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Machine learning approaches for short-term weather
forecasting from a local weather station

Carolina E. Machado, and Vinı́cius R. P. Borges, Member, IEEE,

Abstract—Weather forecasting is a relevant task that affect the
human activities, including agriculture, transportation, economy,
environment, tourism and entertainment. The weather conditions
are predicted based on complex mathematical models that
require considerable computer resources and data from satellites,
sensors and atmospheric simulations. The successful application
of machine learning techniques for weather forecasting worldwide
motivated us to explore these approaches on weather data from
the Instituto Nacional de Meteorologia (INMET). The goal of this
research is to compare different machine learning techniques
for both weather time-series forecasting and rain prediction
using data from a weather station located in Brası́lia, Distrito
Federal. The weather forecasting is dealt as a regression task,
while the rain prediction is dealt as a classification task. The
proposed methodology consists of several steps including data
collection, preprocessing, sampling via hold-out, hyperparameter
optimization, regression and classification experiments, evalua-
tion and discussion. As for the classification task, the Support
Vector Machines (SVM) presented better results of f1-score when
compared to other methods. The Bidirectional long short-term
memory (BiLSTM) presented better results for the regression
task when compared to other deep learning techniques.

Index Terms—Weather forecasting, long short-term memory,
bidirectional long short-term memory, support vector machine,
random forest, transformers, regression, binary classification

I. INTRODUCTION

The analysis of weather conditions and weather forecasting
play a fundamental role in several fields such as agriculture
[1] [2], aviation [3], public health [4], urban flood prediction
[5] and environment preservation [6]. Traditionally, weather
forecasting is performed based on the results of numerical
models, devised to simulate the physical processes that take
place in the atmosphere. These models consider as input
a series of weather parameters collected from radars and
weather stations in land, as well as remote sensing images
from artificial satellites [7]. As a result, the meteorologists
can monitor the weather conditions in real-time and predict
weather-related events according to the international standards
[8].

The run of numerical simulations require considerable
computational power since they process simultaneously high
amounts of complex data. Although supercomputers are em-
ployed in those tasks, this process is time-consuming and its
reliability depends on the considered range, so short-term fore-
casts present higher accuracies when compared to the longer
ones [9]. This scenario is appropriate to explore alternate
and complementary approaches based on machine learning

Carolina E. Machado and Vinı́cius R. P. Borges are with the Departamento
de Ciência da Computação from Universidade de Brası́lia, Brası́lia, DF, Brazil
e-mail: carolina.machado@aluno.unb.br, viniciusrpb@unb.br.

and computer vision for weather forecasting. Furthermore,
several national meteorological organizations worldwide make
their meteorological data available, which comprises satellite
images, weather stations and radars.

The focus of this research is processing data collected from
weather stations, since they are generated on a regular basis
and easy to obtain in the underlying platforms of the weather
agencies. Moreover, weather data can be collected from the
weather stations in a tabular structure, in which the rows
represent a measure of weather condition at a specific time,
while the attributes correspond to the atmospheric parameters,
such as humidity, temperature, wind speed, radiation etc. This
structure is straightforward to be processed by computational
techniques when compared to the images obtained from the
satellite images, which demand additional feature engineering
due to the high dimensionality of the acquired images.

An important aspect of weather data is the temporal nature
of weather data, since a current measure obtained from a
weather station depends on past measurements. In this sense,
weather forecasting is often addressed as a multivariate time
series [10] [11], in which deep learning methods appear as
successful candidates for regression tasks [12]. Additionally,
they can be used to simplify classification and regression tasks,
when compared to common correction methods [13].

Recent literature has published many papers in the subject
of machine and deep learning methods for short-term weather
forecasting and rain prediction. Zhang et al. [14] proposed
a Tiny-RainNet combination of convolutional neural networks
(CNNs) with bidirectional long short-term memory (BiLSTM).
Salman et al. [15] used single layer long short memory model
(LSTM) and multi layers LSTM model to explore the use of
intermediate weather variable related to accuracy prediction
of weather forecasting. Chaudhary et al. [16] explored several
machine learning and deep learning techniques for predicting
rainfall for the next day, in which Random Forest achieved the
best results.

