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RESUMO

A distribuição de desvanecimento composto α-F com erros de apontamento é investigada neste estudo.
Novas expressões para a função de densidade de probabilidade e função de distribuição cumulativa do
envelope/relação sinal-ruído (SNR) instantânea, momentos de ordem superior e a função geradora de mo-
mentos da SNR instantânea também são derivadas. Com base nas estatísticas mencionadas anteriormente,
expressões para a probabilidade de interrupção, probabilidade de erro de símbolo e capacidade ergódica
do canal são obtidas. Uma análise assintótica também é fornecida. Além disso, uma aplicação do modelo
α-F com erros de apontamento em um sistema sem fio emergente, chamado de superfícies inteligentes re-
configuráveis (RIS) é demonstrado. Várias curvas, corroboradas por simulações realizadas com o método
de Monte-Carlo, são apresentadas para diferentes valores de parâmetros que caracterizam o canal e o erro
de apontamento.

Palavras-chave: distribuição de desvanecimento composto α-F , RIS, métricas de desempenho,
erros de apontamento.
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ABSTRACT

The α-F composite fading distribution with pointing errors is investigated in this study. New expressions
for the probability density function and cumulative distribution function of the envelope/instantaneous
signal-to-noise ratio (SNR), higher-order moments, and moment generating function of the instantaneous
SNR are derived. Based on the aforementioned statistics, expressions for the outage probability, symbol
error probability, and ergodic channel capacity are obtained. An asymptotic analysis is also provided. Fur-
thermore, an application of the α-F model with pointing errors in a wireless emerging system, namely
reconfigurable intelligent surfaces (RIS), is shown. Several curves, corroborated by Monte-Carlo simula-
tions, are presented for different values that characterize the channel and pointing errors parameters.

Keywords: α-F composite fading distribution, RIS, performance metrics, pointing errors.
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1 INTRODUCTION

This chapter presents the state-of-the-art of the topic in study; the main contributions obtained by us as
well as the organization of this work.

1.1 OVERVIEW

Nowadays, the fifth generation (5G) of mobile communications is characterized as a promising and
essential technology to meet the high demands and requirements of new vertical use cases. In order to
support it, terahertz (THz) band frequencies have attracted the interest of several researchers around the
world, mainly due to the broader available spectrum, higher throughputs, and for supporting a greater
number of simultaneous users [1]. As disadvantages, THz bands present high atmospheric attenuation,
which can be compensated by the system with the use of high-directional antenna arrays. However, this
causes misalignment between the transmitting and receiving antennas, which results in pointing errors [2].
Despite pointing errors being an important factor to be considered in many studies, it should be mentioned
that including them in expressions that can be evaluated the performance of communication systems makes
the analysis more difficult and, therefore, many authors ignore this effect.

Recent works are described in the literature where the misalignment is adopted in different contexts,
such as single-hop [2, 3], dual-hop [4], multiple-input multiple-output [5] and non-orthogonal multiple
access-THz [6] transmission systems, free space optics (FSO) [7] and reconfigurable intelligent surfaces
(RIS) [8], for example. In [9], an analytical framework is presented in order to evaluate the joint effect of
misalignment and hardware imperfections in the presence of multipath fading, modeled by the α-µ distri-
bution, in a THz wireless fiber extenders system. The α-µ distribution is also considered in other important
papers, such as in [3], where a performance analysis of THz systems in random fog conditions with mis-
alignment is performed, and in [8], in which expressions are derived for many statistics and metrics under
RIS-aided THz wireless systems with pointing errors. In [7], an analysis is fulfilled about FSO commu-
nications over Fisher-Snedecor F turbulence channels with pointing errors. In the mentioned analysis,
expressions for the probability density function (PDF) and cumulative distribution function (CDF) of the
instantaneous signal-to-noise ratio (SNR) are derived and employed to obtain novel closed-form expres-
sions for metrics such as outage probability (OP), average bit error probability (BEP) and average ergodic
capacity.

Experimental works concerning THz wireless links are also presented in the literature, such as [10],
[11]. In [10], fitting results are presented of α-µ, Nakagami-m, Rice, and log-normal distributions to the
small-scale fading of THz wireless channel measurements, where the α-µ provided the best adherence.
Additionally, the performance of the ergodic capacity is assessed. In [11], a measurement campaign is
also conducted by the same authors of [10], considering various line-of-sight (LoS) and non-LoS links, in
which α-µ distribution is fitted to experimental THz channel gain measurements. In the above-mentioned
papers, shadowing is not considered. However, as reported in [12], shadowing is an important factor to be
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analyzed in THz systems.

In this work, a study of the α-F fading distribution with pointing errors is performed, in which new
expressions for relevant statistics and metrics are derived. Based on the literature described, there is no
work that addresses the α-F distribution with pointing errors. In our work, the α-F model is considered
since [13]: (i) it is simple, characterized in terms of physical parameters, and generalist, encompassing
other distributions as particular cases; (ii) it characterizes small and large-scale fading, as well as the
non-linearity of the communication channel; (iii) is supported by experimental results and adopted in
many works under different scenarios. It should be mentioned that the advantages offered by the α-F and
pointing errors distributions make the model presented in this work more realistic, with a greater degree of
freedom than other distributions, such as α-F and Fisher-Snedecor.

