
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Minerando Discussões em Migração de Software: Um
estudo da lista de emails Boost sobre evolução de

código em C++

Pedro Victor Rodrigues de Carvalho

Monografia apresentada como requisito parcial
para conclusão do Curso de Engenharia da Computação

Orientador
Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília
2024

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Minerando Discussões em Migração de Software: Um
estudo da lista de emails Boost sobre evolução de

código em C++

Pedro Victor Rodrigues de Carvalho

Monografia apresentada como requisito parcial
para conclusão do Curso de Engenharia da Computação

Prof. Dr. Rodrigo Bonifácio de Almeida (Orientador)
CIC/UnB

Walter Lucas Monteiro de Mendonça Prof. Dr. Roberto Luis Roselló Varela
CIC/UnB CIC/UnB

Prof. Dr. João Luiz Azevedo de Carvalho
Coordenador do Curso de Engenharia da Computação

Brasília, 4 de setembro de 2024

Dedicatória

Eu gostaria de dedicar este trabalho aos meus pais, Marly e Tiago. Sem dúvida alguma,
este trabalho só existe pelo apoio continuado que me ofereceram durante todos esses anos
em estudos e até durante uma pandemia global. Agradeço por terem me instruído e
encorajado a buscar uma educação de alta qualidade, e a ter resiliência para terminar as
tarefas às quais me propuser fazer.

Também gostaria de dedicá-lo aos meus avós, em especial à minha avó materna,
Raimunda. Ela mostrou à geração anterior à minha a importância do estudo e da edu-
cação mesmo quando isso não era e não seria almejado amplamente por muitos anos a
seguir. Sem sua visão de mundo extremamente avançada para seu tempo, certamente o
presente da minha família teria sido extremamente diferente.

iii

Agradecimentos

Eu gostaria de demarcar meus agradecimentos ao professor Rodrigo Bonifácio por me
permitir trabalhar neste projeto sob sua orientação, que me permitiu adquirir muitas
habilidades e conhecimentos novos. Agradeço pelo convite para assistir às aulas de estudos
em aprendizado de máquina e por ter me apresentado ao grupo de estudos focados em
engenharia de software.

Gostaria de agradecer também aos colegas do grupo de estudos - Alana, Ricardo e
Walter - pela companhia durante esse projeto e pela colaboração em desenvolvimentos
relacionados ao trabalho. Especialmente, agradeço ao Walter por ter dedicado seu tempo
para me auxiliar com ajustes e instruções para uma escrita digna de publicação e por ter
compartilhado de muito de seu conhecimento durante esse projeto.

Por fim, agradeço aos meus amigos de longa data - Marco, Lucas, Heitor, Jorge, Felipe,
João, Victor e Wagner - pelo companheirismo e por sempre estarem comigo durante esses
anos. Também agradeço aos amigos que fiz durante esse curso - Gabriel Matheus, Lucas,
Pedro Augusto, Carol, Gabriel Preihs, Guilherme e Gabriel Moretto - que levarei para a
vida inteira.

Meus mais sinceros agradecimentos,
Pedro Victor.

iv

Resumo

Este trabalho apresenta uma pesquisa conduzida para investigar como o fenômeno de
evolução de linguagens de programação impacta desenvolvedores de software. O lança-
mento acelerado de novas versões de linguagens de programação dificulta o objetivo de
manter sistemas de software atualizados e modernos. Devido a isso, este estudo busca
investigar como esse fenômeno afeta o desenvolvedor (ou grupo de desenvolvedores) em
seu trabalho de manter o software, a fim de prover melhor entendimento sobre os desafios
principais enfrentados ao desempenhar essas atividades. Investiga-se especificamente a co-
munidade Boost de desenvolvedores em C++ e como as discussões relacionadas ao tema
de Migração de Software foram conduzidas durante o período de existência da organi-
zação. Dentre os resultados, encontrou-se a dificuldade de conciliar diferentes objetivos
de maior abrangência, como o desejo de produzir inovações na linguagem e o desejo de
manter código já utilizado para garantir satisfação de usuários de longa data. Também foi
feita uma análise temática que apresenta os desafios mais pertinentes enfrentados pelos
desenvolvedores na comunidade Boost. A pesquisa foi aprovada pelo professor orienta-
dor e submetida ao Simpósio Brasileiro de Qualidade de Software, onde encontra-se sob
processo de revisão. Trabalhos futuros poderiam investigar outros grupos ou projetos,
além de estudar como a estrutura dessas organizações ou grupos impacta no processo de
adoção de novos padrões de linguagens de programação.

Palavras-chave:Migração de Software, Evolução de Linguagens de Programação, Boost,
C++

v

Abstract

This document presents a research effort conducted in order to understand how pro-
gramming language evolution affects software developers. The increased pace at which
programming language versions are released are an obstacle to the objective of keeping a
software system updated and modern. This study, then, aims to investigate how this phe-
nomenon impacts the software developer (or group of developers) in the task of software
maintenance, in order to provide insight into the key challenges faced when dealing with
these tasks. Specifically, the Boost community of C++ developers is the study’s focus,
regarding how the discussions related to Software Migration were conducted during the
organization’s lifespan. The results suggest that there was difficulty in balancing differ-
ent overarching objectives, such as the desire to produce innovation in the language and
the desire to maintain already deployed software to provide reliability to long-time users.
A thematic analysis was also conducted, and it presents the most prevalent challenges
found by the developers at Boost. The study was approved by the supervising professor,
and was submitted to the Brazilian Symposium of Software Quality. Future works could
study other groups or software projects, or even investigate how the organizational struc-
ture among these groups affect the process of adhering to newer programming language
standards.

Keywords: Software Migration, Programming Language Evolution, Boost, C++

vi

Sumário

1 Introdução 1

2 Artigo: “Mining Discussions on Software Migration: A study of the
Boost mailing list regarding C++ code evolution” 3
2.1 Abstract . 3
2.2 Introduction . 4
2.3 Background and Related Work . 5

2.3.1 Software Maintenance . 6
2.3.2 Software Migration . 6
2.3.3 Related Work . 7

2.4 Study Settings . 9
2.4.1 Data Collection and Filtering . 10
2.4.2 Data Analysis . 12

2.5 Analysis Results . 14
2.5.1 Prevalence . 14
2.5.2 Topics . 16
2.5.3 Discussion Themes . 18

2.6 Discussion . 23
2.6.1 Answers to our Research Questions . 23
2.6.2 Threats to validity . 24

2.7 Conclusion . 25

3 Conclusões 26

Referências 27

vii

Lista de Figuras

2.1 Fragment of message discussing a breaking change in C++ standard requi-
rements . 9

2.2 Dataset distribution of messages . 11
2.3 Steps of the analysis processes and their results 12
2.4 Distribution of software migration messages found by year 15
2.5 Percentage of software migration messages found by year 16
2.6 Distribution of software migration messages found by year, colored by most

recent C++ standard . 17
2.7 Percentage of software migration messages found by year, colored by most

recent C++ standard . 18
2.8 Count distribution of C++ standards mentioned 19
2.9 Thematic analysis results . 21
2.10 Fragment of message about versioning and discontinuation 22
2.11 Fragment of message about how legacy support holds back C++ progress . 22
2.12 Fragment of message about supporting users of older standards 22
2.13 Fragment of message expressing dissatisfaction with resistances to migration 23

viii

Capítulo 1

Introdução

Este documento serve de forma de apresentação do artigo produzido durante a condução
das atividades que compõem Trabalho de Conclusão de Curso de Engenharia de Compu-
tação. O aluno (autor) foi responsável pela condução do estudo que levou aos métodos e
resultados expostos no artigo em questão, também contando com a participação de e cola-
borando com colegas alunos do departamento de Ciência da Computação da Universidade
de Brasília em atividades relacionadas a esse estudo.

