
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

Understanding the Adoption Trends of
JavaScript Modern Features

Rafael Campos Nunes

Orientador
Prof. Dr. Rodrigo Bonifácio de Almeida

Brasília
2023

Understanding the Adoption Trends of JavaScript
Modern Features

Abstract—
JavaScript is a versatile programming language conceived in

the 1990s. Besides its somewhat long history, it continues to exert
a profound and enduring influence, empowering websites with
dynamic capabilities through its interactions with browsers and
rendered documents. In the last decade, though, its scope extends
far beyond the web, finding utility in backend development,
desktop applications, and IoT devices. To circumvent the needs of
modern programming, JavaScript has undergone a remarkable
evolution since its inception, with the groundbreaking release
of its sixth version in 2015, introducing a plethora of new
features and establishing an annual versioning system. While the
adoption of new JavaScript features promises numerous benefits
to developers and their projects, the process of integrating them
into existing codebases poses a persistent challenge. This process
requires a judicious assessment of project requirements, com-
patibility with targeted engines (such as NodeJS, Web browsers,
and the like), and the potential advantages they confer. However,
the strategies employed by developers to effectively incorporate
these features into their projects remain elusive. To shed light on
the prevailing trends, we present the results of a comprehensive
software mining repository study that aims to characterize the
trends in the adoption of modern JavaScript features. After
mining the source code history of 100 JavaScript open-source
projects, we find extensive use of JavaScript modern features
like Arrow Function Declarations, Async Declarations, Const
Declarations, Let Declarations, and Object Destructuring present
in more than 80% of our dataset. Our findings also reveal that (a)
the widespread adoption of modern features happened between
one and two years after the release of the version in 2015 and
(b) a consistent trend toward increasing the adoption of modern
JavaScript language features in open-source projects.

Index Terms—Software Engineering, Modern language fea-
tures, Rejuvenation, Software Evolution, Software Repository
Mining

I. INTRODUCTION

The World Wide Web is accessible by almost any imag-
inable device and comes in excellent availability, altogether
with ease to develop in this platform. The technologies used
to create the Web might differ from when it started, but
the JavaScript language, born in the nineties, was initially
conceived to increase the interactivity on web pages. Currently,
JavaScript is used far more than just the Web, and there
are JavaScript implementations that fulfil the needs for a
wide range of fields, from backend and desktop development
to emergent technologies such as smart contracts and IoT.
JavaScript is also the target platform for languages such as
Reason and TypeScript, and renderer frameworks such as
Vue.js, ReactJS, and so many more [10].

To embrace the many different scenarios of use, the
JavaScript language has changed frequently since its first
release. Indeed, the first JavaScript standard appeared as an
ECMA specification in June 1997 (ECMA-262) [7]. The sixth
version of the language (ECMAScript 6) is considered a break-
through for the JavaScript language evolution, bringing many
modern program language features such as classes, arrow
functions, and promises [17]. After the release of ECMAScript
6, new versions of the language are being released on early
bases.

Adopting modern JavaScript features brings numerous ben-
efits to developers, including expressiveness and security [8].
Nonetheless, developers face the challenge of incorporating
these features into legacy codebases because adapting to the
newest JavaScript features entails a careful trade-off involving
project requirements, potential benefits of modern JavaScript
features, and compatibility with the targeted browsers and
runtime engines, to cite a few. While rejuvenating old code
to leverage the improved readability and performance of new
features can be time-consuming, it might be worthwhile in
the long run —which motivates our general research ques-
tion: “How modern JavaScript features have been introduced,
championed or ignored in existing legacy code?” [14]. Similar
research questions have been explored before, though focus-
ing on Kotlin [12] and Typescript [16], for instance. The
Kotlin [12] study analyzed 26 language features on 387 source
code repositories and the Typescript [16] study analyzed 13
features on 454 source code repositories. Surprisingly, regard-
less of the popularity of the JavaScript language, just a few
studies have explored how specific features of the language
are being used [10].

To fulfil this gap, our research identified the adoption of 15
modern JavaScript features on 98% of 100 JavaScript open-
source project repositories we mined from GitHub and found it
took between one and two years from the 2015 version release
to the modern features be widely used by developers on their
projects. Detailed results are presented in Section IV.

The main contributions our work makes are the following:
• A study presenting the results of the adoption of modern

JavaScript features in the development of projects over
time.

• Provide the programming language community with valu-
able insights into the dynamics of language feature adop-
tion, thereby informing analogous studies pertaining to
JavaScript features.

