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RESUMO

Neste estudo, estatísticas de primeira e segunda ordem são deduzidas para sistemas de antenas fluidas
(FAS) sob canais sujeitos ao desvanecimento α-µ. Com base nisso e para avaliar o desempenho dos
sistemas mencionados, expressões também são derivadas para a probabilidade de indisponibilidade (OP)
e capacidade ergódica do canal. Além disso, uma redução exata da OP devido à N -ésima porta para uma
(N − 1) porta também é exibida. Todas as expressões obtidas deste estudo são novas. Várias curvas são
mostradas sob diferentes valores dos parâmetros que caracterizam o sistema e a não linearidade do canal.
Este é o primeiro trabalho em que o efeito da não linearidade do canal é evidenciado em FAS.

Palavras-chave: Sistemas de antenas fluidas, capacidade ergódica do canal, estatísticas de primeira
e segunda ordem, probabilidade de indisponibilidade.
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ABSTRACT

In this study, first and second order statistics are deduced for fluid antennas systems (FAS) under α-
µ fading channels. Based on this and in order to evaluate the performance of the mentioned systems,
expressions are also deduced for the outage probability (OP) and ergodic channel capacity. Furthermore,
an exact reduction of the OP due to N -th port for an (N − 1)-port is also presented. All expressions
derived in this study are new. Several curves are shown under different values for the system parameters
and channel non-linearity. This is the first work in which the effect of the channel non-linearity is evidenced
in a FAS.

Keywords: Fluid antenna systems, ergodic channel capacity, first and second order statistics,
outage probability.
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1 INTRODUCTION

This chapter presents the state-of-the-art of the topic in study; the main contributions obtained by us as
well as the organization of this work.

1.1 OVERVIEW

Fluid antenna system (FAS) is an emerging topic and has been studied by several researchers over the
past years [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], with potential application in the new emerging wireless tech-
nologies and being, recently, proposed as a possible solution to overcome the physical limitation of space
present in multiple-input multiple-output (MIMO) systems [3]. The existing literature presents various
works on fluid antennas, shedding light on their capabilities and potential applications.

In [1], the concept of FAS is discussed. Wong et. al. [1] devised a system in which a single antenna can
change its position instantly in a linear space and named it FAS. In the aforementioned work, the receiving
antenna is isotropic and its location can be switched between one of the N possible predefined locations,
also called ports. In turn, the performance limits of the mentioned systems are introduced in [2], in which
expressions are presented for the level crossing rate (LCR), the average fade duration (AFD) and ergodic
channel capacity for the N -port FAS. In addition, a closed-form capacity lower bound is also presented
in [2]. Expressions for the probability density function (PDF) and cumulative distribution function (CDF)
of the envelopes at all the ports for the FAS are deduced in [3], considering correlated Rayleigh fading
channels. An exact, approximated and upper bound expressions are derived for the outage probability (OP).

FAS’s are studied in [4] over correlated Nakagami-m fading channels. New expressions for the PDF
and CDF are derived by the authors and the performance of the mentioned system is also assessed by OP.
Closed-form expressions are deduced in [5] in order to characterize the LCR, considering the practical
constraints and limitations. In [2, 3, 4, 5], it should be noted that the same correlation model between the
ports is considered, which has the disadvantage of requiring a reference port. In order to solve this problem,
a more realistic model for correlation is presented in [13], in which there is no need for a reference port
(i.e., any port is a reference to another port). Recently, FAS has been studied in different contexts and
scenarios, such as multiple access [6, 7], large-scale cellular networks [8] and MIMO evolution beyond
5G through reconfigurable intelligent surfaces [9]. In [10, 11], the problem of port selection for FAS is
investigated.

In a literature review, it is observed that all available works on FAS consider simple fading models,
such as Rayleigh or Nakagami-m. However, the mentioned models characterize only the multipath effect.
Over the years, several studies have explained that wireless communication channels can also be affected
by the non linearity of the propagation medium. Thus, not incorporating the effect of nonlinearity in the
models is not a realistic assumption.

