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Abstract

The Android platform, with its extensive user base and popularity has become a prime
target for malware attacks. For that reason, researchers have been interested on malware
detection methods, including the mining sandboxes approach. This approach focuses
on repackaged apps, a type of attack that consists on modifying an existing app and
introducing malicious behavior on it, and is highly prevalent on the Android platform.
The mining sandboxes technique takes advantage of test case generation tools to monitor
an app’s runtime behavior and detect potential malicious intentions through behavioral
differences between different versions of apps. While the studies have shown promising
conclusions, with over 70% detection accuracy, there’s still a lot of room for improvement.

This study investigates how the performance of the mining sandboxes can be improved
by combining some previously proposed techniques (such as static analysis) with an ap-
proach that extends the behavioral differences detection by taking into consideration the
arguments passed to sensitive methods, and if the type of malware has any influence on
the detection effectiveness. This is done by evolving DroidXP, an existing research frame-
work for mining sandboxes, and evaluating its performance on a comprehensive dataset
of 1,707 pairs of apps. The results show that there’s an improvement of 14% on the mal-
ware detection accuracy, and that there’s a high influence of the type of malware on the
detection outcome.

Keywords: mining sandboxes, android malware detection, dynamic analysis
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Chapter 1

Introduction

Mobile devices have become a huge part of our lives, offering an extensive set of func-
tionalities such as internet access, banking, high quality camera and microphones, global
location services, and much more. The Android platform is the most used mobile platform
in the world, with 71.63% market share and 3.6 billion users worldwide [3]. Android ap-
plications, commonly known as apps, are distributed in various marketplaces, with Google
Play Store being the largest and most used having over 3.5 million apps available [4]. The
huge popularity of mobile devices combined with the access to many sensitive capabilities
have turned mobile devices on attractive targets for malicious actors. In fact, Truong et
al. have reported that over 0.25% of Android devices were infected with malware [5].

Most Android malware employ a type of attack called repackaging, which consists
of altering an existing application to introduce malicious behavior. These repackaged
apps are distributed in various marketplaces, and trick users into believing that they’re
downloading the original version of the app. Once installed on a device, these harmful
applications are capable of capturing user input, recording data from the microphone or
camera and sending it to third-party servers.

To address this issue, previous works studied a method called mining sandboxes, first
proposed by Jamrozik et al. [6] that consists on capturing an app behavior using au-
tomated test generation tools. Bao et al. demonstrated that mining sandboxes are an
effective mechanism to detect malicious activity on Android apps, and also compared
which test case generation tools produced the best results for this purpose [7]. Building
up on Bao et al’s study, Costa et al. [8] developed a tool called DroidXP that combines
static analysis with the dynamic analysis proposed by the mining sandboxes approach
to achieve a higher effectiveness on malware detection. Le et al. [9] have also extended
Jamrozik’s work by creating a more robust sandbox that not only considers new behaviors
introduced by repackaged versions of the apps, but also identifies differences on existing
behaviors, such as different arguments passed to sensitive methods.
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<java.net.URL: void <init>(java.lang.String)>

"http://www.startappexchange.com/1.3/gethtmlad?publisherId=112656864&productId=212488832&os=andr
oid&sdkVersion=2.0.7&packageId=com.impressionapps.vdownload&userId=5ceb9744a4c5994c&model=sdk&
manufacturer=unknown&deviceVersion=19&isp=310260&width=384&height=519&sdkId=3&placement=INAP
P_BANNER&testMode=false&longitude=0.0&latitude=0.0&age=0&adsNumber=1&packageExclude=com.impre
ssionapps.vdownload&offset=0"

<java.net.URL: void <init>(java.lang.String)>

"http://www.startappexchange.com/1.3/getadsmetadata?publisherId=112123615&productId=212310170&os
=android&sdkVersion=2.0.7&packageId=com.nla.downloader&userId=4b315dae846ace8b&model=sdk&manu
facturer=unknown&deviceVersion=19&isp=310260&width=768&height=1184&sdkId=3"

Distinct Publish ID.
Same Method.

