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Abstract—This article explores the domain of natural language
translation to Cypher Query Language within the context of
graph databases, focusing on the task of Text-to-CQL conversion.
Leveraging a small 7-billion-parameter language model, we inves-
tigate the impact of prompt-engineering techniques on language
model performance. Our experiments reveal insights into the
effectiveness of different approaches, including Execution-Based
Self-Consistency and Embedding-Assisted Few-Shot prompting.
Additionally, we introduce a small annotated dataset constructed
from official publications of a Brazilian government gazette.
The results demonstrate that the Embedding-Assisted approach
significantly enhances the accuracy of the small model, achieving
an average result of 55.36%. When combined with Execution-
Based Self-Consistency, the approach showcases consistent im-
provements, leading to an average result of 58.69%. Moreover,
a comparative analysis with a larger 70-billion-parameter model
achieved a result of 48.88%, emphasizing the efficiency gains
achievable with the smaller model. The findings underscore
the significance of prompt engineering in enhancing language
generation capabilities for Text-to-CQL tasks, providing valuable
insights for natural language interactions with graph databases.
The study contributes to the evolving field of natural language
translation to query languages and guides prompt-engineering
techniques for efficient and accurate interactions with graph
databases.

Index Terms—NLP, Text-to-CQL, Prompt Engineering, LLM

I. INTRODUCTION

In order to retrieve stored information, many information
systems and software applications interact with database man-
agement systems (DBMS) through a set of specific data query
language (DQL) commands. For the majority of relational-
based DBMS, the Structured Query Language (SQL) has been
the dominant standard so far, although each DBMS provider
may offer its type of DQL to the clients; for example, in Neo4j,
a graph-based database employs its language called the Cypher
Query Language (CQL). CQL language syntax differs from
the traditional SQL standard and is used to query information
related to nodes, properties, and relationships between nodes.

Recently, there has been an important use of Large Lan-
guage Models (LLM) such as OpenAI GPT [1], Google BARD

[2], and GitHub CoPilot [1] to assist in writing code snippets
without prior knowledge in programming language. These
models accept natural language inputs such as “How to write a
recursive function in Python,” or “How to write the bubble sort
algorithm in Java” and output the respective code. Similarly,
in the area of DBMS, a user wants to have a query that
answers a specific question; for instance, he/she wants to
know how to write a SQL query that brings in its results the
answer to the question “What is the number of employees
in company XPTO,” so he/she would provide the following
natural language input to the LLM: “Given the following
database schema [SCHEMA], What is the SQL query to obtain
the number of employees working at XPTO company?”. Then
the output should be similar to: “SELECT count(*) FROM
employees WHERE company = ’XPTO’”. However, these
LLMs might produce suboptimal outputs without an ideal
designed prompt [1].

Following this premise and also knowing that the freely
available model called Llamma can achieve comparable re-
sults with the state-of-the-arte models in inference tasks [3],
this work presents a study on several prompting engineering
techniques to leverage the power of Llamma to produce CQL
queries based on natural language input of a user, in other
words, perform a Text-to-CQL.

To perform this experiment, we used a database constituted
by publications of the Official Gazette of the Federal District
and constructed by the DODFMiner project [4], [5], in which
the data is stored in a graph DBMS and is accessible through
CQL query language. With this data, we create a dataset that
contains CQL queries that answer the most common question
of the users of this system. Thus, we could evaluate the
accuracy of an LLM in combination with prompt engineering
techniques to perform translation of the natural language
question to CQL query.

The main contributions of this work are:
• A small annotated dataset containing natural language

questions and respective CQL queries.



• A Few-Shot approach for LLMs in-context learning on
Text-to-CQL.

• Exploration of Execution-Based Self-Consistency on
Text-to-CQL alongside a proposed Embedding-Assisted
Few-Shot method.

This paper is structured as follows. Section II details the
related works in this line of study. Section III describes the
proposed method and its constituting steps. Section IV relates
the results obtained. Sections V, VI, and VII conclude this
paper and discuss possibilities for future work.