1.2 CONTRIBUTIONS OF THIS WORK

The main contributions of this work are:

• A study about the α-F with pointing errors is performed, in which new closed-form expressions are
derived for the PDFs and CDFs, higher-order moments, and moment generating function (MGF) of
the instantaneous SNR;

• New expressions are derived for OP, symbol error probability (SEP), and channel capacity;

• Asymptotic expressions are also deduced in order to provide insights into the effect of the channel
and pointing errors parameters on the system performance;

• An application is described of the α-F model with pointing errors in a RIS-assisted wireless emerg-
ing system.

1.3 ORGANIZATION OF THIS WORK

The remaining of the study is organized as follows: Chapter 2 describes the system and channel mod-
els adopted. In Chapter 3, statistics are derived for the α-F composite fading distribution with pointing
errors. For the aforementioned distribution, metrics and asymptotic metrics are presented in Chapters 4
and 5, respectively. Chapter 6 describes a RIS assisted scenario with pointing errors. Chapter 7 shows the
numerical results and discussions. Chapter 8 brings the conclusions of the study.

2



2 SYSTEM AND CHANNEL MODELS

In this chapter, the system and channel models considered in our work are presented.

2.1 SYSTEM MODEL

The received signal y can be written as

y = hlhfhpx+ n, (2.1)

in which x is the transmitted signal, n is the additive white Gaussian noise, hf denotes the composite
fading channel, hp represents the misalignment component, and hl is the path loss, that is constant for a
given weather condition and link distance. For THz systems, hl = hflhal, where hfl models the propagation
gain and hal characterizes the molecular absorption gain. More details about the path-gain coefficient can
be found in [2].

2.2 FADING MODEL

The fading channel is characterized in our study by the α-F composite distribution, that is derived
from the Fisher-Snedecor F model. The α-F characterizes jointly the small and large-scale fading, as well
as the non-linearity of the propagation medium.

The envelope PDF of the α-F composite distribution is given by [13]

fHf(hf) =
αhαµ−1

f
B(µ,m)

(
r̂α

Ψ

)m(
hαf +

r̂α

Ψ

)−(µ+m)

, (2.2)

where Ψ = µ/(m − 1), r̂ = α
√

E[Hα
f ] denotes the α-root mean value, α characterizes the non-linearity

of the propagation medium, µ represents the number of multipath clusters, m is the shadowing parameter
and B(·, ·) is the Beta function [14, Eq. (06.18.02.0001.01)]. From the α-F model, the α-µ and Fisher-
Snedecor F channels can be obtained by making m −→∞ and α = 2, respectively.

2.3 POINTING ERROR MODEL

The pointing error PDF impairment is given by [7, Eq. (7)]

fHp(hp) = z2A−z2

0 hz
2−1

p , 0 ≤ hp ≤ A0, (2.3)
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in whichA0 is the fraction of the collected power and z = ωeq/σ is the ratio between the equivalent beam
radius at the receiver and the pointing error displacement standard deviation [15]. For z −→ ∞, it should
be mentioned that case of the non-pointing error is assumed.

The pointing errors, represented by the parameter z in (2.3), concerns the misalignment that occurs
between the transmitting and the receiving antennas, being caused mainly by physical imperfections in the
transceivers. It is considerable mainly in systems that require high-directivity, such as in THz communica-
tion systems.
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3 THE α-F COMPOSITE FADING DISTRIBUTION WITH
POINTING ERRORS

In this chapter, several statistics for the α-F composite fading model with pointing errors are derived.

3.1 PDF AND CDF OF THE ENVELOPE

Proposition 3.1.1. Let µ, m, r̂α, z, A0, hl, h ∈ R+ and m > 1. The PDF and the CDF of the envelope
H = hlHfHp, for the α-F composite fading model with pointing errors, can be obtained, respectively, as

fH(h) =
z2

hΓ(µ)Γ(m)
G2,1

2,2

[
Ψ

(
h

r̂hlA0

)α
∣∣∣∣∣ 1−m, z2/α+ 1

µ, z2/α

]
(3.1)

and

FH(h) =
z2

αΓ(µ)Γ(m)
G2,2

3,3

[
Ψ

(
h

r̂hlA0

)α ∣∣∣∣ 1−m, 1, z2/α+ 1

µ, z2/α, 0

]
(3.2)

where Γ(·) is the Gamma function [14, Eq. (06.05.02.0001.01)] and G[·] is the Meijer G-function1 [16,
Eq. (9.301)].

Proof. The PDF of H = hlHfHp, denoted by fH(h), can be derived by means of

fH(h) =
1

hl

∫ ∞

0

1

v
fHf

( h

hlv

)
fHp(v)dv. (3.3)

Substituting (2.2) and (2.3) in the expression of fH(h), performing the change of variable t = v−α and
using [16, Eq. (3.194.2)], fH(h) can be written after simplifications as

fH(h) =
αz2

hB(µ,m)(αm+ z2)

(
Aα

0 r̂
α

Ψ

)m(hl

h

)αm

2F1

[
µ+m,m+

z2

α
, m+

z2

α
+ 1; −ξ

]
, (3.4)

in which ξ = (m − 1)r̂αhαl A
α
0 /(µh

α) and 2F1[·, ·, ·; ·] is the Gauss hypergeometric function [16, Eq.
(9.100)]. In sequence, employing [17, Eq. (8.4.49.14)] and [18, Eq. (9.31.5)] and performing with some
algebraic manipulations, (3.1) is obtained.

