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RESUMO

O presente trabalho apresenta uma discussão sobre a aplicabilidade da inclusão de atenção
visual para o cálculo de valores de métricas de qualidade de experiência. Para isso, dois métodos
de cálculo de mapas de saliência foram utilizados: BMS360 e Cubepadding, e suas saliências
foram inclusas aos frames utilizando-se uma técnica inspirada em fórmulas da literatura. Com
essa inclusão pode-se comparar a qualidade de experiência prevista com e sem a inclusão de
atenção visual para ver qual apresenta a melhor performance. Para essa avaliação, utilizou-se um
framework recente de cálculo de métricas e estatísticas que permitiu um processamento facilitado
e rápida comparação estatística. Por fim, os resultados obtidos mostram que há uma ligeira
melhoria nessa inclusão, com grande potencial a uma melhoria ainda maior.

Palavras Chave: saliência, vídeos 360, VQA, atenção visual, viewport, HMD, métricas de
qualidade, métricas de desempenho, distorção, VQA-ODV, framework.

ABSTRACT

This work presents a discussion about the applicability of the inclusion of visual attention for
the calculation of quality metrics values. To do so, two methods for calculating saliency maps
were used: BMS360 and Cubepadding, and their saliencies were included onto the frames using
techniques inspired by formulas in the available literature. With this inclusion we were able to
compare the predicted quality of experience with and without the inclusion of visual attention to
assess which one presents a better performance. For this evaluation, a recent framework was used
to calculate the metrics and respective statistics allowing easier processing and fast statistical
comparison. At last, the obtained results show a slight improvement with this inclusion, with
great potential for an even bigger improvement.

Keywords: saliency, 360 videos, VQA, visual attention, viewport, HMD, quality metrics,
performance metrics, distortion, VQA-ODV, framework
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Chapter 1

Introduction

Nowadays, 360◦ videos are becoming increasingly popular in communication. These videos aim
to emulate human vision, allowing for a full 360◦ span and exploring the environment around the
user, as shown in Figure 1.1. In this image we see that the aviation nomenclature of Pitch, Yaw
and Roll is often used: pitch is related to the side-to-side head movement, yaw to the up-and-down
movement and roll is the back and forth moment.

In Figure 1.1 it is shown the way the HMD device is worn. This kind of video is particularly
useful in the context of Virtual Reality (VR) due to its immersive nature. In VR, users normally
make use of a device called Head Mounted Display (HMD), which mimics concrete 3D reality.
This creates a few problems:

• The need to send high-fidelity information to the HMD requires high video resolution (usually
above 4K) [18]. Added to that, a high frame rate makes transmission particularly challenging.
To mitigate this problem, sending only information related to what the viewer can see at
a given moment, i.e., to the viewport in high resolution, while sending other areas in low
resolution is one of the main techniques proposed [46].

• Projecting 360◦ videos to a 2D surface in order to make use of well-established methods
for 2D videos warps the signal due to oversampling in certain areas of the video frames.
A classical example is the cartographic distortion as seen in Figure 1.2. This inspires the
creation of a plethora of adaptations for the methods to work in the spherical conditions of
360◦ videos.

1.1 Context

Due to the massive amount of information in a 360◦ video, the most common approach today
for processing it is the partitioning of the sphere into tiles [7] and the attempt to predict the
users’ fixation points through visual attention techniques called salience maps [2]. The latter and
the discussion of the existing technique is the subject of Chapter 2. All these elements change
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(a) (b)

Figure 1.1: (a)Model for 360◦ vision in an HMD. The sphere surrounding the apparatus denotes
its omnidirectional nature. Note the typical aviation nomenclature. (b) Typical user wearing a
state-of-the-art HMD device.

Figure 1.2: Example of distortion in the sphere projection onto the plain: Mercator projection.
Observe how the polar regions end up warped.

how users perceive videos and their Quality of Experience (QoE). The video quality received after
processing is subject to Visual Quality Assessment (VQA). The explanation of VQA concepts is
explored in Chapter 3 and is the central theme of research in development.

The topic of distortion motivates the existence of various forms of projection. Projection is the
term used to describe a broad set of transformations employed to represent the two-dimensional
curved surface of a globe on a plane. In a map projection, coordinates, often expressed as latitude
and longitude, of locations from the surface of the sphere are transformed to coordinates on a
plane. Projection is a necessary step in creating a two-dimensional map and is one of the essential
elements of cartography. Although the equirectangular projection (ERP)1 is not ideal, it is usually

1This is a type of projection for mapping a portion of the surface of a sphere to a flat image. It is also called the
"non-projection", or plate carre, since the horizontal coordinate is simply longitude, and the vertical coordinate is
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used for its simplicity and for historical reasons [7]. Its main problem is the dimensioning of poles
with more pixels than the equator. However, this distortion may not be so detrimental to the
final experience because of what is called equator bias, which asserts that humans tend to focus
mainly on the equator of an image or video [7].

Figure 1.3: Examples of projections: Equirectangular (ERP) and Cubemap Projection (CMP) for
the same frame. Figure taken from [46].

Another main projection method is the Cubemap Projection (CMP). It builds a cube around
the spherical field of view and projects rays from the center of the sphere. Each ray crosses a single
point on the surface of the sphere and the cube, resulting in the mapping. CMP is more efficient
than ERP in terms of compression, and because of that, several new methods have been proposed
based on this idea. Figure 1.1 compares both types of projection. In the first figure we can see
how the sphere can be projected panoramically onto the plain, note that there is a continuity
between the left and right borders. In the second figure the sphere is spread out onto the 6 faces
of the cube. The result is a less distorted projections but with more discontinuities. The cubic
projection is of particular interest in this work, as one of the methods described in Chapter 2 uses
the cubic projection.

There are many types of projections, such as the conic and polyhedral projections, but because
of their specialized nature they are beyond the scope of this work. These different projections tend
to have a balance of the distortion-discontinuity trade-off tipped to one of the sides, but they are
quite computationally complex. For a more detailed description, please refer to [7].

simply latitude, with no transformation or scaling applied.
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1.2 Existing VQA methods

Visual Quality Assessment, that is, the evaluation of how good the content someone is seeing.
In our case, we are mostly concerned with 360◦ videos, but the idea can be expanded to any form
of visual content.

Distortion is a fundamental problem in image compression and transmission. In each stage
of the 360-degree video communication system, distortions may be introduced. For example,
distortions can be introduced in the acquisition, compression, and transmission of the content,
leading to a degradation of the user’s VQA. In experiments, distortions are usually introduced at
various strengths by varying the parameters of the system setup, obtaining effects similar to those
in the real situations. All distortions are, in essence, a deviation from a reference signal that may
or may not impair the user’s experience.

This distortion can impact how good is the content in the user’s perspective. A simple way to
evaluate how good is the content people are seeing is by simply asking them. That is, we make
them watch the content we want to evaluate and directly ask them to rate the quality of what
they see on a scale of 1 to 5, or 1 to 100 for example, which is the idea behind the subjective
methods for quality evaluation. Here the methods vary mostly in how viewers will watch the
videos. If they are watching the video with some deterioration with nothing to compare, then we
call it a Single Stimulus Experiment. Now if they have the video with no deteriorations (called
reference video) to compare, then we have double stimulus.

Now we can very quickly see how this method of asking people to watch the videos can become
cumbersome. We would have to invite a conglomerate of subjects to watch many video sequences
and then ask them their opinion. Imagine we do this for every single existent 3D video? This
difficulty motivates the approximation of the actual users’ VQA by computing metrics of signal
fidelity.

This is an area quite well developed for 2D videos, and this development inspires metrics for
3D videos. Methods like Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity Index
(SSIM) [15], multi-scale SSIM (MS-SSIM) [43], Visual Quality Model (VQM) [32]. It is important
to note that none of these methods, although quite efficient in 2D, are not perfectly suitable for
the particularities of 3D.

Some adaptations of 2D objective quality assessment methods have been proposed for 360◦

images and videos. For example, Spherical PSNR (S-PSNR) [51] tries to account for traditional
spherical characteristics of omnidirectional videos. Its weighted version called WS-PSNR [54]
tries to account for the existing distortion of the projection when assigning different weights to
the different pixels according to their place in the frame. There are still more complex methods,
like Perceptual Video Quality (PVQ) [55] and recent strategies using the machine learning method
of Convolution Neural Networks (CNN), for example Viewport-based CNN (V-CNN), as proposed
in [25].

Regardless of the chosen method, the idea is to make use of the subjective experiment as the
ground truth and, therefore, to be able to analyze how the different methods compare in predicting
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the VQA. This comparison is done using statistical methods for performance indication, such as
the Pearson Correlation Coefficient(PCC) which is a measure of linear correlation between two
sets of data.

The importance of analysing VQA is that the VQA metrics impact in the overall engagement
of viewers and therefore determines the success of a particular video. The better the actual quality,
the longer and more often users tend to tune in. It is worth pointing out that throughout this work,
we will be analysing only VQA, that is, visual quality assessment. Quality of Experience (QoE)
encompasses VQA, and it is important to note that in addition to the visual quality evaluated by
VQA, it also takes into account other elements such as Quality of Service (QoS) [40] and other
problems such as the sensation of presence and cybersickness [18]. These other concepts, although
relevant for quality analysis, are not the focus of this text.

1.3 Predicting where people will look

Due to the quality in which videos have to be transmitted, being able to roughly predict
where people will look in order to potentially transmit the most attractive regions with more
quality is a good idea. This is the main motivation behind visual attention and saliency maps,
which is the task of predicting where people will look. As we can imagine, this prediction is
quite a complicated task, as human attention depends on several aspects, like personal interests,
storytelling, movement, etc. It is a topic of debate with new models emerging all the time and will
be the main topic of Chapter 2. Although it is a hard and computationally expensive endeavor,
once we have an accurate model, it can be standardized in the producers’ ends so that streaming
services can know beforehand where best quality has to be directed.

