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Stop counting only those things you have lost. What
is gone, is gone. So ask yourself this: What is there...
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ABSTRACT

Advances in the manipulation of tridimensional (3D) content have allowed new possibili-

ties for what can be done with these technologies. Applications range from virtual reality to

autonomous driving. A common data structure used for this kind of problem is Point Cloud

(PC). This data structure is composed of points in the 3D Cartesian space that can hold several

attributes, such as color. This makes it quite useful for studying land forms and other physical

structures. The application of PCs has gained traction in recent years, leading to the necessity

of transmitting, reading, rendering, and using data, and therefore compression.

To truly be impactful and effective, compression techniques must evaluate the quality of

the resulting data. In consequence, the field of Point Cloud Quality Assessment (PCQA) has

gained more attention recently. New techniques and heuristics have been explored to try and

build an objective methodology for quality assessment that correlates well with the perceived

quality by human beings. The usual approaches for Point Cloud Quality Assessment (PCQA)

are related to color and geometry, and novel projection-based techniques have been developed

to leverage existing and robust Image Quality Assessment (IQA) metrics.

In this work, we explore the power of Neural Networks and Machine Learning to create

a perceptual-driven, full reference metric for PCQA. We first create 2D projections, which

are regular images, from the 3D Point Clouds (PCs). Then, we pass these images through

a recently discovered Image Quality Assessment (IQA) metric known as ‘DISTS’ and deposit

the generated scores in a vector. Finally, this vector is used as input in a regressor model to

predict the final quality score. We demonstrate that our model is competitive in relation to

state-of-the-art metrics, and our results suggest that further improvements can be achieved in

future works. Consequently, we demonstrated the power of projection techniques along with

texture evaluation by generating a score that correlates well with the human ground truth.

Keywords: Point Cloud, Quality Assessment, Virtual Reality, Mixed Reality, Perceptual Index,

Learning-Based



RESUMO

Os avanços na manipulação de conteúdo 3D permitiram novas possibilidades de utilização

dessas tecnologias. As aplicações variam de realidade virtual a direção autônoma e escanea-

mento de comunidades como a Rocinha, essas duas últimas se beneficiando do uso de tecnologia

LiDAR. A estrutura de dados padrão de facto para esse tipo de problema é a Point Cloud (PC

- Nuvem de Pontos). Uma PC é uma estrutura de dados composta de pontos espalhados pelo

espaço cartesiano tridimensional que podem apresentar diferentes atributos, como intensidade

de luz e cor, além das suas coordenadas. Essa estrutura de dados permite mapear, entre outras

coisas, distâncias, alturas, volumes, o que a torna bastante útil para estudo de relevos e outras

estruturas físicas. A aplicação de PCs vem ganhando tração em anos recentes, e com isso vem

a necessidade de transmitir, ler, renderizar, utilizar e, portanto, comprimir.

Para que técnicas de compressão sejam verdadeiramente impactantes e efetivas, é crucial

avaliar a qualidade dos dados resultantes. Por consequência, o campo de Avaliação de Qua-

lidade de Point Clouds (PCQA) tem recebido mais atenção recentemente, e novas técnicas e

heurísticas têm sido exploradas para tentar construir uma metodologia objetiva para avaliação

de qualidade que correlacione bem com a qualidade percebida por seres humanos. As abor-

dagens usuais para PCQA são relacionadas a cor e geometria, e novas técnicas baseadas em

projeções foram desenvolvidas para aproveitar métricas robustas de Avaliação de Qualidade de

Imagens (IQA) já existentes, com o padrão de Compressão de Point Clouds baseada em Vídeo

(V-PCC) estabelecido pelo MPEG se aproveitando dessa abordagem.

Neste trabalho exploramos o poder de Redes Neurais e Aprendizagem de Máquina para

criar uma heurística movida por percepção, referência-completa, para PCQA. Primeiro geramos

projeções 2D, as quais são imagens regulares, a partir de PCs. Então, passamos essas imagens

pela métrica de IQA DISTS movida por textura desenvolvida por Meynet et al., combinamos as

pontuações geradas em um vetor e finalmente utilizamos isso para alimentar um regressor que

irá predizer a pontuação de qualidade final. Nós mostramos que nosso modelo é competitivo com

métricas estado-da-arte, e sugerimos trabalhos futuros e melhorias que podem ser feitos para



explorar adiante a heurística e aprimorar sua desempenho. Consequentemente, demonstramos o

poder de técnicas de projeção concomitantes com avaliação de textura ao gerar uma pontuação

que correlaciona bem com a dada por humanos.

Palavras-chave: Avaliação de Qualidade de Point Cloud, Point Cloud, Realidade Virtual,

Realidade Mista, Índice Perceptivo, Baseado em Aprendizagem
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CHAPTER 1

INTRODUCTION

Advances in capture, storage, and display technologies for 3D content continue to push the

limits of what can be achieved with this type of media. Point Clouds (PCs), which are crucial

for most applications in this field, being the data structure chosen by several immersive media

applications, are formed by a collection of points in the 3D space. Each point contains the coor-

dinates (x, y, z) to represent the geometry of the content and the point’s respective attributes,

such as color or reflectance. In such a manner, PCs can have numerous points, compromising

the viability of the entire application due to the increased storage size and the large bandwidth

needed for transmission. Therefore, the necessity for compression as an enabling technology

arises. Due to the degradation it causes, the respective quality assessment of the content is

needed to provide a good metric able to evaluate different compression techniques.

Examples of applications that use PCs range from autonomous driving [1] to virtual reality

[2]. To generate the necessary data, capture technologies such as RGB-D cameras [3] and light

detection and positioning (LiDAR) sensing [4] come in handy. Miranda et al. [5] explores the

power of the LiDAR technique is explored by Miranda et al. [5] by the collection of data in

Rocinha, the largest favela in Rio de Janeiro, Brazil. The favela is mapped and morphologically

analyzed using PCs. The resulting data are composed of more than one million points per se-

cond, demonstrating how costly some PCs can become to storage, transmission, and rendering,

underscoring the necessity for compression. Figure 1.1 from the project site 1 shows an example

of the result of Miranda et al. work.

Another application of PCs can be seen in virtual reality, in which users wear a Head-

Mounted Display (HMD) to enter an immersive experience, as shown in Figure 1.2. The use of

HMDs can increase the user’s awareness of content degradation since the display is very close to

the eye. Therefore, this application calls for even more powerful quality assessment techniques

1<https://senseable.mit.edu/favelas/>

https://senseable.mit.edu/favelas/
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Figure 1.1. Point Cloud representation of a street in Rocinha, obtained with LiDAR technology. Courtesy of
Senseable City Lab and available at https://senseable.mit.edu/favelas/.

that would be able to objectively assess the quality of the content. The provided score must

have a strong correlation with the final user perception, serving as a guide to the development

of codecs that provide improved content quality.

However, compression of PC can become a very complex task, not only due to the really

large number of points, but also due to some intrinsic characteristics of the content, such as

irregularity and sparsity. The representation of 3D content with PCs has two main aspects:

geometry (how the points are arranged in space) and attributes (color, in most cases). In

compression, only the geometry aspect can be addressed, only the attributes, or both, as in

Meynet et al. [6]. Not only does compression suffer from the complex nature of PCs, but also

PCQA has to address the intrinsic complexities of the data to provide a good quality score.

SUMMARY OF THE CONTRIBUTIONS

At the beginning of our research, we conducted an extensive review of the state of the art

literature to identify and solve some pertinent challenges related to dynamic PCs. The main goal

of this initial development was to contribute to the advancements of the techniques proposed by

Diniz et al. [7, 8, 9, 10, 11, 12, 13] and to adapt these techniques for dynamic PCs purposes. A

https://senseable.mit.edu/favelas/
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Figure 1.2. Example of a Head Mounted Display. Source: https://www.arvigbusiness.com/for-home/are-
virtual-reality-headsets-still-a-things

dynamic PC is a PC that has a time dimension, is composed of a combination of frames formed

by static PCs and can be analogous to a bidimensional (2D) video. As part of this collaboration,

we investigated the added value of incorporating temporal pooling in PCQA of dynamic PC

using metrics designed for static PCs. This investigation was carried out considering both full

reference and no reference PCQA approaches and we found that the performance of temporal

pooling is consistently better when a temporal variation model (specifically detailed in [14])

is used. This finding is in part already published in top-tier conferences, the first page of the

articles is depicted in the Appendix A.

However, the main contribution of this dissertation includes the discovery of a novel learning-

based metric based on PC projections. Projection-based approaches have already been explored

and some techniques leverage its benefits in diverse applications, such as PC compression (e.g.,

MPEG’s Video-based Point Cloud Compression (V-PCC) standard codec for Dynamic Point

Clouds (DPCs) [15], where projections are generated per frame and compressed using a 2D

video compression technique). In the scope of PCQA, we adopted a projection-based approach

in which we generate six projections for each PC. Each projection is a conventional digital

image, removing the irregularity and sparsity of the content. This use of projections also makes

it possible to take advantage of the power of IQA techniques, such as powerful Neural Networks

(NNs) trained on large datasets that already have a good generalization capacity, such as the

VGG16 [16]. From that, to assess the quality of the content, the task is to find a way to map

from an IQA technique to a suitable score for PCQA. Furthermore, after generating the pro-

https://www.arvigbusiness.com/for-home/are-virtual-reality-headsets-still-a-thing
https://www.arvigbusiness.com/for-home/are-virtual-reality-headsets-still-a-thing
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jections, cropping and padding were performed to mitigate distraction effects that background

(nonoccupied area) may cause to the final score, as proposed by [17].

Despite its benefits, there is a trade-off in projection-based techniques: While they overcome

irregularity and sparsity, they fail to capture local displacement errors in 3D space, which may

result in a lower correlation with the user’s perception. To balance this trade-off, it is important

to generate good features to feed the PCQA model. Inspired by the work of [18], we chose to

follow a perceptual approach to extract the features from the projections, instead of performing

a pixel-by-pixel comparison, since it fails to capture the real perception that the user would

have. In this sense, our approach aims to drive the nature of the features to better represent

the user’s final perception by combining texture and structure characteristics from the reference

and degraded images obtained with a Deep Learning (DL)-based approach using the VGG16

Convolutional Neural Network (CNN) [16]. These characteristics are combined into a weighted

sum, generating one output value for a single projection (view). As there are six projections

(views) per PC, a vector v of six values is generated, representing our final "perceptual features".

Finally, we map the vector v to the final score using a Machine Learning (ML) regression model

called the Support Vector Regressor (SVR). These steps produce an efficient quality metric for

static PCs that, based on the results disclosed in Chapter 4, is probably the new state of the

art in PCQA.

ORGANIZATION OF THIS DISSERTATION

This dissertation is organized into 5 chapters: this introduction plus four chapters. Chap-

ter 2 presents a brief review of the PC data structure and the intrinsic problems that arise when

dealing with it. Later, it also provides the main concepts involved in the DL field, as well as

some points that need attention when using learning-based techniques. Chapter 3 covers the

techniques chosen to generate the projections, extract the perceptual features, and map from

the features to the final quality score, as well as an overview of the final proposed architecture.

Chapter 4 describes the experiments, the configurations used, and the results obtained. Finally,

Chapter 5 provides our conclusions about the work.



CHAPTER 2

THEORETICAL FRAMEWORK

Working in the field of Point Cloud (PC) requires a knowledge of the main concepts and

techniques to understand its problems and the proposed solutions. On top of that, Deep Lear-

ning (DL) is also a field of study that has a wide set of concepts and techniques. This chapter

establishes the main knowledge for both fields, seeking to provide a consistent theoretical basis

that will allow us to jointly understand both fields and guide our work.

2.1 POINT CLOUDS OVERVIEW

Figure 2.1. Example of a PC present in VSENSE/VVQDB database [19] and its variations with different
levels of degradation.

PCs have a variety of applications, ranging from representing industrial tridimensional (3D)

CAD models to autonomous driving [1] and virtual reality [2]. Among these types of usage, we

will address one in particular, which is the new types of imaging technologies that are based

on PCs and are called immersive imaging. Three data structures, PCs, holograms, and light

fields, are useful for representing this type of content, and each of them has its particularities.

Holograms, which were introduced by Gabor [20], consist of a form of recording light fields

instead of simply recording an image formed by the lens. Light fields, on the other hand, collect

radiance from rays in all directions, demultiplexing the angular information lost in conventional

photography [21] and describing the distributions of light rays in space.

