
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Benchmark de FaaS baseado na arquitetura
distribuída do framework Orama

Bruno Abreu Kamienski

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Orientador
Profa. Dra. Aletéia Patrícia Favacho de Araújo

Brasília
2023

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Benchmark de FaaS baseado na arquitetura
distribuída do framework Orama

Bruno Abreu Kamienski

Monografia apresentada como requisito parcial
para conclusão do Bacharelado em Ciência da Computação

Profa. Dra. Aletéia Patrícia Favacho de Araújo (Orientador)
CIC/UnB

Prof. Dr. Edison Ishikawa Prof. Dr. Marcelo Grandi Mandelli
CIC/UnB CIC/UnB

Profa. Dra. Aletéia Patrícia Favacho de Araújo
CIC/UnB

Prof. Dr. Marcelo Grandi Mandelli
Coordenador do Bacharelado em Ciência da Computação

Brasília, 8 de Dezembro de 2023

Dedicatória

Dedico esse trabalho aos meus familiares, que me deram todo suporte por essa árdua
jornada, como manifestado pela expressão latina "ad astra per aspera".

iii

Agradecimentos

Em primeiro lugar e, acima de todas as coisas, agradeço a Deus. De maneira mais que
especial, agradeço à minha orientadora por ser um farol em meio a mares revoltos.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de
Pessoal de Nível Superior - Brasil (CAPES), por meio do Acesso ao Portal de Periódicos.

iv

Resumo

À medida que soluções orientadas a Function as a Service (FaaS) são adotadas de maneira
generalizada, aumenta o interesse em ferramentas que possibilitam a execução de bench-
marks nesses ambientes. O framework Orama se destaca neste contexto por oferecer uma
solução altamente configurável e escalável para auxiliar no provisionamento e na avali-
ação de desempenho, além de análises comparativas e estatísticas dos resultados aferidos.
Neste trabalho, foi proposta e desenvolvida uma arquitetura distribuída para o framework
Orama, por meio da qual é possível executar benchmarks com altos níveis de concorrência,
bem como disparar requisições geograficamente dispersas, aproximando-se do ambiente
de execução real. Os resultados do experimento mostraram que a arquitetura proposta
foi capaz de dividir a carga entre os workers distribuídos, e conseguiu consolidar ade-
quadamente os resultados de retorno. Além disso, foi possível observar características
específicas dos provedores envolvidos no experimento, como o excelente desempenho do
serviço do tipo FaaS da Alibaba, cujo tempo médio de execução foi o menor dentre todos
os testes realizados e livre de falhas. Google Cloud Function e AWS Lambda registraram
resultados intermediários para tempo de execução, além de registrarem falhas. Por fim, o
Azure Function teve os piores resultados em tempo médio de execução e de inicialização
a frio.

Palavras-chave: Benchmark distribuído, Função como um serviço, framework Orama

v

Abstract

As the adoption of Function-as-a-Service-oriented solutions grows, interest in tools that
enable the execution of benchmarks on these environments increases. The Orama frame-
work stands out in this context by offering a highly configurable and scalable solution to aid
in provisioning, running benchmarks and comparative and statistical analysis of results.
In this work, a distributed architecture for the Orama framework was proposed and imple-
mented, through which it is possible to run benchmarks with high levels of concurrency,
as well as with bursts of geographically dispersed requests, just as in real environments.
The results of the experiment showed that the proposed architecture was able to divide the
workload between the distributed workers and able to consolidate properly in the return of
the results. In addition, it was possible to observe specific characteristics of the providers
involved in the experiment, such as the excellent performance of Alibaba’s FaaS, whose
average execution time was the lowest of the tests and free of failures. Google Cloud
Function and AWS Lambda recorded intermediate results for average execution time and
recorded failures. Finally, Azure Function had the worst results in average execution time
and cold start.

Keywords: Distributed Benchmark, Function-as-a-Service, Orama framework

vi

Sumário

1 Introdução 1
1.1 Problema de Pesquisa . 2

1.1.1 Justificativa . 2
1.1.2 Objetivos . 2

1.2 Metodologia . 2
1.3 Estrutura da Monografia . 3

2 Benchmark de FaaS baseado na arquitetura distribuída do framework
Orama 4

3 Como FaaS integrados a DBaaS se comportam em diferentes regiões:
uma avaliação por meio do framework Orama 16

4 Como FaaS integrados a DBaaS se comportam em diferentes regiões:
uma avaliação por meio do framework Orama (ERAD-CO) 29

5 Conclusão e Trabalhos futuros 33

Referências 34

vii

Lista de Abreviaturas e Siglas

AFC Alibaba Function Compute.

AWS Amazon WebServices Lambda.

AZF Azure Functions.

DBaaS Database as a Service.

FaaS Function as a Service.

GCF Google Cloud Functions.

viii

Capítulo 1

Introdução

A computação em nuvem é hoje utilizada de maneira transparente no cotidiano de grande
parte da população. De forma análoga, os desenvolvedores de software e operadores de
infraestrutura têm buscado se utilizar da computação em nuvem de forma igualmente
transparente. Desta forma, a computação sem servidor [1], como o paradigma de pro-
gramação em nuvem, tem ganhado mais importância nas soluções de software. Function
as a Service (FaaS) [2] permite que os usuários publiquem funções escritas em alguma
linguagem de programação que, quando acionadas, devem ter seu devido processamento
garantido pelo provedor.

Em virtude da demanda de alguns serviços se distribuir por diferentes regiões do pla-
neta, surge a necessidade dos provedores estarem o mais próximo possível do usuário final
e, por consequência, é adotada a estratégia de implantar infraestruturas geograficamente
distribuídas ao redor do mundo. Por outro lado, é comum que diferentes serviços de nu-
vem sejam combinados para compor uma solução, e entre os serviços de armazenamento
de dados, se destaca o Database as a Service (DBaaS) [3] em que os provedores entregam
ambientes de banco de dados totalmente gerenciados por eles.

Considerando a possibilidade de diferentes implementações de FaaS entre regiões im-
pactarem o desempenho das aplicações que as utilizam, foram avaliados os principais
FaaS combinados com serviços DBaaS. Para isso, foram selecionadas cinco regiões do pla-
neta que possuem infraestruturas implantadas nas quais as funções Amazon WebServices
Lambda (AWS) da Amazon, Google Cloud Functions (GCF) da Google, Azure Functi-
ons (AZF) da Microsoft e Alibaba Function Compute (AFC) da Alibaba. O framework
usado para conduzir os testes foi o Orama [4], que será apresentado na capítulo 2. Os
resultados indicam que o Alibaba aparentemente implementa uma estratégia de gestão
mais eficiente para sua plataforma FaaS em todas as regiões avaliadas, pois seu tempo
médio de execução foi o menor entre os provedores, assim como sua taxa de falhas. AWS
e GCF obtiveram resultados intermediários e muito próximos. Já o AFC registrou os

1

piores resultados, tanto em tempo médio de execução quanto em taxas de falhas.

1.1 Problema de Pesquisa

1.1.1 Justificativa

Os provedores de computação em nuvem pública têm expandido a cobertura de seus servi-
ços baseados no paradigma de computação sem servidor, que tem previsão de crescimento
de cerca de 20% em 2023. Desta forma, faz-se necessária a criação de mais ferramentas
para estudar o comportamento dos Function as a Service (FaaS) em diferentes provedores.

1.1.2 Objetivos

O objetivo principal deste trabalho foi avaliar o comportamento das FaaS dos provedores
de nuvem pública Alibaba, Amazon, Google e Microsoft diante de altos níveis de concor-
rência e por meio da avaliação do tempo de resposta médio resultante das execuções de
funções simples e funções atreladas aos serviços de persistência principais destes prove-
dores. Outra característica interessante analisada foi o tempo de execução da primeira
requisição feita ao FaaS após o provisionamento, chamado de “warmup”.

1.2 Metodologia

Levando em consideração a perspectiva de crescimento da adoção de FaaS, bem como
a possibilidade de diferentes implementações entre regiões impactarem o desempenho de
aplicações operando em ambientes dessa natureza, foram avaliados os principais FaaS
em diferentes regiões. Cinco importantes regiões do planeta onde Amazon WebServices
(AWS), Google Cloud Platform (GCF), Azure (AZF) e Alibaba (AFC) possuem infra-
estruturas implantadas foram escolhidas para receber um dos casos de uso disponíveis
do framework Orama [4]. Utilizando FaaS integrado com o respectivo DBaaS, foram
executadas diversas baterias de testes simulando acessos simultâneos a serviços desde 1
requisição simultânea até 4096 acessos paralelos. Os processos de provisionamento de
ambientes FaaS, execução de testes, análise de resultados e desprovisionamento de am-
bientes foram realizados utilizando o framework Orama. O resultado deste trabalho foi
publicado em artigos científicos, os quais serão apresentados ao longo dos próximos capí-
tulos, com a co-autoria de Leonardo Rebouças de Carvalho, criador da versão standalone
do framework Orama, e tendo o autor desta monografia trabalhado principalmente na
expansão da framework para a versão distribuída com o provedor Alibaba.

2

1.3 Estrutura da Monografia

Este trabalho está dividido em cinco capítulos, sendo o primeiro esta introdução com
conceitos básicos e a estrutura do trabalho. Na sequencia, são apresentados três capítulos
com artigos publicados detalhando o trabalho realizado. O Capítulo 2 apresenta o primeiro
artigo, detalhando a dinâmica de construção da versão distribuída do framework Orama, a
fim de analisar uma carga de requisições maior que a sua versão concentrada. O Capítulo
3 apresenta um artigo com a aplicação da versão distribuída em um cenário de persistência
de dados, contexto amplamente utilizado no mercado corporativo e em diversos sistemas
comerciais. O Capítulo 4 apresenta um artigo com uma versão do cenário de persistência
e, ao final, o Capítulo 5 apresenta a discussão das conclusões alcançadas e a indicação de
trabalhos futuros.

3

Capítulo 2

Benchmark de FaaS baseado na
arquitetura distribuída do
framework Orama

4

FaaS Benchmarking over Orama Framework’s Distributed Architecture

Leonardo Rebouças de Carvalho1 a, Bruno Kamienski1 b and Aleteia Araujo1 c

1Computer Science Department, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Brazil
{leouesb, brunosabreu}@gmail.com, aleteia@unb.br

Keywords: Distributed Benchmark, Function-as-a-Service, Orama framework.

Abstract: As the adoption of Function-as-a-Service-oriented solutions grows, interest in tools that enable the execution
of benchmarks on these environments increases. The Orama framework stands out in this context by offering
a highly configurable and scalable solution to aid in provisioning, running benchmarks and comparative and
statistical analysis of results. In this work, a distributed architecture for the Orama framework is presented,
through which it is possible to run benchmarks with high levels of concurrency, as well as with bursts of
geographically dispersed requests, just as in real environments. The results of the experiment showed that the
proposed architecture was able to divide the loads between the distributed workers and able to consolidate
properly in the return of the results. In addition, it was possible to observe specific characteristics of the
providers involved in the experiment, such as the excellent performance of Alibaba Function, whose average
execution time was the lowest of the tests and free of failures. Google Cloud Function and AWS Lambda
recorded intermediate results for average execution time and recorded failures. Finally, Azure Function had
the worst results in average execution time and cold start.