Original

Repackage

Figure 1.1: Example of a successful detection comparing the arguments passed to sensitive
methods. In this example, the internet connection API is used to access a advertisement
URL. The advertisement URL is changed to redirect ad revenue to the publisher of the
repackaged version of the app.

In this study, we aim to develop the existing technique by conducting a more com-
prehensive study, where we will evaluate the performance of combining Costa’s approach
of considering a static analysis along with the dynamic analysis [8], with Le’s proposal of
comparing arguments passed into sensitive APIs [9] to detect Android repackaged mal-
ware. In addition, previous studies have utilized small datasets, with 102 pairs of apps
for [7] and [8], and 25 pairs for [9], which may compromise the external validity of the
findings. To address this issue, we will use a significantly larger dataset consisting of
1,707 pairs. In general, to achieve the goals of this study, we adapted the DroidXP frame-
work [2], so that it could be able to instrument Android apps and capture the arguments
passed to a given set of methods.

The primary contribution of this work lies on the evolution of the DroidXP frame-
work and the evaluation of this new approach regarding the accuracy of its malware
detection capabilities. Our results indicate that there is an improvement of 14% on the
overall accuracy if compared to the previous version, and the detection capabilities of this
new approach are highly dependant on the malware family. While some families show a
substantial improvement in detection rates, others express no relevant change.
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Chapter 2

Background

2.1 Android architecture

Android is an open source operating system, based on the Linux kernel and created
to fit multiple types of devices [10]. Android applications (or apps) are written using
programming languages that compile for the Java Virtual Machine (JVM) bytecode, such
as Java or Kotlin. The JVM bytecode is compiled to a Dalvik Executable (DEX) bytecode
format, and is then packaged along with other application resources to form an Android
Application Pack (APK) file, which can be distributed for end-users. The app building
process can be seen at Figure 2.1.

The Android platform identifies and isolate each individual app and its resources,
by assigning them a unique identifier (UID) and running each Android app on its own
process [11] of the Android Runtime virtual machine, which interprets the DEX bytecode.
The assigned UID is used to establish a kernel-level application sandbox, that isolates
every app from each other, protecting both the apps and the system from malicious
activity.

In order to access information beyond the application sandbox, apps must acquire
permissions and then access the resources through specific system Application Program-
ming Interfaces (APIs). Android has two main types of permissions [12]: install-time
permissions, and runtime permissions. Install-time permissions are less sensitive permis-
sions and must be requested upon installation of the APK on the system, such as internet
access. Runtime permissions are highly sensitive permissions and are generally related to
users’ private data, such as camera or microphone access. Runtime permissions must be
acquired right before the actual use of the resource, and are only available on Android
6.0 or higher.

3



Figure 2.1: Android build process, from source code to APK file. Source: [1].

2.2 Android malwares

A malware is a type of application that’s capable of executing code that may carry out
harmful activities on a system, its modules, or other applications. It’s defined as a “set
of instructions that run on your computer and make your system do something that an
attacker wants it to do” [13]. Mobile devices have evolved to perform activities that were
only possible on desktop computers, such as internet access or banking, along with having
its own set of features such as calling, SMS, access to precise location, or high quality
cameras and microphones and for that reason they are a huge target for malware and
other types of malicious attacks.

Zhou et al. [14] characterizes Android malware based on their installation, activation
and the carried malicious payloads. The techniques used by the malware to install onto
the user devices were analyzed, and separated on three main groups: repackaging, update
attack and drive-by download, which aren’t necessarily mutually exclusive. Regarding
the activation mechanisms, the existing Android events were examined to determine how
malware used them to flexibly trigger their activation (e.g., only starting its background
services when the system is started). Finally, the payloads were also analyzed and clas-
sified in four major categories: privilege escalation, remote control, financial charges, and
personal information stealing.

Although the isolation provided by the application sandbox and restrictions enforced
by the permission mechanism add a layer of protection for Android devices, they are not
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flawless. Felt et al. revealed that around 33% of Android apps are overprivileged and
the developers fail to achieve the least privilege principle [15]. Moreover, a portion of the
users do not pay enough attention to the required permissions of the apps they install [16].

