
Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

On the design of a toroidal wind turbine

Felipe Andrade

PROJETO DE GRADUAÇÃO

ENGENHARIA MECÂNICA

Brasília

2023

Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

Sobre o projeto de turbinas eólicas toroidais:
geração de geometria

Felipe Andrade

Projeto Final de Curso submetido como requi-
sito parcial para obtenção do grau de Enge-
nheiro Mecânico

Orientador: Prof. Dr. Adriano Possebon
Coorientador: Prof. Dr. Antonio Brasil Jr.

Brasília

2023

Andrade, Felipe.
A769o On the design of a toroidal wind turbine / Felipe Andrade;

orientador Adriano Possebon; coorientador Antonio Brasil Jr.. --
Brasília, 2023.

94 p.

Projeto de Graduação (Engenharia Mecânica) -- Universi-
dade de Brasília, 2023.

1. Turbina eólica. 2. Blade Element Momentum. 3. Turbina
toroidal. 4. Desenho de Rotores. I. Possebon, Adriano, orient. II.
Brasil Jr., Antonio, coorient. III. Título

Universidade de Brasília
Faculdade de Tecnologia

Departamento de Engenharia Mecânica

On the design of a toroidal wind turbine

Felipe Andrade

Projeto Final de Curso submetido como requi-
sito parcial para obtenção do grau de Enge-
nheiro Mecânico

Trabalho aprovado. Brasília, 20 de dezembro de 2023:

Prof. Dr. Adriano Possebon Rosa,
UnB/FT/ENM
Orientador

Prof. Dr. Rafael Castilho Faria Mendes,
UnB/FGA

Examinador interno

Prof. Dr. Bráulio Gutierrez Pimenta,
UnB/FT/ENM

Examinador externo

Ramiro de Matos Bertolina
Examinador interno

Brasília
2023

Dedico este trabalho a minha família,
e a todos que com sabedoria e amor
fazem o possível e o impossível

para tornar o mundo um lugar melhor.

Acknowledgements

Gostaria primeiramente de agradecer à minha família que me apoiou na jornada
da obtenção do diploma de Engenheiro Mecânico, aos meus amigos e colegas que me
ajudaram e tornaram a experiência mais leve. Gostaria de agredecer aos meus orientadores,
Prof. Adriano Possebon e Prof.Antônio Brasil Jr., que me guiaram e me ensinaram muito
durante não só o desenvolvimento deste trabalho, como também durante a graduação, me
ofereceram oportunidades únicas de realizar pesquisas, a prestar monitorias e em suma a
crescer pessoalmente e profissionalmente. Tendo trabalhado com ambos, reconheço a grande
competência, e conhecimento dos dois em suas respectivas áreas de trabalho, reconheço-os
como bons professores, bons orientadores e mais importante boas pessoas. Nem sempre
nossa relação foi fácil, mas sempre foi produtiva e enriquecedora, e por isso faço questão de
expressar minha gradidão para além das formalidades.

Gostaria de agradecer também ao Prof. Taygoara Felamingo, que me ensinou e me
ajudou a compreender melhor a Dinâmica dos Fluidos, a também o Prof. Rafael Mendes,
quem sempre me ajudou durante todo meu tempo no Laboratório de Energia e Ambiente, a
Matheus Nunes, quem me ajudou a compreender melhor o funcionamento do OpenFOAM,
e quem me ajudou a realizar as simulações da geometria gerada neste trabalho, bem como
Ramiro Bertonila, quem me ajudou bem na minha entrada no laboratório a entender como
gerar malhas.

Além disso, gostaria de agradecer ao Prof. Bráulio Pimenta, quem me ajudou a
entender melhor a aerodinâmica e se dispôs por vezes a auxiliar no projeto. Ao Prof. Roberto
Miserda, quem me ajudou a entender melhor o método dos volumes finitos. Ao Prof. Rafael
Gabler e ao Prof. José Luiz da Fontoura, que me ajudaram a compreender mesmo que
superficialmente a teoria de turbulência. E ao Prof. Antônio Manuel Dias, quem me deu
lições valiosas sobre a execução de projetos.

Por fim, gostaria de agradecer a todos aos professores que tive durante a graduação,
que me ensinaram e me ajudaram a crescer, e a todos os funcionários da FT, que sempre me
ajudaram e me apoiaram durante todo o curso.

“It was possible, no doubt, to imagine a society in which wealth,
in the sense of personal possessions and luxuries, should be evenly

distributed, while power remained in the hands of a small privileged
caste. But in practice such a society could not long remain stable.

For if leisure and security were enjoyed by all alike, the great mass
of human beings who are normally stupefied by poverty would become
literate and would learn to think for themselves; and when once they
had done this, they would sooner or later realize that the privileged

minority had no function, and they would sweep it away. In the long run,
a hierarchical society was only possible on a basis of poverty and

ignorance”

“Talking to her, he realized how easy it was to present an appearance
of orthodoxy while having no grasp whatever of what orthodoxy meant.
In a way, the world-view of the Party imposed itself most successfully

on people incapable of understanding it. They could be made to accept
the most flagrant violations of reality, because they never fully

grasped the enormity of what was demanded of them, and were not
sufficiently interested in public events to notice what was happening.

By lack of understanding they remained sane. They simply swallowed
everything, and what they swallowed did them no harm, because it left
no residue behind, just as a grain of corn will pass undigested through

the body of a bird”
(George Orwell, “1984”, 1949)

Abstract

This work presents a numerical and algorithmical study of a toroidal turbine rotor design
generation. The toroidal design has been shown as a propeller to allow for operation in a
wider range of angular velocities without the disadvantages of cavitation, reduced trailing
vortices, and noise production. Hence, it presents higher efficiency and power coeficients
compared to conventional designs. For that reason, it can not only operate in a larger variety
of hydrological and meteorological conditions but also diminish disturbances in the natural
life surrounding it.

The main objectives of this research are to generate a toroidal rotor for axial flow turbines
based on the classic Blade Element Momentum Theory and to preliminarily evaluate the
performance of the newly designed rotor through numerical simulations. The lift and drag
coefficients table were calculated using XFOIL. The algorithms of the Blade ElementMomen-
tum Method and the necessary geometric manipulation of the geometry were implemented,
and preliminary results were obtained.

The findings of this study have relevance in furthering the knowledge on toroidal rotors
and pratical applications in the design and optimization of toroidal axial flow turbines
employed in both hydrokinetic and wind power generations. Therefore, it contributes to the
development of more environmentally friendly and efficient energy sources.

Keywords: Wind turbine. Blade Element Momentum. Toroidal Turbine. Rotor Design.

Resumo

Este trabalho apresenta um estudo numérico e algorítmico do projeto de um rotor toroidal
para turbinas axiais horizontais. A geometria toroidal de propulsores tem permitido a oper-
ação em uma faixa de velocidades angulares mais ampla reduzindo problemas de cavitação,
vórtices de ponta de pá e produção de ruído. Portanto, ela apresenta maior eficiência e coefi-
cientes de potência em comparação com geometrias convencionais. Por tal motivo, ela não
apenas pode operar em uma variedade maior de condições hidrológicas e meteorológicas,
mas também diminuir perturbações na natureza ao seu redor.

O principal objetivo desta pesquisa é gerar um rotor toroidal para turbinas axiais baseado na
teoria clássica de Blade ElementMomentum e avaliar seu desempenho através de simulações
numéricas preliminares. A tabela de coeficientes de sustentação e arrasto foram obtidas
utilizando o XFOIL.Os algoritmos do método Blade Element Momentum e a manipulação
geométrica necessária da geometria foram implementados.

As descobertas neste trabalho são relavantes no que se concerne a expanção da fronteira
de conhecimento sobre rotores toroidais e na aplicação prática do projeto e otimização de
turbinas axiais toroidais empregadas tanto na geração hidrocinética quanto eólica. Portanto,
contribui para o desenvolvimento de fontes de energia mais eficientes e sustentáveis.

Palavras-chave: Turbina eólica. Blade Element Momentum. Turbina toroidal. Desenho de
Rotores.

List of Figures

Figure 1.1 – Regions of the Wake . 16
Figure 1.2 – Near Wake . 17
Figure 1.3 – Trailing Vortices . 18
Figure 1.4 – Toroidal Blade . 19
Figure 1.5 – Sharrow Marine Propeller . 19
Figure 2.6 – Velocity triangle in a profile section of the rotor. (HANSEN, 2015) . . . 24
Figure 2.7 – Velocity triangle with the induction factors, and angles of pitch, attack,

and effective angle of attack in the profile section (JOHNSON;GU;GAUNT,
2016). 26

Figure 3.8 –Wind tunnel results for the Power Coefficient 𝑐𝑝 for different number of
blades presented by (BRASIL JUNIOR et al., 2019). 32

Figure 3.9 – Geometry of the toroidal rotor with four blades 35
Figure 3.10–Blade curve for a 4 (four) bladed toroidal rotor 37
Figure 3.11–XFOIL Flow-chart - xfoil.py . 38
Figure 3.12–Polar data results for NACA 0015 profile obtained using XFOIL. (a) Lift

coefficient 𝐶𝐿 vs Angle of Attack 𝛼; (b) Drag coefficient 𝐶𝐷 vs Angle of
Attack 𝛼; (c) Lift coefficient 𝐶𝐿 vs Drag coefficient 𝐶𝐷 39

Figure 3.13–Geometry Validation BEM - HK10 . 42
Figure 3.14–Geometry Validation Error BEM - HK10 43
Figure 3.15–Rotor I front and side view images . 46
Figure 3.16–Image of Rotor II and III . 47
Figure 4.17–Mesh I . 50
Figure 4.18–Mesh I . 51
Figure 4.19–Mesh II . 51
Figure 4.20–Mesh II . 52
Figure 4.21–Mesh III . 52
Figure 4.22–Mesh III . 53
Figure 5.23–Power and Torque coefficient curve for the rotor III 58
Figure 5.24–Rotor I Pressure Distribution . 60
Figure 5.25–Rotor II at 4.0 TSR Pressure 𝑝 ranging from −220 to 220𝑃𝑎 61
Figure 5.26–Rotor II at 4.0 TSR 𝑦+ ranging from 0 to 50 62
Figure 5.27–Rotor II at 4.0 TSR turbulent kinetic energy 𝑘 ranging from 4.3 ⋅ 10−6 to 16 62
Figure 5.28–Rotor III at 8.0 TSR Pressure 𝑝 ranging from −51 to 51𝑃𝑎 63
Figure 5.29–Rotor III at 3.5 TSR Pressure 𝑝 ranging from −36 to 36𝑃𝑎 63
Figure 5.30–Rotor III at 3.5 TSR 𝑦+ and 𝑘 . 64
Figure 5.31–Pressure Distribution and Contours for Rotor I at 2.8 TSR 65

Figure 5.32–Wake Visualization for Rotor II at 4.0 TSR 66
Figure 5.34–Wake Visualization for Rotor III at 3.5 TSR 68
Figure 5.35–Velocity Profiles 𝑈𝑥 at 𝑥 = 1𝑅, 10𝑅, 20𝑅 for the wake in Rotor II 69
Figure 5.36–Induction Factor 𝑎 Contours for Rotor III at 3.5 TSR 69

List of Tables

Table 3.1 – Algorithm input variables, their respective mathematical symbol, stored
value, unit and type . 36

Table 3.2 – HK-10 Project Parameters . 42
Table 4.3 – Geometry Differences . 49
Table 4.4 – Mesh Quality Parameters . 50
Table 4.5 – Mesh III Properties . 53
Table 4.6 – Boundary Conditions for each Field . 55
Table 5.7 – Power coefficient for rotor III at 4.0 TSR. 58

Contents

1 Introduction . 14
1.1 Climate Crisis . 14
1.2 Wind Energy . 14
1.3 Wake Aerodynamics . 15

1.3.1 Wing Tip Vortices . 16
1.3.2 Trailing Vortices . 18

1.4 Toroidal Geometry . 18
1.5 Objectives . 19

2 Theory . 21
2.1 Blade Element Momentum Theory BEMT 21
2.2 Modeling Equations . 26
2.3 Turbulence Model . 28

2.3.1 RANS Model . 29
2.3.2 K-Omega SST Model . 30

2.4 Simulation Methods . 30
2.4.1 MRF Formulation . 31

3 Geometry Generation . 32
3.1 Geometry . 33
3.2 Engineering Parameters . 34
3.3 Blade Curve . 37
3.4 Implementation of BEM . 38

3.4.1 XFOIL . 38
3.4.2 BEMMethod . 38

3.5 Geometry Validation . 42
3.5.1 Conclusions . 43

3.6 Rotor I . 43
3.6.1 First Part of the Blade . 43
3.6.2 Second Part of the Blade . 45
3.6.3 Generation of the Remaining Blades 45

3.7 Rotor II and III . 46

4 Numerical . 48
4.1 Introduction . 48
4.2 Geometry Description . 49

4.3 Mesh . 49
4.3.1 Mesh I . 49
4.3.2 Mesh II Properties . 50
4.3.3 Mesh III . 50

4.4 Boundary Conditions . 53
4.5 Numerical Schemes . 55
4.6 Solver and Algorithm . 55
4.7 Numerical Procedure . 56

5 Results . 58
5.1 Torque and Power Coefficient Curves . 58
5.2 Rotor Analysis . 59

5.2.1 Rotor I . 59
5.2.2 Rotor II . 61
5.2.3 Rotor III . 63

5.3 Wake Visualization . 65

6 Conclusions . 70

7 Next Studies . 71

References . 72

Appendix 74

Appendix A Code . 75
A.1 Profile Class . 75
A.2 XFOIL Automation . 77
A.3 UnBEM Implementation . 79

Appendix B OpenFOAM Files . 90
B.1 Numerical Schemes . 90
B.2 Numerical Solution Setup . 91

14

1 Introduction

1.1 The Climate Crisis

At the beginning of the XXI century, the greatest problem to be faced by human
civilization is climate change.

Although there are other big problems that humanity needs to address such as
poverty, health crises, violence, hunger, population growth, and innumerable others, the
single problem with has the most potential to impact the human experience is undoubtedly
the climate crisis. The climate crisis is highly correlated with the increase in global CO2

emissions since the Industrial Revolution, creating the projected scenario of a 2ºC increase
in the global average temperature.

According to Breakthrough Energy (2023), electricity production contributes asmuch
as 27% of global emissions, reinforcing the urgency of changing our energetic matrix to
something more sustainable. It can be therefore said, that the sustainable energy sources
technologically currently viable are mainly: solar, nuclear, wind, and hydrokinetic energy.
This study focuses on the study of horizontal axial wind turbines, which are the most
common wind turbine designs that can be seen around.

1.2 Wind Energy

A remembrance of the historical roots of wind turbine technology is in
the context of the operation of modern wind turbines is more than just a
weekend reading. The technical solutions and the economic conditions,
which have brought success and failure, give us hints about advancements
made today and in the future.

After the Great War came to an end, engineers started using the advancements in
aeronautics to build wind turbines and began using aerodynamic profiles to build their
blades (GIPE; MÖLLERSTRÖM, 2022). This new design allowed for a lift-based turbine
design making them more efficient and less prone to over-rotation in extreme weather due
to stall.

Both the influence of aeronautics and the necessity of new energy sources were also
remarked by Betz nearly over a century ago.

The attention paid to wind turbines has considerably increased in the post-
war era. Fundamentally there must be two reasons for the increased interest
in the topic: First the efforts in finding new energy sources in light of the coal
scarcity. Then there is probably the feeling that the experience brought by

15

flight techniques has the possibility of offering fundamentally the perfection
of wind turbines.

In the cited article, Betz has proposed the so-called Betz Limit, which is fundamentally
the efficiency limit of wind turbines. For this purpose, Betz used the Momentum Theory,
first proposed by Froude (1920) while studying ship propellers at his time, a theory which
was called the Screw Propeller Theory, developed the first steps to what would later become
the Blade Element Momentum Theory.

The Blade Element Momentum Theory (BEMT), refined by Glauert (1935) uses
simplifications to the flow around the rotor including:

• The independence of blade elements, in other words, the phenomena affecting one
element will not affect neighboring elements;

• Constant forces in each radial position. Along with the Momentum Theory, these sim-
plifications allow for a relatively easy calculation of important properties for instance
the optimal angle of attack and chord length in any radial position, the expected thrust,
torque, and consequently the predicted power coefficient and efficiency;

• The flow is also considered incompressible and inviscid.

These concepts will be further discussed in this work.

It is important to highlight that advancements made in the design of propellers were
always adapted and used in the development of better wind turbines, due to their similarities.
Little has changed since then in the rotor design methods, the overall shape of the blades
has stayed pretty much the same, and the current design is close to the the theoretical peak
of efficiency.

1.3 Wake Aerodynamics

The wake of a wind turbine is highly complex, in the sense that there are different
forces acting upon the behavior of the flow. This is due to the complex nature of the flow
in the rotor area itself, where pressure, centrifugal and Coriolis forces are into play, not to
mention the production of vorticity and turbulence due to the viscous interactions with the
blade and eventual separation of the boundary layer which leads to stalling Vermeer (2003).

The wake can be divided into two separate regions The Near Wake and the Far
Wake (VERMEER; SØRENSEN; CRESPO, 2003):

• NearWake: can be defined as the region right behind the rotor up to one rotor diameter
downstream, there is a high influence of the rotor geometry in the near wake, because
of aspects such as the number of blades, solidity, and tip geometry are apparent.

16

• FarWake: on the other hand is the region from one rotor diameter up to approximately
to ten rotor diameters, the exact distance from the rotor’s outlet area to the end of
the far wake is defined by the rate of pressure restitution of the flow. In this region
effects such as wing tip and trailing vortices are broken down by the effect of vortex
stretching.

In Figure (1.1) it can be observed the different regions of the wake of a wind turbine
including the expansion of the streamlines, the presence of tip vortices, the turbulent mixing
region, where vortices are broken down, and the far wake where there is the recovery to the
state of upwind from the rotor.