A questão abordada pelo artigo lida com o fenômeno da evolução acelerada de lingua-
gens de programação, que incentiva desenvolvedores a, entre outras estratégias, praticar
esforços de migração de software para aderir a novos padrões de linguagem e utilizar fe-
atures presentes em novas versões. Esse processo, como abordado no artigo, não é uma
atividade simples para sistemas de complexidade considerável, e há uma lacuna na lite-
ratura sobre como o desenvolvedor e seu grupo percebe e lida com essas atividades. O
objetivo desse trabalho é, principalmente, de entender melhor a natureza das discussões
conduzidas por desenvolvedores de software sobre migração de software, relacionadas tam-
bém com a evolução da linguagem C++. Entretanto, também espera-se que essa pesquisa
fomente novas ideias e trabalhos relacionados a esse fenômeno de evolução de linguagens
de programação, em vista de entender quais questões são mais relevantes, e projetar so-
luções e mudanças na intenção de melhorar a qualidade do trabalho de desenvolvedores
de software.

O trabalho conduzido é, portanto, uma pesquisa sobre a percepção dos desenvolvedo-
res de software sobre a evolução de linguagens de programação e de esforços de migração
de software e como esses fatores impactam seu trabalho. A pesquisa focou no grupo Boost
de desenvolvedores em C++, que possui um portal de comunicação entre desenvolvedores
que é de acesso público - a chamada Boost mailing list, ou lista de mensagens do Boost.
Durante a pesquisa, foram utilizadas técnicas de mineração de dados, aprendizado de
máquina e processamento de linguagem natural para se filtrar um grupo de mensagens a

1

ser estudado. Esse grupo, contendo mensagens que foram postadas num intervalo de mais
de duas décadas, foi analisado manualmente e classificado com relação aos padrões de
C++ mencionados, argumentos utilizados e seu tempo de postagem. Essa análise manual
foi conduzida para se encontrar temas que eram frequentemente utilizados nas discussões
entre desenvolvedores, e se discutir sobre quais fatores se puseram mais relevantes, a fim
de se obter um melhor entendimento dos desafios enfrentados e soluções propostas nesse
âmbito de discussões. Os resultados obtidos sugerem que desenvolvedores de software
costumam ter fortes diferenças de opinião sobre adoção de padrões novos de linguagem,
e que as discussões possuem alto potencial de se estenderem demasiadamente, ao ponto
de poderem caracterizar um fenômeno chamado bikeshedding. Os achados também suge-
rem que, além da adoção de padrões, os interesses gerais dos desenvolvedores podem ser
uma grande fonte de divisão, como a incompatibilidade de objetivos entre desejar pro-
duzir código para inovações na linguagem e manter código já em uso, ainda que antigo,
para garantir sua qualidade e a satisfação dos clientes que o utilizam. Por fim, também
concluiu-se que essas discussões apresentam um problema que não é de solução trivial, e
muitas vezes inspira propostas de mudança estrutural na organização em questão.

O artigo da pesquisa foi escrito em língua inglesa, seguindo a recomendação do Sim-
pósio Brasileiro de Qualidade de Software (SBQS), em vista do objetivo de se submeter
o documento para publicação na edição de 2024. O artigo foi submetido ao SBQS e pos-
teriormente aceito para publicação. Uma transcrição completa encontra-se no capítulo a
seguir.

2

Capítulo 2

Artigo: “Mining Discussions on
Software Migration: A study of the
Boost mailing list regarding C++
code evolution”

2.1 Abstract

Programming languages are evolving faster than ever before. New versions of mainstream
programming languages (e.g., C++, Java, and JavaScript) are being released with increa-
sing frequency, posing an elevated challenge for software developers as their systems are
more easily affected by obsolescence. Software migration is far from trivial. Although
there is literature on software migration methods and how developers deal with the soft-
ware aging and obsolescence, little research exists on how developers perceive and are
affected by rapid programming language evolution. To understand how C++ developers
discuss these issues and the nature of their discussions, we mined the mailing lists of
the Boost organization—one of the most important C++ open-source communities. We
found that software migration is a significant concern for this community, with a lasting
presence in their message boards. Furthermore, most discussions related to the challenges
of the migration process, with many conflicting opinions on related matters, suggesting
these issues are not easily solvable.

3

2.2 Introduction

Programming languages like C++, Java, and Python have been releasing new versions more
frequently in recent years. For example, C++ was a “single-standard” type of language
for over a decade, with only a couple of versions available to the public (in this case,
C++98 and C++03, up until 2011). After this period, the C++ committee decided to make
version standard releases a regular occurrence, releasing new standards every three years,
starting from C++11 to C++23. This radically changed the C++ development landscape. In
only a span of six years, developers had seen more new standard versions of the language
released than what was available before for over a decade. This sort of practice has become
common in recent years and in many different languages and applications.

In this landscape of rapid development changes, the constant passage of time means
software developers and their teams are at more frequent risk of having their software
become obsolete, which might lead to a decline in the system’s external qualities, affecting
how it interacts with other systems and potentially rendering it obsolete in the face of
competition from newer softwares [1].

To prevent or remedy this, developers might benefit from software migration tech-
niques, such as Source Code translation, that involves converting source code from one
programming language to another [2, 3, 4]; GUI Migrations, which consists of updating
or transforming the graphical user interface of applications to improve user experience
and compatibility with current standards [5, 6]; Library Migration that entails moving
from one set of libraries to another, which may involve replacing outdated libraries with
more modern alternatives that offer better functionality or support [7, 8]; Source code
rejuvenation, which consists of evolving the source code of the programs through code
transformations to support the new constructions of the same programming language [9].

These software migration efforts are far from trivial in most real cases and are of-
ten documented in very different manners within the literature on the subject [1], even
though legacy systems are still seeing widespread usage and migration efforts are also
commonplace [10, 11, 12, 13, 14].

In addition to the rapid evolution of programming languages, another pressing concern
is the lack of empirical studies on how developers react to these changes.

This constant evolution can lead to challenges in maintaining existing codebases, as
well as in ensuring that developers stay up-to-date with the latest advancements [11].
The scarcity of empirical research in this area leaves a gap in understanding the practical
implications of these changes for professional developers. Addressing this gap is crucial
for developing effective strategies to support developers in the evolving programming
landscape and can provide valuable insights into the impacts of programming language

4

evolution on software development processes and outcomes, thereby helping to mitigate
the risks associated with rapid technological change.

Previous studies mine code repositories [11, 15, 16] to understand how the migration
efforts take place, but the high-level discussions had not been the focus. Therefore, in this
paper, our goal is to understand how the kind of discussion related to software migration
is conducted in the mailing lists of a comprehensive open-source C++ organization. More
specifically, we address a specific migration effort that aims to update the version of the
language (e.g., from C++11 to C++14) used in the Boost C++ libraries. To deal with
this lack of research into developers’ perspectives towards migration efforts, this article
presents a study that mines messages from the Boost mailing list and conducts a thematic
analysis to understand what their discussions on the topic presented themselves as and
what influence this topic might’ve had on developers.

In summary, the contributions of this paper are as follows:

• Insight into Developer Discussions and Decision-Making: Our research pro-
vides valuable insights into how developers engage in discussions about migration
efforts, particularly in the context of adopting new programming language standards
like C++11. It highlights the complexities and challenges developers face, including
differing opinions and the potential for extensive debates, sometimes hindered by
the "bikeshedding"effect.

• Identification of Key Challenges and Competing Interests: Our study iden-
tifies the primary challenges associated with software migration, such as balancing
the desire for technological advancement with the need to maintain code reliability
for long-time users. It captures the tension between pushing for software migration
and preserving stability, illustrating the competing interests within the developer
community.