2.3 Repackaging malwares

Repackaging is one type of attack on the Android ecosystem, and [14] have shown that
the majority (around 86% on the analyzed dataset) of Android malware make use of this
type of attack. It consists on gathering an existing application, reverse engineering its
code, inserting a malicious activity and then publishing the modified (i.e. repackaged)
application on app marketplaces. Once a repackaged app is installed on an Android device
and is granted the requested permissions, malicious actors can then collect private user
data, perform malicious activities and exploit any other actions allowed by the granted
permissions.

Since the application code is compiled to a DEX bytecode, some characteristics about
the original code such as class names, method names, and types are retained, which makes
them more susceptible for reverse engineering if compared to native code [17].

2.4 The Mining Android Sandbox (MAS) technique

The mining sandboxes approach for the Android platform was first proposed by Jamroski
et al. and consists of exploring the behaviour of software by extracting the accessed
resources through an automated test generation, and then constructing a sandbox based
on those resources [6]. This “mined” sandbox would then prevent and detect unexpected
behaviour changes, such as latent malware, infections, malicious updates, etc.

Jamroski et al. introduced a tool called Boxmate, that performs such mining sandbox
technique, and creates a resulting sandbox much more fine-grained than the original sand-
box present on the Android operating system. Boxmate uses a tool called Droidmate as
test generation tool. However, this study only evaluated the effectiveness of this technique
on benign apps, and didn’t investigate if it was effective in detecting malware.

This study was then complemented by Bao et al., that evaluated the effectiveness of
the mining sandboxes technique on detecting malicious behaviours on Android apps, and
investigated the effectiveness of test generation tools for mining sandboxes [7]. It makes
use of a set of pairs of apps where each pair consist of a benign app and a malicious
repackaged version of the same app. Bao et al.’s study shows that up to 75.5% of the
malicious versions of the apps can be identified using the mining sandboxes approach. It
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also shows that DroidBot [18] is the most effective test case generation tool among the
tested options, which included Monkey, Droidmate, Droidbot, GUIRipper, and PUMA.

2.5 DroidFax

DroidFax is an open-source toolkit that instruments Android apps and performs a series
of analyses (both static analysis and dynamic analysis through test case generation tools)
on the application execution structure and sensitive data accesses at runtime. It was
developed by Cai H. to perform a study on Android apps runtime characteristics and
their security implications [19].

Costa et al. [8] investigated the impact of DroidFax’s static analysis algorithms for
malware identification, and how it can complement the malware detection capabilities of
the MAS approach presented by Bao et al.’s study [7]. Costa et al.’s study have shown
that 43% of the malware could be detected using the static analysis alone.

DroidFax instrumentation runs on top of Soot [20, 21], a framework to analyze, in-
strument and optimize Java bytecode. The instrumentation is made by transforming the
bytecode in an intermediate representation (Jimple, in the case of DroidFax), analyzing
and manipulating (by adding logs, for example) the source code, and finally producing
the modified bytecode.

2.6 DroidXP

DroidXP is a benchmarking suite developed by Costa et al. at [2] and its initial goal
was to provide a software infrastructure that’s capable of comparing the performance of
multiple test case generation tools on mining sandboxes for the Android platform. It
relies on DroidFax as instrumentation and static analysis tool, and supports many test
case generation tools out of the box for the dynamic analysis (and can be easily extended
to support other tools). The benchmark is performed on three main phases, as illustrated
by Figure 2.2, which are performed after the user specifies the test case generation tool,
the number of repetitions for every app version, and the test execution period:

1. Phase one – Instrumentation: in this phase, DroidXP makes use of DroidFax to
perform the instrumentation and static analysis on the app pairs provided by the
user.

2. Phase two – Execution: then, DroidXP installs the instrumented apps on an An-
droid emulator and runs the test case generation tool for the specified period of
time, for every specified repetition. During the execution, all the logs produced

6



Figure 2.2: DroidXP benchmark architecture. Source: [2].

by the DroidFax dynamic analysis is collected using Android SDK’s logcat [22].
The emulator is fully reset after every app execution, to ensure that no executions
interfere with each other.