Besides this goal, saliency prediction is a relevant topic in storytelling, since a director has in
mind a story he is trying to transmit, and if people are not following that story in the 3D space,
i.e., the main line does not capture their attention, the whole storytelling experience is ruined.
Aligning the story with attention-catching mechanisms is therefore vital for a correct experience,
particularly in virtual reality environments.

1.4 Goals of this project

The goal of this research is to integrate visual attention into methods for evaluating visual
quality and compare them with the mean opinion scores (MOS) of volunteers who watched the
same videos, asserting how visual attention impacts the prediction of the users’ VQA. In order
to do that, two saliency models are studied and incorporated onto the studied videos and the
difference in the final quality metrics results is analysed. Due to limitations imposed by the
sanitary conditions of the Covid-19 pandemic, the development of a data set of University of
Brasilia authoring is not feasible. Therefore, it was decided to use Mai Xu’s dataset [46], which is
a very robust and complete dataset that includes 60 reference videos and viewers opinions as our
source of videos and users’ opinions.
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The content is organized as follows:

• Chapter 2 is a study of the literature where we explore the main concepts behind visual
attention, i.e. where people look at.

• Chapter 3 is a study of the literature in the concepts behind visual quality assessment, both
experimental and computational.

• In Chapter 4 we discuss the concepts behind our proposal and the ensued results.

• Chapter 5 closes our text with the major conclusions and future ideas.
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Chapter 2

Visual Attention
In this chapter we present an overview of visual
attention, that is, where people tend to look,
how we can predict their attention using saliency
maps and how we can compare prediction with
the actual places people look.

2.1 Visual Attention

Visual attention is the name of a wide area within psychology that tries to explain and model
elements of human visual attraction. The human eye and brain do not form an indiscriminate
machine for scene processing, so there are regions of greater and lesser attraction. Experiments
attempting to empirically understand what attracts human attention have been conducted since
the beginning of the 20th century.

This analysis is facilitated with the use of eye-trackers. These devices contain head support
and cameras pointed at the user’s eyes in order to register gaze fixations. These gaze fixations
tend to be considered meaningful after the threshold of 200 milliseconds in a single spot [27]. The
eye movement that generates these areas is commonly abridged as EM (Eye Movement).

Concerning computational modeling, the theory developed by Treisman and Delade in [39]
represents its most fundamental text. In their work, it is explained that visual information is
processed in the human brain by combining different features to identify salient regions. Salient
regions are those capable of attracting more of the human attention than others. From this
arises the concept of saliency map, which attempts to convey the most relevant parts of the
scene. This idea was initially formulated by Koch and Ullman in [21] in their model combining
visual characteristics (color, intensity, orientation) to create maps. This model was subsequently
implemented by Itti et al. [19], from where a whole new field of research originated.

Saliency map is an image in which the brightness of a pixel represents how attractive the pixel
is relatively to the other pixels i.e., brightness of a pixel is directly proportional to its saliency. It
is generally a grayscale image or heatmap image. But any sort of 2D array representation works.

7



Figure 2.1: Example of the heatmap representation of saliency maps. The original image here is
directly followed by three examples of maps from different algorithms.

The purpose of the saliency map is to find the regions which are prominent or noticeable at
every location in the field of view and to guide the selection of important locations, based on the
spatial distribution of saliency. Figure 2.1 shows an example of original images and their respective
saliency maps. Notice that although different, all algorithms were able to tell that the animal in
the picture is what draws people’s attention.

In experiments with 2D videos, the fixation points are taken by pointing a camera directly
towards users’ eyes and projecting where they are looking. Since in the case of 360◦ videos users
are visually surrounded by what is projected in their viewport (the framed area on a display screen
for viewing information), unless we install cameras inside the HMDs we cannot proceed with the
same type of analysis. So we can see how taking these measurements can be difficult.

What we could more easily do is measure the exact Head Movements from the users. If we
could somehow correlate the Head Movements to the Eye Movements, then we would not have to
install cameras inside HMDs. Rai et al. [34] found in their research that there is in fact a certain
correlation. It was found they are different, but exploiting this correlation, some experiments have
come about estimating saliency maps with only head movements, whereas more robust experiments
take both head and eye movements into account for their computations.

With all that, many video databases and their respective Head and Eye movements have

8



Figure 2.2: Simple example of how movement is manifested from frame to frame.

come into the scene. In addition to the answer regarding the correlation between the two, these
databases showed that the saliency maps of different users were consistent among each other [37],
which means that a single map was able to reasonably model the average user. It was also
possible to notice the tendency of users to gaze at the center and equator of the image to the
detriment of other areas, motivating the inclusion of biases to consider these characteristics in
their analyses [37] [48].

2.1.1 Temporal features

When it comes to videos, the individual saliency maps very often cannot transmit the full
attention users actually have. Movement is a very clear case of an attention attracting mechanism
which is not captured in a frame by frame basis. This is the idea behind the computation of
temporal features. This gives rise to dynamic models (which include temporal features) as opposed
to static ones. Here, we briefly present the idea behind optical flow, which tackles this problem.

The implementation of movement in the prediction of saliency has many challenges compared
to the same task without this inclusion. Whereas static models use features like color, intensity,
and orientation for their predictions, the dynamic predictions must focus on moving things, as
human beings tend to have their attention gravitate towards moving objects [3].

Usually, movement is included via the addition of an optical flow channel. Optical flow
describes the displacements that occurred between two consecutive frames in a video sequence.
This algorithm is normally implemented in the discrete domain through a vector map. Figure 2.2
shows a simple example of how these vectors are drawn. The pixels of the moving sphere have an
associated movement vector that represents the direction and intensity of the movement between
two frames. The vector map is the optical flow for the first frame.

The use of models based on DNNs (Deep Neural Networks) is at the state of the art both
for static and dynamic models. An example of the usage of this idea can be seen in [31], where
the temporal information is extracted through the optical flow between consecutive frames and
different ways of using the additional information in the salience prediction with a DNN are
explored, with two output streams, a spatial output and a temporal output, which are later
combined. The idea of these two streams comes from the hypothesis of the two types of human
perception, which states that the processing of appearance and movement is done separately in
the human brain [12]. There are many other ways to include movement, many of which do not
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use deep learning..

2.2 Bottom-Up and Top-Down Modeling

Our surroundings give rise to a vast amount of sensory information that is more than our brain
can process simultaneously. Selecting the most relevant stimuli in the physical world for processing
while filtering out less relevant information allows us to respond quickly to critical environmental
changes and achieve behavioral goals more efficiently.

As shown by Borji and Itti [20], attention is commonly categorized into two distinct functions.
The bottom-up attention is based on the visual characteristics of the scene (stimulus-based),
whereas the top-down attention is based on a certain objective, with a task in mind, such as
scene recognition, expectations, rewards, and current goals.

The regions of interest in a bottom-up approach must be sufficiently different from the surrounding
characteristics, for example, a highlighted color. Bottom-up attention is quick, involuntary, and
very likely an open-loop system (that is, the output is not processed as feedback to the input) [2].
A simpler example of bottom-up attention is looking at a scene with a single horizontal bar and
several vertical bars. Here, the horizontal bar will be more prominent, as its orientation is different
from the others. Most models are in this category, but bottom-up features cannot explain well
the human fixations, which are mostly based on tasks.

The top-down attention is slow, voluntary, and of closed loop. The key element being the
task orientation. Yarbus in 1967 [50] conducted the experiment of tracing the observers’ eye
movements looking at a scene after asking them to keep a question in mind. The kind of eye
movements observed when the question was “How old are the people in the scene?” was distinct
from those observed through the question “Estimate the material means of the people in the
scene”. It is expected that in the first case the observers look more towards people’s faces in the
scene whereas in the second one they look towards the objects.

In spite of being the most influential mechanism of human attention, top-down approaches are
inherently more complex than the bottom-up ones because they depend on a task. This creates a
context for the rise of target-driven attention guidance [30], where an object becomes the target
and lures the spectator’s attention. Furthermore, the combination of top-down and bottom-up
approaches in a single algorithm is considered the most realistic way to model human attention,
as shown by the example in [5].

2.3 Saliency Prediction Approaches

2.3.1 Heuristic Approaches

There are two basic approaches in the context of generating saliency maps: heuristic, which
searches for the specific characteristics in the image to generate the maps according to the human
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visual system; and data-driven, which uses real attention data to perform the learning part of the
algorithms. The use of these two methods has an interesting historical separation, since with the
advent of machine learning, more and more data-driven methods have emerged.

The model of heuristic methods, for example, elements like contrast or surprise are considered [47].
Another element considered heuristic is movement, as seen before. This is because it is well known
that movement, in particular, attracts human attention. The heuristic methods are, however, very
dependent on understanding how human perception works, an area of psychology still in its infancy,
and therefore there are not many methods in use.

Because most of the approaches for salience prediction until 2008 were for 2D methods, many
authors tried to adapt already existing methods to the 360º environment. Abreu et al.’s method [8]
directly applies SALICON [17] to different projected rotations of the images and merges the
obtained maps. GBVS360, which is an adaptation of GBVS [13] used for 2D images, applies the
GBVS method to various possible viewport images. GBVS was the first saliency method explored
in the learning process to this work and an example of it can be shown in Figure 2.3.