In this work and for the first time, the performance of FAS under α-µ fading channels is evaluated.
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Several new expressions for the first and second order statistics are deduced and used to derive metrics for
evaluate the mentioned systems. In our study, as mentioned, the α-µ distribution is adopted to characterize
the small-scale fading. The α-µ channel model [12] has been extensively supported by experimental results
in the technical literature. Furthermore, it is written in terms of physical parameters and adopted in many
works. In addition, the α-µ jointly considers the multipath fading and the non-linearity of the propagation
medium, that makes this distribution able to model realistic environments [12]. As the α-µ encompass
other models as special cases, it should be mentioned that this letter is connected with other works, such
as [2, 3, 4], in which some results can be obtained as a particular case of the study presented in this work.

1.2 CONTRIBUTIONS OF THIS WORK

This is the first work in which the impact of the non-linearity of the propagation medium, modeled by
α-µ distribution, is studied in FAS systems. Our work open new fronts for further investigations, since we
provide analytical and simulation results to reveal how the channel non-linearity affects FAS performance.
The main contributions of this studies are:

• New expressions are derived for the first order statistics, such as PDF and CDF; and for the second
order statistics, such as LCR; of the envelopes at all the ports.

• New expressions are derived for OP and ergodic channel capacity.

• An exact reduction of the OP due to N -th port for an (N − 1)-port are also presented.

• An evaluation of the impact of the correlation coefficient between the ports on the performance of
FAS is presented.

1.3 PAPERS SUBMITTED

• P. D. Alvim, F. O. Barcelos, H. S. Silva, U. S. Dias and R. A. A. de Souza, "On the Performance of
Fluid Antennas Systems under α-µ Fading Channels", under review in IEEE Wireless Communica-
tions Letters, Jun. 2023.

1.4 ORGANIZATION OF THIS WORK

The remaining of the work is organized as follows. Chapter 2 describes the system and channel models
adopted. Expressions for important statistics of FAS under α-µ fading channels are presented in Chapter 3.
Metrics are presented in Chapter 4. Chapter 5 shows the numerical results and discussions. Chapter 6
brings the conclusions of the study.

2



2 SYSTEM AND CHANNEL MODELS

In this chapter, the system, channel and coefficient correlation models considered in our work are
presented.

2.1 FLUID ANTENNAS SYSTEMS

A FAS is considered in this work, based on [3]. In the mentioned system, there are N different fixed
locations for the best reception of the signal, distributed over a linear dimension Wλ, in which λ is the
wavelength and W > 0 is a constant related to the size of the FAS, as see in Fig 2.1. It should be
mentioned that each location is referred as port and an antenna at location port k is considered as an ideal
point antenna.

Figure 2.1: A possible architecture for a FAS [3, see Fig. 2].

2.2 CORRELATION MODELS

In this work, the mathematical models for the correlation between the ports (δk) presented in [2]
and [13] are considered. In [2], the first port is the reference location and the other N − 1 ports are
correlated to the first one. In a FAS, the correlation effect occurs since the ports are close to each other.
The power correlation coefficient, denoted by δk, is written as

δk = J2
0

(
2π(k − 1)W

N − 1

)
, k = 2, . . . , N, (2.1)

In (2.1), J0(·) is the zero-order Bessel function of the first kind.

3



In this study, a realistic power correlation coefficient model is also considered. In [13], a common
correlation coefficient (δ = δk) between all ports is adopted, in which there is no need for a reference port
(i.e., any port is a reference to another port). The power correlation coefficient δ is written as [13, Eq. (5)]

δ = 2

[
1F2

(
1

2
; 1;

3

2
;−π2W 2

)
− J1(2πW )

2πW

]
,∀ k, (2.2)

where J1(·) is the first-order Bessel function of the first kind [14, id 03.01.02.0001.01] and aFb(·; ·; ·)
represents the generalized hypergeometric function.