3. Phase three – Report: finally, DroidXP analyzes the results of both static and
dynamic analysis and generates the experiment results, which includes the code
coverage of the test case generation tool and the sensitive Android APIs accessed
by each version of each app.

DroidXP further improved by Costa et al. [8], to investigate the impacts of using both
static and dynamic analysis for Android malware identification.
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Chapter 3

Implementation details

In this chapter, the implementation details of this new version of DroidXP (and it’s
underlying engine, DroidFax) will be disclosed, along with the tool used to calculate the
differences between executions.

3.1 DroidFax and Soot instrumentation

The current implementation of DroidXP makes use of DroidFax as a tool to instrument
and perform static analysis on Android applications. DroidFax main instrumentation
process is called dynCG (an abbreviation for “dynamic call graph”), which is responsible
for building a call graph of a given set of methods when performing the dynamic analysis.
It also supports attaching some other instrumentation modes in this process, such as the
so called “coverage tracker”, “event tracker” and “intent tracker”.

In order to capture sensitive method invocations with its arguments, it was necessary
to adapt DroidFax1, by creating a new attachable module to run with the main process.
This new module was called “API Tracker”, and was built following the patterns of
DroidFax’s other instrumentations. It consists of three main classes: Monitor, Options
and sceneInstr.

The main purpose of the API Tracker instrumentation is to detect every method invo-
cation that is a potential data sink and insert a piece of code that’s capable of capturing
the arguments passed to these methods at runtime. These sensitive method invocations
would then be captured by DroidXP when performing the execution phase, and would be
used to detect potential malicious activity (such as a data leakage).

1https://github.com/droidxp/droidfax-fork
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The observed methods were the same set of methods that build the call graph, with a
few additions. The method signatures were stored in a text file2, and were loaded during
the instrumentation.

3.1.1 Options class

The Options class is an utility class, mainly used to parse parameters passed to the
DroidFax executable. The only relevant addition to this file, compared to other Options
files from the other modules is the catsink variable, that’s used to store the URI path of
the text file containing the methods to be tracked.

3.1.2 Monitor class

The Monitor class is a class that’s injected into the final Android app. It implements an
apiCall method, that receives a string and an array of Java objects.

The string represents the signature of the method that’s going to be called. The Java
objects represent each argument that is passed to this method, ordered. Given that the
arguments must be passed as an array of Object, every Java primitive type must be
converted into it’s boxed equivalent before being inserted into the array.

The argument array is converted into a comma separated string, by transforming
each object into it’s string representation (every Java Object implement a toString()
method) and escaping line breaks and double quotes. Null values are replaced by the
“null” string, to avoid null pointer exceptions.

The method and the string representing the arguments are then logged using Android’s
own logging API, so they can be retrieved by DroidXP.

The methodSignature string expects the signature of the method that was called.
The params array expects an array of Java objects, where each item represent an

argument that was passed to the method at methodSignature.

3.1.3 sceneInstr class

The sceneInstr class is the main executable class. It’s responsible for traversing the
classes and methods of the provided APK using Soot to detect the sensitive API calls,
and insert the Monitor.apiCall call before the actual method invocation. It’s also where
the CLI arguments are parsed and inserted into the Options class. It is built upon the
base structure of other DroidFax’s sceneInstr classes.

In the following sections, the relevant methods of this class will be disclosed.
2https://github.com/droidxp/droidfax-fork/blob/master/catsinks.txt.final
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Figure 3.1: Source code of the implementation of the apiCall method.
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The run() method

This method is responsible for being the entry point of the instrumentation process. It
calls the init() and instrument() methods described below.

The init() method

This method is responsible for loading the method signatures from the catsink file, and
associating them with their corresponding Android method category. The methods are
then stored into an in-memory list, to be used by the instrumentation process.

It’s also in this method that the Monitor class is imported into the application package,
and a reference for the apiCall method is created.

The instrument() method

This method is responsible for the actual instrumentation process. The first step is
collecting all the classes in the application, and filtering them according to a defined
pattern. We only want to capture method calls that are present in the original application
code, and ignore the methods introduced by our own instrumentation (such as the apiCall
method).