Figure 1.1 – Example of the regions of the wake of a wind turbine (RODRIGUEZ; JAWORSKI;
MICHOPOULOS, 2021)

Figure (1.2) portrays the vortex structures in the near wake of the rotor of a wind
turbine. The root, tip, and trailing vortices are visible in the figure.

1.3.1 Wing Tip Vortices

Wing tip vortices are produced as a consequence of the pressure differential of the
upper part and lower part of an aerofoil. Owing to the angle of attack of the airfoil with the
mean flow, a high-pressure zone is generated on the pressure side (lower surface), while a
low-pressure zone is generated on the suction side (upper surface). On the tip, those different
pressure zones aren’t bounded by neighboring solid elements, which means that the fluid
from the high-pressure zone is free to move itself to the low-pressure zone, this circular
motion generates a vortex which due to the direction of the flow will be advected to the free
flow downstream.

Wing tip vortices are advected conservatively through the fluid because the dissipa-
tion effects are of lesser magnitude in comparison to the forces generated by the presence of

17

Figure 1.2 – Vortex Structures in the Near Wake illustrated by (RODRIGUEZ; JAWORSKI;
MICHOPOULOS, 2021)

the pressure gradient, therefore it may be studied in the realm of validity of the potential
theory, where the pressure may be considered a simple potential solenoidal field.

As in any fluid in rotating motion, that is vortices, the pressure in the middle of it
is lower than on the outside, which generates and maintains the structure of the vortices.
This generated pressure gradient is the main source of noise production because the lower
pressure zone will inevitably generate pressure waves and carry sound through the fluid
domain.

Additionally, when turbines and propellers work in water, wing tip vortices and their
center low-pressure zone cause an effect called cavitation. In addition to the loss of energy
from not only rotating the fluid but also changing the phase of the fluid, the cavitation
phenomenon also releases a great amount of energy which poses a problem of corrosion in
the rotor blades naturally decreasing its work span, hence representing a great challenge in
the design of hydrokinetic turbines.

Many attempts have been made to reduce the formation of these vortices, such as
the use of end plates in hydrokinetic turbines (HAU, 2017), however, the end-plates also
generate increased inertia, which leads to higher activation speeds, and drag, which also
dissipates energy from the fluid.

18

1.3.2 Trailing Vortices

Trailing vortices are naturally occurring because of the difference in pressure between
the suction and pressure of the airfoil, and the velocity deficit in the boundary layer which
generates vorticity and instabilities, causing fluctuations in the pressure field, hence noise
production.

In Figure (1.3) the streamlines of the flow over an airfoil is illustrated, it can be seen
that the streamlines do not close themselves in the trailing edge, and it can be seen that the
boundary layer affects the formation of the trailing vortices.

Figure 1.3 – “Real flow over an airfoil. The stream lines do not close themselves in the trailing edge.
A ‘dead water’ (Totwasser) remains. Hereby the circulation and along with it the lift is

smaller then by the Potential Theory” (BETZ, 1918)

1.4 Toroidal Geometry

In the beginning of 2023, a patent from MIT (SEBASTIAN; STREM, 2019), has been
publicly published regarding the design of a rotor with toroidal-shaped blades. Those blades
were designed to be used as propellers in drones, and have been shown to reduce the audible
noise generated by the rotation of the rotor, as observed in Figure (1.4).

Additionally, the company Sharrow Marine, which produces boat propellers has
started selling rotors with an adapted toroidal geometry, which has shown to reduce not
only noise production but also cavitation (the formation of bubbles of air due to an extreme
decrease in pressure causing the phase transition of water). Sharrow Marine (2022) has also
reported an increase in the efficiency of boats with the use of this rotor as it may be seen in
Figure (1.5) published in their performance report.

As of the date of writing of this work, no academic articles or research results have
been published about the toroidal geometry, and from a scientific standpoint the study of
this geometry and the flow impacted by it is justified.

The results presented both by the MIT Lincoln Laboratory and Sharrow Marine
look promising in addressing the main problems with axial flux machines namely noise

19

Figure 1.4 – Comparison between the noise produced by a quadrotor with traditional blades (a) and
with toroidal blades (b) (LINCOLN LABORATORY - MIT, 2022)

Figure 1.5 – Reported Efficiency comparison between standard propellers and Sharrow Marine’s
toroidal-shaped propellers (SHARROWMARINE, 2022)

production and cavitation, and the production of wing tip vortices. It is only reasonable
to hypothesize whether the advantages of the new geometries extend to be used in flux
machines to produce electricity. As historically it can be argued that the developments in
propeller technologies and turbine rotor technologies walk side by side.

Furthermore, as the wake of this rotor design has never been thoroughly studied, it
is of scientific interest to understand how the absence of wing-tip vortices affect the behavior
of the wake from the turbine.

1.5 Objectives

The main objectives of this work may be summarized as follows:

20

1. Generate an algorithm capable of generating an STL file of a toroidal wind turbine
rotor, based on the Lincoln Laboratory patent (SEBASTIAN; STREM, 2019) and on
BEM;

2. Analyse the pressure distribution on the surface of the rotor;

3. Study the power coefficient of the rotor by varying the tip speed rate (TSR);

21

2 Theory

2.1 Blade Element Momentum Theory BEMT

TheMomentumTheory or theActuatorDiskTheory is one of themost important
theories when it comes to the study and project of wind turbines and other axial flow
turbines. It is based on the approximation of the rotor as a permeable disk and the flow as
incompressible, steady, inviscid, and axial; Also, mass and momentum are conserved in the
flow.

These considerations are necessary for the use of Bernoulli’s principles. The momen-
tum theory is used to obtain the power coefficient and the thrust coefficient, the axial and
tangential induction factors. These results may be used along with turbomachinery theory
to obtain the ideal pitch angle, and the ideal chord length of blade elements, and therefore
allowing for the project of an ideal wind turbine rotor.

According to Hansen (2015), thrust is the force resulting from the pressure drop in
the rotor, this force reduces the axial velocity of the flow from the upstream velocity 𝑢0 to
the downstream velocity 𝑢2. It can be written as

𝑇 = ∆𝑝𝐴, (2.1)

where ∆𝑝 is the pressure drop in the rotor, and 𝐴 is the area of the rotor. The pressure drop
may be found via Bernoulli’s equation. The thrust coefficient is given by

𝐶𝑇 =
𝑇

1

2
𝜌𝑢20𝐴

. (2.2)

Wind turbines convert kinetic energy from the wind into mechanical energy via the
rotation of the rotor (shaft power). The power coefficient is defined then as the ratio between
the available power in the stream and the power extracted by the rotor. The power coefficient
may be written as

𝐶𝑃 =
𝑃

𝑃avail
, (2.3)

where 𝑃 is the power extracted by the rotor, with the available power being

𝑃avail =
1
2𝜌𝐴𝑢

3
0, (2.4)

where 𝐴 is a cross-section of the flow upstream with the same area as the rotor. Thus,

𝐶𝑃 =
𝑃

1

2
𝜌𝐴𝑢30

. (2.5)

22

The Bernoulli’s principle states that an increase in velocity of the fluid is directly correlated
to a decrease in pressure or potential energy. This principle may bemathematically expressed
as

∇𝑖(
𝜌𝑢2𝑖 (𝑥𝑖)

2 − 𝑝(𝑥𝑖) + Φ𝑖(𝑥𝑖)) = 0 (2.6)

where 𝑥𝑖 are the points of the coordinate in analysis, and Φ𝑖 is the potential energy term,
in general, this term is used to express the gravitational potential energy by unit volume
Φ𝑖(𝑥𝑖) = 𝜌𝑔𝑥𝑖. Other requirements of the Bernoulli equation are:

• The conservation of streamlines (as cited);

• Isentropic Flows, when the flow displays neither irreversibilities such as turbulence
nor dissipation such as viscosity or compressibility.

Because the streamlines are not conserved from the front to the back of the rotor,
Bernoulli’s equation cannot be directly applied, thus it is necessary to indirectly apply it,
resulting in the equation system

⎧

⎨
⎩

𝜌𝑢20
2
+ 𝑝0 =

𝜌𝑢21
2
+ 𝑝1

𝜌𝑢21
2
+ 𝑝1 − ∆𝑝 = 𝜌𝑢22

2
− 𝑝0,

(2.7)

solving it for ∆𝑝 results in
∆𝑝 =

𝜌
2(𝑢

2
0 − 𝑢22). (2.8)

According to Betz (1922), the axial induction factor is defined as

𝑎 =
𝑢2
𝑢0
, (2.9)

or for the velocity at the disk (HANSEN, 2015),

𝑢1 = (1 − 𝑎)𝑢0, (2.10)

and relating the velocity downstream to the velocity upstream by

𝑢2 = (1 − 2𝑎)𝑢0. (2.11)

The axial induction factor is a measure of the decrease in the axial velocity of the flow
due to the presence of the rotor. This happens due to the sole presence of the rotor, on account
of the pressure increase near the rotor. This can be thought of as the fluid particles pressing
themselves together because of the wall causing an increase in pressure, and concomitantly
a decrease in velocity.1The tangential induction factor, on the other hand, is caused by the
1 This is not a valid representation of the flow, because the flow is deemed incompressible, therefore the

particles do not press themselves together, rather the pressure from the particles in the rotor wall pushes the
particles in the incoming flow away from the wall and for that to happen they need to loose axial velocity.

23

movement of the blade, which pushes the fluid particles in the tangential direction, due
to the increased pressure in the leading edge, therefore the tangential component of the
fluid velocity immediately in front of the leading edge will be (1 + 𝑎′)𝜔𝑟, for 𝜔𝑟 being the
tangential velocity of the blade section at the radial position 𝑟.

Using mass and momentum conservation principle over an arbitrary control volume,
along with the axial induction factor, it is possible to obtain the thrust and power coefficient
as a function of 𝑎. Which may be written as

𝐶𝑇 = 4𝑎(1 − 𝑎), (2.12)

for the thrust coefficient, and
𝐶𝑃 = 4𝑎(1 − 𝑎)2, (2.13)

for the power coefficient.

The Betz Limit is the point of maximal power coefficient for an axial flow machine,
which can be found by taking the derivative of the power coefficient in relation to the
induction factor and equaling it to zero, resulting in

𝑑𝐶𝑃
𝑑𝑎

= 4(1 − 3𝑎)(1 − 𝑎) = 0, (2.14)

which results in either 𝑎 = 1, which is not a physical solution, because if 𝑎 = 1 then 𝑢2 = 0,
and the flow would be stopped thus not extracting any power from the flow, or 𝑎 = 1∕3,
which is the Betz Limit.

Some important remarks must be made, first of all, the more 𝐶𝑇 increases, the more
the streamlines are deflected by the presence of the rotor, as ameans of conservingmass. This
deflection creates a larger area behind the rotor. Secondly, increasing 𝐶𝑇 for 𝑎 > 1∕4 leads
to a large pressure drop, which induces the outer flow to transfer momentum to the wake-
generating eddies, a state that is called a turbulent wake state. Therefore the momentum
theory is not valid for 𝑎 > 1∕4.

In non-ideal rotors the tangential is not zero, due to the rotation of the rotor, which
generates an opposite rotation in the flow, thus generating a tangential velocity. This can be
better illustrated by the velocity triangle in a profile section of the rotor, as shown in Figure
(2.6).

Figure (2.6) is a typical velocity triangle for an axial flow machine, wherein the
leading edge, 𝑉𝑟𝑜𝑡 is the rotational velocity at the profile section, that is 𝑉𝑟𝑜𝑡 = 𝜔𝑟, 𝑢 is
the inflow velocity at the rotor intake, and 𝑉𝑟𝑒𝑙,1 is the fluid’s velocity as seen by a moving
observer, stationary in relation to the blade with magnitude ||𝑉𝑟𝑒𝑙,1|| =

√
𝑉2
𝑟𝑜𝑡 + 𝑢2. As for

the trailing edge, it is known due to the Kutta Condition, that𝑉𝑟𝑒𝑙,2 approximately follows the
trailing edge for small angles of attack and flows with little to no boundary layer separation,
due to viscosity (ANDERSON, 2011). On the other hand, 𝐂 = (𝐶𝑟, 𝐶𝜃, 𝐶𝑎) is the velocity

24

Figure 2.6 – Velocity triangle in a profile section of the rotor. (HANSEN, 2015)

observed by an inertial observer, where 𝐶𝑟 is the radial velocity, 𝐶𝜃 is the tangential velocity,
and 𝐶𝑎 is the axial velocity.

It is desirable to have a large rotational speed for 𝐶𝜃 to be minimal (HANSEN, 2015),
as illustrated in Figure (2.6).

Analogously to eq. (2.10), the tangential induction factor 𝑎′ is given by

𝐶𝜃 = 2𝑎′𝜔𝑟, (2.15)

and the infinitesimal power by
𝑑𝑃 = 1

2𝜌𝐶𝜃𝑢1𝑑𝑟, (2.16)

substituting eq. (2.15) in eq. (2.16), using the convenient adimensionalisation namely the
tip-speed ratio

𝜆(𝑟) = 𝜔𝑟
𝑢0
, (2.17)

with 𝜆(𝑅) = 𝜆 and integrating it over the maximum TSR results in

𝑃 = 8
𝜆2
∫

𝜆

0
(1 − 𝑎)𝑎′𝑑𝑟. (2.18)

With eq. (2.18) it is possible to see that to maximize performance, (1 − 𝑎)𝑎′must be
maximized. Therefore,

[(1 − 𝑎)𝑎′].𝑎 = (1 − 𝑎)𝑎′.𝑎 − 𝑎′ = 0. (2.19)

However, having a look at the velocity triangle with the induction factors in Figure
(2.7), it is possible to see that the effective angle of attack 𝜙 is given by

tan(𝜙) =
𝑈∞(1 − 𝑎)
Ω𝑟(1 + 𝑎′)

=
(1 − 𝑎)
𝜆𝑟(1 + 𝑎′)

, (2.20)

where 𝜆(𝑟) = 𝜆𝑟, 𝑈∞ = 𝑢0, Ω = 𝜔 and𝑊 = 𝑉rel,1 is the relative velocity at the rotor intake.
However, from Figure (2.6) it is possible to see that,

tan(𝜙) = 𝑎′𝜔𝑟
𝑎𝑢0

= 𝑎′

𝑎 𝜆𝑟,

25

is also true by Glauert’s approach of triangle similarity according to (HANSEN, 2015)
and (BRASIL JUNIOR et al., 2019), allowing for the conclusion that

𝑎′(1 + 𝑎′)𝜆2𝑟 = 𝑎(1 − 𝑎), (2.21)

with the root of the equation being,

𝑎′ =
−1 +

√
1 + 4𝑎(1 − 𝑎)𝜆−2𝑟

2 . (2.22)

Differentiating in respect to 𝑎 results in

(1 + 2𝑎′)(𝑎′).𝑎𝜆
2
𝑟 = (1 − 2𝑎), (2.23)

and combining eq. (2.21) and eq. (2.23) results in

𝑎′ = 1 − 3𝑎
4𝑎 − 1. (2.24)

Also using eq. (2.22) in eq. (2.19) yields

16𝑎3 − 12𝑎2 + 3(3 − 𝜆2𝑟)𝑎 − (1 − 𝜆2𝑟) = 0, (2.25)

which according to Brasil Jr. (2019) and Maalawi (2001) has the solution

⎧
⎪

⎨
⎪
⎩

𝑎 = 1

2
[1 − 𝜆𝑟 cos 𝜃+ − cos 𝜃−]

𝜆𝑟 =
√
(1 + 𝜆𝑟)

𝜃± = 1

3
cos−1(±𝜆−1𝑟).

(2.26)

The main advantage of this solution is that it is algebraic. Traditional BEMM as
the one presented by Hansen (2015) used of iterative methods in order to interpolate the
solutions for 𝑎 and 𝑎′, and needs to go through the calculation of the normal force coefficient
𝐶𝑛 and the tangential force coefficient 𝐶𝑡 in order to obtain the solution for 𝑎 and 𝑎′. This
procedure is more time intensive as it requires iterations and the conversion is not always
stable, therefore the algebraic solution is more desirable.

In BEMT, the the blade is divided into 𝑁𝑆𝐸𝐶 individual elements, where the thrust
and momentum may be calculated for each element, and integrated over the radius. The
thrust and power coefficients may be written as

𝑑𝑇2 =
1
2𝜌𝑁𝐵𝑐

𝑢20(1 − 𝑎)2

sin2 𝜙
𝐶𝑛𝑑𝑟 (2.27)

𝑑𝑀2 =
1
2𝜌𝑁𝐵𝑐

𝑢20(1 − 𝑎)𝜔𝑟(1 + 𝑎′)
sin 𝜙 cos 𝜙

𝐶𝑡𝑟𝑑𝑟, (2.28)

26

where 𝑁𝐵 is the number of blades, 𝑐 is the section’s chord length, 𝐶𝑛 is the normal and 𝐶𝑡
the tangential coefficient, components of the total force given by

𝐶𝑛 = 𝐶𝐿 cos 𝜙 + 𝐶𝐷 sin 𝜙 (2.29)
𝐶𝑡 = 𝐶𝐿 sin 𝜙 − 𝐶𝐷 cos 𝜙. (2.30)

According to Brasil Jr. (2019), with this relationships, it is possible to express the
chord length as a function of the normal coefficient, which may be written as

𝑐(𝑟) = 8𝜋
𝑁𝐵

𝑎
(1 − 𝑎)

sin2 𝜙
𝐶𝑛

𝑟. (2.31)

Additionally, in Figure (2.7) it can be observed that the twist angle 𝜃 is given by the
difference between the inflow angle 𝜙 and the angle of attack 𝛼, that is

𝜃 = 𝜙 − 𝛼. (2.32)

Figure 2.7 – Velocity triangle with the induction factors, and angles of pitch, attack, and effective
angle of attack in the profile section (JOHNSON; GU; GAUNT, 2016).

