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Abstract



The Brazilian sugarcane industry is investing in research to develop new technolo-
gies to improve crop management and sustainability, trying simultaneously to reduce
cost and improve profitability. This work aims to assess the capacity of the model to
predict average field biomass, as well as to assess within-field biomass spatial vari-
ability, by coupling satellite imagery (Sentinel-2) biomass estimates with machine
learning techniques, specifically using Convolutional Neural Networks. The model
was assessed in both goals, field-as-a-whole- and whithin-field-level- experiments.
The results showed that the model predicted average field biomass with a mean
absolute percentage error (MAPE) of 3.95%, average error (AE) of 0.30 tonne/ha,
root-mean-square error (RMSE) of 3.48 tonne/ha, and mean absolute error (MAE)
of 3.07 tonne/ha. Nevertheless, it performed low capacity to predict a biomass map
based on its Gaussian normal distribution and scatter plot. The good performance
of the maps’ error compared to the reference maps are indicators that further studies
can increase the model capacity of predicting biomass maps.

Key-words: Convolutional Neural Network, Sentinel-2, sugarcane biomass.

Resumo

A indústria de cana-de-açúcar no Brasil está investindo em pesquisas para desen-
volver novas tecnologias para melhorar o manejo e a sustentabilidade da cultura,
tentando simultaneamente reduzir custos de produção e aumentar sua rentabili-
dade. Este trabalho tem como objetivo avaliar a capacidade do modelo de prever a
biomassa média do campo, bem como avaliar a variabilidade espacial da biomassa
dentro do campo, acoplando estimativas de biomassa de imagens de satélite (Sentinel-
2) com técnicas de aprendizado de máquina, especificamente usando Redes Neurais
Convolucionais. O modelo foi avaliado em ambos os objetivos, experiências no campo
como um todo e no nível do campo. Os resultados mostraram que o modelo previu
a biomassa média do campo com um erro percentual absoluto médio (MAPE) de
3,95%, erro médio (AE) de 0,30 toneladas/ha, erro quadrático médio (RMSE) de
3,48 toneladas/ha e erro absoluto médio (MAE) de 3,07 toneladas/ha. No entanto,
ele performou com uma baixa capacidade de previsão de mapa de biomassa com
base na sua distribuição normal gaussiana e no seu gráfico de dispersão. O bom
desempenho do erro dos mapas em comparação com os mapas de referência são
indicadores de que estudos futuros podem aumentar a capacidade do modelo de
prever mapas de biomassa.

Palavras-chaves: Rede Neural Convolucional, Sentinel-2, biomassa de cana-de-
açúcar.



List of Figures

Figure 1 – Structure of the leaf mesophyll. . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2 – Chlorophyll absorption spectrum. . . . . . . . . . . . . . . . . . . . . . 15
Figure 3 – Absorption, reflectance and transmittance of Big Bluestem grass leaf. . 15
Figure 4 – Remote sensing platforms’ classification by altitude and autonomy. . . 16
Figure 5 – Different spatial resolutions for a photography of the University of

Maryland campus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 6 – Digital image multiband matrix. . . . . . . . . . . . . . . . . . . . . . . 18
Figure 7 – Three-Mirror Anastigmat telecentric telescope of MSI. . . . . . . . . . 21
Figure 8 – Staggered configuration of one of the 12 detectors of one of the focal

planes in MSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 9 – Linear Array "Pushbroom" sensor configuration. . . . . . . . . . . . . . 22
Figure 10 – NDVI of Alta Mogiana sugarcane farm with three fields highlighted. . . 23
Figure 11 – Perceptron model compared with a neuron illustration. . . . . . . . . . 24
Figure 12 – Deep neural network with two hidden layers. Each node has a weighted

sum represented by the Greek letter Σ and an activation function rep-
resented by the letter 𝑓 . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Figure 13 – Graphical representation of sigmoid and relu activation functions. . . . 27
Figure 14 – A convolutional neural network that classifies images into different au-

tomobiles. The shown input image of the training set is a car. A batch
of the input is convoluted with a set of filters/kernels to generate a
set of feature maps that will be passed as an argument to an activa-
tion function. Each element of the feature maps will be computed and
activated, resulting in a new set that will pass through a process of
pooling that minimizes noise values and the set dimensions. Afterward,
the last layer output set turns into the next layer input set, and the
process happens again. It is important to notice that the illustration
represents a thinner and wider box at the beginning layer and ends up
with a thick and narrow box in the last layer of feature learning. This
illustrates that after each convolution with the filters/kernels the set
increases and after the pooling the set magnitude stays the same and
each pooled output becomes either the same size or narrower. . . . . . 28

Figure 15 – Convolution operation between the input (input tensor) and one kernel.
The stride here is 1, meaning that the kernel matrix will slide only one
column of the input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 16 – Two pooling algorithms being applied to the same feature map. . . . . 31
Figure 17 – Fields used to train and test the deep learning model. . . . . . . . . . . 32



Figure 18 – Modeling framework flowchart. . . . . . . . . . . . . . . . . . . . . . . 33
Figure 19 – Deep learning architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 20 – Gaussian normal distribution and percentage distribution of the aver-

age error of the pixels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 21 – Predicted and reference biomass maps. . . . . . . . . . . . . . . . . . . 40
Figure 22 – Average error maps from fields at different rotations. . . . . . . . . . . 41
Figure 23 – Scatter plot of the predicted and reference biomass in each pixel. . . . 42



List of Tables

Table 1 – Selected remote sensing vegetation indices. . . . . . . . . . . . . . . . . 21
Table 2 – Sentinel-2 spectral bands. . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 3 – Common loss functions associated to different neural network problems. 25
Table 4 – Fields’ season information. . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 5 – Prediction errors of the tested field. . . . . . . . . . . . . . . . . . . . . 39





Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 General objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Specific objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3 Document structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2 Remote sensing applied to agriculture . . . . . . . . . . . . . . . . . . 13
2.1 Remote sensing platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.1.1 Temporal resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Spatial resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Multispectral sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2.1 Spectral Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Radiometric Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Vegetation Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Sentinel-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Convolutional Neural Network . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 The convolution operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4 Material and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.1 Study site . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Sentinel-2 and yield monitor data . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Yield monitor filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Weather data and growing degree days . . . . . . . . . . . . . . . . . . . 34
4.5 Vegetation indices calculation . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Yield monitor interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.7 Field and bare soil data extraction . . . . . . . . . . . . . . . . . . . . . . 35
4.8 Input and label data creation . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.10 Deep Learning model development . . . . . . . . . . . . . . . . . . . . . . 36
4.11 Training and Statistical Evaluation of Models . . . . . . . . . . . . . . . . 37
5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.1 Model prediction of average field biomass . . . . . . . . . . . . . . . . . . 38
5.2 Model prediction of within-field biomass spatial variability . . . . . . . . . . 39
6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43



BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44



1 Introduction

Agriculture plays an important role in the Brazilian economy, contributing more
than a quarter of the country’s gross domestic product (GDP) in 2020, equivalent to al-
most R$2 trillion (CONFEDERAÇÃO DA AGRICULTURA E PECUÁRIA DO BRASIL
AND CENTRO DE ESTUDOS AVANÇADOS EM ECONOMIA APLICADA, 2021). One
of the main contributors to the GVP of agricultural production was sugarcane, account-
ing for over 8% (R$ 69.72 billion) in 2021 (CONFEDERAÇÃO DA AGRICULTURA E
PECUÁRIA DO BRASIL, 2021). Besides the production of sugar and biopolymers, sug-
arcane biofuel (ethanol) and bioelectricity contributes to Brazil having one of the cleanest
energy production systems in the world. In 2020, around 48% of the energy matrix and
84% of the electricity in Brazil were renewable, compared to 12 and 31%, respectively, in
the OCDE countries (MATOS, 2022).

In the last decades, sugarcane production in Brazil has shifted from the Atlantic
Forest to the Cerrado biome, a tropical Savannah characterized with a higher water deficit
challenge. In addition, climate changes have increased severe drought risk, shortening the
rainy season and increasing frequency and intensity of dry spells within the rainy sea-
son, negatively impacting the efficiency of crop management practices, sugarcane biomass
yield, profitability, and the sugarcane industry sustainability (ZEBALLOS et al., 2022).