After the classes are collected, we iterate over them checking their methods. If the
body of the method contains an invocation of any method that’s in our catsink list, an
invocation for the apiCall tracker method is added using Soot.

This procedure is made by:

1. Collecting the number of arguments passed to the relevant method:

This is done by using Soot’s getArgCount() method.

2. Creating an empty array of Java objects:

Soot’s generateLocal method creates a local variable into the inspected method’s
body. This variable is typed as an array of Object, and is initialized using a
newArrayExpr, that creates an empty array with a fixed length. The length of
the array is equal to the number of arguments passed to the method that’s being
tracked.

All those steps are performed by creating Soots’ statements that will be later inserted
into the actual method body. An example of statement creation using Soot can be
seen at Figure 3.2.

3. Iterating through the arguments passed to the relevant method:

11



After the array is created, it’s necessary to assign the values for their corresponding
array positions. Every argument is a Soot Value that can be referenced in an array
position.

However, not every argument will be assignable to an Object. If a variable of a
primitive type is passed to a Java Object type, a JVM error will be raised and the
application will stop running. For this reason, it was necessary to convert primitive
types to their corresponding boxed types.

Every Soot Value instance have a type property. This type is a subclass of a generic
Type class, such as PrimType, RefLikeType, etc.. For every argument, we check if
their type is an instance of PrimType, and if they are, we can find a RefLikeType
that represents the boxed type using the PrimType.boxedType() method.

After discovering the corresponding boxed type, it’s necessary to perform the con-
version. Firstly, a new local variable typed as the boxed type is generated, and then
a verification is made to ensure that this type implements a valueOf method receiv-
ing the primitive type as an argument. By default, every Java boxed type should
implement this method, but the check is made to ensure that the instrumentation
won’t fail.

After we’re sure that the class implements the valueOf method, a new invoke ex-
pression statement is created, along with the assignment statement for the created
variable. The boxed value is now ready to be inserted into our array of objects, and
this is also done by creating a new Soot statement.

4. Create the invocation of the apiCall method

It’s also necessary to create a statement to invoke our apiCall method, that will
log the tracked method and its collected arguments. This is done by creating a
new invokeStmt using the Monitor.apiCall method reference (created before the
instrumentation began) and passing the relevant method signature as a string, along
with the newly created local variable representing the array of objects.

5. Add the new statements to the method body

After all the new statements are created, the last step is to add them to the method
body. It’s done by using Soot’s insertBeforeNoRedirect method, where a list of
statements is passed to be inserted before an existing statement (in this case, before
the relevant method invocation). A code example can be seen on listing 3.3.

After this process is done and every method from every class is analyzed (and instru-
mented, if suitable), the instrumentation process is completed.

12



Figure 3.2: Local variable creation, along with initialization statement and assignment
statement using Soot
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Figure 3.3: Statements insertion before an existing statement using Soot

Figure 3.4: Android Debug Bridge command command used to broadcast an Android
intent through the system’s activiy manager.

3.2 DroidXP changes

After the changes in the DroidFax code, it was necessary to perform a few adjustments
on DroidXP3 code. Those changes were focused on enabling the newly created instru-
mentation, and parsing its results to a Comma Separated Values (CSV) format.

Firstly, it was necessary to add an optional parameter in the DroidXP’s CLI that
enables our argument catching instrumentation. It was chosen to be -p.

Then, if this flag was activated, it would pass the -monitorApiCalls argument for
the instrumentation at the first phase of the execution (instrumentation).

At the second phase of the execution, a reboot simulation after the APK is installed
on the emulator was also added. This was done to try to detect malware that had a
flexible activation mechanism based on the device reboot. This reboot is done by issuing
a specific Android intent, using the command at 3.4. Also at the second phase, Android
ADB’s logcat [22] starts listening for any logs tagged with “apicall-monitor”, and saves
them to a specific file for further parsing and analysis.

At the third phase of the execution, the logs captured in the logcat file for each
executed APK are correctly parsed and converted to the CSV format.

3https://github.com/droidxp/benchmark
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Figure 3.5: Android Debug Bridge command command used to wait for the device boot
to complete.