• Provide insights into the usage patterns of JavaScript
features, highlighting the prevalence and importance of

specific features in modern JavaScript development.

II. JAVASCRIPT EVOLUTION

The ECMA Script, known worldwide as JavaScript, is a
language initially designed for the Internet. Although it is
widely used in many other fields of software development
besides the web, it was not created with that intent in the
beginning. Specifically, it was born in an era when Web
browsers were still giving their first steps. Brendan Eich
tailored the crafting of the JavaScript language, which was
called Mocha back then. Soon after the first release on the
Netscape Navigator, it followed what was called LiveScript.
The third development iteration was named JavaScript, as it
borrowed some syntactic features from the Java programming
language [17].

To relieve everyone of the problems of having different
JavaScript flavours, the Netscape company asked the European
Computer Manufacturers Association (ECMA) to standardize
the JavaScript syntax and semantics as a general-purpose,
cross-platform, vendor-neutral scripting language. This effort
led to the ECMA-262 standard, and other companies that
created browsers could use it to implement JavaScript [11].
Nowadays, JavaScript is ubiquitous and has significantly
changed in these two decades of development. There are 13
versions of the language, which is broadly used to develop
frontend and backend components of Web, mobile and desktop
applications, ranging from simple CRUD applications to more
sophisticated ones such as game interfaces. On the backend,
JavaScript is used with a runtime (as NodeJS) that exposes
APIs commonly found in other programming languages, al-
lowing programmers to implement systems for domains with
highly demanding software requirements (such as finance).
Next, we trace the evolutionary history of JavaScript, high-
lighting the key features that have propelled JavaScript’s
growth and widespread adoption.

A. Initial Versions of JavaScript

The initial version of JavaScript, based on the ECMAScript
1 standard, introduced fundamental programming features
like variables, functions, and conditional statements [17]. In
the subsequent versions, ECMAScript versions 2 and 3, the
language was extended to improve error handling, enhance the
support for regular expression, and introduce new array ma-
nipulation capabilities [17]. The version 4 was never published
as they stalled its development because of internal discussions
about the direction of the language [17].

function f(arr) {
if (arr.length > 2)

throw ’Exception Exception’;
}

var arr = [1,2,3,4];

try {
f(arr);

} catch (e) {
console.log(’thrown exception: ’+ e);

}

JavaScript uses exceptions and the try/catch statement
blocks to handle errors that might occur when executing code.

The ECMAScript 5 standard was released in 2009 and un-
derwent notable enhancements. ECMAScript 5 introduced new
built-in objects and methods, improving string manipulation,
JSON handling, object-oriented programming features, and
array manipulation methods, such as reduce(), filter(),
and map() [15], [17]. ECMAScript 5 represented a significant
advancement by introducing the strict mode, which improved
error checking and established a more predictable execution
environment [8] by not letting programmers use undeclared
variables in code.

To exemplify some of the built-in methods and the new
JSON functionality look at the following piece of code.

var o = {"n": "Leafar", "s":["Senun", "Sopmac"]}
var so = ’{"n": "Leafar", "s":["Senun", "Sopmac"]}’;

var parsedObject = JSON.parse(so);
var stringifiedObject = JSON.stringify(o);

function addExpression(s) {
var r = s + ’ expression’;

return r;
}

// Array["Senun expression", "Sopmac expression"]
o.s.map(addExpression);

The previous code shows the usage of the JSON language
object that allows the developer to easily transform an object
into a string and vice-versa. Given that JSON is one of the
most used standard for exchanging information across web
services it is a significant addition to the language. It also
features the map function that executes the passed function
to each argument of the array, resulting in another array with
different elements.

B. Modern JavaScript

The ECMAScript 6 standard was released in 2015 and
introduced modern programming features, such as: for/of
loop and iterable objects, template literals, rest parameters that
allow functions to be invoked with an indefinite number of
arguments as an array, and a new way to define functions
known as arrow functions; all of this enhances the language’s
object-oriented programming capabilities [8], [17]. Moreover,
it introduced modules, providing a modular approach to code
organization and promoting code reuse [15]. These additions
improved code readability, contextual separation of code,
and provided developers with more expressive syntax. EC-
MAScript 6 also included the let and const keywords for
block-scoped variables, destructuring assignments for concise
variable assignments, improved iterators and generators to
facilitate advanced control flow, and Promises, a mechanism
for handling asynchronous operations [8], [15]. The changes
of this version were so substantial that the term "Modern
JavaScript" is considered any code composed with post-ES6
syntax [13]. In the following excerpt of code it shows some
features of the ECMAScript 6.