2.3 RECEIVED SIGNAL AND FADING MODELS

The received signal at the k-th port in a FAS is given by [3, Eq. (3)]

yk = gkx+ ηk, (2.3)

in which x is the transmitted signal, ηk is the zero-mean _σ2
η-variance complex additive white Gaussian

noise at the k-th port, and gk is the complex envelope fading, where hk ≜ |gk| is the normalized envelope,
modeled in this study by the α-µ distribution, whose PDF is given by [12, Eq. (3)]

fhk
(ρk) =

αkµ
µραkµ−1

k

Γ(µ)exp(µραk
k )

, ρk ≥ 0. (2.4)

In (2.4), Γ(·) is the Gamma function [14, id. 06.05.02.0001.01], α characterizes the non-linearity of the
propagation medium, and µ represents the number of multipath clusters. In a fluid antenna system, it is
assumed that the port with the strongest channel condition is always selected, i.e., [5, Eq. (3)]

h = max{h1, h2, · · · , hN}. (2.5)

In our study, the α-µ distribution is adopted since it is generalist, flexible, and easy to manipulate math-
ematically. The mentioned fading model considers a signal consisting of multipath clusters and explores
the non linearity of the propagation medium. This make the α-µ distribution very attractive to be used in
FAS. The α-µ distribution encompasses a lot of models presented in the literature. In fact, by properly
selecting the fading parameters α and µ, the models presented in Table 2.1 can be obtained.

Table 2.1: Special cases.

Fading Models Parameters
Rayleigh α = 2, µ = 1

Nakagami-m α = 2, µ = m

Weibull α = α, µ = 1

One-Gaussian α = 2, µ = 0.5

4



3 FIRST AND SECOND ORDER STATISTICS OF FAS
UNDER α− µ FADING CHANNELS

In this chapter, important statistics are deduced, such as PDFs, CDF, and LCR. The first order statistics
are used in this work in order to derive performance metrics to evaluate the impact of the channel param-
eters in the FAS. Furthermore, the LCR is a key second-order statistic used to provide useful information
about the dynamic temporal behavior of multipath fading channels. LCR is a statistical measure of how
often a random signal crosses a certain threshold. The expressions derived by us are valid for any arbitrary
correlation values.

3.1 CONDITIONAL PDF OF H2 GIVEN H1

Proposition 3.1.1. Let h2 and h1 ∈ R+. The conditional PDF of h2 given h1, denoted by fh2|h1
(ρ2|ρ1), is

written as

fh2|h1
(ρ2|ρ1) =

µρ
−α1

2
(µ−1)

1 ρ
α2
2
(µ+1)−1

2 α2

(1− δ2)δ
µ−1
2

2

exp

[
−µ

(
ρα2
2 + δ2ρ

α1
1

1− δ2

)]
Iµ−1

(
2µ
√

δ2ρ
α1
1 ρα2

2

1− δ2

)
, (3.1)

in which δ2 is the power correlation coefficient of the second port with respect to the first one and Iv(·) is
the modified Bessel function of first kind and order v [14, id 03.02.02.0001.01].

Proof. The PDF fh2|h1
(ρ2|ρ1) is computed by taking a ratio of fh2,h1(ρ2, ρ1) over the normalized PDF of

h1 as

fh2|h1
(ρ2|ρ1) =

fh2,h1(ρ1, ρ2)

fh1(ρ1)
, (3.2)

in which the joint PDF of two correlated α-µ is given by [12, Eq. (28)]

fh2,h1(ρ1, ρ2) =
α1α2µ

µ+1ρ
α1
2
(µ+1)−1

1 ρ
α2
2
(µ+1)−1

2

(1− δ2)δ
µ−1
2

2 Γ(µ)
exp

(
− µ

ρα1
1 + ρα2

2

1− δ2

)
Iµ−1

(
2µ
√

δ2ρ
α1
1 ρα2

2

1− δ2

)
.

(3.3)

Substituting (3.3) and (2.4) into fh2|h1
(ρ2|ρ1), (3.1) can be obtained after simplifications. Hence, the proof

is complete.
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3.2 THE JOINT PDF OF N CORRELATED α-µ RANDOM VARIATES

Proposition 3.2.1. Let hk ∈ R+, with k = 1, 2, . . . , N . The joint PDF of N correlated α-µ random
variates (RV) is denoted by fh1,h2,...,hN

(ρ1, ρ2, . . . , ρN ) and written as

fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ) =

α1µ
µρα1µ−1

1

Γ(µ)exp (µρα1
1 )