Brazilian sugarcane industry is investing in research to develop new technologies
to improve crop management and sustainability and to cope with climate challenges.
Assessing the actual fields’ biomass production, and the within-field spatial variability is
key issue to improve cropping efficiency and sustainability.

Nowadays, sugarcane field biomass estimates are done by field observation by ex-
perienced agronomists, supported by satellite imagery biomass estimates, field sampling
estimates, and fields historical data. Besides achieved absolute error within 3% (comu-
nicação pessoal - Usina Alta Mogiana) of mean field biomass, it is an empiric method,
largely dependent on the experience of the team, and highly demanding on time and
financial resources. In addition, this method does not allow assessing the yield spatial
variability within each field.

Alternatively, sugarcane yield monitors have been developed by the sugarcane
harvesters industry. Yield monitors can estimate yield spatial variability, as well as, the
mean biomass of each field, and are desirable and necessary tools to improve crop efficiency
and spatial variability of the fields. However, as the data is assessed only when sugarcane is
being harvested, not allowing within-season management adjustments, only being applied
in the next growing season. In addition, due to the costs of yield monitors technology
does not allow its adoption at the desired pace. Recent research has shown the potential
of coupling satellite imagery biomass index with machine learning techniques to improve
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field biomass estimates, as well as to assess within-field biomass spatial variability, early
in the season. The most used machine learning technique to predict biomass integrating
remote sensing is the Random Forest, although it only considers pixel information, and not
its spatial pattern. However, Convolutional Neural Network applied to satellite imagery
has the intrinsic characteristic of recognizing spatial patterns, with potential to improve
sugarcane biomass prediction.

1.1 General objective

To analyze whether convolutional neural network and remote sensing can predict
sugarcane biomass.

1.2 Specific objective

• To assess the model prediction capacity considering average field biomass scale.

• To assess the model prediction capacity considering the within-field biomass spatial
variability.

1.3 Document structure

This document is divided in seven sections, with the introduction being the first
one. The sections two and three describe the theoretical framework. In section two, a
brief summary of the physiological basis of plant leaf is related with the nature of the
light spectrum, which forms the core subject of remote sensing applied to agriculture.
The following themes of this section present a structured knowledge of a remote sensing
platform (satellite) and a type of sensor (multispectral), where some basic concepts are
defined to let the reader understand their different aspects and their interrelationships.
Afterward, vegetation indices are shortly presented, and a summary of Sentinel-2 and its
MultiSpectral Instrument (MSI) is described, focusing on the remote sensing approach.

The fourth section is focused on the neural network technique, where the reader is
presented to the artificial neural network (ANN) and to the convolutional neural network
(CNN). In this section, the perceptron algorithm is described, as well as the gradient
descent. The basic concepts of an ANN, such as the activation function and the loss
function, are explained along with their impact and importance in the model. After, the
CNN is explained and the concepts of the convolutional operator and the pooling process
are introduced.

In the fifth section, a brief description of the methodology describes the main
process that is used in the next phase of this project. The first section describes the study
site and its climatological overview. After, it describes in general terms the processes that
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will occur with the input data type that will train the convolutional neural network model.
At least, the process timeline is shown in section five.

In section five, the results were displayed in terms of the model capacity to predict
the average biomass of the tested field and to generate a predicted map. MAPE, AE,
RMSE and MAE of the tested field were presented, furthermore, a Gaussian normal
distribution plot, AE maps and a scatter plot of the predicted and reference values. These
results were discussed in section six and conclusions about this study were made in section
seven.

2 Remote sensing applied to agriculture

Remote sensing was first used by fixing cameras and sensors on kites, balloons,
aircraft and even birds. The term by itself already denotes that it is related to some data
acquisition without a direct contact with the targeted object. Nowadays, the applications
of remote sensing are mostly related to satellite constellations and UAVs (BERNARDI,
2014), and this is given the rise of CubeSats and drones that turned costs to collect data
more accessible. The conventional approach of modern agriculture, originated after the
mechanization of land use, is to treat fields as a uniform area, which causes a lot of waste
and makes an unsustainable use of the land. Otherwise, with the use of remote sensing,
agriculture turns to be more specific and precise on its management processes, representing
an improvement and a professionalization on its business model. The main idea behind
this new approach is to treat small areas of the field as a separate management unit, but its
affordability could only be worth it after the development of the mechanization capability
of applying fertilizers and pesticides on a variable rate and the right tools to keep up with
the spatial and temporal variability of the field. Spatial and temporal variability are key to
remote sensing applications, as these are the main constraints of a project, specially when
dealing with satellite imagery. Usually they will be called spatial and temporal resolution.
Additionally, it is important to notice the sensor’s limitations that will imply on the
project’s constraints, and these are the sensor’s radiometric resolution and the sensor’s
spectral resolution. These four concepts will be better discussed along this chapter.

The idea behind the unitary treatment of the fields involves concepts that go all
the way back to a single plant phenology and the nature of light, two important things
to understand the reason why sensors see what they see and its relationship to the or-
ganism development. Besides any other plant process, photosynthesis is central to keep
up not only a plant but the world’s dynamics, sustaining the majority of lives on Earth,
except some types of bacteria (JENSEN, 2014). Photosynthesis has been responsible to
bringing more than 90 percent of the energy required to power automobiles, airplanes,
ships, factories and electronic devices, since it has brought the energy of the Sun to plants
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that were transformed into fossil fuels (coal and oil) by geological forces (JENSEN, 2014).
It is the mechanism by which plants convert light energy into chemical energy (glucose)
with the aid of a substance called chlorophyll (JENSEN, 2014). This substance is stored
within the chloroplast, an organelle (small part of the cell surrounded by a membrane and
with a specific function) of the plant cell, and it is also called one of the plant pigments
(JENSEN, 2014). Pigments are molecules of a plant cell that were evolved to absorb spe-
cific wavelengths of light when illuminated (JENSEN, 2014). Other organelles in a plant
cell contains other pigments, such as carotenes, xenthophyll, phycoerithrin, phycocyanin,
anthrocyanin. Figure 1 illustrates the internal structures of a leaf, the mesophyll region,
and one can see that either within the palisade parenchyma cells or within the spongy
parenchyma cells the chloroplast organelle is present as well as its characteristic pigment.

Figure 1: Structure of the leaf mesophyll.

A plant leaf has green coloration given the amount of chlorophyll inside it. Thus,
the analysis of a plant’s spectral behavior through sensors can indicate the abundance of
this pigment in a sample collection and provide a way to assess the plant’s development
and growing potential. The wavelengths through which a healthy leaf absorbs the most
light energy are the range between 0.43 – 0.45 𝜇m and 0.65 – 0.66 𝜇m, which includes
wavelengths in the blue and red regions (as shown in Figure 2). This means that green
and infrared (IR) wavelengths have a higher influence on the reflectance visible spectrum,
because the incident sunlight that reaches the leaf is partially reflected, absorbed, and
transmitted through it (JENSEN, 2014). The reflectance and transmittance curves behave
as a mirror of each other (JENSEN, 2014), as can be seen by the Big Bluestem grass leaf
absorption, reflectance, and transmittance in Figure 3. Moreover, a healthy plant green
leaf’s near-infrared (NIR) reflectance varies around 40 - 60 percent of its incident energy,
while its transmittance remains between 45 - 50 percent (JENSEN, 2014). However, as
these values are based on a single leaf, the plant’s total reflectance may be higher due to
the effect of multiple leaf layers. The NIR reflectance of the top leaf layer will be added to
the reflected amount of the leaves below it, creating a phenomenon known as leaf additive
reflectance (JENSEN, 2014).
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Figure 2: Chlorophyll absorption spectrum.

Figure 3: Absorption, reflectance
and transmittance of Big
Bluestem grass leaf.