’use strict’;

let f = (x) => {
return x * 2;

}

let e = [1,2,4,5,3];

e.map(f); // results in [2,4,8,10,6]

In the previous code we can see the usage of the strict
mode, let assignments, anonymous functions (arrow functions)
and also the new built in function map. It shows the new
capabilities of the language, providing more succinct code.

The ECMAScript versions 7 to 11, from 2016 to 2020,
were published on a new yearly publication cycle proposed
by Technical Committee 39 (TC39), the committee responsi-
ble for the standardization of the ECMAScript programming
language, and they continued to refine existing features and
introduce new constructs [17]. On 2017, ECMAScript 7 intro-
duced the includes() method for array search values, the
exponentiation operator, and the async/await keywords,
simplifying asynchronous programming and enhancing code
readability [8]. ECMAScript 2018 brought spread operators
to copy the properties of an existing object into a new object,
and added the for/await loop to work with the new
asynchronous iterator [8]. Version 2019 (ECMAScript 10)
introduced new functions for array manipulation as flat and
flatMap on Array.prototype for flattening arrays, and
a few minor updates to syntax and semantics [8], bringing
even more functional programming features into the language.
The ECMAScript 11 was released in 2020, introducing the
BigInt data type and the global object This, the nullish
coalescing operator, for providing default values, and optional
chaining, for safe property access, simplifying common pro-
gramming patterns and providing more concise syntax [8].

The ECMAScript 12 brought numeric separators, to im-
prove program readability by allowing the use of under-
score characters as separators within numeric literals; the
replaceAll() method to simplify string manipulation by
providing a direct means to replace all instances of a substring;
the inclusion of WeakRef and FinalizationRegistry,
to effective management of weak references and cleanup
operations by the garbage collector; the any Promise com-
binator, that resolves as soon as any promise in an array
resolves, offering a streamlined approach to handling multiple
asynchronous operations; and the logical assignment operators
??=, ||= and &&=, enabling concise assignment based
on logical conditions. [2]

ECMAScript standard version 13 introduce the top-level
await feature, enabling parent modules wait for the child
modules to execute first. New class elements were also in-
troduced, including visibility modifiers and static fields and
methods, to reinforce encapsulation and data privacy within
classes. ECMAScript 13 also introduced the cause property
on Error objects, allowing the recording of causation chains
in errors. Another addition is the at method for Strings,
Arrays, and TypedArrays, enabling relative indexing.

Furthermore, static blocks within classes was added, facili-
tating per-class evaluation initialization. Lastly, an additional
flag d to regular expressions was included, providing matched
indexes to indicate the start and end positions of a matched
string [2]

III. STUDY SETTINGS

The study aims to understand how JavaScript developers
adhere to the newly released features of the language. Specif-
ically, we look at a subset of changes in the ECMAScript
6th standard and also two features from the ECMAScript
8th, particularly async and await. We chose to start the
study with the 6th standard because it is considered to be
the modern JavaScript [13] as it not only updates the language
with new features but also adds new terminology and semantic
variations to the standard itself [17]. In order to execute
this study we mine the source code history of open-source
JavaScript projects with a tailored tool developed by the team
and investigate the following research questions.

• (RQ1) To what extent do JavaScript repositories rely on
features from the ES6 standard?

• (RQ2) When did JavaScript developers start using fea-
tures from the ES6 standard?

• (RQ3) Is there any trend in the adoption of modern
JavaScript features?

The first question would answer to what extent the mod-
ifications of the language are being adopted by developers
and if those modifications are meant for the development of
JavaScript applications. For instance, arrow functions give the
developer a lot of expressiveness and in JavaScript, where
functions are first-class citizens, one would use it rather
extensively. From another perspective, classes might not be
important as JavaScript already have a mechanism that pro-
vides encapsulation using prototypes.

Besides having the quantitative answer for how much a
feature from the standard is being used, it is important to know
when such modifications began to take place. This answers
how confident developers are to switch from an already
established solution to something that might be more secure
or take less time to write. The usage of scoped variables, for
instance, is one of the instances where developers might jump
in early as JavaScript provides a function bases hoisting that,
because of its browser nature — and now beyond browsers
—, might confuse a developer as it isn’t quite clear where or
to who a variable might be visible.

Lastly, JavaScript is known for its rapid iteration cycle
when developing applications but how that reflects on feature
adoption by developers? The answer to the third question
might show us if there was an effort to update code bases
and when such effort took place.