The CDF of H , FH(h), can be derived integrating (3.1), i.e,

FH(h) =
z2

Γ(µ)Γ(m)

∫ h

0

1

x
G2,1

2,2

[
Ψ

(
x

r̂hlA0

)α
∣∣∣∣∣ 1−m, z2/α+ 1

µ, z2/α

]
dx. (3.5)

1The representations for the Meijer-G, Fox H-function and multivariate Fox H-function in terms of the Mellin-Barnes integrals
are presented in Appendix.
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Expressing the Meijer G-function of (3.5) in terms of the Mellin-Barnes integral, the innermost integral
in the variable x is of the power-type and can be solved. In addition, using Γ(x + 1) = xΓ(x) and the
definition of the Meijer G-function, (3.2) is derived. Hence, the proof is complete.

3.2 PDF AND CDF OF THE INSTANTANEOUS SNR

Proposition 3.2.1. For µ, m, γ̄, z, A0, hl, γ ∈ R+ and m > 1, the PDF of the instantaneous SNR Γ, in
the presence of α-F composite fading with pointing errors, is given by

fΓ(γ) =
z2

2γΓ(µ)Γ(m)
G2,1

2,2

[
Ψ

(
z
√
γ√

γ(z2 + 2)

)α ∣∣∣∣ 1−m, z2/α+ 1

µ, z2/α

]
, (3.6)

in which γ̄ is the average SNR. In turn, the CDF FΓ(γ) is written as

FΓ(γ) =
z2

αΓ(µ)Γ(m)
G2,2

3,3

[
Ψ

(
z
√
γ√

γ(z2 + 2)

)α ∣∣∣∣ 1−m, 1, z2/α+ 1

µ, z2/α, 0

]
. (3.7)

Proof. Making Γ = H2, the PDF of the instantaneous SNR can be obtained by means of

fΓ(γ) =
1

2
√
γ
fH(

√
γ). (3.8)

Using (3.1), (3.6) is easily deduced. Furthermore, FΓ(γ) is derived from (3.2), since F (γ) = FH(
√
h).

The result for FΓ(γ) is presented in (3.7) and complete the proof.

3.3 HIGHER-ORDER MOMENTS OF THE INSTANTANEOUS SNR

Proposition 3.3.1. For µ,m, γ̄, z,A0, hl ∈R+ and k ∈N+, the higher-order moments of the instantaneous
SNR over the α-F composite fading model with pointing errors, is obtained as

E[γk] =
z2Γ(µ+ 2k

α )Γ(m− 2k
α )

(z2 + 2k)Γ(µ)Γ(m)

(√
γ(z2 + 2)

zΨ
1
α

)2k

, (3.9)

which is valid for m > 2k/α.

Proof. The higher-order moments of the instantaneous SNR, E[γk], is calculated as

E[γk] =
∫ ∞

0
γkfΓ(γ)dγ. (3.10)
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Substituting (3.6),

E[γk] =
z2

2Γ(µ)Γ(m)

∫ ∞

0

γk

γ
G2,1

2,2

[
Ψ

(
z
√
γ√

γ(z2 + 2)

)α ∣∣∣∣ 1−m, z2/α+ 1

µ, z2/α

]
dγ. (3.11)

Performing the variable change x = γα/2, using [16, Eq. (7.811.4)] and making some algebraic manipu-
lations, (3.9) is derived, that complete the proof.

3.4 MGF OF THE INSTANTANEOUS SNR

Proposition 3.4.1. Let µ, m, γ̄, z, A0, hl, s ∈ R+ and m > 1. The MGF of the instantaneous SNR over
the α-F composite fading model with pointing errors is given by

MΓ(s) =
z2

2Γ(µ)Γ(m)
H2,2

3,3

[(
zΨ

1
α√

sγ̄(z2 + 2)

)α ∣∣∣∣ (1−m, 1), (1, α2 ), (
z2

α + 1, 1)

(µ, 1), ( z
2

α , 1)

]
, (3.12)

with H[·] denoting the Fox H-function [18, Eq. (1.2)].

Proof. The MGF is defined as

MΓ(s) =

∫ ∞

0
fΓ(γ) exp(−sγ)dγ. (3.13)

Replacing (3.6), using [14, 07.34.26.0008.01], [14, 01.03.26.0004.01] and [19, Eq. (2.8.4)], (3.12) can be
obtained after simplifications. Hence, the proof is complete.

3.5 SPECIAL CASES

The α-F composite distribution with pointing errors generalizes various other models presented in
the literature, by properly selecting the fading parameters α, µ and m with specific values. Table 3.1
summarizes the commom fading channels extracted from the α-F with pointing errors.

Table 3.1: Special cases.

Fading Channels with Pointing Errors Parameters
α-µ α = α, µ = µ, z = z, m −→ ∞

Fisher-Snedecor F α = 2, µ = µ, z = z, m = ms

Nakagami-m α = 2, µ = m, z = z, m −→ ∞
Weibull α = α, µ = 1, z = z, m −→ ∞
Rayleigh α = 2, µ = 1, z = z, m −→ ∞

One-Gaussian α = 2, µ = 0.5, z = z, m −→ ∞
Nakagami-F α = 2, µ = m, z = z, m = ms

Weibull-F α = α, µ = 1, z = z, m = ms

Rayleigh-F α = 2, µ = 1, z = z, m = ms

One-Gaussian-F α = 2, µ = 0.5, z = z, m = ms
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4 PERFORMANCE ANALYSIS

In this chapter, metrics such as OP, BEP, ergodic channel capacity as well the asymptotics ones are
presented.