1 INTRODUCTION

Worldwide end-user spending on public cloud ser-
vices is forecast to grow 20.7% to total $591.8 bil-
lion in 2023, up from $490.3 billion in 2022 (Gartner,
2022). All this perspective of growth shows the so-
lidity of this area of computing. Although the main
cloud models, such as Infrastructure-as-a-Service
(IaaS) (MELL and Grance, 2011) and Platform-as-a-
Service (PaaS) still lead the focus of investment, other
models that integrate the archetype of Everything-as-
a-Service (XaaS) (DUAN et al., 2015) also indicate
growth. In this context, serverless-based cloud com-
puting models such as Function-as-a-Service (FaaS)
(Schleier-Smith et al., 2021) have been predicted as
the main programming paradigms of the next genera-
tion of the cloud.

In this scenario, there has been a growing in-
terest in evaluations and benchmark tools that ana-
lyze the deliveries of providers, such as Sebs (Copik
et al., 2021), PanOpticon (Somu et al., 2020), FaaS-
Dom (Maissen et al., 2020), BeFaaS (Grambow et al.,
2021) and Orama framework (Carvalho and Araujo,
2022). However, given the wide range of possibili-

a https://orcid.org/0000-0001-7459-281X
b https://orcid.org/0000-0001-5817-8694
c https://orcid.org/0000-0003-4645-6700

ties for adoptable strategies by providers, as well as
the different regions in which these services can be
implemented, this type of study needs to be increas-
ingly dynamic and adjustable to real-world situations.
Therefore, this work presents a distributed architec-
ture for the Orama framework (Carvalho and Araujo,
2022) in which it is possible to run benchmarks in
FaaS environments, exploring a wider range of sce-
narios than was possible in the standalone version.
Through the master/workers architecture, it is possi-
ble to divide workloads between several instances, in-
cluding geographically dispersed ones, allowing both
the expansion of assessable levels of concurrency, as
well as expanding the capacity to represent a reality
of distributed demand.

In experiments, it was verified that the distributed
architecture allows high levels of requests in compar-
ison to the standalone version. In addition, it was
found that the performance calculated between the
scenario whose workers were in the same region and
the scenario in which the workers were geograph-
ically spread maintained equivalent results, demon-
strating that the separation of workers, in the pro-
posed architecture, does not affect the analysis of the
results. In addition, it was possible to observe be-
haviors intrinsic to the services, such as the superior
performance demonstrated by Alibaba Cloud Func-

tions. AWS Lambda and Google Cloud Function both
had intermediate results. Azure services, on the other
hand, obtained the worst results, presenting high av-
erage execution times and cold start.

This article is divided into six parts, the first be-
ing this introduction. Section 2 presents the theoreti-
cal foundation that supports the work. Section 3 de-
scribes the distributed implementation of the Orama
framework. Section 4 presents the related works. Sec-
tion 5 shows the results obtained and finally, Section
6 presents the conclusions and future work.

2 BACKGROUND

Thenceforward NIST (MELL and Grance, 2011) de-
fined the traditional cloud models in 2011 as IaaS,
PaaS and SaaS, the main public cloud providers
began to name their services with another set of
acronyms, which culminated in the emergence of
the term “XaaS” to define Everything-as-a-Service
(DUAN et al., 2015). Amidst this profusion of cloud
services, in 2014 AWS launched Lambda, which then
inaugurated the Function-as-a-Service (FaaS) model
(Motta. et al., 2022). In the FaaS paradigm, the
customer delivers a piece of code of interest to the
provider, generally written in some language sup-
ported by the provider. In addition, the client must
configure a trigger to activate the function and this
trigger can happen from other services that make up
the provider’s platform or through a REST API.

Since FaaS is designed to run state-independently,
some restrictions are imposed on customers, such as
limits on allocable vCPUs, RAM and maximum exe-
cution time. Another aspect that significantly distin-
guishes FaaS from other cloud service models is the
billing method. Instead of being charged based on the
execution time of instances, as in the IaaS model, in
FaaS the customer will only pay based on the activa-
tion of the service and its respective duration.

Major public cloud providers have FaaS offerings.
In addition to AWS Lambda, which is the forerunner
of this concept, it is possible to find solutions from
Azure, GCP, Alibaba Cloud, among others. Azure
Function (AZF) is Azure’s entry into this slice of the
cloud market. Google Cloud Function (GCF) is the
name of GCP’s FaaS. Alibaba Cloud offers Alibaba
Function Compute (AFC) as its FaaS. Other providers
such as Oracle and IBM also offer FaaS options.

Faced with so many FaaS options, it is essential
to understand how the strategies adopted by providers
deliver environments. Considering the large number
of regions and availability zones in which the main
providers are installed, it is possible that implementa-

tion differences between providers or between regions
can meet different needs or may even be impeding,
unfeasible or expensive. Since these strategies are the
provider’s big trade secrets, the best way to elicit these
strategies is by running benchmarks. As these envi-
ronments are highly dynamic and maintain constant
evolution, it is important that the solutions that pro-
mote benchmarks on these platforms are configurable
to the point of better representing the problems found
in real environments. The development of solutions
aimed at the current multicloud context should favor
the incorporation of new providers and their services
as they enter this market. Because of this, it is es-
sential to use a cloud orchestration solution, such as
Terraform (HashiCorp, 2021).

2.1 Infrastructure Tools

Terraform (HashiCorp, 2021) is a cloud orchestrator
that helps solutions integrate with different virtualiza-
tion and automation platforms, especially in cloud en-
vironments. Through Terraform it is possible to cre-
ate lightweight and portable infrastructure definition
artifacts that can be easily incorporated into other so-
lutions. Other cloud orchestration solutions, such as
Heat (Gupta et al., 2014) and CloudFormation (Wit-
tig and Wittig, 2018) propose similar approaches to
Terraform, however, as evaluated in (Carvalho and
Araujo, 2020) Terraform presents better results.

Performance testing (Erinle, 2013) is a type of
testing intended to determine the responsiveness, re-
liability, throughput, interoperability, and scalability
of a system and/or application under a given work-
load. It could also be defined as a process of deter-
mining the speed or effectiveness of a computer, net-
work, software application, or device. Testing can
be conducted on software applications, system re-
sources, targeted application components, databases,
and a whole lot more. It normally involves an auto-
mated test suite, such as JMeter (Erinle, 2013), as this
allows for easy, repeatable simulations of a variety of
normal, peak, and exceptional load conditions. Such
forms of testing help verify whether a system or ap-
plication meets the specifications claimed by its ven-
dor. Technology solutions currently need to deal with
large and fast flows of information and any instability
in the service can lead to loss of information. Because
of this, it is important to use queuing mechanisms in
order to guarantee the correct processing of requests.

Apache Kafka (Sax, 2018) is a scalable, fault-
tolerant, and highly available distributed streaming
platform that can be used to store and process data
streams. The Kafka cluster stores data streams, which
are sequences of messages/events continuously pro-

duced by applications and sequentially and incremen-
tally consumed by other applications. The Connect
API is used to ingest data into Kafka and export data
streams to external systems such as distributed file
systems, databases, and others. For data stream pro-
cessing, the Streams API allows developers to specify
sophisticated stream processing pipelines that read in-
put streams from the Kafka cluster and write results
back to Kafka. Apache Kafka is a solution that ad-
heres to the microservices paradigm, that is, the de-
velopment model in which the solution’s complexity
blocks are segmented into smaller processes. In or-
der to manage this large amount of services, without
the need to deal with several virtual machines, it is
possible to use container-oriented environments.

Docker (Ibrahim et al., 2021) enables the con-
tainerization of a software package along with asso-
ciated configuration and setup details. Such contain-
ers can be easily and rapidly deployed while avoid-
ing compatibility issues. In fact, a recent study re-
ports that Docker can speed up the deployment of
software components by 10-15 folds. Much of to-
day’s applications are multi-component (i.e., multi-
container) applications. For instance, a simple web
application would require a web server and a database
component. Docker Compose (Ibrahim et al., 2021),
a natural progression of Docker, enables practitioners
to compose such complex applications. Applications
transcribe such compositions in a Docker Compose
file, where components are specified by describing
their Docker image and associated configuration as
well as the relations between components. The var-
ious services of a solution supported by a container
environment can generate large volumes of data that
needed processing techniques to make any sense.

2.2 Statistical Analysis Tools

Statistical analysis of benchmark results allows the
observation of several phenomena. The factorial de-
sign (Jain, 1991), for example, helps to identify the ef-
fect of mapped factors on the results. With the facto-
rial design, it is possible to identify whether the vari-
ation of any factor in a given scenario causes (or does
not) any statistically significant impact on the results.
It is also possible to identify the existence of factors
that were not initially mapped and that may have a
significant influence on the results. Another impor-
tant statistical analysis tool for understanding the re-
sults is the paired t-test. In this test, the difference
between two results is evaluated in order to determine
its statistical significance, as well as the respective de-
gree of confidence. This test allows the user to estab-
lish whether the difference between two results can

be considered relevant or insignificant, in the second
case the results can be considered statistically equal.

With the purpose of implementing a specific
benchmark solution for a FaaS environment that ad-
heres to different scenarios as close to real ones as
possible, this work uses tools such as Terraform, JMe-
ter, Apache Kafka, Docker, factorial design, and t-test
to propose a distributed architecture for Orama frame-
work, whose detailed description will be presented in
the next section.

3 DISTRIBUTED ORAMA
FRAMEWORK

The Orama framework (Carvalho and Araujo, 2022)
is a tool developed to conduct benchmarks on FaaS
environments. Although it is possible to run bench-
marks on other types of environment, its focus is di-
rected towards the evaluation of cloud environments
oriented to the FaaS paradigm. Through the Orama
framework, it is possible to provision environments
in an automated way, thanks to its integration with
Terraform, which makes the incorporation of new
providers as simple as building a Terraform infras-
tructure definition artifact. Once provisioned, the
environment can also be de-provisioned using Ter-
raform automations through the Orama framework.
In addition, the entire process of running the bench-
marks is conducted by the framework based on the
settings entered in the system. It is possible to create
several test scenarios varying the level of concurrency,
the number of repetitions of a scenario, the establish-
ment of intervals between tests and the execution of
warm-up requests, whose objective is to observe the
cold start phenomenon, which is very common, and
impactful in FaaS environments.

The Orama framework comes with some pre-
configured use cases that can be deployed to major
providers without any user intervention. These use
cases range from a simple calculator, whose objective
is only to validate the implementation and correct op-
eration of the service, as well as use cases that use
other services from providers, such as object storage
and databases. The use cases accept parameteriza-
tions that allow the provisioning of different config-
urations for the use cases, from the amount of alloca-
ble memory to the region of the provider where the
use case must be implemented.