2.2 Modeling Equations

The modeling equations for the motion of a fluid are the Navier-Stokes Equations
may be written in integral form for a Newtonian isothermal fluid as

⎧
⎪

⎨
⎪
⎩

𝜕

𝜕𝑡
∫𝑉 𝜌𝑑𝑉 + ∫𝑆(𝜌𝐮) ⋅ 𝐧𝑑𝑆 = 0

𝜕

𝜕𝑡
∫𝑉 𝜌𝐮𝑑𝑉 + ∫𝑆(𝜌𝐮𝐮) ⋅ 𝐧𝑑𝑆 = −∫𝑆 𝑝 ⋅ 𝐧𝑑𝑆 + ∫𝑆 𝐧 ⋅ 𝜏𝑑𝑆, 𝜏 = 𝜇

(
∇𝐮 + ∇𝐮𝑇

)

∫𝑉 𝜌
(𝜕𝑒
𝜕𝑡
+ 𝐮 ⋅ ∇𝑒

)
𝑑𝑉 = −∫𝑉 ∇ ⋅ 𝐪 𝑑𝑉 + ∫𝑉 ∇ ⋅ (𝝉 ⋅ 𝐮) 𝑑𝑉 + ∫𝑉 ∇ ⋅ (𝑝𝐮) 𝑑𝑉 + ∫𝑉 𝜌𝐠 ⋅ 𝐮 𝑑𝑉

(2.33)

27

where 𝐮 is the velocity vector, 𝑝 is the pressure, 𝜌 is the specific mass of the fluid, 𝜇
is the dynamic viscosity, 𝜏 is the shear stress tensor (VERSTEEG; MALALASEKERA, 2007).

With the use of the Gauss theorem, the surface integrals may be transformed into a
volume integrals resulting in the general differential form of the Navier-Stokes equations.

⎧
⎪

⎨
⎪
⎩

𝜕𝜌

𝜕𝑡
+ ∇ ⋅ (𝜌𝐮) = 0

𝜕(𝜌𝐮)

𝜕𝑡
+ ∇ ⋅ (𝜌𝐮𝐮) = −∇𝑝 + ∇ ⋅ 𝜏

𝜕𝜌𝑒

𝜕𝑡
+ ∇ ⋅ (𝜌𝑒𝐮) = −∇ ⋅ 𝐪∇ ⋅ (𝝉 ⋅ 𝐮)∇ ⋅ (𝑝𝐮) + 𝜌𝐠 ⋅ 𝐮

(2.34)

These are a highly complex set of equations with no general analytical solution
for the time being, therefore needing to resort to numerical methods for the solution of
the equations. As with any kind of mathematical model, it can be simplified to make the
computational work easier, and in the case of the flow in a wind turbine, the simplification
hypothesis made are:

1. Incompressible Flow: The flow displays negligible change in specific mass, this can
be justified by the low Mach number of the flow.

2. Isothermal Flow: The flow displays negligible change in temperature, therefore the
energy equation is not considered.

3. Unsteady Flow: The flow behaviour is time dependent

4. Newtonian FLuid: Air is considered a Newtonian fluid, and with no change in
temperature, the viscosity is considered constant.

5. Laminar Steady Flow Upstream: The flow is considered laminar upstream as for
an ideal representation of the flow, and a better representation of vortex structures in
the wake.2

The Navier-Stokes equations may then be written in index notation as

𝜕
𝜕𝑥𝑗

𝑢𝑗 = 0, (2.35)

for the continuity equation, and

𝜕
𝜕𝑡
𝑢𝑖 + 𝑢𝑗

𝜕
𝜕𝑥𝑗

𝑢𝑖 = −1𝜌
𝜕
𝜕𝑥𝑖

𝑝 + 𝜈 𝜕2

𝜕𝑥𝑗𝜕𝑥𝑗
𝑢𝑖, (2.36)

for the momentum equation, where 𝜈 = 𝜇∕𝜌 is the kinematic viscosity.
2 According to (VERMEER; SØRENSEN; CRESPO, 2003) this hypothesis is not a valid representation of the

flow at the operating site, because wind changes in both intensity and direction not to mention the changes
in turbulence intensity for innumerable reasons.

28

These equations are not optimal for numerical solutions, because they are not dimen-
sionless, therefore it is recommended to perform a non-dimensionalization of the equations.
Using characteristic values for the variables, the equation (2.35) continues pretty much the
same, while equation (2.36) becomes

𝜕
𝜕𝑡
𝑢𝑖 + 𝑢𝑗

𝜕
𝜕𝑥𝑗

𝑢𝑖 = − 𝜕
𝜕𝑥𝑖

𝑝 + 1
𝑅𝑒

𝜕2

𝜕𝑥𝑗𝜕𝑥𝑗
𝑢𝑖, (2.37)

where 𝑅𝑒 is the Reynolds number, which is defined as 𝑅𝑒 = 𝑉0𝐿∕𝜈, where 𝑉0 is
the characteristic velocity, and 𝐿 is the characteristic length. The Reynolds number is a
dimensionless number that represents the ratio between inertial forces to viscous forces.
Because of the geometrical similarity principle, the Reynolds number is a good indicator of
the flow behavior.

While the Navier-Stokes can be directly solved numerically, a method called DNS
(Direct Numerical Simulation), it is not the most efficient way of solving the equations,
because it is computationally expensive. This expensiveness can be illustrated by considering
the case of turbulent flow. In turbulence flow, eddies can be found in a wide range of
scales, according to Kolmogorov’s theory of turbulence (KOLMOGOROV, 1991), with great
discrepancy between the smallest scales, and the largest scales.

Because the smallest eddies are one of the most important structures in the turbulent
flow, responsible for the dissipation of turbulent kinetic energy, it is necessary to solve them
accurately, with a mesh size smaller than the eddy size. It can be easily thought that for a
fluid domain as in the case of a wind turbine, with a radius of say 50𝑚, and therefore a 500𝑚
far wake, this computation is not feasible. Therefore it is necessary to resort to turbulence
models to solve the equations practically.

2.3 Turbulence Model

Turbulence models are mathematical models that are used to predict the effects of
turbulence in a fluid flow. They are used in conjunction with the Navier-Stokes equations to
solve the equations practically.

When it comes to wind turbines turbulence models are classified into:

1. Reynolds Averaged Navier-Stokes (RANS) Models: These models are based on
the Reynolds decomposition, which is a mathematical tool used to separate the flow
into a mean and a fluctuating part of the flow.

2. Unsteady Reynolds Averaged Navier-Stokes (URANS)Models: These models are
also based on the Reynolds decomposition, but they are time dependant, and therefore
they are more accurate than RANS models.

29

3. Large Eddy Simulation (LES) Models: These models are based on the decomposi-
tion of the flow into large and small eddies, and the large eddies are solved directly,
while the small eddies are modeled.

4. Detached Eddy Simulation (DES) Models: These models are based on the LES
models, but they are used in the near-wall region, where the LES models are not
accurate.

2.3.1 RANS Model

The RANS models are based on the Reynolds decomposition, which is performed by:

𝜙 = ⟨𝜙⟩ + 𝜙′, (2.38)

where 𝜙 is any property of the flow, ⟨𝜙⟩ is the mean value of the property, and 𝜙′ is the
fluctuating part of the property. The mean value is defined as

⟨𝜙⟩ = 1
𝑇 ∫

𝑇

0
𝜙𝑑𝑡, (2.39)

where 𝑇 is the period in which the mean value is calculated.

The most used RANS models are based on three turbulent properties, namely, the
turbulent kinetic energy 𝑘, the turbulent dissipation rate 𝜖, and 𝜔.

The turbulent kinetic energy is defined as

𝑘 = 1
2⟨𝑢

′
𝑖𝑢

′
𝑖 ⟩, (2.40)

where 𝑢′𝑖 is the fluctuating part of the velocity vector and the turbulent dissipation rate is
defined as

𝜖 = 𝜈
⟨𝜕𝑢′𝑖
𝜕𝑥𝑗

𝜕𝑢′𝑖
𝜕𝑥𝑗

⟩
, (2.41)

where 𝜈 is the kinematic viscosity, and 𝜕𝑢′𝑖∕𝜕𝑥𝑗 is the rate of strain tensor.

The 𝜔 equation is a transport equation for the specific dissipation rate 𝜔, which is
defined as

𝜔 = 𝜖
𝑘
. (2.42)

Applying the Reynolds decomposition to the Navier-Stokes equations and taking the
time average results in the RANS equations, which are given by

𝜕
𝜕𝑥𝑗

⟨𝑢𝑗⟩ = 0; 𝜕
𝜕𝑥𝑗

𝑢′𝑗 = 0 (2.43)

for the continuity equation, and

⟨𝑢𝑗⟩
𝜕⟨𝑢𝑖⟩
𝜕𝑥𝑗

= −1𝜌
𝜕⟨𝑝⟩
𝜕𝑥𝑖

+ 𝜕
𝜕𝑥𝑗

(𝜈
𝜕⟨𝑢𝑖⟩
𝜕𝑥𝑗

− ⟨𝑢′𝑖𝑢
′
𝑗⟩). (2.44)

30

With the previous manipulations, the RANS equations are now in a form that has
six new unknowns, because 𝑢′𝑖𝑢

′
𝑗 is the Reynolds stress tensor, which is a symmetric tensor,

is given by

𝑢′𝑖𝑢
′
𝑗 =

⎡
⎢
⎢
⎢
⎣

𝑢′1𝑢
′
1 𝑢′1𝑢

′
2 𝑢′1𝑢

′
3

𝑢′2𝑢
′
1 𝑢′2𝑢

′
2 𝑢′2𝑢

′
3

𝑢′3𝑢
′
1 𝑢′3𝑢

′
2 𝑢′3𝑢

′
3

⎤
⎥
⎥
⎥
⎦

, (2.45)

there are still however only 4 equations, which cause the so-called Closure Problem. And to
deal with this problem more equations are added to the system to model turbulent terms. To
model the Reynolds stress tensor the Boussinesque Hypothesis is applied, which consists in
treating turbulence much like viscous forces, since both are of dissipation nature. Therefore,
the Reynolds Stress Tensor is modeled in terms of a turbulent viscosity 𝜇𝑇 as

𝑢′𝑖𝑢
′
𝑗 = 𝜈𝑇(

𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

) − 2
3𝑘𝛿𝑖𝑗, (2.46)

2.3.2 K-Omega SST Model

The 𝑘 − 𝜀 model was proposed by Laudner (1973) working very well in free-flow
conditions, however, it performs poorly near the walls of the domain and relies on wall
functions to approximate the influence of the boundary layer. The 𝑘−𝜔model byWilcox, on
the other hand, performs well near walls and has poor performance in free stream conditions
due to an over-reliance on boundary conditions. The 𝑘 − 𝜔SST model tries to get the best of
both worlds and uses the 𝑘 − 𝜖 equation in 𝜔 form for the main flow, and the 𝑘 − 𝜔 near the
wall (MENTER, 1994). Currently, this approach yields the most accurate results for flows
over turbines.

2.4 Simulation Methods

There are three main methods of simulating the rotation of a wind turbine:

1. Actuator Line Method (ALM): This method consists of modelling the rotor blades
as forces acting on the flow, and therefore the blades are modeled through tabulated
data and the flow is solved in a stationary reference frame. This allows for great com-
putational efficiency and yields good preliminary results (SORENSEN; SHEN, 2002),
it is not, however, a good representation of the flow, since the blades are not modeled,
and for instance stall conditions due to wrong geometries may not be captured.

2. Moving Reference Frame (MRF): This method consists of basically inverting the
frame of reference, that is making the rotor stationary while the fluid rotates around it.
This method is solved using steady-state equations which means that time-dependent

31

effects are not captured. This method is more computationally expensive than the
ALM, however, it can capture integral properties of the flow, with some limitations,
such as the wake meandering, and the tip vortices (MEHDIPOUR, 2014).

3. Sliding Mesh Method (SMM): This method consists of modelling the rotor in a
rotating domain, and therefore the flow is solved in a stationary reference frame, and
with each iteration the mesh of the rotating domain has its positions recalculated, and
the properties in the interface between domains are updated through interpolation.
This method is the most computationally expensive, due to the rotation of the mesh,
and the interpolation of properties on interfaces, however, it is the most physically
accurate method of the three.

It can be said that the MRF method is a middle ground between the ALM and the
SMM, not only in computational cost but also in accuracy. The MRF method gives a good
idea of the flow and has the advantage of the easiest implementation (MEHDIPOUR, 2014).

2.4.1 MRF Formulation

The MRF method consists of changing reference frames, which means that the rotor
is kept stationary while the fluid rotates around it. Let 𝑟 be the coordinate of a point 𝑃 in
the stationary coordinate system 𝐾, and 𝑅 is the position of coordinate of the center of the
moving coordinate system 𝐾′, and 𝑟′ is the distance from a given point to the center of 𝐾′,
then it can be said that

𝑟 = 𝑅 + 𝑟′.

Therefore velocity of the point 𝑟 is given by

𝑢⃗ = 𝑑𝑥⃗
𝑑𝑡

= 𝑢𝑟 + 𝜔⃗ × 𝑟′,

and after taking the time derivative of the previous equation yields

𝑑𝑢⃗
𝑑𝑡

=
𝑑′𝑢𝑟
𝑑𝑡

+ 𝑑′𝜔⃗
𝑑𝑡

× 𝑟 + 2𝜔⃗ × 𝑢𝑟 + 𝜔 × 𝜔 × 𝑟.

Considering steady state, however,

𝑑𝑢⃗
𝑑𝑡

= ∇ ⋅ (𝑢𝑟𝑢𝑟) + 2𝜔⃗ × 𝑢𝑟 + 𝜔 × 𝜔 × 𝑟,

which is naturally the left side of the Navier-Stokes equations, therefore theMRF formulation
of the Navier-Stokes equations is given by

∇ ⋅ (𝑢𝑟𝑢𝑟) = −1𝜌∇𝑝 + ∇ ⋅ (𝜈∇𝑢𝑟) − 2𝜔⃗ × 𝑢𝑟 − 𝜔 × 𝜔 × 𝑟, (2.47)

where the term −2𝜔⃗ × 𝑢𝑟 models the Coriolis force, and the term −𝜔 × 𝜔 × 𝑟 models the
centrifugal force.

32

3 Geometry Generation

The geometry is based in a toroidal propeller rotor presented in the patent (SEBAS-
TIAN; STREM, 2019), consists of three inclined circular rings, with their centers positioned
at 2𝜋∕3 radians appart, and 𝑅∕2 far from the center. This geometry does not seem to have any
aerodynamic profile in its cross sections. The pitch angle (inclination angle) is not disclosed
in the patent, however, it can be estimated to be around 20◦ to 30◦. The main hypothesis of
this work is to investigate if this innovative design is capable of being used (with adaptations
provided using BEMT) as a turbine, and for that reason, the overall design aspects were
preserved.

As it can be seen from Figure (3.8), the highest power coefficients were obtained for
the four-bladed rotor. Additionally, the four-bladed rotor presents a geometric simplification,
when it comes to the geometric description of the toroidal blades, which will be discussed
further in this chapter. For these reasons, the four-bladed rotor was chosen as the base
geometry for this work.

Figure 3.8 – Wind tunnel results for the Power Coefficient 𝑐𝑝 for different number of blades
presented by (BRASIL JUNIOR et al., 2019).

The software for both the BEM algorithm and the geometry generation was written
in Python 3.9.5, due to its good prototyping capabilities and high level of abstraction. The
BEM algorithm was written using both functional and object-oriented programming (OOP)
paradigms, because of the ease of access to information, the aerofoil description was written
using OOP, due to the way easier manipulation of the coordinates, and the remainingmodule
was written using functional and imperative programming.

The standard way of drawing a blade is to use a skeleton straight line, which can be
placed in either the leading edge or the aerodynamic center of the profile which in NACA

33

profiles is placed in 1∕4 of the chord length. And then stacking sections over one another
separated by the spatial step 𝑑𝑟 used in the skeleton line. This approach may be used as well
in curved blades, however, the profiles need to be rotated so that the normal angle of the
profile’s surface is always pointing in the same direction as the tangent vector of the curve.

The geometry generation process can thus summarized in the following steps:

1. Generate the blade curve;

2. Run BEM;

Run Xfoil;

Get optimal angle of attack;

Run Algorithm 1;

Run Algorithm 2;

Calculate mean properties;

Check Reynolds number;

3. Load the profiles;

4. Rotate the profiles to the angle of attack;

5. Scale the profiles to the chord length;

6. Rotate the profiles to the curve’s angle;

7. Translate the profiles to the correct position in the curve;

8. Rotate the last profiles to match the middle profiles of the second blade;

9. Reflect the profiles in the 𝑥 and 𝑦 axis;

10. Rotate and copy the blades by 𝜋∕2 radians in respect to the center of the coordinate
system as it is the center of the rotor;

11. Remove the first profile from the array because has zero length;

3.1 Geometry of the Toroidal Rotor

The overall geometry of the toroidal rotor is presented in Figure (3.9). It is composed
of four circumference all of them with an intersection point and centers placed in a circular
pattern 2𝜋∕𝑁𝐵 (𝜋∕2) apart from each other. For this disposition to work, that is for the rotor
to be of the desired diameter, the blade circles must have a radius of 𝑅∕2, for any number of

34

blades. It is also relevant to point out that the angular span of a four-bladed rotor must be
3𝜋∕2 geometrically.

Lastly, when creating an array for the circular blades with angles (𝛽 = [0,3𝜋∕2]), the
corresponding radial positions are not evenly distributed in a line, because if the curves are
described by

⎧
⎪

⎨
⎪
⎩

𝑥𝑖 = 0𝑖
𝑦𝑖 =

𝑅

2
cos(𝛽𝑖) −

𝑅

2

𝑧𝑖 =
𝑅

2
sin(𝛽𝑖)

, (3.1)

then the radial positions will be given by

𝑟𝑖 = sin(𝛽𝑖), 𝛽𝑖 = [0, 𝜋],

which is not coherent with the rotor coordinate system, where the radial positions should be
given by

𝑟𝑖 =
√
𝑥2𝑖 + 𝑦2𝑖 + 𝑧2𝑖 .