It’s also important to notice that some changes were made on the method that checks
if the emulator has finished booting: in the previous version, sometimes the device wasn’t
ready yet when the countdown started. It was problematic on some executions, and a
new command was added to check for a specific system property. The exact command is
present on Figure 3.5.

With all the changes, it was possible to run the tool with a custom parameter, perform
the newly implemented instrumentation process and collect the arguments passed for the
sensitive methods of each analyzed app. The results were stored in the same way they
were stored before, along with a new file called “sensitiveMtdArgs.csv”, containing the
methods and arguments that were captured during the execution of the application.

3.3 Report generator

After DroidXP’s execution is finished, we’re left with a lot of CSV files containing the
sensitive methods called by both the malicious and benign versions of each app, along
with the arguments passed to these methods. In order to compare the execution results,
a Python script was created to parse the CSV files for each app version and compare the
arguments. We call this script “run assessment”4.

The assessment is made by firstly grouping all the executions of the same version of
the app in a HashSet, a data structure that only allows unique items. This is made to
ensure that eventual execution differences will be minimized, and repetitions won’t be
counted. For each pair of apps, this result in two HashSets, one containing the sensitive
methods and the arguments passed for them in the malicious APK execution, and another
one with the same structure but for the benign APK execution. Methods that are called
more than once, but with different arguments are two separate entries in the HashSet.

Then, the difference between those two sets is calculated, and we are left with a set
of every method call that’s executed in the malicious version, but is not executed in the
benign version. The resulting method calls are filtered to only consider methods that are
in a list of “sensitive methods”, and the final result is saved into a CSV file.

4https://github.com/droidxp/run-assessment-param
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Chapter 4

Empirical Study

4.1 Study settings

The main goal of this empirical study is to investigate if the performance of the Mining
Android Sandboxes technique for malware identification can be improved by capturing
and comparing the arguments passed to sensitive API calls. The MAS approach have
already shown its potential for malware identification on Bao et al.’s study [7], and Costa
et al. have shown that it can be improved by combining it with static analysis tools [8].

This research was performed alongside with an ongoing doctoral thesis that analyzed
the combination of both static and dynamic analysis proposed at [8] approach on a larger
dataset of 1,707 pairs and the influence of the malware family on the detection.

This dataset was derived from a bigger curated dataset of 15,297 pair of original/repack-
aged Android apps extracted from the Androzoo repository [23], and were filtered con-
sidering a random sampling of 5,700 pairs. From there, 3,381 samples were removed
because of incompatibilities with either DroidFax instrumentation or the used Android
SDK version. The remaining 2,319 samples had their APKs that were labeled as “benign”
submitted to VirusTotal [24], a service that analyzes files and URLs and detects mali-
cious content using over 70 antivirus engines [25], and any pair that VirusTotal accused
the benign version to be a malware were removed, resulting in 1,707 pairs. This last step
was necessary because the MAS approach assumes that the benign version of the app is
actually legitimate.

The ongoing study also only considers the malicious version to actually be malicious
when at least two antivirus engines used by VirusTotal label it as malicious. This was
the case for 490 pairs.

The 1,707 pairs of apps were submitted to the new version of DroidXP, and the
sensitive methods called were captured (with and without the arguments), to determine
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if the proposed approach of verifying the arguments passed to sensitive API calls can
improve the accuracy of the malware detection.

After the execution, the pairs were labeled regarding the malware family, the presence
of malware according to VirusTotal verification, the presence of malware considering the
difference of sensitive method calls only, and the presence of malware considering the
arguments passed to the sensitive methods.

This brings us to the following research questions:

1. How does comparing arguments passed to sensitive API calls impact the results of
the MAS approach regarding the detection of Android malware?

2. How does the malware family influence the performance of this technique?

4.1.1 Data Collection

The data for the exploratory analysis was collected by submitting the 1,707 pairs of apps
through the modified version of DroidXP. The execution of each pair goes as follows:

1. Instrumentation: in this step, every APK sample is instrumented using DroidFax,
by passing the correct parameters to allow the API Tracker module to be executed.
It’s executed only once per version of each app, given that the results would be the
same for every execution.