4.1 METRICS PERFORMANCE

4.1.1 Outage Probability

The OP, Pout, is defined as the point in which the SNR at the output of the receiver falls below a
threshold γth. Mathematically, by using (3.7), Pout = FΓ(γth).

4.1.2 Symbol Error Probability

The average SEP, Psym, can be evaluated as [20, Eq. (7)]

Psym =
θ

2
√
2π

∫ ∞

0

1
√
γ
exp (−γ/2)Fγ

(
γ

ϕ

)
dγ, (4.1)

in which the parameters θ and ϕ depend on the type of modulation.

Substituting (3.7) into (4.1), using [14, 07.34.26.0008.01],[14, 01.03.26.0004.01] and [19, Eq. (2.8.4)],
after simplifications, the SEP is given by

Psym =
θz2

2
√
παΓ(µ)Γ(m)

H2,3
4,3

[
Ψ

(
z
√
2√

ϕγ(z2 + 2)

)α ∣∣∣∣∣ (1−m, 1), (1, 1), (1/2, α2 ), (
z2

α + 1, 1)

(µ, 1), ( z
2

α , 1), (0, 1)

]
.

(4.2)

4.1.3 Channel Capacity

The channel capacity, in bps/Hz, is calculated as

Cerg =
1

ln(2)

∫ ∞

0
fΓ(γ)ln(1 + γ)dγ. (4.3)

Replacing (3.6) in the expression ofCerg and using [14, 01.04.26.0003.01], [14, 07.34.26.0008.01], [14,
01.03.26.0004.01] and [19, Eq. (2.8.4)], the channel capacity can be written as

Cerg =
z2

2 ln(2)Γ(µ)Γ(m)
H4,2

4,4

[
zαΨ

(γ̄(z2 + 2))α/2

∣∣∣∣∣ (1−m, 1), (0, α2 ), (1,
α
2 ), (

z2

α + 1, 1)

(µ, 1), ( z
2

α , 1), (0,
α
2 ), (0,

α
2 )

]
. (4.4)
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4.2 ASYMPTOTIC ANALYSIS

4.2.1 Asymptotic Outage Probability

For γ̄ −→ ∞, the asymptotic OP can be derived by means of (3.7), using [14, 07.34.26.0008.01] and [19,
Theorem 1.11], in which only the dominant term is considered. After simplifications, P∞

out is written as

P∞
out =


z2Ψµ

(z2µ−αµ2)B(µ,m)

(√
γ(z2+2)

z
√
γth

)−αµ

, αµ < z2

Γ(µ− z2

α
)Γ(m+ z2

α
)

Γ(µ)Γ(m)Ψ− z2
α

(√
γ(z2+2)

z
√
γth

)−z2

, αµ > z2
. (4.5)

In high SNRs values, P∞
out ∼ γ̄−Gd , where Gd is the diversity order/gain. From (4.5), it is noted that

Gd = min(αµ/2, z2/2). (4.6)

That is, the diversity order depends on the fading and pointing errors parameters.

4.2.2 Asymptotic Symbol Error Probability

For γ̄ −→ ∞, the asymptotic SEP can be deduced applying [19, Theorem 1.11] in (4.2), as given by

P∞
sym =


θz2Γ(αµ+1

2
)Ψµ

2
√
πµ(z2−αµ)B(µ,m)

(√
γϕ(z2+2)

z
√
2

)−αµ

, αµ < z2

θΓ(µ− z2

α
)Γ(m+ z2

α
)Γ( 1+z2

2
)

2
√
πΓ(µ)Γ(m)Ψ− z2

α

(√
γϕ(z2+2)

z
√
2

)−z2

, αµ > z2
(4.7)

after some algebraic manipulations. In (4.7), if only the dominant term is considered then Gd is equal to
(4.6).

4.2.3 Asymptotic Ergodic Capacity

The asymptotic ergodic capacity at high SNR values is given by [21]

C∞
erg = log2(γ̄) + log2(e)

∂

∂n

E[γn]
γ̄n

∣∣∣∣
n=0

, (4.8)

in which ∂/∂n is the first derivative operator. Replacing (3.9) in (4.8) and proceeding with simplifications,

C∞
erg = log2(γ) + 2 log2(e)

[
ψ(µ)

α
− ψ(m)

α
− 1

z2
+ ln

(√
z2 + 2

z

( 1

Ψ

)1/α)]
, (4.9)

with ψ(x) = Γ′(x)/Γ(x) is the digamma function [16, Eq. (8.36)].
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5 RIS-AIDED WIRELESS SYSTEM OVER α-F FADING
WITH POINTING ERRORS

In this chapter, a RIS-aided system over α-F fading with pointing errors is considered, that is a new
and emerging system. For the mentioned wireless scenario, the system model as well as some metrics in
order to evaluate the performance are presented in this chapter.