These new types of immersive imaging technology use more dimensions of the plenoptic
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Figure 2.2. From Bergen & Adelson[22]: the plenoptic function describes the information available to an
observer at any point in space and time. A real observer cannot see the light rays coming from behind, but the
plenoptic function does include these rays.

illumination function than traditional representations, although, due to the high dimensionality

of the function, they represent only an approximation. According to [22], the plenoptic function

aims to represent what can potentially be seen; it is a systematic way to describe how the visual

elements are related to the visual information. Therefore, it takes into account all possible

viewpoints (Vx,Vy,Vz), the path of light rays at any possible angle (θ,ϕ), for every wavelength

λ, at every time t, as shown in Figure 2.2. Therefore, the resulting function takes the following

form:

P = P (θ,ϕ,λ,t,Vx,Vy,Vz) . (2.1)

Point clouds have gained greater acceptance for volumetric visual representation, compared

to other immersive imaging technologies [23]. One of the reasons comes from the fact that

surface reconstruction does not need to be performed when obtaining a PC, which is not true,

for example, for polygon meshes 3D. In such a manner, PCs are a more direct and compact

representation of immersive media, which makes them a more computationally efficient way

to represent this type of content. This is a very relevant aspect of real-time immersive media

systems.

Another relevant aspect of these three data structures is the support for Six Degrees of

Freedom (6DoF). According to Diniz [24], degrees of freedom, in this context, represent the

possible types of movement a body can make in the 3D space, which is divided into three

translations: forward/backward (surging), up/down (elevating), and left/right (strafing). In

addition, there are three rotations: yaw, pitch, and roll. Figure 2.3, taken from [25], illustrates

these movements. In this manner, 6DoF gives the user the freedom to look in any direction
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Figure 2.3. The first row illustrates the 3DoF possible movements, whereas the second row illustrates the
additional possible movements for 6DoF. Source: Foundry 45.

and the ability to walk virtually through the scene, making 6DoF a prerequisite for immersive

media systems.

Having support for 6DoF is another reason why PCs is gaining more and more relevance in

the immersive media context. On the other hand, their representation requires a large number

of points and, consequently, a large computational complexity as well, which limits their use in

real applications [26]. Fortunately, researchers in the field are rapidly advancing [27, 28, 29] to

enable the viability of this data structure by developing compression techniques.

In addition to advances in the compression research field, recent advances in 3D data capture

technologies, such as camera arrays [30], RGB-D cameras [3], and Light Detection And Ranging

(LiDAR) sensing [4], are also facilitating the viability of the use of PCs by making the process

of obtaining this data structure easier and cheaper. It should also be noted that each type of

capture technology has its particularities that can be used to process the final content.

Point Clouds vs 2D Images

One of the most popular ways to represent media is the digital image. Digital images are a

set of pixels organized in a bidimensional (2D) matrix grid of a given number of rows, height

h and a given number of columns, width w. Each unit value of this matrix represents a pixel.

Pixels are the smallest elements in the digital image, and each of them has its intensity value

https://foundry45.com/glossary-vr-terms/
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Figure 2.4. The Lenna image and a sample of it showing the corresponding pixels.

commonly represented by a byte (8 bits), thus each pixel has a range of 28 possible values of

intensity. A visual representation of the pixels in an image can be seen in Figure 2.4. In this

manner, a pixel is defined by the function A = f(x,y) [31], where x and y represent the spatial

information of where the pixel is located in the matrix and A is the corresponding discrete

intensity. A single-channel image is called a grayscale image. A possible way to represent a

colored image is by using the RGB format. In this case, the image is made up of three channels:

one for the intensity of red, one for the intensity of blue, and one for the intensity of green.

Thus, colored digital images in the RGB format are made up of three overlapping 2D matrices,

each representing one color channel.

As mentioned above, PCs are collections of points in the 3D space. However, contrary to

the images, PCs do not have a regular grid on which to lay, so they are said to be irregular

data structures. Each point has spatial coordinates (x, y, z) and the corresponding attached

information can be represented by A = f(x, y, z). It follows that when storing a PC, in addition

to storing the information of each point (the color channel intensities in the case of images),

one must also store the spatial coordinates of each point (x, y, z), which can be floating point

numbers, given the continuous nature of space.

This leads to two key aspects of a PC: the spatial information of each point, which is said

to be the geometry aspect, and the corresponding information of each point, known as the

attribute. Thus, irregularity is a characteristic of the geometry aspect of a PC. On top of

that, within the total space that a PC represents, just a small portion is occupied by points,

which leads to another important characteristic of a PC: the sparsity of the geometry. In short,

irregularity is the lack of a regular grid to form the support for the attributes, and sparsity is
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the global low density of the total space given the small number of occupied points.

The lack of regularity naturally increases the storage size of PCs due to the need to encode

the geometry information together with the attributes. This problem does not affect images,

since by knowing the image size in both dimensions one can encode the intensities of the pixels

sequentially and still be able to correctly rebuild the original image. More details of how this

affects the usage of PCs will be described in the next section.

2.1.1 The Compression Task

With all that said, the large space in a disk that PCs requires compromises not only the

storage but also the transmission since channel limitations arise when transmitting above a

certain rate [32]. These implications call for the necessity of data compression to make the

usage of PCs viable in real applications. In that sense, compression appears to be an enabler

technology, making the usage of not only PCs but also of many types of data viable in real-

world applications by compressing them to a level where devices can handle transmission and

storage.

As stated by Sayood [33], when a compression technique or compression algorithm is men-

tioned, one refers to two algorithms. The first is the compression algorithm (encoder) that

takes an input X and generates a representation Xc that requires fewer bits, and the second

is a reconstruction algorithm (decoder) that operates on the compressed representation Xc to

generate the reconstruction Y , together they form the codec, the pair coder-decoder.

The main challenge then is to develop a codec that, understanding the aspects of the data,

can provide a good spot in the trade-off compression rate vs. content quality. When compressing

a PC a large number of points is not the main problem, since one can have, for example, a

video in 4K resolution (3840 x 2160 pixels) that occupies a huge amount of space on the

disk in raw format and still be able to compress it to make its usage viable, while preserving

an acceptable quality for the content. On the other hand, the increased complexity of PC

compression comes from the fact that the information lies on a sparse subset of an irregular

space, contrary to images that have a regularly sampled grid. This makes the neighborhoods

irregular and compromises the relationship among close points and, consequently, the usage of
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context in compression techniques.

Many techniques have been developed to work around these innate characteristics of PCs.

Among them, a widely used technique for PC coding, known as voxelization, addresses the

irregularity problem by quantizing the space, allowing us to represent it regularly. The voxe-

lization groups point together into voxels, which are a set of unit cubes, providing a sense of

resolution to PC. For example, 8 bits of resolution mean 28 cubes in each dimension. As defined

by Xu et al. [34], voxels, similar to pixels in an image, are abstracted 3D units with predefined

volumes, positions, and attributes, which can be used to structurally represent discrete points

in a topologically explicit and information-rich manner.

After the voxelization process, an occupied voxel is a voxel that contains at least one point

inside. Voxelization allows PC to be represented in quantized space or through the octree

representation. In such a manner, this technique helps in the problem of geometry irregularity,

since, by quantizing the space and giving it a sense of resolution, the attributes now have a

regular grid to lay on. However, sparsity remains a problem since only a small portion of the

voxels are occupied. Figure 2.5 shows the effect of the voxelization process in PC.

Figure 2.5. Visualization of a portion of a PC after the voxelization process.

In addition to tackling the irregularity problem, voxelization brings a new set of possibilities

to approach the PC compression task. The geometry can now be seen as a binary signal over

a regular grid in a way that the possible states of a voxel are occupied and not occupied.

Therefore, geometry compression can be seen as a predictive problem, where one can build a

probability distribution of occupancy and predict if a voxel is occupied or not based on context,

since the space is now regularly sampled.
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Octrees are another important technique in the context of PC compression that comes with

voxelization and were introduced by Meagher [35] in 1982. Octree-based methods hierarchically

partition the space following a tree-based data structure. For the tree, each node has exactly

eight children; in this manner, the space is divided into eight equal cubes, the major space is

the node, and the cubes are the children. If a cube contains a point inside, this cube is divided

again into eight new cubes. The process goes on recursively until the desired Level of Detail

(LoD) is achieved — simply put, LoD can be seen as the density of a PC region; the higher

the density, the higher the precision and richness of details and vice versa — or until the new

cube does not contain any point inside. Therefore, octree-based methods are a good approach

to the problem of sparsity in PCs, since when a cube is empty, all its subcubes are also empty,

which makes the octree only represent the occupied portion of space. Figure 2.6, taken from

[36], illustrates the recursive partitioning process of a PC using the octree-based method.

Figure 2.6. Octree partition example. The first representation shows a partition that goes on until every
point is represented, whereas the second represents the partition that goes on until the desired LoD is reached.
Figure taken from [36].

Considering the possibility of applying voxelization to a PC, the compression problem can

now be addressed in two ways: with Point-Based or Voxel-Based approaches. Point-based

techniques process PC as a raw set of points. On the other hand, voxel-based techniques

consider PC as a binary occupancy signal on a regular voxel grid, as commented before. Point-

based approaches are typically more suitable for sparse PCs, while Voxel-based approaches

tend to perform better on denser PCs. Each approach also has disadvantages; Point-Based

approaches may have to deal with a very large number of points, while Voxel-based approaches

may have to deal with very high dimensionality in data caused by the regularization of the
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space. When choosing the best technique to use, the upsides and downsides of each need to be

taken into consideration. Also, the nature of the PC depends on the method used to obtain the

data, and this prior information can help in choosing the correct way to address the compression

problem.

In addition to Voxel-based or point-based approaches, one can choose to address the com-

pression of PCs by its aspects. In this manner, it is possible to compress each aspect indivi-

dually, and the compression problem can be addressed only for the geometry aspect, only for

the attribute aspect, or both. Some peculiarities need attention when compressing the aspects

separately, such as transferring the attributes when performing lossy compression for geometry.

Recent advances in the field have brought widely-known techniques and standards. Among

them, MPEG has released Geometry-based Point Cloud Compression (G-PCC) and Video-

Based Point Cloud Compression (V-PCC). According to Schwarz et al. [37], G-PCC takes

advantage of native 3D representation while decomposing the 3D space into a hierarchical

structure, that is, octree-based division, while encoding each point as an index of the cube to

which it belongs. On the other hand, V-PCC tries to focus on the problem of compressing

Dynamic Point Clouds (DPCs), taking advantage of already existing video coding technologies,

MPEG-4, HEVC, etc., by projecting points onto 2D frames.

Point Cloud compression is still an open problem, and several works in the field leverage

powerful approaches, either more traditional, such as octree-based ones, or more modern, such

as data-driven approaches. The compression problem for PCs has a challenging complexity,

and the algorithms proposed to address it are progressively following this complexity to gain

performance [27, 28, 29]. This gain in complexity compromises the usage of better techniques

in real-world applications, leaving space for simple but already very good approaches such as

G-PCC and V-PCC.

2.1.2 Point Clouds Quality Assessment (PCQA)

Along with the necessity of compressing PCs to enable its use in real-world applications,

comes the necessity of evaluating the resulting content. This is done to ensure the best possible

Quality of Experience (QoE) and to maintain acceptable degradation levels of the PCs coding
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techniques. Point Clouds Quality Assessment (PCQA) is the field that takes this responsibility

and allows one to assess the quality of content by developing quality metrics, which can be

objective or subjective. Users will typically consume 3D PC content with displays very close

to the eyes, through Head-Mounted Displays (HMDs), so PC visual impairments can easily

degrade the user experience, confirming the need for ways to assess content quality during the

compression process.

Subjective metrics are provided by human assessment based on the scores given to the con-

tent. They provide ground truth for objective metrics since they are the best representation of

the quality perceived by the final user. Objective metrics, according to Diniz [24], automatically

evaluate the quality of content based on algorithms that optimally have the highest possible

correlation with subjective ground truth.

Quality metrics are also used to optimize, evaluate, or tune different compression techniques

to ensure that their final result is the best possible QoE. In this manner, as subjective metrics

are dependent on human evaluation, they are very expensive and difficult to obtain, making

their usage in this type of application compromised. Therefore, objective metrics are useful,

as they provide a fast and objective assessment of content that correlates well with human

evaluation, allowing compression techniques to be optimized to generate the final content that

will provide the best possible QoE.

2.1.2.1 Subjective Quality Assessment

Subjective methods used to evaluate PCs take advantage of some protocols used to evalu-

ate 2D images and videos. As currently there is no specific standard or recommendation for

subjective quality assessment [38], questions related to how content should be processed and

displayed still cause uncertainties for PC subjective quality assessment.