2. Execution: in this step, DroidXP executes the instrumented APKs on an Android
emulator for the specified time, and collects the relevant logs through logcat. The
emulator used was running at API 28 (Android 9). It’s important to remember that
DroidXP wipes the emulator data after every execution to avoid interference (such
as caches) between the apps.

3. Reporting: this step collects the generated logs and other relevant data generated
at the instrumentation step (static analysis results, for example) and groups them
for each version of each app, separated by execution.

DroidXP was configured to execute every sample 3 times, for 180 seconds using Droid-
Bot as test case generation tool, and passing the -p flag to enable the argument capturing.
The choice of DroidBot as test case generation tools is due to previous research showing
that it outperforms all other tools when generating tests for malware detection purposes
[18].

After DroidXP finished its execution, the results were submitted to the report gener-
ator tool to compute the difference of method calls (and arguments passed). If at least
one method differ, the app is considered to be malicious.
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4.2 Exploratory analysis

After the execution, the results were aggregated and the assertiveness of both approaches
(i.e considering only the different sensitive methods called vs considering the methods and
the arguments) were compared. The confusion matrices of each approach can be seen on
the Table 4.2 and Table 4.3. Each execution have one of the following outcomes, taking
VirusTotal as source of truth:

• True Positive (TP), meaning that the app was correctly labeled as malware.

• True Negative (TN), meaning that the app was correctly labeled as benign (not
malware).

• False Positive (FP), meaning that the app was wrongly labeled as malware.

• False Negative (FN), meaning that the app was wrongly labeled as benign (not
malware).

The approaches were compared by taking into account the precision, recall and f-score
(F1) of data presented at Tables 4.2 and 4.3. Each metric is calculated using the formulas
4.1, 4.2 and 4.3, respectively, and the higher the value the better is the performance of
the approach. The calculated scores for both approaches can be seen at Table 4.1.

precision = TP
(TP + FP) (4.1)

recall = TP
(TP + FN) (4.2)

F1 = 2 · precision · recall

(precision + recall) (4.3)

Table 4.1: Comparison of both versions in terms of precision, recall and F1 score.
Precision Recall F1

Previous version 0.37 0.30 0.33
New version 0.46 0.48 0.47

By only considering the difference of methods called between each version of each app,
the MAS have labeled 403 apps as malware, from which 151 (37.47%) were correct (TP).
The other 1,304 apps weren’t labeled as malware, from which 965 (74%) were correct
(TN). This brings us to 0.33 F1 score.

When taking into account the methods and the arguments (i.e., an app is considered to
be a malware if there’s a difference on the sensitive methods called or there’s a difference
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Table 4.2: Results of the MAS malware detection that only considers difference of sensitive
methods called

reference
negative positive

predicted negative 965 339
positive 252 151

Table 4.3: Results of the MAS malware detection that considers the difference of sensitive
methods called and the arguments passed for them

reference
negative positive

predicted negative 940 254
positive 277 236

on the arguments passed to sensitive methods), the MAS labeled a total of 513 apps as
malware, from which 236 (46%) were correct (TP). The remaining 1,194 apps weren’t
labeled as malware, from which 940 (78.73%) were considered to be correct (TN). This
results on 0.47 F1 score, an overall improvement of 14% if compared to the previous
approach.

This answers our first research question:

1. How does comparing arguments passed to sensitive API calls impact the results of
the MAS approach regarding the detection of Android malware?

The analysis show that there’s a performance improvement, specially regarding the
true-positive dimension with 85 additional cases detected when taking into account
the difference of arguments.

The results presented above take the whole dataset of 1,707 apps into account, and did
not consider the internal functionality of each malware family. The proposed approach
may have different results depending on how each type of malware acts on the devices. For
that reason, a new analysis was made grouping the results based on the malware family,
in order to investigate if the comparison of arguments passed to sensitive methods can
improve the performance of detection of certain types of malware. This new arrangement
can be seen on Table 4.4, where the 490 malicious apps are classified based on the malware
family, and the detection results of both approaches (only considering the difference of
sensitive methods, and considering the difference of both the methods and the arguments).