II. RELATED WORK

While exploring related works in natural language con-
version to query languages has emphasized the crucial role
of LLMs adaptation, mainly through techniques like Few-
Shot prompting [1] and fine-tuning, we identified a gap in
the literature. This gap results from the absence of extensive
annotated datasets, impeding the execution of experiments and
fine-tuning processes tailored explicitly for Text-to-CQL tasks.
Despite this gap, the author of [6] presents a significant contri-
bution in this context. They introduced SpCQL, a dataset fea-
turing 10,000 manually annotated natural language questions
and corresponding Cypher queries, and proposed a Seq2Seq
framework baseline on this newly curated corpus. Notably,
it is essential to mention that the dataset is predominantly in
Chinese. Although their results may not have been satisfactory,
achieving only 2.6% as the best result, their work shed light
and inspired research opportunities for the Text-to-CQL task.

Given the relatively unexplored Text-to-CQL as a research
area, this study briefly introduces the Text-to-SQL task. We
explore some works that implemented Fine-Tuning and Few-
Shot approaches using extensive datasets. WikiSQL [7] and
Spider [8] are the most well-known datasets on which state-of-
the-art models base their experiments. A significant distinction
between the two is that WikiSQL is a dataset designed
for single-table queries, whereas Spider encompasses queries
involving multiple tables using Joins. However, excluding
SpCQL [6], we did not find any dataset tailored explicitly
for the Cypher language of Neo4j.

Experiments aim for more realistic scenarios focusing on the
Spider dataset for their Seq2Seq model training. One of the
experiments achieving high results on the dataset is DIN-SQL
[9], which employed a four-step approach to tackle the query
translation problem. These steps include Schema linking,
Query classification and Decomposition, SQL Generation, and
Self Correction. Query Classification and Decomposition are
stages in which prompt-engineering techniques are applied to
guide the LLM to follow a logical analysis and decomposition
of the natural language question into segments of the SQL
query. The self-correction mechanism represents an additional
step where the generated query is fed back into an LLM to
verify potential errors.

Following a similar line of study, [10] proposed Few-Shot
SQL-PaLM and Fine-Tuned SQL-PaLM, a prompt design and
a fine-tuning approach that leverages the PaLM-2 model [11]
as its foundation. This work pushed the state-of-the-art in both

Few-Shot an Fine-Tuning approaches and represents a mile-
stone in the field, achieving an impressive 77.3% accuracy on
the Spider test suite with Few-Shot SQL-PaLM, significantly
surpassing the prior state-of-the-art in fine-tuning settings by
4%. Furthermore, the results demonstrate that the fine-tuned
SQL-PaLM outperforms this benchmark by an additional 1%,
underscoring its effectiveness in natural language to SQL
conversion tasks.

Furthermore, building upon the advancements in Text-to-
SQL parsing, the Graphix-T5 [12] model emerges as the cur-
rent state-of-the-art, marking a significant stride in the domain.
It extends the capabilities of the T5 [13] pretrained text-to-
text transformer and proposed the GRAPHIX-T5 architecture,
integrating specially designed graph-aware layers with the
standard pre-trained transformer model.

While the Graphix-T5 model stands as the current pinna-
cle in Text-to-SQL parsing, it is essential to acknowledge
the trade-offs associated with its achievement. Graphix-T5
leverages the strategy of fine-tuning, a process known for
its remarkable effectiveness in tailoring pre-trained models to
specific tasks. However, fine-tuning comes with inherent chal-
lenges, notably its high computational cost and susceptibility
to overfitting the training data. The extensive customization
involved in fine-tuning makes it less adaptable to new data and
poses challenges in scenarios where computational resources
are constrained.

In contrast to fine-tuning, there is the Few-Shot prompt
engineering approach, such as in DIN SQL [9] and Few-
Shot SQL-PaLM [10]. This approach, compared to fine-tuning
[14] [15], eliminates the need for a dedicated training phase,
resulting in significantly lower computational requirements.
This characteristic is precious in Text-to-SQL parsing, where
SQL encompasses diverse dialects. Additionally, DIN SQL
and Few-Shot SQL-PaLM’s adaptability to new data make
them good choices for the Text-to-SQL task, as they offer ease
of integration with the evolving language patterns, syntax, and
variations in SQL. The absence of a dedicated training phase
makes these approaches highly efficient, underscoring their
suitability for scenarios where the computational resource is
not abundant.