Figure (3.9) illustrates the geometry of the guiding curves of the toroidal rotor.

3.2 Engineering Parameters

In order to generate a rotor, the working conditions of it must be considered. The
engineering parameters therefore are

• NACA: the code for the four-digit NACA profile chosen 1;

• NSEC - 𝑁𝑆: number of profile sections to construct a straight-bladed rotor;

• OMEGA - 𝜔: rotational speed of the rotor;

• 𝑉0: velocity of the flow far upstream;

• 𝑅: radius of the rotor;
1 For the current implementation, these profiles must be symmetric (00XY), because in the transition from

the first two-thirds of the curved blade to the last third, a change of orientation of the profile happens so
that the lift has the right orientation, which means that the lower surface of the last profile in the main
blade encounters the upper surface of the first from the last part of the blade.
Although it is possible to use asymmetric profiles, there is a need to implement a smooth transition from

the base asymmetric profile to the top symmetric profile, this smooth transition may be done by placing
an asymmetric profile in the base, 4415 for instance, and a symmetrical profile (0015) on the outer radius
position, and based on the number of sections, calculate the coordinates of the in-between profiles by
tracing lines between the same index points from both base profiles.
The issue with this method is that each profile in the smooth blade must have its lift and drag coefficient

tables calculated individually because each profile has a unique and non-standardized shape.

35

Figure 3.9 – Geometry of the toroidal rotor with four blades

• 𝑅𝐻: radius of the turbine’s hub;

• N-B - 𝑁𝐵: number of blades in the rotor;

• RHO - 𝜌: specific mass of the fluid in which the turbine will operate;

• MU - 𝜇: absolute viscosity of the fluid;

• REYNOLDS - 𝑅𝑒: Reynolds number of the profiles. This Reynolds number is calculated
through

𝑅𝑒 =
𝑉0𝑐
𝜈 , 𝜈 =

𝜇
𝜌 ,

with
𝑉0 =

√
[𝑢0(1 − 𝑎)]2 + [𝜔𝑅(1 + 𝑎′)]2,

where 𝑐 is the characteristic chord length of the profiles. This Reynolds number does
not need to be exact rather the order of magnitude must be the same, for instance,
𝑅𝑒 = 1.0 ⋅ 105 and 𝑅𝑒 = 2.5 ⋅ 105 will yield practically similar results, which means
that the input may be an approximation.

36

The algorithm inputs variables and their respective values, units, and types may be
observed in Table (3.1).

Property Symbol Rotor I Rotor II Rotor III Unit
Profile NACA code − “0015” “0015’ “0015’ −
Number of Sections 𝑁𝑆 200 100 100 −
Tip Speed Ratio 𝜔 4.0 4.0 4.0 −
Free Stream Velocity 𝑉0 8.0 8.0 8.0 𝑚∕𝑠
Radius of the Rotor 𝑅 0.145 0.11 1.1 𝑚
Scale − 1:1 1:1 10:1 −
Radius of the Hub 𝑅𝐻 0.0336 0.015 0.015 𝑚
Number of Blades 𝑁𝐵 4 4 4 −
Density 𝜌 1.225 1.225 1.225 𝑘𝑔∕𝑚3

Dynamic Viscosity 𝜇 1.849𝑒 − 5 1.849𝑒 − 5 1.849𝑒 − 5 𝑁𝑠∕𝑚2

Kinematic Viscosity 𝜈 1.560𝑒 − 5 1.560𝑒 − 5 1.560𝑒 − 5 𝑚2∕𝑠
Reynolds Number 𝑅𝑒 6.7𝑒 + 4 3.8𝑒 + 05 3.8𝑒 + 06 −

Table 3.1 – Algorithm input variables, their respective mathematical symbol, stored value, unit and
type

37

3.3 Generating the Curvature of the Blade

The first step in generating the curved blade is to generate the blade curve, because
each position in the curve will be used as the aerodynamic center of a profile. The generation
of the curve was done similarly to the description in Section (3.1), that is, by generating a
circular curve with

𝐶𝑘,𝑖 =

⎧
⎪

⎨
⎪
⎩

𝑥𝑘 = 𝑥𝑘,0 = 0𝑘
𝑦𝑘 = 𝑥𝑘,1 =

𝑅

2
cos(𝛾𝑘) −

𝑅

2

𝑧𝑘 = 𝑥𝑘,2 =
𝑅

2
sin(𝛾𝑘)

, for all 𝑘in[0,𝑁SECT) ∩ ℕ, (3.2)

where 𝑁SECT = 1.5 ⋅ 𝑁SEC is the total number of sections in the whole blade, and 𝛾 being the
angle of the 2D polar coordinate system (𝑟, 𝛾).

As explained in Section 3.1, this ought to be done as the first step, because BEM
requires the radial positions.

Figure 3.10 – Blade curve for a 4 (four) bladed toroidal rotor

Code 3.1 – Curve Generation Algorithm Section
1 # NSEC = 100
2 # NSECT = int (1.5* NSEC)
3 # N_B_STRAIGHT = 4
4
5 beta = np.linspace(0, 3*np.pi/2, NSECT)
6
7 curve = np.array([np.zeros(NSECT),
8 np.cos(beta)-1,
9 np.sin(beta)])*(R/2)
10
11 curve = np.transpose(curve)

38

3.4 Implementation of BEM

3.4.1 XFOIL implementation

Figure 3.11 – XFOIL Flow-chart - xfoil.py

XFOIL is a program developed by Mark Drela and Harold Youngren at MIT Aeronau-
tical Engineering Department. It is a program that uses a panel method to calculate the lift
and drag coefficients of a given profile. It is written in FORTRAN 77 with plotting functions
written in C and it is available openly for download. The program runs in a terminal using a
command line interface.

Running XFOIL with the aid of a Python script allows for centralized control of the
blade generating method, and for easy change in any relevant parameter, which are: the
code for the four-digitNACA profile chosen; Reynolds number of the profiles, using the
relative velocity 𝑉REL,1 as the characteristic velocity, the mean chord 𝑐 as the characteristic
length and the kinematic viscosity 𝜈 for air; the initial angle of attack 𝛼𝑖 of the profile;
the final angle of attack 𝛼𝑓 of the profile;the angle of attack’s step ∆𝛼. Figure (3.11)
illustrates the workings of the XFOIL automation algorithm implemented in this work.

Figure (3.12) shows the polar data results obtained from XFOIL for the NACA 0015
profile using the Reynolds number 𝑅𝑒 = 5.4 ⋅ 104, and the angle of attack range 𝛼 = [0, 20]
with a step of ∆𝛼 = 0.025. The results are in accordance with the expected results for a
NACA 0015 profile, which means that the XFOIL automation algorithm is working properly.

3.4.2 BEMMethod

The BEM algorithm was implemented in accordance with the algorithm from the
work of Brasil Jr.,A (2019), and the pseudo-algorithm for this implementation is presented in

39

Figure 3.12 – Polar data results for NACA 0015 profile obtained using XFOIL. (a) Lift coefficient 𝐶𝐿
vs Angle of Attack 𝛼; (b) Drag coefficient 𝐶𝐷 vs Angle of Attack 𝛼; (c) Lift coefficient

𝐶𝐿 vs Drag coefficient 𝐶𝐷

Algorithm (1), and Algorithm (2). The BEM implementation was done using OOP because
it allows for an easier access to the information.

The first algorithm takes as inputs the upstream velocity 𝑢0, the angular velocity 𝜔
and the radial positions of the profiles, and returns the axial and tangential induction factors,
𝑎 and 𝑎′, respectively, as well as the inflow angle 𝜙.

Secondly, BEM uses a function (get-optimal()) to go through the polar data ob-
tained from XFOIL and find the optimal angle of attack 𝛼𝑜 that generates the optimal lift and
drag coefficients 𝐶𝐿𝑜 and 𝐶𝐷𝑜, respectively. This process is done by finding the index, where
the lift-to-drag ratio 𝐶𝐿∕𝐶𝐷 is maximum. The process of finding the optimal properties from
the polar data is done this way instead of calculating the derivative of the lift curve and
finding the zero, because as seen in Figure (3.12), the maximum lift coefficient will also
result in high drag coefficients, by using the ratio, the result will always be the maximum lift

40

Algorithm 1 BEM Algorithm 1 (BRASIL JUNIOR et al., 2019)
Require: {𝑢0, 𝜔, 𝑟𝑖}

for (𝑖 = 0; 𝑖 < 𝑁𝑆𝐸𝐶; 𝑖 ← 𝑖 + 1) do
Λ𝑟,𝑖 ←

𝜔𝑟𝑖
𝑉0

𝜆𝑟,𝑖 ←
√
1 + Λ2

𝑟,𝑖

𝜃+ ← 1

3
arccos(1∕𝜆𝑟,𝑖)

𝜃− ← 1

3
arccos(−1∕𝜆𝑟,𝑖)

𝑎𝑖 ←
1

2
[1 − 𝜆𝑟,𝑖(cos 𝜃+ − cos 𝜃−)]

𝑎′𝑖 ←
(1−𝑎)

(4𝑎−1)

if Λ𝑟,𝑖 = 0 then
Λ𝑟,𝑖 ← 10−5

end if

𝜙𝑖 ← arctan (1−𝑎𝑖)

Λ𝑟,𝑖(1+𝑎′𝑖)
end for

return {𝑎, 𝑎′, 𝜙}

to the minimum drag.

The third step is to calculate the chord 𝑐 and twist angle 𝜃 of the profiles. This is done
through Algorithm (2), which receives as inputs the axial induction factor 𝑎, the inflow angle
𝜙, the radial positions 𝑟𝑖, the number of blades𝑁𝐵, the optimal angle of attack 𝛼𝑜, the optimal
lift coefficient 𝐶𝐿𝑜, the optimal drag coefficient 𝐶𝐷𝑜, and a boolean variable tip-correction,
which defaults to False, because in toroidal blades there is no tip, therefore Prandtl’s tip
loss factor is not applicable. The algorithm returns the chord 𝑐𝑖 and the twist angle 𝜃𝑖 of
each profile as a dictionary. The algorithm is implemented in Python and can be found in
Appendix (A.3).

In many cases, it is possible to enter a wrong estimate for the Reynolds number,
which would lead all results from BEM to be invalid. For this reason, the mean properties
from all the profiles are calculated, that is 𝑎̄, 𝑎′, 𝑐 and 𝜃̄, and then the Reynolds number is
calculated for these mean properties as

𝑅𝑒new =
𝑐𝑉REL,1

𝜈 , 𝑉REL,1 =
√
[𝑢0(1 − 𝑎̄)]2 + [𝜔𝑅(1 + 𝑎′)]2. (3.3)

41

Algorithm 2 BEM Algorithm 2 (BRASIL JUNIOR et al., 2019)
Require: {𝑎𝑖,𝜙𝑖,𝑟𝑖, 𝑁𝐵, 𝛼𝑜, 𝐶𝐿𝑜, 𝐶𝐷𝑜, bool tip-correction}

𝜃𝑖 ← 0𝑖; 𝑐𝑖 ← 0𝑖

𝑅 ← max(𝑟𝑖)

for 𝑖 = 0;𝑖 < 𝑁𝑆𝐸𝐶; 𝑖 ← 𝑖 + 1 do
𝜃𝑖 ← 𝜙𝑖 − 𝛼𝑜
if 𝜃𝑖 < 0 then

𝜃𝑖 ← 0
end if

𝐶𝑛 ← 𝐶𝐿𝑜 cos 𝜙𝑖 + 𝐶𝐷𝑜 sin 𝜙𝑖

𝑐𝑖 ←
8𝜋𝑟𝑖
𝑁𝐵

𝑎𝑖
(1−𝑎𝑖)

(sin 𝜙𝑖)
2

𝐶𝑛

if tip-correction is True then

𝑓𝑡𝑖𝑝 ←
𝑁𝐵[1−(𝑟𝑖∕𝑅)]

2(𝑟𝑖∕𝑅) sin 𝜙𝑖

𝐹𝑡𝑖𝑝 ←
2

𝜋
arccos

(
𝑒−𝑓𝑡𝑖𝑝

)

𝑓ℎ𝑢𝑏 ←
𝑁𝐵(1−𝑅ℎ𝑢𝑏)

2𝑟𝑖 sin 𝜙𝑖

𝐹ℎ𝑢𝑏 ←
2

𝜋
arccos

(
𝑒−𝑓ℎ𝑢𝑏

)

𝐹 ← 𝐹𝑡𝑖𝑝 ⋅ 𝐹ℎ𝑢𝑏

𝑐𝑖 ← 𝑐𝑖 ⋅ 𝐹
end if

end forreturn {𝑐𝑖, 𝜃𝑖}

If the absolute error from the new Reynolds number and the old Reynolds number

𝐸Re =
|𝑅𝑒new − 𝑅𝑒old|

𝑅𝑒old
(3.4)

is greater than 0.1, the XFOIL polar data is recalculated using the new Reynolds number and
the process is repeated until the absolute error is less than 0.1. This ensures that the input
Reynolds number is of the same order of magnitude as the Reynolds number of the profiles.

Lastly, the results from BEM are saved into a file, so that they can be used in the
future, or for further analysis.

42

3.5 Geometry Validation

In order to validate the BEM algorithm, a straight blade rotor was generated based
on the HK-10 (BRASIL JUNIOR et al., 2019) (MENDES et al., 2020) rotor, which has the
engineering parameters presented in Table (3.2).

Parameter Symbol Value
Number of Blades 𝑁𝐵 4
Number of Sections 𝑁SEC 15
Tip Speed Ratio 𝑇𝑆𝑅 1.6
Reynolds Number 𝑅𝑒 1.85 ⋅ 105
Free Stream Velocity 𝑉0 2.5𝑚∕𝑠
Radius of the Rotor 𝑅 1.1𝑚
Radius of the Hub 𝑅HUB 0.15𝑚
Kinematic Viscosity 𝜈 1.0035 ⋅ 10−6 𝑚2∕𝑠

Table 3.2 – HK-10 Project Parameters

The validation of the BEM algorithm was done by plotting the blade geometry and
the twist angle 𝜃 by the adimensional radius 𝑟∕𝑅, as seen in figure (3.13). Subsequently, the
relative error between the HK-10 chord and twist angles was calculated, and the results can
be seen in Figure (3.14).

Figure 3.13 – Comparisson between the Hk-10 geometry and the geometry generated by BEM

In order to calculate the error the difference between chord lengths were normalized
by the radius of the rotor 𝑅, due to the fact that a 0.01𝑚 error in the chord length is much

43

Figure 3.14 – Error between the Hk-10 geometry and the geometry generated by BEM

more significant as the rotor radius decreases. The twist angle error was calculated by simply
taking the difference between the twist angles.

3.5.1 Conclusions

During the validation process, it was observed that although the chord lengths are
not sensitive to the Reynolds number, an increase or decrease in the Reynolds number with a
second order of magnitude while calculating the twist angle, could result in a 24º difference
in the twist angle, since XFoil calculates the optimal attack angle from 0º to about 12.5º, it
can be said that this error can indeed be significant.

3.6 Rotor I

The first rotor geometry is subdivided into two distinct sections. The first section
goes from the angles 𝛽 = [0,𝜋], that is from the center of the coordinate system to the blade’s
radius. The second section goes from 𝛽 = [𝜋, 3𝜋∕2], that is from the blade’s radius to the
middle of another blade , as illustrated in Figure (3.9). The reason for this division is that
these two sections are anti-simetric, and therefore require different treatment.

3.6.1 First Part of the Blade [0,𝜋]

First of all an array with the coordinates of every profile was created using the NACA
0015 coordinates, therefore the shape of this array is (𝑁𝑆𝐸𝐶, 𝑁, 3), where𝑁𝑆𝐸𝐶 is the number
of sections in the first part of the blade, 𝑁 is the total number of points in the profile, and 3

44

is the number of dimensions of the rotor. It is important to note that this array is constructed
in such a way that all the coordinates in 𝑧 are 0.

The coordinate systemℝ3 is oriented in such a way that the profile’s chord is parallel
to the 𝑥 axis, 𝑐𝑗,𝑖 ∥ 𝑒0,∀𝑗 ∈ [0,(𝑁∕2) − 1] ∩ ℕ.

Then, all the profiles aremoved so that the center of the coordinate systemℝ3 is at the
aerodynamic center of the profiles. Let 𝑃𝑘,𝑗,𝑖 be an array with the coordinates as previously
described, then this translation operation is simply

𝑃𝑘,𝑗,0 ← 𝑃𝑘,𝑗,0 −
1
4, (3.5)

because the chord is still unity 𝑐𝑘 = 1.0 from the NACA profile generation algorithm2.

Thirdly, the profiles are scaled to the desired chord length 𝑐𝑖, which is done by the
scaling operation

𝑃𝑘,𝑗,𝑖 ← 𝑃𝑘,𝑗,𝑖 ⋅ 𝑐𝑘. (3.6)

Next, all the profiles in 𝑃𝑘,𝑗,𝑖 are rotated in relation to the 𝑧 axis, giving the blade its
twist. This is done by the rotation matrix

𝑃𝑘,𝑗,𝑖 ← 𝑃𝑗,𝑘,𝑖 ⋅ 𝑅𝑧(−𝜃𝑘), (3.7)

where 𝑅𝑧(𝜃𝑘) is the rotation matrix around the 𝑧 axis by the angle 𝜃𝑘.

With the blade profiles twisted properly, the next step is to rotate the profiles in such
a way that the normal vector of the profile’s surface is always pointing in the same direction
as the tangent vector of the curve, that is 𝑛𝑘,𝑗,𝑖 ∥ 𝜏𝑘,𝑖. For this condition to be satisfied, the 𝑦
coordinate from the profiles must be parallel to the radius of the blade, so the profiles can
just be rotated in the 𝑥 axis by the angle −𝛽𝑘 used to define the blade’s curve , that is

𝑃𝑘,𝑗,𝑖 ← 𝑃𝑘,𝑗,𝑖 ⋅ 𝑅𝑥(−𝛽𝑘). (3.8)

The profiles were then reflected in the 𝑥 and 𝑦 axis so that the profiles are oriented
in the correct direction.