The Instituto Nacional de Meteorologia (INMET) 1, the
Brazilian National Institute of Meteorology, owns several
weather stations distributed in the territory of Brazil and
has the biggest network of stations of Latin America. The
Institute’s Meteorological Data Collection and Distribution
System collects atmospheric characteristics of surface mete-
orological stations in real time as it is equipped with upper air
sounding stations (radiosonde), which are manually operated.
The weather data here considered come from which obtain the
weather conditions for every hour.

1https://portal.inmet.gov.br/
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Thus, we propose to explore the use of machine learning and
deep learning techniques for weather forecasting using data
from the weather station from Brası́lia, Distrito Federal. For
that purpose, we deal weather forecasting as a regression task,
since the weather data is a multivariate time series. The goal
is to predict the incoming weather conditions (temperature,
radiation, pressure, rain, etc) based on a number of past
weather conditions. For that purpose, we evaluate and compare
the performance of state-of-the-art deep learning techniques
for a short-term weather forecasting, which includes Long
Short-Term Memory (LSTM), Bidirectional Long Short-Term
Memory (BiLSTM) and Transformers. Furthermore, classical
machine learning approaches, such as Logistic Regression,
Random Forest and Support Vector Machine (SVM), as well
as Multilayer Perceptron (MLP) are employed for a binary
classification task for rain forecasting, which indicates the
event of rain prediction.

This paper is structured as follows. Section II reports
some recent researches on literature concerning weather data
analysis. Section III details the proposed methods and its
constituting steps. Section IV describes the experimental re-
sults that were conducted on a dataset of a Brazilian weather
station and using quantitative evaluation metrics. Section V
discusses the obtained results. Section VI concludes this paper
and discusses possibilities for future work.

II. RELATED WORK

For this section, a series of recent researches on the field
of rain prediction and weather forecasting will be discussed.
These tasks were used as keywords in order to find related
works related to the proposed goals in this research. We se-
lected some researches that explored deep learning techniques
in time series forecasting problem on weather data.

Zhang et al [17] proposed an improvement of accuracy for
forecasting models. The long short-term memory (LSTM) was
used to build the corrected model along with the K-means
clustering method, which was used to divide the samples.
The experiment uses eight types of meteorological factors as
inputs and the difference between the actual rainfall and the
model-forecast rainfall as output. The relation between the
model forecast and the actual rainfall were learned, allowing
the effective correction of model-forecast rainfall after feature
extraction and continuous debugging training of the LSTM
model.

Salman et al [15] proposed a model for forecasting uni-
variate weather variable and uses single layer Long Short
Memory Model (LSTM) model and multi-layers LSTM model
to explore the effect of intermediate weather variable related
to accuracy prediction. As intermediates data this research
used temperature, pressure, humidity and dew point and vis-
ibility as predicted data. Results show that the multi layer
LSTM presented better values for validation accuracy than
single layer LSTM, achieving 0.860 compared to 0.7243 for
pressure variable. For conclusion, this research shows that the
combination of predicted variable and intermediate variables
can optimize forecasting accuracy in time series data model.

Zhang et al [13] proposed a model in order to improve the
weather forecasting accuracy. The K-Means clustering method

was used to separate the sample in four groups and each one
was modelled by Long Short-Term Memory (LSTM). For this
experiment, real-time rainfall data from the automated stations
in East China and the near-coastal areas of China from the
Central Meteorological Observatory of Shanghai were used
as reference values. The evaluation parameter used after the
model correction was the Root Mean Squared Error (RMSE)
and threat scores (TS). After clustering, the RMSE decreased
by 0.4. The TS of results was also improved by correcting
each rainfall type.