The Few-Shot prompting in LLMs, known as in-context
learning, was initially identified in [1]. By incorporating a lim-
ited number of demonstrations, accompanied by instructions,
within the prompt text to establish a contextual basis, LLMs
have demonstrated the ability to generalize to novel examples
and tasks in the same format without necessitating model
adaptation. [16] reveals that the effectiveness of Few-Shot
prompting is more pronounced in LLMs exceeding a certain
parameter size threshold. The notable success of in-context
learning has sparked the development of advanced prompting
strategies, such as Chain-of-Thought prompting (CoT) [17].
Unlike Few-Shot prompting, CoT involves constructing a
logical sequence of thoughts within the model’s prompt. This
approach aims to guide the model in generating responses with
a coherent and deeper reasoning structure. CoT enables the
model to maintain logical consistency throughout its gener-



ated output by chaining concepts together strategically. This
technique mainly benefits tasks requiring intricate inferential
reasoning and a more profound understanding of contextual
information.

In reviewing the related works, many strategies and methods
discussed have primarily been tested in the context of Text-to-
SQL tasks. The existing articles have demonstrated progress
in enhancing natural language understanding and conversion
to SQL queries. Therefore, based on the mentioned works,
this article extends the current understanding by investigating
the effectiveness of the established strategies in Text-to-SQL
when applied to the task of Text-to-CQL.

III. METHODOLOGY

This section outlines the experimental methodology. Sub-
section III-A details the various approaches employed to
address the Text-to-Cypher (Text-to-CQL) task, introducing
the Embedding-Assisted Few-Shot prompt engineering method
and evaluating its effectiveness in the conducted experiments,
revealing the gains achieved in the task. Subsection III-B
describes the dataset utilized for the experiments and outlines
its creation process. Subsection III-C discusses the chosen
language model.

A. Experimental Approaches

We adopted a combination of prompt-engineering tech-
niques to address the Text-to-cipher task, as summarized in
Table I. Notably, the Few-Shot method was the foundation for
all experiments, leveraging a validated approach from SQL
PaLM [10]. This method incorporated database information,
including Nodes, Properties, and Relationships pertinent to the
Neo4j database. A set of five demonstrations, consisting of
pairs of questions in natural language and their corresponding
queries, was included to provide context. The format of the
input context in the Few-Shot method is expressed as follows:

SCHEMA + LIST OF DEMONSTRATIONS[5]. (1)

TABLE I: Method Combinations Employed in Text-to-CQL

Few-Shot
Execution-Based

Self-Consistency

Embedding-Assisted

Few-Shot

FS Baseline X

FS + EBSC X X

FS + EA X X

FS + EA + EBSC X X X

The temperature configuration in LLMs applied to tasks
involving code or data is typically set to low values to
produce less creative and imaginative text [18], [19]. We
systematically varied hyperparameter values for temperature
during text generation for each experiment, ranging from 0.1 to
1.5. This exploration aimed to assess the model’s sensitivity to
different levels of randomness with each prompt-engineering

technique, providing insights into how temperature changes
influence the quality and variability of the model’s output in
Text-to-CQL.

1) Execution-Based Self-Consistency (EBSC) Few-Shot:
This approach focused on leveraging EBSC [10] to refine
the model’s output. The Execution-Based [20], [21] and Self-
Consistency [22] methods, collectively known as Execution-
Based Self-Consistency, were employed. This approach, il-
lustrated in Fig. 1, aims to make the model generate its
answer multiple times, enhancing diversity. Outputs with failed
execution are discarded, and those with the lowest occurrence
are excluded, assuming the highest occurrence corresponds to
the correct answer.