N∏
k=2

µρ
−α1

2
(µ−1)

1 ρ
αk
2
(µ+1)−1

k αk

(1− δk)δ
µ−1
2

k

× exp

[
−µ

(
ραk
k + δkρ

α1
1

1− δk

)]
Iµ−1

2µ
√

δkρ
α1
1 ραk

k

1− δk

 . (3.4)

Proof. The joint PDF of N correlated α-µ RV, fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ), can be written as

fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ) = fh1(ρ1)fh2,...,hN |h1

(ρ2, . . . , ρN |ρ1). (3.5)

Since the independence between the ports conditioned on port 1, it follows that

fh2,...,hN |h1
(ρ2, . . . , ρN |ρ1) =

N∏
k=2

fhk|h1
(ρk|ρ1). (3.6)

Using (3.1), (3.6) can be written as

fh2,...,hN |h1
(ρ2, . . . , ρN |ρ1)=

N∏
k=2

µρ
−α1

2
(µ−1)

1 ρ
αk
2
(µ+1)−1

k αk

(1− δk)δ
µ−1
2

k

× exp

[
−µ

(
ραk
k + δkρ

α1
1

1− δk

)]
Iµ−1

2µ
√
δkρ

α1
1 ραk

k

1− δk

 . (3.7)

Substituting (3.7) and (2.4) in (3.5), (3.4) is deduced, that complete the proof.

Corollary 3.2.1.1. For the case in which no correlation is considered, i.e. δk equals zero, it follows that

fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ) =

N∏
k=1

fhk
(ρk). (3.8)

Proof. Making δk → 0 in (3.4), using the fact that

lim
δk→0

exp

[
−µ

(
δkρ

α1
1 +ρ

αk
k

1−δk

)]
(1− δk)δ

µ−1
2

k

Iµ−1

2µ
√
δkρ

α1
1 ραk

k

1− δk

 =
exp

[
−µραk

k

]
Γ(µ)

(
µ
√
ρα1
1 ραk

k

)µ−1

(3.9)

and, in sequence, utilizing the result above again in (3.4), (3.8) is obtained after simplifications. Hence, the
proof is complete.
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3.3 THE CONDITIONAL JOINT CDF

Proposition 3.3.1. The joint CDF of h1, h2, . . . , hN , denoted by Fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ), is given by

Fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN )=

α1µ
µ

Γ(µ)

∫ ρ1

0
tα1µ−1
1 exp (−µtα1

1 )

×
N∏
k=2

[
1−Qµ

(√
2µδkt

α1
1

1− δk
,

√
2µραk

k

1− δk

)]
dt1, (3.10)

in which Qµ(·, ·) is the Marcum Q-function.

Proof. The joint CDF of h1, h2, · · · , hN can be evaluated by means of

Fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ) =

∫ ρ1

0
· · ·
∫ ρN

0
fh1,h2,...,hN

(t1, t2, . . . , tN )dt1 · · · dtN . (3.11)

Replacing (3.4) in Fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ), using [15, Eq. (8.445)] and proceeding with some simpli-

fications, it follows that (3.12) can be obtained.

Fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ) =

α1µ
µ

Γ(µ)

N∏
k=2

µµαk

(1− δk)µ

∫ ρ1

0

tα1µ−1
1

exp(µtα1
1 )

exp

(
−

N∑
k=2

µtα1
1

(
1

1− δk
− 1

))

×

[
N∏
k=2

∞∑
ik=0

1

ik!Γ(µ+ ik)

(
µ2δkt

α1
1

(1− δk)2

)ik ∫ ρk

0
t
αk(µ+ik)−1
k exp

(
−µtαk

k

1− δk

)
dtk

]
dt1. (3.12)

Applying the variable change x = tαk
k and using [15, Eq. (3.381.1)], the inner integral of (3.12) with

respect of tk can be solved. After simplifications,

Fh1,h2,...,hN
(ρ1, ρ2, . . . , ρN ) =

α1µ
µ

Γ(µ)

∫ ρ1

0

tα1µ−1
1

exp(µtα1
1 )

exp

(
−

N∑
k=2

µtα1
1

(
1

1− δk
− 1

))[ N∏
k=2

∞∑
ik=0

(µδkt
α1
1 )ikγ

(
µ+ ik,

µρ
αk
k

1−δk

)
(1− δk)ikΓ(µ+ ik)ik!