The standalone version of the framework pre-
sented at (Carvalho and Araujo, 2022) has all of its
components implemented in a container environment,
including the “benchmarker” which is the component
responsible for triggering bursts of requests that sim-

Figure 1: Distributed Orama framework architecture.

ulate real demands on the environments. It turns out
that using this approach, the level of concurrency that
the Orama framework can simulate on the environ-
ment is limited to the amount of resources available
on the machine where it is installed. Furthermore, test
requests compete with framework management traf-
fic, as framework components also communicate via
HTTP.

In this work, a distributed architecture for the
Orama framework is presented, as shown in Figure
1. In this architecture, it is observed that the bench-
marker component is deployed outside the main envi-
ronment and therefore its installation can occur in an-
other instance. Furthermore, the number of instances
of the benchmarker is variable and can be adjusted
to the characteristics of the test to be performed. It
is possible, for example, to concentrate the bench-
marker’s workers in the same region or to distribute
them among several regions. It is also possible to
include a number of workers, whose load distribu-
tion of requests prevents the saturation of resources
on the machine, preventing the occurrence of faults
attributed to the test execution worker.

Communication between the remote benchmark-
ers (workers) and the main Orama framework en-
vironment (master) composed of frontend, backend,
database, and orchestrator is done through Kafka, as
can be seen in Figure 1. There are three types of “top-
ics” that are managed by Kafka. The “Health check”
topic allows remote workers to inform the master that
they are able to receive triggers to run benchmarks.
Once health is up to date, this worker will be consid-
ered in the distribution of loads of a respective bench-

Figure 2: Kafka workflow in Orama framework.

mark and then a topic with the “uuid” of the respective
worker will be included in Kafka by the backend of
the Orama framework, to be consumed by the respec-
tive worker and executed, as can be seen in Figure
2. After running the benchmark, the remote worker
records the partial result and inserts it into a third
Apache Kafka topic, for consumption by the master’s
backend. It is worth noting that the Orama framework
implements a balance between the number of requests
requested for each worker to execute on the target en-
vironment.

Figure 2 shows a scenario with three workers and
a request to run a benchmark with 2048 concurrent

requests. It is possible to notice that all workers are
asked for 682 requests, which adds up to 2046 re-
quests. This leaves 2 requests that are assigned to
one of the workers, in the case shown in Figure 2 the
“Remote Benchmarker Worker 01”. As soon as the
backend perceives the receipt of all partial results, it
promotes the consolidation of the results. If these re-
sults do not appear within a configured timeout, then
the respective partial result is assigned a failure result.

Once the results are consolidated, it is possible to
create factorial designs combining two benchmarks
and two levels of concurrence. If the benchmarks in-
volve two different providers, it will be possible to ob-
serve the influence of the providers on the results, as
well as the difference from the concurrence. Using the
factorial design as established by the Orama frame-
work, it is possible to identify whether the strate-
gies adopted by the providers impact the results and
whether the level of concurrence is the factor whose
influence prevails. It is still possible to identify the ex-
istence of some other factors apart from the provider
and the level of concurrence influencing the results,
in this case the portion of the influence related to the
statistical error will be significantly high.

The distributed architecture of the Orama frame-
work presented in this work opens up a wide range
of possibilities for running benchmarks on FaaS en-
vironments. At this moment of leveraging this ap-
proach, it is essential to have a tool available that
allows the evaluation of environments delivered by
providers, including high levels of concurrence and
distributed customers, whose characteristics are more
similar to critical situations in the real world experi-
enced by solutions supported by FaaS environments.

In the next section, the results of an experiment us-
ing the aforementioned architecture will be presented.
The capabilities of the Orama framework using a dis-
tributed approach and the insights obtained from the
results of the experiment will be illustrated.

4 RELATED WORKS

This article presents a distributed architecture for ex-
ecuting benchmarks in FaaS environments over the
Orama framework. The related work is discussed
from the perspective of benchmarking FaaS platforms
in general as well as work on serverless benchmark
frameworks. A comparison between related works is
presented in Table 1.

In the paper (Back and Andrikopoulos, 2018) the
authors used a microbenchmark in order to investigate
two aspects of the FaaS: the differences in observable
behavior with respect to the computer/memory rela-

tion of each FaaS implementation by the providers,
and the complex pricing models currently in use.
They used AWS, IBM, GCP, Azure, and OpenWhisk
in their evaluation. However, the authors did not
present an evaluation of the performance of their mi-
crobenchmark in different regions of the providers,
nor with different levels of concurrence, as presented
in this work.

The quality impacts of operational tasks in FaaS
platforms as a foundation for a new generation of
emerging serverless big data processing frameworks
and platforms are evaluated in (Kuhlenkamp et al.,
2019). The authors presented SIEM, a new evaluation
method to understand and mitigate the quality impacts
of operational tasks. They instantiated SIEM to eval-
uate deployment package and function configuration
changes for four major FaaS providers (AWS, IBM,
GCP, and Azure), but only in European regions for the
same level of concurrence. In this work, on the other
hand, several levels of concurrence are evaluated us-
ing two different worker approach (concentrated and
distributed).

PanOpticon (Somu et al., 2020) provides a com-
prehensive set of features to deploy end-user business
logic across platforms at different resource configu-
rations for fast evaluation of their performance. The
authors conducted a set of experiments testing sep-
arate features in isolation. An experiment compris-
ing a chat server application was conducted to test
the effectiveness of the tool in complex logic scenar-
ios in AWS and GCP. Furthermore, in this work, the
range of tests that the Orama framework can evalu-
ate was extended beyond the execution of benchmarks
on AWS and GCP, to include the execution of bench-
marks on Azure and Alibaba, which are two other im-
portant players in this market.

FaaS-dom (Maissen et al., 2020) is a modular set
of benchmarks for measuring serverless computing
that covers the major FaaS providers and contains
FaaS workloads (AWS, Azure, Google, and IBM). A
strong element of FaaS-dom’s functions is that they
were created in a variety of languages and for a va-
riety of providers. However, the operations that the
FaaS-dom functions carry out can be viewed as basic,
and they lack Orama’s approach to integration with
other cloud services.

BeFaaS (Grambow et al., 2021) offers a bench-
mark methodology for FaaS settings that is applica-
tion centric and focuses on evaluating FaaS apps us-
ing real-world and prevalent use cases. It offers en-
hanced result analysis and federated benchmark test-
ing, where the benchmark application is split across
several providers. It does not, however, provide a su-
perior approach to statistical analysis, such as the fac-

Table 1: Related works.

Paper Providers Configu-
rable

Factorial
Design T-test Distri-

buted
(Back and

Andrikopoulos,
2018)

AWS, IBM, GCP, Azure, and
OpenWhisk No No No No

(Kuhlenkamp et al.,
2019) AWS, IBM, GCP, and Azure No No No No

(Somu et al., 2020) AWS and GCP No No No No
(Grambow et al.,

2021)
AWS , GCP, Azure, TinyFaaS,

OpenFaaS, and OpenWhisk Yes No No No

(Barcelona-Pons and
Garcı́a-López, 2021) AWS, IBM, GCP, and Azure No No No No

(Copik et al., 2021) AWS, Azure, and GCP No No No No
(Wen et al., 2020) AWS, Azure, GCP, and Alibaba No No No No

(Carvalho and
Araujo, 2022) AWS and GCP Yes Yes Yes No

This paper AWS, Azure, GCP, and Alibaba Yes Yes Yes Yes

torial design or t-test that are covered by this study.
In paper (Barcelona-Pons and Garcı́a-López,

2021) the authors analyzed the architectures of four
major FaaS platforms: AWS Lambda, AZF, GCP,
and IBM Cloud Functions. The research focused on
the capabilities and limitations the services offer for
highly parallel computations. The design of the plat-
forms revealed two important traits influencing their
performance: virtualization technology and schedul-
ing approach. This work, on the other hand, focuses
on investigating the differences in performance of the
main providers with different levels of concurrence.

In the Serverless Benchmark Suite (Sebs) (Copik
et al., 2021), typical workloads are chosen, the im-
plementation is tracked, and the infrastructure is as-
sessed. The benchmark’s applicability to several com-
mercial vendors, including AWS, Azure, and Google
Cloud, is guaranteed by the abstract concept of a FaaS
implementation. Based on the executed test cases,
this work assesses variables including time, CPU,
memory, I/O, code size, and cost. However, unlike
the Orama framework used in this work, their solu-
tion can’t work in distributed mode.

In (Wen et al., 2020), the authors run a test flow
employing micro benchmarks (CPU, memory, I/O,
and network) and macro benchmarks to evaluate FaaS
services from AWS, Azure, GCP, and Alibaba in de-
tail (multimedia, map-reduce and machine learning).
The tests made use of specific Java, Node.js, and
Python methods that investigated the benchmarking
attributes to gauge resource usage efficiency and ini-
tialization delay. However, they do not present eval-
uations in different levels of concurrence and also do
not perform a statistical analysis using factorial de-

sign and t-test as is done in this work.
Although the aforementioned work presents an

ad-hoc evaluation of the providers, the scalability and
manageability of this evaluation is limited to the pa-
rameters that were used in the work. On the other
hand, this article uses a fully manageable solution pre-
pared for the incorporation of new providers and use
cases.

5 RESULTS

The Orama framework makes it possible to run
benchmarks on a FaaS environment in different sce-
narios, especially with the introduction of the dis-
tributed architecture presented in this work. In order
to explore some possibilities of running benchmarks,
an experiment was designed to allow the behavior of
the architecture to be observed, as well as obtaining
some insights into FaaS environments. Details of how
the experiment was conducted will be presented in
Section 5.1, while an analysis of the results is pro-
vided in Section 5.2.

5.1 Methodology

Considering that the main objective of this experiment
is to analyze the behavior of the distributed architec-
ture of the Orama framework, a use case was selected
which had the role objective of guaranteeing the cor-
rect execution of FaaS in the providers, without inte-
gration with other services, such as Database or Ob-
ject Storage, which could introduce specific features
of these services and divert the focus from the archi-

Table 2: Average execution times (in milliseconds).
(C) → concentrated workers — (D) → distributed workers.

Concurrence level
Scenario

AWS Lambda GCF AZF AFC
(C) (D) (C) (D) (C) (D) (C) (D)

1 581 793 592 684 643 954 102 281
2 595 749 605 757 612 910 93 360
4 663 776 699 769 715 1004 91 302
8 592 859 595 832 622 1149 133 511

16 637 897 638 817 695 1145 100 358
32 709 983 707 918 890 1414 100 367
64 911 1158 924 1097 1303 1732 109 378
128 1328 1569 1367 1548 2264 2390 128 393
256 2274 2417 2386 2466 4130 3749 233 565
512 4068 4418 4447 4489 7506 6648 168 426

1024 6852 7334 5181 5787 11514 11884 116 367
2048 6139 6072 3596 3270 18378 17234 67 338

Figure 3: Concentrated workers scenario.

tecture itself. Therefore, the use case that deploys a
simple math calculator in each of the four main FaaS
providers supported by the Orama framework was se-
lected. The providers are AWS, Azure, Google and
Alibaba.