So far, the proposed PCQA methods use standardized methodologies for subjective quality

assessment, such as Absolute Category Rating (ACR) and Double Stimulus Impairment Scale

(DSIS) [39, 40]. The difference between these methods lies in the fact that the content has two

possible states: the reference state and the degraded state. When subjects are evaluated with

the ACR methodology, the content is shown individually, so the user does not have a way to
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Figure 2.7. The subjective process of evaluating the quality of content. Note that each subject evaluates every
stimulus and the score of each stimulus is the aggregation of the scores. Courtesy of [44].

compare the content shown with a reference, which is a single stimulus method. On the other

hand, the DSIS methodology shows the reference content and the degraded content; in such a

manner, the user can compare both contents, characterizing a double stimulus method. The

subjects’ scores are typically mapped onto the Mean Opinion Scores (MOS) scale, ranging from

1 (very bad) to 5 (very good). Figure 2.7 illustrates the process of subjectively assessing the

quality of content.

Subjective tests were conducted to compare quality perception on different types of displays

[41, 42]. These tests only considered geometry-related types of distortion and found that human

perception of distortions has a high correlation between different visualization devices, and the

rendering method of PC may influence the perceived quality. There are also works, such as the

one from Zhang et al. [43], that suggest that human perception is less tolerant to geometry

degradation than color degradation on PCs, which is a very relevant fact for the PC compression

problem.

Despite the uncertainty that permeates the rendering of PCs before displaying it, the works

on PC subjective quality assessment are at a satisfactory level where they can support the

development and improvement of both objective metrics and compression techniques.
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2.1.2.2 Objective Quality Assessment

Subjective quality assessment is an expensive and time-consuming task. Applications that

strongly depend on its compression techniques, such as video-streaming services, also depend on

providing the content with the best possible quality for a given compression rate. In these cases,

subjectively assessing the quality of numerous videos with different compression codecs and

parameters is infeasible. Therefore, there is a need to automatically extract the quality of the

content. This is the role of objective metrics, as they provide a quality score using only content

information. In that sense, they are divided into Full-Reference (FR), Reduced-Reference (RR),

and No-Reference (NR). FR metrics rely on the complete content of the reference to estimate

the quality metric for the impaired content, while NR uses only the features of the impaired

content without reference information. RR uses only a portion of the reference content to

estimate the quality metric.

Given that PC is a relatively new type of immersive media format, FR methods for objec-

tively estimating content quality are the most chosen in the field of PCQA. This is due to the

fact that having both reference and altered content allows the algorithms to work without prior

knowledge of the content [24]. The works that built the foundation for this field introduced

the famous point-based metrics: Point-to-Plane (P2Pl) [45], Point-to-Point (P2Po) [46], Plane-

to-Plane (Pl2pl) [47], which is a variation of point-based metrics, using the angular distance

between the tangent planes of each pair of points of a reference and the test PCs to estimate

the perceptual distortion.

According to Diniz [24], point-based methods use a relation between the points of reference

and the test PCs. Given a point k in reference PC R and the closest point i in the test PC

D, a distance measure is used to estimate the error in the test content. Euclidean or Hausdorff

distances are commonly chosen distances used in this context and are performed symmetrically,

that is, the distances from the reference PC to the test PC and from the test PC to the reference

PC. After all distance computations, the cumulative error of all points is used to estimate the

quality metric.

As also stated by Diniz [24], the metrics P2Po, P2Pl, and Pl2pl are types of calculation

errors between points that can estimate the geometry degradation in PCs. For each of them,

first, one needs to find a point-to-point correspondence between PCs, normally this is computed
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using the nearest neighbor search based on the coordinates of the points. After finding the pair

of points that are correspondent {k ∈ R, i ∈ D} the geometry error can be calculated as:

d(k, i) =
√

(k − i)2. (2.2)

After the distance-based error has been calculated for each pair of points, the global error is

estimated using the Mean Squared Error (MSE) technique [48]:

P2PoMSE =
1

N
·

N∑
k=1

(d(k, i))2 , (2.3)

or with Peak Signal-to-Noise Error (PSNR):

P2poPSNR = 10 · log10
3p2

P2poMSE

, (2.4)

where N is the number of points in the reference PC and p is 2pr − 1 bits, which is the peak

distance with pr being the dynamic range of the PC coordinates [39]. The quality metric is

estimated by the maximum error between the reference content and the test content, and vice

versa [24].

To estimate the color error, metrics based on P2Po can also be used following the same

procedure for geometry, but with color distance formulas instead. Using the ITU-R Rec. BT.709

colorimetry equations, the points’ colors are converted to the YCbCr color space, and, for each

component of the color channel, the measures MSE and PSNR are calculated.

So far, we have presented scores that are based only on point information. However, we can

see PCs as representations of surfaces given a set of points [24]. Taking advantage of this, P2Pl

uses the projection of a correspondent point i in a degraded PC to the plane perpendicular to

the normal of the point k in the reference PC together with the P2Po distances to estimate

the quality metric. Pl2pl still leverages plane information but estimates the quality score with

angular similarity differences between the tangent plane of the point k in the reference PC and

the tangent plane of its correspondent point i in the test PC.

Before computing the plane metrics, the plane information must be obtained, which is

done using local neighborhoods and the calculation of the normal vector of each point [45].

These vectors represent a local surface plane and, according to Diniz [24], points in the test

PC that are close to the reference plane will lead to small errors even if they are far from
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the reference point. The P2Po, P2Pl and Pl2pl metrics depend on the relationship and the

ability to establish reliable connections between PCs. However, the irregular aspect of PCs

causes the data to be unstructured, significantly increasing the difficulty of establishing the

necessary relations between the reference and the test PCs. Additionally, there are many types

of coding errors that must be considered when processing a PC so that these metrics do not

sense properly. They also fail to assess both geometry and color. All these facts together

compromise the performance of the aforementioned metrics. However, these metrics are still

widely used by MPEG [49] and some are even considered state-of-the-art, such as [39].

Together with advances in the field of PC compression, data-driven approaches are very

popular and are providing astonishing results in their applications. Gao et al. work [29] take

advantage of the power of data-driven techniques with the use of Variational Autoencoders

(VAEs) combined with neural graph sampling to provide a powerful PC compression technique.

There are also some works in the field of PCs that use data-driven techniques, such as the

approach from Bello el al. [50], which points out that local point relationships are more effective

for modeling a PC data-driven approach, providing other works with useful knowledge when

modeling this type of technique. In the field of PCQA, Liu et al. [27] proposed the first

NR method that uses a data-driven approach by applying a type of architecture known as

Convolutional Neural Network (CNN).

2.2 DEEP LEARNING OVERVIEW

Machine Learning (ML) is the field of study to find out how computers learn from data

[51]. It has become some sort of buzzword today and can be treated as a new programming

paradigm [52]. If in traditional programming the inputs are the data and the rules to output

the answers, in machine learning, what is sought is to discover the rules that are intrinsic to

the data.

However, in this dissertation, we also use Deep Learning (DL) techniques. In general, Deep

Learning comes from the need to solve some problems that classical machine learning arose

regarding the curse of dimensionality and regularization (see [51] and [53]) and it provides a

very powerful framework for supervised learning.
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2.2.1 What are neural networks?

NNs are the foundation for deep learning. When we talk about a deep learning model,

we are necessarily talking about neural networks. They can come in many forms, such as

Convolutional, Recurrent, and so on. Neural networks are made up of layers and each layer

is made up of neurons, also called units or nodes. Each neuron has an activation function

that dictates its output. This is based on the idea that a biological neuron receives input and

activates itself on the basis of this input value. However, neural networks are more function-

approximating machines than a representation of the human brain [51].

The most common type of NN is Feedforward Neural Network (FNN), which means that the

layers do not have any feedback connection. For an illustrated example, see Figure 2.8. FNNs

are also called Multilayer Perceptrons (MLPs). As mentioned above, NNs aims to approximate

(or represent) functions. The family of functions that a network can represent is called the

capacity of the network. Usually, we want this family of functions to include nonlinearities, to

represent more complex problems. Furthermore, NNs should select the most appropriate input

according to the properties of the data.

It is important to define some terms: we say that the first layer of a NN is input layer and

the last layer is output layer. All the other layers in between are called hidden layers, as shown

in Figure 2.8. We can say that a NN with one hidden layer is a shallow neural network, and

a NN with two or more hidden layers is called a deep neural network. Neural Networks also

have a set of hyperparameters. They are the variables that dictate the learning algorithm and

so they are not learned by the algorithm. These variables are set before the training process.

2.2.2 Activation Functions

The objective of FNN is to approximate an unknown function. To achieve this, multiple

operations are performed and passed through, layer by layer. Each layer is composed of multiple

units, and each unit receives the output of a computation. Usually, one largely used model is

linear regression, given by:

f(X;W,B) = XTW +B, (2.5)
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Figure 2.8. Example of a simple feedforward neural network with one hidden layer.

where W are weights and B are biases. Then, each column of these matrices is used for each

unit, and so the operation that each unit of a layer will perform is f(xi;Wi, Bi). Every unit of

the network is a linear regression model. The network then updates the parameters W and B

to achieve the best possible approximation of the desired function.

So, suppose that a given FNN has 2 hidden layers that perform the linear regression model.

The input of the second hidden layer is exactly f (1)(X;W,B), so the output of the network is

f (2)(H;w,C), where H is the output of the first layer, W, w are the weights and B, C are the

biases. Therefore, this yields the following.

f(X;W,B,w,C) = f (2)(f (1)(X;W,B);w,C). (2.6)

Since the composition of two linear functions is still a linear function, a neural network that

performs this model will necessarily be linear. Although linear operations are desirable for ease

of computation, this severely limits the capacity of the network.

To tackle this problem, we use activation functions, which applies a nonlinear transfor-

mation to the result of the operation performed by the NN unit, for example, the one provided

by linear regression. This way, in the network described in the example above, a node of the

first hidden layer will follow these steps:

1. Compute the model equation, such as h = xTw + b;

2. Apply the activation function g to the result: l = g(h);
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3. Return l as the output of the node.

In such a manner, the network gains the ability to select its inputs and also benefits from

the advantages of nonlinearity, e.g. representing more complex problems. Arguably, the most

popular activation function is the Rectified Linear Unit (ReLU):

g(x) = max(0, x). (2.7)

One of the great benefits of ReLU is that it does not have gradient saturation [51], which

means that its gradient does not reduce significantly and close to zero as x grows. This allows

for much faster convergence of gradient descent, which is described in Section 2.2.3.2. Further-

more, the function ReLU is easy to compute, which gives it an advantage over other activation

functions, such as the Sigmoid function, which requires exponentials to be calculated.

2.2.3 The Process of Learning

It is important to define exactly what learning means in the context of ML and DL. As

defined by Mitchell [54], a computer program is said to learn from experience E on some class

of tasks T and performance measure P, if its performance in tasks in T, as measured by P,

improves with experience E.

2.2.3.1 Optimization

As stated above, traditional programming takes data as input and passes them through a

set of rules designed by the programmer to obtain the output. In supervised ML and DL we

take the input and present to the computer the expected outputs; the task now is to find the

rules that guide the inputs to the expected outputs, and this usually requires a lot of numerical

computation. As Goodfellow et al. [51] described and as the previous definition of learning

from Mitchell [54], the problem of finding this set of rules is mathematically modeled and solved

by means of an iterative process rather than analytically finding the solution and providing a

formula to it.

In the context of ML and DL, to learn the correct rules that lead to the expected outputs,

one needs to tell the computer if it’s guess was correct or not and, most importantly, tell how



2.2 – Deep Learning Overview 21

much it was wrong, allowing the definition of how to improve, so it can guide itself to the

expected direction. This is done by the definition of a function known as a cost function, a loss

function, or an error function. As it is a measure of error, optimization is performed to find

the arguments that minimize the cost function [51], as it forces the computer to get closer to

the expected output, and this is the learning process.

However, this task can get very complicated very easily. In the context of NN training,

optimization can become a very challenging process, since cost functions can be very complex

with a huge set of parameters and have some fancy representations that add more complexity

to the process. To contour that, we usually do not care about finding the exact minimum of a

function, but we seek to sufficiently reduce its value to obtain a good generalization error [51],

that is, a good capacity. How exactly this is done is covered in more detail in the following

sections.

For now, it is important to point out that it is common to have three different slices of

data for training and testing a DL algorithm: the training set, the validation set, and the

test set. They can be drawn from one or more datasets. This division is made in order to

prove the capacity of the model in unseen data. First, the model is trained in the training set,

usually the larger one. After that, it is common to use the validation set to tune the model’s

hyperparameters. Lastly, the test set is used to calculate the generalization error of the model.

This division between test set and validation set is made in order to avoid using the test set to

make any decision about the model, thus increasing the reliability of the generalization results

generated on the test set.

2.2.3.2 Gradient Descent

To minimize a function f(x) by its parameters, Goodfellow et al. [51] points out that one

needs to know how to change x to x′ in a way that f(x′) < f(x). The derivative f ′(x) = dy
dx

gives

the slope of f(x) at the point x. In such a manner, the derivative describes how a change in the

inputs would affect the output of a function: f(x+ ϵ) = f(x) + ϵf ′(x). However, a very useful

characteristic of the derivative is that it tells us how to change x to increase f(x), allowing one

to minimize f(x) by changing x in the opposite direction of f ′(x) and this technique is called
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gradient descent [55].