• Proposal for Organizational Changes to Support Modernization: Our fin-
dings suggest that to overcome resistance and facilitate the adoption of modern
technologies, there may be a need for structural changes within organizations. This
contribution underscores the importance of organizational adaptation in supporting
technological evolution and ensuring that software migration efforts can proceed
more smoothly.

2.3 Background and Related Work

In this section we will provide some context into the concepts used throughout this do-
cument. Additionally, we will comment on how our research effort compares to existing

5

literature and research, in order to provide insight into what guided our efforts.

2.3.1 Software Maintenance

Maintenance is considered one of the most important phases in a software’s life cycle,
significantly influencing the total cost of a system [17]. Previously associated with poor
development practices, software maintenance is now regarded as evolutionary development
[18]. According to ISO/IEC 12207, software maintenance activities can be categorized into
Corrective Maintenance, Adaptive Maintenance, and Perfective Maintenance. Corrective
maintenance aims to fix identified errors of any kind. Adaptive maintenance involves
modifications when there is a change in the context to which the software must adapt.
Lastly, perfective maintenance includes changes made to evolve the software to meet new
user needs [19], which can involve techniques like software migration.

2.3.2 Software Migration

Software migration is a widely used term for many different applications. For our research
purposes, we will base our definitons on the understanding given by Bragagnolo et. al [1].
In their research, they give extensive context into software migration and many related
concepts and practices.

The main reason proposed for the necessity of modernization efforts, to which migra-
tion pertains, is given by two forms of system decline: Decadence and Obsolescence. The
first one is a consequence of the continuous deterioration of inherent internal elements
of the software system. This could be, for example, highly tangled code and unreliable
documentation. The lack of active maintainers acting on a part of a system can be a
cause for this effect. The second one, Obsolescence, is related to the ever evolving tech-
nological environment in which the system exists, and how its inherent external qualities
are perceived in relation to it. New technologies that enable developers to make more
efficient pieces of code, and deprecation of dependent technologies are some of the causes
of obsolescence.

An important distinction to make between the two is that while Obsolescence justifies
and incentivizes evolution of software systems, Decadence actively hampers it, due to the
unexpected complexity in dealing with and solving its issues.

As proposed by Bragagnolo et. al, solutions for modernizing software systems can be
separated into two larger categories: Reengineering and Replacement. The latter regards
efforts that require abandoning legacy systems and establishing new ones in place of
those. Our research is focused on the Reengineering category, which is defined as "all
processes based on modifying a previously existing system". This category encompasses

6

Modernization and Renovation efforts, which are the types of efforts our research is focused
on.

The researchers distinguish between modernization efforts, aimed at recovering a
system from obsolescence, and renovation processes, which address system decadence.
Within these broader categories, they identify specific subcategories that are the focus
of our study: Adaptation, which involves updating a system to use new technological
environments without abandoning current technologies; Migration, which entails moving
a system from one technological environment to another that is mutually exclusive with
the original; and Restructuring, which focuses on source code operations to enhance the
quality and understanding of the system’s internal structure.

Our interest resides mostly on investigating how developers faced the challenge of
adopting different C++ standards, especially newer ones. Being a community that develops
C++ libraries that often use each other’s utilities, any library developer needs to consider
other libraries’ usage of their own before making a breaking change in their code, like
seen in Figure 2.1. This, within the Boost development environment, can pertain to
Adaptation, Migration and Restructuring.

From here onwards, we will refer to these categories solely as "Software Migration"for
the sake of simplicity in reporting our findings. We considered these three specific ca-
tegories to compose our whole focus when looking for developers discussing migration
efforts.

2.3.3 Related Work

The work detailed in this document is similar in nature to other research already done in
the field of mailing list/internet forum thread mining. Additionally, we consider our work
similar to other work in the field of source code rejuvenation studies, due to similarities
and overlap between code rejuvenation and software migration.

Lucas et al[11] conducted a study on how KDE contributors practice rejuvenation in
their projects. The study focused on specific features contained in C++11, C++14 and
C++17, and how developers utilized them. The analysis was conducted in 272 KDE
programs and libraries written in C++ which projects had started after 2010 and had had
at least one commit made in 2022, so as to focus on changes on currently maintained
code related to the features contained in post-C++11 versions. The research employed
an automated method of detecting increases in use of modern C++ features while the
number of actual statements remained constant, in order to determine at what points
in time the project could’ve likely applied a rejuvenation effort. The results indicated
that the reasoning was often related to improving readability and conciseness of the code,
as well as slowing software aging and attracting new contributors to the projects. It’s

7

also suggested that the benefits of rejuvenation are perceived by developers, and that
programming language designers would benefit from knowing about how modern features
are embraced by developers.

We referenced this study to set out a general guideline of what to look for regarding
the intricacies and importance of software migration, not only to the performance and
usage of the software in question, but to whoever develops, maintains and manages it.
In general, our aim is to understand the main reasons as to why a migration effort is or
is not applied. Additionally, our focus on the Boost community is similar to their sole
focus on the KDE community, in our case mainly due to the easily accessible body of data
contained in their mailing list and their reputation involving C++ development throughout
decades.

Swillus et al[15] conducted an analysis of Stack Overflow posts regarding software
testing. While also focusing on a widely applied and influential topic on software deve-
lopment, the analysis focused on how this practice is perceived through the developer’s
perspective. For this, the Stack Overflow messages were mined and subsequently filtered
through a semi-automated method and then by a systematic qualitative data analysis.
The strategy employed for the manual data analysis was based on the Socio-Technical
Grounded Theory[20]. Their results suggest that software testing motivation increased
with the complexity of the project, and that the practice itself is seen as something to
aspire to. We referenced this research in order to employ a somewhat similar manual
analysis method focusing on broader interpretative topics.

Tahir et al[16] conducted a similar style of research investigating how developers at
Stack Overflow, Stack Exchange and Code Review discussed code smells and anti-patterns.
Their results suggest that developers don’t have a clear definition of code smells and
anti-patterns, yet they seem to have negative feelings towards these practices in general.
Similarly to the previous research mentioned, we also referenced their work for employing
a similar thematic-focused approach.

In our study, we aim to distinguish our objectives from previous works by focusing
specifically on discussions about software migration within the Boost community. While
related studies often utilize data mining to collect datasets for analysis, our approach
emphasizes understanding the context of how developers respond to the rapid evolution
of programming languages. Unlike a comprehensive search for all migration-related discus-
sions, our goal is to capture a broad spectrum of these discussions to analyze developers’
reactions and decision-making processes.

8

2.4 Study Settings

This research aims to comprehend the themes that emerged from the Boost mailing list
discussions, particularly in relation to software migration concepts. Boost is one of the
main C++ open-source organizations, significantly contributing to the evolution of the
C++ language specification. Currently, hundreds of C++ developers contribute to the
implementation of Boost libraries, which are widely used and often integrated into the C++
standard library. Indeed, the success of some Boost libraries can be partially attributed
to a formal review process that relies on mailing list discussions. Considering that the
Boost foundation contributes to the evolution of C++ standards, it is expected that Boost
libraries would be up-to-date with new versions of the language. However, migrating
a Boost library to a new version of the C++ programming language is anything but
trivial and should be carefully discussed among Boost members. Figure 2.1 shows a
snippet of a message from the Boost mailing list on this subject. These careful discussions
are necessary because migrating a library might not only lead to (unexpected) breaking
changes but also require the clients of that library to update their C++ code, dependencies,
compilers, and tools as well.

"Boost Test can not require C++11 support. if you want to create a Boost Test
which does require C++11 support make a Boost Test2 or whatever you want to call
your new library that requires C++11 support. Others have said the same thing. It
is beyond me how you or <redacted> arbitrarily decided that libraries using Boost
Test must run with C++11 support when you both know that there are many Boost
libraries that do not require or need C++11, and these libraries use Boost Test."