A. Dataset

The dataset containing the 100th most rated JavaScript
repositories was selected using the SEART tool [6]. The pa-
rameters of the search were JavaScript projects whose number
of commits was more than 1000 (one thousand), the creation

date to be before 2012 with at least one update on January
of 2023. After having the list of repositories to be studied we
used a script to download all of them into a folder in May and
subsequently ran our tool to extract all the features displayed
on Table II. The dataset accounts for approximately 1.2GB of
data and that number represents a surface analysis of 32069
JavaScript files summing up to more than 5 million lines of
code. A random peek into the dataset provides the following
insights from cloc.

TABLE I
RANDOM PEEK INTO THE PROJECT DATASET

Project Name Files Lines of code
eslint 1297 364064
chart.js 632 54028
svg.js 169 18186
jsdoc 500 20980
mocha 136 24868
shields 1223 73910
meteor 1340 198926

B. Data Collection

We developed JSMiner, a tool that traverses the source code
history of projects and collects the usage scenarios of the
features we are interested in (see Table II). JSMiner uses a
JavaScript ANTLR grammar [1] to generate a Java software
language engineering infrastructure for analysing JavaScript
programs.

TABLE II
JAVASCRIPT FEATURES WE COLLECT BY ANALYSING THE SOURCE CODE

HISTORY OF JAVASCRIPT OPEN-SOURCE PROJECTS.

Feature Name Release Date
let ECMAScript 6 2015
const ECMAScript 6 2015
arrow functions ECMAScript 6 2015
classes ECMAScript 6 2015
destructuring ECMAScript 6 2015
promises ECMAScript 6 2015
modules ECMAScript 6 2015
generators ECMAScript 6 2015
default parameters ECMAScript 6 2015
spread and rest parameters ECMAScript 6 2015
async and await ECMAScript 8 2017

After doing the necessary modifications on the grammar
files, we use ANTLR to generate a lexer, a parser, and a
visitor that we can use to traverse the JavaScript files for a
given revision of a project and collect the information we
need. We implemented a suite of test cases to confirm that
our parser correctly recognizes JavaScript files and contains
the usage scenarios of the features. We then proceed with the
execution of the tool against the project revisions in our dataset
(Section III-A). The traversal process uses the Visitor pattern
in the Abstract Syntax Tree (AST). While traversing a project,
JSMiner collects the usage of each feature and outputs this
information in a CSV file that it contains between revisions.

JSMiner is designed not to go over every commit, but to
aggregate changes over some interval — the period we use in

this research is seven days. JSMiner goes from the first commit
on the previously defined date and then steps seven days
forward aggregating every change (commits) in that interval
and analyzing the changes in features usage.

The algorithm used to extract and count features is simple.
Given a root directory JSMiner will look for Github folders
and for each folder it will create a set of commits to be anal-
ysed going from an initial interval to an end interval defined
when executing the program. Having the list of commits (data
points) it starts checking in on each of them and traversing
every JavaScript file within the folder for features we are
interested in, sequentially it counts each feature and possible
errors that occur when executing the parser on a file. The
algorithm uses concurrency to accelerate the parsing step using
all available processors available in the system (logical and
physical).

C. Data Analysis

To answer those three questions we use a combination
of quantitative analysis and also a conservative heuristic to
determine whether or not there’s a trend in the adoption of
modern JavaScript features. More specifically, we use the
linear regression technique to derive the answer to the third
question.

The quantitative analysis uses a ratio of used features (see
Table II) per line of code on every repository in this study
and it also accounts for the first occurrence of a given feature
on the code base. We also rely on using a central tendency
metric called median for each feature to verify if their usage
is constant across the entire project.

To evaluate feature usage patterns in the studied dataset we
used a mathematical tool called regression [18], associating
time and feature usage as variables. This part of the study uses
an R script that we developed to ingest the output of JSMiner
(a time series in CSV). Another way that we used to evaluate
why patterns present themselves in a particular manner in the
code base is to manually verify commits at specific points of
time to find, for instance, the reason why the usage percentage
of a particular feature has dropped over time.

D. Environment

The developed tool is compiled into a JAR (Java ARchive)
using the OpenJDK [4] on version 19.0.2 and Maven [3]. The
resulting file is then executed using the JRE (Java Runtime
Environment) that accompanies the JDK (Java Development
Kit) from OpenJDK.

IV. RESULTS

This section describes the results of an analysis of every
JavaScript project in our dataset. First, our analyses include
the adoption of modern JavaScript features by projects, the
frequency of the feature across all projects, and the date
the feature appeared for the first time in our dataset (Sec-
tion IV-A). Section IV-B presents the adoption trends for mod-
ern JavaScript features in open-source software repositories.