Fig. 1: Execution-Based Self-Consistency

2) Embedding-Assisted (EA) Few-Shot: In the realm of
NLP, semantic similarity [23] is a crucial task that evaluates
the association between texts or documents through a specified
metric. We proposed the EA prompt engineering method, us-
ing the Multilingual MPNET Base embeddings [24] alongside
the application of cosine similarity [25]. This approach creates
a set of contextual examples from other questions closely
aligned with the meaning of the target question, enhancing
the model’s ability to generalize.

3) Embedding-Assisted Execution-Based Self-Consistency
(EA+EBSC) Few-Shot: This experiment integrated
Embedding-Assisted Few-Shot and Execution-Based Self-
Consistency, aiming to combine the strengths of each
method for improved language generation and assessing their
performance together.



B. Dataset
Government gazettes are official documents to disseminate

authoritative announcements, decisions, and activities to the
public. These publications offer a wealth of information,
encompassing various topics such as actions about civil ser-
vants (appointments, dismissals, replacements, etc.), bidding
processes, contract statements, and other pertinent subjects
involving the utilization of public resources [26]. The Federal
Government and all Brazilian federative units consistently
publish gazettes daily in Brazil. One of these federative
units, the Official Gazette of the Federal District (DODF -
Diário Oficial do Distrito Federal, in Portuguese), has been in
circulation since 1960. The editions of DODF from October
1967 to April 2020 exist solely in PDF format, while those
published since May 2020 are also accessible in JSON format.
Notably, the DODF is organized into segments known as
acts, which are further categorized into three sections. This
study specifically concentrates on the third section of the
document, which comprises information about contracts and
public bidding process.

To address questions concerning the third section of the
Official Gazette, we curated a small dataset comprising 60
questions with their respective CQL queries. These questions
cover users’ main inquiries regarding acts of contracts, bidding
processes, and their respective life-cycle [5]. The queries were
generated in an equal ratio based on the number of relation-
ships used, as illustrated in Table II, comprising 20 items with
zero relationships, 20 items with one relationship, and 20 items
with two relationships. This variation in complexity within
the Few-Shot context aims to accommodate the increasing
complexity associated with more relationships in queries.

Additionally, it is important to grasp the distinction be-
tween queries involving zero, one, or two relationships in
Cypher. When a query is constructed without the inclusion of
relationships (zero relationships), it focuses on specific node
properties without considering connections to other elements
in the graph. For instance, a question regarding the count of
bidding acts can be mapped to a query without relationships,
as illustrated below:
Q u e s t i o n : Quantos a t o s s ã o de l i c i t a ç ã o ?

MATCH ( a : Ato )
WHERE a . t i p o = ’ L i c i t a ç ão ’
RETURN COUNT( a )

On the other hand, queries incorporating one relationship
(one relationship) are designed to explore direct connections
between entities in the graph. Taking an example of a question
about acts belonging to a specific organization, it generates a
one-relationship query:
Q u e s t i o n : Quais a t o s pe r t encem ao ó rg ã o ’ Casa C i v i l ’ ?

MATCH ( a : Ato ) − [ :PERTENCE]−>(o : Orgao )
WHERE o . o rgao = ’ Casa C i v i l ’
RETURN a

Finally, queries involving two relationships (two relation-
ships) further enhance complexity, allowing for deeper in-
vestigations into patterns of connections. For instance, when

inquiring about the number of processes linked to a specific
organization, the following two-relationship query can be
formulated:

Q u e s t i o n : Quantos p r o c e s s o s e s t ã o v i n c u l a d o s ao ó rg ã o
’ T r i b u n a l de J u s t i ç a ’ ?