Figura 2.1: Fragment of message discussing a breaking change in C++ standard require-
ments

In line with this objective, we devised two main questions that summarize what we
want to understand about this topic, and drove our research methods in order to answer
them. The questions are as follows:

1. What is the prevalence of software migration discussions in the Boost
mailing list?

2. What was the nature of the discussion’s contents?

By answering the first research question, we aim to measure the extent to which
software migration is present in the Boost mailing list data. Since programming language
evolution is a continuous phenomenon, we hypothesize that it inevitably impacts software
development. Furthermore, we intend to investigate the patterns regarding the frequency

9

and timing of these discussions and determine the specific topics addressed in messages
about software migration. By answering the second research question, we hope to identify
the motivations and challenges associated with upgrading a large codebase of C++ libraries
to a new version of the language standard. We believe that some of the motivations and
challenges related to software migration that we find in Boost might also occur in other
open-source organizations.

2.4.1 Data Collection and Filtering

Our focus is on the Boost community of developers, and the most readily available data
for our research is contained in their public message board: the Boost MailMan Archive1

(referred to hereafter as the Boost mailing list). This archive is a message board hosted
on a static HTML website, making it easy to collect data using a web scraper [21]. We
built a scraping application2 that goes through every post in the mailing list and captures
key information such as the date of posting, author name, post title, and message body.
The scraper stores the collected data in a relational database for later access. In March
2023, we collected all the data available on the Boost mailing list at the time: a total of
253,548 messages, spanning more than two decades of mailing list history (from February
1998 to March 2023).

To better handle the volume of data collected, we decided to employ an automated
effort to reduce the scope of our manual data analysis procedures. For that, our decision
was to explore the Support Vector Machine (SVM) algorithm [22] to classify the messages
that were more likely to contain software migration discussion.

SVMs require a labeled dataset for both training and testing of the model. Due to
this necessity, we employed a manual search effort in order to find a reasonable amount
of messages we deemed relevant to the topic. We went through many different points in
the mailing list’s history and searched through the threads for possible software migration
discussion. Once we found a message containing this topic, we stored its URL and relevant
information in a spreadsheet for future reference. With this effort, we found 58 messages
discussing software migration, of which 32 were used to train the model and the remaining
26 were used for testing.

Figure 2.2 shows a graphic visualization for how the messages were organized in the
following process. The training dataset was composed of 32 manually selected messages
and 300 randomly selected messages from the mailing list. The manually selected messages
were labeled as “containing software migration” and the 300 randomly selected were
labeled “not containing software migration”. Similarly, the testing dataset was composed

1https://lists.boost.org/Archives/boost/
2Blind review

10

of 26 manually selected messages and 20 randomly selected from the mailing list. They
were labeled the same way as the training dataset.

Datasets

Manually selected
"software migration"
messages (58)

Randomly selected
"not software
migration"
messages (320)

Training Dataset
(332 messages)

Testing Dataset
(46 messages)

300
20 32

26

Figura 2.2: Dataset distribution of messages

First, our code performs the vectorization of the training dataset, using a TF-IDF
[23] transformation to more accurately represent relevant tokens in the analysis. We
employed a Natural Language Processing [24] approach called Bag of Words [25] for the
vectorization step of our process. Afterwards, the vectorized data is given as input to the
learning algorithm. This results in a classifier model that we can leverage to classify new
messages.

To test the resulting model, the testing dataset is vectorized in the same way as the
traning dataset, then we use the model to classify this new dataset’s entries. Since this
dataset was previously classified by ourselves, we can measure the model’s performance
with metrics such as precision and recall. We obtained a score of 71% precision and 100%
recall for messages “not containing software migration”. We also got 100% precision and
69% recall for messages “containing software migration”.

Our objective with this step was to find more messages “containing software migration”
than what we already had, employing an automated approach. For that, 69% recall in a
small corpus of 46 test messages was likely to return enough true positives when applied
to the full dataset of 250 thousand messages. In light of this, we considered this model
acceptable to search for more migration-related messages. This also means, however, that
this effort will not be an exhaustive search, due to the low amount recalled.

Running the whole mailing list dataset through the classifier model returned 967 mes-
sages labeled as “containing software migration”. This body of messages was used as a
basis for the manual analysis processes that followed.

11

Data Analysis Steps

Thread Selection
- Step 1 Results:

59 Threads selected
(Containing 2,698 messages)

Thread Reading
- Step 2

Objective:
Select threads for reading in full

Results:

603 Messages selected

Prevalence Analysis
(Research Question 1)

Objective:
Select messages containing
software modernization discussion

Message Analysis
and Classification
- Step 3

Results:

Topic Analysis
(Research Question 2)

Thematic Analysis
(Research Question 2)

Automated Message
Detection
- Step 0

Objective:
Analyze and classify
messages' contents

Objective:
Use machine learning to find
software modernization discussions

Results:

967 Messages found

Training Dataset Testing Dataset Beginning of
Manual Analysis

End of
Manual Analysis

Entire Mailing
List Dataset

Figura 2.3: Steps of the analysis processes and their results

2.4.2 Data Analysis

With the results from the classifier available, we decided to not limit ourselves only to
the 967 messages we got back from the model. We would use these results as pointers
towards where to look for more relevant messages, with the intention to find more than
what was already found by the classifier. For that, we took the following steps:

1. Thread Selection

Look through every message found by the classifier and analyze the thread to which
they belong to. Determine if this thread may have more migration-related messages
and if so, note them down in a spreadsheet for future reading.

2. Thread Reading

Having a list of selected threads from the previous step, read through every mes-
sage contained in each of them and note down any message that contains software
migration discussion. This step provides results for answering research question (1).

3. Message Analysis and Classification

This step is taken as soon as a message is selected in the thread reading step. We
analyze the message on its context, noting down what topics it mentions and what
arguments it uses. This step is fundamental for answering research questions (1)
and (2).

12

These steps were devised as we matured the research ideas, and they seek to provide
a more structured approach and improve the overall scope reached by the analysis.

The objective of the "thread selection" step is to increase the scope of analysis in a
guided manner so we don’t rely solely on an automated analysis for our results. By
looking into whole threads, beyond increasing our understanding of the context for each
message (which improves our analysis capabilities), we also reduce our dependence on the
classifier’s results, for we may be able to detect and select more true positive messages
and disregard false positives. This is true especially considering nuanced messages, which
aren’t easy to classify correctly in this automated method we used.

The “thread reading” step shares the same objectives, and additionally, by reading the
threads in full, we do an exhaustive search for software migration messages inside these
selected threads.

The final step, “message analysis and classification”, has the intent of quantifying and
recording our observations on the discussion’s contents. Additionally, by noting down
the arguments used, we devise a list containing recurrent arguments that allows us to
see what are the most popular ones, and afterwards use the arguments list and count to
construct a thematic analysis approach to understanding the discussions.

Following is an explanation of our body of data under study during parts of the process.
A diagram of this information is present in Figure 2.3.

After thread selection we had a list of 62 threads that we selected for further analysis.
Adding up the number of messages contained in each thread, we had a set of 2,920
messages to read through. However, during thread reading we noted that three threads
were not related to software migration, instead they talked about an almost opposite, yet
related topic: code backporting. Those threads were excluded from our set, and that left
us with 2,698 messages in 59 threads.

After thread reading andmessage analysis and classification we had selected 603 messa-
ges deemed as "containing software migration discussion". Each one of these was analyzed
and classified regarding the topics mentioned and arguments used.