2.1 Remote sensing platforms

According to (JAFARBIGLU; POURREZA, 2022), the platforms in which remote
sensing is based are defined as vehicles carrying sensing devices to measure a target object
data without interfering in its ambient. Satellites and aircraft are both common platforms,
and each have its specific advantages and disadvantages. Usually, they will have either
a good spatial coverage or a good spatial resolution, and the best choice to implement
would depend on the target object characteristics. In agriculture, it is important to have
in mind the goals of the application as well as the fields’ constraints in order to manage
data acquisition. Agricultural use of remote sensing aims to obtain mainly vegetation
indices, requiring multispectral sensors mounted on the platforms, while the target field
size turns out to be a relevant variable that can influence on the decision of which type
of platform to use (JAFARBIGLU; POURREZA, 2022). For example, in large fields, it is
necessary to have a spatial coverage with its matching proportion, so an unmanned aerial
vehicle (UAV) could not reach its demands, otherwise, the contrary is also true. For this
reason, it is important to first define the platforms’ parameters, and the Figure 4 shows
two characteristics that usually are associated with remote sensing applied to agriculture:
altitude of the platform and its endurance.
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Figure 4: Remote sensing platforms’ classification by altitude and autonomy.

Satellite platforms have longer flight endurance than unmanned aerial systems
(UAS), but this characteristic has not so much importance for a common consumer of or-
bital products, since this information’s only purpose is to indicate how often the platform
should be set up and activated (JAFARBIGLU; POURREZA, 2022). For a compari-
son between drones on the other side, flight endurance is a real distinctive quality that
can assure a mission long-term sustainability, given a maximum flight speed and a field
size (JAFARBIGLU; POURREZA, 2022). Although flight endurance may not be so use-
ful when it comes to satellites, there is another important temporal factor that applies
specifically to it: temporal resolution.

2.1.1 Temporal resolution

Temporal resolution is a crucial aspect of remote sensing technology, particularly
when applied to agriculture. It refers to the frequency at which data is acquired and how
quickly it can be refreshed over time (JAFARBIGLU; POURREZA, 2022). In agriculture,
the appropriate temporal resolution depends on the crop type, its growth cycle the nature
of the problem (JAFARBIGLU; POURREZA, 2022).

Sugarcane and soybean are two significant crops in the agricultural industry. They
both require high temporal resolution monitoring for efficient management. For instance,
sugarcane has a growth cycle of approximately 12 months (MALL et al., 2016), and
soybean takes approximately three to four months to reach maturity (CARNEIRO et al.,
2020). As such, high temporal resolution monitoring is required for effective management
of these crops.

For a sugarcane crop in India, the recommended temporal resolution would be two
weeks or less if the phenological stage was to be assessed. It is given the phenological stages
size that don’t take shorter than two weeks to transition to the next one (MALL et al.,
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2016). With this temporal resolution, it is possible to monitor the crop development, detect
any abnormalities, and adjust the management practices accordingly. For a soybean crop
in Brazil, a temporal resolution of approximately 10 days is sufficient for the phenological
stage assessment. It is given its phenological stages transition size with less than 10 days
(CARNEIRO et al., 2020). This resolution allows for monitoring of crop growth, detecting
potential disease outbreaks and pests, and managing the application of fertilizers and
irrigation.

The appropriate temporal resolution in remote sensing technology is crucial in
providing timely and accurate data for effective crop management. The required temporal
resolution varies among crops and their growth cycles (JAFARBIGLU; POURREZA,
2022). Understanding the temporal resolution requirements is essential for the successful
application of remote sensing in agriculture (JAFARBIGLU; POURREZA, 2022).

2.1.2 Spatial resolution

There is a spatial characteristic that satellites and drones share, and it is known
as ground sample distance (GSD) or spatial resolution. It is a measure of the size of a
pixel on the ground in a remote sensing image, and can be defined as the distance on the
ground between the centers of two adjacent pixels in an image (ZHANG; MOORE, 2015).
GSD is affected by the altitude of the sensor platform, the lens system, and the size of
the sensor. The smaller the GSD, the higher the spatial resolution of the image.

The GSD is an important parameter because it determines the level of detail that
can be resolved in an image. A smaller GSD means that smaller features can be seen in
the image, and more detailed information can be extracted from it. For example, a GSD
of 1 meter means that each pixel in the image represents an area of 1 square meter on
the ground. A GSD of 0.5 meters means that each pixel in the image represents an area
of 0.25 square meters on the ground, which is four times more detailed.

The variation of GSD within a mission is affected by changes in the altitude of the
platform and the elevation of the terrain. As the platform changes altitude, the GSD will
change accordingly Figure 5a. Similarly, if the platform remains at the same altitude but
the terrain elevation changes, the GSD will also change Figure 5b.

2.2 Multispectral sensor

A remote sensing system initially identifies the electromagnetic radiation that
emerges from the object of study and traverses through the earth’s atmosphere. The
detected energy is collected as an analog electrical signal that is subsequently transformed
into a digital value by the process of analog-to-digital (A-to-D) conversion (WOLF et
al., 2014; JENSEN, 2014). Radiometric and geometric preprocessing may be necessary
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(a) Spatial resolution varying
with altitude.

(b) Spatial resolution varying
with ground elevation.

Figure 5: Different spatial resolutions for a photography of the University of Maryland
campus.

to improve the interpretability of the digital remotely sensed data (WOLF et al., 2014;
JENSEN, 2014). The data may then be enhanced for subsequent human visual analysis or
processed further using digital image processing algorithms (WOLF et al., 2014; JENSEN,
2014). The information extracted from visual or digital image processing can provide
valuable insight into the biophysical and land-cover characteristics of the area of interest.

Digital remote sensor data is typically stored as a matrix or array of numbers,
where each digital value is located at a specific row and column in the matrix (WOLF
et al., 2014; JENSEN, 2014). A pixel is defined as the smallest nondivisible element of
a digital image, and each pixel at a specific row and column has an original brightness
value (BV) associated with it (as showed in Figure 6) (WOLF et al., 2014; JENSEN,
2014). The dataset may consist of n individual bands of multispectral or hyperspectral
imagery (WOLF et al., 2014; JENSEN, 2014). Therefore, it is possible to identify the
brightness value of a particular pixel in the dataset by specifying its row, column, and
band coordinate. It is important to note that the n bands are all geometrically linked
to one another, allowing for the accurate identification of features across multiple bands
(WOLF et al., 2014; JENSEN, 2014).

Figure 6: Digital image multiband matrix.

A multispectral sensor can have several configurations that allow it to capture
the electromagnetic waves and covert it to a digital matrix, but it will generally have
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a group of filters and a component that detects the waves’ energy and converts it to
electrical signal through components made of semiconductor materials, also known as the
sensor’s detectors (WOLF et al., 2014; JENSEN, 2014). The number of detectors and
its arrangement are key to constraint the digital image resolution, because each pixel in
the image will be somehow related to a detector or a set of them (WOLF et al., 2014;
JENSEN, 2014).

2.2.1 Spectral Resolution

Spectral resolution in remote sensing refers to the ability of a sensor to resolve fine
spectral features in the electromagnetic spectrum (WOLF et al., 2014). It is determined by
the number of spectral bands and their spectral width or resolution (WOLF et al., 2014).
High spectral resolution sensors can distinguish between narrow spectral features, while
low spectral resolution sensors provide a broader view of the electromagnetic spectrum
with fewer, wider bands (WOLF et al., 2014).

Spectral resolution plays a critical role in remote sensing applications, particu-
larly in those related to vegetation, soil, and water (JAFARBIGLU; POURREZA, 2022).
Fine spectral resolution enables the identification and discrimination of various plant
species, plant stress, and the identification of soil and water properties (JAFARBIGLU;
POURREZA, 2022). Therefore, it is important to select the appropriate spectral resolu-
tion according to the specific objectives of the remote sensing application. For example,
to monitor crop health, high spectral resolution is desirable as it enables the detection
of subtle changes in plant pigments and biochemicals that are indicative of plant stress
(JAFARBIGLU; POURREZA, 2022). On the other hand, if the objective is to assess
broad-scale land cover changes, a coarser spectral resolution may be sufficient.

Spectral resolution can also affect the accuracy of image classification and mapping
(WOLF et al., 2014). The higher the spectral resolution, the greater the potential to dis-
tinguish between different surface features, leading to more accurate classification results
(WOLF et al., 2014). However, high spectral resolution also requires more computational
resources and can result in data storage issues, especially for large-scale applications
(WOLF et al., 2014).