A. Summarizes results for all repositories

This section presents the results of the analysis conducted
on various features in terms of projects’ adoption, occurrences,
and first occurrence dates. The table III below provides a
summary of the findings:

TABLE III
PERCENTAGE OF APPLICATIONS THAT USE A FEATURE, NUMBER OF

OCCURRENCES, AND FIRST OCCURRENCE DATES.

Features Projects Adoption (%) Occurrences (#) First Occurrence

Array Destructuring 52 1015 2012-02
Arrow Function Declarations 98 358711 2012-02

Async Declarations 89 35289 2012-02
Await Declarations 65 20345 2015-03
Class Declarations 59 2243 2014-01
Const Declarations 92 142689 2012-02
Default Parameters 68 2515 2015-02
Export Declarations 50 7797 2013-02
Import Statements 61 23262 2013-02
Let Declarations 88 39899 2013-02

Object Destructuring 80 9446 2012-02
Promise All() and Then() 46 694 2012-03

Promise Declarations 65 1522 2012-11
Rest Statements 55 1272 2015-03

Spread Arguments 60 1733 2015-03

The analyzed projects show high adoption rates for
several features. Specifically, the features Arrow Function
Declarations, Const Declarations, Async Declarations, Let
Declarations, and Object Destructuring are adopted in 98%,
92%, 89%, 88%, and 80% of the projects, respectively.
In our dataset, the usage of Default Parameters, Await
Declarations, Promise Declarations, Import Statements, and
Spread Arguments ranges from 60% to 68% across projects.
Furthermore, the features Class Declarations, Rest Statements,
Array Destructuring, Export Declarations, and Promise All()
and Then() are adopted by 46% to 59% of the projects in our
dataset. These findings highlight the widespread acceptance
and utilization of these features among the analyzed projects.

The median distributions of the analyzed JavaScript features
vary widely. Arrow function declarations have a median distri-
bution of 1694, while const declarations have a median of 624.
Other features, such as async declarations and let declarations,
have median distributions of 137 and 126, respectively. These
findings demonstrate the non-uniform adoption patterns and
usage of different JavaScript features across our dataset. How-
ever, the Jquery-ui project alone contains 29628 occurrences of
Arrow Function Declarations (8.26% of the total). We observe
the same lack of uniformity for Const Declarations and Let
Declarations.

RQ1: To what extent do JavaScript systems rely on
modern JavaScript features?

Our findings suggest that JavaScript developers ex-
tensively use Async Declarations, Const Declarations,
Arrow Function Declarations, Let Declarations, and
Object Destructuring in their projects. These fea-
tures are widely adopted, with adoption rates of
98%, 92%, 89%, 88%, and 80% respectively in the
projects analyzed. Moreover, features such as Default
Parameters, Await Declarations, Promise Declarations,
Import Statements, and Spread Arguments are em-
ployed in a significant portion, ranging from 60% to
68% across the dataset. In contrast, Class Declarations,
Rest Statements, Export Declarations, and Promise
All() and Then() exhibit moderate adoption rates,
ranging from 46% to 59% in the analyzed projects.
These findings provide insights into the usage patterns
of JavaScript features, highlighting the prevalence and
importance of specific features in modern JavaScript
development.

Next, we examined the first occurrences of a set JavaScript
features to gain insights into their timeline of introduction.
The earliest feature to appear was Array Destructuring, which
first emerged in February 2012. It was followed by Arrow
Function Declarations and Const Declarations, which also
made their debut in February 2012. The features Async
Declarations, Export Declarations, Import Statements, and
Object Destructuring were introduced a month later in March
2012. Subsequently, the year 2013 witnessed the arrival of Let
Declarations, Promise Declarations, and Import Statements in
February, while Export Declarations was first observed in July.
The features Await Declarations and Rest Statements came
into existence in March 2015. Notably, Class Declarations and
Promise All() and Then() were introduced earlier in January
2014 and March 2012, respectively. These findings shed light
on the historical timeline of JavaScript features within our
dataset, providing information about their initial appearances.

The first appearance of some of the features occurred be-
tween two and three years before the actual release of ES2015
(ES6) and ES2017 (ES8). The reason for that is because the
majority of features were supported by browsers before the
release of ES6 and ES8. For example, on June 25, 2013, Arrow
Function Declarations was released on Firefox and Firefox
for Android. Other features, such as Const Declarations, were
added to Safari in 2011 and Opera in 2006.