5.1 SYSTEM MODEL

A RIS consists of a surface composed of several reflecting elements with the ability to change the
electromagnetic properties of a received wave. RIS can establish a virtual channel between the transmitter
and the receiver in order to assist the communication. Thus, finding applications in scenarios where there
is a strong blockage in a LoS component between receiver and transmitter. RIS is also important in high
frequency scenarios such as THz, where the path loss is very high.

In this application, the RIS is composed of L elements and the received signal is given by

y =
L∑
i=1

hi,1hi,2x+ w, (5.1)

where x is the transmitted signal, w is the zero-mean_σ2-variance additive white Gaussian noise and hi,1
and hi,2 are the fading gains between the source and the i-th RIS element and between the i-th RIS element
and the destination, respectively. Here, we assume that the phases of hi,1 and hi,2 are known and can be
perfectly compensated at the RIS. This assumption of perfect channel state information has been widely
used in the literature to maximize the received SNR [22, 23, 24].

5.2 PDF, CDF AND MGF OF THE INSTANTANEOUS SNR

Proposition 5.2.1. The PDF, CDF and MGF of the instantaneous SNR Γ, under a sum of double α-F
random variates with pointing errors, are given respectively by

fΓ(γ) =
1

2γ

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)



×H
0,0:[4,3]i=1:L

0,1:[5,4]i=1:L


Ξ1

√
γ

...
ΞL

√
γ

∣∣∣∣∣ −ϵ1
∣∣∣∣∣ [(1, 1),Ai,1,Ai,2,Bi,1,Bi,2]i=1:L

[Ci,1, Ci,2,Di,1,Di,2]i=1:L

 , (5.2)
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FΓ(γ) =
1

2

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)



×H
0,1:[4,3]i=1:L

1,2:[5,4]i=1:L


Ξ1

√
γ

...
ΞL

√
γ

∣∣∣∣∣ ϵ3

ϵ1, ϵ2

∣∣∣∣∣ [(1, 1),Ai,1,Ai,2,Bi,1,Bi,2]i=1:L

[Ci,1, Ci,2,Di,1,Di,2]i=1:L

 (5.3)

and

MΓ(s) =
1

2

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)



×H
0,1:[4,3]i=1:L

1,1:[5,4]i=1:L


Ξ1

(−s)
1
2

...
ΞL

(−s)
1
2

∣∣∣∣∣ ϵ3ϵ1
∣∣∣∣∣ [(1, 1),Ai,1,Ai,2,Bi,1,Bi,2]i=1:L

[Ci,1, Ci,2,Di,1,Di,2]i=1:L

 , (5.4)

in which ϵ1 = (1; {1}i=1:L), ϵ2 =
(
0; {1

2}i=1:L

)
, ϵ3 =

(
1; {1

2}i=1:L

)
, Ai,j = (1−mi,j , 1/αi,j), Bi,j =(

z2i,j
αi,j

+ 1, 1/αi,j

)
, Ci,j = (µi,j , 1/αi,j), Di,j =

(
z2i,j
αi,j

, 1/αi,j

)
and

Ξi =
2∏

j=1

Ψ
1/αi,j

i,j√
γ̄i,j(z2i,j + 2)

. (5.5)

Proof. Let X = H1H2, where fHj (t), with j = 1, 2, is given by (3.1). The Mellin transform of fHj (t),
denoted by M[fHj (t)], can derived using [18, Eq. (2.9)] and making the variable change y = tαj . After
simplifications,

M[fHj (t)] =
z2j

αjΓ(µj)Γ(mj)

[
Ψj(

r̂jhljA0j

)αj

] (1−s)
αj

×
Γ
(
µj +

(s−1)
αj

)
Γ

(
z2j
αj

+ (s−1)
αj

)
Γ
(
1− (1−mj)− (s−1)

αj

)
Γ

(
z2j
αj

+ 1 + (s−1)
αj

) , j = 1, 2. (5.6)

According to [25, Eq. (3.5)], M[fX(x)] = M[fH1(t)]M[fH2(v)], and the PDF of X can be deduced
using [25, Eq. (3.2)]

fX(x) =
1

2πj

∫
C
x−sM[fX(x)]ds, (5.7)

that is written after simplifications as

fX(x) =
2∏

j=1

z2jΨ
1/αj

j

αjΓ(µj)Γ(mj)r̂jhljA0j

H4,2
4,4

x 2∏
j=1

Ψ
1/αj

j

r̂jhljA0j

∣∣∣∣∣ Φ1,Φ2,Θ1,Θ2

Υ1,Υ2,Ω1,Ω2

 , (5.8)
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in which Φj =
(
1−mj − 1

αj
, 1
αj

)
, Υj =

(
µj − 1

αj
, 1
αj

)
, Θj =

(
z2j−1

αj
+ 1, 1

αj

)
and Ωj =

(
z2j−1

αj
, 1
αj

)
.

In turn, the MGF of X can be calculated as

MX(t) =

∫ ∞

0
fX(x) exp(−tx)dx

∣∣∣∣
(−t)

. (5.9)

Substituting (5.8) in (5.9), using [16, Eq. (8.315.1)] and [18, Eq. (1.60)] in sequence, it follows that

MX(t) =
2∏

j=1

z2j
αjΓ(µj)Γ(mj)

H4,3
5,4

 1

(−t)

2∏
j=1

Ψ
1/αj

j

r̂jhljA0j

∣∣∣∣∣ (1, 1),A1,A2,B1,B2

C1, C2,D1,D2

 . (5.10)

DefiningR =
∑L

i=1 |hi,1||hi,2| =
∑L

i=1

∏2
j=1 |hi,j |, it follows that MR(t) =

∏L
i=1MXi(t). Using the

definition of the multivariate Fox H-function [18, Eq. (A.1)], MR(t) can be written as

MR(t) =

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)



×H
0,0:[4,3]i=1:L

0,0:[5,4]i=1:L


χ1

(−t)
...