Figure 2.3: Example image and its salience as generated by GBVS. The heatmap representation
is sometimes used for visual purposes. Here, hotter spots represent where most people will tend
to focus their attention when looking at the image.

Below, we present the main heuristic approach considered in this work, which is the BMS360
model described in Lebreton et al.’s work in [22].

2.3.1.1 BMS360

In their work, Lebreton and Raake [22] have mainly focused on the inclusion of the equatorial
prior (which is a weight matrix that prioritizes the equatorial region) in order to improve the
prediction capabilities of the 2D versions of BMS, GBVS and ProSal. In their analysis they
concluded that BMS360 is the best performing of these methods, and therefore was the chosen
one for our analysis.

BMS (Boolean Map Saliency) [53] was chosen to be adapted to 3D as it is one of the top-
performing models in the MIT saliency benchmark database. It is based on the notion of
surroundedness, and creates boolean maps 1 by thresholding feature maps. They assume that

1Which is a spatial representation that partitions a visual scene into two distinct and complementary regions:
the region that is selected and the region that is not selected [16]
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Figure 2.4: Pipeline of BMS from [53]. The boolean maps are computed with the theory presented
in [16] and have the attention maps as subproducts. By then summing the maps we get the mean
attention map which gives enough information for a saliency map.

Boolean maps in BMS are generated from randomly selected feature channels, and the influence
of a Boolean map B on visual attention can be represented by an Attention Map A(B), which
highlights regions on B that attract visual attention. Then the saliency is modeled by the mean
attention map Amean over randomly generated Boolean map. Amean can be further post-processed
to form a final saliency map S for some specific task. The full pipeline is illustrated in Figure 2.4
as taken from Zhang et al.’s paper in [53].

Here are the required adaptations for 360◦

• Handling of borders in the equirectangular domain: the original model does not account for
spots in contact with the border, which is a problem in 360º as the borders are technically
connected. In this case, multifusion saliency (average of saliencies of a succession of horizontal
shifts) was applied.

• The problem of oversampling of the polar regions: this is corrected by modeling this
distortion as the inverse of the pitch’s cosine and then applying the L2 norm as the regular
BMS does.

This model is originally conceived for images, but since static saliency models consider frames
as single images we can apply the BMS360 algorithm to every single frame normally. So, the only
tweak necessary was using the software Ffmpeg to separate the reference videos into frames using
a command like the one below and then performing the saliency evaluation to every frame. We
create the frames in the bitmap format as to minimize compression deterioration and have a more
accurate saliency map.

BMS3602 can currently only run in windows, and as such was the only algorithm run in a
desktop. All the other algorithms below were run at GPDS’s server.

2.3.2 Data-driven approaches

Saliency models can also be inferred by training with existing data. With the era of deep
learning, many new methods based on neural networks came into place. These novelties originally

2https://github.com/Telecommunication-Telemedia-Assessment/GBVS360-BMS360-ProSal
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Figure 2.5: Example frame and its saliency as generated by BMS360 on a desktop computer.
Notice that this saliency representation is shown in grayscale

Figure 2.6: Logic behind the idea of Cube Padding. By extending a face to include some of the
contents from an adjacent face we can mitigate the discontinuity problem of having six different
images per frame to process.

came for 2D analysis, but they were quickly adapted to 3D. Among the various DNNs, we have
convolution neural networks (CNNs), generative adversarial networks (GANs), Long Short-Term
Memory (LSTM) for videos, and others. Many of these initial approaches were adaptations of
the SalNet method for 2D [29]. Data-driven approaches tend to perform better in generalist
videos because of their rather uncontrollable nature and are therefore mostly bottom-up [47]. For
example, facial recognition is a complicated task in this area, and most CNNs performing this task
tend to capture top-down features. However, a lot of recent work has been performed in top-down
models, with many innovations coming from this area.
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Figure 2.7: Comparison between the usage of zero-padding (ZP) and cube-padding (CP). Note
how the strategy Cube Padding allows for a continuous response across the faces, whereas zero
padding does not.

2.3.3 Cube Padding

The generation of saliency maps occurs mostly using the equirectangular projection for image
processing. But, in Cube Padding [6] the authors claim that this projection generates distortion
in the image borders, which makes the saliency extraction difficult. With that in mind, they
propose an approach that divides the image into smaller parts. Although it avoids distortion, it
will introduce more image boundaries. By dividing the 360◦ sphere into multiple “overlapping”
perspective images they only take the saliency prediction in a center sub-region in order to combine
all predictions onto the whole sphere. This process is described in Figure 2.6. However, this
requires many more perspective images and significantly slows down the prediction process.

In the Cube Padding algorithm, prediction is based on a DNN 3 and has both a static and a
temporal model. The static model predicts the saliency map for each frame in the video, and the
temporal model adjusts the output of the static model based on temporal features. The static
model obtains the saliency maps in the face of a cube using Convolution Neural Networks (CNNs)
ResNet-50 and VGG-16 4, which are well-known pre-trained models. The authors point out that
using these CNNs without the aforementioned enlargement of the faces results in an inefficient
processing of the borders, and the continuity between the borders would be lost. That is why the

3Deep Neural Network: An Artificial Neural Network is a sequence of neural nodes, usually perceptrons, displayed
in layers. A deep network is a network with many layers

4ResNet-50 [14] was the winner of the 2015 ImageNet challenge [10], challenge that also saw the emergence of
VGG-16. ResNet-50 is the most cited NN in the 21st century
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Figure 2.8: Example of a saliency map generated using Cube Padding [6].

Figure 2.9: Example of how the elaboration of a saliency map is done in experiments with humans.

cubic projection with the chosen padding works, as shown in Figure 2.7, which shows how the cube
padding is superior to the zero-padding(the absence of incorporation of the content of adjacent
faces). In the black and white hexagons we see the frames centered around a vertex of the cube,
where in all of the cases shown an object happened to be there. In the highlighted boxes we can see
how Cube Padding manages to keep the object mostly together whereas zero-padding separates
them. This is especially noticeable in the case of the sharks. Figure 2.8 shows an example output
frame. The hotter regions are the most visually attractive and they highlight the people in the
scene as expected.

For the temporal model, LSTMs are used, as 360º videos can be considered a sequence of 360º
frames. Training was weakly supervised as the method does not use pixel annotation or bounding
boxes for labeling. The reasoning behind this method is to allow the method to be scalable. In
their article, they also propose the Wild-360 dataset, which contains challenging videos with their
respective saliency map annotations. The method showed good performance compared to similar
methods. Performance was evaluated using the AUC-Judd, AUC-Borji, and Pearson correlation
coefficient.
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2.4 Saliency Precision

To have a base for performance comparison for a certain salience model, subjective experiments
must be conducted on the image or video in question. In these experiments, the eye-tracker
annotates fixation sequences of many individuals and amalgamates them in a ground-truth map.
With that, many datasets could emerge with coordinates of the fixations of these experiments [11].
It is also common to perform an operation called foveation, where a circular function (e.g. a
Gaussian function) is convoluted with each fixation point. This is usually done because the
human visual system does not focus on only one pixel at a time, but rather on a small region
centered around this pixel. The entire process of elaborating a subjective saliency map is shown
in Figure 2.9. Normally, various age groups are chosen, their fixations annotated, and after an
aggregation process the saliency map is created. Here, the map in gray scale is the salience map,
also represented as a heatmap in a more intuitive way of seeing. This way, the task of precision
evaluation of any new salience model is reduced to comparing the saliency map of an experiment
with the one generated by the method using classical comparison methods. Below we present an
introduction to the most common metrics in the literature.
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Chapter 3

Quality of Experience
In this chapter we go through relevant topics to
understand Visual Quality Assessment (VQA),
starting with what deteriorates videos, then going
through methods for assessing VQA and finally
talking about how to compute the correlation
between methods.

Visual Quality Assessment (VQA) is the most relevant measurement in the scope of transmission
performance for both 2D and 3D videos. VQA is an inherently subjective concept as it depends on
the perception of those who watch the video. There is a lot of research for the area of traditional
videos and there are unique challenges for 360◦ videos.

In Figure 3.1 we see the overall pipeline for 360-degree video processing [9]. We see certain
elements already seen before in Chapter 2, such as the projection in encoding and decoding, but
also some new elements of the pipeline we have not seen before. We can basically describe the
whole process (with their respective possible distortion problems) in 4 steps:

1. Acquisition: Here, we deal with how the video is produced. Production of such videos
normally uses 360-degree cameras with multi-sensor systems. These systems can be modeled
as central cameras that project in the 3D space to a point on a spherical imaging surface.
In practice, the omnidirectional output signal is the result of a “stitching” algorithm, which
merges the overlapping field-of-view signals acquired by all sensors to produce a panorama
media. In the case of video, additional video synchronization and stabilization may be
needed. After acquisition, the signal is usually stored in Equirectangular format (as seen in
section 1.1). Normal distortions caused at this level come from limitations of the acquisition
device and also faulty stitching.

2. Encoding: The goal of the encoding step is to reduce the redundancy in the signal so that
it can be better stored and transmitted. Most of the current 360-degree video systems reuse
the same encoding tools as classical video solutions, such as H.264, H.265, VP9 or AV1. One
of the main challenges then lies in mapping the content into rectangular frames that are the
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Figure 3.1: End-to-end 360-degree video processing pipeline

input of these video encoders. Frame Packing refers to the combination of two frames, one
for the left eye and the other for the right eye, into a single “packed” frame that consists
of these two individual sub-frames. In 360◦ videos, warping due to the projection type also
exist, in addition to conventional artifacts, such as blurring, color bleeding, blocking, and
ringing; .