The final analysis efforts were to sift through all our collected data and classifications
and interpret the data in order to answer research questions. For reseach question (1),
regarding prevalence, we looked at the total amount of messages and what distribution of
yearly posting they represented. Again for research question (1), now regarding topics of
discussion, we looked at topic occurrence counts and overall topic prevalence. For research
question (2) we looked at argument count and argument meaning, ultimately grouping
arguments into themes. These themes allowed us to make a more human analysis of the
discussion’s contents.

13

2.5 Analysis Results

The analysis was guided by the previously mentioned research questions. The study
process was very much a flexible and evolving effort, and therefore, there are many data
points related to the analysis process itself that could be discussed along with the results.
For the purposes of brevity and objectiveness, this section will focus mainly on the final
results.

2.5.1 Prevalence

To answer the first part of research question (1), we must examine the number of messages
we found that discuss software migration. Through our research method, we found 603
messages that were considered to contain software migration discussion in the Boost
mailing list. This represents 0.24% of the whole mailing list. Since this was not
an exhaustive search for those messages, we will consider this, at most, a lower bound.

Analyzing further, from these 603 messages, we found the distribution of occurrences
present in Figure 2.4. Derived from this distribution, in Figure 2.5, each bar indicates
what percentage those messages represented of the total number of messages posted in
that year. These distributions present an average of 23.2 migration messages per year
and 0.48% presence per year.

From manual analysis, we determined that the discussions before and after 2011 were
fundamentally different in nature. Before 2011, migration discussions were basically only
about compiler support. The messages from 2011 onwards are not only more frequent
but rarely revolve around compilers—the new migration goals were then defined mostly
by C++ standard versions.

Analyzing the same data but limiting the scope to 2011 onwards, we get an average
of 43.2 messages per year and an average of 0.94% presence per year.

Moreover, from 2011 onwards the total number of messages posted in the mailing list
is 80,043, which is significantly smaller, less than one third of the whole dataset. However,
considering the estimates calculated previously, the number of messages selected manually
drops only to 562, which represents a lower bound of 0.7% of presence after 2011.

These message distributions, however, pose a contradicting trend. Even though to-
tal code migration-related message quantities declined after 2018, the percentage those
messages represent from the year’s total have an increasing trend.

This might be explained by an overall trend of reduced usage of the Boost mailing list3.
While reading threads manually, we encountered messages where developers discussed why
the mailing list was seeing a decline in usage, and the consensus seemed to be that most

3https://bit.ly/boost-reduced-usage-trend

14

Year

M
es

sa
ge

s

0

20

40

60

80

100

120

140

160
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20
20

21
20

22
20

23

Software migration messages selected per year

Figura 2.4: Distribution of software migration messages found by year

discussions regarding Boost’s development of individual libraries was being conducted in
portals other than the mailing list, like Github and Slack. This observation might also
explain the dramatic reduction in the total number of messages in the mailing list from
2011 onwards.

We can safely conclude, then, that software migration discussion increased in
presence even though the mailing list saw decrease in usage.

Furthermore, in Figures 2.6 and 2.7 we can clearly see peaks in 2015 and 2018. In
these figures, the red color represents C++14 as the most recent standard released that
year, and the green color represents C++17. We can see those peaks in 2015 and 2018
seem to align with C++ releases with a one year delay. This does not happen equally for
C++11 (yellow) nor C++20 (blue) however, although there are peaks in their respective
sections.

This might suggest a correlation between increased occurrence of software
migration discussion and C++ standard releases. The one-year delay observed can
be explained due to resistance in adhering to new standards as soon as they’re released,
either due to bugs in the standard or low expected immediate adherence from C++ deve-
lopers. Similar results were found in the KDE community [11] where researchers observed
that developers take, on average, three to five years to adopt modern features from C++11
onwards.

15

Year

P
er

ce
nt

ag
e

of
 s

of
tw

ar
e

m
ig

ra
tio

n
di

sc
us

si
on

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Software migration discussion (%) per year

Figura 2.5: Percentage of software migration messages found by year

2.5.2 Topics

To answer the second point of interest in research question (1), we derived a list of topics
that were recurring during the manual analysis. We found three main topics:

• C++ Standard Support

Discussions related to dropping or keeping support (migrating or not) to specific C++
standards. This category was the most prevalent one, especially after 2011,
being present in 403 messages (66.8% of total). The standards included were:
C++98, C++03, C++11, C++14, C++17 and C++20.

• Compiler Support

Discussions related to dropping or keeping support (migrating or not) to specific
C++ compilers or compiler families. This category was more prevalent in messages
before 2011, and was found in 118 messages (19.5% of total).

• General Topics

These are topics not entirely related to software migration, but still related to mo-
dernization as a whole. This category was found in 135 messages (22.4% of total).
It includes:

16

Year

M
es

sa
ge

s

0

20

40

60

80

100

120

140

160
19

98
19

99
20

00
20

01
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20
20

21
20

22
20

23

Software migration messages selected per year

Figura 2.6: Distribution of software migration messages found by year, colored by most
recent C++ standard

– Organizational Changes
Discussions regarding management of the Boost Library development commu-
nity, containing topics such as autonomy for breaking changes and modularity
of the release.

– Non-Specific Opinion
These are messages that don’t argue on specific standards or compilers, nor
talk about the management of the group. Instead, they simply show approval
or refusal for previously proposed migration and modernization efforts.

Diving further into the most prevalent topic (C++ Standard Support), we analyzed
what specific standards were most mentioned. As can be seen in Figure 2.8, the most
mentioned C++ standards were C++11 and C++03, by a large margin. C++11 was menti-
oned in 307 (50.9%) of the 603 messages analyzed, and C++03 was mentioned
in 243 (40.3%) of them. All other C++ standards had less than 100 mentions (around
15% presence) each.

While analyzing the mentions of each of these C++ standards, we encountered simila-
rities in C++03 and C++11’s occurrence distributions, which corroborated manual analysis
experience. This inspired a further investigation of both standards in the discussions. We
analyzed how many mentions of C++03 were accompanied by C++11, and found they were

17

Year

P
er

ce
nt

ag
e

of
 s

of
tw

ar
e

m
ig

ra
tio

n
di

sc
us

si
on

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

Software migration discussion (%) per year

Figura 2.7: Percentage of software migration messages found by year, colored by most
recent C++ standard

mentioned together in 188 messages. This means that 77.4% of C++03’s occurrences were
alongside C++11, while 61.2% of C++11’s occurrences were alongside C++03. This sug-
gests C++03 and C++11 were deeply related topics and were mostly mentioned
together in these discussions.

We decided to compute every mutual occurrence of C++ standards and found the only
strong relation between two topics was between C++03 and C++11. Other topics did get
mentioned some amount with each other, but analyzing the proportion from both sides
(as was done for C++03 and C++11) showed other pairs had an imbalanced relation. This
suggests one topic often appeared alongside another, but not vice-versa.

All of this suggests the Boost mailing list talked mostly about C++ stan-
dards in discussions regarding software migration. The two most mentioned
topics were C++11 and C++03, which were majoritarily mentioned together.

2.5.3 Discussion Themes

To answer research question (2), we started by noting down recurring argument types
contained within the analyzed messages. This list was updated throughout the manual
analysis process as we saw new arguments be employed and as we resignified an argument

18

C++ standard

N
um

be
r o

f m
en

tio
ns

0

100

200

300

400

C++98 C++03 C++11 C++14 C++17 C++20

Distribution of C++ standards mentioned

Figura 2.8: Count distribution of C++ standards mentioned

classification when needed. Following this process, we derived themes from these argument
categories, taking into account their overall similarities, grouping and functionality.

In the end, we found three main themes related to software migration. Following is a
description of the themes, along with subthemes and the amount of messages they were
found in. The same themes are seen in Figure 2.9.

• Drivers (23.0% presence)

Reasons developers presented for wanting to migrate, or arguing the community
should migrate to newer versions of C++ standards.