RQ2: When did JavaScript developers start using
modern JavaScript features?

Our findings suggest that JavaScript developers
embraced modern JavaScript features like Arrow
Function Declarations, and Async Declarations
before their official standardization, indicating an
early adoption and utilization of these language
enhancements in JavaScript projects. Furthermore,
other modern JavaScript features such as Const
Declarations, Let Declarations, Object Destructuring,
Default Parameters, Await Declarations, Promise
Declarations, Import Statements, Spread Arguments,
Class Declarations, Rest Statements, Export
Declarations, and Promise All() and Then() are widely
adopted between 1-2 years after the introduction of
the feature in a new release JavaScript version.

B. Trends of features adoption

To estimate the Trends for our features, we conduct a
regression analysis on our time series-based dataset using
the tslm function available in the Forecast R package. Fig-
ure 1 present results of the regression analysis indicate a
statistically significant upward trend for the adoption of the
features in our study (Const Declarations, Let Declarations,
Object Destructuring, Default Parameters, Await Declarations,
Promise Declarations, Import Statements, Spread Arguments,
Class Declarations, Rest Statements, Export Declarations,
Arrow Function Declarations, and Async Declarations).

In addition to the clear trend of adopting new JavaScript
features, Figure 1 showcases interesting situations where the
overall usage count of specific language features diminishes.
Upon careful analysis, we identified two primary factors con-
tributing to this phenomenon. Firstly, certain commits purpose-
fully revert contributions aimed at modernizing the codebase.
Secondly, the merging of branches in commits often leads
to this disruptive pattern of feature adoption, characterized
by contributions that decrease the feature adoption count,
followed by subsequent contributions that restore it to the
original count.

RQ3: Is there any trend in the adoption of modern
JavaScript features in JavaScript applications?

Our analysis indicates a discernible trend in the
adoption of modern JavaScript features in JavaScript
applications. The regression analysis conducted on
our dataset reveals statistically significant upward
trends for features such as Const Declarations,
Let Declarations, Object Destructuring, Default
Parameters, Await Declarations, Promise Declarations,
Import Statements, Spread Arguments, Class
Declarations, Rest Statements, Export Declarations,
Arrow Function Declarations, and Async Declarations.
These findings, as illustrated in Figure 1, suggest a
consistent and increasing adoption of these features
over time.

V. DISCUSSIONS

In this section, we discuss the implications of our findings
(Section V-A) and the limitations that may threaten the validity
of our research (Section V-B).

A. Implications of the Findings

The findings of this study have some implications for
the field of JavaScript development. Firstly, the exten-
sive usage of features such as Async Declarations, Const
Declarations, Arrow Function Declarations, Let Declarations,
and Object Destructuring highlights their significance and
popularity among JavaScript developers. These features have
become widely adopted, indicating their importance in modern
JavaScript development practices. Secondly, the early adop-
tion of features like Arrow Function Declarations and Async
Declarations suggests that JavaScript developers have been
quick to embrace and utilize language enhancements even
before their official releases (ES6, and ES8). This demonstrates
the JavaScript developers’ eagerness to leverage new features
and leverage their benefits in JavaScript projects. Additionally,
the prevalence of other modern JavaScript features, including
Default Parameters, Await Declarations, Promise Declarations,
Import Statements, Spread Arguments, Class Declarations,
Rest Statements, Export Declarations, and Promise All() and
Then(), emphasizes their widespread adoption within a rela-
tively short time frame after their introduction. These implica-
tions underline the continuous evolution and rapid acceptance
of modern JavaScript features in the development open-source
community.

B. Threats to Validity

In terms of internal validity, our study focused on examining
a specific subset of JavaScript features to ensure unbiased
results. We selected this subset based on the features presented
in Part 4 (Modernizing JavaScript) [17].

For external validity, our analysis involved 100 out of 609
JavaScript projects (16.42%) sourced from the GitHub com-
munity. These selected projects met specific criteria, including
a development history of more than ten years and recent

Fig. 1. Distribution of all features usage across the JavaScript projects in our dataset.