3. Transmission: The biggest problem here is the high fidelity necessary for 360 degree videos
(usually at least 4K) and the ensuing large bandwidth necessary. To reduce quality demands,
viewport-dependent projection and tile-based approaches have come into play. Transmission
delays and communication losses affect the streaming of omnidirectional video sequences,
similar to how they affect traditional videos. When not considering the viewport, the user
may perceive typical streaming distortions such as delay, rebuffering, events, and quality
fluctuation.

4. Consumption: At the client end, all the processes mentioned have to be inversed. Here, an
inverse mapping from the plane to the sphere has to be performed. Users usually watch on
head-mounted displays or more recently on a computer or smartphone. The main distortions
we face in this case are related to the capabilities of the display, such as aliasing, blurring,
motion blur, etc.

Visual distortions that occur in images and videos captured by perspective cameras and
undergoing compression and transmission have been largely characterized and analyzed in the
literature, both for standard 2D and stereoscopic 3D signals [9]. However, new types of distortion
can occur in 360-degree visual signal dataflows.

It is worth pointing out that, although for 2D videos a certain degree of distortion can be
accepted, in 3D environments the same level of distortion may not be acceptable. The exact impact
of distortions on perceived quality and immersive experience is still unknown and is therefore an
open research topic.
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In this work, we mainly focus on the effects present in encoding compression, in particular,
the quantization parameter (QP) and its influence on the quality of the video.

Encoding Compression: Quantization Parameter (QP) and BitRate Trade-off

The Quantization Parameter controls the amount of compression for every macroblock in a
frame. Large values mean that there will be higher quantization, more compression, and lower
quality. Lower values mean the opposite. QP ranges from 0 to 51 in H.264 encoding. BitRate
refers to the bits per second consumed by a sequence of pictures, that is, bitrate = (average bits
per frame) x (frames per second). In practice, it is equated to the reliable network bandwidth
that is provisioned or available for the stream.

Block-based hybrid video encoding schemes, such as MPEG and H.264/H.265 are inherently
lossy processes. They achieve compression not only by removing truly redundant information
from the bitstream but also by making small quality compromises in ways that are intended to
be minimally perceptible. In particular, the quantization parameter QP regulates how much data
can be saved. When QP is very small, almost all the details are kept. As QP increases, some
details are aggregated and the bit rate drops, but at the price of a distortion increase and some
loss of quality. Therefore, we arrive at a trade-off where if you want to lower the bit rate, you
can do so by increasing the QP at the cost of increased distortion. The increase of the spatial
activity1 can allow for a better trade-off, where you have to sacrifice less of the bitrate to get a
better QP, and vice-versa [38].

3.1 Subjective VQA methods

In order to test any VQA prediction algorithm, extensive research has to be done with subjects
in order to assess their actual opinions. This research is done by inviting large numbers of people,
usually from the university where the research is conducted, but also community members, mostly
those associated with the researchers. The research also has a set of requirements that it has to
follow, for example those from ITU-T and MPEG. Experiments which aim to evaluate only the
visual quality elements of the video will usually involve a swivel chair with enough room for
360◦ rotation. In cases where immersiveness and interaction are also evaluated, enough room for
physical exploration has to be allowed. There are certain situations where 360◦ treadmills can be
incorporated as well. Participants wear HMDs like Oculus Quest or some other similar apparatus.
Figure 3.2 shows some of the other popular HMDs used in experiments.

In these experiments, individuals have a scheduled time to watch the sequence of videos. Figure
3.3 shows one such volunteer in another experiment performed in University of Brasilia. If each
video is shown without another video to compare to, the methodology is called Single Stimulus

1This term is used to quantify the amount of spatial variation within a part of the picture, normally a block of
N pixels. In other words the spatial activity is the sample variance of a block’s values. It is the measure for local
complexity used in MPEG-2.

19



Figure 3.2: Examples of different popular HMD models.

Figure 3.3: Subject participating in an experiment wearing an Oculus device during the pandemic.
Notice the lack of physical obstacles near the chair.
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Impairment Scale (SSIS), whereas if we a have a video for comparison, we talk rather of a Double
Stimulus Impairment Scale (DSIS).

Normally each video lasts just a few seconds and is followed by an evaluation moment where
subjects are asked their opinion on a predefined numerical scale. This is the raw score associated
to each person. By averaging the raw scores of all the participants we arrive at the Mean Opinion
Score, or MOS for short. The MOS score is calculated using the formula in Equation 3.1:

MOSj = 1
Ij

Ij∑
i=1

Sij (3.1)

where Sij is the raw score that subject i assigns to sequence j and Ij is the number of valid
subjects viewing sequence j.

Depending on the number of video sequences, experiments can last hours for each participant,
with pauses every couple of minutes in order to avoid eye soreness and confusion and to have the
cleanest results possible.

As we can see, the research on the topic is relatively difficult as they depend on the correct
equipment and a large body of individuals willing to participate. Recently, due to the Covid-
19 pandemic, conditions were further exacerbated and new experiments also depend on robust
sanitary protocols. Because of that, having a dataset with the ground truths for this research
of University of Brasilia’s authoring was particularly challenging, and Li et al.’s [24] dataset was
chosen instead.

3.2 Objective VQA Methods

Objective VQA methods attempt to mathematically estimate the score a user would give after
watching a video. Extensive research has been done in images and 2D videos has been done,
as shown in [46]. The methods have evolved from simple computations of errors, like the Mean
Squared Error, to very robust methods based on deep learning. These metrics can be calculated
in a multitude of configurations, and below we present some of the most influential and relevant
to our work.

In our work, we explore only Full-Reference metrics, that is, metrics which take into account
the original signal, but we also have other types of metrics. The No-Reference Quality Assessment
Metrics are an ensemble of metrics that do not need the original signal to estimate the VQA. They
compute the quality score based on statistics of the expected image. In fact, they possess an inferior
evaluation capability compared to Full-Reference metrics and constitute a minority in the field of
VQA. They have the advantage of needing less bandwidth to perform their measurements and do
not need to be temporally aligned with the original signal. As examples of No-Reference metrics,
we can cite BRISQUE (Blind/Referenceless Image Quality Evaluator) and NIQE (Naturalness
Image Quality Evaluator). Both algorithms train a model using identical and predictable statistical
features called Natural Scene Statistics (NSS, not to be confused with Natural Scanpath Saliency).
NSS are based on the luminance coefficients normalized in the spatial domain and are modeled as

21



a multidimensional Gaussian distribution. The BRISQUE model is trained in an image database
with known distortions, and the method evaluates the quality of the images with the same kind
of distortion. BRISQUE accounts for the users’ opinions and is therefore opinion-aware, which
means that the subjective quality scores have to come along with the training images. The NIQE
model is trained with non-distorted images, but it is capable of evaluating the image quality with
any distortion. NIQE is opinion-unaware and therefore does not correlate as well as BRISQUE
with the human perception.

Reduced Reference Metrics, on the other hand, strive for a middle ground between the restrictions
applied to Full Reference and the difficult modeling of No Reference metrics. In it, only some
characteristics of the original video are transmitted for evaluation. These metrics present some
advantages and disadvantages in each extreme and are performed according to each application
case.

3.2.1 Full-Reference Quality Assessment Metrics

The Full-Reference metrics are the ones which need a reference signal for comparison. The
availability of the original signal is not always a given, which implies that the application of these
metrics is restricted. Because of that, these kinds of metrics work better in an offline quality
context. In this work, we explore only full-reference metrics. In a general sense, 360 quality
metrics are adapted from their traditional 2D counterparts, in the same way that video metrics
are adaptations of the same metrics for images. Some of them are based purely on the data, while
others take into account properties of the human visual system.

In order to account for the non-uniform sampling density from the sphere to the plane, a
problem which does not occur in 2D, spherical quality metrics were created [52]. This motivates
the usage of pixel weights according to their position. Furthermore, in 360◦ , only the FoV and
its periphery are seen at any given moment [24] and the distortion of the salient regions starts to
hamper the visual quality. Therefore, there is a division of 360◦ metrics by type, one attempting
to solve the sampling problem and the other to incorporate human perception.

The two most well-known ways of evaluating objective VQA for images are Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity (SSIM) [15]. Both manipulate the difference
between received and reference frame pixels, and then do the average between the two. For 360◦

videos, a second average between all frames can also be implemented. Let the Mean Squared
Error (MSE) be defined as:

MSE =
∑

M,N [x(m, n)− y(m, n)]2

MN
, (3.2)

where x represents the reference image and y the distorted image, m and n are the spatial
coordinates.

With this error at hand, we can calculate PSNR:

PSNR = 10log10( R2

MSE
), (3.3)
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where R is the most intense pixel value in the reference image (in 8-bit images, R = 255). PSNR is
extremely popular in the signal processing area, but because there are too many parameters that
highly influence the PSNR value and barely affect the visual quality its correlation with actual
date tends to be worse as there is no particular pixel manipulation (like bias or weight attribution).
Therefore, it usually does not reflect well the real VQA value.

In 2004, Wang et al. [43] proposed the Structured Similarity Index (SSIM), which uses the fact
that human perception is highly adapted to extract structural information from the scene. This
means that the pixels have a high dependence, especially when they are close in space, and this
dependence has information about the structure of objects in the scene. The idea of evaluating the
structural information change and that it can be a good approximation of the perceived distortion
in the image.