MATCH ( a : Ato ) − [ : POSSUI]−>(p : P r o c e s s o ) ,
( a ) − [ :PERTENCE]−>(o : Orgao )

WHERE o . o rgao = ’ T r i b u n a l de J u s t i ç a ’
RETURN COUNT( p )

TABLE II: Dataset Description Grouped by Number of Rela-
tionships in the Cypher Queries (Zero, One, Two)

Relationships Zero One Two Total

Instances 20 20 20 60

C. Models

Due to limited access to computational resources necessary
for large-scale models with tens of billions of parameters,
we opted for a smaller model. This decision introduced an
additional challenge to the experiment, as model performance
is observed to be proportional to the number of parameters
[16]. Specifically, we utilized the Llama 2 7b model from the
META organization [3], consisting of 7 billion parameters.
Additionally, we compared results with the 70 billion param-
eters Llama 2 available in the Petals [27] collaborative system
for inference and fine-tuning of large models.

TABLE III: Comparison of Llama 2 7b and Llama 2 70b
Models

Model Specification Llama 2 7b Llama 2 70b

Number of Parameters 7× 109 70× 109

Context Length 4k tokens 4k tokens
Training Tokens 2 trillion 2 trillion
Learning Rate 3.0× 10−4 1.5× 10−4

Grouped-Query Attention (GQA) No Yes

IV. RESULTS

The results section addresses the evaluation and analysis
of the outcomes obtained in our study. The Subsection IV-A
highlights the chosen evaluation metric for measuring the
model’s performance. In Subsection IV-B, we delve into result
analysis, interpreting and contextualizing the findings to unveil
insights into the results.

A. Evaluation

This subsection presents the methodology for assessing the
model’s performance in each experiment. The chosen perfor-
mance indicator is the Execution Accuracy, which compares
the results obtained by executing the query generated by the
model with those derived from the execution of the “Ground
Truth” query. The formula for Execution Accuracy (ACC) is
defined as:



ACC =
Number of Execution Results Identical to Ground Truth

Total Items in the Dataset
(2)

This formula quantifies the model’s accuracy by determin-
ing the ratio of execution results that match the Ground Truth
to the total number of items in the dataset.

B. Result Analysis

In this subsection, we investigate the impact of the Baseline,
EBSC, EA, and EA+EBSC methods on the Llama 2 7b model.
Using the ACC metric, we assess the performance of each
method and evaluate how temperature variations can influence
their results. Table IV presented the model performance for
each approach in a 0.1, 0.3, and 0.5 temperature range.

The baseline Few-Shot (FS) approach with the Llama 2 7b
model achieved the lowest average ACC result at 22.21%,
and exhibited varying performance at different temperatures.
The highest result was achieved at a temperature of 0.1 with
24.44%. The performance declined with higher temperatures,
indicating sensitivity to the temperature parameter.

Utilizing FS+EBSC improved 1.11% in the average ACC
performance. At a temperature of 0.3, it achieved its highest
result with 25.55%. This method alone proved ineffective in
refining the model’s output, contributing to an Average TS
result of 23.32%.

The EA method significantly enhanced the baseline perfor-
mance at 33.15%. At a temperature of 0.1, the ACC result
reached 57.22%, showcasing the effectiveness of leveraging
embeddings and cosine similarity to generate contextually
relevant examples. The average ACC result across all tem-
peratures was 55.36%.

TABLE IV: ACC Results of Different Prompt-Engineering
Methods in the Llama 2 7b Model

Method Temperature 0.1 Temperature 0.3 Temperature 0.5 Avg ACC

FS Baseline 24.44% 23.88% 18.33% 22.21%

FS + EBSC 19.99% 25.55% 24.44% 23.32%

FS + EA 57.22% 54.99% 53.88% 55.36%

FS + EA + EBSC 58.88% 61.66% 55.55% 58.69%

Combining EA + EBSC yielded further improvements in
the Llama 2 7b model’s performance by 36.48% compared to
the baseline, indicating a successful combined effect between
the two methods. Notably, at a temperature of 0.3, the ACC
reached 61.66%. The average ACC across all temperatures
was 58.69%, the highest across all the previous. These results
indicate the effectiveness of prompt-engineering techniques,
notably EA + EBSC, in enhancing the Llama 2 7b model’s
language generation capabilities for the Text-to-Cypher task.
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Fig. 2: TS Results with Temperature Variation.
Blue: FS, Red: EBSC, Green: EA, Purple: EA+EBSC

C. Temperature Range Analysis

Moreover, Figure 2 illustrated that all experiments had their
worst results at 1.5 temperature. This result supports the choice
in this and other studies that opted for low temperatures for
tasks involving code generation [18], [19]. Fig. 3 demonstrates
how the ACC values dropped when comparing temperatures
of 0.1 and 1.5. With a temperature of 1.5, the baseline FS
achieved 1.67% ACC, the lowest value. All other methods
were also heavily impacted at 1.5 temperature, with EBSC at
9.44%, EA at 11.11%, and EA+EBSC at 30%.