Weyn et al [18] used a Convolutional Neural Network to
build a weather prediction model. The CNN model is able
to forecast changes of weather that are significantly notable
when compared to the capability of the fundamental dynamical
equation. The model proposed is able to forecast realistic
atmospheric states at lead times of 14 days. In conclusion,
as the authors propose a simple model, it was not capable
of outperforming the operational weather model, but machine
learning is an important tool for weather forecasting, in
particular the CNNs.

We detail the proposed methodology for exploring the
machine learning and deep learning techniques on binary
classification and regression tasks using the weather data from
an INMET station.

III. PROPOSED METHODOLOGY

The proposed methodology encompasses the following
tasks:

• Rain prediction: a binary classification process that
receives a single measurement of atmospheric parameters
and predicts if there is a rain event or not;

• Weather forecasting: a regression task that takes into
account the number of past atmospheric measurements
and predicts all atmospheric conditions for the next hour.

We detail next the proposed methodology. Subsection III-A
presents the dataset characteristics. Subsection III-B details the
preprocessing step before training the model. Subsection III-C
describes the classification models considered in this research.
Subsection III-D presents the regression models.

The flowchart in Figure 1 illustrates the required steps for
both rain predict and weather forecasting models. First, a
preprocessing was required to remove irrelevant and redundant
attributes as well as instances with missing values. After
obtaining the preprocessed dataset, a sampling via Holdout
is performed so that the data is divided in training (60%),
validation (20%) and test (20%) sets. The training set is
employed to provide knowledge regarding the weather patterns
over time to the underlying models. The validation set is used
for the hyperparameter optimization of the models. The test
set is then used to evaluate the optimized models for the
aforementioned tasks using the appropriate metrics.

A. Dataset

The dataset chosen for this research was obtained from
the INMET website. The data was collected from an au-
tomatic weather station located in Brası́lia from 02/10/2021
to 08/10/2023, totalizing 21888 instances. Table I shows the



3

Fig. 1: Flowchart for the classification and regression tasks.
Source: author’s own.

TABLE I: Weather parameters of INMET stations describing
the weather conditions.

Parameter Description Units

Date Date of reference Datetime

Hour Hour of reference UTC

Temperature Instant Celsius

Temperature Maximum Celsius

Temperature Minimum Celsius

Humidity Instant Percent

Humidity Maximum Percent

Humidity Minimum Percent

Dew point Instant Celsius

Dew point Maximum Celsius

Dew point Minimum Celsius

Pressure Instant hPa

Pressure Maximum hPa

Pressure Minimum hPa

Wind Speed m/s

Wind Direction Degree

Wind Burst m/s

Radiation UV radiation Kj/m²

Rain Quantity mm

weather parameters as well as their measurement units. Each
measurement corresponds to a weather condition, which is
characterized by 19 atmospheric parameters. Those parameters
are all taken into account to design the classification and
regression models.

B. Data preprocessing

First, a preprocessing is needed to prepare the dataset for
the machine learning models. Figure 2 shows the dataset
before preprocessing and figure 3 shows that same dataset

after preprocessing. We replaced the null values to zero. As
the atmospheric parameters are commonly represented as float
values, we replaced the commas to dots in order to separate the
whole-number from the decimal part, this was necessary due
to the Brazilian format of the dataset. In “Date”, the datetime
stamp was replaced for a integer numeric representation of
each date, in ascending order.

C. Classification models

Machine learning techniques have been successfully applied
in various knowledge domains. Thus, our goal is to explore
their performance on a binary classification task for predicting
rain based on current atmospheric parameters. We chose the
rain prediction task instead of the other atmospheric parame-
ters due to its well-known potential on bringing shortcomings
to the citizens when extreme events happens especially in
urban environments. The literature has reported that rain pre-
diction is a challenging task since it depends on various factors
that cannot be captured only on surface weather stations [19]
[20].

We describe below the considered state-of-the-art tech-
niques for the devised rain prediction task. It is worth noting
that the considered classification models are nowadays known
as shallow learning due to its incapability of handling data
presenting temporal characteristics [21] [22]. In this sense,
the rain prediction task receives a measurement of the current
weather conditions and outputs if there is rain or not.