SSIM evaluates the visual impact of three features in the image: luminance, contrast, and
structure and is computed as follows:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ , (3.4)

where x and y are the reference and distorted images, respectively, and l(x, y), c(x, y) and s(x, y)
are the luminance, contrast, and structure features, respectively. We can also write expressions
for l(x, y), c(x, y), and s(x, y) as:

l(x, y) = 2µxµy + C1
µ2

x + µ2
y + C1

, (3.5)

c(x, y) = 2σxσy + C2
σ2

x + σ2
y + C2

, (3.6)

and
s(x, y) = σxy + C3

σxσy + C3
. (3.7)

Here, µx, µy,σx, σy and σxy are the local means, standard variation, and cross covariance,
respectively, for the images x and y. As a standard, α = β = γ = 1 and C3 = C2/2. With
these constants, the expression in equation 3.4 is simplified to:

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) . (3.8)

For VQA analysis, it is more interesting to apply the SSIM index locally than globally. In [43], an
11x11 Gaussian kernel window is used, but frameworks such as ffmpeg use 8x8 windows for SSIM
moving pixel by pixel in the image. This approach can be problematic, as it can create block
artifacts. There are other ways to define the window, but the final idea is the same: averaging
the SSIM indexes for each of the windows to obtain a final index called Mean-SSIM (MSSIM), as
shown in the following equation:

MSSIM = 1
M

M∑
j=1

SSIM(xj , yj). (3.9)

Figure 3.4 from Wang’s work in [43] shows how SSIM can capture differences that PSNR cannot.
In all of them, MSE = 210, but, as we can see, the images in the second row have a lower SSIM
index, indicating less structural similarity. This is much closer to what we can actually see.
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Figure 3.4: Comparison of images with same MSE (a) Original Image; (b) More contrast, MSSIM
= 0.9168; (c) Displaced average MSSIM = 0.9900; (d) JPEG Compressed MSSIM = 0.6949; (e)
Blurred Image MSSIM = 0.7052; (f) Salt and Pepper noise MSSIM = 0.7748

Wang et al. also proposed multiscale SSIM (MS-SSIM), which combined the SSIM of various
versions of the image, on different scales and in a multistep subsampling process. MS-SSIM can
be more robust compared to SSIM when it comes to variation in visual conditions. There are
other variants based on SSIM, such as multicomponent SSIM [23] and complex wavelet SSIM [42].

The adaptation of 2D metrics for 3D is natural here in the same manner as was for saliency
prediction methods. To solve the sampling density problem, one solution would be to project the
360◦ image/video to another domain with uniform sampling. Yu et al. [51] have proposed the
S-PSNR, where the PSNR is calculated in the spherical domain. Specifically, the expression for
PSNR in Equation 3.3 has values of m and n replaced by a set of points uniformly distributed
in the spherical domain. M × N , the number of original pixels, is replaced by the number of
these new points NS−P SNR. For each point location p in the sphere, its value is obtained in the
corresponding location of the pixel i of the original projection through nearest-neighbor search (so-
called S-PSNR-NN) or bilinear interpolation methods (S-PSNR-I). The main problem with this
adaptation and others that have arisen is the high complexity of these approaches. Taking that
into account, many approaches consider weights (therefore, with initial W in their abbreviations)
according to the pixel locations. From this we have WS-PSNR and AW-PSNR (area-weighted
PSNR) [54]. If we consider the same parameters as in equations 3.2 and 3.3, with the addition of
a matrix weight W (m, n), equation 3.10 shows the equation for computing WS-PSNR.

WSPSNR = 10log( R2

WMSE
) (3.10)

where
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WMSE = 1∑
M,N W (m, n)

∑
M,N

(x(m, n)− y(m, n))2W (m, n) (3.11)

Just like PSNR adaptations, SSIM was adapted to take into account the peculiarities of
the 360◦ images/videos. Methods with weight assignment (W-SSIM and WMS-SSIM [33]) and
methods that calculate the similarity between windows in each pixel (Spherical SSIM [4]) were
proposed. In the case of the last one, in order to calculate similarity between windows in each pixel
location, small images centered around the viewport in the spherical location corresponding to the
pixel are extracted both for the reference and distorted videos. The similarity is then calculated
between the two extracted viewport images. S-SSIM also has weight allocation. For videos, it is
possible to use a single similarity metric that joins all the indexes of all the frames. It is called
Video SSIM or VSSIM [44]:

Qi =
∑RS

j=1 wijSSIMij∑RS
j=1 wij

, (3.12)

where Qi is the quality index for the i-th frame, wij is the weight attributed (in the case of W-
SSIM) and RS is the number of sampling frames. We then calculate V SSIM for a video with N

frames as:
V SSIM =

∑N
i=1 WiQi∑N

i=1 Wi

, (3.13)

where Wi the weight for the i-th frame based on the global movement and in wij .

To incorporate perception in a 2D video or image, the simplest method is using the saliency
map as a set of weights attributed to the aforementioned VQA metrics. This idea was adapted
to 360◦ in the works of Xu et al. [45]. In their work, they have also explored a convolution
by the viewport region to generate a non-content-based weight map. The idea of incorporating
saliency maps into the VQA metrics is the main topic of discussion in Chapter 4. There are
also other models attempting to extract the perception characteristics directly, such as pixel-level
characteristics, superpixel, and semantic segmentation, for example as in Yang et al.’s work [49].
Currently, many models based on machine learning have been proposed, as in [46].

3.2.1.1 VMAF

VMAF is an Emmy-winning perceptual video quality assessment algorithm developed by
Netflix. This software package includes a stand-alone C library libvmaf and its wrapping Python
library. The Python library also provides a set of tools that allows a user to train and test a custom
VMAF model [26]. It is a full reference perceptual video quality assessment model that combines
quality-aware features to predict perceptual quality. VMAF combines human vision modeling with
machine learning, offering a good prediction of video QoE. The development of VMAF started
between Netflix and Professor C.C. Jay Kuo from the University of Southern California. In June
2016, VMAF was first open sourced on GitHub (https://github.com/Netflix/vmaf). VMAF uses
existing image quality metrics to predict video quality, such as Visual Information Fidelity (VIF)
or Detail Loss Metric (DLM). These features are combined using a supervised learning regression
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model to provide a single output result, called the VMAF score. This score ranges from 0 to 100
per video frame, with 100 being the quality of a video identical to the reference.

An early version of VMAF has been shown to outperform other image and video quality
metrics such as SSIM, PSNR-HVS and VQM-VFD on three of four datasets in terms of prediction
accuracy, when compared to subjective ratings. Its performance has also been analyzed in another
paper, which found that VMAF did not perform better than SSIM and MS-SSIM on a video
dataset [1]. In 2017, engineers from RealNetworks reported good reproducibility of Netflix’
performance findings [35]. In MSU video quality metrics benchmark, where its various versions
(including VMAF NEG) were tested, VMAF outperformed all other metrics on all compression
standards.

It can be shown that VMAF is also a reasonable metric when working in 3D environments, as
shown in [28]. As such, it presents a very robust evaluation for our research and is in line with
the state-of-the-art in the field.

3.3 Performance Evaluation

The same way as for 2D, performance evaluation in 360◦ videos is done calculating the
correlation and error between the subjective values and the objective prediction. There are
then many metrics capable of assessing the result: PCC (Pearson Linear Correlation Coefficient),
Spearman Correlation Coefficient, and Kendall Correlation Coefficient (Kendall’s τ), the root-
mean squared error (RMSE) and the Mean Absolute Error (MAE). Unlike the saliency case,
where there are many databases with available human eye fixation positions, for VQA there are
not many open databases. This means that comparing solutions is difficult since they are not
evaluated on the same data.

For the examples of evaluation metrics below, it is possible to consider that one of the vectors
is MOS and the other vector is the objective VQA according to the chosen methods.

• Pearson Correlation Coefficient (PCC) - Most common correlation metric. For a
column Xa in matrix [X] and a column Yb in matrix [Y ], with means X̄a =

∑n
i=1(Xa,i)/n

and Ȳb =
∑n

j=1(Yb,j)/n, we calculate the PCC as follows:

ρ(a, b) =
∑n

i=1(Xa,i − X̄a)(Yb,i − Ȳb)√∑n
i=1(Xa,i − X̄a)2∑n

j=1(Yb,j − Ȳb)2
, (3.14)

where n is the size of each column. Correlation values are contained in the interval [−1, 1].
−1 indicates a perfect negative correlation, while +1 indicates a perfect positive correlation.
0 indicates the absence of correlation. PCC, like many other conventionally used coefficients,
is not robust to outliers. It is also not capable of asserting any nonlinear relationship between
variables.

• Spearman’s Rank Correlation Coefficient (SCC) - This coefficient is equal to PCC
applied to the matrix rank of columns Xa and Yb. If all ranks in each column are distinct,
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the equation that defines SCC is the following:

ρ(a, b) = 1− 6
∑

d2

n(n2 − 1) , (3.15)

where d is the difference between the ranks of the two columns and n is the length of
the column. The Spearman coefficient also varies within the range [−1, 1], with its sign
indicating the direction of a growth trend of a variable in relation to the other. Therefore,
the two perfect correlations (−1 e 1) mean that Y is a monotonous function of X. That is,
in practice, it brings more information than PCC.

While Pearson’s correlation assesses linear relationships, Spearman’s correlation assesses
monotonic relationships (whether linear or not).

• Kendall’s Rank Correlation Coefficient - It is based on counting the number of pairs
(i, j), where i < j are concordant. That is, for which (i, j) we have Xa,i−Xa,j and Yb,i−Yb,j

of the same sign. For a column Xa in matrix [X] and column Yb in matrix [Y ], the Kendall
coefficient τ is defined as:

τ = 2K

n(n− 1) , (3.16)

where K =
∑n−1

i=1
∑n

j=i+1 ξ∗(Xa,i, Xa,j , Yb,i, Yb,j), and

ξ∗(Xa,i, Xa,j , Yb,i, Yb,j) =


1, if (Xa,i −Xa,j)(Yb,i − Yb,j) > 0

0, if (Xa,i −Xa,j)(Yb,i − Yb,j) = 0

−1, if (Xa,i −Xa,j)(Yb,i − Yb,j) < 0.

(3.17)

The correlation values can vary between -1 and 1. The value −1 indicates that the rank of
a column is the inverse of the other, whereas the value +1 indicates that both ranks are the
same. The value 0 indicates the absence of relation between the columns.
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Chapter 4

Methods and Results
In this chapter we present the main ideas of
the research as well as the means to achieve
them. We join the theoretical basis shown in
the previous two chapters in order to propose a
way to answer the question: Does knowing facts
about spectators’ attentions make our prediction
of their experience more accurate? After that, we
present the relevant results from our evaluation.

4.1 The Source Material: The VQA-ODV dataset

Called Visual Quality Assessment for OmniDirectional Videos (VQA-ODV), Li and his team [24]
collected data for 60 reference videos and 540 impaired sequences, providing not only the MOS
scores but also HM and EM data. Furthermore, they developed a deep learning model embedding
HM and EM for objective VQA (as discussed in the previous chapter, this is one of the new models
on an objective metrics based on deep-learning). With all that, this research provides a goldmine
for experimentation on saliency (head and eye movement based) and quality so their videos are
the ones chosen for our methodology. The only problem we have for this dataset is the sheer
size of the videos, the biggest of which surpassing 12GB (therefore, any processing on a personal
computer is ill-advised).

Returning to the dataset, the 60 reference videos are divided into 10 groups of 6 videos each
and range in resolution from 4K (3840x1920 pixels) to 8K (7680x3840 pixels). The impaired
sequences vary in compression with different Quantization Parameters (QP = 27,37 and 42) and
different map projections: Equirectangular (ERP), Reshaped Cubemap Projection (RCMP) and
Truncated Square Pyramid Projection (TSP).

In the experiment, HTC Vive was used as an HMD and the eye-tracking module aGlasse
DKI was embedded to the HMD. A GUI for control and programs for HM and EM capturing were
developed. The sessions were divided into training and then testing sessions, where at first subjects
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were shown with 1 video and 9 impaired sequences how they should approach the experiment and
after a break they were shown 6 reference videos and their corresponding 54 impaired sequences.
Videos were displayed at random and therefore are characterized as single stimulus.

There were 221 people participating in this experiment, 143 males and 78 females, with ages
ranging from 19 to 35. the subjects were divided in 10 groups as to match the grouping of
videos and so that each subject would watch just one group of videos. The dataset provides both
individual raw scores and DMOS measurements for the experiment. MOS is then calculated as in
Equation 3.1.

To simplify our analysis, we tried to choose two videos from each one of the groups so to
contemplate the largest number of people and resolutions possible while still being able to perform
analysis in a reasonable amount of time. We also only consider the influence of QP as impairment,
opting therefore to discard any non-ERP video projection. With that sampling performed, we
perform the analysis below on 20 reference videos and 60 distorted sequences.

4.2 Chosen Saliencies

Our goal with the saliency maps is using incorporating them in our video frames as to bias
our quality of experience metrics towards considering more of what the user is actually paying
attention.

In order to assert exactly which kind of saliency was the best performer in our analysis, we
went on to choose the most different ones possible, with the restriction that they be specific to 360◦

videos. We originally wanted to analyse a heuristic, a static data-driven and temporal data-driven
model. After considering the processing time for the temporal model, we have ultimately decided
to discard it.

Since we can consider that the streamer has access to the reference video and can evaluate
saliency beforehand, the most logical approach is extracting the saliency maps from the original
video and applying them to both original and distorted videos. Of course, the mathematical
applicability of this saliency map incorporation has to be evaluated and it will be seen in a case-
by-case situation in Section 4.3. But, for now, we can keep in mind this idea.

Along with BMS360, Cube Padding is one of the chosen models for evaluation in this work.
The original idea was to use it as a temporal model to contrast with the other two which are static.
But, this model is particularly slow. The processing of a 3 minute video with Cube Padding takes
4 hours in the static model, so the temporal one takes even longer and was therefore not considered
an object of this work.

Cube Padding is a video algorithm and its inputs are mp4 videos. So, just by providing the
video we are able to extract the saliency already. Its outputs are the individual saliency frames.
Due to its complexity and because it can be run on Linux, this algorithm was run remotely in our
server. Originally its outputs were heatmaps which were overlaid to the video frames, but with
minor tweaks we were able to get grayscale saliency maps, which are the saliency format for our
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analysis as explained in Section 4.3. BMS360 is originally a 360-degree image saliency metric, so
in order to run it on a video, we first have to extract the individual frames from the video, then we
perform the frame-wise saliency evaluation, and finally the output is a similar frame-wise saliency
map.

It is important to note that Cube Padding has specific dependencies that makes it hard to
run for the unaware user. Because of that there has been an effort of our team in expanding the
instructions present in their GitHub page1, in particular for our modifications.

For this work, many parallel resources were used:

• As processing units a personal computer with a Windows 10, Intel(R) Core(TM) i5-5200U
CPU at 2.20GHz processor with 4,00 GB installed RAM was used as well as GPDS server
with an AMD Ryzen threadripper 3990X, 64 cores, 3Ghz, 128GB ram ddr4. Processing in
the personal computer was much slower than in the server.

• The algorithms used are described in their respective sections. For the saliency map models,
the original cubepadding without the overlay function was used, and for the BMS360 model
we used the aforementioned video adaptation. This adaptation was run with the help of the
Ffmpeg application through the PC terminal with a Python3 code by the author

• The saliency incorporation algorithms were originally run and tested with Google Colab
using the Python3 language and later implemented on the PC and server. This is also an
algorithm written by the author

• The BMS360 adaptation for videos was run on windows on the personal computer whereas
all other algorithms were tested on the personal computer and run remotely on the server.
The task of transferring files between PC and server was facilitated with the user of the
FileZilla application (which allows for the transferring of files using FTP and encrypted
FTP such as FTPS (server and client) and SFTP). The server containers were managed
through Portainer, which is a powerful, GUI-based Container-as-a-Service solution that helps
organizations manage and deploy cloud-native applications easily and securely.

4.3 Incorporating saliency and the video size problem

After we run the saliency models we have to find a way to incorporate the saliency maps onto
the videos without incurring in a mathematical incoherence. The simplest incoherence we can
think of is one where the sum of all weights is not normalized and so it invalidates the comparison
scale. In order to proceed with this incorporation, we look back at the literature to see how weights
and biases are usually included in the models. Looking back at the models WS-PSNR and WS-
SSIM, which manage to incorporate weights into the video in a way that does not invalidate their
mathematical logic, we find inspiration for this task.

1http://aliensunmin.github.io/project/360saliency/
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For example, let us consider the formulation below for WS-PSNR using the conventions from
Equations 3.10 and 3.11. The corresponding saliency-weighted metrics are:

WS-PSNR(x, y) = 10 log10

(
R2

WS-MSE

)
(4.1)

where
WS-MSE =

∑
M,N

W · |Error(m, n)|2

MN
(4.2)

and
Error(m, n) = x(m, n)− y(m, n) (4.3)

Here, x and y are the original and distorted images, and M and N are the width and height in
pixels of the frame, and x and y the reference and deteriorated images respectively. By viewing
our saliencies as a normalized weight matrix S (i.e., by dividing the complete saliency map by 255
so that the pixels are confined between 0 and 1), we can make use of them directly as weights,
that is, W = S. We can incorporate the weight matrix S into the error by taking its square root
and distributing it on the reference and impaired images. This procedure is seen below, which
takes the expression inside the sum in Equation 4.2 and distributes the weight matrix.

WS-MSE =
∑
M,N

W · |Error(m, n)|2

MN
, W = S (4.4)

WS-MSE =
∑
M,N

S · |Error(m, n)|2

MN
, S ≥ 0

WS-MSE =
∑
M,N

|
√

S · Error(m, n)|2

MN

As the saliency pixel values are not negative, |S| = S. This new error is given by the following
equation:

Errorsal(m, n) =
√

Sx(m, n)−
√

Sy(m, n). (4.5)

Therefore, we show that a saliency map inclusion similar to WS-PSNR works. In practice, for
every video, we fist divide it into its individual frames. Then we run the corresponding saliency
method and, when incorporating the saliency, we proceed with the pseudo-code in Algorithm 1
using an Ffmpeg writer object.

A brief note about the ffmpeg writer object. It is accessed through the skvideo library and it
is a very powerful tool to avoid memory overload due to the processing of several frames at a time.
By using the attribute writeFrame, it sends ndarray frames to FFmpeg software, which is run in
the command line. By successively using this method we can create a video from the individual
frames, and by using the attribute close we can save the video.

In the sequence of this work, we will work with a fixed framework and, therefore, consider the
inputs

√
Sx(m, n) and

√
Sy(m, n) to calculate three main metrics: PSNR, MS-SSIM, and VMAF.

Although it can be argued that this type of inclusion may not be valid for the latter two metrics,
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Algorithm 1 Saliency Computation and Inclusion Steps
1: for Video in Videos List do
2: if Method = BMS360 then
3: Perform frame separation
4: Evaluate frame-wise saliency evaluation using BMS360 code
5: frames ← BMS360 frame-wise saliency maps
6: end if
7: if Method = Cubepadding then
8: Perform a lossless MP4 video conversion (to avoid further deterioration)
9: Run Cube Padding algorithm

10: frames ← Cube Padding frame-wise saliency maps
11: end if
12: for Frame in frames do
13: Extract corresponding frame from Video
14: Incorporate Saliency according to Equation 4.1
15: Write modified frame at the end of a ffmpeg writer object
16: end for
17: Save writer object with video name
18: end for

we shall consider the question: Does including information about the user’s attention improve the
accuracy of our estimations? If that is the case, then we start with other incorporation methods.

Similarly to the BMS360 algorithm, Cube Padding outputs the estimated saliency maps in
image frames. However, its input its input is an mp4 video, which is different from a video in
YUV format. The MP4 file keeps the data and can potentially compress the data in a lossy way
unless we specify it not to do so. Therefore, a lossless conversion has to be performed to evaluate
the saliency with Cube Padding. To incorporate the saliency maps using both these methods,
we face the problem of the large size of the video. Therefore, in order to manipulate a video
frame-by-frame, we make use of the Python3 library skvideo.

4.4 Quality metrics and evaluation

After we have the videos with the saliency maps included, we can calculate the three chosen
metrics (PSNR, MS-SSIM, and VMAF) to compare whether we can improve the accuracy of our
predictions compared to the absence of such incorporation. To do this evaluation, we use Saigg
and Scholles’ visual quality framework [36], which standardizes the calculation of metrics and its
correlation coefficients, presenting the user a framework for these metrics. The framework allows
for the calculation of a total of 11 visual quality metrics. From these metrics, PSNR, MS-SSIM
and VMAF were chosen because of their ubiquity in the literature and because they consist of
inherently different methods. The flow chart for this framework is shown in Figure 4.1. In step
1, they prepare the video date into pandas dataframes, then they use the Ffmpeg and OpenCV
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Figure 4.1: Saigg and Scholles’s framework ans shown in [36].

libraries to preprocess the data so that the quality metrics can be calculated in step 3. Step 4
calculates the correlations between the MOS values and the quality metrics from step 3 and also
is the plotting mechanism which makes use of matplotlib. The general flow chart used for our
analysis is shown in Figure 4.2.

After we have the quality metrics computed, we compute the performance metrics: Pearson,
Spearman, and Kendall correlation coefficients, as well as the RMSE. After that, we generate a
graph with the predicted scores versus the MOS scores (computed from the raw scores of the
videos from the data-set) is generated for a point-wise visualization. It is important to note that
the proposed framework was originally made for 2D videos. As of the time of the writing of this
text, no metric specific to 360◦ environment had been implemented to the framework. As some of
the 2D metrics can also be used for 3D videos, granted they are not the most reliable, we deemed
reasonable to use the current metrics presented in the framework.

In order to process the videos in parallel with the framework, we have divided all of them into
four batches, one for the videos used in the BMS360 processing, one for its saliency inclusion,
one for the videos used in the Cube Padding processing and one for its saliency inclusion. Each
batch needed a respective .csv file to run the set of specified reference and distorted videos, with
information about the spatial and temporal resolution of these videos. To compute the correlation
coefficients, we used the individual MOS values for each test content provided by the data set.
So, after the quality framework finishes running the metrics, we join the .csv of objective and
subjective quality scores, and the statistics are computed. The framework performs a statistical
analysis outputting correlation coefficients in order to compare performance.

4.5 Setup and Fine-tuning

For this part, 20 videos of the dataset were selected, which was mainly a choice of time
limitation. For the respective distorted videos, we chose the ERP projection and the evaluation
was based upon varying the QP. The QPs in MaiXu’s dataset were set to 27, 37 and 42, therefore
spanning across a wide range. The videos chosen were those in the Table 4.1.

A different set of videos was chosen for the evaluation of BMS360 and Cube Padding performance.
This is due to a limitation hardcoded in the cube-padding algorithm where the width of the frame
must necessarily be twice the height of the frame. This could be solved by stretching one of the
dimensions so that we get that proportion, but this would introduce another level of distortion,
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Start: VQA-ODV Dataset videos

20 YUV ref Videos

Saliency Computation and Incorporation

QoE framework60 MP4 degraded videos

QoE calculated metrics

Stats frameworkMOS scores

Best saliency model

BATCHES

Correlation comparison

Figure 4.2: The full flowchart representing the methods and subproducts of our analysis. Here,
the rhombus represents inputs/outputs and the rectangles represent the operations.

which could further bias our results. Since videos are well spread out among classes, by choosing
videos roughly spread out, we aimed to mitigate any advantage given to any of the methods.

The author deemed such a solution the best option due to the time limitations for the
publication of this work. The main idea is that, since we are comparing the difference the inclusion
of saliency makes, and not the difference from a saliency method to the other, there should not
be any problems. As a perspective work, comparing more videos and the same videos would be
the best approach.

Table 4.1 shows the chosen videos. We attempted to choose videos well spread-out among
classes, with different environments and contexts. Due to a runtime error, there were no 8K
videos chosen for the BMS360 processing. The videos name scheme is: Group (G1 to G10) +
Name of video _ width x height _ frames per second. Column MOS shows the computation from
the data set provides spreadsheets with raw score values from each viewer using Equation 3.1.

For each one of these reference videos, we calculate the corresponding saliency maps, and this
saliency is incorporated in a frame-by-frame basis to both the reference and the distorted video.
Recall that we have three distorted videos for every reference video. One of the constraints of the
framework is a limited option of resolution. For example, we decided against the analysis of the
video G4BikingInSaalbach_5600x2800 due to these constraints.

In terms of runtime problems, in addition to the time taken to run all videos (a little over a
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Table 4.1: List of all videos used from the VQA-ODV in this research, their respective dimensions
and MOS values.

BMS360 Cubepadding
Video File height width MOS Video File height width MOS
G1BajaCalifonia_3840x2160_fps23.976 2160 3840 64.91 G10BoatInPark_4096x2048_fps30 2048 4096 67.93
G1BikingToWork_3840x2160_fps23.976 2160 3840 67.15 G10BuddhaCave_4096x2048_fps30 2048 4096 69.92
G2AstonVillaGoal_3840x2048_fps24 2048 3840 74.56 G10XiaoGuang_4096x2048_fps30 2048 4096 71.59
G3BackcountrySkiing_3840x1920_fps25 1920 3840 71.33 G1AbandonedKingdom_7680x3840_fps30 3840 7680 74.13
G3GetYoGurl_3840x1920_fps29.97 1920 3840 58.55 G1Aerial_7680x3840_fps25 3840 7680 77.67
G2ForgottenBook_7680x3840_fps30 3840 7680 64.00 G2ForgottenBook_7680x3840_fps30 3840 7680 64.00
G4WingsuitFlight_3840x2048_fps29.97 2048 3840 53.55 G2FormationPace_7680x3840_fps29.97 3840 7680 80.80
G5EbinShader_7168x3584_fps30 3584 7168 70.69 G3BackcountrySkiing_3840x1920_fps25 1920 3840 71.33
G5Neighborhood_3840x1920_fps23.976 1920 3840 66.35 G3GetYoGurl_3840x1920_fps29.97 1920 3840 58.55
G6DragonTale_3840x2160_fps30 2160 3840 74.39 G4CliffsideMansion_7680x3840_fps30 3840 7680 66.02
G6GTRDriving_3840x2160_fps30 2160 3840 66.68 G5Neighborhood_3840x1920_fps23.976 1920 3840 66.35
G7DragonCastleAttatck_3840x2048_fps24 2048 3840 78.94 G5ResistMarch_3840x1920_fps29.97 1920 3840 70.17
G7PressConference_4096x2048_fps30 2048 4096 77.31 G6AngelFallsClimbing_7680x3840_fps29.97 3840 7680 84.42
G8AlpsParagliding_3840x1920_fps25 1920 3840 70.35 G7OrchestraOfSpheres_7680x3840_fps24 3840 7680 83.10
G8ANewEmpire_3840x2048_fps29.97 2048 3840 74.05 G8DivingWithSharks_7680x3840_fps29.97 3840 7680 74.86
G9ConcertLive_4096x2048_fps30 2048 4096 78.21 G8YourMan_7680x3840_fps29.97 3840 7680 73.60
G10BoatInPark_4096x2048_fps30 2048 4096 67.93 G9ConcertLive_4096x2048_fps30 2048 4096 78.21
G10BuddhaCave_4096x2048_fps30 2048 4096 69.92 G9DrivingInCity_3840x1920_fps30 1920 3840 71.63
G10XiaoGuang_4096x2048_fps30 2048 4096 71.59 G4HachaWaterfall_3840x1920_fps29.97 1920 3840 68.31

G7UcaimaWaterfall_3840x1920_fps29.97 1920 3840 72.52

month), some of the saliency incorporation did not run for all frames. After confirming which
videos had these problems we replaced them with videos of similar dimension and returned to
regular processing.

Figure 4.3 contains two example frames, one with the incorporation of Cube Padding saliency
and the other with the incorporation of the BMS360 saliency. Notice that the video frame is in
grayscale. This was decided as a computation strategy so that we would have to process just one
channel as opposed to three. This process is accomplished as follows: the video is first converted
to grayscale using the pillow Image.convert(’L’) function and then multiplied frame by frame by
the square-root of the normalized saliency map. Then the incorporated frames are joined together.