– Desire to invest in C++ innovation (83)
– Cost of maintaining support of older standards (74)
– Arguing older standards are obsolete (19)
– Optimism with userbase’s adoption of newer standards (18)
– Desire to support users of newer standards (15)

• Deterrents (16.5% presence)

The opposite of the drivers, these are reasons developers presented for not wanting
to migrate, arguing the community shouldn’t migrate or not being able to migrate
to newer C++ standards.

19

– Desire to support users of older standards (85)

– Cost of updating to newer standards (29)

– Pessimism with userbase’s adoption of newer standards (24)

– Claiming self incapable of updating to newer standards (9)

– Problem / Bug in newer standards (3)

• Challenges (60.5% presence)

Every type of struggle or conflict found to be the result of the division between
developers who want to migrate and developers who didn’t want to migrate to
newer C++ standards.

– Conflicting opinions on discontinuing support of older standards (220)

– Conflicting opinions on software versioning (104)

– Inter-library dependence problems (73)

– Conflicting opinions on retrocompatibility (60)

– Modernizing on an organizational level (55)

– Conflicts between developers in the community (38)

From the thematic analysis we can easily see that the majority (more than 60%)
of discussion regarding software migration was centered around its challenges.
More specifically, the majority of what was said regarded calls for either discontinuing
support for older C++ standards or keeping it, followed by discussions on versioning.
The manual analysis revealed that, in this context, versioning was often related to the
discontinuation issue (like in the example in Figure 2.10), either as a way of keeping
multiple versions of a library in different C++ standards or discussing the whole library
set release as a whole.

Furthermore, many of the subthemes found are mirrors of eachother. That is,
the "Drivers" and the "Deterrents" categories are fundamentally opposed, and many of
their characteristics mirrored each other, having the same type of argument, only arguing
for opposite reasons. One example of this is the "Cost of maintaining support of older
standards" and "Cost of updating to newer standards" pair of subthemes, which express
the difficulty of interacting with a given C++ standard, but one from a perspective of faci-
litating migration and another from a perspective of opposing it. This can be seen in the
"Challenges"category as well, as all subthemes defined as "conflicting opinions"expressed
ideas both in favor of and against migration-related concepts.

The most popular arguments driving software migration reveal that there was an
interest in spearheading C++ development, and that keeping support of older

20

Software Migration

Deterrents (16.5%)

Desire to support users
of older standards (85)

Cost of updating to
newer standards (29)

Pessimism with userbase's adoption
 of newer standards (24)

Claiming self incapable of updating
to newer standards (9)

Problem / Bug in
newer standards (3)

Challenges (60.5%)

Conflicting opinions

Discontinuation
of support (220)

Software
versioning (104)

Retrocompatibility (60)

Inter-library dependence
problems (73)

Modernizing on an
organizational level (55)

Conflicts bewteen developers
in community (38)

Drivers (23%)

Desire to invest in
C++ innovation (83)

Cost of supporting
older standards (74)

Arguing older standards
are obsolete (19)

Optimism with userbase's adoption
of newer standards (18)

Desire to support users
of newer standards (15)

Figura 2.9: Thematic analysis results

C++ standards holds this progress back. This is corroborated by manual analysis
experience, in which we saw a call for returning Boost to its old reputation as C++ pioneers.
This sort of discussion often led to discussing Boost’s general goals as an organization,
like in Figure 2.11, usually in very lengthy threads.

On the other hand, the most popular arguments deterring software migration reveal
that many developers think that it is very important to keep support for the userbase the
Boost libraries already have - considering users of older standards, often C++03. This,
coupled with the opinion that updating to newer C++ standards is costly and troublesome,
reveals that some developers were more focused in keeping the reliability of
Boost’s libraries and services to those who already use it. This can be seen in
the example in Figure 2.12.

As "Driver" arguments were seen 40% more than "Deterrent" arguments, we see an im-
balance in presence in favor of migrating to newer C++ standards. However, the amount

21

"As <redacted> suggested so many years ago now, it’s long overdue for a separate
Boost v2.x release which is shorn of the backwards compatibility and undermaintained
libraries. (...)"

Figura 2.10: Fragment of message about versioning and discontinuation

"Compiler vendors are not going to focus on improving legacy support for outdated
standards. Why should Boost? (...) The message should be, ’upgrade your com-
piler, or get out of the way. You’re holding everyone else up with your buggy old
non-conforming compiler.’ (...) C++ needs to move forward. Slavish devotion to
backwards compatibility is a burden it can not afford."

Figura 2.11: Fragment of message about how legacy support holds back C++ progress

of discussion mentioning "Challenges"paints software migration as an exten-
sively debated issue, which means it likely was not easily solved or quick to
reach an agreement to. This corroborates the manual analysis experience, in which
we saw many lengthy discussions over migration efforts that often branched out in many
directions (once even mentioning and discussing the bikeshedding concept4).

In general, it seemed that Boost’s overall monolithic approach to relea-
sing its libraries often frustrated developers who wanted to update existing
libraries to newer standards. This extensive and difficult to solve issue tended to lead
whoever is proposing breaking changes to either be negated permission or to be frustrated
with delays and resistance. This was expressed in the "Conflicts between developers in the
community" subtheme, in which, alongside questioning the validity and relevance of each
other’s motivations for proposing or opposing software migration, developers expressed
dissatisfaction and cynicism regarding the overall resistance to migrating that was offered
to their proposals, like shown in Figure 2.13. This sentiment often led to proposals of
changes in organizational aspects, such as making a more modular release process or chan-
ging how strictly policies regarded "breaking changes", such as migrating C++ standards,
which is what is represented in the challenge of "Modernizing on an organizational level".

4https://lists.boost.org/Archives/boost//2013/10/207482.php

"Note also that many corporate users cannot yet switch to C++11 for many reasons
(...) arguing that users can use older versions of Boost is unhelpful since that denies
those users access to new libraries, or fixes to current libraries, even if those libraries
support C++03. (...)"

Figura 2.12: Fragment of message about supporting users of older standards

22

"(...) I’ll freely admit I have given up on trying to make any substantial changes to
Boost. I prototyped (...) a Boost-lite transition layer suitable for a clean Boost fork
(...). Nobody was interested. The community *likes* things just the way they are:
serving the Boost community, and to hell with the entire C++ community. A shame,
and a waste, and I suspect in the long term self defeating."

Figura 2.13: Fragment of message expressing dissatisfaction with resistances to migration

2.6 Discussion

In this section we provide answers to our research questions and then highlight possible
decisions of our research that might threaten the validity of our work.

2.6.1 Answers to our Research Questions

The following were our answers to our proposed research questions. They give an overview
of what we observed through our assessments.

Research question (1): What is the prevalence of software migration dis-
cussions in the Boost mailing list?

The messages we found that were considered as containing software migration discus-
sion represented 0.24% of the entire message quantity in the mailing list from February of
1998 up until May of 2023. The discussions were much more prevalent after 2011, in which
period they represented 0.7% of the whole mailing list. During this period, the discussions
averaged 43.2 messages a year and also averaged 0.94% presence in messages posted in
each year. We also found that software migration discussion increased in presence even
though the mailing list saw a decrease in usage. Furthermore, we found a correlation
between the increase in software migration discussion and C++ standard releases.

The most discussed topic was “C++ Standard Support”. It was present in over two
thirds of all messages analyzed, being in 403 of them. Of the C++ standards mentioned,
C++11 was mentioned in 50.9% of messages and C++03 was mentioned in 40.3%, making
these the most discussed standards. Other standards had less than 15% presence each.
We also found that C++03 and C++11 were mentioned together more often than not.