1) Support Vector Machines (SVM): Figure 4 shows the
architecture of the Support Vector Machines (SVM). Although
SVM can be used for both classification and regression, in this
research it will only be used for the first purpose.

Let T be a a training set with n data xi and respective
labels yi, in which x = [x1, x2, . . . , xn] is a multidimen-
sional data instance and xi is the value of an attribute and
y = [y1, y2, . . . , yn] is in {+1,-1}. T is linearly separable if
it is possible to separate data from classes +1 and −1 by a
hyperplane. The equation of a hyperplane is presented by (1)

f(x) = w · x+ b = 0 (1)

where w·x is the dot product of two vectors w and x, which
w ∈ X is the normal vector to the described hyperplane and
b is the bias.

This equation divides the data space X into two regions:
w · x + b > 0 and w · x + b < 0. A signal function
g(x) = sgn(f(x)), as shown in Eq. (2) can then be used
to obtain classifications, which in this case is the event of rain
prediction.

g(x) = sgn(f(x)) =

{
+1 if w · x+ b > 0
−1 if w · x+ b < 0

(2)

Thus, if the dot product is positive, it means that it is located
above the optimal hyperplan, otherwise, it should be located
below, as shown in Figure 5.



4

Fig. 2: Dataset before preprocessing.

Fig. 3: Dataset after preprocessing.

Fig. 4: Architecture of the SVM classifier. Source: author’s
own.

Fig. 5: Maximum margin hyperplane. Source: author’s own.

2) Logistic Regression (LR): Figure 6 illustrates the dia-
gram representation of the logistic regression model. Eq. (3)
represents the model, in which y is the dependent variable, X
is the independent variable, β0 and β1 are the two unknown
constants that represent the intercept and slope, respectively.
ε is the error term.

Fig. 6: Logistic Regression model. Source: author’s own.

y = β0 + β1X + ε (3)

The primary goal while using logistic regression is to locate
the best-fit line, which implies that the error between the
predicted vs actual values should be kept to a minimum. Eq.
(4) calculates a prediction of y on the basis of X = x. θ1 and
θ2 are the estimates to β̂0 and β̂1, respectively.

ŷ = θ1 + θ2x (4)

3) Random Forest (RF): Figure 7 shows the diagram repre-
sentation of Random Forest (RF). This algorithm combines the
output of multiple decision trees to reach a single prediction
result. The algorithm behaves randomly to choose subsets and
form decision trees to, finally, take an average of these and
predict the task in question. Unlike Artificial Neural Network
(ANN) and SVM, the training procedure for random forest
algorithm is simple and presents high prediction accuracy
[23]. On the other hand, this algorithm can be very time-
consuming as it is computing data for each individual decision
tree. Morever, RF requires more resources to store data since
they are dealing with large datasets.

4) Multilayer Perceptron (MLP): Let x = [x1, x2, . . . , xn]
be a multidimensional data instance, in which xi is the value
of an attribute. Multilayer Perceptron (MLP) is composed by
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Fig. 7: Random Forest diagram. Source: author’s own.

Fig. 8: MLP architecture. Source: author’s own.

several units called Perceptron neurons, which is a mathemat-
ical model described by Eq. (5):

y = φ

( n∑
i=1

xi · wi + b

)
, (5)

where wi is the weight, b is the bias and φ is the activation
function. The weights associated with these neurons are the
parameters, which are adjusted during training. y is the output
value of the perceptron and its value depends on the activation
function, in which sigmoid and rectified linear unit (relu)
are traditional choices. In supervised machine learning, it is
required to compare y with the expected output ŷ (also known
as label) for a given input instance x.

The diagram of a MLP architecture is represented by Figure
8. Generally, MLP contains an input layer, which represents
the dimensions of the input dataset. The architecture in the
example shows the hidden layers 1 and 2, which includes the
neurons and the output layer, which has a number of neurons
that represents the dimension of the output data. It can be seen
that each neuron of a specific layer is connected to the neurons
of the subsequent and previous layers.