The Baseline FS had the most significant reduction at 1.5
temperature, reaching approximately 6% of its value at 0.1
temperature. The EA method also experienced a significant
decline in ACC, reaching only 19% at 1.5 temperature com-
pared to its result at 0.1. Methods incorporating EBSC showed
more resilience to the temperature increase to 1.5, with EBSC
reaching approximately 47% and EA+EBSC reaching 51% of
their results at 0.1 temperature. This demonstrates that even
with a more random model at a higher temperature, EBSC can
maintain a sure consistency in outputs, tending towards more
desirable result choices.

D. Larger Model Comparison

A comparative analysis was conducted by employing the
baseline method with a larger Llama 2 model containing 70
billion parameters. The outcomes were compared to those
of the 7-billion-parameter model, providing insights into
the effectiveness of prompt-engineering techniques across
models of different scales as demonstrated at 4. EA + EBSC
improved by 9.81% over the Llama 2 70b Few-Shot method,
underscoring the importance of considering computational
resources when choosing the model size, as the smaller
model variants can still achieve competitive performance with
appropriate prompt engineering.
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V. CONCLUSION

This work emphasized the need for improved database
accessibility and eliminating the requirement for users to
master query language syntax. The study focused on overcom-
ing these challenges through innovative approaches, primarily
emphasizing the Embedding-Assisted Few-Shot method.

The Embedding-Assisted Few-Shot approach emerged as a
key contribution, demonstrating its effectiveness. This tech-
nique leverages embeddings and cosine similarity to gener-
ate contextually relevant examples, resulting in a remarkable
performance boost. The experiments validated the use of the
Embedding-Assisted Few-Shot method and underscored its
potential to enhance language model capabilities in Text-to-
Cypher tasks.

Furthermore, the comparative analysis with the Llama 2
70b model revealed that competitive results could be achieved

through appropriate prompt engineering even with less pow-
erful hardware. This finding emphasizes the importance of
considering computational resources when selecting model
sizes and highlights the efficiency gains achievable with the
proper techniques.

Notably, the study demonstrated the practical applica-
bility of Text-to-Cypher scenarios in a real-world con-
text—specifically. The potential use cases include applications
such as chatbots or question-answering systems, facilitating
user access to database information without requiring intricate
query syntax.

In summary, this work not only tackled the initial challenges
posed in the introduction but also provided potential solutions
and valuable insights. The Embedding-Assisted Execution-
Based Self-Consistency Few-Shot method emerged as a pow-
erful combination for achieving effective and efficient lan-
guage generation in Text-to-Cypher tasks. The demonstrated
applicability in a real-world scenario further reinforces the
significance and relevance of this study in advancing the field.

VI. LIMITATIONS

Datasets for Text-to-CQL are scarce, posing a challenge for
experiments in this research domain. Also, the model selection
introduces another challenge, given that the dataset questions
are in Portuguese. Pre-trained Large Language Models (LLMs)
are primarily trained on English data, resulting in significantly
better performance on tasks specified in English. For instance,
the Llama 2 model [3] was trained with 89.70% of the data
in English, with only 0.09% of the data in Portuguese.

Furthermore, it is essential to acknowledge that the size of
our dataset, while representative of real user queries, may be
considered small. This limitation could impact the model’s
ability to generalize across a broader range of scenarios.

VII. FUTURE WORK

For future research stemming from this study, we can derive
inspiration to curate a more expansive dataset. This augmented
dataset aims to cover a spectrum of diverse databases and
include variations in language, thereby fostering a more com-
prehensive and multilingual environment.