The distributed architecture of the Orama frame-
work allows workers in different regions to be de-
ployed. Therefore, in this experiment two scenarios
were elaborated. In the first scenario, shown in Figure
3, the workers were all deployed in the same region
where the target FaaS environments were also provi-

Figure 4: Distributed workers scenario.

sioned (concentrated workers scenarios). In the sec-
ond scenario, workers were distributed in geographi-
cally distant regions, as shown in Figure 4. With these
two scenarios, it was expected to demonstrate the in-
fluence of latency on FaaS, however, their behavior
should be equivalent and demonstrate the same strat-
egy applied by providers.

Both scenarios were subjected to concurrent loads
of requests from just one simultaneous request to up
to 2048 requests with exponential growth. Thus, the
FaaS of each provider were submitted individually to
loads of 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
and 2048. It is noteworthy that the tests performed
with the Orama standalone architecture framework
were limited to up to 512 simultaneous requests, not-
ing the limitations of opening a connection with FaaS
services imposed by the instance in which the Orama
framework was installed. As 2048 was the maximum
level of this experiment, a quantity of 4 benchmarker
workers was defined so that each one was responsi-
ble for carrying out a maximum of 512 concurrent
requests. Furthermore, each battery of tests with dif-

ferent levels of concurrency was repeated 10 times in
order to establish a statistical data mass for further
analysis.

In the first scenario (concentrated workers), the
Orama framework was deployed on an instance of
GCP’s Compute Engine in the US-East region with
16GB of RAM and 4 vCPUS, and each of the four
workers was also deployed in the same GCP region,
the servers had 4GB of RAM and 2 vCPUS each. For
the second scenario, the master installation of Orama
framework was kept on the same instance in the US-
East GCP region as used in the first scenario. How-
ever, the workers were spread out in other GCP re-
gions such as: asia-northeast1 (Tokyo, Japan), US
-West (The Dalles, Oregon, United States), europe-
west2 (London, England), and southamerica-east1
(Osasco, Brazil). All instances of GCP used in this
experiment ran Debian 11 as the operating system.
The FaaS that were the target of this experiment in
both scenarios were configured to be deployed in the
respective East American regions at each of the re-
spective providers, namely AWS Lambda, AZF, GCF
and AFC.

At the end of the execution of the repetitions of
both test scenarios, factorial designs and t-tests were
created in order to analyze the effects of the difference
between the providers and the difference between the
lowest level of concurrency (only one request) and
the highest level, with 2048 concurrent requests. The
analysis of the obtained results is presented in the next
section.

5.2 Outputs Analysis

Table 2 presents the consolidated result of all eight
test scenarios conducted in the experiment. It is pos-
sible to observe that the provider whose scenarios had
the lowest average execution times was AFC, high-
lighted in bold. Next in very close range are the av-
erage execution times for AWS Lambda and GCP. Fi-
nally, the average execution times for AZF were the
highest in this experiment. In addition, in Table 2, it
is also possible to observe that the scenarios with dis-
tributed workers have generally higher averages than
the averages found in the scenario with workers con-
centrated in the same region, this is the expected re-
sult, since the greater geographic distance between
workers and target FaaS should raise averages by in-
troducing higher latency to traverse the network.

Figure 5a presents a comparative result between
the scenarios involving AWS Lambda. It may be seen
that the average execution time of both scenarios in
AWS Lambda follow the growth of the concurrency
level the previous level to the maximum (2048 con-

current requests) when there is a small drop in the av-
erage. This decrease in the average execution time af-
ter 1024 indicates that, when faced with a growing de-
mand, the provider reinforced the service infrastruc-
ture in order to maintain its quality in terms of execu-
tion time. Despite this effort by the provider, failures
occurred from 256 concurrent requests, as shown in
Figure 5b, which shows the percentage failure rates
that occurred at each concurrency level. To corrobo-
rate the indication that the provider promoted an es-
calation before 2048 requests, as well as the average
time, the failure rate also showed a reduction.

Figures 5c and 5d show the average execution
times of the scenarios involving the GCF and their
respective failure rates at each concurrency level, re-
spectively. It is possible to observe that the graph of
the average execution time of the GCF is similar to
the same graph for AWS Lambda, in which the aver-
age time accompanies the growth of the concurrency
level until the intervention of the provider causes a
decrease in the average time. However, GCF’s av-
erage time threshold is lower than AWS Lambda’s.
While in AWS Lambda the peak point is 7.3 seconds
(at 1024 in the distributed scenario), in CGF the peak
is recorded at 5.7 seconds (at 1024 in the distributed
scenario). This proximity between AWS Lambda and
GCF average times demonstrates a strategic equiva-
lence between providers. Despite this, with regard
to the failure rate, the occurrence of failures in GCF
started only after 1024 requests, while AWS Lambda
already had failures at 256. However, the level of fail-
ures recorded by GCF was higher compared to AWS
Lambda, because while in AWS Lambda the fail-
ures peaked at 8% of requests, in GCF these failures
reached around 20%. Another difference in the AWS
Lambda and GCF results is the continuous growth
of failures demonstrated in the GCF distributed sce-
nario, which indicates that the provider’s monitoring
layer had greater difficulty in dealing with requests
from different regions than those whose origin was
the same.

Unlike AWS Lambda and GCF, which showed
a point of reduction in the average execution time,
AZF, as shown in Figure 5e, maintained a continu-
ous growth in the average execution time, registering
the highest average times in the experiment. This in-
dicates that in the AZF environment there was no re-
inforcement of the infrastructure as demand grew, al-
though this is a FaaS premise. Despite the high aver-
age time, AZF recorded a low failure rate, with fail-
ures occurring in only 3% of the 2048 concurrent re-
quests in the distributed scenario, as can be seen in
Figure 5f.

Figure 5g shows the average AFC execution

(a) AWS Lambda execution times. (b) AWS Lambda failure rates.

(c) GCF execution times. (d) GCF failure rates.

(e) AZF execution times. (f) AZF failure rates.

(g) AFC execution times.
Figure 5: Comparative results.

times. It is possible to observe three points where the
provider seems to have reinforced the infrastructure,
such as from 2 to 4 requests, from 8 to 16, and from
256 to 512. This meant that the provider maintained
the lowest average times of the experiment and did
not present an increasing curve of the average time, as
occurred with the other providers. In addition, there
was no occurrence of failure during the ten repetitions
of the test batteries. The AFC result also shows the
expected result of the experiment, in which it is pos-
sible to observe the same behavior both in the sce-
nario with workers concentrated in the same region,
and with distributed workers, differing only in the av-
erage level.

Figure 6: Warm-up times.
(C) → concentrated workers — (D) → distributed workers.

Another interesting aspect to be analyzed in this
experiment is the cold start phenomenon, that is, the
time it takes the provider to put its FaaS into operation
for the first time or after a certain period of inactivity.
Figure 6 provides the warm-up times for all eight sce-
narios. This is the first request made before the start
of the battery of tests. The arcing times showed a
big difference between AZF and the other providers.
While AWS Lambda, GCF and AFC recorded warm-
up times around 1s, AZF took 89 seconds in the dis-
tributed scenario and 103 seconds in the concentrated
scenario. This difference shows that the AZF deploy-
ment strategy is considerably different from the oth-
ers and this can significantly impact the performance
of applications supported by this service, since after
some downtime, AZF FaaS will have a much higher
response time than usual and this will certainly nega-
tively impact the user experience.

In order to understand the impact of the provider
and concurrence factors on the results, six factorial
designs were elaborated comparing the four providers
with each other and the minimum and maximum con-
currence levels (1 and 2048), as shown in Figure 7.
In Figures 7a, 7b and 7d, it is possible to observe the

(a) AWS Lambda/GCF. (b) AWS Lambda/AZF. (c) AWS Lambda/AFC.

(d) GCF/AZF. (e) GCF/AFC. (f) AZF/AFC.

Figure 7: Factorial design results.

predominance of the concurrence factor, to the detri-
ment of the provider factor, which indicates that in
these benchmark results, the providers’ strategies in-
fluenced the result less than the differences between
the concurrences. In Figures 7c, 7e and 7f, there is a
predominance of the provider factor and this corrob-
orates the results shown previously for average exe-
cution time and failure rate, since AFC participates in
both factorial designs.

The result of the t-tests for the six comparisons
between the providers is shown in Table 3. It is pos-
sible to notice that all the differences between the
average results were considered statistically relevant
with a 99.95% confidence level. From which it may
be stated that these differences are not irrelevant and
may be considered as defining the result of the bench-
marks.

Table 3: T-test results.

Scenario Difference
(ms)

Standard
deviation

Confidence
level (%)

AWS x GCF 1,317.03 281.82 99.95
AWS x AZF 7,792.25 928.90 99.95
AWS x AFC 5,454.88 259.53 99.95
GCF x AZF 9,109.28 898.69 99.95
GCF x AFC 4,137.84 110.14 99.95
AZF x AFC 13,247.13 891.95 99.95

The results of this work can serve as input in
decision-making processes according to the charac-
teristics and requirements of the real use case. For ex-
ample, if the use case requires high reliability of the
FaaS service, AFC would be the best option among
the evaluated providers, since it did not present fail-
ures. On the other hand, if the use case is very sen-
sitive to cold start, then the Azure provider should be
avoided, as it presented high values in this regard.

6 CONCLUSION

In this work, the distributed architecture of the Orama
framework was presented, with which it is possible to
perform benchmarks with high levels of concurrency
on a FaaS environment, as well as configure the load
to be triggered from different locations on the globe,
considerably expanding the range of possibilities for
benchmarks against state-of-the-art tools.

The Orama framework allows the visualization of
different scenarios for the same use case, especially
for concurrency levels above 512 concurrent requests,
which is the amount observed as the safest maximum
for management by an intermediate configuration in-
stance. In addition, it was evidenced that the Orama
framework in its distributed architecture is capable of
visualizing the same behavior as the FaaS provider
when subjected to a concentrated and distributed ap-
proach of bursts of requests, as well as eventual dif-
ferences.

In the experiments, it was also evident that the
AFC FaaS delivers greater consistency in terms of av-
erage execution time and occurrence of failures, fol-
lowed by AWS Lambda and CGF, which registered
close results, and finally the AZF results with high
average execution times and cold start.

In future work, other providers will be integrated
into the Orama framework, such as IBM and Ora-
cle, in order to expand the coverage of the analy-
ses presented in this work. Furthermore, even higher
levels of concurrency can be evaluated by design-
ing experiments that include a larger number of dis-
tributed workers. Furthermore, evolutions in the
Orama framework will allow the analysis of bench-
mark results using percentiles.

REFERENCES

Back, T. and Andrikopoulos, V. (2018). Using a mi-
crobenchmark to compare function as a service solu-
tions. In ECSOCC, pages 146–160. Springer.

Barcelona-Pons, D. and Garcı́a-López, P. (2021). Bench-
marking parallelism in faas platforms. Future Gener-
ation Computer Systems, 124:268–284.

Carvalho, L. and Araujo, A. (2022). Orama: A bench-
mark framework for function-as-a-service. In Pro-
ceedings of the 12th CLOSER, pages 313–322. IN-
STICC, SciTePress.

Carvalho, L. R. and Araujo, A. P. F. (2020). Performance
comparison of terraform and cloudify as multicloud
orchestrators. In 2020 20th IEEE/ACM CCGRID,
pages 380–389.