The notation f ′(x) represents the derivative of a single variable function. For multivariate

functions, the concept of partial derivatives is used in the way that the partial derivative
∂
∂xi

f(x) describes how f changes as only the variable xi increases at the point x. The gradient

denoted as ∇xf(x), is the generalization of the derivatives of a multivariable function and is

represented as a vector that contains the partial derivatives of the function. As in the single

variable derivative, the gradient points in the direction of a larger growth; therefore, one can

minimize f by iteratively following the opposite direction (−∇xf(x)), which is exactly the

gradient descent approach for multivariate functions.

Therefore, optimization occurs by applying the gradient descent algorithm, which implies

that the function parameters need to be updated following the negative of the gradient scaled

by a factor known as the learning rate, denoted as ϵ, which determines the step size at each

update. In this manner, the new value of x, denoted x′, can be obtained as

x′ = x− ϵ∇xf(x). (2.8)

The learning rate ϵ is one of the NN hyperparameters (as commented before, they are the set of

parameters that dictate the behavior of the learning algorithm). Usually, it is a small constant,

and one good way to tune it is to try different values and compare the different behaviors of

the loss functions over time; the ϵ that gives the best learning curve should be chosen.

Unlike most ML algorithms, the non-linearity of the DL models can cause the cost functions

to be non-convex [51]. Hence, the task of finding the global minimum becomes very complex,

making the gradient descent algorithm drive the cost function to a low value, but not necessarily

the lowest one. This goes in contrast to the convex case, where any local minimum is guaranteed

to be a global minimum.

Moreover, the complexity of the cost function makes the optimization problem very sensitive

to the initial value of the function’s parameters; if they are initialized in a good spot, the

algorithm can converge to a local minimum that represents a satisfactory low value. However,

if the parameters are initialized in a bad spot, the algorithm could lose itself in the iterations

and not even converge. In such a manner, the gradient descent continues iteratively until

convergence or until a stop criterion is met, since convergence is not guaranteed in some cases.
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Non-convex functions have not only local minimums, but also local maximums and saddle

points, and they are all known as critical points since the derivative at these points is zero.

Saddle points represent the points whose neighborhoods have points that are higher and points

that are lower than themselves. Furthermore, Dauphin et al. [56] points out that the existence

of saddle points contributes negatively to training speed, since their neighborhoods have high

error plateaus, giving an illusory impression of a local minimum. Complex cost functions have

many critical points and flat regions, which explains such a complexity in the task of finding

the function’s global minimum.

Even with all this complexity involved, DL models can be trained to perform very well in the

training set and have a very good generalization capacity. Some works, such as [57, 56], start to

suspect that the search for a global minimum is not that important, since most local minimums

already represent a point in the parameter space with a significantly low-cost function value,

making the model output sufficiently close to the expected outputs and promoting a good

generalization error.

In this sense, gradient descent is the process in which NN effectively learns, since the pa-

rameters, weights, and biases are tuned in a way that minimizes the cost function, making

the outputs as close as possible to the expected one. The combination of weights and biases

dictates the intrinsic rules learned from the training data and, in the process, NN also gains

the power of generalization, making it possible to generalize the learned information for data

that were never seen before. Gradient descent relies on the derivatives to correctly update the

weights and biases at each iteration; these derivatives with respect to each weight or bias are

calculated using an algorithm called backpropagation. In short, it computes the derivatives for

each training sample after a forward pass using the calculus chain rule in a backward pass.

After each forward pass of the training sample, it averages the derivatives and uses them to

update the parameters, completing one iteration of the training process. More details about

backpropagation are covered in Section 2.2.5.

This reinforces the idea that training NNs is more an iterative task than an analytical search

for the solution to the problem. Also, we point out that by averaging the derivatives for every

training sample, the algorithm updates the parameters more efficiently, helping to converge the

cost function. However, this also drastically slows down the training process since one needs to



2.2 – Deep Learning Overview 24

pass through all the training sets to perform a single update in the parameters. Furthermore,

this also scales with a large amount of data normally used to train a NN, making techniques

such as Stochastic Gradient Descent (SGD) very helpful in the process.

There are also some concerns that one should have when training a deep NN with gradient

descent. The application of the calculus chain rule can cause two problems that for a long

time were a hindrance to NN gradient descent training. The so-called vanishing or exploding

gradients that arise in the deep NNs can make learning infeasible. The vanishing gradient comes

from the chain multiplication of small factors (< 1) which makes the gradient very small at some

point of iteration and, as a consequence of equation 2.8, the update of the parameters becomes

insignificant. On the other hand, exploding gradients come from chain multiplication of large

values (> 1), making learning unstable due to the large value of the gradient. In this manner,

the problem of vanishing/exploding gradients during training should be avoided by choosing

the most suitable technique to initialize the NN parameters or by applying some technique

that acts directly on the gradient value, such as gradient clipping for exploding gradients or

techniques such as the one proposed by Srivastava et al. [58] for vanishing gradients.

2.2.3.3 Stochastic Gradient Descent (SGD)

As exposed in Section 2.2.3.2, training a NN to obtain good generalization requires a large

amount of data, and each full pass through the data to update the parameters is time-consuming

and computationally expensive. In addition, some training sets may have billions of examples,

which makes the time for a single update prohibitively long.

As stated by Goodfellow et al. [51], the main insight of Stochastic Gradient Descent (SGD)

is that the gradient is an expectation, which can be approximated using a small set of samples.

This implies that training can be performed using a minibatch of m′ samples drawn uniformly

from the training set that contains all m samples. The common values for m′ range from 1 to

a few hundred and remain constant as m increases. It is pivotal to draw minibatch samples

randomly; the independence among the samples is crucial for the gradient to be computed in

an unbiased manner and, normally, it is sufficient to just shuffle the dataset before storing it.

An important property of SGD is the fact that the computation time per update does
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not increase with increasing number of training samples m. In this way, convergence can be

reached even if m is very large, and SGD algorithms may converge to some criterion even

before the entire training set has been processed [51]. Goodfellow et al. also highlights that

convergence in traditional optimization problems is different from convergence in the models

ML and DL. Traditional optimization stops iteration when a local minimum is reached, while

optimization based on SGD in ML and DL does not. In turn, it continues to try to minimize

the cost function until the convergence criterion based on early stopping is satisfied. Typically,

the criterion is satisfied once the overfitting starts, which implies that the algorithm may stop

when the derivatives still have large values. Overfitting and Underfitting are covered in more

detail in Section 2.2.6.

SGD is an algorithm that takes advantage of the fact that one can see the gradient of the

cost function. It statistically approximates the gradient by computing the derivatives using

random subsets of the training set. Computing the gradient using only subsets of the whole

dataset significantly reduces the number of computations required at each batch and the total

training time. In that sense, SGD is the technique that made the training of NNs with huge

amounts of data possible.

2.2.4 Batches

This text has briefly discussed “training” and “generalization”. It is mandatory in ML and

DL to train and then test the model/NN one is building to obtain the desired results. For

that, the data are separated into two subsets: the training set and the test set. It is important

to shuffle and sample to maintain the statistical characteristics of the dataset. Then, one set,

larger, is used for training, and the other, smaller, is used to test the model/architecture.

The more training data, the better the algorithm can generalize. However, the amount of

data one can have is limited. Also, more data means that the algorithm will be more com-

putationally expensive, and hardware is also limited for several reasons. Therefore, different

techniques have emerged to overcome these limitations, and some of them are data augmenta-

tion and SGD, as discussed in Section 2.2.3.3. This section focuses on batch and mini-batch

techniques, along with the use of epochs to train a NN.
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As mentioned above, the SGD algorithm consists of taking batches of data from the training

dataset and computing the gradient descent over these samples. How NN is trained with this

algorithm iteratively is by separating the training data with batches of a specified size and then

passing these batches through the network. Every time a batch is propagating, NN is updated.

When NN has passed through all the data, epoch was done. The number of epochs and the

size of the batches can vary, but it is common practice to select batches in powers of 2 since this

increases memory efficiency. Also, if the number of samples in the whole data is not divisible

by the batch size, the last batch will be smaller than the rest.

Training NN in batches can reduce the convergence time. Of course, this comes at the

expense of less accuracy, but separating the data allows for parallelized implementations and

higher speed. This is the advantage of using batches. For epochs, their usefulness is related to

the convergence of the gradient. Increasing the number of totals passes through the network

enables more iterations and tackles underfitting. However, it is important to find a balance to

this quantity to avoid overfitting.

2.2.5 Backpropagation

During a NN training process, information flows in two directions. The first one, called

the forward pass, takes the input x and passes it through the network connections performing

the corresponding operations with the weights and biases. This process continues until the

network generates the outputs ŷ and the corresponding cost function J(θ). The second, called

the backward pass, or backpropagating algorithm [59], takes the information at the end of the

network and backpropagates it to compute the gradient numerically.

Note that the gradient is computed numerically instead of finding the gradient analytically

and then computing it, which is a computationally expensive process [51]. The backpropagation

algorithm, which is the algorithm that computes the gradient, together with gradient descent

or SGD is the core of the learning algorithm used to update the parameters of NN at each

iteration.

Using the chain rule of calculus, the gradient ∇xf(x,y) for a function f composed of other

functions that have known derivatives. In the context of DL, the function of interest is the cost
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function J(θ) whose gradient for the parameters θ is ∇θJ(θ). To compute the gradient nume-

rically, backpropagation is the algorithm that performs the chain rule of calculus in a highly

efficient manner [51]. The main concept behind the chain rule can be understood intuitively

when we have the functions y = f(x), z = h(f(x)) = h(y), the chain rule states:

dz

dx
=

dz

dy
· dy
dx

. (2.9)

In the context of DL we are often not interested in the scalar case, but in the case where

x ∈ Rn and y ∈ Rm, causing f : Rn 7→ Rm and h : Rm 7→ R. Consequently, the derivatives

become partial derivatives and are denoted as follows.

∂z

∂xi

=
∑
j

∂z

∂yj

∂yj
∂xi

. (2.10)

Moreover, in DL context, vector notation might be required to better represent the equations,

therefore, the derivatives in vector notation become:

∇xz = (
∂y

∂x
)⊤∇yz. (2.11)

The computation of the gradient in vector notation using the chain rule of calculus depends

on the computation of ∂y
∂x

, a m× n matrix known as the Jacobian matrix of f , which is:

∂y

∂x
=


∂y1
∂x1

· · · ∂y1
∂xn... . . . ...

∂ym
∂x1

· · · ∂ym
∂xn


m×n

(2.12)

Therefore, we can see that the gradient of a variable x obtained by the chain rule by

backpropagation is computed by multiplying the Jacobian matrix ∂y
∂x

by the gradient ∇yz. The

notation presented above helps us to understand the steps required to compute the derivatives.

However, despite the complexity of the notation, backpropagation computes the derivatives

numerically, leveraging the use of computational graphs to do that in a very efficient way.

In computational graphs, each node indicates a variable that may be scalar, vector, tensor,

or other convenient type. Variables are associated with operations, which are just functions.

Moreover, if a variable y is calculated by evaluating a function in a variable x, the variables x

and y are connected by a directed edge that goes from x to y. Figure 2.9, taken from [51], helps

visualize a computational graph and the relations between variables. This is the technique used

in libraries such as Torch7 [60] and TensorFlow [61].
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Figure 2.9. Example of a computational graph. Note that they can be used to represent simple operations
like the one on the left that is just a multiplication, as well as more complex operations like the one on the right
ŷ = σ(x⊤w + b). Source: Goodfellow et al. [51].

Figure 2.10. Computing derivatives using the symbol-to-symbol approach on computational graphs. Source:
Goodfellow et al. [51].

In summary, backpropagation is the algorithm that computes the derivatives of the output

concerning the NN parameters. Gradient descent uses these derivatives to update the NN

parameters, which minimizes the cost function, thus completing the learning process. NNs are

represented by computational graphs whose connections define the path that information in the

input must take to generate the output and the associated operations performed at each step.

Furthermore, by using the computational graph representation, new nodes can be created in

the graph to indicate how to compute the derivatives, as in Figure 2.10, without accessing any

numerical values, avoiding the necessity of computing the same subexpressions several times

and improving computational performance by saving time and memory.
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2.2.5.1 Parameters Initialization

When training the DL models, before feeding the NN with data and starting the forward

pass and the gradient descent algorithm with backpropagation, the NN parameters must be

initialized. Given the complexity of the functions involved, such as the cost function and its

gradient, thend a large amount of computation required, the task of training a NN is inherently

challenging. Furthermore, as Goodfellow et al. [51], the fact that the learning process is

iterative gives the initial point a strong impact on the training result. The initial point is set

by the initialization of the parameters, and it can determine whether the algorithm converges

or not. Furthermore, if the algorithm converges, the initial point can determine how quickly it

converges and if it converges to a high- or low-cost function value, which also affects the final

generalization capacity of NN after training.