𝑃𝑘,𝑗,𝑖 ← −𝑃𝑘,𝑗,𝑖, 𝑖 = 1,2 (3.9)

After this, the profiles were translated into the corrected position.

𝑃𝑘,𝑗,𝑖 ← 𝑃𝑘,𝑗,𝑖 + 𝐶𝑘,𝑖, (3.10)

Finally, the profiles were copied into a new array 𝐵𝑘,𝑗,𝑖,∀𝑘 ∈ [0,𝑁𝑆𝐸𝐶𝑇) ∩ℕ, 𝑗 ∈ [0,𝑁)∩ℕ,𝑖 =
1,2,3, that is with shape (𝑁𝑆𝐸𝐶𝑇, 𝑁, 3), where𝑁𝑆𝐸𝐶𝑇 is the total number of sections. Therefore,

𝐵𝑘,𝑗,𝑖 ← 𝑃𝑘,𝑗,𝑖, ∀𝑘 ∈ [0,𝑁𝑆𝐸𝐶) ∩ ℕ. (3.11)
2 This algorithm was used rather than extracting the profiles from XFOIL, for the STL lofting algorithm,

requires for a nonzero thickness trailing edge.

45

3.6.2 Second Part of the Blade [𝜋, 3𝜋∕2]

For the second part of the blade, the profiles from the first part of the blade were
copied to the blade’s array 𝐵𝑘,𝑗,𝑖 in reverse order, that is

𝐵𝑚,𝑗,𝑖 ← 𝑃𝑁𝑆𝐸𝐶−𝑘−1,𝑗,𝑖, ∀𝑘 ∈ [0,𝑁𝑆𝐸𝐶) ∩ ℕ and𝑚 ∈ [𝑁𝑆𝐸𝐶, 𝑁𝑆𝐸𝐶𝑇) ∩ ℕ. (3.12)

However, because the second part of the blade meets another blade, that Does blade
1 meet blade 2, because blade 2 has a twist angle in the position of the encounter, which
means that the last profiles from blade 1 will cross the middle profiles of blade 2. In order
to solve this problem a last operation must be made, which is to rotate the profiles in the
second part of the blade in the 𝑧 axis, so that the last profile of the second part of blade 1
meets the intermediary profiles at approximately their chords. However, this cannot be done
only in the last profile, rather this change in angle must diffuse through the second part of
the blade. Because this inclination of the last profiles must be greater than in the first, an
exponential transition function was employed,

𝛾𝑘 = −𝜃(𝑁𝑆𝐸𝐶∕2)−1−𝑘 ⋅ 𝐷
1−𝑘, (3.13)

where 𝐷 is an adjustment constant that controls the rate of change of the diffusion, in this
work 𝐷 = 1.08 was used because it was the value that produced the best result, this is
therefore an empirical constant, which is not ideal.

It is important to note nevertheless, that the rotation operation is done in relation to
the center of the coordinate system, hence to perform this rotation operation it is necessary
to translate profiles to the center, rotate them and then translate them back to their original
position. There was an issue however with the definition of the aerodynamic center of the
profile, thus they were translated by −𝑅, rotated and then translated back to their original
position, which creates a slight undesired curvature in the intersection to the front of the
rotor.

3.6.3 Generation of the Remaining Blades

The remaining blades were generated by a rotation of the first blade in the 𝑥 axis
by the angles 𝜎𝑚 ∈ [0,𝜋∕2,𝜋,3𝜋∕2],𝑚 = 1,2,3,4, therefore generating the four blades of the
rotor. The rotation was done by

𝑊𝑚,𝑘,𝑗,𝑖 ← 𝐵𝑘,𝑗,𝑖 ⋅ 𝑅𝑥(𝜎𝑚), (3.14)

where𝑊𝑚,𝑘,𝑗,𝑖 is the array with the coordinates of the𝑚-th blade.

The results of all these geometric operations may be seen in Figure 3.15.

46

(a) Front view (b) Side View

Figure 3.15 – Rotor I front and side view images

3.7 Rotor II and III

For the both rotor geometry, a different approach to the control of the position
and angle of the profiles were used. Instead of using arrays with profile coordinates, and
controlling them in batches, a class was created to represent the profiles, this allows for not
only the storage of important properties, such as the angles used in each of the directions of
the coordinate system and the position of the aerodynamic center of each profile, but it also
allows for control of all parameters of a single profile individually, solving the previously
mentioned problem of the curvature in the intersection. The implementation of this class
can be found in Appendix (A.1).

Both of the rotors were generated using essentially the same algorithm, and chord
distribution, the only difference between the two rotors is the twist angle distribution. The
chords were distributed in a way that for the initial, profiles the chord length was calculated
using the BEM algorithm as for to implement the hub correction, this distribution goes up
to the maximum chord length, after this section, if the chord length is smaller than half of
the mean chord 𝑐∕2, than the chord length is set to 𝑐∕2. Naturally, this distribution goes up
to the last profile. For the second section of the blade, the chord length is set to 𝑐∕2.

For the twist distribution, the blade was instead divided up into three sections:

1. First Section: From the center of the rotor to 3𝜋∕4 with twist angles calculated with
BEM 𝜃 = 𝜃𝐵𝐸𝑀;

2. Second Section: From 3𝜋∕4 to 𝜋 with twist angle calculated linearly from 𝜃𝐵𝐸𝑀 to 0;

3. Third Section: From 𝜋 to 5𝜋∕4 with twist angles calculated linearly from 0 to the
inflow angle calculated by BEM 𝜋 − 𝜙𝐵𝐸𝑀;

47

(a) Front view of Rotor II (b) Side view of Rotor II

(c) Front view of Rotor III (d) Side view of Rotor III

Figure 3.16 – Image of Rotor II and III

4. Fourth Section: From 5𝜋∕4 to 3𝜋∕2 with 𝜃 = 𝜋 − 𝜃𝐵𝐸𝑀, for the second geometry and
𝜃 = 𝜋 − 𝜙𝐵𝐸𝑀 for the third geometry.

The results of the two rotors may be seen in Figure (3.16).

48

4 Numerical Methodology

This chapter presents the numerical methodology used in this work in order to test
the preliminary performance of the toroidal rotor geometry. The numerical simulations were
conducted using the open-source CFD software OpenFOAM, using the Moving Reference
Frame (MRF) approach in a steady-state simulation. Therewere in total 3 geometry variations
tested, whose meshes were generated using CFMesh, for the first two and SnappyHexMesh
for the third one. All geometries were tested using the K-𝜔 SST turbulence model.

Rotor geometries I and II were tested using cases built to simulate the wind tunnel
from the Energy and Environment Laboratory (Laboratório de Energia e Ambiente - LEA)
from the University of Brasília (UnB), and were built by Matheus Nunes, a doctoral student
from UnB. The last geometry was tested using a case built by the author. The latter will be
discussed more deeply, since the main differences are the meshing method and the boundary
condition for the walls, while LEA’s case is a closed domain with a no-slip condition, the
case built by the author is an open domain. The numerical schemes and solution algorithms
are similar. The first case also has a cylindrical structure in the back to simulate a torque
meter.

4.1 Introduction

The numerical methodology used in this work is based on OpenFOAM, an open-
source computational fluid dynamics (CFD) toolbox. OpenFOAM is based on the finite
volume method (FVM) and written in C++. The FVM is a discretization technique in which
the domain is subdivided in small control volumes, commonly called cells. In each cell,
volume properties are calculated through volume integrals resulting in a value of the property
at the centroid, while the surface properties are calculated through the surface integral of
the flux of each property through each of the faces, assigning thus a value to the property at
each of the faces.

A general numerical simulation scheme can be summarized as:

1. Geometry generation;

2. Meshing;

3. Solving;

4. Post-process;

49

4.2 Geometry Description

There were 3 geometries tested in this work, the first one was a reverse-engineered
geometry of the patented design of the toroidal rotor (SEBASTIAN; STREM, 2019), the
second geometry was a corrected version of the first one so that the rotor could work as a
wind turbine rotor. The third geometry was an attempt to improve the performance of the
latter.

Property Rotor I Rotor II Rotor III
Base axis of profile sections 𝑥 𝑧 𝑧
Percentage of the blade using BEM ≈ 90% 50% 75%
Minimal chord after maximal 𝑐 𝑐 𝑐∕2
Diameter [m] 0.22 2.2 0.22
Scale1 1:1 1:1 1:10

Table 4.3 – Geometric Differences between rotors

4.3 Mesh

In this section, the meshes used in the tests will be described.

When it comes to generating themesh for external flows, as it is the case of the current
work, OpenFOAM has a couple of mesh generating solutions, the ones used for this work
were BlockMesh, SurfaceFeaturesExtract, SnappyHexMesh, which work, respectively in
the following manner: generating the background mesh, extracting the surface features
of the geometry, subdividing the background mesh until the desired refinement level and
trimming the mesh inside the geometry, moving vertices of the tetrahedra to the surface of
the geometry, and then adding layers from the surface out in order to create a more refined
mesh in the walls of the desired Geometry.

After generating the mesh, it is important to check its quality, since poor quality
meshes are known to give results which are not representative of the physical problem, due
to induced errors due to the geometry of the cell which exert influence on the numerical
solutions, or even the low discretization of the mesh, which causes it to not capture relevant
information about the flow. The latter is harder to evaluate, since the results and the quality
of the mesh are essentially correct, the first problem on the other hand is measurable and
needs to be addressed in order to facilitate the convergence of the results. For that reason,
OpenFOAM is allows for the setting of mesh quality, which were presented in Table 4.4.

4.3.1 Mesh I

The first mesh has four regions of refinement and can be visualized in Figures 4.17
and 4.18.

50

Property Parameter Value
Maximal non-orthogonality maxNonOrtho 65
Maximal face skewness at the boundaries maxBoundarySkewness 20
Maximal face skewness in the domain maxInternalSkewness 4
Maximal concavity of cells maxConcave 80
Minimal Volume minVol disabled
Minimal cell twist angle minTwist 0.01
Minimal determinant minDeterminant 0.001
Minimal volume ratio minVolRatio 0.01
Number of smooth sales nSmoothScale 4
Error reduction error reduction 0.75

Table 4.4 – Mesh Quality Parameters

Figure 4.17 – Crossection of Mesh I

4.3.2 Mesh II Properties

The second mesh has three regions of refinement and can be visualized in Figures
4.19 and 4.20.

4.3.3 Mesh III

The mesh for the third geometry was generated using BlockMesh and Snappy-
HexMesh. It consists of a background consisting of a cuboid with a height of 2𝐷 and a
width of 2𝐷 with a length of 3.0𝑚, where 𝐷 is the diameter of the rotor. The mesh was later
refined using SnappyHexMesh, which subdivides the background mesh until the desired
refinement level is reached. In order to determine the rotating domain of the MRF, a cylinder
was created with a radius of 0.145𝑚 and length of 0.145𝑚 with its center at the center of the

51

Figure 4.18 – Close-up on the crosssection of Mesh I

Figure 4.19 – Crossection of Mesh II

rotor. Aiming to capture the near wake of the rotor, the mesh was refined in the region of
another cylinder with the front face at −0.145𝑚 and the back face at 1.45𝑚 with a radius of
0.75𝐷. The resulting mesh can be observed in Figures 4.21 and 4.22.

The resulting mesh properties can be observed in Table 4.5. Although the mesh
is not perfect, and the layering process was not successful, it can be said that the mesh

52

Figure 4.20 – Close-up on the cross-section of Mesh II

Figure 4.21 – Crossection of Mesh III

is nevertheless decent. And should be able to simulate the flow around the rotor with
reasonable accuracy and convergence, keeping in mind the objective of this work, which is
generating preliminary results for the developed geometry.

The boundaries of the fluid domain in OpenFOAM are defined as patches, which are
named following the convention from the book of Versteeg and Malalasekera (2007). The

53

Figure 4.22 – Close-up on the cross-section of Mesh III

Property Value
Number of cells 1.428.400
Number of faces 4.551.991
Number of nodes 1.713.785
Number of surface layers 20
First Layer thickness 1e-5m
Expansion ratio 1.2
Maximal non-orthogonality 65.6607
Number of highly non-orthogonal faces 0
Maximal face skewness 7.7778
Number of highly skewed faces 39

Table 4.5 – Mesh III Properties

patches are therefore north, south, inlet, outlet, top, and bottom, which are the boundaries
with minimal 𝑧, maximal 𝑧, minimal 𝑥, maximal 𝑥, maximal 𝑦, and minimal 𝑦 coordinates
respectively. Additionally, the patch for the rotor is also defined. In this work, the north,
south, top, and bottom patches will be called wall patches.

4.4 Boundary Conditions

An important part of the numerical simulation in regards to accuracy and conver-
gence is the correct definition of the boundary conditions. In this section, the boundary
conditions used in the simulations will be presented.

The boundary conditions for the simulation aim to model the flow around a free
standing rotor in an open field, which means that the walls of the domain are subject to
inflow and outflow of mass, and do not exert any influence in the the flow inside the fluid

54

domain, as is the case for confined rotors in wind tunnels.

For the velocity field, the inlet boundary condition was defined as a fixed value
uniformly across the inlet patch, with a value of the free stream velocity 𝑈0 = 8𝑚∕𝑠 in the 𝑥
axis.

The turbulent kinetic energy boundary condition is similar, an inlet condition, that
is a fixed-value uniform field, however, this uniform field is also applied to the full fluid
domain, defined as

𝑘0 =
3
2𝐼𝑈

2
0 , (4.1)

where 𝐼 is the turbulence intensity, which was set to 𝐼 = 0.5%, which is typical of wind
tunnels. The boundary condition for the specific turbulent dissipation rate was defined in
the same manner, with a uniform field however valued as

𝜔0 =
𝑘0

𝐶0.25
𝜇 𝑐

, (4.2)

where 𝐶𝜇 is the turbulent viscosity constant, which is usually set to 𝐶𝜇 = 0.09, and 𝑐 is the
mean chord value.

The outlet boundary condition was defined as a constant pressure outlet, which
models the relative atmospheric pressure, with a value of 𝑝 = 0𝑃𝑎. The wall patches were
defined as symmetry planes, which means that the flow can cross the wall boundary freely.
Finally, the rotor patch has a no-slip boundary condition, and of course uses also wall
functions for the turbulence model, for both the 𝑘 and 𝜔. The boundary conditions used in
the simulations are summarized in Table (4.6).

The fluid in the flow is assumed to be air at 25◦𝐶 and 1𝑎𝑡𝑚, which is considered
incompressible at the conditions of the simulation. Additionally the third rotor is scaled
down, thus in order to maintain the Reynolds number, and consequently the flow behavior,
and the viscosity must be scaled down accordingly 2.

It is important to note that scaling down a rotor geometry for hydrokinetic turbines
by a factor of 10 in order to perform tests in a wind tunnel (BRASIL JUNIOR et al., 2019), is
not the same as scaling down a wind turbine, due to the fact that the kinematic viscosity of
air and water differ by an order of magnitude, thus the Reynolds number of the flow around
the rotor of a hydrokinetic turbine stays approximately the same, and the flow behavior is
preserved, when cavitation phenomena are not present.

2 If 𝐿1 = 10𝐿2 then
𝑅𝑒 =

𝐿1𝑢
𝜈1

=
𝐿2𝑢
𝜈2

⇒ 𝜈2 =
𝜈1
10

55

Patch 𝐔 𝐏 𝐤 𝜔
Inlet fixedValue zeroGradient fixedValue zeroGradient
Outlet inletOutlet fixedValue inletOutlet zeroGradient
Wall symmetryPlane symmetryPlane symmetryPlane symmetryPlane
Rotor MRFnoSlip zeroGradient kqRWallFunction omegaWallFunction

Table 4.6 – Boundary Conditions for each Field

4.5 Numerical Schemes

The choice of an appropriate numerical scheme is of undeniable importance in the
convergence and accuracy of the numerical simulations, since the numerical schemes are
responsible for the discretization of the differential equations which models the physical
problem. OpenFOAM allows for the choice of a vast number of numerical schemes each
one of them with its advantages and disavantages (FOUNDATION, 2023).

The time discretization scheme used in this work was the steady-state solver, which
sets the time derivative to zero.

In the finite volumemethod, values of the properties are calculated at the the centroid
of the cell and the fluxes are calculated at the face of the cell, which means that the values of
the properties must be interpolated to the faces of the cell. For the calculation of gradients the
Gaussian linear interpolation and due to the poorer quality of the mesh, which is not fully
orthogonal limiters were used. For the calculations of divergence terms, upwind schemes
were used. The upwind discretization schemes are based on the direction of the information
transport in the flow, as in the case of the simulation of a turbine rotor, the flow is mainly in
the 𝑥 direction, and therefore the flow transports information from the inlet to the outlet, the
upwind schemes are the most appropriate. For the discretization of surface normal gradients
and laplacian terms, limited corrected and limited corrected Gaussian linear schemes were
employed with a limiter of 0.777. The full fvSchemes file can be referred to in Appendix B.1.
These sets of schemes were chosen after a series of tests and based on the recommendations
fromWolfDynamic (2020), allowing for the convergence of the results.

4.6 Solver and Algorithm

The solvers used in this work were Stabilised preconditioned bi-conjugate gradient
(PBiCGStab) for the pressure 𝑝 equation, and the preconditioned bi-conjugate gradient
(PBiCG) for the velocity𝑈, turbulent kinetic energy 𝑘 and specific turbulent dissipation rate
𝜔 equations.

In OpenFOAM version 11, the solver algorithm used for the solution is chosen
relatively automatically based on the time discretization and the type of fluid flow being
simulated. In this work, the steady state solver was used, with the Incompressible Navier-

56

Stokes equations, along with the MRF model for the rotation of the rotor, the K-𝜔 SST
turbulence model, and the PIMPLE algorithm for the pressure velocity coupling, which is a
combination of the SIMPLE and PISO algorithms (VERSTEEG; MALALASEKERA, 2007).
Since the flow is steady, the PIMPLE algorithm used in this work is essentially the SIMPLE
algorithm.