Research question: (2) What was the nature of the discussion’s contents?
We found that discussions revolved around three main overarching themes: “Drivers

towards software migration”, “Deterrents to software migration” and “Challenges of soft-
ware migration”. The majority of the discussion (over 60%) mentioned the challenges of
migrating. This, even though there was an imbalanced presence in favor of drivers over
deterrents, suggests that software migration was an extensively debated issue, and likely
had no easy solution or quick agreement reached between developers in the community.

23

This even goes as far as causing conflicts between developers in discussions, in which
they expressed dissatisfaction and cynicism regarding resistance to migrating. These sen-
timents often led to proposals of changes on organizational levels, in order to facilitate
migration and reduce the impact of challenges presented.

Regarding the other themes, the drivers revealed that some developers held an interest
in innovating in C++ development, which was hindered by the continued support of older
C++ standards. The deterrents, on the other hand, showed some developers were more
interested in keeping the reliability of Boost’s libraries and services to those who alre-
ady use it. Between these two themes, we also saw mirrored arguments that essentially
presented the same point, but from opposing perspectives.

2.6.2 Threats to validity

Throughout the study, we believe our methods were successful in facilitating and reaching
our objectives. However, there are some points that probably impact our results with
biases coming from our study design decisions.

Our choices to focus our analysis on the Boost community and to reduce our scope
solely to their public mailing list present an important point to consider regarding the
transferrability of our findings. That is, our results speak to how a subsection of Boost’s
message exchanges presented discussions on software migration, and while it may represent
fairly how the organization behaved regarding these efforts and challenges, the same may
not reasonably apply to other developer groups. We believe these results may be, within
reason, extended to other open-source communities of developers, however, we cannot
say the same to closed-source projects and groups whose projects differ considerably from
the type of software the Boost Libraries are. Moreover, our choice to analyze only the
mailing list represents a risk of representativeness of Boost itself, as we learned that many
development-specific discussions moved from the mailing list to other channels like Slack
and Github. We argue, however, that our choice was reasonable enough given that these
other channels are not publicly displayed by Boost, nor are of as easy outside access as
the mailing list is.

Regarding our automated search methods, our initial effort for composing a training
and testing dataset was a crucial step on the whole research. We acknowledge that
these datasets were small and could’ve been biased towards messages that mentioned C++
standards directly. Our manual analysis steps that increased the scope of search were
an attempt to mitigate how impactful this would be to our results. This factor probably
impacted how our messages found were distributed in time, being much more prevalent
after 2011. However, we argue that the focus on this section of time represents more

24

clearly modern issues with software migration, and therefore are still very much relevant
to the recent increased pace of programming language evolution.

Finally, it’s important to consider that, when conducting this type of interpretative
research effort, there is always a risk of compromising neutrality regarding the results. We
cannot eliminate this risk in its entirety due to the subjective nature of what was studied,
which is human behavior regarding a topic. That said, we tried to tailor our methods to
better encapsulate all discussion found related to the topic, minimizing value judgements
regarding expressed opinions in messages. Another point to be considered is that we
did not follow strict existing methods for thematic analysis, like the work presented by
Hoda et. al [20]. We were inspired by works that employ these techniques to analyze our
data in a similar manner, which was simpler in nature, but still yielded the comprehensive
thematic structure presented in section 4.3. We present this point to argue that we believe
our results are credible, as the numbers and themes found showed an overall view of the
discussions that is in line with manual experience gathered during the reading of more
than 2,700 messages.

2.7 Conclusion

In this paper, we presented the results of a thematic analysis based on discussion threads
from the Boost mailing list, which aims to expand our understanding of how developers
discuss migration efforts that target upgrading the C++ language standard version. Af-
ter analyzing 603 messages, we collected evidence that this particular kind of software
migration is one of considerable importance to the Boost community of developers. The
discussions are definitely present and seem to increase in presence over time.

Throughout these discussions, we could see that C++03 and C++11 specifically had
major influence on the discussions between developers at Boost. We saw that the challen-
ges of software migration were avidly discussed, and arguments driving migration often
mirrored arguments deterring it. We found competing interests in the form of desires
to spearhead C++ development and desires to maintain existing code reliable for long-
time users. These discussions were often lengthy and inspired calls for change in the
organization for facilitating modernizing proposals.

Future works to expand these understandings regarding software migration could focus
on analyzing other developer community groups, in order to find similarities and/or diffe-
rences in our results compared to those communities. Additionally, further research could
investigate the impact of organizational structures on the adoption of new standards,
as well as the potential role of automated tools and frameworks in mitigating software
migration challenges.

25

Capítulo 3

Conclusões

Nessa pesquisa foi apresentado um processo de coleta e análise de discussões de desenvolve-
dores sobre migração de software. Mais de 600 mensagens foram analisadas e classificadas,
e uma análise temática foi feita para melhor se apresentar a natureza das discussões.

Os resultados sugerem que o assunto foi amplamente discutido pelos desenvolvedores,
gerando discussões muito extensas e muitas vezes desviando de seu objetivo principal.
Além disso, foi observado que os padrões de C++ mais pertinentes às discussões desse
grupo foram C++03 e C++11, sendo mencionados em mais de 40% de todas as mensagens
analisadas. Dos desafios enfrentados, a característica mais presente foi a de conflitos de
opinião com relação ao objetivo principal dos desenvolvedores. Isso é, havia desenvolve-
dores que desejavam poder utilizar versões de C++mais novas para produzir inovações na
linguagem, mas também havia desenvolvedores cujo interesse era de manter código já em
uso para prover estabilidade e melhorias para seus usuários de longa data. Esses interesses
distintos foram observados como os principais motivadores e dissuasores, respectivamente,
com relação à migração para novos padrões de C++.

Trabalhos futuros nessa via de estudo poderiam expandir os achados de algumas for-
mas. Uma delas seria a de reproduzir o processo com foco em outras comunidades ou
grupos de desenvolvedores de software, a fim de encontrar paralelos e/ou diferenças entre
ambos, e também expandir o conhecimento do impacto da evolução de linguagens em
desenvolvedores. Outra maneira seria investigar qual impacto as estruturas hierárquicas
organizacionais têm nesses processos de migração de software. Outra, ainda, seria inves-
tigar a possibilidade de utilizar ferramentas automatizadas para auxiliar no processo de
migração de software.

26

Referências

[1] Bragagnolo, Santiago, Nicolas Anquetil, Stéphane Ducasse, Abderrahmane Seriai e
Mustapha Derras: Software Migration: A Theoretical Framework. Tese de Doutora-
mento, Inria Lille Nord Europe-Laboratoire CRIStAL-Université de Lille, 2021. 4,
6

[2] Brant, John, Don Roberts, Bill Plendl e Jeff Prince: Extreme maintenance: Trans-
forming delphi into c#. Em Marinescu, Radu, Michele Lanza e Andrian Marcus
(editores): 26th IEEE International Conference on Software Maintenance (ICSM
2010), September 12-18, 2010, Timisoara, Romania, páginas 1–8. IEEE Computer
Society, 2010. https://doi.org/10.1109/ICSM.2010.5609731. 4

[3] Kontogiannis, Kostas, Johannes Martin, Kenny Wong, Richard Gregory, Hausi A.
Müller e John Mylopoulos: Code migration through transformations: an experience
report. Em MacKay, Stephen A. e J. Howard Johnson (editores): Proceedings of
the 1998 conference of the Centre for Advanced Studies on Collaborative Research,
November 30 - December 3, 1998, Toronto, Ontario, Canada, página 13. IBM, 1998.
https://dl.acm.org/citation.cfm?id=783173. 4

[4] Martin, Johannes e Hausi A. Müller: C to java migration experiences. Em 6th Euro-
pean Conference on Software Maintenance and Reengineering (CSMR 2002), 11-13
March 2002, Budapest, Hungary, Proceedings, páginas 143–153. IEEE Computer So-
ciety, 2002. https://doi.org/10.1109/CSMR.2002.995799. 4