A naive way to get an idea about the effect of initialization can be made with the help of

Figure 2.11. As the objective is to iteratively minimize a cost function, if the initial point is set

to a, the algorithm quickly converges to point a′, however, this point does not give the lowest

cost function value, therefore it is not optimal. In the case where the initial point is set to b,

the algorithm converges to the point b′ in a slower process, but, at the same time, the point

b′ represents a lower value of the cost function compared to the point a′, representing a better

final result. Finally, when the algorithm starts at point c, it continues until it converges at

some point lower than b′, which can take a longer (or shorter) time to reach. Therefore, the

initial point dictates the training result and needs to be chosen carefully.

The initialization strategies used today are simple and heuristic, designed to achieve some

desired properties when the NN parameters are initialized and prevent unwanted ones [51].

This simplicity comes from the fact that the optimization of NN is yet primitive. Normally,

the parameters are randomly selected from a Gaussian or uniform distribution and scaled

by a sufficiently small factor, since initializing everything as zero would make the results of

the iterations all null and the learning process would be compromised. Random selection is

performed to ’break the symmetry’ between different units, as two units with the same initial

parameters would be updated in the same way given the deterministic nature of the cost model,

which in turn would compromise learning. There are also initialization techniques that leverage

pretraining of NN and improve generalization by learning quality features from data [62].
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Figure 2.11. Illustrative function to visually show the impact of the initial parameters on the training results.

Here, a general overview of parameter initialization is given, emphasizing its importance in

the NN training process. Other works, such as Narkhede et al. [63], perform a broad survey

on the importance of weight initialization and the various techniques used in this context.

2.2.6 Underfitting and Overfitting

When talking about DL, there are some metrics and terms of great importance. In this

section, we are going to talk about underfitting and overfitting. These two circumstances

are related to the training and generalization error of NN, more specifically, according to the

gap between these two regimes [51].

The training error of NN is an error measure calculated in the training set. The generali-

zation error, also called the test error, is a measure of how well the model behaves according

to previously unseen data [51]. It is very important to use the same error measure in both

training and the test set. This metric can vary depending on the chosen training strategy, and

a common one is Mean Squared Error (MSE), given by equation 2.3. Other distance metrics

can be used, mostly in the case of supervised learning, where we know the target value of the

input data that are fed to the network. The idea is to verify how distant the value predicted

by NN is from the real target value. With these metrics, two challenges arise:

• Keep the training error as low as possible;
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• Keep the gap between the training and generalization error as small as possible.

The underfitting regime starts when the first item is not met; it is the regime in which the

model is not able to correctly represent the training data. However, if we achieve the first

condition but fail to achieve the second, an overfitting regime occurs. This means that NN

behaves well in the training set, but cannot generalize.

These situations are related to the capacity of the model, that is, the set of functions that

the learning algorithm can choose to represent the data [51]. It can be tempting to create a

highly complex model to achieve the largest possible capacity, but, as shown in Figure 2.12,

taken from [51], the larger the capacity of a model, it tends to overfit. On the contrary, the

lower the capacity, the more it tends to overfit.

Figure 2.12. Underfitting and overfitting zones. Image taken from [51].

The reality of solving deep learning problems is that the real complexity of the problem

will never be known, by default. The data generation process will often be much more complex

than we can ever represent [51]. Therefore, in general, the goal of a NN architecture is to find

the optimal capacity that best represents the data.

It was stated above that it is not recommended to just pick a model with a very large

capacity to try and fit the data. However, it is considered good practice to start with a model

that has a large capacity and then use different techniques to reduce the family of functions

that the model can choose from. In such a manner, it is more feasible to tune the model to

achieve the objective.
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The process by which we take the model from overfitting to the scenario in which it seems

closest to the data-generating process is called regularization. There are several ways of

regularizing NN, and there are also ways to express the beliefs we have about what our data

mean. By increasing the penalty on certain weights, we can, in a certain way, tell the model to

prefer one kind of function over another.

2.3 SUPPORT VECTOR REGRESSION

Epsilon-Support Vector Regression (SVR) is a technique belonging to one of the most im-

portant supervised learning methods, Support Vector Machines (SVM) [64]. Although not

classified as a Deep Learning method, in this work, we applied SVR, a classic machine learning

method, as a regression model in the output of our architecture, which will be discussed in

Section 3.4.

The idea of Epsilon-Support Vector Regression (SVR) is to fit a model while keeping the

target data within a certain distance ϵ from the predicted function. This predicted model will

take the form f(x) = k(w,x). The weight vector w belongs to the space of the feature vectors

x. The function k(w,x) is kernel function.

This boundary for the maximum error allowed is the margin of our model. The goal of

SVR is to minimize 1
2
||w||2, i.e., the norm of w. As implied above, there are some constraints

to this; there is a trade-off between this norm and the tolerance to deviations of the model.

Although ideally we would not like to admit deviations larger than ϵ, in practice this is almost

impossible without setting a value too large for our purpose. To counteract this, there are also

what are called slack parameters ξ, the deviation from the margin ϵ. These deviations are also

minimized to keep the error at a minimum. Finally, this results in the model shown in

min(
1

2
||w||2 + C

n∑
i=1

ξi) (2.13)

and

|yi − f(xi)| ≤ ϵ+ |ξi|

|yi − k(wi, xi)− b| ≤ ϵ+ |ξi|.
(2.14)

The hyperparameter C illustrates the tolerance to points outside of the margin. The larger C,

the larger the tolerance. The value n is the size of our training set. Figure 2.13 illustrates an
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example for SVR.

Figure 2.13. An example of SVR.



CHAPTER 3

METHODOLOGY

The compression task, detailed in Section 2.1.1, involves many aspects that are intrinsic to

Point Clouds (PCs), such as irregularity and sparsity. To help compress this type of media,

Point Cloud Quality Assessment PCQA is the field that tries to assess the content to evaluate

the performance of different codecs, providing a way to compare them. To be able to predict

a quality score from the data, one needs to design a set of rules that takes the data as input

and gives the score as output. However, as exposed in Section 2.2, the power of supervised

data-driven approaches comes from the fact that they take data as input and, knowing the

expected outputs, try to find the set of rules that would guide the input to the correct outputs.

Deep Learning (DL) techniques are the most powerful nowadays for computer vision, and there

are already works that join the fields of PCQA and DL such as Lui et al. [27]. Our work also

focuses on leveraging the power of DL in the PCQA field while designing an architecture that

can provide a quality metric that correlates well with the ground truth, the human perceived

quality.

3.1 PROJECTION-BASED APPROACH

PCQA techniques also face irregularity and sparsity problems, since one needs to find a

mathematical relationship in the content, in our case the PCs, to be able to predict a quality

score. Furthermore, the use of DL techniques faces its challenges, considering that it is not easy

to find the intrinsic set of rules of a dataset, and usually a large dataset is needed to obtain a

good result. However, the PCs datasets are very small, which compromises learning the Neural

Network (NN) parameters from scratch and, in turn, places the final result in a spot where it

cannot generalize well what the model has learned.

We choose to follow a projection-based approach to address the problems cited above.
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Projections are a way of representing PCs as common 2D images. By doing so, we can over-

come irregularity and sparsity, since the projections are in the form of 2D structured images.

Furthermore, we can maximize the power of existing Convolutional Neural Networks (CNN)

architectures trained with images, which are much more advanced than those trained with PCs

content. In other words, we can overcome the initialization problem using a NN that already

has a set of parameters optimized for a given task. Normally, these NNs are good at evaluating

previously unseen data.

The process of generating projections associated with a PC can be done by drawing a

bounding cube around the PC and projecting each side of the PC onto the six faces of the

cube. This results in six projected images, as shown in Figure 3.1. After generating the

projections, one can perform any image process method since they are nothing more than

regular images. Therefore, we can use projections to assess the quality of PCs by applying

Image Quality Assessment (IQA) techniques, eliminating some of the problems intrinsic to the

geometry of PCs.

Figure 3.1. To generate the PC projection, first we draw a bounding cube around the PC, as in (a). After,
we orthographically project the views on the six faces of the cube, as in (b). Courtesy of [65].

However, a trade-off arises. The cost of being able to treat the PCQA problem as an IQA

problem is a direct consequence of treating PCs as images. As Javaheri et al. [17] stated, IQA

techniques do not efficiently handle local displacement errors, as pixel-level comparisons are

the way to go in these techniques. Lossy PC coding can cause geometry degradations and,
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in turn, cause displacements at the pixel level, resulting in lower correlation performance. In

summary, treating a 3D structure as 2D leads to a faulty capture of the geometry perception of

the user and may result in a misjudgment of the degree of tolerance the user has to geometry-

degraded regions. Additionally, the resulting projections depend on the number of PC points,

as a different number of points results in different projections. When comparing the reference

and the degraded PCs projections, the compression technique can create a difference in the

number of points. This causes one projection to have a pixel occupied while the other has the

same pixel not occupied, leading to large pixel mismatches [17].

Some techniques have already used projection-based approaches for PCQA. The first, pro-

posed by de Queiroz and Chou [66], uses a bounding cube around PC to generate the six

projections corresponding to the faces of the cube, concatenates them, and measures 2D PSNR

between references and degraded projections. More recently, Video-based Point Cloud Com-

pression (V-PCC), proposed by MPEG, is a standard codec focused on the problem of compres-

sing Dynamic Point Clouds (DPCs). It uses already existing video coding techniques, such as

MPEG-4 and High Efficiency Video Coding (HEVC) by projecting points into 2D frames and

is still widely used [49], proving the relevance of this approach. To generate projections of each

PC, we used the technique developed by Javaheri et al. [17], in which they orthographically

project the PC onto the six faces of the bounding cube. We decided to follow this approach,

since it aims to mitigate problems that arise when representing PCs as images, helping to

improve the overall performance of the architecture.

First, after generating the raw projections, a cropping operation is performed, since projec-

ting PC may generate a large background area compared to the image portion representing the

occupied points. This area comes from the lack of occupied points in the PC, which makes the

background, which is also composed of non-occupied pixels, act as a distractor for the chosen

IQA technique. In the cases that the background is composed of the same color, the distracting

effect is worsened, since pixel-level comparisons are misleading due to the non-degraded por-

tions of the background in contrast with the occupied and degraded ones, resulting in a poor

metric correlation with subjective assessment. In this sense, occupancy maps are used to crop

the projections and reduce the background area to mitigate its effects, as shown in Figure 3.2.

After cropping, we still have areas in the projected images that are not occupied, either



3.2 – Perceptual-Driven Feature Extraction 37

Figure 3.2. Result of the cropping operation in a raw projection.

in the remaining background or within the occupied area. These areas continue to represent

a distractor, even if mitigated, to the IQA technique. Therefore, Javaheri et al. [17] applied

a padding operation that fills the non-occupied portions of the projections using a technique

derived from fluid dynamics called Navier-Strokes [67]. The result can be seen in Figure 3.3.

Together, cropping and padding operations result in a powerful distractor mitigation effect,

improving the performance of the IQA technique.

3.2 PERCEPTUAL-DRIVEN FEATURE EXTRACTION

The next step after generating the projections is to compute a metric score for the images

that correlates well with the quality of the content, as perceived by the user. For that, there

are some techniques in the field of IQA that are well known, such as MSE [48], that have

a low correlation with user perception, and Structural Similarity (SSIM) [68] that provide a

better correlation with the final user quality perception. However, using these methods can

become problematic. As pointed out by Ding et al. [18], they rely on both the reference and

the degraded images to be perfectly aligned, as the comparison is made point-by-point between

pixels. This can cause two samples of the same texture that appear the same to the user to

differ in the arrangement of their features since texture images are especially homogeneous and

consist of repeated elements, often subject to some randomization in their location, size, color,
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Figure 3.3. Result of the padding operation in a cropped projection.

orientation, etc., as defined by Portilla and Simoncelli [69]. This randomization, despite not

changing much of the user’s perception, causes the point-by-point metrics to fail in capturing

texture similarity, and Figure 3.4 shows the impacts of using a pixel-by-pixel approach on the

estimated quality perception. Therefore, we chose to follow the approach of Ding et al. [18],

in which they developed a full reference metric, Deep Image Structure and Texture Similarity

(DISTS), which combines both structural and texture perception, increasing the correlation

with perceived quality.