2.2.2 Radiometric Resolution

Radiometric resolution is a critical characteristic of digital imagery that refers to
the ability of an imaging sensor to distinguish small differences in the energy level of
incoming radiation (WOLF et al., 2014; JENSEN, 2014). It is a measure of the number
of quantization levels used to digitize the incoming analog signal, which determines the
number of different brightness or color values that can be represented in a digital image
(WOLF et al., 2014; JENSEN, 2014).
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Quantization, a subcategory of radiometric resolution, is the process of converting
the amplitude of the original electromagnetic energy into a number of discrete levels
(WOLF et al., 2014; JENSEN, 2014). The greater the number of quantization levels, the
more accurate the digital representation of the analog signal, and the more details that
can be discerned in the image (WOLF et al., 2014; JENSEN, 2014). For example, an
image with 8-bit quantization has 256 different levels of brightness or color, while a 10-bit
image has 1024 levels, and a 12-bit image has 4096 levels.

2.3 Vegetation Indices

In remote sensing and Earth observation studies, the need to map the ground
according to vegetation, soil, water and its content ended up with vegetation indices
(VI), a way to measure plant development using meaningful and dimensionless numbers
(BANNARI et al., 1995). This number is the outcome of a mathematical expression using
different spectral band reflectances, thus depending on the bands and equations it will
point to different information about the plant (BANNARI et al., 1995). Despite prior
efforts to acquire ground information from raw spectral bands, simple ratio (SR) was
proposed in 1972 and is considered to be the first true vegetation index (JENSEN, 2014),
given its attempt to point to the chlorophyll band signature - the inverse relationship
between red and near-infrared reflectance in a healthy green vegetation (Figure 2). Its
associated mathematical expression is:

SR = 𝜌𝑁𝐼𝑅

𝜌𝑅

, (1)

where 𝜌𝑁𝐼𝑅 and 𝜌𝑅 are the reflectance of near-infrared and red bands, respectively.

The Normalized Difference Vegetation Index (NDVI) it was proposed by Dr. John
W. Rouse and is one of the most used indices in agriculture in order to follow up with
crop development. The idea behind NDVI proposal was to find a way to document the
seasonal vegetation changes quantitatively (ROUSE et al., 1974). Its main advantage in
comparison with simple ratio is its better accuracy in measuring relative greenness when
comparing different locations and different cycles (ROUSE et al., 1974). The index is
calculated using the following formula:

NDVI = 𝜌𝑁𝐼𝑅 − 𝜌𝑅

𝜌𝑁𝐼𝑅 + 𝜌𝑅

(2)

There are many vegetation indices and some of them are improvements of the
others, in which better filters and corrections on the original ones were applied. Table 1
summarizes a few of the most widely adopted vegetation indices.
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Vegetation Index Equation Reference
Simple Ratio (SR) SR = 𝜌𝑁𝐼𝑅

𝜌𝑅
(BIRTH; MCVEY, 1968)

Normalized Difference
Vegetation Index (NDVI) NDVI = 𝜌𝑁𝐼𝑅−𝜌𝑅

𝜌𝑁𝐼𝑅+𝜌𝑅
(ROUSE et al., 1974)

Enhanced Vegetation Index
(EVI) EVI = 𝜌𝑁𝐼𝑅−𝜌𝑅

𝜌𝑁𝐼𝑅+6𝜌𝑅−7.5𝜌𝐵+1 (HUETE et al., 2002)

Green Normalized Difference
Vegetation Index (GNDVI) GNDVI = 𝜌𝑁𝐼𝑅−𝜌𝐺

𝜌𝑁𝐼𝑅+𝜌𝐺
(GITELSON et al., 1995)

Table 1: Selected remote sensing vegetation indices.

2.4 Sentinel-2

The European Space Agency launched the first Sentinel-2 satellite in 2013 as part
of the Global Monitoring for Environment and Security (GMES) program. The mission
complies with the systematic global coverage of land surfaces from 56∘S to 84∘N, a high
revisit frequency of every five days, a high spatial resolution (10 m, 20 m and 60 m), 13
bands in the visual and near-infrared (VNIR) and short-wave IR (SWIR) parts of the
light spectrum and a wide field of view of 290 km. In order to accomplish the high revisit
frequency, two identical satellites operate simultaneously in a polar sun-synchronous orbit,
Sentinel-2A and Sentinel-2B (FLETCHER; AGENCY., 2012).

Sentinel-2 carries the MultiSpectral Instrument (MSI), a pushbroom based sensor
that digitize the observation data into a 12 bits image. It is made up of a Three-Mirror
Anastigmat (TMA) telecentric telescope (Figure 7) in which the focal planes consist of 12
VNIR and SWIR detectors in two separate staggered rows (Figure 8). Before reaching the
focal planes, the reflected light passes through a beam splitter that provide the separation
of the VNIR and SWIR channels. Then, the spectral separation occurs in the stripe filters
mounted on top of each detector, creating a linear array of data that will form a two
dimensional image for each band with the satellite movement (Figure 9) - this is the
reason why it is called a pushbroom sensor (FLETCHER; AGENCY., 2012).

Figure 7: Three-Mirror Anastigmat telecentric telescope of MSI.
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Figure 8: Staggered configuration of one of the 12 detectors of one of the focal planes in
MSI.

Figure 9: Linear Array "Pushbroom" sensor configuration.

The specifications of each band number of MSI are shown in Table 2. Each band
is characterized by its central wavelength and bandwidth, indicating that a given band
captures data observations from a range that encompasses the central wavelength minus
half the bandwidth to the central wavelength plus half the bandwidth.
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S2A S2B
Band
Number

Central
wavelength
(nm)

Bandwidth
(nm)

Central
wavelength
(nm)

Bandwidth
(nm)

Spatial
reso-
lution
(m)

1 443.9 27 442.3 45 60
2 496.6 98 492.1 98 10
3 560.0 45 559 46 10
4 664.5 38 665 39 10
5 703.9 19 703.8 20 20
6 740.2 18 739.1 18 20
7 782.5 28 779.7 28 20
8 835.1 145 833 133 10
8a 864.8 33 864 32 20
9 945.0 26 943.2 27 60
10 1373.5 75 1376.9 76 60
11 1613.7 143 1610.4 141 20
12 2202.4 242 2185.7 238 20

Table 2: Sentinel-2 spectral bands.

The MultiSpectral Instrument sensor is very useful to agricultural applications
given the fact that it covers red and near-infrared bands with the band numbers 4 and 8
respectively. Figure 10 shows the use of Equation (2) to generate a NDVI image of the
three fields in the Alta Mogiana sugarcane farm on September 1, 2022.

Figure 10: NDVI of Alta Mogiana sugarcane farm with three fields highlighted.
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3 Neural Network
Convolutional Neural Networks (CNN) are a specialized type of artificial neural

network (ANN) that have revolutionized computer vision applications. CNN can recognize
patterns in images and assign them to specific categories with high accuracy. It is used for
object detection to identify the presence and location of objects within an image, semantic
segmentation to assign a label to each pixel in an image based on context, and other tasks
requiring the learning of complex patterns from data. CNN is particularly effective for
tasks that require high-level understanding of complex patterns in the data (ALZUBAIDI
et al., 2021).

3.1 Artificial Neural Network

In order to understand how a convolutional neural network works, it is important to
set some baseline concepts about an artificial neural network, given the fact that the CNN
applies ANN in a different arrangement. For this reason, a perceptron will be introduced
here, given its wide use and simple model of classification. It is a structure that models
a neuron using a weighted sum of many inputs (dendrites) and produce a single output
(the axon), as illustrated in Figure 11. Its representation consists of a vector of weights
related to each input and a bias weight (CHARNIAK; EUGENE, 2018).

Figure 11: Perceptron model compared with a neuron illustration.