monthYear

to
ta

l

100000

150000

200000

250000

300000

2012 2014 2016 2018 2020 2022

arrow_function_declarations

monthYear
to

ta
l

0

50000

100000

2012 2014 2016 2018 2020 2022

const_declarations

monthYear

to
ta

l

0

10000

20000

30000

2012 2014 2016 2018 2020 2022

async_declarations

monthYear

to
ta

l

0

10000

20000

30000

2012 2014 2016 2018 2020 2022

let_declarations

monthYear

to
ta

l

0

2000

4000

6000

8000

2012 2014 2016 2018 2020 2022

object_destructuring

monthYear

to
ta

l

0

500

1000

1500

2000

2012 2014 2016 2018 2020 2022

class_declarations

monthYear

to
ta

l

0

200

400

600

800

1000

2012 2014 2016 2018 2020 2022

rest_statements

monthYear

to
ta

l

0

200

400

600

800

1000

2012 2014 2016 2018 2020 2022

array_destructuring

monthYear

to
ta

l

0

2000

4000

6000

2012 2014 2016 2018 2020 2022

export_declarations

monthYear

to
ta

l

0

500

1000

2012 2014 2016 2018 2020 2022

promise_declarations

monthYear

to
ta

l

0

500

1000

1500

2000

2012 2014 2016 2018 2020 2022

default_parameters

monthYear

to
ta

l

0

5000

10000

15000

20000

2012 2014 2016 2018 2020 2022

await_declarations

monthYear

to
ta

l

0

500

1000

2012 2014 2016 2018 2020 2022

promise_declarations

monthYear

to
ta

l

0

5000

10000

15000

20000

2012 2014 2016 2018 2020 2022

import_statements

monthYear

to
ta

l

0

500

1000

1500

2012 2014 2016 2018 2020 2022

spread_arguments

contributions (after January 01, 2023). It is important to ac-
knowledge that our dataset represents only a small fraction of
the total number of applications, limiting the generalizability
of our findings. Additionally, since our study focused solely
on open-source repositories, we cannot generalize our results
to industry projects. Nevertheless, we firmly believe that our
study’s findings hold relevance for developers in general,
offering valuable insights into their JavaScript development
practices.

VI. RELATED WORKS

The related works for our study reflect researchs focused
on programming language features adoption for different lan-
guages, as TypeScript and Kotlin, and other research focused
on selected in-depth JavaScript specific features.

Mateus and Martinez [12] conducted a similar study about
feature adoption by developers for the Kotlin program lan-
guage used in Android development. The research gathered
empirical data based on 387 Android applications’ source
code repositories and identified when features were used
for the first time, just like our method in this study. Their
findings analyzing 26 features show that 15 of these are
used on at least 50% applications and that 24 features are
incorporated gradually into the source code over time. While
Kotlin differs from JavaScript, this research aligns with our
goals of analyzing language feature adoption and evolution.

Additionally, the research proposed by Scarsbrook et al.
[16] offers a comprehensive examination of the adoption
of TypeScript by analyzing 454 open-source repositories on

GitHub. The authors studied the adoption of 13 language
features over a three-year span (2020-2022) and the findings
show that some features are largely adopted by the community
while others rarely are used. Roughly 35% of projects adopt
the latest release within the first three months after release.
Similar to our work, the authors released an analysis and data-
gathering tool to help the programming language community.
Although focusing on TypeScript, this work presents valu-
able insights into the dynamics of language feature adoption,
thereby informing analogous studies pertaining to JavaScript
features.

Silva et al. [10] study focuses on the usage of classes
in JavaScript. The authors extracted data from 50 popular
JavaScript projects available on GitHub, ranked with at least
1,000 stars and that have at least 150 commits to the study
research date(June 2014). Their findings show that 74% of the
selected projects have classes implemented on the source code
and about 40% make a relevant usage of classes, and that there
is no significant relation between project size and class usage.
Although Silva et al. [10] work focuses specifically on classes,
the study contributes to the understanding of adoption rates of
language constructs as JavaScript features.

Alves et al. [5] research quantifies the adoption of func-
tional programming concepts in JavaScript by developers. The
authors mined 91 GitHub repositories to identify the usage
of language features such as immutability, lazy evaluation,
higher-order functions, whose has been growing throughout
time, and recursion and callbacks & promises, whose adoption
decreased during the same researched period. Despite being a

study that somewhat restricted the number of language features
analyzed, it is related to our research on the adoption of these
features by developers over a period of time.

A study published by Gokhale et al. [9] presents a tool
and a refactoring technique designed to facilitate the devel-
opment transition from synchronous to asynchronous APIs in
JavaScript projects. Through the use of static analysis on the
source codes the authors identified GitHub projects which had
calls to synchronous API functions implemented, and they
selected 12 random projects. The refactoring technique and
tool proposed by the authors migrated the selected projects’
API calls to use the asynchronous JavaScript language features
named Promises and Async/Await. This study is related to
our on the mining and use of static analysis on the source
codes to find determined JavaScript language features within
the projects.