Copik, M., Kwasniewski, G., Besta, M., Podstawski, M.,
and Hoefler, T. (2021). Sebs: A serverless benchmark
suite for function-as-a-service computing.

DUAN, Y., Fu, G., Zhou, N., Sun, X., Narendra, N. C., and
Hu, B. (2015). Everything as a Service (XaaS) on
the Cloud: Origins, Current and Future Trends. vol-
ume 00, pages 621–628.

Erinle, B. (2013). Performance testing with JMeter 2.9.
Packt Publishing Ltd. ISBN: 9781782165842.

Gartner (2022). Gartner forecasts worldwide pub-
lic cloud end-user spending to reach nearly $600
billion in 2023. [online; 01-Jan-2023; url:
https://tinyurl.com/3z72zebw].

Grambow, M., Pfandzelter, T., Burchard, L., Schubert, C.,
Zhao, M., and Bermbach, D. (2021). Befaas: An
application-centric benchmarking framework for faas
platforms.

Gupta, P. R., Taneja, S., and Datt, A. (2014). Using heat
and ceilometer for providing autoscaling in openstack.
JIMS8I-International Journal of Information Commu-
nication and Computing Technology, 2(2):84–89.

HashiCorp (2021). Terraform: Write, plan, apply. [online;
11-Aug-2021; url: https://www.terraform.io].

Ibrahim, M. H., Sayagh, M., and Hassan, A. E. (2021).
A study of how docker compose is used to compose
multi-component systems. Empirical Software Engi-
neering, 26(6):128.

Jain, R. (1991). The art of computer systems: Tech-
niques for experimental design, measurement, simu-
lation, and modeling. ISBN:13.978-0471503361.

Kuhlenkamp, J., Werner, S., Borges, M. C., El Tal, K., and
Tai, S. (2019). An evaluation of faas platforms as a
foundation for serverless big data processing. In Pro-
ceedings of the 12th IEEE/ACM, UCC’19, page 1–9,
NY, USA. ACM.

Maissen, P., Felber, P., Kropf, P., and Schiavoni, V. (2020).
Faasdom. Proceedings of the 14th ACM International
Conference on Distributed and Event-based Systems.

MELL, P. and Grance, T. (2011). The NIST definition of
cloud computing. National Institute of Standards and
Tecnology.

Motta., M. A. D. C., Reboucas De Carvalho., L., Rosa., M.
J. F., and Favacho De Araujo., A. P. (2022). Compar-
ison of faas platform performance in private clouds.
In Proceedings of the 12th CLOSER,, pages 109–120.
INSTICC, SciTePress.

Sax, M. J. (2018). Apache Kafka, pages 1–8. Springer Inter-
national Publishing, Cham. ISBN: 978-3-319-63962-
8.

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira,
J., Yadwadkar, N. J., Popa, R. A., Gonzalez, J. E., Sto-
ica, I., and Patterson, D. A. (2021). What serverless
computing is and should become: The next phase of
cloud computing. ACM, 64(5):76–84.

Somu, N., Daw, N., Bellur, U., and Kulkarni, P. (2020).
Panopticon: A comprehensive benchmarking tool for
serverless applications. In 2020 COMSNETS, pages
144–151.

Wen, J., Liu, Y., Chen, Z., Chen, J., and Ma, Y. (2020).
Characterizing commodity serverless computing plat-
forms. DOI:10.48550/ARXIV.2012.00992.

Wittig, M. and Wittig, A. (2018). Amazon web services in
action. Simon and Schuster. ISBN: 978-1617295119.

Capítulo 3

Como FaaS integrados a DBaaS se
comportam em diferentes regiões:
uma avaliação por meio do
framework Orama

16

How FaaS with DBaaS performs in different regions: an
evaluation by the Orama Framework

Leonardo Rebouças de Carvalho1, Bruno Kamienski1, Aleteia Araujo1

1Department of Computer Science – University of Brasilia (UnB)
Campus Darcy Ribeiro – 70.910-900 – Brasilia – DF – Brazil

{leouesb,brunosabreu}@gmail.com, aleteia@unb.br

Abstract. Studies indicate that cloud services based on the serverless paradigm,
such as Function-as-a-Service (FaaS) should become the main mechanisms of
the next generation of cloud computing. Given this perspective, public cloud
providers have made efforts to expand the coverage of their services in order
to meet this need. However, the effort needed to maintain equivalence between
different regions highlights the importance of studying the behavior of FaaS en-
vironments in different regions of providers. This work presents a study aided
by the Orama framework in order to evaluate the performance of the main FaaS
integrated with Database-as-a-Service (DBaaS) services in five regions spread
across the globe. The results indicate that the Alibaba provider was able to
guarantee good equivalence between its regions, in addition to a lower aver-
age execution time. AWS and GCP had similar results, although the error rate
on AWS was the highest on average. Azure, on the other hand, had the worst
performance, with the highest average execution time, in addition to significant
failure rates.

1. Introduction
Serverless computing [Nupponen and Taibi 2020] as the default cloud programming
paradigm have become an increasingly present idea in recent publications and this
shows the importance it has gained for cloud computing. Function-as-a-Service (FaaS)
[Schleier-Smith et al. 2021] allow users to publish functions written in some program-
ming language supported by the provider and configure a trigger. When triggered, it is
the role of the provider to ensure proper processing, whether in the face of low demand or
when subjected to high levels of competition. The respective adjustment in the infrastruc-
ture takes place without any user intervention. This autascaling feature, combined with
the billing model based on activating functions, explains the recent success of this service
model. In this context and considering the Everything-as-a-Service (XaaS) concept, the
main public cloud providers have been massively investing in serverless-oriented services,
especially in Function-as-a-Service (FaaS) [Schleier-Smith et al. 2021].

Since the need for providers to be as close as possible to the end user, it is a
common strategy used by cloud companies to deploy infrastructures geographically dis-
tributed around the world. For this strategy to be effective, it is important that the products
marketed through the cloud are available in as many geographic locations as possible,
and this introduces a major challenge in this context: maintaining equivalence for the
same service across regions. In addition, in real solutions it is very common that differ-
ent cloud services are combined to compose the solution, therefore, cloud providers offer

various solutions for data storage, among which stand out Database-as-a-Service (DBaaS)
[ZHENG 2018] in which providers deliver database environments fully managed by them.

Taking into consideration the growth perspective of FaaS adoption, as well as the
possibility of different implementations across regions impacting the performance of ap-
plications operating in environments of this nature, this paper evaluates the main FaaS in
different regions. Five important regions of the planet where AWS, GCP, Azure and Al-
ibaba have deployed infrastructures were chosen to receive one of the available use cases
of the Orama framework [Carvalho. and Araujo. 2022]. Using FaaS integrated with the
respective DBaaS, several test batteries were executed simulating concurrent accesses to
services from 1 simultaneous request to up to 4096 parallel accesses. The processes of
provisioning FaaS environments, running tests, analyzing results and deprovisioning envi-
ronments were carried out using the Orama framework. The results indicate that Alibaba
apparently implements a more efficient management strategy for its FaaS platform in all
evaluated regions, since its average execution time was the lowest among the providers,
as well as its failure rate. AWS and GCP obtained intermediate and very close results.
Azure, on the other hand, recorded the worst results, both in average execution time and
in failure rates.

This article is divided into six parts, the first being this introduction. Section 2
presents the theoretical foundation that supports this work. Section 3 presents the related
works. Section 4 describes the methodology used in the experiments carried out. Section
5 shows the results obtained, and finally Section 6 presents the conclusions and future
work.

2. Background
In traditional cloud computing models, such as Platform-as-a-Service (PaaS) and
Infrastructure-as-a-Service (IaaS) [MELL and Grance 2011], in general the charge for the
service is based on the operating time of the servers, even if they are idle, in addition, any
increases in demand on the systems supported by these platforms should receive special
attention from the client, either to configure elasticity strategies or even to implement
them themselves. The FaaS model [Malawski et al. 2020], on the other hand, relieves the
customer of responsibility for the elasticity of the environment, since this characteristic is
generally intrinsic to the service. Furthermore, billing in the context of FaaS is based on
the actual activation of the service rather than on the operation of the servers.

In addition to the billing model and automatic elasticity, FaaS also offers a
simplification of the deployment process, since it is up to the provider to deploy the
respective runtime to execute the functions, leaving the customer only to submit a
snippet of source code and configure a trigger for the service to be ready for use
[Nupponen and Taibi 2020].

Currently, the main public cloud providers have FaaS solutions. AWS, for ex-
ample, offers Lambda [AWS 2021] in its 30 regions around the world. Azure, which
currently has 60 regions, offers Azure Functions (AZF) [Microsoft 2021], while Google
Cloud Function (GCF) [Google 2021] is available in all 35 GCP regions. Alibaba Cloud,
on the other hand, has the Function Compute (AFC) [Cloud 2021] service in its 24 re-
gions. Maintaining operational equivalence between all these regions is a huge chal-
lenge faced daily by providers and each adopted strategy can impact performance. These

strategies include, but are not limited to hardware, software, and resource allocation ap-
proaches.

FaaS was originally designed to operate in an isolated and stateless manner
[Garcı́a López et al. 2018]. However, it is common for real-world solutions to involve
other products within the cloud ecosystem, such as object storage, databases, among
others. A common product to associate with FaaS is DBaaS. In this context FaaS and
DBaaS act as a storage solution whose API is under the responsibility of FaaS, while
data management is the responsibility of DBaaS. Considering that this type of associa-
tion can involve different strategies adopted by providers, including different forms be-
tween their own regions, this work investigates how environments like these operate in
the main clouds in different regions, and to assist in this evaluation the Orama framework
[Carvalho. and Araujo. 2022] was used.

The Orama framework [Carvalho. and Araujo. 2022] is a tool whose objective is
to aid in benchmark execution over FaaS environments. The framework enables some
built-in use cases that can be provisioned and deprovisioned automatically. Besides this,
the Orama framework coordinates the benchmark execution from these configurations.
With Orama it is possible to provision a FaaS use case in seconds, perform different con-
currence scenario tests, adjust configuration on the environment, execute the tests again
and analyze the results with the comparative and statistical tools offered by the platform.
The Orama framework can be configured to work standalone, however its ability to acti-
vate FaaS will be limited to the amount of resources available on the machine where it is
installed. It is also possible to configure the Orama framework to act in a distributed way
following the “master/workers” architecture in which the workers will be responsible for
activating the FaaS and thus the concurrence load can be divided among the worker nodes
configured in the framework environment, in this way by increasing the capacity of the
platform’s concurrence levels.

Considering that the results analysis phase is a crucial step for understanding the
performance of FaaS environments, the Orama framework provides two statistical anal-
ysis tools. The factorial design [Jain 1991] helps in identifying factors that influence the
results. In the Orama framework it is possible to build a 2k factorial design, with 2 being
the lower and upper levels of the factors and the k the number of factors. In Orama, two
factors are considered: level of concurrence and provider, so the factorial design imple-
mented is in 22 format. If the results are composed of more than one round (repetition),
then it will be possible to analyze the statistical error of the factorial design. If the statisti-
cal error is high, this indicates the existence of another factor in addition to those initially
mapped. Another statistical tool available in the Orama framework is the paired t-test.
In this test, the statistical significance of the difference found in two juxtaposed results is
analyzed. The higher the confidence level is, the more statistically significant a difference
will be. On the other hand if this confidence level is very low or not observed, then the
difference is negligible and the results can be considered statistically equal.