The bias weight and the vector of input weights constitute the parameters of the
perceptron (identified by the letter 𝜑), and they are built in an iterating process that
compares the expected output for a training set of input data with the result of each
iteration output (CHARNIAK; EUGENE, 2018). The possible outputs of a perceptron
algorithm are based on a function, also known as activation function. The iterating process
is called training, in which, for every iteration, a dot product between the input vector
(�⃗�) and the weight vector (�⃗�) will be summed with the bias, then passed to the activation
function to associate its result with the expected output (CHARNIAK; EUGENE, 2018).

The training process is an iteration in which it is desired to minimize the error
between the output and the actual output value. This process is made using a relatively
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simple technique called Gradient Descent (CHARNIAK; EUGENE, 2018). The basic idea
of this technique is to modify the parameters of a perceptron according to the rule:

Δ𝜑 = −ℒ𝜕𝐿

𝜕𝜑
(3)

where ℒ is the learning rate, a real number that indicates how much should a parameter
be changed at a given time, and 𝐿 is the loss function, a function from an outcome to
measure how bad it is for the problem (GOODFELLOW; BENGIO; COURVILLE, 2016;
CHARNIAK; EUGENE, 2018). The loss function is part of the training design, so it
should be adjusted to the type of problem it addresses to (GOODFELLOW; BENGIO;
COURVILLE, 2016; CHARNIAK; EUGENE, 2018). Table 3 summarizes some of the
most used loss functions associated to different scenarios, and it can be noticed that all
presented functions are differentiable, and that is a criteria stated by Equation (3).

Problem type Loss function
Binary classification Binary cross-entropy (CHARNIAK; EUGENE, 2018)
Multiclass classification Cross-entropy (CHARNIAK; EUGENE, 2018)
Non-linear regression Mean squared error (CHARNIAK; EUGENE, 2018)

Table 3: Common loss functions associated to different neural network problems.

In neural networks with more than one layer of perceptrons (denoting the "deep" in
the "deep learning" nomenclature), in which each layer feeds the next, the training process
happens in an iterative forward and backward pass (CHARNIAK; EUGENE, 2018). At
first, the network is initialized with random values for the parameters of each layer, then,
in the forward pass, the activation functions are computed for the entire network as well
as the loss function (CHARNIAK; EUGENE, 2018). Afterward, the back-propagation
process computes the gradient loss for the entire training data set and takes its average
to apply in Equation (3) to set up the parameters change which will be used in the
next iteration step, and then the forward pass starts again beginning of a new cycle
(CHARNIAK; EUGENE, 2018). These iteration steps keep going until the loss function
is minimized to a lower value, concluding the Gradient Descend technique. There is a
common variation of this technique, that updates the parameters every certain amount
of data training set (also known as batch size), which denote the Stochastic Gradient
Descend (CHARNIAK; EUGENE, 2018).
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Figure 12: Deep neural network with two hidden layers. Each node has a weighted sum
represented by the Greek letter Σ and an activation function represented by
the letter 𝑓 .

The activation function is a key point to determine what type of problem the
neural network is set up. For a binary classification - used to determine whether the input
is part of a class or not -, a Heaviside function could be used, however, it might be of
great use to apply a sigmoid function or even a rectified linear unit function (relu) when
the ANN is to classify inputs into different classes. Sigmoid and relu functions can be
seen in Figure 13. When a neural network is to be applied in a multiclass problem, there
should be one perceptron for each class in the output layer (CHARNIAK; EUGENE,
2018). The perceptron with the highest output value is the right class to describe the
input (CHARNIAK; EUGENE, 2018). The reasons for choosing an appropriate activation
function are:

• Non-linearity: Activation functions introduce non-linearity to the output of a neu-
ron, which is essential for capturing complex patterns and relationships in the data.
Without non-linearity, the ANN would be limited to performing linear transforma-
tions, which may not be sufficient to model complex data distributions (CHAR-
NIAK; EUGENE, 2018).

• Gradient Descent: The activation function affects the gradient descent algorithm
used to optimize the weights of the network. Different activation functions have dif-
ferent gradients, which can impact how quickly the network converges to an optimal
solution during training (CHARNIAK; EUGENE, 2018).

• Vanishing Gradient Problem: Some activation functions, such as the sigmoid and
hyperbolic tangent functions, can suffer from the vanishing gradient problem. This
means that as the network becomes deeper, the gradients can become very small,
making it difficult for the network to learn (GOODFELLOW; BENGIO; COURVILLE,
2016).
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• Output range: It should be noted that an activation function must have a wide range
of values to avoid problems related to bad performance, given its representation
range to fit the problem that will cause the network to struggle (CHARNIAK;
EUGENE, 2018).

Figure 13: Graphical representation of sigmoid and relu activation functions.

3.2 Convolutional Neural Network

Convolutional neural networks are a specialized type of neural network designed
to process data with a grid-like structure, such as images or audio signals. Unlike fully
connected neural networks, where every neuron in one layer is connected to every neuron
in the next layer, CNN has neurons that are only connected to a small region of the input
(CHARNIAK; EUGENE, 2018). By exploiting local spatial correlations in the input data,
CNN can learn representations that are efficient and robust to variations in the input.
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Figure 14: A convolutional neural network that classifies images into different automo-
biles. The shown input image of the training set is a car. A batch of the input
is convoluted with a set of filters/kernels to generate a set of feature maps
that will be passed as an argument to an activation function. Each element
of the feature maps will be computed and activated, resulting in a new set
that will pass through a process of pooling that minimizes noise values and
the set dimensions. Afterward, the last layer output set turns into the next
layer input set, and the process happens again. It is important to notice that
the illustration represents a thinner and wider box at the beginning layer and
ends up with a thick and narrow box in the last layer of feature learning. This
illustrates that after each convolution with the filters/kernels the set increases
and after the pooling the set magnitude stays the same and each pooled output
becomes either the same size or narrower.

The key idea behind CNN is to use a set of learnable filters or kernels that are con-
volved with the input to produce a set of feature maps (shown in Figure 14). Each feature
map represents the output of a particular filter at every spatial location in the input. By
stacking multiple convolutional layers, a CNN can learn increasingly complex features that
capture different levels of abstraction (GOODFELLOW; BENGIO; COURVILLE, 2016;
CHARNIAK; EUGENE, 2018). In addition to convolutional layers, CNN also typically
includes pooling layers, which downsample the feature maps by taking the maximum or
average value over a small local region (GOODFELLOW; BENGIO; COURVILLE, 2016).

CNN usually end with one or more fully connected layers, which perform a classi-
fication or regression task. These layers take the output of the convolutional and pooling
layers, and each neuron’s input is a flattened version of the feature maps, rather than
the raw input data (GOODFELLOW; BENGIO; COURVILLE, 2016). CNN has proven
to be effective for a wide range of computer vision and audio processing tasks. They are
powerful and flexible neural networks that can learn increasingly complex features from
grid-like input data by exploiting local spatial correlations (GOODFELLOW; BENGIO;
COURVILLE, 2016; CHARNIAK; EUGENE, 2018).

3.2.1 The convolution operation

The convolution operation is a mathematical operation that is performed between
the input image and a set of filters to produce feature maps (GOODFELLOW; BENGIO;
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COURVILLE, 2016; CHARNIAK; EUGENE, 2018). Mathematically, the convolution op-
eration can be represented as follows:

𝑆(𝑖, 𝑗) = (𝐼 * 𝐾)(𝑖, 𝑗) =
∑︁
𝑚

∑︁
𝑛

𝐼(𝑚, 𝑛)𝐾(𝑖 − 𝑚, 𝑗 − 𝑛) (4)

where 𝐼 is the input image, 𝐾 is the convolutional kernel or filter, and 𝑆 is the resulting
feature map. The symbol * represents the convolution operation, and (𝑖, 𝑗) represents the
spatial coordinates of a pixel in the feature map.

The convolution operation is performed by sliding the kernel over the input image,
computing the dot product between the kernel and the corresponding region of the input
image at each position, and storing the result in the corresponding pixel of the feature
map (GOODFELLOW; BENGIO; COURVILLE, 2016). The kernel is a small matrix of
learnable parameters that are updated during the training process to learn different fea-
tures in the input image (GOODFELLOW; BENGIO; COURVILLE, 2016; CHARNIAK;
EUGENE, 2018). The convolution operation is illustrated in Figure 15a, Figure 15b and
Figure 15c with a single input and a single kernel, resulting in a single feature map. In
practical applications, both input and kernel are a set of multiple units, resulting in a set
of feature maps - the magnitude of the feature map set is equal to the magnitude of the
input multiplied to the magnitude of the kernel set.