]
dt1.

(3.13)

Using [15, Eq. (8.356.3)] and [16, Eq. (9)]

Qµ(A, β) = exp

(
−A2

2

) ∞∑
ik=0

1

ik!

(
A2

2

)ik Γ(µ+ ik, β
2/2)

Γ(µ+ ik)
, (3.14)
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then (3.10) is deduced after simplifications, with

A =

√
2µδkρ

α1
1

1− δk
(3.15)

and

β =

√
2µPαk

k

1− δk
. (3.16)

Hence, the proof is complete.

3.4 LEVEL CROSSING RATE

Proposition 3.4.1. The LCR, denoted by L(ρth), is the measurement of the average number of times at
which the envelope h crosses a certain threshold level ρth and, for a N -port FAS under α-µ fading chan-
nels, is given by (3.17) with fD denoting the maximum Doppler frequency and j = 1, 2, · · · , N .

L(ρth) =

√
2πfDΓ

(
µ− 1

2 + 1
αj

)
αjµ

1
αj Γ(µ)

µµα1

ρthΓ(µ) ρα1µ
th

exp
(
µρα1

th

) N∏
k=2

[
1−Qµ

(√
2µδkρ

α1
th

1− δk
,

√
2µραk

th

1− δk

)]
+

N∑
i=2

αiµρ
αi
2
(µ+1)

th

(1− δi)δ
µ−1
2

i exp
(
µρ

αi
th

1−δi

)
∫ ρth

0

ρ
α1
2
(µ+1)−1

1

exp
(
µρ

α1
1

1−δi

) Iµ−1

(
2µ
√

δiρ
α1
1 ραi

th

1− δi

)
N∏
k=2
k ̸=i

[
1−Qµ

(√
2µδkρ

α1
1

1− δk
,

√
2µραk

th

1− δk

)]
dρ1

 (3.17)

Proof. The LCR is mathematically given by L(ρth) =
∫∞
0 ρ̇fḣ,h(ρ̇, ρth)dρ̇, in which ρ̇ is the time deriva-

tive of ρ and fḣ,h(·, ·) is the joint PDF of h and ḣ. The LCR L(ρth) can be rewritten as presented in [5,
Eqs. (13) and (14)], that is composed by two terms multiplied by [5, Eq. (12)]

∫ ∞

0
ρ̇fḣi

(ρ̇)dρ̇ =

√
2πfDΓ

(
µ− 1

2 + 1
αj

)
αjµ

1
αj Γ(µ)

, ∀j = 1, · · · , N. (3.18)
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For the first term of [5, Eq. (14)], it follows that∫ ρth

0
· · ·
∫ ρth

0︸ ︷︷ ︸
(N−1)−fold

fh1,h2,...,hN
(ρ1 = ρth, ρ2, . . . , ρN ) dρ2 · dρN︸ ︷︷ ︸

(N−1)−fold

(a)
=

α1µ
µρα1µ−1

th

Γ(µ)exp(µρα1
th )

N∏
k=2

∫ ρth

0

µρ
−α1

2
(µ−1)

th ρ
αk
2
(µ+1)−1

k αk

(1− δk)δ
µ−1
2

k

× exp

[
µρα1

th δk + µραk
k

1− δk

]
Iµ−1

2µ
√

δkρ
α1
th ρ

αk
k

1− δk

dρk

(b)
=

α1µ
µρα1µ−1

th

Γ(µ)exp
(
µρα1

th

) N∏
k=2

[
1−Qµ

(√
2µδkρ

α1
th

1− δk
,

√
2µραk

th

1− δk

)]
, (3.19)

where (a) is deduced using (3.5), (2.4), (3.7) and (b) follows from [15, Eq. (8.356.3)] and [16, Eq. (9)].
The second term is given by (3.20), derived making some variables changes and using [16, Eq. (1)].