Some of these related works refer more closely to our
research on identifying the adoption by developers of the
features released when a programming language has a new
version. Other works describe mining and static analysis
techniques similar to ours in search for specific JavaScript lan-
guage features on projects’ source code. Our study endeavours
to deepen the understanding of JavaScript feature adoption
over time and by its released versions, aiming to provide ad-
ditional contributions to the programming community besides
these related works provided.

VII. CONCLUSIONS

This study provides insights into the adoption patterns, time-
line, and trends of modern JavaScript features in JavaScript
applications of open-source communities. The analysis demon-
strates the extensive utilization of modern JavaScript features,
indicating their significance in contemporary JavaScript devel-
opment. The early adoption of certain features showcases the
forward-thinking approach of JavaScript developers and their
readiness to incorporate cutting-edge language enhancements
into their projects rejuvenating their codebases. Furthermore,
the identified trends in the adoption of modern JavaScript
features affirm their increasing popularity and the growing
adoption of them. The findings of this research contribute to a
deeper understanding of the evolving landscape of JavaScript
development and highlight the importance of staying abreast
of new features to leverage their potential effectively. As
JavaScript continues to evolve, future studies can build upon
these findings to explore the impact of these features on soft-
ware quality, developer productivity, and overall application
performance. In future work, we intend to find developers’
rejuvenation efforts to introduce the modern features of the
JavaScript language and build a catalog of transformations to
help other developers, communities, and organizations main-
tain their current programs.

REFERENCES

1. ANTLR. https://www.antlr.org/. Accessed on February 13th, 2023.
2. ECMA international. https://262.ecma-international.org. Accessed on

May 25th, 2023.
3. Maven. https://maven.apache.org/. Accessed on February 13th, 2023.

4. OpenJDK. https://openjdk.org/. Accessed on February 13th, 2023.
5. F. Alves, D. Oliveira, F. Madeiral, and F. Castor. On the bug-proneness

of structures inspired by functional programming in javascript projects,
06 2022.

6. O. Dabic, E. Aghajani, and G. Bavota. Sampling projects in github for
MSR studies. In 18th IEEE/ACM International Conference on Mining
Software Repositories, MSR 2021, pages 560–564. IEEE, 2021.

7. E. Ecma. 262: Ecmascript language specification. Technical report,
ECMA (European Association for Standardizing Information and Com-
munication Systems), pub-ECMA: adr„ 1997.

8. D. Flanagan. JavaScript: The Definitive Guide : Master the World’s
Most-used Programming Language. O’Reilly Media, Incorporated, 2020.

9. S. Gokhale, A. Turcotte, and F. Tip. Automatic migration from syn-
chronous to asynchronous javascript apis. Proc. ACM Program. Lang.,
5(OOPSLA), oct 2021.

10. L. Humberto Silva, M. Ramos, M. T. Valente, A. Bergel, and
N. Anquetil. Does JavaScript software embrace classes? In
SANER 2015 : International Conference on Software Analysis, Evolution, and Reengineering,
pages 73 – 82, Montreal, Canada, Mar. 2015.

11. J. Keith. DOM Scripting. Apress, 2005.
12. B. G. Mateus and M. Martinez. On the adoption, usage and evolution of

kotlin features in android development. In Proceedings of the 14th ACM
/ IEEE International Symposium on Empirical Software Engineering
and Measurement (ESEM), ESEM ’20, New York, NY, USA, 2020.
Association for Computing Machinery.

13. J. Morgan and A. Stewart. Simplifying JavaScript: Writing Modern
JavaScript with ES5, ES6, and Beyond. The Pragmatic Programmers.
Pragmatic Bookshelf, 2018.

14. C. Parnin, C. Bird, and E. Murphy-Hill. Java generics adoption: How
new features are introduced, championed, or ignored. In Proceedings
of the 8th Working Conference on Mining Software Repositories, MSR
’11, page 3–12, New York, NY, USA, 2011. Association for Computing
Machinery.

15. J. Resig, B. Bibeault, and J. Maras. Secrets of the JavaScript Ninja,
Second Edition. ITpro collection. Manning Publications, 2016.

16. J. D. Scarsbrook, M. Utting, and R. K. L. Ko. Typescript’s evolution:
An analysis of feature adoption over time, 2023.

17. A. Wirfs-Brock and B. Eich. Javascript: The first 20 years. Proc. ACM
Program. Lang., 4(HOPL), jun 2020.

18. X. Yan and X. Su. Linear Regression Analysis: Theory and Computing.
World Scientific, 2009.