The MLP training is part of the context of supervised ma-
chine learning, in which each data sample has a classification
label associated that fits. This occurs due to the algorithm of
backpropagation. The idea of the backpropagation algorithm

Fig. 9: Long Short-Term Memory (LSTM) model structure
diagram. Source: author’s own.

is to recalculate the value of the weights of the vector w of the
last layer of neurons and thus proceed to the previous layers,
backwards.

D. Regression models

1) Long Short-Term Memory (LSTM): The LSTM-based
model is shown in Figure 10. The LSTM is a special cyclic
neural network proposed by Hochreiter and Schmidhuber [24].
This type of Recurrent Neural Network (RNN) differs from
others because of its ’memory blocks’, enabling the LSTM
network to classify, process, and forecast time series with
time intervals of arbitrary length. The structure of the LSTM
network is the same as traditional cyclic neural network, as it
is composed of an input layer, a hidden layer and an output
layer.

The LSTM cell structure is shown in Figure 9. It is com-
posed by one loop connected unit and three gate structures:
Input gate, output gate and forget gate. The formulas of the
forget gate, input gate, output gate, input modulation gate,
cell memory state and hidden layer output of the memory
cell module will be shown in equations (6)–(11), respectively.
This chain structure cell can retain information and uses the
memory from previously measurements to generate the next
measurement, which are controlled by the aforementioned
gates.

ft = σ(W f
x xt +W f

h ht−1 + bf ) (6)

it = σ(W i
xxt +W i

hht−1 + bi) (7)

ot = σ(W o
xxt +W o

hht−1 + bo) (8)

gt = tanh(W g
xxt +W g

hht−1 + bg) (9)

ct = ft ◦ ct−1 + it ◦ c̃t (10)

ht = ot ◦ tanh(ct) (11)

In LSTM, the backpropagation mentioned before on the
MLP model III-C4 also occurs, the difference is that it occurs
through time, as we are dealing with a sequence data like a
time series.
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Fig. 10: LSTM for Time Series. Source: author’s own.

2) Bidirectional Long Short-Term Memory (BiLSTM):
Figure 11 illustrates the BiLSTM architecture. It differs from
LSTM as it adds one additional layer of LSTM and the input
sequence flows backward on it. For instance, if we consider 5
previous measurements, the LSTM will then consider the last
5 measurements and moves forward through time, beginning
from the start of the sequence. Each measurement consists of
19 attributes, which are the columns of the tabular dataset.
The BiLSTM model follows that same path, however it also
moves backwards through time, beginning from the end of the
sequence.

3) Transformer for Time-Series (T-TS): Figure 12 illus-
trates the Transformer architecture [25], which is basically an
encoder-decoder architecture. The encoder block includes a
multi-head attention layer and a feed forward neural network.
Although the decoder block have the same two layers as the
encoder block, it has one additional layer, the masked multi-
head attention. The decoder process is a sequential process in
load prediction, which means that when decoding the feature
vector in position t it should only read the positions before t

(t− 1, t− 2, . . . , 1)

. This particularity is solved by adding this additional layer
mentioned before, proposed by Mnih et al [26].

IV. EXPERIMENTAL RESULTS

This section presents the results for both rain prediction
IV-A and weather forecasting IV-B tasks. As for the first,
the evaluation parameters used to compare different types of
machine learning models were precision, recall and f1-score,
as they are used for categorical attributes since we are dealing
with a classification task.

The proposed methodology was coded in Python 3.10,
in which the data preprocessing was performed using Pan-
das2 and Numpy3. The classification models SVM and
Random Forest were trained using the respective classes
on Scikit-Learn4. Multilayer Perceptron, Logistic Regres-
sion, LSTM, BiLSTM and Transformers were coded using
Keras/TensorFlow5.