The Orama framework has some built-in use cases that can be used to quickly pro-
vision FaaS environments, which the framework can benchmark against. These use cases
consist of automation artifacts configured to deploy environments of a simple calculator,
a function for genetic sequence alignment, functions acting as API for object storage and
DBaaS. The latter shown in Fig. 1, in which it is possible to observe the deployment of

Figure 1. FaaS for DBaaS Orama framework built-in use case.

three FaaS to handle GET, POST and DELETE requests. These functions were written in
Node.js considering the wide adoption of this language and are intended to act as an API
for managing data saved in the data storage solution of the respective cloud. Therefore,
these functions will be reflected in the respective DBaaS at the target provider, that is
DynamoDB in AWS, Firebase in GCP, CosmosDB in Azure, and Tablestore in Alibaba
Cloud.

The Orama Framework contains built-in functions for various purposes, from a
simple calculator, whose purpose is only to validate the FaaS flow, to real functions for
aligning genetic sequences. Other examples of built-in functions offered by Orama frame-
work are APIs for storing data in Object Storage or in DBaaS. Considering that solutions
involving databases are frequently adopted, in this work the Orama framework use case
chosen was that which deploys FaaS integrated with the respective DBaaS to evaluate the
performance of this type of environment in different regions. A detailed description of
the methodology adopted will be provided in the Section 4.

3. Related Works

This paper addresses the experiment-driven evaluation of FaaS platforms in different re-
gions under different concurrence levels using the Orama framework, including very high
concurrence scenarios, such as 2048 and 4096 concurrent requests. The related works are
discussed from the perspective of benchmarking FaaS platforms and are shown in Table
1.

In the paper [Back and Andrikopoulos 2018] the authors used a microbenchmark
in order to investigate two aspects of the FaaS: the differences in observable behavior with
respect to the computer/memory relation of each FaaS implementation by the providers,
and the complex pricing models currently in use. They used AWS, IBM, GCP, Azure, and
OpenWhisk in their evaluation. However, the authors did not present an evaluation of the
performance of their microbenchmark in different regions of the providers, especially in
the face of different levels of concurrence, as presented in this work.

The quality impacts of operational tasks in FaaS platforms as a foundation for a
new generation of emerging serverless big data processing frameworks and platforms are
evaluated in [Kuhlenkamp et al. 2019]. The authors presented SIEM, a new evaluation
method to understand and mitigate the quality impacts of operational tasks. They instan-
tiated SIEM to evaluate deployment package and function configuration changes for four

Table 1. Related Works.

[B
ac

k
an

d
A

nd
ri

ko
po

ul
os

20
18

]

[K
uh

le
nk

am
p

et
al

.2
01

9]

[B
ar

ce
lo

na
-P

on
s

an
d

G
ar

cı́
a-

L
óp

ez
20

21
]

[W
en

et
al

.2
02

1]

[S
om

u
et

al
.2

02
0]

[G
ra

m
bo

w
et

al
.2

02
1]

[M
ot

ta
et

al
.2

02
2]

T
hi

sp
ap

er

Providers AWS,
IBM, GCP,
Azure,
and Open-
Whisk

AWS,
IBM, GCP,
and Azure

AWS,
IBM, GCP,
and Azure

AWS,
Azure,
GCP, and
Alibaba

AWS and
GCP

AWS
, GCP,
Azure,
TinyFaaS,
OpenFaaS,
and Open-
Whisk

Fission,
OpenFaaS
and Open-
Whisk

AWS,
Azure,
GCP, and
Alibaba

Factorial Design - - - - - - ✓ ✓
T-test - - - - - - ✓ ✓
Distributed - - - - - - - ✓

major FaaS providers (AWS, IBM, GCP, and Azure), but only in European regions for the
same level of concurrence. In this work, on the other hand, several levels of concurrence
are evaluated in five regions for each of the providers involved in the analysis, totaling 20
regions.

In paper [Barcelona-Pons and Garcı́a-López 2021] the authors analyzed the ar-
chitectures of four major FaaS platforms: AWS Lambda, AZF, GCP, and IBM Cloud
Functions. The research focused on the capabilities and limitations the services offer for
highly parallel computations. The design of the platforms revealed two important traits
influencing their performance: virtualization technology and scheduling approach. This
work, on the other hand, focuses on investigating the differences in performance of the
main providers in their different regions, including in the face of different levels of con-
currence.

In [Wen et al. 2021], the authors ran a test flow employing micro benchmarks
(CPU, memory, I/O, and network) and macro benchmarks to evaluate FaaS from AWS,
Azure, GCP, and Alibaba in detail (multimedia, map-reduce and machine learning). The
tests made use of specific Java, Node.js, and Python methods that investigated the bench-
marking attributes to gauge resource usage efficiency and initialization delay. However,
they did not present evaluations in different regions, with different levels of concurrence.

PanOpticon [Somu et al. 2020] provides a comprehensive set of features to deploy
end-user business logic across platforms at different resource configurations for fast eval-
uation of their performance. The authors conducted a set of experiments testing separate
features in isolation. An experiment comprising a chat server application was conducted
to test the effectiveness of the tool in complex logic scenarios in AWS and GCP. Fur-
thermore, in this work, the range of tests that the Orama framework can evaluate was
extended beyond the execution of benchmarks on AWS and GCP, to include the execu-
tion of benchmarks on Azure and Alibaba, which are two other important players in this
market.

BeFaaS [Grambow et al. 2021] offers a benchmark methodology for FaaS settings

that is application centric and focuses on evaluating FaaS apps using real-world and preva-
lent use cases. It offers enhanced result analysis and federated benchmark testing, where
the benchmark application is split across several providers. It does not, however, provide
a superior approach to statistical analysis, such as the factorial design or t-test that are
covered by this study.

The main FaaS platforms for private cloud deployment are subjects of evalua-
tion at [Motta et al. 2022]. Some FaaS-dom functions are subjected to different levels of
concurrence in Fission, OpenFaaS and OpenWhisk. Based on the results, an analysis is
performed using a factorial design. However, the configurability is limited and a t-test is
not presented in order to validate the statistical significance of the differences, as is done
in this work.

4. Methodology
Since this work addresses the comparative study of the performance of FaaS environments
in different regions, the various infrastructure deployment positions of AWS, GCP, Azure
and Alibaba providers were confronted in order to find macro-regions in which there was
a presence of both providers so they can be compared against each other with minimal
impact on network latency. Thus, five macro-regions were found where it is possible to
verify concentrations of cloud supply in the East and West regions of the United States, in
Europe, in the Asian Pacific region and in Oceania. It is noteworthy that in the regions of
Europe and Oceania it was necessary to select regions that were not exactly in the same
micro-region due to the lack of availability of both services involved in the experiment
(FaaS and DBaaS), however the selected region was the closest operating the respective
services together.

Figure 2. Overall architecture of the experiment.

Solutions involving the use of FaaS in collaboration with database services are
common choices when solving real-world problems. Thus, in this work, the choice of the
use case of the Orama framework that deploys FaaS in different providers integrated with
DBaaS solutions in providers such as DynamoDB on AWS, Firestore on GCP, CosmosDB
on Azure, and TableStore on Alibaba Cloud is justified.

With the purpose of submitting the FaaS environments to different levels of con-
currence, 13 test scenarios were defined with degrees of concurrence starting at 1 and

ending at 4096 with exponential growth, that is, scenarios with 1, 2, 4, 8, 16, 32, 64,
128, 256, 512, 1024, 2048, and 4096 concurrent requests to FaaS. Each test battery was
configured in the Orama framework to be repeated 10 times in order to build an average
of execution times.

Considering the highest levels of concurrence (2048 and 4096) it was decided
to implement the Orama framework in master worker mode, since at the highest level
each worker would be responsible for activating the FaaS with 1024 concurrent requests.
Therefore, the Orama framework was deployed on a GCP Compute Engine instance in
the São Paulo/Brazil region. The master node had 4 vCPUs and 16GB of RAM (e2-
standard-4), while each of the 4 workers had 2 vCPUs and 4GB of RAM (e2-medium).
All instances used the Debian 11 operating system.

As can be seen in Fig. 2, once the Orama framework had been deployed in a region
in South America, the requests for activating the FaaS departed from there and traveled
through the network until reaching the respective regions, where the target services were
allocated. A difference in latency between the regions was expected, since their positions
are not identical. However, as the focus of this work is to analyze the differences in im-
plementations between regions, it was considered sufficient to just allocate close regions
between the providers in order to mitigate the impacts of the latency difference.

Once the framework had been implemented, the deployments of the respective
environments of the use case of FaaS with DBaaS were requested for each region of
each provider, totaling 20 provisionings. Each provisioning was submitted to battery
repetitions, so that the results could be analyzed. The analysis of the results obtained
from the methodology described in this section will be dealt with in the next section.

5. Results

The analysis detailed in this section approaches the results from two points of view. First,
a comparison between the performances found in all regions of the same provider, in order
to assess whether the adopted strategies are equivalent between the regions of the same
provider. Next, an analysis is carried out from the point of view of the region, comparing
the performance of different providers in the same region, allowing the assessment of the
difference between providers in the respective region.

Figs. 3a, 3b, 3d, and 3d show the average execution times achived in each level
of concurrence by each provider in its five evaluated regions. As may be observed in
Fig. 3a and 3b, the average times of Lambda and GCF services show levels close to
around 2k ms, with Lambda peaking at close to 8k ms, while GCF peaked at around 6k
ms. It is important to observe the performance of these providers under 1024 concurrent
requests, in both cases there are sharp drops in the average execution time for higher levels
of concurrence. This phenomenon can be explained by the characteristic of automatic
elasticity intrinsic to the FaaS model. It is also possible to observe in Fig. 3a and 3b
behavior equivalent to AWS and GCP regions.

Fig. 3c shows the average execution times calculated for the AZF service. First,
it is important to note that the average time threshold in AZF is significantly higher com-
pared to the threshold recorded by AWS and GCP. While AWS and GCP recorded average
times of around 2k ms, AZF recorded average times of around 20k ms, and peaks of 50k

(a) AWS regions. (b) GCF regions.

(c) AZF regions. (d) AFC regions.

Figure 3. Average execution time by provider.

and 140k ms. This shows that Azure services, in addition to having higher average ex-
ecution times than AWS and GCP, also deliver a wide range of execution time, since as
the level of concurrence increased the average execution time also increased. There was
no evidence of an intervention by the provider to reinforce the infrastructure to meet the
increase in demand. In addition, given the repetitive and sequential nature of the tests
performed, the overload of the highest levels of concurrence negatively impacted the ini-
tial levels, since unexpected increases in the average execution time can be observed at 1
and 2 concurrent requests. This same performance can be observed in all evaluated AZF
regions.