The SIMPLE algorithm initially guesses the property fields, then solves the momen-
tum equation for the velocity field, then the pressure correction equation, then corrects
pressure and velocity fields, then finally solves all the transport equations iterating this
process until the convergence criteria are met. The PISO algorithm works for the first part
similar to the SIMPLE algorithm, after correcting the pressure and velocities however, it
solves a second pressure correction equation and sets the pressure and velocity fields with the
corrected values before solving all the transport equations (VERSTEEG; MALALASEKERA,
2007).

In OpenFOAM, the PIMPLE algorithm allows for the choice of the number of cor-
rectors, which were set to 1 outer correction consisting of the number of times which the
PIMPLE algorithm is run before moving to the next time step; 2 correctors, which is the
number of times the pressure correction equation is solved before calculating the final pres-
sure field; and 1 non-orthogonal corrector, which is the number of times the non-orthogonal
corrector is run before calculating the final pressure field. Therefore for each time step, the
PIMPLE algorithm calculates the pressure four times, and is run once before moving to the
next time step. It is important to remark that the momentum predictor is turned on.

The under-relaxation factor for all properties also ought to be set, they essentially
limit the change in the value of the property from one iteration to another, these factors
are highly influenced by the mesh quality and influence greatly the convergence of the
results (FOUNDATION, 2023). The under-relaxation factors used in this work are 0.5 for the
pressure field and 0.7 for the velocity 𝑈, turbulent kinetic energy 𝑘 and specific turbulent
dissipation rate fields𝜔.

The complete set of parameters used in the fvSolution file can be refered to in
Appendix B.2.

4.7 Numerical Procedure

The numerical procedure of preliminary tests performed on the rotor geometries
were as follows:

• Rotor I: was tested once for 2.8 TSR;

• Rotor II: was tested once for 4.0 TSR;

57

• Rotor III: was tested for the 3.5, 4.0, 4.5, 6.0, 6.5, 8.0 TSR range.

The first two geometries were tested until 3.000 iterations, and the last was tested
until convergence, monitored by the numerical residuals of iterations, and the mean square
root (𝜎), namely the statistical error of the power coefficient 𝐶𝑃, as it is one of the parameters
of interest and it needs to analyze the pressure and viscous tension distribution over the
rotor surface.

58

5 Results

After running the numerical simulations as described in Chapter 4, the results were
analyzed and the following conclusions were drawn.

5.1 Torque and Power Coefficient Curves

The power coefficient 𝐶𝑃 is an adimensional number that relates the power extracted
from the fluid and the available power in the fluid, as already presented in eq. 2.5. In the
context of wind and hydrokinetic turbine rotors, the 𝐶𝑃 is used as a performance indicator,
and the efficiency 𝜂 of an axial rotor is measured as the ratio between the𝐶𝑃 and themaximal
possible 𝐶𝑃, that is, the Betz limit. The power coefficient measured in the simulations 4.0
TSR is presented in Table 5.7.

Rotor I Rotor II Rotor III
𝐶𝑃[%] -17.51 6.00 14.87
𝜎𝐶𝑃[%] − − 0.13

Table 5.7 – Power coefficient for rotor III at 4.0 TSR.

The power coefficient curve for the rotor III is presented in Figure 5.23. It can be
observed, differently from the power coefficient curve for straight blades as seen in Figure 3.8.

(a) Power Coefficient 𝐶𝑃 (b) Torque Coefficient 𝐶𝑀

Figure 5.23 – Power and Torque coefficient curve for the rotor III

The torque coefficient curve indicates that the rotor is not extracting torque from the
fluid efficiently, therefore, although the rotor is extracting energy from the fluid to rotate

59

itself, it is not converting this momentum into torque. Brasil Jr. (2019) have reported 𝐶𝑀
values in the order of 40% for a hydrokinetic turbine rotor, which is a much higher value than
the one presented here. One possible explanation for the low 𝐶𝑀 is that the the curved of the
blade, more specifically the top 25-50% of the blade represents momentum-wise additional
pressure and viscous drag, therefore a large part of the force exerted by the fluid upon the
blades is balanced by this additional drag component. This is further corroborated by the
momentum data from rotor II, on which pressure momentum is of magnitude of −4.8𝑁𝑚
and viscous momentum of order 2.4𝑁𝑚, which is a considerable ratio of almost 50%.

Preliminary tests with the third rotor geometry indicate that the ratio between pres-
sure and viscous momentum is lower. At 3.5 TSR, the pressure momentum is of order
−6.0 ⋅ 10−3𝑁𝑚 and the viscous momentum is of order 3.8 ⋅ 10−5𝑁𝑚, which is only about
0.6% of the pressure momentum. This is further corroborated by the pressure distribution
in the blade, as can be seen in Figure 5.29. This however may be due to the large 𝑦+ values
in the blade surface, which may be causing the solver to underestimate the viscous effects
acting on the blade.

There are innumerable reasons why the power curve for the rotor could be behaving
linearly, one explanation for it is that the rotor geometry works mainly on drag forces (from
pressure) instead of lift forces, which is common for simpler rotor geometries. Another
possible explanation is that the activation energy for the rotor is lower then the inlet energy,
which would mean that the rotor hasn’t achieved its peak efficiency, and that its rotational
speed is still lower, which is unlikely.

5.2 Rotor Analysis

Due to the fact that the geometry tested in this work is non-conventional, it is worth-
while to analyse properties such as pressure 𝑝, turbulent kinetic energy 𝑘, turbulent viscosity
𝜈𝑇, and the 𝑦+ parameter, in order to investigate if the rotor is working according to expecta-
tions.

5.2.1 Rotor I

The first geometry tested was the rotor I, described in Section 3.6. I can be seen in
Figure 5.24 that the pressure distribution is the opposite of what is expected from a turbine
rotor, that is the pressure in the back is higher than the pressure in the front, which could
indicate that the rotor is working as a compressor, rather than a turbine. This is further
corroborated by the power coefficient, which is negative, indicating the necessity of adding
energy to the system.

Therefore, the geometry was modified in order to orient the profiles in the proper
manner. The new geometry is presented in Section 3.7.

60

Figure 5.24 – Rotor I Pressure Distribution

61

5.2.2 Rotor II

Figure 5.25 presents the pressure distribution around rotor II, where it can be ob-
served a high-pressure region at the pressure side leading edge, and a low-pressure region at
the suction side. It can also be seen that in the connection of the blades both sides present
a relatively high pressure, which indicates pressure drag. In the back of the rotor, a large
low-pressure region can be observed before the linear transition region, which may indicate
a stall condition.

Figure 5.26 presents the 𝑦+ distribution around the rotor, where it can be observed
that the 𝑦+ is higher in the second and third section of the blade. High values of 𝑦+ represent
regions with low accuracy in the numerical solution of the near wall region. The highest
value of 𝑦+ in the rotor surface is of order 𝑦+ ∝ 160, which is a compromise between accuracy
and computational cost, justified by the fact that these numerical simulations are preliminary
and the main objective is to investigate the overall behavior of the rotor, rather than having
high accuracy in the results.

(a) Front View (b) Back View

Figure 5.25 – Rotor II at 4.0 TSR Pressure 𝑝 ranging from −220 to 220𝑃𝑎

62

(a) Front View (b) Back View

Figure 5.26 – Rotor II at 4.0 TSR 𝑦+ ranging from 0 to 50

(a) Front View (b) Back View

Figure 5.27 – Rotor II at 4.0 TSR turbulent kinetic energy 𝑘 ranging from 4.3 ⋅ 10−6 to 16

63

5.2.3 Rotor III

Observing the pressure distribution around rotor III, it is possible to observe that
the pressure is higher in the front of the rotor, and lower in the back, which is expected for
a turbine rotor, as the extraction of energy using torque will generate a pressure drop in
the back of the rotor. It can also be observed that the leading edge of the rotor has a higher
pressure than the trailing edge, which is also desirable.

Additionally from the pressure it is possible to observe that there is a lower pressure
region at the top of the curve of the blade, where the twist angles of the profiles are higher,
than what is calculated with BEM, due to the linear transition between sections of the blade,
which is expected because it induces a stall condition. It can also be observed that in the
last section of the blade close to the intersection, the pressure gradient between the suction
and pressure sides of the blade are maintained. The pressure distribution is presented in
Figures 5.28 and 5.29.

(a) Front View (b) Back View

Figure 5.28 – Rotor III at 8.0 TSR Pressure 𝑝 ranging from −51 to 51𝑃𝑎

(a) Front View (b) Back View

Figure 5.29 – Rotor III at 3.5 TSR Pressure 𝑝 ranging from −36 to 36𝑃𝑎

64

The turbulent kinetic energy 𝑘 suggests that turbulence is not produced in the
surface of the rotor at 3.5 TSR, indicating that there was little separation of flow in the blade
surface, which is a good indication that the rotor is working as expected, as it can be seen in
Figure 5.30b. The 𝑦+ distribution in the rotor blades go up to 420, which is a high value, for
reference, good meshes for solving turbulent flows with 𝑘 − 𝜔 SST should have 𝑦+ values
between 30 and 100.

(a) 𝑦+ at the back (b) Turbulent kinetic energy 𝑘 at the back

Figure 5.30 – Rotor III at 3.5 TSR 𝑦+ and 𝑘

65

5.3 Wake Visualization

Figure 5.31 presents the pressure distribuition in the wake of the rotor I, and it can
be observed that the pressure in the wake is reversed, due to the operation as a propeller,
rather than a turbine. It can also be observed the influence of the nacelle in the wake of the
rotor.

Figure 5.31 – Pressure Distribution and Contours for Rotor I at 2.8 TSR

The wake of the rotor is presented in Figure 5.32b, and it displays typical behavior of
a turbine rotor, with a velocity deficit being present in the wake, and the wake being wider
than the rotor itself, due to the induced divergence of the flow upstream by the presence
of the rotor. It is also possible to observe the presence of the “center blade vortices”, in the
pressure fluctuations in the wake.

Figures 5.33a and 5.33b present the turbulent kinetic energy 𝑘 field and the turbulent
viscosity 𝜈𝑇 in the wake of rotor II at 4.0 TSR, respectively, and it can be observed that the
wake is highly turbulent.

Figures 5.34a and 5.34b present the pressure distribution and the velocity field in the
wake of rotor III at 6.5 and 3.5 TSR, respectively.

Analysing cross-sections of the wake, however, and plotting a velocity profile in the
wake, it is possible to observe, in Figure 5.35, that there are three peaks of velocity deficit,
which is also expected in straight blade geometries, in this case, however, the peaks are not
occurrent in the wing tip, due to wing tip vortices formation, rather they appear in about the
middle of the blade for the fluid flows from the pressure side of one blade to the suction side

66

(a) Pressure Distribution 𝑝 and Contours

(b) Velocity Field 𝑈𝑥

Figure 5.32 – Wake Visualization for Rotor II at 4.0 TSR

of the adjacent. The position of the center and intensity of the vortex must be a function of
the pressure distribution of both blades, and should be further investigated.

Figure 5.36a shows the contours for the induction factor 𝑎 of rotor III at the rotor
plane, and indicates how the velocity 𝑈𝑥 is reduced in the rotor plane, and gives a rough
idea of the velocity deficit or surplus in different parts of the rotor plane. Near the rotor
walls, lines are tighter together, due to the reduction in velocity. Additionally, Figure 5.36b
presents the induction factor contours for a plane at 𝑥 = −0.45𝑅 (upstream), which can be
used as an indication of the validity of Momentum Theory, since it is not valid for induction
factors greater than 0.5 (HANSEN, 2015).

67

(a) Turbulent Kinetic Energy 𝑘 for Rotor II at 4.0 TSR

(b) Turbulent Viscosity 𝜈𝑇 for Rotor II at 4.0 TSR

68

(a) Pressure Distribution 𝑝 and Contours at 6.5 TSR

(b) Velocity Field 𝑈𝑥 at 3.0 TSR

Figure 5.34 – Wake Visualization for Rotor III at 3.5 TSR

69

Figure 5.35 – Velocity Profiles 𝑈𝑥 at 𝑥 = 1𝑅, 10𝑅, 20𝑅 for the wake in Rotor II

(a) at the rotor plane 𝑥 = 0 (b) at 𝑥 = −0.45𝑅

Figure 5.36 – Induction Factor 𝑎 Contours for Rotor III at 3.5 TSR

70

6 Conclusions

This work used BEM and CFD to develop, simulate and analyze a toroidal rotor
geometry for a wind turbine. The geometry was developed using a NACA 0015 airfoil and a
quad-toroidal circular geometry using Python. The numerical simulation was performed
using OpenFOAM, and the results were analyzed using ParaView and Python.

The torque coefficient curve indicates that the rotor is not extracting torque efficiently.
The power coefficient curve indicates that the rotor indeed acts as a turbine, extracting energy
from the fluid.

The pressure distribution around the rotor indicates that the rotor is working as
expected, and the changes in geometry did actually improve the performance of the rotor.
However the efficiency of the rotor is still low, and further research is necessary before a
final conclusion regarding the viability to be drawn.

The wake of the rotor indicates that the wing tip vortices in toroidal geometries are
formed due to the difference in pressure between one blade’s pressure side and the other
blade’s suction side. The wake also indicates high complexity, with the presence of secondary
vortices and a high level of turbulence. The complexity of the wake may challenge the usage
of such rotors in wind farms, since the wake may interfere with the performance of others.

The findings of this work indicate that the toroidal rotor is a viable concept for wind
turbines, but further research is necessary to improve the performance of the rotor and to
understand the wake of the rotor.

71

7 Next Studies

The following are suggestions for future studies regarding the toroidal rotor:

• Viability of BEM for 3D geometries: BEM is a powerful tool for designing wind
turbines, however, its applicability to 3D geometries is still under debate. Is the calcu-
lation of the induction factor in 2D geometries also valid for 3D geometries? How does
the 3D geometry affect the induction? factor? How do the induction factors affect the
induced angle on profiles? which are not perpendicular to the radius? How does the
3D geometry affect the torque and power coefficients?

• Geometric optimization: The geometry of the toroidal rotor is based on the geometry
of the MIT toroidal propeller, therefore it is not yet known if there is a better geometry
for the toroidal rotor. The suggestion would be to try to curve the blades downstream.

• Wake analysis: The wake of the toroidal rotor is very complex, therefore analyzing the
wake thoroughly and evaluating the impact of the wake on other rotors is a necessary
step before the toroidal rotor can be used in wind farms.

72

References

ANDERSON, J. Fundamentals of Aerodynamics. McGraw Hill, 2011. Cit. on p. 23.

BETZ, A. Einführung in die Theorie der Flugzeug-Tragflügel. Naturwissenschaften,
Springer-Verlag Berlin/Heidelberg, v. 6, n. 38, p. 557–562, 1918. Cit. on p. 18.

BETZ, A. The theory of the screw propeller. 1922. Cit. on p. 22.

BRASIL JUNIOR, A. C.; MENDES, R. C.; WIRRIG, T.; NOGUERA, R.; OLIVEIRA, T. F.
On the design of propeller hydrokinetic turbines: the effect of the number of blades.
Journal of the Brazilian Society of Mechanical Sciences and Engineering,
Springer, v. 41, p. 1–14, 2019. Cit. on pp. 25, 26, 32, 38, 40–42, 54, 59.

BREAKTHROUGH ENERGY. Available at: https://breakthroughenergy.org/our-
approach/grand-challenges/ – accessed on 27 Jul. 2023. 2023. Cit. on p. 14.

FOUNDATION, T. O. OpenFOAM.org User Guide. July 2023. Cit. on pp. 55, 56.

FROUDE, W. On the elementary relation between pitch, slip, and propulsive effi-
ciency. 1920. Cit. on p. 15.

GIPE, P.; MÖLLERSTRÖM, E. An overview of the history of wind turbine development: Part
I—The early wind turbines until the 1960s.Wind Engineering, SAGE Publications
Sage UK: London, England, v. 46, n. 6, p. 1973–2004, 2022. Cit. on p. 14.

GLAUERT, H. Airplane propellers. Aerodynamic theory, Julius Springer, 1935. Cit. on
p. 15.

HANSEN, M. O. Aerodynamics of wind turbines. Routledge, 2015. Cit. on pp. 21, 22, 24,
25, 66.

HAU, E.Windkraftanlagen: Grundlagen, Technik, Einsatz undWirtschaftlichkeit.
Springer-Verlag, 2017. Cit. on p. 17.

JOHNSON, D.; GU, M.; GAUNT, B. Wind Turbine Performance in Controlled Conditions:
BEMModeling and Comparison with Experimental Results. International Journal
of Rotating Machinery, v. 2016, p. 1–11, Jan. 2016. DOI: 10.1155/2016/5460823.
Cit. on p. 26.

KOLMOGOROV, A. N. The local structure of turbulence in incompressible viscous fluid
for very large Reynolds numbers. Proceedings of the Royal Society of London.
Series A: Mathematical and Physical Sciences, The Royal Society London, v. 434,
n. 1890, p. 9–13, 1991. Cit. on p. 28.

https://breakthroughenergy.org/our-approach/grand-challenges/
https://breakthroughenergy.org/our-approach/grand-challenges/
https://doi.org/10.1155/2016/5460823

73

LINCOLNLABORATORY -MIT. InnovationHighlight: Toroidal Propeller. 2022. Available
at: https : / / www . ll . mit . edu / sites / default / files / other / doc / 2023 -
02/TVO_Technology_Highlight_41_Toroidal_Propeller.pdf – accessed on 17
Jul. 2021. Cit. on p. 19.

MAALAWI, K. Y.; BADAWY,M. T. A direct method for evaluating performance of horizontal
axis wind turbines. Renewable and Sustainable Energy Reviews, Elsevier, v. 5,
n. 2, p. 175–190, 2001. Cit. on p. 25.

MEHDIPOUR, R. Simulating propeller and propeller-hull interaction in openFOAM.
2014. Cit. on p. 31.