2https://pandas.pydata.org/
3https://numpy.org/
4https://scikit-learn.org/stable/
5https://keras.io/

Equation (12) shows how to calculate the precision param-
eter. After correcting the proposed model, we then compare
the predicted output with test data to evaluate the model’s
performance. A confusion matrix is drawn between actual and
predicted data and is used to evaluate the performance of the
trained model. Therefore, the precision is calculated dividing
the true positives (TP) by the sum of TP and false positives
(FP), giving us the real positives from all data classified as
positives.

Precision =
TP

TP + FP
. (12)

Equation (13) gives the percentage of true positives taking
into account the real positives - The sum of true positives (TP)
and false negatives (FN).

Recall =
TP

TP + FN
. (13)

Eq. (14) shows the final f1-score, which is a metric to
measure the general quality of our model.

F1 =
2× Precision×Recall

Precision+Recall
. (14)

As for the Weather Time-series Forecasting, the Root Mean
Squared Error (RMSE), shown in equation (15) was used to
reflect the overall error of the estimated results, where yi is
the ith expected value in the dataset and ŷi is the ith predicted
value. Unlike Mean Squared Error (MSE), RMSE provides a
measure in the same units as the target variable.

RMSE =

∑n
j=1

√
1
n

∑n
i=1(yij − ŷij)2

N
. (15)

The Mean Squared Error (MSE) was also used to evaluate
the models, which is calculated as shown in equation 16.

MSE =
1

n

n∑
i=1

(yi − ŷi)
2. (16)

Another metric considered in this study was the standard
deviation. Equation (17) shows the formula used to calculate
it, where xi represents each value of the dataset, x the mean
of all values and N the number of values in the dataset. This
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Fig. 11: BiLSTM for time series. Source: author’s own.

Fig. 12: Transformer for Time Series [25].

statistical measurement can facilitate the understanding of how
dispersed the data is in relation to the mean, which will be
discussed later in subsection IV-B.

σj =

√∑n
i=1(xij − x)2

N
. (17)

A. Rain Prediction Model

For this task, we consider the 18 atmospheric attributes
as the feature space for training the classification models.
The attribute “Rain” is considered the class label for the

TABLE II: Optimal hyperparameter values for classification
models.

Classification model Optimal hyperparameter values
SVM Kernel = linear, C = 20

MLP
Three hidden layers

Respective number of neurons on each:
128, 16 and 32, learning rate = 10−4

Random Forest max depth = 3
Logistic Regression learning rate = 10−4

prediction task. We converted this attribute to a categorical
binary indicating the registration of rain or not.

In order to obtain the more appropriate classifiers for
each classification model, we performed a hyperparameter
optimization on the validation set. Table II shows the optimal
hyperparameter values for each classification model.

Table III shows the results for the rain prediction task,
which considered precision, recall and f1-score as evaluation
metrics. The models taking into consideration were Logistic
Regression, Random Forest, SVM and MLP. The SVM pre-
sented better results, with a precision of 0.95 and f1-score
of 0.28. Figure 13 shows the confusion matrices for SVM,
Random Forest, Logistic Regression and MLP, respectively. It
is possible to observe that the SVM presented better results,
as there were 4244 correct hits of the total of 4245 non-rainy
instances and 21 correct predictions among the total of 129
rainy instances.

B. Weather time series forecasting

Table V shows the global RMSE and MSE for the weather
time series forecasting. The deep learning methods compared
were LSTM, BiLSTM and Transformers. The input variable
past was varied from values 5, 20 and 50. The BiLSTM model
with past 50 presented better results for RMSE when compared
to others, with a train score of 115.310 and train score of
0.0139 for MSE.

Figure 14 shows the comparison between actual and pre-
dicted values when considering BiLSTM with past 50. This
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TABLE III: F1-Score for rain prediction by considering the Brasilia INMET weather station.

Model Precision Recall F1-Score

Logistic Regression 0.00 0.00 0.00

Random Forest 0.00 0.00 0.00

SVM 0.95 0.16 0.28

Multilayer Perceptron 0.00 0.00 0.00

Fig. 13: Confusion Matrices for SVM, Random Forest, Logistic Regression and MLP, respectively. Source: author’s own.