N∑
i=2

∫ ρth

0
· · ·
∫ ρth

0︸ ︷︷ ︸
(N−1)−fold

fh1,h2,...,hN
(ρ1, . . . , ρi = ρth, . . . , ρN ) dρ1 · · · dρN︸ ︷︷ ︸

(N−1)−fold, k ̸=i

=
N∑
i=2

αiµ
µ+1ρ

αi
2
(µ+1)−1

th

(1− δi)δ
µ−1
2

i exp
(
µρ

αi
th

1−δi

)
×
∫ ρth

0

α1ρ
α1
2
(µ+1)−1

1

Γ(µ)exp
(
µρ

α1
1

1−δi

) Iµ−1

(
2µ
√

δiρ
α1
1 ραi

th

1− δi

)
N∏
k=2
k ̸=i

[
1−Qµ

(√
2µδkρ

α1
1

1− δk
,

√
2µραk

th

1− δk

)]
dρ1. (3.20)

Replacing (3.18), (3.19) and (3.20) in the previous LCR expression, (3.17) is derived.
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4 PERFOMANCE ANALYSIS

In this chapter, metrics such as OP and ergodic channel capacity are presented.

4.1 OUTAGE PROBABILITY

The OP is defined as the probability that the received signal power falls below a certain threshold. The
OP for a FAS can be derived from the joint CDF given in (3.10) by making ρ1=ρ2=· · ·=ρN=

√
γth/Θ,

in which γth is a specified threshold and Θ is the ratio between γ̄, the average signal-to-noise ratio (SNR),
and Ω = E[h2k] [12, Eq. (5)]. Thus,

Pout =
α1µ

µ

Γ(µ)

∫ √
Ωγth

γ̄

0
tα1µ−1
1 exp (−µtα1

1 )
N∏
k=2

[
1−Qµ

(√
2µδkt

α1
1

1− δk
,

√
2µ

1− δk

(Ωγth
γ̄

)αk
2

)]
dt1.

(4.1)

An exact reduction of the OP, due to N -th port for an (N − 1)-port, can be derived expanding the
N -th factor in the product present in (4.1). The exact reduction is denoted by ∆Pout and is written, after
simplifications, as

∆Pout =
α1µ

µ

Γ(µ)

∫ √
Ωγth

γ̄

0
tα1µ−1
1 exp (−µtα1

1 )Qµ

(√
2µδN tα1

1

1− δN
,

√
2µ

1− δN

(Ωγth
γ̄

)αN
2

)

×
N−1∏
k=2

[
1−Qµ

(√
2µδkt

α1
1

1− δk
,

√
2µ

1− δk

(Ωγth
γ̄

)αk
2

)]
dt1. (4.2)

4.2 ERGODIC CHANNEL CAPACITY

Ergodic channel capacity is an important performance measure associated with reliable communication
and is the theoretically maximum data rate that one communicate at over a fading channel.

The ergodic channel capacity C, for a FAS, can be derived as [2, Eq. (9)]

C =

∫ ∞

0

(
1

1 + y

)
Prob

(
h >

√
y

Θ

)
dy. (4.3)

Since Prob(h > a) = 1 − Prob(h < a) and using (4.1), it follows that the ergodic channel capacity is
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written as

C =

∫ ∞

0

(
1

1 + y

){
1− α1µ

µ

Γ(µ)

∫ √
Ωy
γ̄

0
tα1µ−1
1 exp (−µtα1

1 )

×
N∏
k=2

[
1−Qµ

(√
2µδkt

α1
1

1− δk
,

√
2µ

1− δk

(Ωy
γ̄

)αk
2

)]
dt1

}
dy (4.4)

11



5 RESULTS

In this chapter, theoretical OP, channel capacity, and LCR curves are presented. Theoretical curves
were carried out by using the MATLAB software according to the models described throughout the paper.