χL

(−t)

∣∣∣∣∣ −−
∣∣∣∣∣ [(1, 1),Ai,1,Ai,2,Bi,1,Bi,2]i=1:L

[Ci,1, Ci,2,Di,1,Di,2]i=1:L

 , (5.11)

in which

χi =
2∏

j=1

Ψ
1/αi,j

i,j

r̂i,jhli,jA0i,j

. (5.12)

From (5.11), the PDF of R can be calculated as

fR(r) =
1

2πj

∫
C
MR(t) exp(st)dt

∣∣∣∣
(−r)

. (5.13)

Using [16, Eq. (8.315.1)] and after algebraic simplifications,

fR(r) =
1

r

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)



×H
0,0:[4,3]i=1:L

0,1:[5,4]i=1:L


χ1r

...
χLr

∣∣∣∣∣ −ϵ1
∣∣∣∣∣ [(1, 1),Ai,1,Ai,2,Bi,1,Bi,2]i=1:L

[Ci,1, Ci,2,Di,1,Di,2]i=1:L

 . (5.14)
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Integrating (5.14),

FR(r) =

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)



×H
0,0:[4,3]i=1:L

0,1:[5,4]i=1:L


χ1r

...
χLr

∣∣∣∣∣ −ϵ5
∣∣∣∣∣ [(1, 1),Ai,1,Ai,2,Bi,1,Bi,2]i=1:L

[Ci,1, Ci,2,Di,1,Di,2]i=1:L

 , (5.15)

with ϵ5 = (0; {1}i=1:L).

Making Γ = R2, the PDF of the instantaneous SNR can be obtained using (3.8), as shown in (5.2). In-
tegrating (5.2), knowing that

∫ γ
0 x

n−1dx = γn/n, Γ(γ+1) = γΓ(γ) and using the definition of the multi-
variate H-Fox, (5.3) is obtained. Finally, the MGF is deduced by computing the Laplace transform of (5.2).
Using [14, id 01.03.26.0004.01], [14, id 07.34.26.0008.01], [18, Eq. (2.8)] and [18, Eq. (A.1)], (5.4) is
derived. Hence, the proof is concluded.

It should be mentioned that the statistics presented in this chapter are equal to [8], with ms −→ ∞, and
equal to [26], for z −→ ∞. Thus, our work generalizes some results presented in [8, 26]. Furthermore, it
should be highlighted that the envelope statistics presented in the proof are also contributions of this work.

5.3 PERFORMANCE ANALYSIS

5.3.1 Outage Probability

The OP is given by Pout = FΓ(γth), in which FΓ(·) is written as (5.3).

5.3.2 Bit Error Probability

The average bit error probability (BEP), Pb, can be evaluated as [27]

Pb =
1

π

∫ π
2

0
MΓ

( ρ

sin2 θ

)
dθ, (5.16)

in which ρ depends on the type of modulation considered.

Substituting (5.4) in (5.16), employing [18, Eq. (A.1)] and performing the change of variable x =

sin2 θ, and using [16, Eq. (3.191.3)/Eq. (8.384.1)] in sequence, it follows that the BEP can be written in
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closed-form, after simplifications, as

Pb =
1

4
√
π

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)



×H
0,2:[4,3]i=1:L

2,2:[5,4]i=1:L


Ξ1√
ρ
...

ΞL√
ρ

∣∣∣∣∣ ϵ3, ϵ4ϵ1, ϵ2

∣∣∣∣∣ [(1, 1),Ai,1,Ai,2,Bi,1,Bi,2]i=1:L

[Ci,1, Ci,2,Di,1,Di,2]i=1:L

 , (5.17)

with ϵ4 =
(
1
2 ; {

1
2}i=1:L

)
.

5.4 ASYMPTOTIC ANALYSIS

From (5.3) and (5.17) respectively, and considering the approach presented in [28], it follows that the
asymptotic OP and BEP expressions can be written as

P∞
out =

1

2B

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)

Ψ(U1, ..., UL)
L∏
i=1

ϕ(Ui)
(
Ξiγ

1
2
th

)Ui

(5.18)

and

P∞
b =

1

4
√
πB

 L∏
i=1

2∏
j=1

z2i,j
αi,jΓ(µi,j)Γ(mi,j)

Ψ(U1, ..., UL)
L∏
i=1

ϕ(Ui)
(
Ξiρ

− 1
2

)Ui

, (5.19)

in which B =
∏L

i=1Bi,ci
,

Ui = min
1≤j≤4

{
µi,1αi,1, µi,2αi,2, z

2
i,1, z

2
i,2

}
, (5.20)

ci = arg min
1≤j≤4

{
µi,1αi,1, µi,2αi,2, z

2
i,1, z

2
i,2

}
, (5.21)