In Fig. 3d the average execution times of the AFC regions are presented. It may be
observed that the level presented is the lowest compared to the others, since the average
times ranged from around 400 ms to around 1k ms. Unlike the increasing behavior of the
execution time observed in Lambda, GCF and AZF results, in AFC the average execution
time maintains a stable level, even at high levels of concurrence. This shows efficient
management by the provider when dealing with oscillating and increasing demand. Al-
though a comparison of the regions shows differences in thresholds, this difference can
be attributed to the latency, which at lower thresholds is more evident.

While the test batteries were carried out, failures in the processing of requests were
recorded. Fig. 4 presents the number of failures that occurred at each level of concurrence
in the five regions of each provider. Lambda, as seen in Fig. 4a, registered failures starting
from 16 simultaneous requests and this number increased to 512 when there was a small
reduction, certainly due to the intervention of the provider in the infrastructure. Lambda
web console has a “simultaneity” setting for the function that is fixed at 50, that is, only
50 instances of the function can be running simultaneously. This parameter can only be
changed through a support request to AWS. Another significant fact presented in Fig 4a
is the discrepancy in the incidence of failures between the US-East region and the others.
As there was a lower failure rate in the US-East region and considering that this region
is the pioneer of the provider, it is possible to assume that in this region this service has

reached a higher degree of maturity in relation to the other AWS regions.

(a) AWS regions. (b) GCF regions.

(c) AZF regions. (d) AFC regions.

Figure 4. Failure rates (%) by provider.

GCF failure rates are shown in Fig. 4b where it may be seen that in this provider
the errors started to occur from 1024 concurrent requests and grew to about 35% at 2048
simultaneous requests when there was a decrease in the error rate, due to the intervention
of the provider in the infrastructure to readjust itself to the demand. It is noteworthy that
while the error rate peaks in GCF at around 35% of requests, in Lambda this level is much
higher, peaking at around 80%.

Fig. 4c shows the failure rates calculated at AZF where failure rates are perceived
at all levels of concurrence, reaching peaks of 60% failures at 4096 simultaneous requests.
Between 1024 and 4096 it is possible to observe an upward trend in the failure rate that
accompanies increased concurrence. In addition, the error rates calculated in the first
concurrence level are noteworthy, as it is likely that this rate was impacted by the failures
that occurred at level 4096 of the previous repetition. The failure rates calculated in AFC
are lower than the others, as seen in Fig. 4d. At the peak point, at 2048 concurrent
requests, AFC recorded only around 16% failures. It is worth mentioning that the region
where the service obtained the lowest failure rates was in the Eastern region of the United
States.

Another way of viewing the occurrence of errors is shown in Fig. 5 where it is
possible to see the distribution of errors between the regions. It may be noted that the
distribution of failures in the Lambda and GCF regions is balanced, except in the US-
East region where the rates are lower in both providers. This indicates that the degree of
maturity in this region is higher and because of this, the strategies and resources available
in these places contribute to the reduction of failures. In AZF more than half of the failures
occurred in the regions of Europe or Asia while Oceania recorded the lowest failure rates.
AFC failure rate was concentrated in the Asia region with almost 34% of the failures
being located there. Given the good performance in terms of AFC execution time, it is
likely that this concentration of failures precisely in the region where the provider has the
greatest market focus is due to the concurrence with the other AFC customers.

(a) AWS regions. (b) GCF regions. (c) AZF regions. (d) AFC regions.

Figure 5. Regional failure distribution.

(a) US-East. (b) US-West. (c) Europe. (d) Asia. (e) Oceania.

Figure 6. Factorial design results for Lambda vs. GCF.

As mentioned in Section 2, the Orama framework provides factorial design and
the t-test as statistical analysis tools. The comparative analysis of the results reveals a
great proximity between the Lambda and GCF results. In order to understand the effects
of these results, a factorial design was created between the Lambda and GCF results using
the lowest and highest level of concurrence (1 and 4096).

Fig. 6 shows the results of the factorial design effects, and highlights the preva-
lence of statistical error, which indicates the existence of another factor (in addition to
the provider and the level of concurrence) influencing the result. Given the proximity
of the approaches adopted by the providers, it is likely that this factor is the latency be-
tween the region in which the Orama framework was installed and the infrastructure of
the providers. Another factor that predominates in the results is concurrence, indicating
that the results were more affected by the difference in concurrence than by the difference
between providers, that is, it may therefore be inferred that the strategies of AWS and
Google in their FaaS were equivalent in the tests carried out in this paper.

The t-test results between Lambda and GCF are shown in Table 2. It is possible
to observe that all differences found between providers have some level of confidence
for statistical significance. In the European region, for example, the confidence level
calculated by the Orama framework was only 70%, which is a relatively low confidence
level. On the other hand, in the US-East region, the difference was considered more
significant, with a 97.5% confidence level.

The results of the respective analyses provided in this section were obtained
through the Orama framework, whose configurability allowed the adaptation of its orig-

Table 2. T-test results between Lambda and GCF.

Region Difference Standard
deviation

Confidence
level

US-East 1628.82 503.18 97.5%
US-West 889.78 432.67 95%
Europe 150.91 233.75 70%
Asia 966.60 425.49 95%
Oceania 792.39 465.21 90%

inal use case so that a proper evaluation of the FaaS environments of the main public
cloud providers in this market could be obtained. Considering the consistent growth of
the FaaS cloud computing model, it is essential to evaluate and understand the strategies
adopted by providers in their service offerings of this nature. Since FaaS is foreseen as
the main engine of the next generation of cloud computing, the more improved and better
the delivery of providers on this paradigm, the more qualified will be the impact for the
next generation of the most revolutionary archetype of computational infrastructure, that
is, the cloud.

6. Conclusion
In this work, the performances of FaaS environments deployed in five different regions in
each of the main public cloud providers were analyzed. AWS, Azure, Google and Alibaba
cloud had their respective FaaS subjected to successive batteries of tests with the help of
the Orama framework, which also assisted in the provisioning of the use case relating
FaaS to DBaaS, as well as in the comparative and statistical analysis tools.

The results showed that, in general, the different regions of the evaluated providers
deliver equivalent performances, except for the US-East region of Lambda, whose results
outperformed the other regions of the provider, possibly due to its higher level of maturity.

The analysis of the average execution times showed that AFC led the results,
presenting the lowest average times at all evaluated levels of concurrence, followed by
Lambda and GCF, practically equal in their performances. Finally, AZF registered the
highest average times in all tested regions.

Failure rate analysis confirmed AFC’s lead in this assessment, registering the low-
est rates followed by GCF. AWS and AZF delivered remarkably high failure rates, espe-
cially at higher levels of concurrence.

In future work, other test cases will be evaluated, such as FaaS integrated with
object storage, for example. In addition, as other FaaS providers such as IBM and Oracle
are integrated, these providers must be subject to the same evaluation conditions as those
in this work in order to broaden the understanding of the aspects explored in this work.

References
AWS (2021). AWS lambda. https://aws.amazon.com/en/lambda. [online;

11-Aug-2021].

Back, T. and Andrikopoulos, V. (2018). Using a microbenchmark to compare function as
a service solutions. In ECSOCC, pages 146–160. Springer.

Barcelona-Pons, D. and Garcı́a-López, P. (2021). Benchmarking parallelism in faas plat-
forms. Future Generation Computer Systems, 124:268–284.

Carvalho., L. and Araujo., A. (2022). Orama: A benchmark framework for function-as-a-
service. In Proceedings of the 12th CLOSER, pages 313–322. INSTICC, SciTePress.

Cloud, A. (2021). Alibaba cloud function. https://www.alibabacloud.com/
product/function-compute. [online; 11-Aug-2021].

Garcı́a López, P., Sánchez-Artigas, M., Parı́s, G., Barcelona Pons, D., Ruiz Ollobarren,
A., and Arroyo Pinto, D. (2018). Comparison of faas orchestration systems. In 2018
IEEE/ACM UCC Companion, pages 148–153.

Google (2021). Cloud functions. https://cloud.google.com/functions/.
[Online; 10-Aug-2021].

Grambow, M., Pfandzelter, T., Burchard, L., Schubert, C., Zhao, M., and Bermbach, D.
(2021). Befaas: An application-centric benchmarking framework for faas platforms.

Jain, R. (1991). The art of computer systems: Techniques for experimental design, mea-
surement, simulation, and modeling.

Kuhlenkamp, J., Werner, S., Borges, M. C., El Tal, K., and Tai, S. (2019). An evaluation
of faas platforms as a foundation for serverless big data processing. In Proceedings of
the 12th IEEE/ACM, UCC’19, page 1–9, NY, USA. ACM.

Malawski, M., Gajek, A., Zima, A., Balis, B., and Figiela, K. (2020). Serverless execution
of scientific workflows: Experiments with hyperflow, AWS lambda and Google Cloud
Functions. Future Generation Computer Systems, 110:502–514.

MELL, P. and Grance, T. (2011). The NIST definition of cloud computing. National
Institute of Standards and Tecnology.

Microsoft (2021). Azure functions. https://azure.microsoft.com/pt-br/
services/functions/. [online; 11-Aug-2021].

Motta, M. A. C., Carvalho, L. R., Rosa, M. J. F., and Araujo, A. P. F. (2022). Comparison
of faas platform performance in private clouds. In Proceedings of the 12th CLOSER,,
pages 109–120. INSTICC, SciTePress.

Nupponen, J. and Taibi, D. (2020). Serverless: What it is, what to do and what not to do.
In 2020 IEEE ICSA-C, pages 49–50.

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N. J., Popa,
R. A., Gonzalez, J. E., Stoica, I., and Patterson, D. A. (2021). What serverless com-
puting is and should become: The next phase of cloud computing. ACM, 64(5):76–84.

Somu, N., Daw, N., Bellur, U., and Kulkarni, P. (2020). Panopticon: A comprehensive
benchmarking tool for serverless applications. In 2020 COMSNETS, pages 144–151.

Wen, J., Liu, Y., Chen, Z., Ma, Y., Wang, H., and Liu, X. (2021). Understanding charac-
teristics of commodity serverless computing platforms.

ZHENG, X. (2018). Database as a service - current issues and its future. CoRR,
abs/1804.00465.

Capítulo 4

Como FaaS integrados a DBaaS se
comportam em diferentes regiões:
uma avaliação por meio do
framework Orama (ERAD-CO)

29

Como FaaS integrados a DBaaS se comportam em diferentes
regiões: uma avaliação por meio do framework Orama

Bruno Abreu Kamienski1, Leonardo Rebouças de Carvalho1, Aleteia Araujo1

1 Departamento de Ciência da Computação – Universidade de Brası́lia (UnB)
Brası́lia – DF – Brazil

{brunosabreu, leouesb}@gmail.com, aleteia@unb.br

Abstract. Public cloud providers have made efforts to expand the coverage of
their services based on the serverless paradigm in order to meet the need of
next generation of cloud computing. However, it is very important studying
the behavior of FaaS environments in different regions of providers. This
work presents a study aided by the Orama framework in order to evaluate
the performance of the main FaaS integrated with DBaaS services in different
regions spread across the globe. The results indicate that the Alibaba provider
was able to guarantee good equivalence between its regions, in addition to a
lower average execution time. AWS and GCP had similar results, and Azure, on
the other hand, had the worst performance and significant failure rates.