The size of the feature map is determined by the size of the input image, the
size of the kernel, and the stride and padding used during the convolution operation
(CHARNIAK; EUGENE, 2018). The stride determines the step size at which the kernel
moves across the input image (as shown in Figure 15d), while padding is used to add
zeros around the edges of the input image to preserve its spatial dimensions. The output
feature map has a smaller spatial dimension than the input image, but a greater number
of channels, representing the different learned features (CHARNIAK; EUGENE, 2018).
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(a) Convolution operation to generate element
(1, 1) of the feature map.

(b) Convolution operation to generate element
(1, 2) of the feature map.

(c) Convolution operation to generate element
(9, 9) of the feature map.

(d) Convolution operation with padding to
generate a feature map with the same

dimensions as the input.

Figure 15: Convolution operation between the input (input tensor) and one kernel. The
stride here is 1, meaning that the kernel matrix will slide only one column of
the input.

3.2.2 Pooling

Pooling is a downsampling operation that is typically applied after each convo-
lutional layer to reduce the spatial dimensions of the feature maps and improve compu-
tational efficiency (GOODFELLOW; BENGIO; COURVILLE, 2016). The most common
type of pooling operation used in convolutional neural networks is max pooling, which
selects the maximum value from a small region of the feature map and discards the rest.
During the max pooling operation, the kernel is moved across the input feature map with
a certain stride, and for each position (𝑖, 𝑗) in the output feature map, the maximum value
within the local receptive field is selected and stored in the corresponding position of the
output feature map (GOODFELLOW; BENGIO; COURVILLE, 2016). This process re-
sults in a downsampled version of the input feature map, with reduced spatial dimensions
(as shown in Figure 16a).
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(a) Max pooling. (b) Average pooling.

Figure 16: Two pooling algorithms being applied to the same feature map.

Other types of pooling operations, such as average pooling or L2 pooling, can
also be used in CNN (GOODFELLOW; BENGIO; COURVILLE, 2016). Average pool-
ing computes the average value within each local receptive field (shown in Figure 16b),
while L2 pooling computes the root-mean-square value. These pooling operations have
the effect of reducing the spatial dimensions of the feature maps, while also introducing
some degree of a phenomenon called translational invariance (GOODFELLOW; BEN-
GIO; COURVILLE, 2016). Translational invariance is a property that allows the model
to recognize the same pattern in different locations of the input image (GOODFELLOW;
BENGIO; COURVILLE, 2016). This property is especially important for computer vision
tasks, where objects can appear in different positions, orientations, and scales (GOOD-
FELLOW; BENGIO; COURVILLE, 2016).

4 Material and methods
In order to analyze whether convolutional neural network and remote sensing can

predict sugarcane biomass, a comparison of predicted data from the studied model against
reference data were conducted.

The sugarcane harvester’s yield monitor data were adopted as reference data.
Despite the fact that yield monitor data from sugarcane harvesters are also estimated,
and not an actual field biomass data, it is the only source of fine scale and high density
biomass data available in sugar mills.

The model prediction capability was carried out in two spatial scales. The first
was the whole field scale, aiming to estimate the average field biomass. And the second
and finer scale aimed to estimate the within-field spatial variability of the biomass, that
would allow creating biomass maps of sugarcane fields.

4.1 Study site

The data used in this project were collected from three fields (18, 46 and 53) of Alta
Mogiana sugar mill, a sugarcane mill located in Sao Joaquim da Barra, in the state of Sao
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Field Start date of
the season

End date of
the season

CGDD at
harvest

Cultivar Reference
biomass
(tonne/ha)

18 Oct. 22, 2021 Sep. 24, 2022 1653 CTC 4 97.6
46 Oct. 22, 2021 Sep. 21, 2022 1644 CTC 4 77.8
53 Oct. 6, 2021 Sep. 19, 2022 1702 SP 80-3280 82.8

Table 4: Fields’ season information.

Figure 17: Fields used to train and test the deep learning model.

Paulo. The crop stage for field 53 is first ratoon, while fields 18 and 46 are fourth ratoon.
This means that since the plantation, field 53 was harvested two times and the other two
were harvested five times. Table 4 shows details about each field’s harvest period and
plant cultivar. The mean annual precipitation, minimum and maximum temperature in
the region are 1651 mm, 18°C and 28°C, respectively, according to the National Institute
of Meteorology (INMET) historical weather data. The soil type is Oxisol, according to
the United States Department of Agriculture (USDA) soil taxonomy. Figure 17 shows the
location of the three fields.

The reference values of field biomass was acquired by filtering the data from the
sugarcane harvester yield monitor.

32



Figure 18: Modeling framework flowchart.

4.2 Sentinel-2 and yield monitor data

The deep learning model was developed to predict a biomass map of a sugar-
cane field with accumulated growing degree days varying from 1600 and 1700. Weather
data, Sentinel-2 satellite imagery and yield monitor data from the target fields were used
for model training and test. The deep learning model had both Sentinel-2 imagery and
weather data combined as its single input while yield maps to elaborate the labels - the
desired output. In order to train the model, two datasets were prepared in a preprocess
that sets a data structure pattern for the input and label. Figure 18 illustrates the main
steps of the modeling framework.

The model used as input data the preprocessed Sentinel-2 images. The Sentinel-
2 images were downloaded using Google Earth Engine API, specifying the cumulative
growing degree days (CGDD) range corresponding to 549 through 910 for the harvest
period of each field, excluding the ones with cloud covering over the studied fields. The
CGDD range was selected based on (LOFTON et al., 2012) and (MAIA; BUFON; LEãO,
2023) conclusions about the ideal time to predict sugarcane yield using vegetation indices
and the availability of clear images. Three sets of images were collected, containing 5
images for field 18, 5 images for field 46 and 4 images for field 53.

The response variable of the model - biomass -, was derived from filtered yield
monitor data. Yield monitor data is a vector file containing a set of points in which the
coordinates indicate the location of the harvested biomass. Each point contains attributes
concerning the time of collection, associated yield, associated trash (leaves and other
wasted parts of the sugarcane). Hence, the yield and trash of each point were summed to
create the attribute biomass, constituting the label variable used in the model whether
for the training or testing process. The number of yield monitor biomass data points for
the fields 18, 46 and 53 were 60798, 57999 and 86435 respectively, while the area of each
respective field is 14.75 ha, 13.19 ha and 18.88 ha.
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4.3 Yield monitor filtering

Although the yield monitor data was used as the reference value for the prediction
process, it still has some discrepancies that do not represent reality as harvester maneu-
vering and the monitor biomass sensing system still face some early development stage
challenges. An exploratory error assessment of the yield monitor estimates, compared to
hand harvested field biomass in selected points (data not shown) indicates a mean ab-
solute percentage error (MAPE), average error (AE), root mean square error (RMSE),
and the mean absolute error (MAE) of 5.08 %, 1.52 tonne/ha, 38.29 tonne/ha and 5.09
tonne/ha, respectively. Therefore, in order to be used as reference data, a filtering pro-
cess was adopted. The values of biomass reached values with magnitudes as high as 2424
tonne/ha, an unreasonable number for biomass in sugarcane fields. A process of filtering
outliers and yield map error removal was made using Menegatti e Molin (2004) method-
ology. This method was applied to the yield monitor vector file through Microsoft Excel
functions.

4.4 Weather data and growing degree days

Cumulative growing degree days (CGDD) were included in the input, adding a
correlation between the plant’s electromagnetic reflectance and its related phenological
growing stage. Growing degree days are a measure of the accumulated heat energy avail-
able for plant growth during a specific period. It provides an estimate of how favorable
the temperature conditions are for plant development.

Daily minimum and maximum temperatures of each day from the beginning through
the end of the harvest period were gathered in order to calculate daily CGDD of each
field. The weather data was downloaded from the INMET station of São Joaquim da
Barra, the closest one to the fields. The dates that no data was collected were filled with
data from other stations close to the fields.