TABLE IV: Optimal hyperparameter values for regression models.

Regression Model Past Optimal hyperparameter values

LSTM 5
The optimal number of units in the outter LSTM layer is 512,

The optimal number of prob in the Droput layer is 0.3, learning rate = 5e-05

LSTM 20
The optimal number of units in the outter LSTM layer is 512,

The optimal number of prob in the Droput layer is 0.3, learning rate = 5e-05.

LSTM 50
The optimal number of units in the outter LSTM layer is 512,

The optimal number of prob in the Droput layer is 0.3, learning rate = 5e-05.

BiLSTM 5
The optimal number of units in the outter BiLSTM layer is 576,

The optimal number of prob in the Droput layer is 0.3, learning rate = 0.0005.

BiLSTM 20
The optimal number of units in the outter BiLSTM layer is 512,

The optimal number of prob in the Droput layer is 0.3, learning rate = 5e-05.

BiLSTM 50
The optimal number of units in the outter BiLSTM layer is 512,

The optimal number of prob in the Droput layer is 0.3, learning rate = 5e-05.

Transformer 5 learning rate = 0.001

Transformer 20 learning rate = 3e-05

Transformers 50 learning rate = 0.0005

model presented better values for RMSE, thus the graphics
show that the BiLSTM predicted values are similar to the
actual values at some points. On the other hand, some at-
tributes are harder to predict as they present higher values
for standard deviation, which is the case for “Wind Direction”
that presented a standard deviation of 56.0059 in the prediction
model, compared to a value of 86.0656 for actual model, as
shown in table VII.

V. DISCUSSION

Regarding the regression task, the proposed BiLSTM model
with past 50 performed better than the LSTM model. It is
know that the BiLSTM works with more hyperparameters than
LSTM, besides making time-series analysis forward-through
and backwards through time. The BiLSTM can also capture
more long duration patterns when compared to other models
in order to make better predictions. This can be observed by
looking at the RMSE of test data for different values of hyper-
parameter past.

As shown in tables VI and VII, the predicted model was
able to replicate the pattern of standard deviation values when
compared to the actual values. The values were calculated
based on the BiLSTM model with past 50. Attributes like
Temperature, Dew Point and Rain presented similar values of
standard deviation when compared to the actual model. For
other attributes like Wind Direction, the standard deviation is
considerably high and this could lead to a higher error rate,
thus the difference from the predicted to actual model standard
deviation is 30.0597, considering the non-normalized values.

As for the Transformers model, the values for RMSE were
quite high when compared to other models. Zeng et al [27]
questions the effectiveness of Transformer-based solutions for
the long- term time-series forecasting (LTSF) problem, demon-
strating that linear models outperformed LTSF-Transformer
mainly caused by the overfit toward sudden change noises in
the training data, resulting in significant accuracy degradation.

In the classification task, the presence of missing values
possibly affected the models’ performances. Although we
filled these missing values as zero-valued fields, the literature
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TABLE V: Global RMSE and MSE for optimal models by considering the Brasilia INMET weather station.

Model Past Test Score Global RMSE Test Score Global MSE

LSTM 5 134.309 0.0286

LSTM 20 166.974 0.0162

LSTM 50 120.850 0.0156

BiLSTM 5 123.505 0.0132

BiLSTM 20 214.732 0.0183

BiLSTM 50 115.310 0.0139

Transformer 5 262.542 0.0429

Transformer 20 376.079 0.0395

Transformer 50 250.768 0.0402

TABLE VI: Standard deviation of considered attributes for actual and predicted model for normalized values.