ϕ(Ui) =

2∏
j=1, µi,j ̸=

Ui
αi,j

Γ

(
µi,j −

Ui

αi,j

) 2∏
j=1, z2i,j ̸=Ui

Γ

(
z2i,j
αi,j

− Ui

αi,j

)
2∏

j=1

Γ

(
mi,j +

Ui

αi,j

)
Γ(Ui)

2∏
j=1

Γ

(
z2i,j
αi,j

+ 1− Ui

αi,j

) ,

(5.22)
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Ψ(U1, ..., UL) =
Γ
(∑L

i=1
1
2Ui

)
Γ
(∑L

i=1 Ui

)
Γ
(
1 +

∑L
i=1

1
2Ui

) (5.23)

for the OP and

Ψ(U1, ..., UL) =
Γ
(∑L

i=1
1
2Ui

)
Γ
(
1
2 +

∑L
i=1

1
2Ui

)
Γ
(∑L

i=1 Ui

)
Γ
(
1 +

∑L
i=1

1
2Ui

) (5.24)

for the BEP. It should be mentioned that the diversity order is given by

Gd =

L∑
i=1

min
1≤j≤4

{
µi,1αi,1, µi,2αi,2, z

2
i,1, z

2
i,2

}
. (5.25)
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6 RESULTS

Theoretical curves as a function of the average SNR γ̄ are shown in Fig. 6.1, corroborated by Monte-
Carlo simulations, under different values of the parameter z in order to characterize scenarios with weak,
moderate, and heavy pointing errors. In our simulations, the Fox H-function implementation available
in [29] is considered. In addition, A0 = 0.8 and without loss of generality, hl = 1. In all cases, the
adherence between the theoretical and simulated curves is perceived. Also, the asymptotic curves follow
the analytical ones at high SNR.

The SEP is evaluated in Fig. 6.1(a), with α = 3.5, m = 5, and µ = 2, for BPSK and QPSK modulation
schemes. The asymptotic curves are plotted from (4.7). As z increases, it is noted that the SEP decreases
since the pointing error condition is improving. For γ̄ = 10 dB, a gain in terms of SEP of approximately
two orders of magnitude is perceived when comparing the curves for the case where the BPSK scheme is
adopted, with weak (z = 6.5) and heavy (z = 0.6) pointing error scenarios. For z fixed, the SEP is better
for the BPSK scheme than the one for QPSK, as the receiver is less likely to make errors in the decision
process. Fig. 6.1(b) presents OP curves under different values of α, for µ = 2.7, m = 1.3 and γth = 5 dB.
Asymptotic curves are plotted with (4.5). For α = 2, the Fisher-Snedecor case is provided as a benchmark.
As the parameter α increases the OP improves for a given z value. The following insight is also perceived
in Fig. 6.1(b): for the strong pointing errors case, the increase in the value of α has almost no impact on
the OP. Capacity and asymptotic capacity curves as a function of SNR are plotted in Fig. 6.1(c), under
different m values, with α = 2.2 and µ = 2.1. In our analysis, m = 3.1 and m = 10.5 denote moderate
and weak shadowing, respectively. Lower capacity values are obtained for z = 0.6, which corresponds to
a scenario with heavy pointing errors. Furthermore, for weak, moderate, or heavy pointing errors, smaller
capacity values are also obtained for m = 3.1.

Fig. 6.2 presents SEP curves as a function of SNR γ̄, considering the BPSK modulation scheme, z = 3,
m = {2.5,∞}, α = {2, 6.5} and µ = {1, 1.7}. In our model, the α-µ with misalignment is obtained when
m → ∞. In turn, for α = 2, the Fisher-Snedecor F distribution with pointing errors is achieved. For
µ = 1, the shadowed Weibull fading model also with the mentioned effect can be obtained as a particular
case of the study proposed in this work. To the best of the authors’ knowledge, results for the shadowed
Weibull model with pointing errors have not been presented in the literature. In Fig. 6.2, it is evidenced
that (i) for a fixed SNR, the SEP increases as the parameter that characterizes the shadowing (m) effect
and/or the parameter that models the fading intensity decreases and (ii) the impact of the m and µ on the
SEP is smaller as α increases.

Comparisons between the empirical and theoretical PDFs of the α-µ and α-F distributions are per-
formed in Fig. 6.3. The empirical data were extracted from [10, Fig. 2(c)] using the WebPlotDigitizer tool
and the parameters of the theoretical PDFs were estimated using the lsqcurvefit function available in Mat-
lab. For the α-µ distribution, it should be mentioned that the estimated parameters are the same as found
in [10, Table 5, TX4]. It is noted in Fig. 6.3 that the α-F model presents practically the same adherence as
the α-µ distribution, as expected, since the measured data did not consider shadowing. For this scenario,
the α-F is slightly better than α-µ distribution in terms of MSE and has a large m value, which is expected
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(a)

(b)

(c)

Figure 6.1: (a) SEP, (b) OP, and (c) capacity curves as a function of SNR γ̄, considering weak, moderate, and heavy
pointing errors.
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Figure 6.2: SEP curves as a function of SNR γ̄, considering the BPSK modulation.

Figure 6.3: Comparisons between the empirical and the theoretical PDFs.

in a non-shadowing scenario. This supports the mathematical framework developed and the model itself.
For the case in which shadowing can be considered, it is expected that the α-F distribution presents a better
adherence than the α-µ since the mentioned distribution has a higher degree of freedom. This indicates the
promising potential of employing the α-F distribution to model THz channels.