[5] Moore, Melody M., Spencer Rugaber e Phil Seaver: Knowledge-based user inter-
face migration. Em Müller, Hausi A. e Mari Georges (editores): Proceedings of
the International Conference on Software Maintenance, ICSM 1994, Victoria, BC,
Canada, September 1994, páginas 72–79. IEEE Computer Society, 1994. https:
//doi.org/10.1109/ICSM.1994.336788. 4

[6] Verhaeghe, Benoît, Anne Etien, Nicolas Anquetil, Abderrahmane Seriai, Laurent
Deruelle, Stéphane Ducasse e Mustapha Derras: GUI migration using MDE from
GWT to angular 6: An industrial case. Em Wang, Xinyu, David Lo e Emad Shihab
(editores): 26th IEEE International Conference on Software Analysis, Evolution and
Reengineering, SANER 2019, Hangzhou, China, February 24-27, 2019, páginas 579–
583. IEEE, 2019. https://doi.org/10.1109/SANER.2019.8667989. 4

[7] Zhou, Hong, Jian Kang, Feng Chen e Hongji Yang: OPTIMA: an ontology-based
platform-specific software migration approach. Em Seventh International Conference

27

https://doi.org/10.1109/ICSM.2010.5609731
https://dl.acm.org/citation.cfm?id=783173
https://doi.org/10.1109/CSMR.2002.995799
https://doi.org/10.1109/ICSM.1994.336788
https://doi.org/10.1109/ICSM.1994.336788
https://doi.org/10.1109/SANER.2019.8667989

on Quality Software (QSIC 2007), 11-12 October 2007, Portland, Oregon, USA, pági-
nas 143–152. IEEE Computer Society, 2007. https://doi.ieeecomputersociety.
org/10.1109/QSIC.2007.40. 4

[8] Cossette, Bradley e Robert J. Walker: Seeking the ground truth: a retroactive study on
the evolution and migration of software libraries. Em Tracz, Will, Martin P. Robillard
e Tevfik Bultan (editores): 20th ACM SIGSOFT Symposium on the Foundations of
Software Engineering (FSE-20), SIGSOFT/FSE’12, Cary, NC, USA - November 11
- 16, 2012, página 55. ACM, 2012. https://doi.org/10.1145/2393596.2393661.
4

[9] Pirkelbauer, Peter, Damian Dechev e Bjarne Stroustrup: Source code rejuvenation
is not refactoring. Em SOFSEM 2010: Theory and Practice of Computer Science:
36th Conference on Current Trends in Theory and Practice of Computer Science,
Špindlerův Mlýn, Czech Republic, January 23-29, 2010. Proceedings 36, páginas 639–
650. Springer, 2010. 4

[10] Lucas, Walter, Rodrigo Bonifácio, Edna Dias Canedo, Diego Marcilio e Fernanda
Lima: Does the introduction of lambda expressions improve the comprehension of java
programs? Em Carmo Machado, Ivan do, Rodrigo Souza, Rita Suzana Pitangueira
Maciel e Cláudio Sant’Anna (editores): Proceedings of the XXXIII Brazilian Sympo-
sium on Software Engineering, SBES 2019, Salvador, Brazil, September 23-27, 2019,
páginas 187–196. ACM, 2019. https://doi.org/10.1145/3350768.3350791. 4

[11] Lucas, Walter, Fausto Carvalho, Rafael Campos Nunes, Rodrigo Bonifácio, João
Saraiva e Paola Accioly: Embracing modern c++ features: An empirical assessment
on the kde community. Journal of Software: Evolution and Process, página e2605,
2023. 4, 5, 7, 15

[12] Overbey, Jeffrey L. e Ralph E. Johnson: Regrowing a language: refactoring tools
allow programming languages to evolve. Em Arora, Shail e Gary T. Leavens (edi-
tores): Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, Oc-
tober 25-29, 2009, Orlando, Florida, USA, páginas 493–502. ACM, 2009. https:
//doi.org/10.1145/1640089.1640127. 4

[13] Nicolini, Thiago, André C. Hora e Eduardo Figueiredo: On the usage of new
javascript features through transpilers: The babel case. IEEE Softw., 41(1):105–112,
2024. https://doi.org/10.1109/MS.2023.3243858. 4

[14] Khadka, Ravi, Belfrit V Batlajery, Amir M Saeidi, Slinger Jansen e Jurriaan Hage:
How do professionals perceive legacy systems and software modernization? Em Pro-
ceedings of the 36th International Conference on Software Engineering, páginas 36–
47, 2014. 4

[15] Swillus, Mark e Andy Zaidman: Sentiment overflow in the testing stack: Analyzing
software testing posts on stack overflow. Journal of Systems and Software, 205:111804,
2023. 5, 8

28

https://doi.ieeecomputersociety.org/10.1109/QSIC.2007.40
https://doi.ieeecomputersociety.org/10.1109/QSIC.2007.40
https://doi.org/10.1145/2393596.2393661
https://doi.org/10.1145/3350768.3350791
https://doi.org/10.1145/1640089.1640127
https://doi.org/10.1145/1640089.1640127
https://doi.org/10.1109/MS.2023.3243858

[16] Tahir, Amjed, Jens Dietrich, Steve Counsell, Sherlock Licorish e Aiko Yamashita:
A large scale study on how developers discuss code smells and anti-pattern in stack
exchange sites. Information and Software Technology, 125:106333, 2020. 5, 8

[17] Bennett, Keith H e Václav T Rajlich: Software maintenance and evolution: a
roadmap. Em Proceedings of the Conference on the Future of Software Engineer-
ing, páginas 73–87, 2000. 6

[18] Layzell, Paul J. e Linda A. Macaulay: An investigation into software maintenance
- perception and practices. J. Softw. Maintenance Res. Pract., 6(3):105–120, 1994.
https://doi.org/10.1002/smr.4360060302. 6

[19] Singh, Raghu: International standard iso/iec 12207 software life cycle processes. Soft-
ware Process Improvement and Practice, 2(1):35–50, 1996. 6

[20] Hoda, Rashina: Socio-technical grounded theory for software engineering. IEEE
Transactions on Software Engineering, 48(10):3808–3832, 2021. 8, 25

[21] Khder, Moaiad Ahmad: Web scraping or web crawling: State of art, techniques,
approaches and application. International Journal of Advances in Soft Computing &
Its Applications, 13(3), 2021. 10

[22] Mammone, Alessia, Marco Turchi e Nello Cristianini: Support vector machines. Wiley
Interdisciplinary Reviews: Computational Statistics, 1(3):283–289, 2009. 10

[23] Bafna, Prafulla, Dhanya Pramod e Anagha Vaidya: Document clustering: Tf-idf
approach. Em 2016 International Conference on Electrical, Electronics, and Opti-
mization Techniques (ICEEOT), páginas 61–66. IEEE, 2016. 11

[24] Chowdhary, KR1442 e KR Chowdhary: Natural language processing. Fundamentals
of artificial intelligence, páginas 603–649, 2020. 11

[25] Qader, Wisam A, Musa M Ameen e Bilal I Ahmed: An overview of bag of words;
importance, implementation, applications, and challenges. Em 2019 international
engineering conference (IEC), páginas 200–204. IEEE, 2019. 11

29

https://doi.org/10.1002/smr.4360060302

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Artigo: ``Mining Discussions on Software Migration: A study of the Boost mailing list regarding C++ code evolution''
	Abstract
	Introduction
	Background and Related Work
	Software Maintenance
	Software Migration
	Related Work

	Study Settings
	Data Collection and Filtering
	Data Analysis

	Analysis Results
	Prevalence
	Topics
	Discussion Themes

	Discussion
	Answers to our Research Questions
	Threats to validity

	Conclusion

	Conclusões
	Referências