MENDES, R. C. F.; MACIAS, M. M.; OLIVEIRA, T. F.; BRASIL ANTONIO C. P., J. A Com-
putational Fluid Dynamics Investigation on the Axial Induction Factor of a Small
Horizontal Axis Wind Turbine. Journal of Energy Resources Technology, v. 143,
n. 4, p. 041301, Aug. 2020. https://doi.org/10.1115/1.4048081 – accessed on
2nd Dec. 2023. Cit. on p. 42.

MENTER, F. R. Two-equation eddy-viscosity turbulencemodels for engineering applications.
AIAA journal, v. 32, n. 8, p. 1598–1605, 1994. Cit. on p. 30.

RODRIGUEZ, S.; JAWORSKI, J.; MICHOPOULOS, J. Stability of helical vortex structures
shed from flexible rotors. Journal of Fluids and Structures, v. 104, p. 103279, July
2021. DOI: 10.1016/j.jfluidstructs.2021.103279. Cit. on pp. 16, 17.

SEBASTIAN, T.; STREM, C.United States Patent Application Publication. May 2019.
US2019/0135410 A1. Cit. on pp. 18, 20, 32, 49.

SHARROW MARINE: Performance Reports - 36’ Twin Vee with Twin Yamaha 300 HP.
Available at: https://sharrowmarine.com/performance-reports/2022/12/30/
36-twin-vee-with-twin-yamaha-300-hp – accessed on 14 Jul. 2021. 2022. Cit. on
pp. 18, 19.

SORENSEN, J. N.; SHEN, W. Z. Numerical modeling of wind turbine wakes. J. Fluids Eng.,
v. 124, n. 2, p. 393–399, 2002. Cit. on p. 30.

VERMEER, L.; SØRENSEN, J. N.; CRESPO, A. Wind turbine wake aerodynamics. Progress
in aerospace sciences, Elsevier, v. 39, n. 6-7, p. 467–510, 2003. Cit. on pp. 15, 27.

VERSTEEG, H.; MALALASEKERA, W. An Introduction to Computational Fluid Dy-
namics: The Finite Volume Method. Pearson Education Limited, 2007. ISBN
9780131274983. Available from: <https://books.google.com.br/books?id=
RvBZ-UMpGzIC>. Cit. on pp. 27, 52, 56.

WOLFDYNAMICS. OpenFOAM training material. 2020. Cit. on p. 55.

https://www.ll.mit.edu/sites/default/files/other/doc/2023-02/TVO_Technology_Highlight_41_Toroidal_Propeller.pdf
https://www.ll.mit.edu/sites/default/files/other/doc/2023-02/TVO_Technology_Highlight_41_Toroidal_Propeller.pdf
https://doi.org/10.1115/1.4048081
https://doi.org/10.1016/j.jfluidstructs.2021.103279
https://sharrowmarine.com/performance-reports/2022/12/30/36-twin-vee-with-twin-yamaha-300-hp
https://sharrowmarine.com/performance-reports/2022/12/30/36-twin-vee-with-twin-yamaha-300-hp
https://books.google.com.br/books?id=RvBZ-UMpGzIC
https://books.google.com.br/books?id=RvBZ-UMpGzIC

Appendix

75

Appendix A – Code

A.1 Profile Class

Code A.1 – Profile Class
1 import numpy as np
2 from source.tools import geo_oper as geo
3 from matplotlib import pyplot as plt
4
5
6 class Profile:
7 def __init__(self , profile):
8
9 self.chord = 1 # >> [m] ----------------------- chord

length
10 self.AoA = 0 # >> [rad] ----------------------- attack

angle
11 self.AoT = 0 # >> [rad] ----------------------- twist angle
12 self.AoC = 0 # >> [rad] ----------------------- camber

angle
13 self.origin = np.array ([0. ,0. ,0.]) # >> [m] --- origin of

the profile
14 # setting the profile coordinates
15 self.profile = self._get_profile(profile)
16 # translating profile to center the aerodynamic center
17 self.profile [:,0] -= 0.25
18 self.set_attack_angle(-np.pi/2)
19
20 def _get_profile(self , profile):
21 if type(profile) is str:
22 coord_2d = np.loadtxt(profile , unpack=True)
23 else:
24 coord_2d = profile
25 coord_3d = np.zeros((len(coord_2d [0]), 3))
26 coord_3d [:,0] = coord_2d [0]
27 coord_3d [:,1] = coord_2d [1]
28 return coord_3d
29
30 def set_attack_angle(self , AoA) -> None:
31 self.AoA = AoA
32 self.profile -= self.origin
33 self.profile = geo.rotate(self.profile , self.AoA , 2)
34 self.profile += self.origin
35
36 def set_twist_angle(self , AoT) -> None:
37 self.AoT = AoT
38 self.profile -= self.origin

76

39 self.profile = geo.rotate(self.profile , self.AoT , 1)
40 self.profile += self.origin
41
42 def set_camber_angle(self , AoC) -> None:
43 self.AoC = AoC
44 self.profile -= self.origin
45 self.profile = geo.rotate(self.profile , self.AoC , 0)
46 self.profile += self.origin
47
48 def set_chord(self , chord) -> None:
49 self.chord = chord
50 self.profile -= self.origin
51 self.profile *= self.chord
52 self.profile += self.origin
53
54 def translate(self , origin) -> None:
55 self.origin [:] += np.array(origin)[:]
56 self.profile += self.origin
57
58 def set_profile(self , props , degrees=False) -> None:
59 if degrees:
60 props["AoA"] = np.radians(props["AoA"])
61 props["AoT"] = np.radians(props["AoT"])
62 props["AoC"] = np.radians(props["AoC"])
63
64 self.set_attack_angle(props["AoA"])
65 self.set_twist_angle(props["AoT"])
66 self.set_camber_angle(props["AoC"])
67 self.set_chord(props["chord"])
68 self.translate(props["origin"])
69
70 def scale(self , scale) -> None:
71 try:
72 len(scale)
73 except TypeError:
74 scale = np.array ([scale , scale , scale])
75 self.profile -= self.origin
76
77 self.profile [:,0] *= scale [0]
78 self.profile [:,1] *= scale [1]
79 self.profile [:,2] *= scale [2]
80
81 self.profile += self.origin
82
83 if __name__ == "__main__":
84 naca_prof = np.loadtxt("./ profiles/naca0015.dat", unpack=True)
85
86 airfoil = Profile(naca_prof)
87 props = {"AoA":5, "AoT":0, "AoC":0, "chord":1,

"origin":[0,0,0]}
88 airfoil.set_profile(props , degrees=True)
89

77

90 plt.plot(airfoil.profile [:,0], airfoil.profile [:,1])
91 plt.axis(’equal’)
92 plt.savefig("./test.png")

A.2 XFOIL Automation Module

Code A.2 – XFOIL Automatino
1 import os
2 import time
3 import subprocess
4
5 def init() -> None:
6 """ _summary_ Initialize the Xfoil environment """
7 # change this for the propper command in your system
8 # xQuartz is the display in the environment
9 os.system(’open -a XQuartz ’)
10 # this is the display port
11 os.environ["DISPLAY"] = ’127.0.0.1:0.0 ’
12
13
14 def clean_all(profile:str , Re:float) -> None:
15 """ _summary_ Clean all files generated by Xfoil
16
17 Args:
18 profile (str): NACA profile code
19 Re (float): Reynolds number
20 """
21 if not os.path.exists("./xfoil"): os.mkdir("./xfoil")
22 else:
23 os.system(f"rm -r ./xfoil/dump.txt")
24 os.system(f"rm -r ./xfoil/input.sh")
25 os.system(f"rm -r ./xfoil/{ profile}_{Re:.0f}.txt")
26
27 def write_sh(profile:str , alpha_i:float , alpha_f:float ,

alpha_step:float ,
28 Re:float , n_iter =1000) -> None:
29 """ _summary_ Write the input.sh file for Xfoil
30
31 Args:
32 profile (str): NACA profile code
33 alpha_i (float): initial angle of attack
34 alpha_f (float): final angle of attack
35 alpha_step (float): angle of attack step
36 Re (float): Reynolds number
37 n_iter (int , optional): Number of maximum iterations.

Defaults to 0.
38
39 Returns:
40 None

78

41 """
42
43 clean_all(profile , Re)
44
45 ### Change absolute path to the current directory ###
46
47 path = "/Users/felipeandrade/github/UnBEM"
48 profile_path = "profiles/intermediary_profiles"
49
50 with open(f"./xfoil/input.sh", ’w’) as f:
51 try:
52 int(profile)
53 f.write(f"naca {profile}")
54 except TypeError:
55 f.write(f"load ./{ profile_path }/{ profile }.dat\n")
56 f.write(f"{profile }\n")
57 f.write(’PPAR\n’)
58 f.write("N 360\n\n\n")
59 f.write("PANE\n")
60 f.write(’OPER\n’)
61 f.write(f’Visc {Re}\n’)
62 f.write(f’PACC\n’)
63 f.write(f’{path}/xfoil/{ profile}_{Re:.2e}.txt\n’)
64 f.write(f’{path}/xfoil/dump.txt\n’)
65 if n_iter != 0: f.write(f’ITER {n_iter }\n’)
66 f.write(f’ASeq {alpha_i} {alpha_f} {alpha_step }\n’)
67 f.write(’\n\n’)
68 f.write(’quit\n’)
69
70
71 def xfoil(profile: str , alpha_i: float , alpha_f: float ,

alpha_step: float ,
72 Re: float , n_iter: int = 0) -> None:
73 """
74 Runs Xfoil with the given parameters.
75
76 Args:
77 profile (str): The name of the airfoil profile file to be

used by Xfoil.
78 alpha_i (float): The initial angle of attack in degrees.
79 alpha_f (float): The final angle of attack in degrees.
80 alpha_step (float): The step size between consecutive

angle of attack
81 values in degrees.
82 Re (float): The Reynolds number.
83 n_iter (int , optional): The number of iterations to be

performed by
84 Xfoil. Defaults to 0.
85
86 Returns:
87 None
88

79

89 Example usage:
90 >>> xfoil ("0012" , 0, 10, 1, 100000)
91 """
92 write_sh(profile , alpha_i , alpha_f , alpha_step , Re, n_iter)
93
94 ### path to xfoil ###
95
96 path_to_xfoil = "../../ Xfoil/bin/xfoil"
97
98 subprocess.call(f"{path_to_xfoil} < ./xfoil/input.sh",

shell=True)
99 time.sleep (2)
100
101 if __name__ == "__main__":
102 xfoil("4415", 0, 20, .05, 5e5, 2000)

A.3 UnBEM Implementation

Code A.3 – UnBEM Implementation in Python
1 import numpy as np
2 import os
3
4 def algorithm_1(TSR:float , radii:np.ndarray , toroidal=False):
5 """ _summary_ Calculates the indcution angles of given rotor

and flow
6 conditions
7
8 Args:
9 omega (float): Angular velocity (rad/s)
10 V_0 (float): Inflow velocity (m/s)
11 R (float): Rotor radius (m)
12 r_hub (float): Hub radius (m)
13 N_sec (int): Number of sections (ad.)
14
15 Returns:
16 tuple: axial induction angle , tangentcial induction angle ,

inflow angle
17
18 """
19 # divides the rotor radius into sections in a straight line
20 R = radii[-1]
21 N = len(radii)
22 # admensional radial rotor speed
23 lambda_r = np.zeros(N)
24 # lambda_r = lambdas * radii/R
25 a = np.zeros(N)
26 at = np.zeros(N)
27 phi = np.zeros(N)
28

80

29 for i in range(N):
30 if radii[i] == 0.0: radii[i] = 1e-05
31 lambda_r = TSR * radii / R
32 Lambda = np.sqrt (1+(lambda_r[i]* lambda_r[i]))
33
34 theta_plus = (1/3) * np.arccos (1/ Lambda)
35 theta_minus = (1/3) * np.arccos (-1/ Lambda)
36
37 a[i] = 0.5 * (1 - Lambda * (np.cos(theta_plus) -

np.cos(theta_minus)))
38 at[i] = (1-(3*a[i]))/((4*a[i]) -1)
39
40 phi[i] = np.arctan ((1-a[i])/((1+at[i])*lambda_r[i]))
41
42 return {"a":a, "at":at, "phi":phi}
43
44 def get_optimal(file:str):
45 """Get optimal Ao, CLo , CDo values from xfoil polar data
46
47 Args:
48 file (str): xfoil polar data file path
49
50 Returns:
51 dict: Ao: optimal alpha ,
52 CL: optimal lift coefficient ,
53 CD: optimal drag coefficient ,
54 """
55
56 polar_data = np.loadtxt(file , skiprows =12)
57 alpha = polar_data [:,0]
58 cl = polar_data [:,1]
59 cd = polar_data [:,2]
60 max_index = np.argmax(cl/cd)
61
62
63 return {"Ao":np.radians(alpha[max_index]),
64 "CLo":cl[max_index],
65 "CDo":cd[max_index]}
66
67 def _tip_correction(Nb, r, R, phi , R_hub =0.0):
68 """ Calculates a correction for the tip according to prandtls

law
69
70 Args:
71 Nb (int): number of blades
72 r (float): radius of the section (m)
73 R (float): radius of the rotor (m)
74 phi (float): inflow angle (rad/s)
75
76 Returns:
77 float: tip correction coefficient
78 """

81

79 ff = 0.5*Nb*(1-(r/R))
80 ff /= (r/R)*np.sin(phi)
81 F_tip = (2/np.pi)*np.arccos(np.exp(-ff))
82
83 return F_tip
84
85 def _hub_correction(Nb, r, R, phi , R_hub =0.0):
86 """ Calculates a correction for the hub according to prandtls

law
87
88 Args:
89 Nb (int): number of blades
90 r (float): radius of the section (m)
91 R (float): radius of the rotor (m)
92 phi (float): inflow angle (rad/s)
93
94 Returns:
95 float: hub correction coefficient
96 """
97 fh = 0.5 * Nb * (r - R_hub)
98 fh /= (r * np.sin(phi))
99 F_hub = (2/np.pi)*np.arccos(np.exp(-fh))
100
101 return F_hub
102
103 def algorithm_2(a:float , phi:float , radii , Nb:int ,
104 Ao, CLo , CDo , R_h=0.0, tip_corr=True ,

hub_corr=True ,
105 toroidal=False):
106 """ _summary_
107
108 Args:
109 a (float): axial induction factor
110 phi (float): inflow anfgle (rad/s)
111 radii (np.ndarray <float >): radii coords of the rotor (m)
112 Nb (int): number of blades
113 tip_corr (bool , optional): Turn on or off the Prandtl ’s

tip correction
114 function. Defaults to True.
115
116 Returns:
117 dict: theta: induction angle (rad/s), chord: chord length

(m)
118 """
119
120 N = len(radii)
121 R = radii[-1]
122 R_h = 0.00
123 theta = np.zeros(N)
124 c = np.zeros(N)
125
126 for i in range(N):

82

127 theta[i] = phi[i] - Ao
128
129 Cn = CLo * np.cos(phi[i]) + CDo * np.sin(phi[i])
130
131 c[i] = ((8*np.pi)/Nb) * (a[i]/(1-a[i])) * \
132 ((np.sin(phi[i])*np.sin(phi[i]))/Cn) * radii[i]
133
134 if tip_corr == 1:
135 t_coor = _tip_correction(Nb, radii[i], R, phi[i], R_h)
136 if np.isnan(t_coor) or t_coor == 0: t_coor = 2e-2
137 c[i] *= t_coor
138
139
140 if hub_corr == 1:
141 h_coor = _hub_correction(Nb, radii[i], R, phi[i], R_h)
142 if np.isnan(h_coor): h_coor = 1e-5
143 c[i] *= h_coor
144
145 # print(c[i])
146 for i, t in enumerate(theta):
147 if t < 0.0: theta[i] = 0.0
148
149
150 return {"theta":theta , "chord": c}
151
152
153 def save_properties(V_0 , OMEGA , R, NSEC , N_B , NACA , REYNOLDS ,

RADII , optm ,
154 i_hub , mean_chord , mean_a , mean_at ,

mean_theta , reynolds_new ,
155 save_dir="./", file_name="BEM_results.txt"):
156
157 """ _summary_ Saves the properties of the BEM algorithm in a

.txt file """
158
159 with open(f"{save_dir }/{ file_name}", ’w’) as f:
160 f.write("---\n")
161 f.write("UNBEM ROTOR - LEA - ENM - FT - UnB\n")
162 f.write("---\n")
163 f.write("Autor: Felipe Andrade\n")
164 f.write("Based on: Antonio Brasil Jr.\n")
165 f.write("===\n")
166 f.write("BEM algorithm\n")
167 f.write("===\n")
168 f.write("BEM INPUTS\n")
169 f.write("---\n")
170 f.write(f"V_0: {V_0:.2f} m/s\n")
171 f.write(f"OMEGA: {OMEGA :.3f} rad/s,

{(OMEGA *60) /(2*np.pi):.3f} rpm\n")
172 f.write(f"RADII: (R_0) 0.0 m, (R) {R:.3f} m, (NSEC) {NSEC}

\n")
173 f.write(f"Diameter: {2*R:.3f} m\n")

83

174 f.write(f"lambda (TSR): {(OMEGA*R)/V_0:.1f}\n")
175 f.write(f"N_B: {N_B}\n")
176 f.write("---\n")
177 f.write(f"NACA {NACA} polar data for Re:

{reynolds_new :.2e}\n")
178 f.write("---\n")
179 f.write(f"CLo: {optm[’CLo ’]:.3f}\n")
180 f.write(f"CDo: {optm[’CDo ’]:.3f}\n")
181 f.write(f"alpha_o: {optm[’Ao ’]:.3f} rad ,

{np.degrees(optm[’Ao ’])} degrees\n")
182 f.write("---\n")
183 f.write("BEM RESULTS\n")
184 f.write("---\n")
185 f.write(f"First profile outside the hub - index:

{i_hub}\n")
186 f.write(f"First profile outside the hub - radius:

{RADII[i_hub]:.3f}m\n")
187 f.write(f"mean chord (c): {mean_chord :.3e} m\n")
188 f.write(f"mean axial induction (a): {mean_a :.3f}\n")
189 f.write(f"mean tang. induction (a’): {mean_at :.3f}\n")
190 f.write(f"half radius (R/2): {(R/2):.3e} m\n")
191 f.write(f"mean theta: {np.degrees(mean_theta):.3f}

degrees\n")
192 f.write(f"---\n")
193 f.write(f"Reynolds: {reynolds_new :.2e}\n")
194 f.write("===")
195
196 class Bem:
197 """
198 Blade Element Momentum (BEM) algorithm implementation for wind

turbine rotor design.
199
200 Parameters
201 ----------
202 TSR : float
203 Tip Speed Ratio (TSR) of the rotor.
204 V0 : float
205 Wind speed at hub height.
206 RADII : array_like
207 Array of radial positions of each section of the rotor.
208 N_B : int
209 Number of blades of the rotor.
210 NACA : int
211 NACA airfoil code of the blade sections.
212 REYNOLDS : float
213 Reynolds number of the flow.
214 TIP_CORR : bool , optional
215 Flag to enable tip loss correction. Default is 0 (no

correction).
216 xfoil_path : str , optional
217 Path to the directory where the airfoil polar data files

are located. Default is "./ xfoil".