The OP and the BEP curves are presented in Figs. 6.4(a) and (b), respectively, under RIS-assisted
scenarios considering α-F fading with pointing errors. In our study, independent and non-identically
distributed variates are adopted. In Fig. 6.4(a), αi,1 = 1.5, αi,2 = 2.3, µi,1 = µi,2 = 2.0, mi,1 = 3.0,
mi,2 = 4.0, zi,1 = 0.8, zi,2 = 1.5 and γth = 5 dB. In Fig. 6.4(b), αi,1 = 1.5, αi,2 = 2.3, µi,1 = 2.5,
µi,2 = 3.5, mi,1 = 4.0, mi,2 = 5.0, zi,1 = 0.8, zi,2 = 1.5 and ρ = 1. The curves in Fig. 6.4 are shown as
a function of SNR, for different number of the RIS elements, under strong and moderate pointing errors.
Asymptotic curves are also plotted with (5.18) and (5.19). In Fig. 6.4, the impact of the RIS elements
on the metrics performance is evidenced. From our results, it is noted that the RIS improves the OP and
BEP performance, consonant with (5.25). In fact, as L increases lower is the OP and BEP values obtained.
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(a)

(b)

Figure 6.4: (a) OP and (b) BEP curves as a function of SNR γ̄, under RIS-assisted scenarios considering α-F fading
with pointing errors. Theoretical expressions are the solid curves and the asymptotic are the tracejed.

Furthermore, as evidenced in (5.25), it should be mentioned that the diversity gain depends on the fading
and pointing errors parameters and thus, note that the slope of the curves change according to the mentioned
parameters.
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7 CONCLUSIONS

This study advanced the knowledge of α-F fading model by considering the pointing errors impair-
ment. Important statistics, such as the PDFs and the CDFs, higher-order moments, and moment generating
function of the instantaneous SNR were derived, as well as the outage probability, symbol error probabil-
ity, and ergodic channel capacity metrics. Curves were presented for the mentioned metrics and validated
using Monte-Carlo simulations. In all scenarios studied, a strong adherence between the theoretical and
simulated curves was noticed, which validates our analysis. In addition, an application of the α-F distribu-
tion with pointing errors was performed in a wireless emerging system, namely reconfigurable intelligent
surfaces, thus evidencing the usefulness and capability of our model in practical scenarios.
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Appendix

APPENDIX A

The Fox H-function can be written in terms of the Mellin-Barnes integral, that is a contour integral
involving a product of gamma functions; and is given by

Hm,n
p,q

[
z

∣∣∣∣∣ (a1, A1), (a2, A2),· · · , (ap, Ap)

(b1, B1), (b2, B2),· · · , (bq, Bq)

]

=
1

2πw

∫
L

∏m
j=1 Γ (bj +Bjs)

∏n
j=1 Γ (1− aj −Ajs)∏p

j=n+1 Γ (aj +Ajs)
∏q

j=m+1 Γ (1− bj −Bjs)
z−sds. (7.1)

In (7.1), w is imaginary unit.

APPENDIX B

The Meijer G-function is a particular case of the Fox H function, in which the second pair of elements
is equal to 1, that is, Aj = 1, Bj = 1 and can be represented by

Gm,n
p,q

[
z

∣∣∣∣∣ a1, a2,· · · , apb1, b2,· · · , bq

]
=

1

2πw

∫
L

∏m
j=1 Γ (bj + s)

∏n
j=1 Γ (1− aj − s)∏p

j=n+1 Γ (aj + s)
∏q

j=m+1 Γ (1− bj − s)
z−sds, (7.2)

in witch w is imaginary unit.

APPENDIX C

The multivariable H-function can be defined by multiples Mellin-Barnes type contour integral as

H0,n:m1,n1;...;mr,nr
p,q:p1,q1;...;pr,qr


z1
...
zr

∣∣∣∣∣ (aj ;A
(1)
j ,· · · , A(r)

j )j=1:p

(bj ;B
(1)
j ,· · · , B(r)

j )j=1:q

∣∣∣∣∣ (c
(1)
j , C

(1)
j )j=1:p1);· · · ; (c

(r)
j , C

(r)
j )j=1:pr)

(d
(1)
j , D

(1)
j )j=1:q1);· · · ; (d

(r)
j , D

(r)
j )j=1:qr)


=

1

(2πw)r

∫
L1

· · ·
∫
Lr

Ψ(ζ1, . . . , ζr)

{
r∏

i=1

ϕi(ζi)z
ζi
i

}
dζ1· · · dζr, (7.3)

in witch w is imaginary unit and

Ψ(ζ1, . . . , ζr) =

∏n
j=1 Γ(1− aj +

∑r
i=1A

(i)
j ζj)[∏p

j=n+1 Γ(aj −
∑r

i=1A
(i)
j ζj)

] [∏q
j=1 Γ(1− bj +

∑r
i=1B

(i)
j ζj)

] , (7.4)
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ϕj(ζj) =

∏mj

j=1 Γ(d
(i)
j −D

(i)
j ζj)

∏ni
j=1 Γ(1− c

(i)
j + C

(i)
j ζi)∏pi

j=n+1 Γ(c
(i)
j − C

(i)
j ζi)

∏qi
j=m+1 Γ(1− d

(i)
j +D

(i)
j ζi)

. (7.5)
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