Resumo. Os provedores de nuvem pública têm feito esforços para expandir a
cobertura de seus serviços baseados no paradigma sem servidor, a fim de aten-
der à necessidade da próxima geração de computação em nuvem. No entanto,
é muito importante estudar o comportamento dos ambientes FaaS em diferentes
regiões de provedores. Este trabalho apresenta um estudo auxiliado pelo fra-
mework Orama a fim de avaliar o desempenho dos principais FaaS integrados
aos serviços DBaaS em diferentes regiões espalhadas pelo globo. Os resulta-
dos indicam que o provedor Alibaba conseguiu garantir uma boa equivalência
entre suas regiões, além de um menor tempo médio de execução. AWS e GCP
tiveram resultados semelhantes, enquanto a Azure, por outro lado, teve o pior
desempenho além de taxas de falha significativas.

1. Introdução

A computação sem servidor [Nupponen and Taibi 2020] como o paradigma padrão de
programação em nuvem tem se tornado uma ideia cada vez mais presente nas publicações
recentes e isso mostra a importância que ela ganhou para a computação em nuvem.
Function-as-a-Service (FaaS) [Schleier-Smith et al. 2021] permite que os usuários publi-
quem funções escritas em alguma linguagem de programação suportada pelo provedor e
configurem um gatilho que, quando acionado, cabe ao provedor garantir o devido proces-
samento, mesmo diante de altos nı́veis de concorrência.

Visto a necessidade dos provedores estarem o mais próximo possı́vel do usuário
final, frequentemente é utilizada pelas empresas de nuvem a estratégia de implantar in-
fraestruturas geograficamente distribuı́das ao redor do mundo. Além disso, é comum que

diferentes serviços de nuvem sejam combinados para compor a solução. Portanto, pro-
vedores de nuvem oferecem diversas soluções para armazenamento de dados, entre as
quais se destacam Database-as-a-Service (DBaaS) [ZHENG 2018] em que os provedores
entregam ambientes de banco de dados totalmente gerenciados por eles.

2. Metodologia

Levando em consideração a perspectiva de crescimento da adoção de FaaS, bem como a
possibilidade de diferentes implementações entre regiões impactarem o desempenho de
aplicações operando em ambientes dessa natureza, foram avaliados os principais FaaS
em diferentes regiões. Cinco importantes regiões do planeta onde Amazon WebServices
(AWS), Google Cloud Platform (GCF), Azure (AZF) e Alibaba (AFC) possuem infraes-
truturas implantadas foram escolhidas para receber um dos casos de uso disponı́veis do
framework Orama [Carvalho and Araujo 2022]. Utilizando FaaS integrado com o respec-
tivo DBaaS, foram executadas diversas baterias de testes simulando acessos simultâneos
a serviços desde 1 requisição simultânea até 4096 acessos paralelos. Os processos de
provisionamento de ambientes FaaS, execução de testes, análise de resultados e desprovi-
sionamento de ambientes foram realizados utilizando o framework Orama.

O framework Orama [Carvalho and Araujo 2022] é uma ferramenta cujo objetivo
é auxiliar na execução de benchmarks em ambientes FaaS. A estrutura permite alguns
casos de uso integrados que podem ser provisionados e desprovisionados automatica-
mente. Além disso, o framework coordena a execução dos benchmarks a partir dessas
configurações. O framework pode ser configurado para funcionar de forma autônoma,
porém sua capacidade de ativar o FaaS estará limitada à quantidade de recursos dis-
ponı́veis na máquina onde está instalado. Também é possı́vel configurá-lo para atuar
de forma distribuı́da seguindo a arquitetura “master/workers” em que os workers serão
responsáveis por ativar o FaaS e assim a carga de concorrência pode ser dividida entre os
nós workers configurados no ambiente do framework, aumentando assim a capacidade de
concorrência da plataforma.

Soluções envolvendo o uso de FaaS em conjunto com banco de dados são co-
muns, justificando a escolha do caso de uso do framework Orama que implanta FaaS em
diferentes provedores integrados com soluções DBaaS em provedores como DynamoDB
da AWS, Firestore do GCF, CosmosDB da AZF e TableStore da AFC. Com o objetivo
de submeter os ambientes FaaS a diferentes nı́veis de concorrência, foram definidos 13
cenários de teste com concorrência de 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
e 4096 solicitações simultâneas para FaaS. Cada bateria de testes foi configurada no fra-
mework Orama para ser repetida 10 vezes a fim de construir uma média de tempos de
execução.

Uma vez implementado o framework, foram solicitados os deploys dos respecti-
vos ambientes do caso de uso de FaaS com DBaaS para cada região de cada provedor,
totalizando 20 provisionamentos. O Orama foi configurado para realizar uma requisição
de pré-acionamento aos serviços e separando-a das demais requisições, permitindo uma
análise da partida a frio. Cada provisionamento foi submetido a uma bateria de repetições,
para que os resultados pudessem ser analisados.

Figura 1. Tempos de execução dos provedores em função da concorrência.

3. Resultados e conclusão
Os resultados mostraram que, de maneira geral, as diferentes regiões dos provedores ava-
liados entregam desempenhos equivalentes, com exceção da região US-East de Lambda,
cujos resultados superaram as demais regiões do provedor, possivelmente devido ao seu
maior nı́vel de maturidade.

A análise dos tempos médios de execução mostrou que o AFC liderou os resul-
tados, apresentando os menores tempos médios em todos os nı́veis de concorrência ava-
liados, seguido pelo Lambda (AWS) e GCF, praticamente iguais em seus desempenhos.
Por fim, AZF registrou os maiores tempos médios em todas as regiões testadas. A análise
da taxa de falha confirmou a liderança da AFC nesta avaliação, registrando taxas abaixo
de 17%, seguida pela GCF com valores de até 35%. AWS e AZF forneceram taxas de
falha notavelmente altas, especialmente em nı́veis mais altos de concorrência, quando
registraram taxas acima de 50%

A análise da partida a frio mostrou mais uma vez a eficiência das estratégias ado-
tadas pela AFC. AWS e GCF registraram tempos de partida a frio equivalentes, enquanto
o AZF teve um tempo muito alto para implantar seu ambiente de processamento FaaS em
todas as suas regiões. Diante desses resultados, ficou evidente que a AFC registrou os
melhores resultados em todos os itens analisados nesta avaliação, seguida da AWS e GCP
em nı́vel de qualidade equivalente, e por fim os menores resultados foram registrados pela
AZF.

Referências
Carvalho, L. and Araujo, A. (2022). Orama: A benchmark framework for function-as-a-

service. In Proceedings of the 12th CLOSER, pages 313–322. INSTICC, SciTePress.

Nupponen, J. and Taibi, D. (2020). Serverless: What it is, what to do and what not to do.
In 2020 IEEE ICSA-C, pages 49–50.

Schleier-Smith, J., Sreekanti, V., Khandelwal, A., Carreira, J., Yadwadkar, N. J., Popa,
R. A., Gonzalez, J. E., Stoica, I., and Patterson, D. A. (2021). What serverless compu-
ting is and should become: The next phase of cloud computing. ACM, 64(5):76–84.

ZHENG, X. (2018). Database as a service - current issues and its future. CoRR,
abs/1804.00465.

Capítulo 5

Conclusão e Trabalhos futuros

Nos experimentos realizados neste trabalho, ficou evidente a maior consistência e per-
formance do provedor Alibaba, com tempos de resposta significativamente menores do
que os outros provedores. Os provedores Amazon e Google tiveram desempenho muito
similares entre si, e um tempo de inicialização muito próximo ao Alibaba. Entretanto, o
provedor Azure registrou tempos de resposta e de inicialização muito acima dos outros
provedores, podendo ter um impacto negativo na percepção dos usuários de seu serviço
FaaS. Adicionalmente, foi observada uma forte influência da concorrência nas requisições
em relação ao comportamento do FaaS nos provedores testados. Uma concorrência acima
de mil requisições simultâneas aparentemente resultou em um reforço da infraestrutura
FaaS e em uma ligeira queda nos tempos de resposta, exceto no Azure, no qual os tempos
cresceram consistentemente de forma exponencial.

No cenário de persistência, de maneira geral, as diferentes regiões dos provedores
avaliados entregam desempenhos equivalentes, com exceção da região US-East da AWS,
que apresentou um resultado acima dos outros. Além disso, a análise da taxa de falha
confirmou a liderança da AFC nesta avaliação, registrando as menores taxas seguidas
pela GCF, AWS e AZF forneceram altas taxas de falha, especialmente, em níveis mais
altos de concorrência. Por último, a análise da partida a frio mostrou mais uma vez a
eficiência das estratégias adotadas pela AFC. Diante desses dados, ficou evidente que o
AFC apresentou os melhores resultados em todos os itens analisados, seguida do AWS
e GCF, que apresentaram nível de qualidade equivalente. Por fim, os piores resultados
foram registrados pela AZF.

Como trabalhos futuros são propostos casos de uso estendidos para outros provedores
de FaaS, tais como IBM, Oracle e Huawei, sendo estes submetidos às condições aqui
apresentadas, a fim de ampliar o compreensão dos aspectos explorados. Adicionalmente,
sugere-se a análise do custo-benefício dos planos pagos, seja no nível básico ou corporativo,
uma vez que este trabalho se baseou no nível free tier oferecido pelos provedores.

33

Referências

[1] Nupponen, Jussi e Davide Taibi: Serverless: What it is, what to do and what not to
do. Em 2020 IEEE ICSA-C, páginas 49–50, 2020. 1

[2] Schleier-Smith, Johann, Vikram Sreekanti, Anurag Khandelwal, Joao Carreira, Neer-
aja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez, Ion Stoica e David A.
Patterson: What serverless computing is and should become: The next phase of cloud
computing. ACM, 64(5):76–84, abril 2021, ISSN 0001-0782. https://doi.org/10.
1145/3406011. 1

[3] ZHENG, Xi: Database as a service - current issues and its future. CoRR,
abs/1804.00465, 2018. http://arxiv.org/abs/1804.00465, acesso em 05/07/2020.
1

[4] Carvalho., Leonardo e Aleteia Araujo.: Orama: A benchmark framework for function-
as-a-service. Em Proceedings of the 12th CLOSER, páginas 313–322. INSTICC,
SciTePress, 2022, ISBN 978-989-758-570-8. 1, 2

34

https://doi.org/10.1145/3406011
https://doi.org/10.1145/3406011
http://arxiv.org/abs/1804.00465

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Introdução
	Problema de Pesquisa
	Justificativa
	Objetivos

	Metodologia
	Estrutura da Monografia

	Benchmark de FaaS baseado na arquitetura distribuída do framework Orama
	Como FaaS integrados a DBaaS se comportam em diferentes regiões: uma avaliação por meio do framework Orama
	Como FaaS integrados a DBaaS se comportam em diferentes regiões: uma avaliação por meio do framework Orama (ERAD-CO)
	Conclusão e Trabalhos futuros
	Referências