We can adopt a fine-tuning methodology by utilizing this en-
riched dataset and harnessing ample computational resources.
The goal of this approach is to refine a Text-to-CQL domain-
specific LLM. The fine-tuning process ensures a targeted
adaptation, optimizing the LLM’s performance and enhancing
its proficiency in handling the complexities inherent in CQL
queries.

Furthermore, we can explore these approaches using larger
models like GPT-4 [28] and BARD [2]. Assessing these ad-
vanced models helps understand their scalability and provides
insights into their effectiveness in handling complex language
nuances in the context of Text-to-Cypher queries. This com-
prehensive exploration contributes to a better understanding
of their practical applicability and potential trade-offs in real-
world scenarios.
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VIII. SUPPLEMENTARY MATERIAL

A. Few-Shot Prompt Example

Esse é um schema de um banco Neo4j orientado à grafos de uma base de dados do Diário Oficial do Distrito Federal.
O schema possui Nós, Relacionamentos.

SCHEMA

Nós:

Ato {secao: STRING, texto: STRING,
tipo: STRING, titulo: STRING}
Orgao {orgao: STRING}
Processo {processo: STRING}
Data {data: STRING}

Relacionamentos:

(Ato)-[:PERTENCE]->(Orgao)
(Ato)-[:POSSUI]->(Processo)
(Ato)-[:PUBLICADO]->(Data)

FIM SCHEMA

O objetivo da tarefa é traduzir as perguntas de um usuário sobre a base de dados para uma query Cypher que vai
consultar o banco Neo4j.

Observações:
- As datas são strings, então para fazer ordenação ou comparação precisamos usar funções da biblioteca APOC do Neo4j.
- A timeline de um processo é o conjunto de atos que estão ligados por um mesmo processo ordenados pela data de
publicação.

Aqui vai um exemplo de como traduzir uma pergunta para uma query:

EXEMPLO

Quais datas distintas são de 2023?

QUERY:

MATCH
(d:Data)
WHERE d.data CONTAINS ’2023’
RETURN DISTINCT d

FIM QUERY

FIM EXEMPLO

Aqui vai um exemplo de como traduzir uma pergunta para uma query:

EXEMPLO



Quais processos ligam pelo menos 30 atos?

QUERY:

MATCH
(a:Ato)-[:POSSUI]->(p:Processo)
WITH COUNT(a) as quantidade, p
WHERE quantidade >= 30
RETURN p

FIM QUERY

FIM EXEMPLO

Aqui vai um exemplo de como traduzir uma pergunta para uma query:

EXEMPLO

Quais atos de ’Decisão’ estão vinculados ao órgão ’Tribunal de Justiça’?

QUERY:

MATCH
(a:Ato)-[:PERTENCE]->(o:Orgao)
WHERE a.tipo = ’Decisão’ AND o.orgao = ’Tribunal de Justiça’
RETURN a

FIM QUERY

FIM EXEMPLO

Aqui vai um exemplo de como traduzir uma pergunta para uma query:

EXEMPLO

Que atos da ’Seção iii’ do tipo ’Aviso’ possuem o termo ’inexigibilidade’ em seu tı́tulo?

QUERY:

MATCH
(a:Ato)
WHERE a.secao = ’Seção iii’ AND a.tipo = ’Aviso’ AND a.titulo
CONTAINS ’inexigibilidade’
RETURN a

FIM QUERY

FIM EXEMPLO

Aqui vai um exemplo de como traduzir uma pergunta para uma query:



EXEMPLO

Que atos são de Portaria?

QUERY:

MATCH
(a:Ato)
WHERE a.tipo = ’Portaria’
RETURN a

FIM QUERY

FIM EXEMPLO

Agora vou te dar uma pergunta e você vai me gerar a query Cypher que traduz essa pergunta, levando em
consideração o Schema que foi passado e as observações feitas sobre a base de dados.

PERGUNTA

Quantos atos são de licitação?

QUERY:


