Universidade de Brasília Instituto de Química Curso de Engenharia Química

PROJETO DE ENGENHARIA QUÍMICA

Produção de óleo secante a partir de óleo castor acetilado

Crislei Meier de Rezende Andrade - 180030957 Felipe Pontes Morais - 180016300 Isa Silva Novais - 160008573 Thiago de Quadros Santos - 180037722

Brasília, 17 de fevereiro de 2023.

RESUMO

Óleos e gorduras foram utilizados por milênios com fins alimentícios, entretanto, inúmeras descobertas da humanidade trouxeram uma nova luz à utilidade deste insumo. Em geral, os óleos e gorduras são formados por ésteres de glicol e ácidos graxos que são responsáveis por particularidades reacionais.

O presente projeto consiste na produção de óleo secante, 1-tetradeceno (C₁₄H₂₈), utilizado como aditivo em tintas e vernizes para auxiliar no processo de secagem, após aplicação. O produto é obtido a partir do óleo castor acetilado, representado pelo ácido palmítico (C₁₅H₃₁COOH) na simulação, possuindo uma reação secundária que produz uma borra, a qual consiste de 1-octacoseno (C₂₈H₅₆). O processo se inicia com a modelagem de uma planta partindo do óleo castor, sendo armazenado num vaso acumulador, juntamente com uma corrente de recirculação com parte do produto de interesse. A corrente principal passa por uma bomba, que permite a circulação do fluido de processo para o forno, onde é aquecida a uma temperatura de 380 °C e transportada para o reator, onde ocorrem os mecanismos de reação com conversão de 36,25% para o óleo secante. Por fim, a corrente é resfriada através do trocador de calor, sendo utilizada água em ponto de bolha.

A planta projetada foi simulada utilizando o *software Aspen Hysys* e caracterizada por um diagrama mecânico (*P&ID*). Enquanto a avaliação econômica revelou um custo total anualizado de operação de \$499.270, a avaliação ambiental expôs os principais impactos do sistema produtivo, propondo um procedimento para tratamento e possível reutilização dos resíduos gerados.

ÍNDICE

1. INTRODUÇÃO E OBJETIVOS	4
2. REFERENCIAL TEÓRICO	6
3. DESCRIÇÃO DO CENÁRIO	10
4. PROJETO DA PLANTA	15
4.1. Correntes de processo	18
4.2. Bombas	19
4.3. Trocadores de calor	25
4.4. Vasos pulmões	28
4.5. Reator	32
4.6. Forno	37
4.7. Listagem de indicadores	39
4.8. Listagem de controladores	40
4.9. Listagem de alarmes	41
4.10. Listagem de intertravamentos	41
4.11. Listagem de válvulas de segurança	42
4.12. Diagrama mecânico de processo	43
4.13. Avaliação econômica do processo	44
4.14. Avaliação de impacto ambiental	46

6. BIBLIOGRAFIA

49

48

1. INTRODUÇÃO E OBJETIVOS

Após serem amplamente utilizados com finalidades alimentícias por milênios, foi descoberto que os óleos e gorduras quando expostos à luz, água e altas temperaturas poderiam gerar materiais úteis na produção de insumos industriais. Óleos e gorduras são constituídos principalmente de ésteres de glicerol e ácidos graxos (acilglicerídeos) e, dependendo do número de ácidos graxos esterificados com o glicerol, têm-se triacilglicerídeos. Os ácidos graxos são os principais responsáveis pelas propriedades físico-químicas e a reatividade dos óleos e gorduras por representarem grande parte da sua composição. Eles também possuem quantidades de ácidos graxos livres oriundos da hidrólise de triglicerídeos, além de glicolipídios, esteróis, carotenóides e vitaminas (MARTINS; MELLO; SUAREZ, 2013).

Essa classe de substância e seus derivados tiveram grande importância na história da humanidade. Foram um dos primeiros insumos naturais que o ser humano empregou para fins não alimentares. Até o século XIX, os egípcios utilizavam óleos e gorduras como fontes de combustíveis líquidos empregados em sistemas de iluminação e como lubrificantes para engrenagens mecânicas. Os primeiros grupos de humanos da história já usavam óleos e gorduras para a produção de sabões e tintas. A aplicação desses, assim como de outros insumos derivados de biomassa, permaneceu competitiva apenas em um grupo restrito de produtos industriais após a emergência da forte concorrência exercida pelos derivados de petróleo (RAMALHO; SUAREZ, 2013).

Dentre as práticas que perpetuaram, os óleos secantes são usados até hoje como aditivos em tintas e vernizes para auxiliar no processo de cura quando esses produtos são passados em superfícies. As insaturações presentes nas cadeias carbônicas desses derivados de óleos e ácidos graxos permitem que reações químicas promovam a polimerização oxidativa do material levando à formação de uma película sobre a superfície aplicada, fornecendo proteção e tornando-a mais bonita (MENEGHETTI, S. M. P.; MENEGHETTI, M. R.; LIMA, 2013).

Consolidados como *commodities* com extensa utilidade na indústria alimentícia, os óleos vegetais têm progressivamente conquistado espaço como

recurso para a produção de biocombustíveis e como matéria-prima industrial. O aumento do interesse tem se dado principalmente em virtude da flutuação dos preços do petróleo e da preocupação ambiental em torno do uso de fontes fósseis. Polímeros à base de petróleo ainda têm muita presença no cotidiano e no mercado, por isso é essencial trabalhar em formas sustentáveis de produzir esses materiais. Embora diversos óleos vegetais tenham sido empregados na produção de polímeros, o óleo de mamona (também conhecido como óleo de rícino ou óleo castor) supera os demais por não competir com a indústria alimentícia, visto que não é comestível, e por ser quimicamente versátil, permitindo a síntese de vários polímeros como epóxis, poliamidas e poliésteres (NEKHAVHAMBE; MUKAYA; NKAZI, 2019).

O estudo de transformações físicas e químicas de óleos e gorduras levaram ao desenvolvimento de novas tecnologias para a produção de diversos insumos capazes de substituir semelhantes derivados do petróleo que vêm ganhando espaço comercialmente. Descobrir e compreender esses insumos, os processos de transformação nos quais são usados como matéria prima e os assuntos relacionados à eles é estrategicamente importante para os profissionais da química.

Com base nas premissas descritas anteriormente, o presente projeto tem como objetivo projetar uma planta de produção de óleo secante a partir de óleo castor acetilado. Para alcançar este objetivo final, são necessários cumprir os seguintes objetivos parciais:

- realização dos balanços de massa e energia da unidade;
- projetar os vasos e reatores que integram a unidade;
- projetar os sistemas de impulsionamento de fluídos;
- projetar os sistemas de troca de calor, com atenção aos processos de integração energética;
- indicação dos sistemas de instrumentação, controle, bem como os elementos de segurança da planta;
- realização do diagrama P&ID da unidade;
- realização da análise de viabilidade econômica do processo
- e avaliação de seu impacto ambiental.

2. REFERENCIAL TEÓRICO

Triglicerídeos, triésteres de glicerol e ácidos graxos são óleos de existência natural que possuem grande potencial químico para a preparação de vários materiais com diversas aplicações comerciais em virtude de sua grande versatilidade reacional. Triglicerídeos com alto percentual de ácidos graxos poliinsaturados possuem propriedades de óleos secantes (LOPES; CASTRO; WICKS, 2002). Reações de oxidação ocorrem quando esses óleos são expostos ao oxigênio do ar por um tempo, promovendo um entrecruzamento das cadeias de ácidos graxos que conduz à formação de uma rede polimérica reticulada, resultando em um filme sólido.

Esse mecanismo de secagem oxidativa (ou polimerização oxidativa) pode ser resumido em duas etapas: a oxidação, que ocorre por meio de reações em cadeia (estágios de iniciação e propagação), e a polimerização, onde ocorre o aumento do peso molecular (terminação da cadeia). Essa capacidade de polimerização é influenciada pelo grau de insaturação dos óleos e pelo grau de conjugação dessas insaturações, já que ligações duplas conjugadas são mais reativas do que as não conjugadas, além da presença de catalisadores (chamados de secantes) que favoreçam o processo (MENEGHETTI, S. M. P.; MENEGHETTI, M. R.; LIMA, 2013; SILVA, 2019). A Figura 1 representa as reações em cadeia do mecanismo de polimerização oxidativa.

Iniciação

Iniciador → radicais livres (R*, ROO*)

Propagação

 $R^{\bullet} + O_2 \rightarrow ROO^{\bullet}$ ROO + RH \rightarrow ROOH + R

Terminação

 $\begin{array}{l} \mathbf{R^{*}+R^{*} \rightarrow R-R} \\ \mathbf{ROO^{*}+R^{*} \rightarrow ROOR} \\ \mathbf{ROO^{*}+ROO^{*} \rightarrow ROOR+O_{2}} \end{array}$

Figura 1. A reação se inicia com a formação de um radical livre [R+] quando um átomo de hidrogênio entre duplas ligações é retirado de uma cadeia de ácido graxo [RH]. Os radicais livres reagem com o oxigênio formando outros radicais, como os peróxidos, que interagem com átomos de hidrogênio de outros ácidos graxos promovendo a propagação. Na terminação, reações de combinação entre radicais livres formam ligações cruzadas e produtos mais estáveis. Retirado de SILVA (2019).

Óleos secantes são usados desde os tempos pré-históricos. No século 19, a maioria dos aglutinantes de tintas de pintura e tintas de impressão eram óleos secantes. O seu uso reduziu significativamente a partir do século 21, sendo substituído por outros materiais. A maior aplicação de óleos secantes atualmente é na produção de resinas alquídicas, epóxi ésteres e óleos secantes modificados, permanecendo importantes para a produção de revestimentos, tintas, lubrificantes e sabões. Uma vez que se tratam de recursos renováveis, o desenvolvimento de materiais poliméricos a partir de materiais renováveis como esses tem emergido como alternativa aos polímeros derivados de petróleo (MENEGHETTI, S. M. P.; MENEGHETTI, M. R.; LIMA, 2013; SILVA, 2019; WICKS, 2002).

Representando materiais de origem natural e renovável, os óleos vegetais são constituídos principalmente de triglicerídeos e podem ser classificados de acordo com a reatividade em relação à polimerização oxidativa em secante, semissecante e não-secante. Embora sejam empregados especialmente para fins alimentícios e químicos, também têm se destacado na produção de biocombustíveis (SILVA, 2019). A composição de cada óleo, suas proporções de ácidos graxos, dimensões das cadeias, estequiometria de

ligações duplas, grau de insaturação e presença de outros grupos funcionais dependem da variedade do vegetal de origem, bem como suas condições de crescimento e do método de recuperação do óleo, de modo que influencia a aplicabilidade do óleo obtido (NEKHAVHAMBE; MUKAYA; NKAZI, 2019).

Óleos desta natureza são compostos de um conjunto dos ácidos oleico, linoleico e linolênico, que são ácidos graxos insaturados. O óleo de rícino contém altas quantidades de ácido ricinoleico (~90%), o que o faz um poliol natural e permite seu amplo uso na síntese de poliuretanas (NEKHAVHAMBE; MUKAYA; NKAZI, 2019; SUAREZ *et al.*, 2007). Trata-se de um derivado da planta *Ricinus communis* característico por ser mais viscoso que outros óleos vegetais. Também é menos solúvel em hexano e mais solúvel em etanol em consequência da presença da hidroxila. A extração do óleo de rícino pode ser feita por meio de prensagem mecânica, extração por solventes ou a combinação dos dois processos.

A presença da hidroxila na estrutura do óleo de rícino confere propriedades interessantes que podem ser convertidas em produtos muito úteis. Naturalmente, o óleo de rícino é classificado como não secante, entretanto, a sua desidratação promove a obtenção de produtos ricos em ácidos dienos, alguns com insaturações conjugadas, que podem ser opções valiosas de óleos secantes e semissecantes (WILLIAMS, 1945; OGUNNIYI, 2006). Enquanto reações de hidrólise, alcoólise e esterificação podem ocorrer na região do grupo éster do ácido ricinoleico, as ligações duplas permitem a modificação química do óleo por técnicas como epoxidação, hidrogenação e halogenação (NEKHAVHAMBE; MUKAYA; NKAZI, 2019).

O processo de desidratação envolve a remoção de água da porção do ácido graxo do óleo. A função hidróxi pode ser reduzida por desidratação ou aumentada por interesterificação com um álcool polihídrico. O procedimento ocorre em temperaturas em torno de 250 °C e sob atmosfera inerte ou vácuo (OGUNNIYI, 2006). O óleo de rícino desidratado pode ser utilizado na produção de resinas alquídicas, as quais são usadas para tintas e revestimentos.

Com essa finalidade, o óleo de rícino acetilado é um dos mais nobres no mercado, sendo o único a suportar pressões variadas e altas temperaturas sem perder a viscosidade. O Brasil é um grande produtor dessa substância (TRAVESSA; BARBOSA; REZENDE, 2017).

Com a perspectiva dos novos mercados atrelada às questões tanto econômicas quanto ambientais, a pesquisa e o desenvolvimento tem se voltado para a prospecção e exploração de fontes renováveis e métodos para a geração de insumos básicos. Todavia, em meio a uma indústria de polímeros extremamente dependente da petroquímica, existem segmentos como o mencionado no presente trabalho que possuem processos consolidados com matérias-primas renováveis há muito tempo e se fazem exemplos oportunos de serem estudados e aprofundados.

3. DESCRIÇÃO DO CENÁRIO

A unidade, simulada no *software Aspen HYSYS*, produz óleo secante (OS) a partir de óleo de mamona acetilado (ACO). Para a simulação, o óleo de mamona é modelado como ácido palmítico (hexadecanoico, $C_{15}H_{31}COOH$) e o óleo secante é modelado como 1-tetradeceno ($C_{14}H_{28}$). Uma consequência de reações secundárias do processo é a formação de borra, modelada como o composto 1-octacoseno ($C_{28}H_{56}$).

O diagrama do processo é apresentado na Figura 2. As características das correntes 1 e 2 são apresentadas na Tabela 1. Após a passagem pela bomba P-1, a pressão da corrente 3 é elevada até 230 kPa. O óleo de mamona acetilado é aquecido até a temperatura de reação (380 °C) no forno H-1, onde ocorre uma perda de carga de 35 kPa. Uma vez que a reação é iniciada a altas temperaturas, não requer um catalisador. Após aquecida, a corrente de alimento é introduzida no reator R-1, que é simplesmente um vaso com recheio inerte para promover uma mistura radial.

Figura 2. Diagrama esquemático do processo de produção do óleo secante. Adaptado de (TURTON, 2008).

Número da corrente	1	2
Temperatura (°C)	25,00	151,03
Pressão (kPa)	110,00	105,00
Fração molar de vapor	0,00	0,00
Vazão(kg/h)	1628,70	10703,10
Vazão (kmol/h)	6,35	41,75
Vazão dos componentes (kmol/h)		
Ácido acético	0,00	0,00
1-Tetradeceno (óleo secante)	0,00	0,064
Ácido hexadecanoico	6,35	41,69
Borra	0,00	0,00

 Tabela 1. Características das correntes 1 e 2.

As reações que ocorrem no reator R-1 e suas equações cinéticas são descritas:

$$C_{15}H_{31}COOH(l) \rightarrow^{k_1}CH_3COOH(g) + C_{14}H_{28}(l)$$
$$-r_1 = k_1C_{ACO}$$
$$2C_{14}H_{28}(l) \rightarrow^{k_2}C_{28}H_{56}(S)$$
$$-r_2 = k_2C_{0S}^2$$

Em que r_1 representa a taxa de reação da reação 1, cuja constante cinética é k_1 =5,5381013 exp^{(-44500/RT}), sendo *R* a constante universal dos gases e *T* a temperatura da reação. E r_2 representa a taxa de reação da reação 2, cuja constante cinética é k_2 =1,551026 exp^{(-8800/RT}).

Os produtos de saída do reator são resfriados até 175 °C no trocador de calor E-1, onde água em ponto de bolha é utilizada como fluido refrigerante. Qualquer borra que se forme na reação pode ser removida posteriormente por filtração.

A matéria prima dessa planta química é o óleo de rícino, o qual tem o preço de mercado estimado entre US\$ 2,06 e US\$ 2,45 por kg (SELINA, 2023).

O produto formado no processo é um óleo secante formado da desidratação do óleo de rícino. O preço desse produto varia de acordo com a pureza, o grau de insaturação, a quantidade comprada, entre outros fatores. A maioria dos fornecedores não apresenta um preço médio. Em Indainmart (2023), o óleo de castor desidratado é vendido a 2000 rúpias indianas (US\$ 24,18, cotação de 06/02/2023).

As utilidades requeridas pela planta são gás natural, água em ponto de bolha e eletricidade. Os preços (Towler *et al.*, 2008) estão listados na Tabela 2.

Utilidade	Preço
Gás natural	3,2\$/MMBTU
Eletricidade	0,06\$/kWh
BFW	0,5\$/1000lb

Tabela 2. Custos das utilidades.

O número de operadores por turno é estimado em função da quantidade e tipo de equipamentos presentes na planta segundo a equação 1 (Turton, 2009)

$$N_{ot} = (6, 29 + 31, 7P^{2} + 0, 23N_{eq})^{0,5}$$
(1)

Onde N_{ot} é o número de operadores por turno, P é o número de processos que envolve sólidos particulados; e N_{eq} é o número de etapas sem particulados, inclui compressores, aquecedores, resfriadores, reatores e torres.

Nesse processo, *P* vale zero e N_{eq} é igual a 4 (bomba, forno, reator e trocador de calor). Desse modo, o número estimado de operadores por turno é:

$$N_{ot} = (6, 29 + 0, 23 * 4)^{0.5}$$

 $N_{ot} = 2, 69$

São necessários 3 operadores por turno. Considerando que cada operador tem uma jornada semanal de 40h e que a planta opera 168 horas semanais, há 4,2 turnos por semana. Dessa maneira, o número de operadores nessa planta é dado pela multiplicação entre essas quantidades.

$$N$$
úmero de operadores = N_{ot}^{*} Turnos semanais (2)

$$N$$
úmero de operadores = 3 * 4, 2 = 12, 6

Assim, essa planta possui 13 operadores. A carga anual de operação da planta é de 8000 horas por ano, consequentemente, o fator de operação é 0,91.

Os equipamentos podem ter estimativas preliminares de custo com base em equações encontradas na literatura. Towler, *et al.* (2008) apresenta a equação potencial para estimativa dos equipamentos utilizados em plantas químicas. A equação é composta por parâmetros empíricos de custo ($a \ e \ b$), um fator característico do equipamento (S) e um expoente (n), específico para cada operação (TOWLER, *et al.*, 2008). Assim, temos:

$$C_e = a + b * S^n \tag{3}$$

Onde C_e é o custo preliminar, dado Dólar Gulf 2006, para cada equipamento (TOWLER, *et al.*, 2008). Somado ao custo do equipamento, é preciso considerar os custos de instalação. Para isso, é incluso o fator de Lang (1948), o qual propôs que o custo de capital fixo ISBL de uma planta deve ser dado como função do custo total do equipamento (TOWLER, *et al.*, 2008). Através da equação 4:

$$C = F(\sum_{e} C_{e})$$
(4)

F é o fator de instalação, ou fator de Lang que foi estimado para cada equipamento.

Um resumo da planta química a ser projetada, apresentando os equipamentos, controladores bem como detalhes das correntes e energia trocada, é apresentado no diagrama de fluxo de processo, Figura 3.

Figura 3. Process Flow Diagram (Diagrama de fluxo de processo) do processo.

4. PROJETO DA PLANTA

As Tabela 3 a 9 apresentam especificações das correntes materiais do processo produtivo.

CORRENTES MATERIAIS		
Número de corrente	1	
Descrição	Corrente de entrada	de óleo de castor
Pressão	1,12	kg/cm ² g
Temperatura	25	°C
Vazão mássica	1628	Kg/h
Vazão molar	6,35	Kmol/h
Entalpia total	-1,28	Mkcal/h
Fração de sólidos	0	
Fração de vapor	0	
PROPRIEDADES DA FASE LÍQUIDA		
Vazão volumétrica @P e	1 9/7	m ³ /b
T de operação	1,047	111 /11
Peso molecular	256,4 Kg/kmol	
Densidade	873,8 Kg/m ³	
Viscosidade	23,9 cP	
Condutividade térmica	0,1241 W/m·°C	
Calor específico	1,938 kJ/kg·°C	
Tensão superficial	18,17 dinas/cm	
COMPOSIÇÃO		
Componente	Fração molar	Fração mássica
Ácido palmítico	1	1

 Tabela 3. Especificações da corrente material 1.

I 2

CORRENTES MATERIAIS		
Número de corrente	2	
Descrição	Corrente de saída do vaso regula	ador
Pressão	1,07	kg/cm ² g
Temperatura	151	С°
Vazão mássica	10703	Kg/h
Vazão molar	41,75	Kmol/h
Entalpia total	-7,69	Mkcal/h
Fração de sólidos	0	
Fração de vapor	0	
PROPRIEDADES DA FASE LÍQUIDA		
Vazão volumétrica @P e	12.97	m ³ /h
T de operação	13,07	111 /11
Peso molecular	256,3	Kg/kmol
Densidade	771,5	Kg/m ³
Viscosidade	2,97	cP
Condutividade térmica	0,11	W/m·°C
Calor específico	2,41	kJ/kg °C
Tensão superficial	12,53	dinas/cm

COMPOSIÇÃO		
Componente	Fração molar	Fração mássica
Ácido palmítico	0,998	0,999
1-tetradeceno	0,002	0,001

Tabela 5. Especificações da corrente material 3.

CORRENTES MATERIAIS		
Número de corrente	3	
Descrição	Corrente de saída da bomba	
Pressão	2,35	kg/cm ² g
Temperatura	151	°C
Vazão mássica	10703	Kg/h
Vazão molar	41,75	Kmol/h
Entalpia total	-7,69	Mkcal/h
Fração de sólidos	0	
Fração de vapor	0	
PROPRIEDADES DA FASE LÍQUIDA		
Vazão volumétrica @P e	13.87	m ³ /h
T de operação	15,67	111 /11
Peso molecular	256,3	Kg/kmol
Densidade	771,4	Kg/m ³
Viscosidade	2,97	сР
Condutividade térmica	0,11	W/m·°C
Calor específico	2,41 kJ/kg·°C	
Tensão superficial	12,52 dinas/cm	
COMPOSIÇÃO		
Componente	Fração molar	Fração mássica
Ácido palmítico	0,998	0,999
1-tetradeceno	0,002	0,001

Tabela 6. Especificações da corrente material 4.

CORRENTES MATERIAIS		
Número de corrente	4	
Descrição	Corrente de saída do forno	
Pressão	1,99	kg/cm ² g
Temperatura	380	С°
Vazão mássica	10703	Kg/h
Vazão molar	41,75	Kmol/h
Entalpia total	-6,02	Mkcal/h
Fração de sólidos	0	
Fração de vapor	0	
PROPRIEDADES DA FASE LÍQUIDA		
Vazão volumétrica @P e	10.19	m ³ /b
T de operação	19,10	1117/11
Peso molecular	256,3	Kg/kmol
Densidade	558	Kg/m³
Viscosidade	0,34	cP
Condutividade térmica	0,06	W/m·°C
Calor específico	3,27	kJ/kg °C
Tensão superficial	3,45	dinas/cm

COMPOSIÇÃO		
Componente	Fração molar	Fração mássica
Ácido palmítico	0,998	0,999
1-tetradeceno	0,002	0,001

Fabela 7. Especificações da corrente m	naterial 5.
--	-------------

-

CORRENTES MATERIAIS			
Número de corrente	5		
Descrição	Corrente de saí	da do reator	
Pressão	1,88	kg/cm ² g	
Temperatura	304,7	°C	
Vazão mássica	10703	Kg/h	
Vazão molar	56,87	Kmol/h	
Entalpia total	-6,02	Mkcal/h	
Fração de sólidos	0		
Fração de vapor	0,47	,	
	PROPRIEDADES DA FASE LÍQUI	DA	
Vazão volumétrica @P e	11 62		
T de operação	11,62	məm	
Peso molecular	238,3	Kg/kmol	
Densidade	614,8	Kg/m ³	
Viscosidade	0,43	cP	
Condutividade térmica	0,07	W/m·°C	
Calor específico	3,01	kJ/kg·°C	
Tensão superficial	5,85	dinas/cm	
PROPRIEDADES DA FASE VAPOR/GÁS			
Vazão volumétrica @P e	608.4	m ³ /b	
T de operação	098,4	111 /11	
Peso molecular	132,4	Kg/kmol	
Densidade	5,10	Kg/m ³	
Viscosidade	0,01	cP	
Condutividade térmica	0,03 W/m·°C		
Calor específico	2,35	kJ/kg·°C	
Fator de	1		
compressibilidade	I		
COMPOSIÇÃO			
Componente	Fração molar	Fração mássica	
Ácido palmítico	0,47	0,64	
1-tetradeceno	0,27	0,28	
Ácido acético	0,27	0,08	
1-octaseno	1,7E-6	3,7E-7	

Tabela	8. Especificações da corr	ente material 6.

CORRENTES MATERIAIS		
Número de corrente	6	
Descrição	Corrente de saída do trocado	r
Pressão	1,53	kg/cm ² g
Temperatura	175	С°С
Vazão mássica	10703	Kg/h
Vazão molar	56,87	Kmol/h
Entalpia total	-7,16	Mkcal/h
Fração de sólidos	0	

Fração de vapor	0			
PROPRIEDADES DA FASE LÍQUIDA				
Vazão volumétrica @P e T de operação	14,61	m³/h		
Peso molecular	188,2	Kg/kmol		
Densidade	732,8	Kg/m ³		
Viscosidade	0,90	cP		
Condutividade térmica	0,11	W/m·°C		
Calor específico	1,83	kJ/kg·°C		
Tensão superficial	12,54	dinas/cm		
COMPOSIÇÃO				
Componente	Fração molar	Fração mássica		
Ácido palmítico	0,47	0,64		
1-tetradeceno	0,27	0,28		
Ácido acético	0,27	0,08		
1-octaseno	1,8E-6	3,7E-6		

Tabela 9. Especificações da corrente material 7.

CORRENTES MATERIAIS			
Número de corrente	7		
Descrição	Corrente de reciclo		
Pressão	1,07	kg/cm ² g	
Temperatura	171,2	C°	
Vazão mássica	9075	Kg/h	
Vazão molar	35,4	Kmol/h	
Entalpia total	-6,41	Mkcal/h	
Fração de sólidos	0		
Fração de vapor	0		
PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e	12.03	m ³ /h	
T de operação	12,03		
Peso molecular	256,3	Kg/kmol	
Densidade	754,6	Kg/m ³	
Viscosidade	2,24	сР	
Condutividade térmica	0,11	W/m·°C	
Calor específico	2,48	kJ/kg·°C	
Tensão superficial		dinas/cm	
COMPOSIÇÃO			
Componente	Fração molar	Fração mássica	
Ácido palmítico	0,998	0,999	
1-tetradeceno	0,002	0,001	

4.1. Correntes de processo

A corrente 1 parte do tanque de armazenamento do óleo de castor acetilado. No vaso regulador V-1, essa corrente e a corrente de reciclo 7, composta majoritariamente por óleo de castor separado do óleo secante produzido na planta em uma coluna de destilação, são homogeneizadas. A corrente 2 é a corrente que sai do vaso regulador. Como a reação de conversão do óleo castor acetilado em óleo secante acontece em condições de alta temperatura e pressão, é preciso elevar a temperatura até 380°C e a pressão até 230 kPa. A corrente 3 é a corrente que sai da bomba com a pressão elevada e a corrente 4 é a saída do forno.

No reator, a corrente 4 é a de entrada e a corrente de saída, 5, possui temperatura de 304°C. Por fim, é preciso resfriar essa corrente até 175°C. A corrente 6 é a oriunda do trocador de calor.

4.2. Bombas

A bomba P-1 utilizada para deslocamento do fluido de processo foi projetada para vencer as perdas de pressão e fornecer uma determinada vazão ao processo. O desenho esquemático da operação é apresentado na Figura 4.

Figura 4. Modelo usado para projeto de bomba P-1.

Assim, o equipamento, que é alimentado pela corrente 2 conforme projeto, foi especificado partindo dos parâmetros:

- Vazão volumétrica de alimentação: $Q = 13,87 m^3/h$

- Densidade do líquido: $\rho = 771, 47 kg/m^3$

Para projetar a bomba é necessário considerar inicialmente a pressão na admissão. A bomba encontra-se em um nível distinto do líquido de processo presente no vaso. Além disso, também é considerada a pressão já existente no vaso. Assim:

$$P_{admissão} = P_{vaso} + P_{nível de líquido} + P_{elevação}$$
(5)

Dessa forma, tem-se:

- Pressão no vaso:

$$P_{vaso} = 110 \, kPa$$

- Pressão do nível de líquido:

$$P_{nivel \ de \ liquido} = \rho * g * \Delta h = \rho * g * \frac{D_{vaso}}{2}$$
(6)
$$P_{nivel \ de \ liquido} = 771, 47 \frac{kg}{m^3} * 9, 81 \frac{m}{s^2} * 0, 652 m$$
$$P_{nivel \ de \ liquido} = 4,939 \ kPa$$

- Pressão de elevação:

$$P_{elevação} = \rho * g * \Delta h$$

$$P_{elevação} = 771, 47 \frac{kg}{m^3} * 9, 81 \frac{m}{s^2} * 3 m$$

$$P_{elevação} = 22, 7 kPa$$
(7)

Logo, é possível calcular a pressão na admissão da bomba:

 $P_{admissão} = P_{vaso} + P_{nível de líquido} + P_{elevação}$ (8) $P_{admissão} = 110 kPa + 4,939 kPa + 22,7 kPa$ $P_{admissão} = 137,64 kPa$

Como parâmetro de projeto, é identificada a pressão máxima na admissão, visto como um ponto extremo do processo:

$$P_{m \acute{a}x ad} = P_{m \acute{a}x vaso} + P_{m \acute{a}x n \acute{i}vel de líquido} + P_{elevação}$$
(9)

$$P_{m \acute{a}x \, ad} = 343, 2 \, kPa \, + \, (771, 47 \frac{kg}{m^3} * 9, 81 \frac{m}{s^2} * 1, 305 \, m) \, + \, 22, 7 \, kPa$$
$$P_{m \acute{a}x \, ad} = 343, 2 \, kPa \, + \, 9, 87 \, kPa \, + \, 22, 7 \, kPa$$
$$P_{m \acute{a}x \, ad} = 375, 77 \, kPa$$

Também é considerada a pressão de impulsão da bomba que é fixada por processo como:

$$P_{impulsão} = 230 kPa$$

Do mesmo modo, calcula-se a pressão máxima de impulsão, dada por:

$$P_{m \acute{a}x imp} = P_{m \acute{a}x ad} + P_{shut-off}$$
(10)

$$P_{m \acute{a}x imp} = P_{m \acute{a}x ad} + 1, 2 * \Delta P$$

$$P_{m \acute{a}x imp} = 375, 77 \, kPa + [1, 2 * (230 \, kPa - 137, 64 \, kPa)]$$

$$P_{m \acute{a}x imp} = 375, 77 \, kPa + 110, 83 \, kPa$$

$$P_{m \acute{a}x imp} = 486, 6 \, kPa$$

O valor de NPSH disponível no sistema – valor referente à pressão exercida pelo sistema na entrada da bomba – pode ser determinado pela diferença entre o nível da bomba e o líquido de processo, presente no vaso acumulador.

$$NPSH_{disponível} = H_{líquido} + H_{elevação}$$
(11)

$$NPSH_{disponível} = 0,652 m + 3 m = 3,652 m$$

Em posse de todos os valores de pressão, é possível determinar os valores de vazão mínima e vazão de projeto. A vazão mínima é obtida pela equação 12:

$$Q_{min} = 0, 6 * Q$$
 (12)
 $Q_{min} = 0, 6 * 13, 87 \frac{m^3}{h} = 8, 32 \frac{m^3}{h}$

A vazão de projeto pode ser, também, obtida pela equação 13:

$$Q_{proj} = 1,2 * 13,87 \frac{m^3}{h} = 16,64 \frac{m^3}{h}$$
 (13)

Por fim, é calculada a potência real consumida pela bomba (W_c), dada pela potência absorvida (W_a), potência hidráulica (W_h), eficiência elétrica (η_m) e hidráulica (η_h). Dessa forma:

$$W_{c} = \frac{W_{h}}{\eta_{m}}$$
(14)

Onde:

$$W_h = \frac{W_a}{\eta_h} \tag{15}$$

$$W_a = \frac{Q}{3600} \left(\frac{m^3}{s}\right) * \Delta P(\frac{N}{m^2})$$
(16)

Substituindo:

$$W_{C} = \frac{\frac{Q}{3600} \left(\frac{m^{3}}{s}\right)^{*} \Delta P(\frac{N}{m^{2}})}{\eta_{m}^{*} \eta_{h}}$$
$$W_{C} = \frac{\frac{13.87}{3600} \left(\frac{m^{3}}{s}\right)^{*} 92.36(\frac{N}{m^{2}})}{0.9^{*} 0.45}$$

$$W_c = 878, 81 W = 0,879 kW$$

Os equipamentos podem ter estimativas preliminares de custo com base em equações encontradas na literatura. Towler, *et al.* (2008) apresenta a equação potencial para estimativa dos equipamentos utilizados em plantas químicas, através da equação 3.

Deste modo, estima-se o custo da bomba em conjunto com o motor que a acompanha. Assim, os fatores empíricos para bomba são a= 6900, b= 206, o fator característico dado pela vazão em l/s e o expoente n= 0,6 (TOWLER, *et al.*, 2008). Portanto:

$$C_{bomba} = 6900 + 206 * (13, 87/3, 6)^{0.9}$$

 $C_{bomba} = \$7593, 69$

Seguindo a exigência de projeto, a bomba deve vir em pares, de modo que uma será operante enquanto a outra atuará como reserva. Assim, o custo também é duplicado:

$$C_{bombas} = \$15187, 37$$

Do mesmo modo, determina-se o custo do motor com os parâmetros próprios do equipamento. Para o motor tem-se, a= -950, b= 1770, n= 0,6 e o fator característico dado pela potência encontrada, em kW (TOWLER, et al., 2008).

$$C_{motor} = -950 + 1700 * (878, 8/1000)^{0.6}$$

 $C_{motor} = $687, 98$

A soma dos custos determina o custo total do equipamento, dado por:

$$C_{motor-bomba} =$$
\$687,98 + 15187,37 = \$15875,36

Finalmente, para obter o custo final estimado, é considerado o fator de Lang (1948), onde propôs que o custo de capital fixo ISBL de uma planta seja

dado como função do custo total do equipamento (TOWLER, *et al.*, 2008). Através da equação 4.

O fator de instalação da bomba é F = 4, desde modo:

$$C = F(\sum C_{motor-bomba}) = 4 * \$ 15875, 36$$

$$C =$$
\$63501,43

A Tabela 10 descreve, resumidamente, os parâmetros mais importantes do equipamento descrito.

Parâmetro característicos	Valor
Pressão na admissão (kPa)	137,64
Pressão na impulsão (kPa)	230
Diferença de pressão (kPa)	92,36
Pressão de <i>shut-off</i> (kPa)	110,83
Vazão volumétrica (m ³ /h)	13,87
Potência consumida pela bomba (kW)	0,879

 Tabela 10. Parâmetros característicos da bomba P-1.

Dentre a análise econômica dos componentes periféricos do processo, inclui-se o custo com eletricidade, em especial, da bomba, que consome potência. Conhecendo a potência do equipamento e o custo do kWh, podemos estimar os valores. A potência é dada por:

$$W_{c} = 0,879 \, kW$$

Para um consumo anual, considerando um tempo de operação de 8000 horas, temos:

$$W_{consumida} = W_{c}^{*} t$$
⁽¹⁷⁾

$$W_{consumida} = 0,879 \, kW * 8000 \, h = 7030,46 \, kWh$$

O preço do kWh em dólar gulf é de 0,06 \$/kWh consumido (Towler, 2008). Portanto, temos o custo com o consumo anual de energia, dado por:

$$C_{anual} = 7030, 46 \, kWh * 0, 06 \, kWh$$

$$C_{anual} = $421,83$$

4.3. Trocadores de calor

O trocador de calor, Figura 5, é necessário para resfriar a corrente que sai do reator até 175°C. A simulação mostrou que a quantidade de calor trocada para tal objetivo é de 1,13×10⁶ kcal/h. Como fluido auxiliar é utilizado água em ponto de bolha.

Figura 5. Representação esquemática do trocador E-1.

O parâmetro característico necessário para dimensionamento de um trocador de calor é a área de troca, a qual é determinada a partir da equação 18.

$$Q = U A \Delta T lm \tag{18}$$

Onde Q é o calor trocado em kcal/h, *U* é o coeficiente de transferência de calor em $kcal h^{-1}m^{-2} C^{-1}$, *A* é a área do trocador em metros e ΔT_{lm} é a diferença de temperatura logarítmica em celsius.

O coeficiente de troca de calor entre vapor de água e compostos orgânicos pesados possui valores entre 600 $Wm^{-2} C^{-1}$ e 900 $Wm^{-2} C^{-1}$

(TOWLER, et al., 2008). Portanto, para dimensionamento do trocador, foi usado o valor de 750 $Wm^{-2}C^{-1}$ (645 $kcal h^{-1}m^{-2^{\circ}}C^{-1}$).

A temperatura logarítmica média foi calculada por:

$$\Delta T lm = \frac{\Delta T_{saida} - \Delta T_{entrada}}{\ln ln \frac{\Delta T_{saida}}{\Delta T_{entrada}}}$$
(19)
$$\Delta T lm = \frac{(304,7^{\circ}C - 100^{\circ}C) - (175^{\circ}C - 100^{\circ}C)}{\ln ln \frac{(304,7^{\circ}C - 100^{\circ}C)}{(175^{\circ}C - 100^{\circ}C)}}$$
$$\Delta T lm = 129, 2^{\circ}C$$

Logo, a área de troca desse resfriador é 13,6 m². Quanto à tubulação do trocador, foram utilizados tubos de 20 pés (6,096m) de comprimento e $\frac{3}{4}$ " (0,019m) de diâmetro externo. Deste modo, a área de troca de cada tubo é dada por:

$$A_t = \pi \, d \, L \tag{20}$$

Onde $A_t \acute{e}$ a área de troca de um tubo em m², d é o diâmetro externo dos tubos em metros e L o comprimento dos tubos em metros.

$$A_t = 0,365m^2$$

O número de tubos é dado pela razão entre a área de troca requerida e a área de troca de um tubo.

$$A_t = \pi \, d \, L \tag{21}$$

Número de tubos
$$= \frac{13,6 m^2}{0,365m^2} = 37,3$$

Assim, o trocador possui 38 tubos. Por fim, foi estimado o consumo de água em ponto de bolha pelo trocador, que é determinado pela vazão do fluido.

$$Vazão \ bfw = \frac{Q}{U_{lat}}$$
(22)

Onde Q é o calor trocado em kcal/h e U_{lat} é o calor latente de vaporização da água em *Kcal kg*⁻¹. O calor latente de vaporização da água foi estimado em função da temperatura e o valor adotado foi 539 kcal/kg (ENGINEERING TOOLBOX, 2010).

Desse modo, o consumo de água em ponto de bolha no trocador é de:

$$Vazão \ bfw = 2113, 5 \ kg \ h^{-1}$$

Conhecendo a área de troca e o consumo de utilidades, é possível estimar os custos do equipamento. O parâmetro característico para o trocador é a área de troca. Os valores das constantes, considerando trocador de casco e tubos são: a = 32000, b = 70, n = 1,2 (TOWLER, *et al.*, 2008). Substituindo, tem-se:

$$C_{trocador} = 32000 + 70 * 13, 6^{1,2}$$

 $C_{trocador} = $33607, 57$

Ainda foi considerado o fator de instalação, ou fator de Lang, para o equipamento F= 3,5 (TOWLER, *et al.*, 2008). Substituindo na equação 4:

$$C_{instalação} = 3,5 * C_{trocador} = $117626,50$$

O custo estimado da água em ponto de bolha é 0,5\$/1000lb (TOWLER, *et al.*, 2008), logo os custos com essa utilidade são calculados por:

$$C_{bfw} = Vazão \, bfw * Preço \tag{23}$$

$$C_{bfw} = 2113, 5 \ kg \ h^{-1} * \frac{0.5\$}{1000lb} * \frac{1000lb}{0.45kg}$$
$$C_{bfw} = 2,33 \$ \ h^{-1}$$

Considerando que a planta está em funcionamento 8000 horas por ano, o custo estimado é de

$$C_{bfw} = 18637, 21$$

A Tabela 11 resume os parâmetros obtidos para o trocador de calor.

Parâmetro característicos	Valor
Temperatura de entrada do fluído de processo (°C)	304,7
Temperatura de saída do fluído de processo (°C)	175
Temperatura de entrada do fluído auxiliar (°C)	100
Temperatura de saída do fluído auxiliar (°C)	100
Calor trocado (kcal/h)	1,13x10 ⁶
Área de troca (m²)	13,6
Número de tubos	38

 Tabela 11. Parâmetros característicos do trocador E-1.

4.4. Vasos pulmões

O vaso pulmão V-1 se encontra no início do processo como recipiente para acúmulo do fluido de processo em conjunto com uma segunda corrente, conduzindo o produto e alguns subprodutos do processo. Na Figura 6 é apresentado um esquema do vaso acumulador.

Figura 6. Esquema do vaso pulmão V-1.

Para caracterização do equipamento, o volume útil (V) estimado do reservatório foi calculado por meio do tempo de retenção (τ) juntamente com a vazão de alimentação (Q).

$$\tau = \frac{v}{Q} \tag{24}$$

Portanto:

$$V_{\hat{u}til} = v * \tau = 13,87 \, m^3/h * \frac{15 \, min}{60}$$
(25)
$$V_{\hat{u}til} = v * \tau = 13,87 \, m^3/h * \frac{15 \, min}{60}$$

$$V_{\hat{u}til} = 3,468 \, m^3$$

O volume útil obtido corresponde a 50% do reservatório, logo, o volume total é o dobro do volume útil.

$$V_{total} = 6,936 m^3$$

O projeto do vaso acumulador passa por uma otimização, onde as dimensões são levadas ao ponto ótimo de processo, com foco financeiro. Inicialmente, foi tomada como parâmetro a razão *L/D*, que foi otimizada e que é o comprimento do vaso sobre seu diâmetro (dados obtidos através da simulação do processo). Os valores apresentados nos cálculos já são os obtidos através da otimização.

$$\frac{L}{D} = 3,969$$

Com isso, foi possível calcular o diâmetro do vaso através da equação 26:

$$D = \sqrt[3]{\frac{4^* V_{total}}{\pi^* (\frac{L}{D})}}$$
(26)

Substituindo:

$$D = \sqrt[3]{\frac{4^* 6,936 \, m^3}{\pi^* 3,969}} = 1,305 \, m$$

A partir do diâmetro, a razão L/D é usada para determinar o comprimento do vaso acumulador.

$$L = 3,969 * 1,305 m = 5,183 m$$

Com as dimensões calculadas, a espessura total da parede (t) do vaso acumulador foi estimada, dada pela equação 27:

$$t (mm) = \frac{P_i D_i}{2SE - 1, 2P_i}$$
(27)

Onde P_i é a pressão de projeto do equipamento, D_i é o diâmetro, S é a tensão máxima que o equipamento pode resistir e E é conhecida como eficiência da solda.

A pressão do processo é inferior a 3,5 kg/cm²g, pressão mínima de projeto, portanto, esse valor limite padrão foi adotado para a pressão. O parâmetro S é encontrado na literatura e, com base no material do equipamento e sua temperatura de processo, foi possível conhecer a pressão máxima suportada.

A temperatura de processo, conforme especificado na corrente é de 181°C (357,8°F) e, de acordo com Towler *et al.* (2008), sabendo que o equipamento é feito de aço ao carbono a pressão máxima é 12,9 ksi, que equivale a 906,96 kg/cm²g. A eficiência da solda tem por valor típico 0,85 (TOWLER, *et al.*, 2008). Por fim, como parâmetro de projeto, a espessura do equipamento foi aumentada com fins de segurança, em razão da corrosão que ataca as paredes com o tempo. Esse valor foi chamado de sobre-espessura de corrosão (SEC) e por se tratar de um fluido de processo pouco corrosivo, foi adotado um valor conservador de 3 mm de sobre-espessura. Substituindo as informações

$$t = \frac{P_i D_i}{2SE - 1, 2P_i} + 3 mm$$
(28)

$$t = \frac{3,5\frac{kg}{cm^2}*1,305 m*1000}{2*906,96\frac{kg}{cm^2}*0,85-1,2*3,5\frac{kg}{cm^2}} + 3 mm$$
$$t = 5,971 mm$$

Em posse do valor de sobre-espessura por corrosão, o diâmetro interno médio foi calculado.

$$D_m = 1,305 m + \frac{5,971 mm}{1000} = 1,311 m$$

Com isso, o peso do vaso acumulador, parâmetro característico no cálculo de estimativa econômica, foi calculado através da fórmula:

$$W_{V} = 240 * C_{W} * D_{m} * (H_{V} + 0.8 * D_{m}) * t$$
(29)

Onde W_v é o peso total do equipamento, dado em N, C_w é um fator de contagem para contabilizar as partes internas mais complexas (1,08 para equipamentos mais simples como vasos e 1,15 para torres e reatores, mais complexos), D_m é o diâmetro interno médio H_v é o comprimento e t é a espessura do casco do vaso (TOWLER, *et al.*, 2008).

 $W_{V} = 240 * 1,08 * 1,311 m * (5,183 m + 0,8 * 1,311 m) * 5,971 mm$ $W_{V} = 12644,40 N$

A equação potencial exige a massa o equipamento em kg, portanto:

$$m = \frac{W_v}{g} = \frac{12644,40 N}{9,81 m/s^2} = 1289,88 kg$$

A equação potencial que descreve a estimação de custo para o equipamento é dada pela equação 3. Os valores das constantes, considerando um vaso horizontal de aço ao carbono são: a= 12800, b= 73, n= 0,85 (TOWLER, *et al.*, 2008).

$$C_{vaso} = 12800 + 73 * 1289,88^{0,85}$$

 $C_{vaso} = $44958,12$

Ainda foi considerado o fator de instalação, ou fator de Lang, para o equipamento F= 4 (TOWLER, et al., 2008). Substituindo na equação 4:

 $C = F(\sum C_{vaso}) = 4 * $44958, 12$

C =\$179832,47

A Tabela 12 apresenta um resumo dos dados obtidos do equipamento.

Parâmetro característicos	Valor
Comprimento do vaso (mm)	5182,61
Altura do vaso (mm)	1305,45
Espessura do vaso (mm)	5,97
Nível máximo de líquido HLL (mm)	1044,36
Nível normal de líquido (mm)	652,72
Nível mínimo de líquido LLL (mm)	261.09
Pressão de projeto (kPa)	343,23
Temperatura de projeto (°C)	181

Tabala 12 Darâmatros característicos de voce V 1

4.5. Reator

O reator PFR R-1 é o componente principal do processo, equipamento onde ocorre a transformação da matéria-prima nos produtos desejados. A Figura 7 apresenta um esquema com a ilustração do reator.

Figura 7. Esquema do reator R-1.

O reator PFR comporta a reação de formação do óleo secante, que parte do óleo castor acetilado, representado pelo ácido hexadecanoico $(C_{15}H_{31}COOH)$, para formar o óleo secante representado por 1-tetradeceno $(C_{14}H_{28})$ e tem como reação secundária a formação de borra, presentadas por 1-octacoseno $(C_{28}H_{56})$.

O custo do equipamento foi calculado partindo da vazão e do volume encontrado por meio da simulação. Os valores encontrados são:

- Vazão do líquido de processo: $Q = 19, 18 m^3/h$;
- Volume do reator: $V_{total} = 1,149 m^3$

Com tais parâmetros, o tempo de detenção, que representa o tempo máximo que o fluido fica retido ao longo do reator, foi determinado, sendo dado por:

$$\tau = \frac{V(m^3)}{Q\left(\frac{m^3}{h}\right)}$$
(24)

$$\tau = \frac{1,149(m^3)}{19,18(\frac{m^3}{h})} = 0,0599 h * 60 = 3,597 min$$

Para o projeto do reator PFR, os valores ótimos de dimensão foram calculados com foco econômico. Partindo da razão L/D para otimizar o projeto, dada por:

$$\frac{L}{D} = 4,362$$

Com o volume encontrado na simulação, o diâmetro do reator pôde ser calculado por meio da equação 26:

$$D = \sqrt[3]{\frac{4^* V_{total}}{\pi^* (\frac{L}{D})}}$$
(26)

Substituindo:

$$D = \sqrt[3]{\frac{4^*1,149\,m^3}{\pi^*4,362}} = 0,695\,m$$

Dessa forma, seguindo a razão L/D, o comprimento do reator foi calculado. Assim:

$$L = 4,362 * 0,695 m = 3,031 m$$

O reator PFR comporta um leito fixo, que denota maior complexidade ao processo. Na prática isso inclui medidas que se distinguem de um vaso comum. O dimensionamento pode ser especificado pela Figura 8.

Figura 8. Esquema do reator R-1.

De acordo com o esquema apresentado, são adicionados 2 espaçamentos, um no início do reator e outro no fim, ambos com 610 mm (valores típicos da literatura). Ademais, são projetadas bolas de alumina na entrada e na saída do reator, nas partes internas, que separam o leito dos espaçamentos, com dimensão especificada de 150 mm. Outras medidas são determinadas na engenharia de detalhe do projeto.

A avaliação econômica continua com a determinação da espessura da casca do reator, dada pela equação:

$$t (mm) = \frac{P_i D_i}{2SE - 1, 2P_i}$$
(27)

Onde P_i é a pressão de projeto do equipamento, D_i é o diâmetro, S é a tensão máxima que o equipamento pode resistir e E é conhecida como eficiência da solda.

O reator é alimentado pela corrente 04, que apresenta uma pressão de 195 kPa (1,988 kg/cm² g), porém, como exigência de projeto, 1,8 kg/cm² g foi adicionado.

$$P_i = 1,988 \frac{kg}{cm^2} + 1,8 \frac{kg}{cm^2} = 3,788 \frac{kg}{cm^2}$$

O parâmetro S considera a pressão máxima suportada no equipamento, Towler *et al.* (2008) apresenta os valores característicos para cada temperatura, considerando o material que compõe o reator.

A temperatura de projeto deve, assim como na pressão, ser considerada com um acréscimo, uma vez que é requisito para o desenvolvimento da reação. Dessa forma, considerando a temperatura de entrada da corrente:

$$T_{proj} = T_{proc} + T_{acre}$$
(30)
$$T_{proj} = 380 \,^{\circ}C + 30 \,^{\circ}C = 410 \,^{\circ}C$$

Convertendo, tem-se T_{proj} = 770 °F, que leva a uma tensão máxima suportada de *S*= 11500 psi (808,3 kg/cm² g) e a eficiência da solda de valor típico de *E*= 0,85 (TOWLER, *et al.*, 2008). A sobreespessura de corrosão (SEC) foi adicionada considerando um valor conservador de 3 mm.

$$t = \frac{P_{l}D_{i}}{2SE - 1.2P_{i}} + 3 mm$$

$$= \frac{3,788 \frac{kg}{cm^{2}} * 0,695 m * 1000}{2^{*}808,3 \frac{kg}{cm^{2}} * 0,85 - 1,2^{*}3,788 \frac{kg}{cm^{2}}} + 3 mm$$
(28)

t = 4,921 mm

Com isso, o diâmetro interno médio do reator foi obtido:

t

$$D_{m} = D_{i}(m) + \frac{t(mm)}{1000}$$
(31)

$$D_m = 0,695 m + \frac{4,921 mm}{1000} = 0,699 m$$

Para estimação do custo, o peso foi utilizado como parâmetro característico do equipamento, seguindo a equação 29:

$$W_{V} = 240 * C_{W} * D_{m} * (H_{V} + 0, 8 * D_{m}) * t$$
⁽²⁹⁾

Substituindo:

 $W_{V} = 240 * 1,15 * 0,699 m * (3,031 m + 0,8 * 0,699 m) * 4,9921 mm$

$$W_{V} = 3415, 5 N$$

Para a estimação é exigida a massa o equipamento em kg, portanto:

$$m = \frac{W_v}{g} = \frac{3415,5 N}{9,81 m/s^2} = 348,17 kg$$

$$m = \frac{W_v}{g} = \frac{3415,5 N}{9,81 m/s^2} = 348,17 kg$$
(32)

Com o parâmetro característico, o custo do equipamento foi estimado através da equação 3. Os valores das constantes, considerando um vaso vertical de aço ao carbono são: a= 17400, b= 79, n= 0,85 (TOWLER *et al.*, 2008).

$$C_e = 17400 + 79 * 348, 17^{0.85}$$

 $C_e = \$ 28832, 61$

Por último, o fator de instalação, ou fator de Lang, foi considerado para o equipamento, neste caso F= 4 (TOWLER, *et al.*, 2008). Substituindo na equação 4:

$$C = F(\sum C_{vaso}) = 4 * \$ 28832, 61$$

 $C = \$ 115330, 45$

O projeto de reator apresentado condiciona a reação a uma taxa de 36,25% de eficiência para a primeira reação, que gera o produto de interesse. Enquanto a segunda tem uma eficiência praticamente dispensável, porém importante, visto que está relacionada com a formação de borra, apresentando um valor de 0,3964%.

A Tabela 13 reúne os valores obtidos do projeto do reator PFR.

Parâmetro característicos	Valor
Comprimento do reator (mm)	3031,31
Altura do reator (mm)	694,98
Espessura do reator (mm)	6,47
Pressão de projeto (kPa)	343,23
Temperatura de projeto (°C)	410

Tabela 13. Parâmetros característicos do reator R-1

4.6. Forno

Como a reação de conversão ocorre em altas temperaturas, antes de entrar no reator, é necessário aquecer a mistura reacional até 380°C. O projeto completo de um forno exige auxílio da engenharia de detalhe. No entanto, é preciso informar parâmetros característicos para que posteriormente, com o auxílio de pacotes computacionais específicos ou métodos de cálculo manual como os propostos por Kern ou Winpress, um projeto detalhado seja feito. É preciso informar o calor trocado, o formato do forno e o combustível usado. A Figura 9 traz uma representação do forno na planta de óleo secante

Figura 9. Representação esquemática do forno H-1.

A simulação apontou que a potência requerida do forno é de 1,67×10⁶ kcal/h (1,9 MW). Para essa faixa de potência requerida, fornos cilíndricos são mais eficientes que os retangulares.

Por fim, será estimado o consumo de combustível pelo forno. O combustível usado foi gás natural.

$$Consumo \ gás \ natural = \frac{Q}{PCI} X \frac{3600s}{h}$$
(33)

Onde Q é o calor trocado em MW e *PCI* é o poder calorífico inferior do gás natural em MJ kg^{-1} . O poder calorífico inferior do gás natural é 42 MJ/kg (WORLD NUCLEAR ASSOCIATION, 2006).

Desse modo, o consumo de combustível no forno é de:

Consumo gás natural = 148, 5 kg
$$h^{-1}$$

Conhecendo a demanda energética e o consumo de combustível, é possível estimar os custos do forno. O parâmetro característico é a potência requerida do forno em MW. Os valores das constantes, considerando trocador de casco e tubos são: a= 80000, b= 109000, n= 0,8 (TOWLER, *et al.*, 2008). Substituindo, temos:

$$C_{forno} = 80000 + 109000 * 1,9^{0,8}$$

 $C_{forno} = $265158,79$

Ainda, o fator de instalação, ou fator de Lang, foi considerado para o equipamento F= 2 (TOWLER, *et al.*, 2008). Substituindo na equação 4:

$$C_{instalação} = 2C_{forno} = \$530317,57$$

O custo estimado do gás natural é 3,2\$/MMBTU (TOWLER, *et al.*, 2008).Como o custo do gás natural é estimado em função da potência gerada, o custo com gás natural nessa planta é calculado por:

$$C_{_{GN}} = * Potência_{_{requerida}} * Preço_{_{GN}}$$
(34)

$$C_{GN} = 1,67 * 10^{6} k cal h^{-1} * \frac{3,966MMBTU}{10^{7} k cal} * \frac{3,2\$}{MMBTU}$$

$$C_{_{GN}} = 21, 16 \$ h^{-1}$$

Considerando que a planta está em funcionamento 8000 horas por ano, o custo estimado é:

$$C_{_{GN}} = 169287, 19$$
 \$

A Tabela 14 reúne os parâmetros calculados com o projeto para o forno.

Parâmetro característicos	Valor
Temperatura de entrada do fluído de processo (°C)	151
Temperatura de saída do fluído de processo (°C)	380
Combustível	Gás natural
Tipo de forno	Cilíndrico
Calor trocado (kcal/h)	1,67x10 ⁶

Tabela 14. Parâmetros característicos do forno H-1.

4.7. Listagem de indicadores

Ao longo de toda a planta industrial, é de fundamental importância a ação da instrumentação e controle de processos para garantir o bom funcionamento dos equipamentos. A Tabela 15 lista os instrumentos de indicação que estão presentes na planta para indicação de vazão, nível, pressão e temperatura. Esses e os demais listados nos tópicos seguintes foram inseridos no diagrama mecânico apresentado na seção 4.12.

INSTRUM	ENTOS DE VAZÃO	INSTRUMEN	TOS DE NÍVEL
Identificação	Localização (núm. da tubulação)	Identificação	Localização (do vaso)
FIC-01	1	LIC-02	V-1
FIC-04	8		
FIC-06	9		
FIC-07	7		
INSTRUME	NTOS DE PRESSÃO	INSTRUMENTOS I	DE TEMPERATURA
Identificação	Localização (núm. da tubulação ou vaso)	Identificação	Localização (núm. da tubulação ou vaso)
PI-01	1	TI-01	1
PI-02	2	TI-03	3

Tabela 15. Listagem de instrumentos de indicação.

PI-03A	3	TIC-04	4
PI-03B	3	TI-10	R-1
PI-04	4	TI-05	5
PI-05	5	TIC-06	6
PI-06	6	TI-07	7
		TI-09	9
		TI-10	10

4.8. Listagem de controladores

A presença dos controladores de processo garante ação sobre eventuais desvios que possam ocorrer ao longo da instalação, a fim de corrigir rapidamente essas interferências sem a necessidade de ação humana. A Tabela 16 lista os instrumentos de controle na planta e onde estão. O controle de vazão está presente nas correntes de material na entrada da planta (1 e 7), e na vazão de combustível do forno e de água em ponto de bolha no trocador. O controle de nível é dado pelo nível do vaso pulmão e por fim o controle de temperatura vem das saídas dos equipamentos de troca térmica (forno e resfriador).

Identificação	Localização (núm. da tubulação ou vaso)
FIC-01	1
LIC-02	V-1
TIC-04	4
FIC-04	8
TIC-06	6
FIC-06	9
FIC-07	7

Tabela 16. Listagem de controladores.

4.9. Listagem de alarmes

Foram projetados alarmes para os pontos de atenção da planta, que são: alarme de nível alto e baixo do vaso pulmão, pressão baixa a jusante da bomba e alta de temperatura nos equipamentos de troca térmica e no reator, mesmo este processando uma reação endotérmica. Esses instrumentos são listados na Tabela 17.

Identificação	Localização (número do instrumento ou laço de controle com alarme)	
LAH e LAL	LIC-02	
PAL	PI-03A e PI-03B	
ТАН	TIC-04	
ТАН	TI-10	
ТАН	TIC-06	

Tabela 17. Listagem de alarmes.

4.10. Listagem de intertravamentos

O intertravamento projetado é o TSHH-10 que em caso de temperatura muito alta no reator R-1, atua cortando a entrada de combustível no forno H-1 e assim freando a reação. Mesmo que a reação principal a ser processada no reator seja uma reação endotérmica, possíveis reações paralelas, falhas em outros sistemas de segurança e controle podem provocar o descontrole em um equipamento tão sensível e que demanda extrema atenção, como o reator cinético.

Identificação Identifica Identific		Ação sobre	
TSHH-10	R-1	SI-01: Válvula de aporte de combustível ao forno H-1	

Tabela 18. Listagem de intertravamentos

4.11. Listagem de válvulas de segurança

Segundo a Tabela 19, a válvula de segurança presente está localizada no vaso V-1, que é acionada quando a pressão excede o limite de projeto de 3,5 kg/cm²g, liberando o seu conteúdo à chama como segurança para despressurização.

Tabela Te. Elotagent das Valvalas de Segurança.		
Identificação	Localização (número do vaso)	
PSV-01	V-1	

Tabela 19. Listagem das válvulas de segurança.

4.12. Diagrama mecânico de processo

4.13. Avaliação econômica do processo

Como demonstrado nas seções específicas, os custos de instalação dos equipamentos e os custos de utilidades para essa planta são os listados nas Tabelas 20 e 21.

Equipamento	Preço 10³ \$
Pulmão V-1	179,83
Bomba P-1	12,55
Forno H-1	530,32
Reator R-1	104,63
Trocador E-1	117,63
Total	971,64

Tabela 20. Custos de instalação dos equipamentos

Tabela	21.	Custos	das	utilidades.	
					-

UTILIDADE	Preço 10 ³ \$
Gás natural	169,29
Eletricidade	0,42
BFW	18,64
Total	188,35

Um método usado para avaliação da viabilidade econômica de uma planta é converter o capital investido em um custo anual de capital no período. Para isso, se uma quantidade P for investida a uma taxa i por n anos. O retorno obtido é de $P(1 + i)^n$. Se, ao invés disso, for investida um valor A a cada ano, a soma resulta em:

$$S = A + A(1 + i)^{1} + A(1 + i)^{2} + ...(1 + i)^{n-1}$$
(35)

Multiplicando por (1+i):

$$S(1 + i) = A(1 + i) + A(1 + i)^{2} + A(1 + i)^{3} + \dots (1 + i)^{n}$$

Subtraindo as duas equações

$$Si = A[(1+i)^n - 1]$$

Considerando que ambos os investimentos retornassem o mesmo valor:

$$S = \frac{A}{i} [(1 + i)^n - 1] = P(1 + i)^n$$

Portanto:

$$A = P \frac{i[(1+i)^n]}{(1+i)^n - 1}$$
(36)

A partir dessa relação, define-se a razão de custo de capital anual (em inglês, ACCR).

$$ACCR = \frac{A}{P} = \frac{i[(1+i)^{n}]}{(1+i)^{n}-1}$$
(37)

Avaliando para uma taxa de 15% em um período de 10 anos:

$$ACCR = \frac{0.15[(1+0.15)^{10}]}{(1+0.15)^{10}-1} = 0,199$$

O custo de capital anual (ACC) é definido como o capital investido multiplicado pela razão de custo.

$$ACC = ACCR * custo fixo planta$$

Ademais, recomenda-se (TOWLER *et al.*, 2008) adicionar 7% dos custos fixos para gastos com manutenção e taxas. Além de 10% com custos de engenharia e 15% como capital de contingência. Assim:

$$ACCR = [0, 199 * (1 + 0, 1 + 0, 15) + 0, 07]$$
(38)

$$ACCR = 0,32$$

Assim, o custo anualizado dessa planta é dado por:

$$Custo total anualizado = C \ equipamentos * ACCR + C \ utilidades$$
(39)

Custo total anualizado $(10^3 \$) = 971, 64 * 0, 32 + 188, 35$

Custo total anualizado
$$(10^3\$) = 499,27$$

4.14. Avaliação de impacto ambiental

No trabalho de TRAVESSA; BARBOSA; REZENDE (2017) foi feita uma simulação de uma planta de produção de tetradeceno semelhante à desenvolvida no presente estudo. Naquele caso, foram obtidos indicadores para avaliar o desempenho sustentável da atividade, chamados ecoindicadores. Um ecoindicador pode ser representado pela razão entre uma variável ambiental (como consumo de energia, de água e de matéria prima, geração de efluentes e emissão de CO₂) e uma variável econômica (receita ou taxa de produção).

A análise permitiu estimar que o processo produtivo de tetradeceno em questão, emite em torno de 0,54 toneladas de dióxido de carbono por tonelada de produto formado. A maior parte das emissões totais do sistema foram advindas do forno. Além disso, foi estimado que a produção consome por volta de 3,7 m³ de água por tonelada de produto. Como já mencionado, o processo gera borra como resíduo sólido. O estudo obteve que é gerado 5,3 g de resíduo sólido por tonelada de tetradeceno produzido, o que representa uma quantidade muito pequena de borra em comparação com a quantidade de produto obtido.

Apesar do elevado consumo energético, a planta apresenta taxa relativamente baixa de emissão de dióxido de carbono e esse valor é fortemente influenciado pela escolha dos equipamentos. Um projeto de integração térmica da planta poderia reduzir o consumo de energia, água e vapor e as emissões de CO₂.

Embora a taxa de geração de resíduo sólido possa ser considerada pequena na planta, resíduos oleosos são capazes de viabilizar a formação de aglomerados que podem resultar em uma massa de resíduo final muito maior do que o resíduo inicial (GUIMARÃES, 2007). Efluentes oleosos causam grande impacto no meio ambiente sendo prejudicial a todo o ecossistema.

A escolha do método de tratamento dos resíduos depende das suas características físicas, físico-químicas e químicas. Em geral, algumas operações e processos para tratamento e destinação final de resíduos oleosos

envolvem centrifugação, incineração ou combustão controlada dos resíduos em fornos específicos, encapsulamento em materiais aglomerantes para inertização dos resíduos, degradação biológica e disposição em aterros industriais (GUIMARÃES, 2007). Devido à complexidade química e física desses efluentes, o uso de uma única tecnologia para a completa remediação costuma ser ineficiente (MEDEIROS *et al.*, 2022).

O primeiro passo para a determinação de um procedimento adequado para tratar a borra resultante da produção do óleo secante seria a classificação desse resíduo, o que forneceria informações a respeito de sua composição e propriedades.

Teoricamente, é possível sugerir um processo de recuperação da borra oleosa gerada na produção do óleo secante e conseguinte reaproveitamento, seja como combustível na própria planta industrial ou em outras atividades.

A extração por solvente é uma técnica promissora para a recuperação do óleo presente na borra. O processo consiste em promover o contato da borra com um solvente de modo que o óleo presente seja solubilizado pelo agente extrator. Em seguida, pode ser realizada a destilação para separação, obtendo o óleo e recuperando o solvente, o qual pode ser reutilizado no procedimento de extração.

Também se faz necessária a caracterização do resíduo seco resultante da etapa de extração para investigar uma destinação final adequada. *A priori,* caso identificada a presença de compostos tóxicos e voláteis, ainda é possível realizar o encapsulamento deste resíduo. O encapsulamento se trata de uma técnica que utiliza processos de solidificação e estabilização de contaminantes presentes nos resíduos. Se testes confirmarem que os produtos finais sejam seguros, a massa obtida do encapsulamento pode ser aplicada em materiais aglomerantes utilizados na construção civil (MEDEIROS *et al.*, 2022).

5. CONCLUSÕES

Tendo em vista o processo, que conduz à produção do óleo secante (1-tetradeceno), manejado por operações tradicionais da indústria química (bomba, forno, reator e trocador de calor), nota-se a importância do produto de interesse, em especial para os setores de produção de revestimentos, tintas e sabões, em razão de seu caráter aditivo. O processo desenvolve-se a partir de um insumo sem utilidade para o setor alimentício, isso o torna mais vantajoso para a indústria, considerando a competitividade e sustentabilidade para o setor.

Em meio ao processo, as reações são conduzidas com pouca complexidade, uma vez que, faz-se necessário somente a elevação de temperatura do fluido de processo, tratando-se de uma reação endotérmica. Com isso, o processo torna-se mais viável e com menor demanda de operadores para manutenção. Dentre as operações apresentadas, o forno tem maior custo energético, bem como o maior custo operacional, além disso, apresenta também a maior emissão de gases totais do processo, tornando-o um ponto crítico da operação.

Visando uma melhoria de projeto, o ponto de maior gasto - neste caso o forno - pode ser reavaliado com base em soluções mais sustentáveis, ou ainda, reestruturado em um processo de integração energética, que diminui os custos com combustível, manutenção e mão de obra e, por fim, melhorar a eficiência reacional do processo. Entretanto, essas adequações requerem um estudo técnico mais aprofundado do sistema em questão.

6. BIBLIOGRAFIA

MARTINS, G. B. C.; MELLO, V. M.; SUAREZ, P. A. Z. Thermal processes in fats and oils. Revista Virtual de Química, v. 5, n. 1, p. 16–25, 2013.

RAMALHO, H. F.; SUAREZ, P. A. Z. The chemistry of oils and fats and their extraction and refining processes. Revista Virtual de Química, v. 5, n. 1, p. 2–15, 2013.

MENEGHETTI, S. M. P.; MENEGHETTI, M. R.; LIMA, G. E. S. Polymeric materials synthesis by oxidative polymerization of triacylglycerides and derivatives. Revista Virtual de Química, v. 5, n. 1, p. 38–46, 2013.

NEKHAVHAMBE, E.; MUKAYA, H. E.; NKAZI, D. B. Development of castor oil-based polymers: A review. Journal of Advanced Manufacturing and Processing, v. 1, n. 4, 2019.

LOPES, R. V. V; CASTRO, G. P. Utilização de óleos vegetais na preparação de materiais poliméricos. [s.d.].

WICKS, Z. W. Drying Oils. Kirk-Othmer Encyclopedia of Chemical Technology, v. 9, p. 142–155, 2002.

SILVA, A. C. Desenvolvimento de revestimentos de autorreparação com função anticorrosiva baseados no encapsulamento de óleos vegetais puros e catalisados. 2019.

SUAREZ, P. A. Z. *et al.* Transformation of triglycerides into fuels, polymers and chemicals: Some applications of catalysis in oleochemistry. Quimica Nova, v. 30, n. 3, p. 667–676, 2007.

OGUNNIYI, D. S. Castor oil: A vital industrial raw material. Bioresource Technology, v. 97, n. 9, p. 1086–1091, 2006.

WILLIAMS, K. A. Bailey's Industrial oil and fat products. 6 ed. Nova Jérsei: John Wiley & Sons, 2005.

TURTON, R. *et al.* Analysis, Synthesis, and Design of Chemical Process. 3 ed. Pensilvânia: Prentice Hall, 2008.

TRAVESSA; G. V.; BARBOSA; L. R.; REZENDE; M. L. T. Avaliação da ecoeficiência de um processo produtivo de 1-Tetradeceno via simulação computacional. 2017.

GUIMARÃES, A. K. V. Extração do óleo e caracterização dos resíduos da borra de petróleo para fins de reúso. Dissertação (Mestrado). Engenharia Ambiental, Universidade Federal do Rio Grande do Norte. 2007.

MEDEIROS, A. D. M. *et al.* Oily Wastewater Treatment: Methods, Challenges, and Trends. Processes, v. 10, n. 4, p. 1–20, 2022.

TOWLER, G. *et al*. Chemical Engineering Design: Principles, Practice and Economics of Plant and Process Design. [S. l.: s. n.], 2008. ISBN 978-0-7506-8423-1.

Engineering ToolBox, (2010). *Water - Heat of Vaporization vs. Temperature*. [online] Disponível em:

https://www.engineeringtoolbox.com/water-properties-d_1573.html [acesso 06 jan 2023]

Selina Wamucci (2023). Brazil Castor oil prices [onine] Disponível em: https://www.selinawamucii.com/insights/prices/brazil/castor-oil/ [acesso 06 jan 2023].

Indiamart (2023). Jayant Agro Organics Limited dehydrated castor oil. Disponível em:

https://www.indiamart.com/proddetail/dehydrated-castor-oil-12655625888.htm l [acesso 06 jan 2023].

World Nuclear Association (2006). Heat values of various fuels [online] Disponível em:

https://world-nuclear.org/information-library/facts-and-figures/heat-values-of-va rious-fuels.aspx [acesso 06 jan 2023].