The initial step of their method is a transformation f : Rn 7→ Rr whose purpose is to map

the reference and distorted images to perceptual representations, by converting the pixel repre-

sentation to a space that is more perceptually uniform [18]. This transformation is performed

using the VGG16 CNN [16] pretrained for object recognition [70] on the ImageNet database

[71]. It is worth noting that Zhang et al. [72] showed the effectiveness of VGG’s pretrained

deep features when used as a substrate to quantify perceptual quality. Using pre-trained fe-

atures from VGG16 CNN is the representation of the second topic on the benefits of using a

projection-based approach, as discussed in Section 3.1. Using a pre-trained CNN can be seen

as learning something by reading a specialized book instead of trying to learn it from scratch

by yourself; which is the benefit of leveraging already existing knowledge by starting from a

good checkpoint instead of the ‘start line’.
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Figure 3.4. As to show how point-by-point comparisons negatively impact the resulting metric, we provide
these four images. (a) is the original full image. (b) is a sample of (a). (c) is (b) after a Gaussian Blur
filter application and (d) is a different sample of (a). In a point-by-point approach, like PSNR or SSIM, that
compares (c) and (d) with (b), the resulting quality of (c) would be greater than the quality of (d), given the
matches in pixel-level. However, for humans, the quality of (d) would be superior, given the similar texture
and perception.

However, the VGG architecture, as it is by default, is not adequate for the task. There-

fore, Ding el al. [18] modified its architecture. The first modification aims to make the initial

transformation alias-free, providing a better substrate for texture resampling. This was done

by changing the Max Pooling layers by L2 Pooling layers, as suggested by Hénaff and Simon-

celli [73], who point out that the Max Pooling layers are responsible for introducing aliasing.

Therefore, the operation performed in the L2 Pooling layers is described as follows:

L2(x) =
√
g ∗ x2, (3.1)

where the square and square root operations are pointwise, and the blurring kernel g(·) is

chosen as a Hanning window that approximately enforces the Nyquist criterion. The second

modification aims to make the transform f injective, where distinct inputs are mapped to

different outputs. This ensures that the final measure is a metric in the mathematical sense, as

this property has proven itself useful in perceptual optimization. This is implemented by simply

including the input image as an additional feature map. The representation then consists of

the input image concatenated with the convolution responses of five VGG layers.
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So far, Ding et al. just adapted the VGG16 pre-trained architecture to generate "perceptual

features". The link between features and quality metric is made by designing a mathematical

relation that can be optimized to maximize the correlation between the two. This relation

is designed under the premise that the visual appearance of textures is often characterized in

terms of sets of local statistics [74]. As described by Ding et al. [18], after extracting features

in both reference and degraded images, they combine two terms of general feature maps, one

to compare spatial averages and the other to compare structural characteristics. Therefore, the

final score is a weighted sum of these two terms.

Both terms are obtained after first feeding the adapted VGG16 model with the reference

and degraded images, x and y, resulting in the reference features and the degraded features, x̃

and ỹ, respectively. Then, a measurement for the texture and a measurement for the structure

was defined, using the features’ global means and correlations, respectively:
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ỹj

)2

, σ(i)
x̃j ỹj

represent the global means, the global variances, and

the global covariance of x̃
(i)
j and ỹ

(i)
j , respectively. x̃

(i)
j denotes the j-th feature map at the

i-th convolution layer; c1 and c2 are small constants included to avoid instability when the

denominator is close to zero. Normalization in both equations serves to equalize the magnitudes

of feature maps at different stages. Lastly, the DISTS model combines the quality measurements

of different convolution layers in a weighted sum:

D(x,y;α,β) = 1−
m∑
i=0

ni∑
j=1

(
αijl(x̃
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j , ỹ

(i)
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(i)
j )

)
, (3.4)

where αij, βij are the weights to be learned in the optimization process, satisfying
∑m

i=0

∑ni

j=1 (αij + βij) =

1.

The general DISTS workflow takes the reference and degraded images and passes them

through the adapted VGG16 model. There are six stages in total, one stage with the original

projection that outputs 3 feature maps and the others with 64, 128, 256, and 512 feature
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Figure 3.5. Computation diagram for the DISTS model [18] using the pretrained VGG16 CNN layers.

maps, respectively. Together, they form the 1475-parameter texture model that is combined

in equation 3.4 and forms the final score DISTS. Figure 3.5 shows the DISTS computation

diagram.

The weights {α, β} in equation 3.4 were optimized to maximize the correlation with human

perception of image quality (comparing the output of the model with human ground truth)

and invariance to resampled texture patches (minimizing the distance between pairs of patches

sampled from the same texture images). As we are dealing with image quality, we minimize

the absolute error between model outputs and human ground-truth scores q(y):

E1(x,y;α,β) = |D(x,y;α,β)− q(y)| . (3.5)

Then, to optimize for the invariance to the resampled texture patches, they minimized the

distance of equation 3.4 between two patches (z1, z2) sampled from the same texture image z:

E2(z;α,β) = D(z1,z2;α,β). (3.6)

In their work, Ding et al. pointed out that they randomly sampled two minibatches Q and

T from the KADID-10k [75] and DTD [76] datasets, respectively, and optimized the parameters

{α, β} using a variant of the SGD algorithm and the function:

E(Q,T ;α,β) =
1

|Q|
∑
x,y∈Q

E1(x,y;α,β) + λ
1

|T |
∑
z∈T

E2(z;α,β), (3.7)
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with λ being a constant that controls the trade-off between the terms. Specific details of the

training and testing setups used by Ding et al. can be found in [18]. Note that Ding et al. did

not provide how exactly they mapped the output of the model to the actual quality metric,

they just provided the final weights {α, β}. More importantly, we are interested in the ability to

generate perceptual scores for different images. One can see the DISTS score as a combination

of structural and texture comparison between reference and degraded contents, causing the

output of the model to give a score that correlates well with human perception.

Taking advantage of this, we use the architecture developed by Ding et al. to perform

a perceptual-driven feature extraction on the PCs projections, generating, per PC, a vector

v = {d0,d1, · · · ,di} with {i ∈ N | 0 ≤ i ≤ 5}, where each value i represents one of the six

PC’s projections. We chose to use the final outputs of DISTS as features instead of the same

features used by Ding et al. since the final outputs are already optimized for an IQA task and

are well correlated with human perception of digital images. Therefore, we map the vector v to

the final PC quality score using a ML algorithm and the ground truth scores, but how exactly

we did that will be covered in the next section.

3.3 FEATURE MAPPING

After generating the feature vector v, the next step is to map it to the final quality score.

However, the necessity of capturing the vector’s intrinsic rules that would perform this mapping

increases the complexity of this task significantly. For that, we chose to follow a learning-based

approach using a regression model, since it would learn these rules directly from the data and,

based on previous assessments of degraded PCs, generate an output that correlates well with

human perception. Furthermore, choosing the best regression model to perform the mapping

is also a complex task given the large number of possibilities and the specific characteristics

of each. We chose to leverage a Python library called ‘Lazy Predict’, which uses multiple

regressors to fit the data and returns a table with the results ranked by performance. This

allows us to easily identify the best models for our problem. Details on which dataset was used

and how we carried out tests to find the best regressor and its hyperparameters, as well as to

prove its generalization capacity after training, will be covered in Chapter 4.
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3.4 ARCHITECTURE OVERVIEW

A diagram with an overview of the final proposed architecture is shown in Figure 3.6. As

the figure shows, the metric is Full Reference (FR), since it uses both reference and degraded

PCs. Also, the diagram is divided into three parts (I, II, and III). The part I is the

projection generation process, which is done by leveraging the ProjQM [17] implementation,

which orthographically projects the PC views onto the six faces of a bounding cube. After

generating the raw projections, cropping and padding are performed to mitigate distraction

effects that the background may generate. The part II implements the generation of perceptual

features, in which we use the DISTS model [18] to generate a per-view quality score for the PC

content. As so, the feature vector v has six quality scores per PC. The process of generating

the DISTS score starts with generating 1,475 feature maps extracted from an input image, the

projection, after feeding it to the pre-trained VGG16 CNN. From the feature maps, we use

equations 3.2 and 3.3 to generate the measurements (coefficients) for texture and structure,

respectively. Then, the resulting coefficients are combined into a weighted sum, as described by

equation 3.4 where {α,β}, the perceptual weights, are jointly optimized for human perception

and texture invariance. For this, we use the already optimized weights from Ding et al. [18]

that are available on their GitHub page1. The result of this weighted sum is the DISTS score

d for a single projection. Part III consists of mapping the feature vector v to the final quality

score, which is calculated using the SVR model from the Python package Scikit-Learn (sklearn)

[77]. We used the Waterloo Point Cloud (WPC) dataset for PCQA [78] to train the regression

model and its output is our predicted quality score.

1<https://github.com/dingkeyan93/DISTS>

https://github.com/dingkeyan93/DISTS
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Figure 3.6. Full diagram of the proposed architecture for the FR PC quality metric. The chosen regression
model is the SVR from [79] implemented in the sklearn Python package [77].



CHAPTER 4

EXPERIMENTAL SETUP AND RESULTS

In this section, we present the results of our work. First, we describe the datasets in

which we trained and tested our models. Then, we explain the approach used in selecting the

regression model, as well as the validations used to evaluate the regressors. Lastly, we compare

the performance of our model with other PCQA methods on the same datasets.

4.1 DATABASES

Two databases were used for training and validating our model, namely MPEG Point Cloud

Compression Dataset (M-PCCD), created by Alexiou et al [80], and WPC, created by Liu

et al [78]. Both datasets were created for purposes of PCQA. The M-PCCD dataset has 8

references, which can be seen in Figure 4.1. Each reference has 29 degraded versions, generated

with 5 different techniques, resulting in 232 degraded PCs. For the WPC dataset, it has 20

references that can be seen in Figure 4.2. Each reference has 37 degraded versions, generated

with 5 different techniques, resulting in 740 degraded PCs. We will go over more details in the

following subsections.

4.1.1 MPEG Point Cloud Compression Dataset

The M-PCCD was created as part of an effort to benchmark the algorithms for geometry

and color compression that were standardized by MPEG at the time. That is, Alexiou et al

[80] used version 6.0-rc1 of G-PCC [81] and version 5.1 of V-PCC [15]. The point clouds in

the dataset were extracted from existing databases and the data, which are made up of human

figures and objects, are diverse in terms of geometry and color. The goal of the dataset was to

evaluate and determine the best practices for rate allocation. Objective and subjective quality

assessment methodologies were used to evaluate the scores. An interesting tool that emerged



4.1 – Databases 46

Figure 4.1. Reference PC from the M-PCCD dataset [80]. They are: (a) amphoriskos, (b) biplane, (c) head,
(d) romanoillamp, (e) longdress, (f) loot, (g) soldier and (h) the20smaria. Source: Alexiou et al. [80].

from this work [80] was the point cloud web renderer 1. For more details, refer to the work by

Alexiou et al [80].

4.1.2 Waterloo Point Cloud Database

The WPC dataset was constructed for PC perceptual quality assessment. It contains 20

point clouds that were generated using a single-lens reflex camera and a turntable in a labora-

tory. For the techniques used to construct PCs, the reader can refer to the work of Liu et al

[78]. After generating the references, five types of degradation were applied to each point cloud,

each degradation having varying parameters. The final result was, as mentioned above, 740

degraded PCs, with a total of 760 PCs in the dataset. All of these point clouds were normalized

to a unit cube of step 0.001.

The degradation types used were downsampling, Gaussian noise contamination, and three

types of compression algorithms [78]: G-PCC Trisoup, G-PCC Octree, and V-PCC. The details

are covered in Liu et al.[78]. Furthermore, Liu et al proposed their model for PCQA, given the

1<https://github.com/mmspg/point-cloud-web-renderer>

https://github.com/mmspg/point-cloud-web-renderer
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need for more quality assessment methodologies. This metric was IW − SSIMp [78], based

on projections and weighting of information content, adapting an already existing IQA metric,

IW − SSIM [82].

Figure 4.2. Reference PCs from the WPC dataset [78]. They are: (a) bag, (b) banana, (c) biscuits, (d) cake,
(e) cauliflower, (f) flowerpot, (g) glasses_case, (h) honeydew_melon, (i) house, (j) litchi, (k) mushroom, (l)
pen_container, (m) pineapple, (n) ping-pong_bat, (o) puer_tea, (p) pumpkin, (q) ship, (r) statue, (s) stone and
(t) tool_box. Source: Liu et al. [78].

4.2 REGRESSION MODEL SELECTION

To select the best regression model for our architecture, we used a Python package called

lazypredict. This package allows one to easily fit different regression models in the provided

data with its default configurations and return a table with the models ranked by performance.

In this manner, using the WPC dataset, we generated projections for every PC and passed them

through the DISTS model to obtain the feature vector v for each degraded projection. Our data

are then the combination of the 740 feature vectors (since we use the WPC dataset and generate

one feature vector for each degraded PC) and the respective labels (subjective scores). Also,

we added two new metrics in the LazyPredict class, Pearson’s Correlation Coefficient (PCC)

and Spearman’s Rank Correlation Coefficient (SROCC), since these are metrics that show the

correlation of the predictions with the actual quality scores, and our work aims to maximize

these values. The PCC coefficient is defined by the following equation, which measures the

linear relationship between two sets of data:

PCC(mi,pi) =

∑
i(mi −ma)(pi − pa)√∑

i(mi −ma)2
√∑

i(pi − pa)2
, (4.1)

where mi is the subjective MOS score, pi is the predicted score, and ma and pa are their averages.

For the SROCC, it is a nonparametric measure of the monotonicity of the relationship between
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two sets of data, and it is defined as:

SROCC(mi,pi) = 1− 6
∑L

i=1(mi − ri)
2

L(L2 − 1)
, (4.2)

where mi is the subjective MOS score, pi is the predicted score, ri is the rank order of pi and

L is the number of test PCs. Root-Mean-Square Error (RMSE) measures not the correlation,

but the difference between the predicted values and the actual values, which is the square root

of the average squared errors:

RMSE(mi,pi) =

√∑L
i=1(mi − pi)2

L
, (4.3)

where mi, pi and L are the same as defined before. Since the amount of data is limited, we fed

LazyPredict with 90% of the data for training (666 samples) and 10% for testing (74 samples).

Table 4.1 shows the results obtained. Note that the top three models were SVR, Nu Support

Vector Regression (NuSVR), and the Poisson Regressor.

We picked these three regressors and performed hyperparameter tuning on the WPC dataset

to find their best combination with the same training and test sets used to feed the LazyPredict

algorithm. For that, we leveraged the RandomSearchCV module from the sklearn Python

package [77] with 800 different combinations of hyperparameters and selected the best ones,

being:

• SVR:

– kernel="rbf", gamma=1, epsilon=1, degree=2, C=5;

• NuSVR:

– kernel="rbf", gamma=1, nu=0.429, degree=2, C=50;

• Poisson Regressor:

– solver="lbfgs", max_iter=100, fit_intercept=True, alpha=0.01.

After obtaining that set of parameters, we performed four different validations within

the WPC dataset: Leave-One-Out Cross-Validation (LOOCV), Leave-One-Group-Out Cross-

Validator (LOGOCV) grouping by references, KFold cross-validation with five folds, and finally
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a cross-database validation where we trained the regressors in a dataset and tested in a different

one. We performed these different validations since we had a limited dataset and we wanted

to guarantee a good generalization performance. It is important to note that, for LOOCV, the

metric used was only RMSE, since both PCC and SROCC cannot be calculated.

4.2.1 K-Fold Cross-Validation

K-Fold cross-validation is the most straightforward method. We divide our dataset into K

folds of equal size, then separate K − 1 folds as our training set, and the remaining fold as our

test set. We fit the model in the training set, test it on the test set, and then store the results.

This process is repeated until all folds have been used for testing. Finally, we take the average

of the scores and set it as our final result. Table 4.2 shows the results for a K-Fold with 5 folds

on the WPC dataset.

In this case, the NuSVR performed the best, achieving the highest PCC and lowest RMSE

while performing slightly worse than the PoissonRegressor for the SROCC. Curiously, this was

the only case in which the worst regressor was the SVR.

4.2.2 Leave-One-Out Cross-Validation

LOOCV is a special case of K-Fold cross-validation in which we set the number of folds

equal to the size of our dataset. This means that, for a dataset of size N , the regressor will be

fitted to the N − 1 samples and then evaluated on the remaining one. For this reason, we were

unable to calculate the correlation coefficients for this validation, since they both require their

inputs to be greater than or equal to two. Since we only compared two values, the test metric

was RMSE. We see that, in this case, SVR granted the best result, as in table 4.3.

4.2.3 Leave-One-Group-Out Cross-Validation

LOGOCV is another special case of a K-Fold, but with some considerations: the size of

each fold is not necessarily equal, because we split the data between groups according to its
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structure. In the case of the WPC dataset, the data was grouped by reference, and one reference

was left out of the training and used for testing at a time. It is important to reiterate that

every reference has 37 degraded versions related to it, so in the end, we had 20 folds with 37

samples each. The results are displayed in table 4.4.

When analyzing the results, we can see that the score for SROCC was the same at the

third decimal place for all three regressors, although the individual values were different. Given

that the nature of SROCC is to evaluate how well the relationship between variables could

be approximated by a monotonic function, the similarity of the resulting values in our case is

expected. We are not comparing the exact values of our model output, but the order in which

they can be sorted. This shows that, without considering the accuracy of each regressor, the

three were able to predict the same ranking of the input PCs.

As for PCC, we obtained the same scores for both NuSVR and SVR. Taking into considera-

tion the results for both SROCC and PCC, we can conclude that both regressors approximated

similar functions when fitted on the WPC dataset and consequently both performed better

than the PoissonRegressor, even though it was shown to be able to predict the same order as

the Support Vector Regressors.

4.2.4 Cross-Database Validation

This validation is arguably the most important one for a learning-based model, as it proves

the ability to generalize the model to previously unseen data. The results of the cross-database

validation of our model are shown in 4.5. In this case, the SVR was the regressor that had

the best performance, since it achieved the highest SROCC and the second highest PCC, while

the other two regressors performed the worst on either of the correlation coefficients. For this

reason, we chose the SVR as our final regressor.

4.3 PERFORMANCE COMPARISON AMONG METRICS

Finally, we compare the performance of other metrics in the dataset M-PCCD, ranging

from traditional Point-to-Point, Point-to-Plane, and Plane-to-Plane metrics, as described in
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Section 2.1.2.2, to projection-based ones that directly compare projections with techniques like

PSNR and SSIM, to state-of-the-art ones like PCQM from Meynet et al. which is an optimally

weighted linear combination of geometry-based and color-based features [6], PointSSIM from

Alexiou et al., which aims to capture local changes similarly to SSIM [41], and LBPN from

Diniz et al. which is based on descriptors that extract geometry-aware texture information of

PC contents [13]. The results for the values of PCC, SROCC, and RMSE are shown in Table

4.6.

4.3.1 Comparison on the M-PCCD dataset

Table 4.6 shows our results compared to other approaches and variants on the M-PCCD

dataset. Our model performed generally worse than the descriptor-based approach when con-

sidering PCC, although it performed better than the other approaches. An interesting ob-

servation is that the best performing were the ones that took a localized approach, which is

a desired behavior when taking into consideration textures since images and PCs can have

multiple textures.

For SROCC, our model performed reasonably better than all other approaches and res-

pective variants. This shows that our model is very good at ordering and comparing inputs,

correlating with the human ground truth. This is useful when one wants to compare the per-

formance of two codecs without knowing the exact quality score each one outputs, for example.

Lastly, the results show that our model can generalize well what it has learned and is robust

to overfitting, presenting, indeed, a promising result. The implementation used to produce the

results is publicly available at 2.

2<https://github.com/mateusvgg/TCC>

https://github.com/mateusvgg/TCC
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Table 4.1. Ranking of Lazypredict regression models using the WPC dataset [78]. The Time Taken represents
the time to train and test the model.

Model RMSE PCC SROCC Time Taken (ms)
SVR 12.926 0.821 0.840 11.408
NuSVR 13.212 0.820 0.841 10.666
PoissonRegressor 13.184 0.807 0.838 27.118
HuberRegressor 13.300 0.806 0.834 7.593
SGDRegressor 13.432 0.804 0.835 3.457
BayesianRidge 13.326 0.804 0.836 2.917
RidgeCV 13.351 0.804 0.836 3.736
ElasticNetCV 13.360 0.803 0.836 17.261
KernelRidge 49.730 0.803 0.833 372.410
Ridge 13.317 0.803 0.833 2.809
LinearRegression 13.319 0.803 0.829 2.750
TransformedTargetRegressor 13.319 0.803 0.829 2.949
Lars 13.319 0.803 0.829 21.452
LassoCV 13.393 0.803 0.841 18.537
OrthogonalMatchingPursuitCV 13.354 0.803 0.841 4.208
LassoLarsIC 13.382 0.803 0.841 3.457
LarsCV 13.392 0.803 0.841 27.551
LassoLarsCV 13.392 0.803 0.841 5.088
LinearSVR 13.275 0.803 0.836 2.891
Lasso 13.534 0.803 0.841 4.160
LassoLars 13.535 0.803 0.841 2.825
GammaRegressor 13.885 0.801 0.834 4.546
PassiveAggressiveRegressor 13.750 0.798 0.834 3.019
MLPRegressor 13.774 0.795 0.809 259.384
RANSACRegressor 13.919 0.787 0.809 14.427
ElasticNet 14.215 0.786 0.838 2.674
OrthogonalMatchingPursuit 13.806 0.786 0.826 2.691
TweedieRegressor 14.453 0.784 0.834 4.777
AdaBoostRegressor 15.227 0.761 0.784 47.259
RandomForestRegressor 14.431 0.759 0.790 279.203
GradientBoostingRegressor 14.685 0.752 0.758 168.331
ExtraTreesRegressor 14.543 0.751 0.766 97.293
HistGradientBoostingRegressor 14.761 0.751 0.785 3884.656
LGBMRegressor 15.322 0.731 0.773 316.816
BaggingRegressor 15.201 0.729 0.753 20.820
XGBRegressor 16.645 0.689 0.718 454.797
KNeighborsRegressor 16.295 0.687 0.701 2.988
DecisionTreeRegressor 18.684 0.626 0.649 4.799
ExtraTreeRegressor 19.816 0.618 0.632 3.154
GaussianProcessRegressor 72.575 0.257 0.193 65.265
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Table 4.2. KFold cross validation with k = 5 for WPC dataset [78]. The last line is the mean of every column’s
values.

NuSVR SVR PoissonRegressor
Fold PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE
0 0.707 0.708 15.74 0.698 0.698 15.91 0.715 0.713 15.54
1 0.757 0.753 14.55 0.751 0.750 14.62 0.749 0.749 14.83
2 0.752 0.744 15.65 0.743 0.732 15.89 0.750 0.747 15.69
3 0.756 0.735 16.72 0.750 0.728 17.05 0.755 0.739 16.69
4 0.754 0.758 13.98 0.751 0.756 14.03 0.745 0.760 14.27
mean 0.745 0.740 15.33 0.738 0.733 15.50 0.743 0.741 15.40

Table 4.3. Leave-one-out cross-validation for the WPC dataset [78]. For conciseness, only the mean is
displayed.

Model RMSE
SVR 11.38
NuSVR 11.42
Poisson Regressor 11.48

Table 4.4. Leave one group out cross-validation leaving one reference out at time for WPC dataset [78]. The
last line is the mean of the values of every column.

NuSVR SVR PoissonRegressor
Reference out PCC SROCC RMSE PCC SROCC RMSE PCC SROCC RMSE

biscuits 0.824 0.840 13.68 0.828 0.839 12.99 0.804 0.840 14.33
banana 0.606 0.552 17.69 0.626 0.579 17.35 0.623 0.570 17.16
puer_tea 0.626 0.672 25.36 0.638 0.671 24.72 0.640 0.651 24.51
glasses_case 0.804 0.812 16.02 0.803 0.809 16.46 0.798 0.811 15.30
litchi 0.783 0.752 16.87 0.791 0.761 16.53 0.777 0.751 17.16
pen_container 0.899 0.922 16.80 0.904 0.924 17.42 0.907 0.923 15.07
house 0.822 0.825 13.79 0.814 0.826 14.01 0.812 0.830 14.53
pineapple 0.777 0.790 13.53 0.779 0.789 13.98 0.778 0.788 13.12
tool_box 0.852 0.860 11.13 0.830 0.852 11.89 0.849 0.874 11.36
stone 0.752 0.762 14.26 0.754 0.774 14.10 0.747 0.772 14.30
statue 0.834 0.828 14.01 0.839 0.823 13.90 0.831 0.831 13.97
ping-pong_bat 0.891 0.866 11.46 0.883 0.864 11.65 0.884 0.876 12.25
cauliflower 0.733 0.748 15.33 0.722 0.743 15.65 0.732 0.757 15.30
honeydew_melon 0.728 0.751 16.44 0.728 0.743 16.35 0.718 0.736 16.93
ship 0.692 0.731 17.89 0.690 0.735 18.07 0.669 0.733 18.70
pumpkin 0.682 0.718 16.38 0.679 0.717 16.41 0.677 0.714 16.69
bag 0.853 0.839 14.21 0.843 0.819 14.67 0.857 0.842 13.51
mushroom 0.820 0.797 13.07 0.836 0.812 12.70 0.807 0.785 13.40
flowerpot 0.883 0.896 12.11 0.885 0.897 12.22 0.872 0.899 13.05
cake 0.752 0.754 17.08 0.746 0.751 16.87 0.737 0.736 16.97
mean 0.781 0.786 15.36 0.781 0.786 15.40 0.776 0.786 15.38

Table 4.5. Cross dataset validation - training with WPC dataset and testing in M-PCCD dataset [80].
NuSVR SVR PoissonRegressor

PCC SROCC PCC SROCC PCC SROCC
0.843 0.924 0.850 0.931 0.868 0.918
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Table 4.6. Performance comparison of the proposed metric on the M-PCCD dataset [80].
Approach Variant PCC SROCC
Point-to-point po2pointMSE 0.800 0.868

PSNR-po2pointMSE 0.503 0.524
po2pointHausdorff 0.218 0.461
PSNR-po2pointHausdorff 0.503 0.487
Color-YCbCrMSE 0.560 0.640
PSNR-Color-YCbCrMSE 0.293 0.500
Color-YCbCrHausdorff 0.616 0.559
PSNR-Color-YCbCrHausdorff 0.293 0.288

Point-to-plane po2planeMSE 0.768 0.891
PSNR-po2planeMSE 0.503 0.625
po2planeHausdorff 0.255 0.545
PSNR-po2planeHausdorff 0.503 0.487

Plane-to-plane pl2planeMSE 0.711 0.645
pl2planeRMS 0.715 0.650

Projection-based projPSNR 0.611 0.628
projSSIM 0.636 0.633
projMSSIM 0.701 0.752
projV IFP 0.716 0.742

Descriptor-based Local Binary Pattern (LBP) 0.903 0.906
LBPR 0.867 0.857
LBPN 0.903 0.917
LBPU 0.895 0.913
Local Color Pattern (LCP) 0.882 0.897
PCQM 0.607 0.915
PointSSIM-Color 0.910 0.918
PointSSIM-Geometry 0.784 0.834

Proposed Our Metric 0.850 0.931



CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

Point Clouds (PCs) are gaining more and more relevance as technologies regarding 3D media

are evolving. The PC data structure is composed of geometry — the points’ 3D coordinates —

and attributes — the information attached to each point — and, depending on the application,

it can have a really large number of points, such as in Miranda et al. work [5], where the

resulting PCs have more than 1 million points per second.

In Section 2.1, we describe the nature of the PC data structure, some of its intrinsic cha-

racteristics, and how it differs from other data structures used to represent 3D media, such as

holograms and light fields. In addition, we pointed out how it differs from traditional digital

images, such as the lack of a regular grid on which to lay the attributes. Apart from a large

number of points, this irregularity sums up the sparsity of the space, resulting in a significant

increase in the complexity of compression techniques. To understand how the works in the field

address this complexity, we also pointed out some techniques commonly used when working

with PCs, such as voxelization and octree-based compression. In that sense, PCQA is the field

that, facing the same problems as compression, studies different approaches to generate a good

quality metric that correlates well with human perception, making it possible to calibrate and

compare different compression techniques.

In our work, focused on the development of a quality metric, we avoid irregularity and

sparsity by using a projection-based approach, where we project PC onto the six faces of

a bounding cube, generating six projections (views), then crop and pad them to mitigate

distraction effects that the background may cause. However, there is a trade-off involved when

using projections, once there is a loss in the capacity to capture 3D relationships between points,

leading to a reduction in the correlation with human perception. To balance this trade-off, we

propose a perceptual-driven feature extraction from the projections, leveraging the power of

learning-based techniques applied in the field of IQA, since projections are nothing more than
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digital images. Using projections also avoids training NN from scratch with the limited available

PCs databases, allowing greater capacity of CNN.

Inspired by the use of a learning-based technique, Section 2.2 gives an introduction to the

main concepts of DL and the concepts described can be expanded to any DL application. In

our scenario, we leverage the already pre-trained VGG16 CNN with slight adjustments in the

pooling layers to extract feature maps from the projections and generate the perceptual features

with a handcrafted approach developed by Ding et al. [18]. After obtaining the features, we

feed a regression model to generate the final score. Based on several tests, the chosen regressor

was SVR and the final architecture can be seen in the diagram in Figure 3.6.

After training the regressor and evaluating the architecture with different validation tech-

niques, the results show that our metric has competitive performance compared to the state-

of-the-art metrics such as PCQM [6], two modes of PointSSIM [83] and LBPN [13] based

on the results present in Table 4.6. Therefore, our projection-based approach, together with

perceptual-driven feature extraction, proves itself as a metric that correlates well with human

perception of quality.

In addition to the promising results, our architecture shows room for more performance

gains, mainly due to the learning-based layer, given that these techniques are getting better

every day. One could retrain the {α,β} parameters from equation 3.4 to obtain weights that

are more suitable for PCs projections than for conventional images. However, in the perceptual

approach, it is possible to test the A-DISTS metric [84], which is an evolution of DISTS that

originally makes rather global quality measurements. In this regard, A-DISTS describes a

locally adaptive structure and texture similarity index, taking into consideration that natural

photographic images are locally structured and textured across space and scale [84]. Also, one

could test different NNs architectures such as ImageNET CNN [85] trained on the ImageNET

database [86] to extract even more refined features, it should be noted that changing the

architecture of the main NN may call for adaptations in the pipeline. Also, one can use a

more robust database or a data augmentation technique to increase the model generalization

capacity by increasing the size of the training set.
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Abstract—Point Clouds (PCs) are collections of points dis-
tributed in the 3D space, containing attributes such as color,
normals, transparency, and specularity. Dynamic Point Clouds
(DPCs) correspond to sequences of points in the 3D space that
vary over time like pixels vary over time in a conventional video.
Dynamic PCs are a suitable way to represent volumetric videos
that can be used in augmented or virtual reality applications. This
representation, however, requires a large number of points to
achieve a high quality of experience and needs to be compressed
before storage and transmission. Therefore, reliable quality met-
rics are needed in order to automatically estimate the perceptual
quality of dynamic PC contents. Since currently there are several
quality assessment metrics for static PC, a possible approach
solution consists of using temporal pooling functions to combine
the quality scores predicted for each of the frames. In this paper,
we study the effects of different temporal pooling strategies on
the performance of dynamic PC quality assessment methods.
Our experimental tests were performed using a recent publicly-
available database, demonstrating the efficiency of the evaluated
temporal pooling models. More specifically, the work provides a
recipe on how to apply a temporal pooling function to combine
frame-based quality predictions generated with texture-based
static PC quality assessment methods to estimate the quality of
dynamic PCs.

Index Terms—Point Cloud Quality Assessment, Temporal Pool-
ing, Memory Effect, Visual Attention, Temporal Visual Masking

I. INTRODUCTION

Point Cloud Quality Assessment (PCQA) models have
gained a lot of attention in the last years, particularly after the
release of the recent PC compression standards [1–3]. Many
researchers have proposed solutions to the PCQA problem,
especially for static PCs that represent a scene by a set of
points, with each point being associated with a spatial position
and with attributes that describe the surface properties. For
instance, Torlig et al. [4] developed a folding-based metric
that maps tridimensional (3D) volumes onto bidimensional
(2D) images. Their method uses orthographic projections in
combination with conventional 2D image quality metrics, but it
does not exploit the intrinsic 3D structures of PCs. Alexiou and
Ebrahimi [5] developed simple metrics to capture the perceived
geometric impairments of distorted PCs. Similarly, Javaheri
et al. proposed a PCQA method based on the generalized
Hausdorff distance, which instead of taking the maximum
distance over all the distances considers only the K-lowest
distance values [6].

Other authors proposed PCQA more complete models that
incorporate other types of information, besides geometry. For
example, Viola et al. [7] proposed a metric that combines
color- and geometry-based metrics in order to provide a
global quality score. Their metric takes into account the
color statistics by analyzing the color histograms and the
correlograms. Meynet et al. [8] proposed a metric that also
takes into consideration geometry- and color-based features,
using logistic regression to combine these features and produce
a quality estimate. More recently, Alexiou et al. [9] proposed
a PCQA based on local features extraction. Similarly, Diniz
et al. [10, 11] have explored the use of texture descriptors
to estimate the quality of PC contents, achieving promising
results. More recently, Liu et al. [12] proposed a method for
PCQA that uses a data-driven approach using a Convolutional
Neural Network (CNN). Finally, Yang et al. [13] proposed a
method that uses graph-based relations among points in the
PC to estimate quality.

Although the aforementioned papers contribute to important
advances in the state-of-the-art, they were proposed to estimate
the quality of static PCs. Up to our knowledge, there are not
works that tackle the more challenging problem of assessing
the quality of DPCs. Therefore, in this work, we seek to fill
this gap by conducting a comprehensive evaluation of the
use of temporal pooling methods, generally used for Video
Quality Assessment (VQA) purposes, to pool quality scores
predicted for the individual frames of DPCs and obtain an
overall quality estimation. We evaluated the advantages, sta-
bility, and generalizability of these pooling mechanisms using
four PCQA metrics originally designed for static PCs and 10
temporal pooling functions. We aim to identify statistically
valid pooling mechanisms that can be employed to combine
scores produced by state-of-the-art PCQA metrics, further
improving their prediction performance.

The rest of this work is organized as follows. Section II re-
caps important related works in the literature, especially those
concerned with videos. Section III summarizes the evaluated
pooling functions and algorithms used in the benchmarks in
our experiments. Section IV describes the experimental setup
used in the experiments, including details of parameters used
in the pooling algorithms. Experimental results and analysis
are presented in Section V. Finally, Section VI presents the
conclusions.
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ABSTRACT
Point Cloud Quality Assessment (PCQA) has become an important
task in immersive multimedia since it is fundamental for improv-
ing computer graphics applications and ensuring the best Quality
of Experience (QoE) for the end user. In recent years, the field of
PCQA has made exemplary progress, with state-of-the-art methods
achieving better predictive performance at lower computational
complexity. However, most of this progress was made using Full-
Reference (FR) metrics. Since, in many cases, the reference point
cloud is not available, the design of No-Reference (NR) methods has
become increasingly important. In this paper, we investigate the
suitability of geometric-aware texture descriptors to blindly assess
the quality of colored Dynamic Point Cloud (DPC). The proposed
metric first uses a descriptor to extract features of the assessed
Point Cloud (PC) frames. Then, the descriptor statistics are used
to extract quality-aware features. Finally, a machine learning algo-
rithm is employed to regress the quality-aware features into visual
quality scores, and these scores are aggregated using a temporal
pooling function. Then we study the effects of different temporal
pooling strategies on the performance of DPC quality assessment
methods. Our experimental tests were carried out using the lat-
est publicly available database and demonstrated the efficiency of
the evaluated temporal pooling models. This work aims to pro-
vide a direction on how to apply a temporal pooling function to
combine per-frame quality predictions generated with descriptor-
based PC quality assessment methods to estimate the quality of
dynamic PCs. An implementation of the metric described in this
paper can be found in https://gitlab.com/gpds-unb/no-reference-
dpcqa-temporal-pooling.

CCS CONCEPTS
• General and reference →Metrics; Performance; • Informa-
tion systems→ Multimedia information systems.
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1 INTRODUCTION
PCQA models have gained a lot of attention in recent years, par-
ticularly after the release of recent PC compression standards [1].
Many researchers have proposed solutions to the PCQA problem,
especially for static PCs. For example, Torlig et al. [2] developed
a folding-based metric that maps tridimensional (3D) volumes to
bidimensional (2D) images. Their method uses orthographic projec-
tions in combination with conventional 2D image quality metrics
but does not take advantage of the intrinsic 3D PCs structures.
Alexiou and Ebrahimi [3] developed simple metrics to capture per-
ceived geometric impairments in distorted PCs. Similarly, Javaheri
et al. proposed a PCQA method based on the generalized Hausdorff
distance, which, instead of taking the maximum distance over all
distances, considers only the K-lowest distance values [4]. Other
authors proposed more complete PCQA models that incorporate
other types of information besides geometry, remarkably Viola [5],
Meynet [6], Diniz [7, 8], Liu [9], Alexiou [10], and Yang et al. [11].

Although these works contribute to the state-of-the-art, they
were proposed to estimate the quality of static PCs. To our knowl-
edge, there are no works that tackle the more challenging problem
of assessing the quality of DPCs. Therefore, in this work, we seek
to fill this gap by performing a comprehensive evaluation of the use
of temporal pooling methods to pool the predicted quality scores
for the individual frames of DPCs and obtain an overall quality
estimate. The rest of this work is organized as follows. Section 2 de-
scribes the proposed method. Section 3 describes the experimental
setup used in the experiments, including details of the parameters
used in the pooling algorithms. Section 4 as well as analyses the
experimental results. Finally, Section 5 presents the conclusions.
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