Attribute standard deviation of actual model standard deviation of predicted model

Inst. Temperature 0.1829 0.1296

Max. Temperature 0.1902 0.1420

Min. Temperature 0.1840 0.1392

Inst. Humidity 0.2354 0.2063

Max. Humidity 0.2340 0.2120

Min. Humidity 0.2362 0.2209

Inst. Dew Point 0.1698 0.1622

Max. Dew Point 0.1734 0.1801

Min. Dew Point 0.1770 0.1687

Inst. Pressure 0.1504 0.1432

Max. Pressure 0.1519 0.0576

Min. Pressure 0.1511 0.0524

Wind Speed 0.1328 0.1022

Wind Direction 0.2397 0.1560

Wind Raj. 0.1299 0.0965

Radiation 0.2614 0.2264

Rain 0.0436 0.0

TABLE VII: Standard deviation of considered attributes for actual and predicted model for non-normalized values.

Attribute standard deviation of actual model standard deviation of predicted model

Inst. Temperature 3.8046 2.6974

Max. Temperature 3.8421 2.8697

Min. Temperature 3.7353 2.8271

Inst. Humidity 18.3615 16.0970

Max. Humidity 17.7845 16.1164

Min. Humidity 18.6624 17.4526

Inst. Dew Point 3.6524 3.4875

Max. Dew Point 3.6240 3.7659

Min. Dew Point 3.6825 3.5110

Inst. Pressure 2.3020 2.1911

Max. Pressure 2.2792 0.8641

Min. Pressure 2.3120 0.8029

Wind Speed 1.0094 0.7774

Wind Direction 86.0656 56.0059

Wind Raj. 2.1059 1.5649

Radiation 1067.710 924.9722

Rain 1.0211 0.0

has reported strategies for imputation that could be considered.
Alternatively, the instances with missing values can also be

removed, though there would be a gap between measurement
that can be challenging to the classification models.
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Fig. 14: Comparison of actual and predicted values using BiLSTM with past = 50.

Another factor is the considerable class imbalance on
weather data, since non-rain are predominant in the measure-
ments. This led the models to learn better the patterns of non-
rainy weather conditions. Data under-sampling and oversam-
pling strategies could be considered for generating a relative
balanced dataset. However, this procedure is challenging to be
performed in time series as well as it can affect the original
statistical distribution of the dataset.

Finally, the classification models presented limited ability
to handle temporal data, since an atmospheric condition is
dependent on the previous conditions. Thus, the predictions
would be more accurate if the models could take into account
those past measurements. Therefore, the rain prediction could
be derived from the regression task by analyzing the attribute
“Rain”.

VI. CONCLUSION

In this paper, we explored and compared different machine
learning approaches for short-term weather forecasting, as it
is a relevant task for the human activities. We collected data
made available by INMET from a weather station located in
Brası́lia in period of 2 years. The experiment was divided in
two main tasks — Rain prediction and weather time-series
forecasting, which represent classification and regression tasks,
respectively.

Regarding rain forecasting, we modeled a binary classifi-
cation task aiming at predicting if there is rain event or not
by considering atmospheric attributes. For this task, traditional
classification models were employed: SVM, Random Forest,
Logistic Regression and Feedforward Multilayer Perceptron.
The experimental results did not show satisfactory results, in
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which SVM achieved the best F1-Score. Those poor perfor-
mances among all classification models can be attributed to the
considerable class imbalance in the considered weather station
and the presence of missing values.

We also explored the use of deep learning models as a
regression task for time series forecasting, so that all the
atmospheric parameters can be predicted by also taking into
account past weather measurements. We considered the state-
of-the art models LSTM, BiLSTM and Transformers as well as
we varied the number of past measurements when training the
models. The experiments showed that the BiLSTM performing
predictions based on the past 50 measurements yielded the
best results when considering the RMSE and MSE as the
evaluation metrics. However, this method is not efficient when
compared to the other deep learning models due to high time-
consumption. The experiments showed that machine learning
techniques can be used for weather forecasting.

For future work, we plan to consider strategies for the
imputation of missing values, which is a common situation
in the data collected from the weather stations. Furthermore,
weather stations from other cities can also be taken into
account since the performance of models are related to the
local climate characteristics.
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