5.1 NUMERICAL RESULTS

In Fig. 5.1, the OP as a function of the number of ports N are presented. In our analysis, µ = 1.0,
W = {0.5, 1, 2}, α1 = α2 = · · · = αN = α = {0.5, 2, 5} and γth/γ̄ = −3 dB. In Fig. 5.1, the influence
of the non-linearity parameter α and the size W in the OP is depicted. In Fig. 5.1(a), the power correlation
coefficient δk presented in (2.1) is adopted. In Fig. 5.1(b), the OP curves are presented considering the new
and improved model for δk, as defined in (2.2). Considering [13, Eq. (5)] and using the same approach
presented in the aforementioned article, it follows that

Pout =

∫ ∞

0

tµ−1
1

Γ(µ)
exp (−t1)

N∏
k=1

[
1−Qµ

(√
2δt1
1− δ

,

√
2µ

1− δ

(Ωγth
γ̄

)αk
2

)]
dt1. (5.1)

As the number of ports or W increase, the OP value in Fig. 5.1 decreases for a fixed value of α, since
the power correlation coefficient decreases. It is possible to realize in Fig. 5.1 that for a fixed value of N or
W , as α increases, i.e. the less severe the fading is, the lower is the value of the OP, since that γth < γ̄. As
the higher the values of α are, the more deterministic the channel is around the γ̄ value. Therefore, when
γth < γ̄ the probability of the SNR to fall bellow of γth decreases. As a benchmark, OP curves under
Rayleigh fading are shown. In fact, by making µ = 1.0, α = 2.0 in (4.1) or (5.1), the OP expressions
presented in [3, Eq. (16)] or [13, Eq. (16)] can be easily obtained, respectively. For comparison purposes,
the performance of the FAS is confronted to that using the maximal ratio combining (MRC) technique with
2 antennas, in which it is evidenced that, for a certain number of ports, the FAS has a better performance.
In Fig. 5.1(b), it is verified that the use of (2.2) allows a more realistic analysis of the FAS, in which there
is a worse performance in all scenarios even for large N . Also in this case, FAS also outperforms a system
that uses 2-antenna MRC.
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(a)

(b)

Figure 5.1: OP for the FAS as a function of N , with δk given by (a) (2.1) and (b) (2.2).

Ergodic channel capacity curves as a function of N are plotted in Fig. 5.2 for variable α = {1, 2, 5, 10},
fixed µ = 1.0, γ̄ = 10 dB, and W = 0.5. For µ = 1.0, the Weibull fading model can be obtained as a
particular case of the study proposed in this work. To the best of the authors’ knowledge, results concerning
the performance of FASs under Weibull model have not been presented in the literature. Capacity curves
under Rayleigh fading are also shown in Fig. 5.2 as a benchmark, in which some results of [2, Fig. 3(a)] are
reproduced as special case. It should be noted that [2, Eq. (11)] can be obtained from (4.4) under µ = 1.0

and α = 2.0. From Fig. 5.2, it is noted that the capacity improves as the parameter α decreases.

The normalized LCR L(ρth)/fD as function of N is shown in Fig. 5.3, with µ = 2.0, ρth = 25 dBm
and W = 0.2, for different values of α = {1, 1.5, 2}. In [4], the normalized LCR for Rayleigh channels
is presented. The expression described in [4, Eq. (6)] can be also obtained from our work. As observed
in Fig. 5.3, the normalized LCR decreases with the increase of the parameter α (i.e., the LCR improves
as the channel non-linearity decreases). For comparison, the normalized LCR considering δk = 0 are also
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Figure 5.2: Ergodic channel capacity as a function of N .

presented, that corresponds to the case where the ports are independent. When δk = 0, for all α values
considered, it should be mentioned that the LCR is better. As shown in (3.17), it should be mentioned that
the normalized LCR depends of the power correlation coefficient, the decision threshold and the channel
and FAS parameters.

Figure 5.3: Normalized LCR L(ρth)/fD as a function of N , under different α values, with µ = 2, ρth = 25 dBm
and W = 0.2.
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6 CONCLUSIONS

This work advanced the knowledge of FAS under α-µ fading channels. In the mentioned context,
important statistics were derived, such as the PDFs, CDF, and LCR. Metrics such as the OP and ergodic
channel capacity were also deduced. Furthermore, an exact reduction of the OP due to N -th port for
an (N − 1)-port were also presented. Curves were shown for the OP and ergodic channel capacity as a
function of the number of the ports under different parameters of fading model and the system, in which
some insights were perceived. Furthermore, some results available in the literature were reproduced as
particular cases of the study proposed.
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