After the weather data was prepared, the GDD and CGDD of each field was
calculated using the following equations, as proposed by Teruel, Barbieri e Ferraro (1997):

𝐺𝐷𝐷 =

⎧⎪⎨⎪⎩
𝑇max+𝑇min

2 − 𝑇𝑏, for 𝑇min > 𝑇𝑏

(𝑇max−𝑇𝑏)2

2(𝑇max−𝑇min) , for 𝑇min ≤ 𝑇𝑏

, (5)

where 𝑇𝑚𝑎𝑥 is the maximum temperature of the day, 𝑇𝑚𝑖𝑛 is the minimum temperature of
the day and 𝑇𝑏 is the basal temperature, which is 18°C for sugarcane in Brazil (TERUEL;
BARBIERI; FERRARO, 1997). The cumulative growing degree days in turn is just the
sum of all GDD from the start of the season up to the current date.
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4.5 Vegetation indices calculation

Images from Sentinel-2 were downloaded with values discretized as digital numbers
(DN), then the pixels of each band were divided by 10000 in order to have reflectance
values ranging from 0.0001 through 1 (GASCON et al., 2017). The spectral signatures
GNDVI and EVI shown in Table 1 were calculated and incorporated to the input dataset,
as well as the bands Red and Blue. The GNDVI and EVI were both divided by the
cumulative growing degree days to create new indices regarding the date that the image
was taken and the start of the field’s harvest season. The addition of these two bands to
the input image aimed an improved relationship of the images with plant phenological
growing stage, as observed by Lofton et al. (2012).

4.6 Yield monitor interpolation

The georeferenced point data from the yield monitor was submitted to an inter-
polation in order to have a grid with georeferenced cells matching the clipped field’s from
Sentinel-2. Given the density of biomass points, Inverse Distance Weighting (IDW) in-
terpolation method was used, a simple bidimensional interpolation method that takes in
consideration that the data is spatially dependent, though it is not true for biomass in a
field. The interpolation was made using a standalone code in Python that followed the
equation (LU; WONG, 2008):

𝑧 =
𝑛∑︁

𝑖=1

𝑧𝑖 𝑑𝑛
𝑖

𝑑𝑝
𝑖

, (6)

where 𝑧 is the interpolated value, 𝑧𝑖 is the value of the i-th point of the dataset, 𝑑𝑖 is
the distance between the estimated value and the i-th point of the dataset and 𝑝 is the
power of the interpolation, in which 2 was used with no specific criteria. This equation
was used in every new cell of the grid to be generated but the cells that represent the
field’s surrounding bare soil. For the bare soil values that corresponded to areas out of
the field, a biomass of 0 tonne/ha was forcibly set.

4.7 Field and bare soil data extraction

Once the Sentinel-2 images were downloaded, the area of interest of the study for
each image was extracted using the sugarcane field’s Shapefile Polygon provided by the
sugar mill. Additionally, three bare soil pixels were selected from each image in order to
provide a zero biomass reflectance reference.

4.8 Input and label data creation

Further, new images were generated from the clipped parcels including only the
extracted three fields and the three bare soil reference pixels. The generated image had
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100 pixels of width by 100 pixels of height, containing the parcels of clipped fields over
a homogeneous background for each band. The value of the background in each band is
the average value of the clipped bare soil in that respective band. The background of the
generated input had different values not only for each band, but it varied according to
the satellite captured reflectance of the soil, and to the CGDD of the field on that date
for the fifth and sixth band.

4.9 Data augmentation

Two-dimensional convolution neural network models are a sequence of convolution
operations between an input and a set of filters that recognize spatial patterns. Therefore,
if it is trained to recognize images where the target object is in the same relative position
and orientation, it will be biased to extract information from that same position and
orientation. This issue is called spatial invariance, and this issue is faced in this model
using a data augmentation strategy of varying the position and orientation of the fields
on each image (WILK et al., 2018). New inputs and labels were generated with the
orientation varying each 20° in each position, and the horizontal and vertical position
varying each 5 pixels. It was noticeable that the pixels’ arrangement of the fields did
not match appropriately in a grid image for every orientation, thus, this rearrangement
was made using linear interpolation. After the augmentation process, the total number of
input data went from a total of 14 to 725 for field 18, 880 for field 46 and 564 for field 53.

4.10 Deep Learning model development

The deep learning model was developed using the Keras package for Python. The
structure upon which each layer was built is the Sequential class, an easy way of grouping
stacks of layers (neural networks, convolutional neural networks, and pooling) to the
model.

The datasets of the input and the label were indexed to each other according to
the field position and orientation of each image. For example, input and label with the
field occupying the lower right side of the image and rotated 90 degrees from its center
must match. The two datasets were then sorted and transformed into a Python data
structure called Numpy Array - it turns the amount of memory to represent the same
dataset shorter and increases the training process’s performance. After, the two datasets
were split into training and test sets, in order to separate the final model evaluation with
unbiased results. For the training set, the fields 18 and 53 images were used, while the
field 53 made up the test set.

The architecture of the model analyzed in this work was reached after the pro-
gressive improvement of primitive versions of deep learning models. It started with simple
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neural networks up to the architecture presented in Figure 19. In the beginning of the
process, the input values are normalized according to equation:

𝑁𝑜𝑟𝑚𝑖𝑙𝑖𝑧𝑒𝑑𝑖,𝑗 = 𝑖𝑛𝑝𝑢𝑡𝑖,𝑗 − 𝑚𝑒𝑎𝑛𝐵𝑎𝑛𝑑𝑠𝑖,𝑗√︁
𝑣𝑎𝑟𝐵𝑎𝑛𝑑𝑠𝑖,𝑗

, (7)

where 𝑁𝑜𝑟𝑚𝑖𝑙𝑖𝑧𝑒𝑑𝑖, 𝑖𝑛𝑝𝑢𝑡𝑖,𝑗, 𝑚𝑒𝑎𝑛𝐵𝑎𝑛𝑑𝑠𝑖,𝑗 and 𝑣𝑎𝑟𝐵𝑎𝑛𝑑𝑠𝑖,𝑗 are the cell 𝑖, 𝑗 values of
the normalized input, of the input itself, of the mean of all bands and of the variance
of all bands. This normalization process was important to improve the training process
performance and stability given the similarities of the scale of input values. Without
normalization, the model could inherit a specific band (feature) dominance due to its
larger scale.

Furthermore, each cell passes through a neural network layer that returns two
values. This layer captured information purely about band signatures. After, the grid
was passed through a convolutional layer with 24 filters and kernel size of 3 by 3 pixels,
resulting in a 98 by 98 pixels with 24 bands (features) each. Then, this new grid passed
through a 2-dimension pooling, reducing even more its height and width (16 by 16 pixels).
The pooling process aimed to smooth the grid spatial variation. The dimension of the
output must be the same as the label’s, thus, the previous grid was flattened and passed
through another neural network to increase the width and height back to 100 by 100
pixels as well as the model complexity, meaning that it will capture more information.

4.11 Training and Statistical Evaluation of Models

In order to improve the model weights at each epoch (number of iterations in
which the deep learning weights are adjusted), the MAE function was chosen to be the
Loss function. Based on the result of the forward pass Loss function, the weights were
adjusted using the optimizer RMSEProp from the Keras library. The model observed
metrics were calculated to the predicted and the actual interpolated biomass map. They
were used in the decision of the amount of iterations to successively adjust the weights of
the model. After no more alteration of the Loss value and metrics, the training process
was interrupted and finalized. The adopted metrics were the MAE and the RMSE of the
cells corresponding exclusively to the field location, not to the whole 100 by 100 pixels
image. The following equations stand for MAE and RMSE, the model metrics.

MAE = 1
𝑛

𝑛∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖| (8)

RMSE =
⎯⎸⎸⎷ 1

𝑛

𝑛∑︁
𝑖=1

(𝑦𝑖 − 𝑦𝑖)2 (9)

The training process was set up to have the following parameters: training input
and label, number of epochs and the validation split. In order to assess the accuracy or
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error of each epoch, part of the training dataset was randomly selected to be used only for
training and the other part was selected to assess the epoch metrics. Therefore, the model
fitting was made with 20% of the dataset separated exclusively for validating the epochs
with unbiased results of each epoch. At least, the testing process ran using data from field
46, and the MAPE, AE, RMSE, MAE, were adopted in order to assess the prediction
effectiveness of the model in both targeted, field- and whithin-field spatial scales.