Considering the families with more than five samples, it considerably improved (20%
or more) the detection performance of the smsreg, dowgin, appad and cauly families. There
was also some improvement on the detection of the revmob and gappusin malwares, to
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a lesser extent. However, some other malware families weren’t able to be detected even
with the new proposed approach, which is the case for the kuguo family.

This result may be due to internal functionality of each malware type: for example,
the dowgin family is known to be a type of adware [26], a malware that displays un-
wanted advertisements [27] and don’t necessarily makes use of sensitive capabilities of the
device other than internet access. If the original version of the app also displays adver-
tisements, the malicious version may redirect the ad revenue (by changing an API key)
and it wouldn’t be necessary to introduce any new sensitive method calls. Therefore, if
that was the case, this malicious app would not be labeled as malware without taking the
arguments of methods into account.

With that in mind, it’s possible to answer the second research question:

2. How does the malware family influence the performance of this technique?

The acquired results indicates that there’s a big influence of the malware family on
the performance of this technique. The detection improves the results of the pre-
vious technique by a larger margin on some families, such as smsreg that improved
69.23%, while having less impact on some other families such as revmob, with 6.45%
improvement or kuguo with 0%.
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Table 4.4: Results of the MAS malware detection with and without argument catching,
per malware family

Malware family Samples Previous accuracy New accuracy
gappusin 295 9.49% 22.71%
revmob 31 90.32% 96.77%
dowgin 25 52.00% 72.00%
airpush 21 100.00% 100.00%
leadbolt 13 100.00% 100.00%
smsreg 13 15.38% 84.62%
cauly 7 0.00% 85.71%
kuguo 7 85.71% 85.71%
adwo 6 100.00% 100.00%
domob 6 100.00% 100.00%
appad 6 0.00% 66.67%
youmi 6 50.00% 66.67%
torjok 4 0.00% 50.00%
plankton 3 100.00% 100.00%
shixot 3 0.00% 100.00%
viser 3 100.00% 100.00%
wooboo 3 100.00% 100.00%
dnotua 3 66.67% 66.67%
droidkungfu 3 66.67% 66.67%
boogr 2 50.00% 100.00%
douwan 2 0.00% 100.00%
pushad 2 100.00% 100.00%
smspay 2 100.00% 100.00%
stopsms 2 0.00% 100.00%
leadb 2 0.00% 50.00%
smalihook 2 50.00% 50.00%
antilvl 1 0.00% 100.00%
appax 1 0.00% 100.00%
appflood 1 100.00% 100.00%
appsgeyser 1 100.00% 100.00%
autosms 1 0.00% 100.00%
dianle 1 100.00% 100.00%
elfan 1 100.00% 100.00%
flurry 1 100.00% 100.00%
ginmaster 1 0.00% 100.00%
inmobi 1 0.00% 100.00%
lzla 1 0.00% 100.00%
madad 1 0.00% 100.00%
pircob 1 0.00% 100.00%
uapush 1 100.00% 100.00%
basebridge 1 0.00% 0.00%
odpa 1 0.00% 0.00%
ramnit 1 0.00% 0.00%
uten 1 0.00% 0.00%
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Chapter 5

Conclusions

This study shows that there’s a lot of room for improvement regarding the malware
detection capabilities of the mining sandboxes technique. Our main goal of improving its
accuracy by adding a new criteria for malware detection was successfully achieved even
though the overall improvement is modest and highly dependant on the malware family
that’s being analyzed.

The study was performed on a much larger dataset of 1,707 app pairs, if compared
to previous studies that were often limited on 100 or less samples. It is noticeable that
the malware detection performance of the mining sandboxes is also compromised when
analyzing a larger dataset, even with the improvements proposed in this paper.

Future work might explore ways to improve the argument detection, since the method
calls might be executed in many ways on the programming languages used by the Android
platform, such as reflection or callbacks that weren’t handled on the version of the tool
implemented for this study, and might also explore a different set of sensitive API calls
for the analysis.

The Mining Android Sandboxes approach has been proven to be a useful tool for mal-
ware detection on the Android ecosystem with its scalability and automation capabilities,
but a lot of research is still necessary in order to turn it into a reliable tool for protecting
app marketplaces, devices, and final users from malicious actors.
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