84

218 I_HUB : int , optional
219 Index of the first section outside the hub. Default is 0.
220
221 Attributes
222 ----------
223 a : ndarray
224 Axial induction factor of each section of the rotor.
225 at : ndarray
226 Tangential induction factor of each section of the rotor.
227 phi : ndarray
228 Flow angle at each section of the rotor.
229 theta : ndarray
230 Twist angle of each section of the rotor.
231 chord : ndarray
232 Chord length of each section of the rotor.
233 Ao : float
234 Angle of attack at which the lift coefficient is maximum.
235 CLo : float
236 Lift coefficient at zero angle of attack.
237 CDo : float
238 Drag coefficient at zero angle of attack.
239 I_HUB : int
240 Index of the first section outside the hub.
241 mean_a : float
242 Mean axial induction factor of the rotor.
243 mean_at : float
244 Mean tangential induction factor of the rotor.
245 mean_chord : float
246 Mean chord length of the rotor.
247 mean_theta : float
248 Mean twist angle of the rotor.
249
250 Methods
251 -------
252 run()
253 Runs the BEM algorithm.
254 calc_mean_props ()
255 Calculates the mean properties of the rotor.
256 write(save_dir ="./", file_name =" BEM_results.txt")
257 Writes the results of the BEM algorithm to a text file.
258 write_latex_tables(save_dir ="./", file_name =" BEM_tables.tex")
259 Writes the results of the BEM algorithm to a LaTeX table.
260 """
261
262 def __init__(self , TSR , V0, RADII , N_B , NACA , REYNOLDS ,
263 TIP_CORR=0, xfoil_path=None , I_HUB=0,

toroidal=False):
264
265 if xfoil_path is None:
266 xfoil_path = "./xfoil"
267 if not os.path.exists(xfoil_path):
268 os.mkdir(xfoil_path)

85

269
270 self.__xfoil_path = xfoil_path
271 self.toroidal = toroidal
272 self.__TSR = TSR
273 self.__RHUB = RADII[I_HUB]
274 self.__R = RADII[-1]
275 self.__V0 = V0
276 self.__OMEGA = TSR*V0/RADII[-1]
277 self.__RADII = RADII
278 self.__NSEC = len(RADII)
279 self.__N_B = N_B
280 self.__NACA = NACA
281 self.__REYNOLDS = REYNOLDS
282 self.__TIP_CORR = TIP_CORR
283
284 self.a = np.zeros(self.__NSEC)
285 self.at = np.zeros(self.__NSEC)
286 self.phi = np.zeros(self.__NSEC)
287 self.theta = np.zeros(self.__NSEC)
288 self.chord = np.zeros(self.__NSEC)
289 self.Ao = 0.0
290 self.CLo = 0.0
291 self.CDo = 0.0
292
293 self.I_HUB = I_HUB
294
295 self.mean_a = 0.0
296 self.mean_at = 0.0
297 self.mean_chord = 0.0
298 self.mean_theta = 0.0
299
300 self.run()
301 self.calc_mean_props ()
302 np.savetxt("phi.txt",
303 np.degrees(np.transpose(np.array([self.phi ,
304 np.ones(self.__NSEC)*self.Ao,
305 self.theta]))))
306
307 def run(self):
308 """
309 Runs the BEM algorithm.
310 """
311 alg_1 = algorithm_1(self.__TSR ,self.__RADII ,

toroidal=self.toroidal)
312 self.a = alg_1["a"]
313 self.at = alg_1["at"]
314 self.phi = alg_1["phi"]
315 optm = get_optimal(self.__xfoil_path+
316 f"/{self.__NACA}_{self.__REYNOLDS :.2e}.txt")
317 self.Ao = optm["Ao"]
318 self.CLo = optm["CLo"]
319 self.CDo = optm["CDo"]

86

320 args = [alg_1["a"], alg_1["phi"], self.__RADII , self.__N_B ,
321 optm["Ao"], optm["CLo"], optm["CDo"]]
322 alg_2 = algorithm_2 (*args , tip_corr=self.__TIP_CORR ,
323 toroidal=self.toroidal)
324 self.theta = alg_2["theta"]
325 self.chord = alg_2["chord"]
326
327 def calc_mean_props(self):
328 """
329 Calculates the mean properties of the rotor.
330 """
331 self.mean_a = np.mean(self.a[self.I_HUB :])
332 self.mean_at = np.mean(self.at[self.I_HUB :])
333 self.mean_chord = np.mean(self.chord[self.I_HUB :])
334 self.mean_theta = np.mean(self.theta[self.I_HUB :])
335
336 def write(self , save_dir=None , file_name="BEM_results.txt"):
337 """
338 Writes the results of the BEM algorithm to a text file.
339
340 Parameters
341 ----------
342 save_dir : str , optional
343 Directory where the file will be saved. Default is

"./".
344 file_name : str , optional
345 Name of the file. Default is "BEM_results.txt".
346
347 Returns
348 -------
349 int
350 Returns 0 if the file was successfully written.
351 """
352 if save_dir is None:
353 save_dir = "./ results"
354 if not os.path.exists(save_dir):
355 os.mkdir(save_dir)
356
357 with open(f"{save_dir }/{ file_name}", ’w’) as f:
358 f.write("---\n")
359 f.write("UNBEM ROTOR - LEA - ENM - FT - UnB\n")
360 f.write("---\n")
361 f.write("Autor: Felipe Andrade\n")
362 f.write("Based on: Antonio Brasil Jr.\n")
363 f.write("===\n")
364 f.write("BEM algorithm\n")
365 f.write("===\n")
366 f.write("BEM INPUTS\n")
367 f.write("---\n")
368 f.write(f"V_0: {self.__V0 :.2f} m/s\n")
369 f.write(f"OMEGA: {self.__OMEGA :.3f} rad/s,

{(self.__OMEGA *60) /(2*np.pi):.3f} rpm\n")

87

370 f.write(f"RADII: (R_0) {self.__RHUB :.3f} m,"
371 +f" (R) {self.__R:.3f} m, (NSEC) {self.__NSEC}

\n")
372 f.write(f"Diameter (D): {2* self.__R:.3f} m\n")
373 f.write(f"lambda (TSR): {self.__TSR :.1f}\n")
374 f.write(f"N_B: {self.__N_B}\n")
375 f.write("---\n")
376 f.write(f"NACA {self.__NACA} polar data for Re:

{self.__REYNOLDS :.2e}\n")
377 f.write("---\n")
378 f.write(f"CLo: {self.CLo:.3f}\n")
379 f.write(f"CDo: {self.CDo:.3f}\n")
380 f.write(f"alpha_o: {self.Ao:.3f} rad ,

{np.degrees(self.Ao)} degrees\n")
381 f.write("---\n")
382 f.write("BEM RESULTS\n")
383 f.write("---\n")
384 if self.I_HUB != 0:
385 f.write(f"First profile outside the hub - index:

{self.I_HUB}\n")
386 f.write(f"First profile outside the hub - radius:

{self.I_HUB :.3f}m\n")
387 f.write(f"mean chord (c): {self.mean_chord :.3e} m\n")
388 f.write(f"mean axial induction (a):

{self.mean_a :.3f}\n")
389 f.write(f"mean tang. induction (a’):

{self.mean_at :.3f}\n")
390 f.write(f"half radius (R/2): {(self.__R /2):.3e} m\n")
391 f.write(f"mean theta:

{np.degrees(self.mean_theta):.3f} degrees\n")
392 f.write(f"---\n")
393 f.write(f"Reynolds: {self.__REYNOLDS :.2e}\n")
394 f.write("===")
395
396 return 0
397
398 def write_latex_tables(self , save_dir=None ,

file_name="BEM_tables.tex"):
399 """
400 Writes the results of the BEM algorithm to a LaTeX table.
401
402 Parameters
403 ----------
404 save_dir : str , optional
405 Directory where the file will be saved. Default is

"./".
406 file_name : str , optional
407 Name of the file. Default is "BEM_tables.tex".
408
409 Returns
410 -------
411 int

88

412 Returns 0 if the file was successfully written.
413 """
414 if save_dir is None:
415 save_dir = "./ results"
416 if not os.path.exists(save_dir):
417 os.mkdir(save_dir)
418 with open(f"{save_dir }/{ file_name}", ’w’) as f:
419 # Write inputs table
420 f.write("\\begin{table}[ht]\n")
421 f.write("\\ centering\n")
422 f.write("\\ caption{BEM inputs }\n")
423 f.write("\\begin{tabular }{|l|l|}\n")
424 f.write("\\hline\n")
425 f.write("Parameter & Value \\\\\n")
426 f.write("\\hline\n")
427 f.write(f"TSR & {self.__TSR :.2f} \\\\\n")
428 f.write(f"Inflow velocity (m/s) & {self.__V0 :.2f}

\\\\\n")
429 f.write(f"Rotor radius (m) & {self.__R:.2f} \\\\\n")
430 f.write(f"Number of sections & {self.__NSEC} \\\\\n")
431 f.write(f"Number of blades & {self.__N_B} \\\\\n")
432 # f.write(f"NACA airfoil & {self.__NACA} \\\\\n")
433 # f.write(f"Reynolds number & {self.__REYNOLDS :.2e}

\\\\\n")
434 f.write("\\hline\n")
435 f.write("\\end{tabular }\n")
436 f.write("\\end{table}\n\n")
437
438 # Write outputs table
439 f.write("\\begin{table}[ht]\n")
440 f.write("\\ centering\n")
441 f.write("\\ caption{BEM outputs }\n")
442 f.write("\\begin{tabular }{|l|l|}\n")
443 f.write("\\hline\n")
444 f.write("Parameter & Value \\\\\n")
445 f.write("\\hline\n")
446 f.write(r"Mean axial induction $\\bar{a}$"
447 +f" & {self.mean_a :.3f} \\\\\n")
448 f.write(r"Mean tangential induction $\bar{a^\ prime}$"
449 +f" & {self.mean_at :.3f} \\\\\n")
450 f.write(r"Mean chord length \bar{c} (m)"
451 +f" & {self.mean_chord :.3e} \\\\\n")
452 f.write(r"Mean induction angle $\bar{\theta}$

(degrees)"
453 +f" & {np.degrees(self.mean_theta):.3f}

\\\\\n")
454 f.write("\\hline\n")
455 f.write("\\end{tabular }\n")
456 f.write("\\end{table}\n")
457
458 return 0
459

89

460
461 if __name__ == "__main__":
462 TSR = 2.8
463 V0 = 8.0
464 RADII = np.linspace (0.0, 1.1, 100)
465 N_B = 4
466 NACA = "0015"
467 REYNOLDS = 3.7596e+06
468 BEM = Bem(TSR , V0, RADII , N_B , NACA , REYNOLDS)
469 BEM.write()
470 BEM.write_latex_tables ()

90

Appendix B – OpenFOAM Files

B.1 Numerical Schemes

Code B.1 – fvSchemes
1 /* --------------------------------*- C++

-*----------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version: 11
6 \\/ M anipulation |
7 *---*/
8 FoamFile
9 {
10 format ascii;
11 class dictionary;
12 location "system";
13 object fvSchemes;
14 }
15 // *

* * * * * //
16
17 ddtSchemes
18 {
19 default steadyState;
20 }
21
22 gradSchemes
23 {
24 /* default Gauss linear; */
25 default cellMDLimited Gauss linear 0.5;
26 // limited cellLimited Gauss linear 0.5;
27 limited cellLimited Gauss linear 1.0;
28 grad(U) $limited;
29 grad(k) $limited;
30 grad(omega) $limited;
31 grad(epsilon) $limited;
32 }
33
34 divSchemes
35 {
36 default none;
37 div(phi ,U) Gauss linearUpwind grad(U);
38 // div(phi ,U) Gauss upwind;
39 div(phi ,omega) Gauss upwind;
40 div(phi ,k) Gauss upwind;

91

41 div(phi ,epsilon) Gauss upwind;
42 div((nuEff*dev2(T(grad(U))))) Gauss linear;
43 }
44
45 laplacianSchemes
46 {
47 default Gauss linear limited corrected 0.333;
48 // default Gauss linear limited corrected 0.777;
49 }
50
51 interpolationSchemes
52 {
53 default linear;
54 }
55
56 snGradSchemes
57 {
58 default limited corrected 0.333;
59 // default limited corrected 0.777;
60 }
61
62 wallDist
63 {
64 method meshWave;
65 }
66
67
68 //

//

B.2 Numerical Solution Setup

Code B.2 – fvSolutions
1 /* --------------------------------*- C++

-*----------------------------------*\
2 ========= |
3 \\ / F ield | OpenFOAM: The Open Source CFD Toolbox
4 \\ / O peration | Website: https :// openfoam.org
5 \\ / A nd | Version: 11
6 \\/ M anipulation |
7 *---*/
8 FoamFile
9 {
10 format ascii;
11 class dictionary;
12 object fvSolution;
13 }

92

14 // *
* * * * * //

15
16 solvers
17 {
18 p
19 {
20 solver PBiCGStab;
21 // smoother DICGaussSeidel;
22 preconditioner DIC;
23 tolerance 1e-6;
24 relTol 0.01;
25 cacheAgglomeration no;
26 minIter 15;
27 maxIter 150;
28 }
29
30 pFinal
31 {
32 solver GAMG;
33 tolerance 1e-06;
34 relTol 0.0;
35 smoother GaussSeidel;
36 nPreSweeps 0;
37 nPostSweeps 2;
38 cacheAgglomeration on;
39 agglomerator faceAreaPair;
40 nCellsInCoarsestLevel 1000;
41 mergeLevels 1;
42 }
43
44 // pFinal
45 // {
46 // $p;
47 // nPreSweeps 0;
48 // nPostSweeps 2;
49 // cacheAgglomeration on;
50 // agglomerator faceAreaPair;
51 // nCellsInCoarsestLevel 1000;
52 // mergeLevels 1;
53 // relTol 0.0;
54 // }
55
56 "pcorr.*"
57 {
58 $p;
59 tolerance 1e-2;
60 relTol 0;
61 }
62
63 MeshPhi
64 {

93

65 solver smoothSolver;
66 smoother symGaussSeidel;
67 tolerance 1e-2;
68 relTol 0.0;
69 }
70
71 "(U|k|epsilon|omega)"
72 {
73 solver PBiCGStab;
74 preconditioner DILU;
75 minIter 4;
76 tolerance 1e-8;
77 relTol 0.0;
78 }
79
80 "(U|k|epsilon|omega)Final"
81 {
82 $U;
83 relTol 0;
84 }
85 }
86
87 SIMPLE
88 {
89 nNonOrthogonalCorrectors 2;
90 consistent yes;
91 }
92
93 potentialFlow
94 {
95 nNonOrthogonalCorrectors 10;
96 }
97
98 PIMPLE
99 {
100 momentumPredictor on;
101 correctPhi yes;
102 correctMeshPhi yes;
103 nOuterCorrectors 1;
104 nCorrectors 3;
105 nNonOrthogonalCorrectors 1;
106
107 residualControl
108 {
109 p 2.5e-6;
110 U 1e-6;
111 k 4e-6;
112 epsilon 1e-6;
113 omega 2e-6;
114 }
115 }
116

94

117 relaxationFactors
118 {
119 fields
120 {
121 p 0.3;
122 }
123 equations
124 {
125 U 0.7;
126 k 0.7;
127 omega 0.7;
128 epsilon 0.7;
129 }
130 }
131
132 cache
133 {
134 grad(U);
135 }
136
137 //

//

	Title page
	Approval
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Climate Crisis
	Wind Energy
	Wake Aerodynamics
	Wing Tip Vortices
	Trailing Vortices

	Toroidal Geometry
	Objectives

	Theory
	Blade Element Momentum Theory BEMT
	Modeling Equations
	Turbulence Model
	RANS Model
	K-Omega SST Model

	Simulation Methods
	MRF Formulation

	Geometry Generation
	Geometry
	Engineering Parameters
	Blade Curve
	Implementation of BEM
	XFOIL
	BEM Method

	Geometry Validation
	Conclusions

	Rotor I
	First Part of the Blade
	Second Part of the Blade
	Generation of the Remaining Blades

	Rotor II and III

	Numerical
	Introduction
	Geometry Description
	Mesh
	Mesh I
	Mesh II Properties
	Mesh III

	Boundary Conditions
	Numerical Schemes
	Solver and Algorithm
	Numerical Procedure

	Results
	Torque and Power Coefficient Curves
	Rotor Analysis
	Rotor I
	Rotor II
	Rotor III

	Wake Visualization

	Conclusions
	Next Studies
	References
	Appendix
	Code
	Profile Class
	XFOIL Automation
	UnBEM Implementation

	OpenFOAM Files
	Numerical Schemes
	Numerical Solution Setup