Figure 19: Deep learning architecture.

5 Results

5.1 Model prediction of average field biomass

For the training fields 18 and 53, with reference average biomass of 97.6 and 82.8
tonne/ha, respectively, the model predicted 97.63 and 82.80 tonne/ha. For the testing
field 46, with reference average biomass of 77.8 tonne/ha, the developed model estimated
78.1 tonne/ha.

The MAPE, AE, RMSE, and MAE, presented in Table 5, were adopted in order
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MAPE AE RMSE MAE
3.95 0.30 3.48 3.07

Table 5: Prediction errors of the tested field.

to assess the prediction effectiveness of the model. The developed modeling framework
tested in field 46 delivered a MAPE of 3.95% of total sugarcane field biomass, smaller
than the 5.09% from the harvester yield monitor. AE of 0.30 tonne/ha, points out to
an overestimation of the modeling framework relative to the field biomass, in the same
way as the yield monitor AE of 1.52 tonne/ha. The RMSE of 3.48 tonne/ha, indicates
that the modeling framework error around the average is lower than the yield monitor
error stability, which presented an RMSE of 38.29 tonne/ha. Further, the MAE of 3.07
tonne/ha is lower than the yield monitor MAE of 5.09 tonne/ha. Due to the proximity of
RMSE and MAE, the modeling framework presence of outliers is smaller in comparison
with the yield monitor measurements.

5.2 Model prediction of within-field biomass spatial variability

The within-field biomass spatial variability prediction counted with more than
30% of the pixels with error higher than 28.42 tonne/ha. The error distribution of all
pixels from every predicted map is shown in Figure 20. The red curve is the Gaussian
normal distribution function that fits to the error histogram, in which the vertical dashed
lines represent the multiples of the standard deviation position along the x-axis and the
vertical solid line at 0.30 tonne/ha is where the average value of all pixels is located.

The Gaussian distribution of the pixels indicates almost equal amounts of under-
estimated and overestimated biomass predictions. The negative and positive standard
deviation interval around the average indicates the error in 68% of the pixels below 28.42
tonne/ha. By the percentage distribution of pixels, it is observed that around 8.5% of the
pixels had an error less than 2.5 tonne/ha from the reference biomass equivalent pixel,
and around 25% had an error less than 7.5 tonne/ha.

Figure 21 shows the reference and predicted biomass maps for the field 46 and
Figure 22 shows the different average error maps of each rotation from the test dataset.
In general, the model underestimated one corner of the test field extending to the adjacent
side. In the maps with rotation of 0 degree and 280 degrees, this effect can be better seen
although it is observed in almost all images. The error maps also diverged as rotation
increased, meaning it did not present a pattern for the images of the same field. In
contrast, images with the same rotation but different positions on the input grid did
present similar error maps.

In general, pixels that overestimated the biomass were compensated by others
underestimating it. This can be observed by the scatter plot in Figure 23, showing a certain
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Figure 20: Gaussian normal distribution and percentage distribution of the average error
of the pixels.

Figure 21: Predicted and reference biomass maps.
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Figure 22: Average error maps from fields at different rotations.

balance in the number of pixels above and below the red line. Pixels from the reference
biomass map presented values from 15 tonne/ha to beyond 115 tonne/ha, while predicted
biomass was concentrated in a window between 60 and 100 tonne/ha. Further, there were
pixels identified by the predicted map as bare soil - without biomass, in opposition to the
reference biomass map that shows a biomass value for these pixels.

6 Discussion
The model capacity to predict average field biomass was assertive given the deep

learning metrics used to improve the accuracy. Mean squared error is the loss function
based on average values of the whole field, thus, they were the main target of each iteration
during training. Furthermore, the decision to end the training process was based on the
map metrics that calculated the map mean errors MAE and RMSE, therefore only after
they were stabilized. The selected bands also had an important influence in the prediction
given the correlation between GNDVI and yield, a biomass component, as well as the
index sensitivity to dense vegetation (RAHMAN; ROBSON, 2016), and the sensitivity
of EVI to detect vegetation biomass variation (MAIA; BUFON; LEãO, 2023). Another
factor that contributed to the accuracy of the model to predict average field biomass
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Figure 23: Scatter plot of the predicted and reference biomass in each pixel.

was the use of vegetation indices normalized the field thermal sum CGDD, adding more
correlation to yield accumulation over thermal time (LOFTON et al., 2012). The reason
why the model slightly overestimated the reference average biomass was merely given
the numerical and stochastic nature of the model. Considering the field average reference
biomass of 77.8 tonne/ha, an AE value of 0.30 tonne/ha of the prediction model could be
considered acceptable, especially when compared to the AE value of 1.52 tonne/ha of the
yield monitor estimates for the same field.

The larger AE for the within-field biomass spatial variability prediction was prob-
ably impacted by a dataset with small rotational variance. This is mainly noted given
the lack of pattern in the error maps when the field data was submitted to rotation. The
Loss function was processing the image as a whole and not pixel wise, thus, this may
have contributed to the lack of correlation between each pixel of one input and its re-
spective pixel of the output. Nevertheless, the Loss value was stabilized when the training
ended, indicating underfitting. It means that the model could not capture the complex-
ity of the nature of the processed data. A possible reason for it was the insufficiency of
the dataset volume richness (MATHRANI et al., 2021), thus, the input rotation process
was not enough to increase the dataset diversity in order to make a generalistic model.
Besides, by observing the predicted error maps, the found pattern of a corner strip with
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high underestimation indicates that the model was trying to identify the same shape of
field 18 into field 46. Hence, this model flaw may have contributed to disturb the spatial
variability correlation between predicted and actual biomass maps.

The scatter plot shows an upper and lower threshold that does not correspond to
reality and contributed to the error related to the spatial variability of the prediction.
This threshold was probably imposed by the yield monitor filtering method that removed
outliers but also removed actual low, or even null biomass data. It could be considered
a weakness of the method when applied to sugarcane, compared to grain crops, in which
the methodology was developed. The reason for it was possibly the fact that sugarcane
harvesters harvest each row at a pass and grain harvesters harvest multiple rows at a pass.
Therefore, registering low or zero biomass in sugarcane rather than in grain harvester yield
maps.

7 Conclusion

In conclusion, the model effectively predicted average biomass in a sugarcane field.
The selection of appropriate bands, such as GNDVI and EVI, improved accuracy by corre-
lating with yield and detecting vegetation biomass variation. Normalizing the vegetation
indices through field thermal sum CGDD further enhanced prediction. The slight overesti-
mation of reference average field biomass was due to the model’s numerical and stochastic
nature.

The limited rotational variance in the dataset contributed to the large error for the
within-field biomass spatial variability prediction. The lack of patterns in error maps and
the underfitting indicated the model’s inability to capture pixel-wise correlation between
predicted and actual data, and information complexity. Insufficient dataset richness and
inadequate diversity hindered the development of a generalizable model. The presence of
a corner strip with high underestimation disrupted the spatial variability correlation.

The unrealistic upper and lower threshold in the scatter plot affected the predic-
tion’s spatial variability prediction. This threshold, probably imposed by the yield monitor
filtering method, was not optimized for sugarcane crop.

Finally, while the model demonstrated good predictive capabilities for average field
biomass, limitations in the dataset’s rotational variance and the presence of an unrealis-
tic threshold influenced the accuracy and spatial variability of the predictions resulting
in a bad quality prediction map in comparison with a yield monitor map. Further im-
provements are necessary to address these limitations and develop a more robust model
that can better capture the complexities of sugarcane crop. Some of the improvements
could be the application of other augmentation strategies, like zooming and noiseing, the
increase of the dataset rotation to finer angles and around other axis, the development of
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a sugarcane yield monitor filtering method, and even increasing the model complexity by
relating a Loss function with each pixel.
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