, Eq. (44)], the estimated variance may be expressed as

Var[γ̂] =
1

N
z2(fM )

[
4fM + f2

M

(
M8

M2
4

− 4M6

M2M4
− 1

)]
, (3.26)

in which fM = M2
2 /M4 and z (x) is the function obtained deriving (3.24) from x = g(T1, T2). After

simplifications,

z (x) = (2Bg −A2)−1
[
4(16A2g2 − 8A2g − 8Bg)−

1
2 (4A2g −A2 − B)− 2B(2Bg −A2)−2

(16A2g2 − 8A2g − 8Bg) + 4AB(2g − 1)(2Bg −A2)−2 − 4A(2Bg −A2)−1
]
.

(3.27)

Note from (3.26) that the performance of the estimator becomes better as the number of observed
samples N increases.
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4 RESULTS

In this chapter, theoretical curves were carried out by using the MATLAB software according to the
models described throughout the paper.

4.1 NUMERICAL RESULTS FOR THE ML-BASED ESTIMATOR OF THE α-F COM-
POSITE DISTRIBUTION

In this work, 100 estimations are conducted for each displayed result, with

Θ̂i =
1

100

100∑
k=1

[
Θ̂k

]
i
, (4.1)

in which
[
Θ̂k

]
i

is the k-th estimation of the i-th parameter. Furthermore, 95% confidence level is adopted.
This confidence level corresponds to approximately 1.96 standard deviations to the right and left of the
mean of the Gaussian distribution and is expressed by[

Θ̂i − 1.96

√
V
[
Θ̂i

]
, Θ̂i + 1.96

√
V
[
Θ̂i

]]
. (4.2)

In addition, the variance V(·) of the estimators is given by

V[Θ̂i] =
1

20

20∑
k=1

([
Θ̂k

]
i
− E[Θ̂k]

)2
. (4.3)

Figures 4.1(a), (b) and (c) shown the estimated values of the parameters µ, ms and α as a function of the
number of samples, respectively. In our simulations, we adopted the acceptance-rejection method for the
samples generation. An improvement in the precision of the estimators is perceived in Figure 4.1 as the
number of samples increases, both in terms of the mean and the confidence interval. It should be mentioned
that the values converge quickly using this method, even for a small number of samples.

Figure 4.2 illustrates the comparison between the theoretical PDFs generated using the values Θ = [3
1.5 2], Θ = [1 5 3] and Θ = [2 2 1.5]; with the PDFs obtained with the estimated parameter values, for
10000 samples. The corresponding estimated parameters obtained are Θ̂ = [3.1286 1.4429 1.8714], Θ̂
= [1 4.8571 3.0429] and Θ = [1.8857 2.2571 1.5714], for Figure 4.2(a), (b) and (c) respectively. Note
that this study is made in order to ascertain the effectiveness in predicting the behavior of PDF envelope.
Despite some apparent imprecision’s in the estimations, from an analysis of the envelope PDFs resulting,
in which the theoretical PDF is obtained using the parameter values adopted in the sample generation, and
the estimated PDF is obtained using the values of the jointly estimated parameters; it can be shown that the
ML technique is effective in predicting the behavior of the signal envelope in α-F channels.
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Figure 4.1: Mean of the estimations of (a) µ, (b) ms and (c) α as a function of the number of samples.

Figure 4.3 shows the estimation results and confidence intervals, compared to the real values of the
parameters used to generate the samples, for different values of (a) ms, (b) µ and (c) α. The results suggest
that the MLE estimator performs well for different channel scenarios characterized by the values of the
α-F fading distribution. It can also be seen from the precision of the estimated values and the size of the
confidence interval that α is more precise than µ and ms.
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(a)

(b)

(c)

Figure 4.2: Envelope PDFs generated using the theoretical and estimated parameters of the α-F distribution for (a)
Θ = [3 1.5 2], (b) Θ = [1 5 3] and (c) Θ = [2 2 1.5].

4.2 NUMERICAL RESULTS FOR THE MOMENTS-BASED SNR ESTIMATOR OF
THE α-F COMPOSITE DISTRIBUTION

Curves of f(γ) as a function of the SNR are presented in Fig. 4.4 for different values of ms, α and
µ. For α = 2, the Fisher-Snedecor case is provided as a benchmark. These curves are shown in order to
highlight the impact of channel parameters on estimator performance. Note that all curves presented tend
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(a)

(b)

(c)

Figure 4.3: Curves of the mean of the estimations of the parameters as a function of the real parameters.

towards a horizontal asymptote as γ → ∞, since

lim
γ→+∞

f(γ) =
A2

2B
. (4.4)

.

From Fig 4.4, it is noticed that f(γ) present different values as ms, α and µ changes. Furthermore, it
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appears that the invertibility of f(γ) is only guaranteed for SNR values lower than 30 dB. This indicates
that our estimator performs well up to this threshold. Furthermore, it should be mentioned that the estimator
proposed is valid for weak and strong shadowing, multipath fading and/or non-linearity conditions.
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Figure 4.4: Curves of f(γ) as a function of the SNR are presented, for different values of (a) ms, (b) α and (c) µ.
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5 CONCLUSIONS

This work advanced the knowledge of estimation under α-F fading channels. In this study, the
maximum-likelihood (ML) and moments-based estimators for the α-F composite fading distribution were
proposed. Firstly, a ML-based estimator was presented for the parameters of the α-F distribution. Sec-
ondly, a new expression for the signal-to-noise ratio (SNR) estimation was derived, based on the statistical
moments of the envelope samples of the received signal. Several curves were presented and validated by
simulations.
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