Figure 4.3: Examples of saliency maps generated by the two algorithms analysed, Cube Padding
and BMS360. The image on the left shows the BMS360 saliency and the image on the right shows
the Cube Padding saliency map. We can easily see the borders of the cube in this projection.
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4.6 Experimental Results

All of the analysis done here is performed with the help of the full information tables presented
in Chapter 6. In those tables, we have the reference video for every sequence under the label
refFile, the distorted video sequence under testFile, as well as the MOS of the distorted videos,
their dimensions and the calculated PSNR, MS-SSIM and VMAF values. The first thing we
notice from these values is the drop in MOS: the higher the QP is the lower the MOS is. The QP
value is explicit in the full name of the video. For QP = 27, the average MOS is 68.52, for QP
= 37, average MOS is 56.57 and finally for QP = 42, average MOS is 42.04, indicating a rapid
degradation in perceived quality. Table 4.1 shows the MOS values for all the reference files used.

Figure 4.4: Performance distribution for the BMS360 videos. We can see an upward trend, but
with a lot of variance for PSNR and VMAF. Points for MS-SSIM tend to be accumulated towards
the higher extremes.

An interesting question to ask is if there is any correlation between the resolution of the video
(8K versus 4K, for example, and the perceived visual quality) and the perceived MOS. By taking
average MOS values in Table 4.1 for 8K and 4K videos, we see that 4K videos have an average
MOS of 69.92 whereas 8K videos have an average MOS of 74.92, which means a 5-point difference.
These results show that, at least for this batch of videos, 4K videos tend to present just a slightly
lower quality level than 8K videos, corroborating the fact that 4K is generally an acceptable
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Figure 4.5: Performance distribution for BMS360 videos with saliency incorporation. The overall
distribution is relatively similar. That means that visually we cannot see a clear improvement
thanks to this incorporation.

resolution for virtual reality videos.

Now we analyse whether the incorporation of saliency in the frame allows better results in our
quality prediction.

4.6.1 BMS360: Chosen videos and saliency incorporation results

Table 4.2 shows the prediction results for the videos used in the BMS360 incorporation.
Overall, we see a better accuracy for the MS-SSIM metric across the board. As discussed before,
this is due to the fact that the SSIM based metrics take into account many human inspired
perceptions. VMAF improves with the inclusion of saliency as it is a metric that accounts for
information, and the inclusion of saliency apports more information. This table also shows the
results of the correlation coefficients obtained for the incorporation of the saliency into the three
metrics. Results remain roughly the same, with a minor advantage for the usage of VMAF in our
estimations.

The relationships shown in Figure 4.4 show less variance in VMAF and MS-SSIM, with a

37



Figure 4.6: Performance distribution for the Cube Padding videos.

general linear relationship between values. PSNR presents the worst performance, as it has the
smallest complexity. This graph also tells us about 4K videos, as they constitute almost the
totality of analysed videos. In the graphs of Figure 4.6 it is easy to see that, for VMAF, there is
an overall smaller variance in the instances.

MS-SSIM, on the other hand, presents an accumulation of high values, where the actual
MOS does not show that. In a deeper analysis of all graphs and also the values obtained in
the tables presented in our appendix, we can see how the MS-SSIM values are actually not
evenly scattered, being concentrated in the higher ranges of the scale. An interesting fact is
that although concentrated, the computed MS-SSIM values are the ones with the best difference
between Spearman and Linear coefficients of all the metrics, pointing to a more pronounced non-
linear relationship with the MOS values.

Comparing both tables, we see a very similar distribution, boxplot shape and quality metrics
results. Therefore, overall, the addition of visual attention information in the case of BMS360 is
considered roughly irrelevant, so the extra computation effort should be discarded.
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Figure 4.7: Performance Distribution for the Cubepadding Videos with Saliency Incorporation.
The distribution is relatively similar to the one shown in figure 4.6.1, but in MS-SSIM and VMAF
we see some improvement in terms of variance.

Table 4.2: Table of VQA Metrics for the BMS360 videos with and without saliency incorporation.
BMS360 No Saliency BMS360 With Saliency

Correlation psnr msssim vmaf Correlation psnr msssim vmaf
Pearson 0.634 0.742 0.725 Pearson 0.625 0.726 0.757
Spearman 0.664 0.8 0.743 Spearman 0.637 0.806 0.753
Kendall 0.447 0.599 0.541 Kendall 0.436 0.602 0.544
RMSE 0.287 0.259 0.202 RMSE 0.266 0.235 0.175

4.6.2 Cube Padding: Chosen videos and saliency incorporation results

The Cube Padding videos differ from the previous set of videos as they consider a more
even distribution of 4K and 8K videos. Table 4.3 shows MS-SSIM and VMAF maintain a good
correlation with the actual MOS values, while PSNR has greatly diminished accuracy considering
Pearson. Note how in the graphs of Figure 4.6.1 we see a more random distribution of points for
PSNR, whereas in VMAF and particularly MS-SSIM the data distribution has a less pronounced
variance. In this case, we have a very similar distribution to BMS360 for PSNR and VMAF,
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Figure 4.8: Variation for PSNR with different saliency inclusions

and an even greater concentration of points towards the higher extremes in MS-SSIM. This is
expected as cube-padding chosen video set has more 8K videos (and therefore, more videos of
better quality) than the BMS360 chosen video set.

Differently from the BMS360 situation, Cube Padding is more effective in its application as
it allows for a better correlation across the board, with noticeable results in PSNR and VMAF
correlation values (7.3 and 6% better correlation on average, respectively) and a roughly level
situation for MS-SSIM. This is considering we are talking about a simple saliency incorporation
onto the video. If we were to consider a an incorporation of saliency more adapted for each quality
metric surely the results would be better.

Table 4.3: Table of VQA Metrics for the Cubepadding videos with and without saliency
incorporation.

CP No Saliency CP With Saliency
Correlation psnr msssim vmaf Correlation psnr msssim vmaf
Pearson 0.489 0.758 0.675 Pearson 0.54 0.761 0.74
Spearman 0.533 0.843 0.719 Spearman 0.582 0.835 0.749
Kendall 0.371 0.638 0.49 Kendall 0.414 0.629 0.516
RMSE 0.239 0.321 0.214 RMSE 0.222 0.287 0.212

Figures 4.6.2, 4.6.2 and 4.6.2 compare the boxplots of the different metrics with ad without
saliency incorporation. We can see, as said before, a higher predicted value for the Cube Padding
videos, as this set of videos is, on average, of higher resolution. Another thing we notice is that,
visually, the saliency does not seem to interfere in the overall distribution shape, which means
the results do not get biased by the saliency incorporation process. Another important aspect is
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Figure 4.9: Variation for MS-SSIM with different saliency inclusions

the fact that the results do not change that much with the saliency inclusion, showing that the
improvements it attains are marginal.

Overall we see that the saliency incorporation as weights is a viable option to improve the
accuracy of our quality estimation if we have the computational power in the streamer side to
perform this evaluation. Nonetheless, the improvement is minor so the computational time lost
has to be taken into account when deciding for this strategy.

As exposed before, an interesting option to improve the result of saliency inclusion now that
we know that it can improve our quality prediction is to mathematically analyse how we can
incroporate the saliency maps onto the videos in a more adequate manner for each metric, perhaps
even as a pre-processing step particular to each metric. This could be included inside the quality
metric framework. In our case, since we used the predefined metrics form Saigg and Scholles, the
preprocess step had to be done beforehand, and therefore was not perfectly adapted to all metrics.
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Figure 4.10: Variation for VMAF with different saliency inclusions
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Chapter 5

Conclusion

In this work, the ensemble of concepts necessary for the development of techniques which use
visual attention combined with quality of experience metrics was explored. Initially, the idea of
visual attention was studied and two main saliency map estimation techniques were examined
(BMS360 and Cube Padding) and the necessary elements for their understanding.

In a second moment, the concept of Visual Quality Assessment was explored in many of its
facets, stating from what causes video degradation, how experiments to assess quality of experience
are performed and how we can attempt to get rough estimation with computational methods such
as PSNR, MS-SSIM and VMAF. Ways to show how the computations compare to the actual
experiments were also explored at this moment.

In light of the theory researched, this work showed the materials with which it intended to
answer its main question. Starting with a quick exploration of the VQA-ODV dataset and the
BMS360 and Cube Padding adaptations for our case. This work then proposes a way to incorporate
the saliency maps into the metrics inspired by the WS-PSNR metric, which is a robust attempt of
this incorporation and allows for an already tested weights multiplication. Finally, a framework
for the calculation of the VQA metrics and of the statistical correlations are shown.

As subproducts of our research, we saw the difference QP and resolution make in the MOS
values. The lower the QP and the higher the resolution, the better the video perception is. By
analysing the images from the different saliency methods, we also saw how they differ and how
visually the saliency is manifested. We also were able to understand the different processing times,
the importance of the standardization for the sake of the research.

Finally, by calculating the MOS values, the PSNR, MS-SSIM and the VMAF values for both
saliency incorporated and regular videos this work managed to show that there is a slight advantage
of using the Cube Padding saliency no advantage in using BMS360. the advantage was of as much
as 7%. This is most likely due to the data-driven nature of Cube Padding.

Because Cube Padding is also relatively fast to run, and we can suppose that is the case for
other data-driven approaches running on a powerful computer. Therefore, a streamer can be
interested in implementing such an algorithm to predict the expected quality of experience of the
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user. Since the VQA metrics directly affect both sessions lengths and viewer engagement and
can determine the success of failure of your streaming video venture. Viewers experiencing poor
quality are more likely to tune out while those with a high quality of experience become repeat
viewers.

Proposed Ideas

There are several ideas we could explore in a future context:

• In the area of Visual Attention, we could explore several other saliency models, in particular
temporal models which take into account the optical flow in the video. Visual attention
models which explore more Top-down ideas can be an interesting addition as it brings more
information, in particular regarding the movement in the scenes. More accurate saliency
maps mean better information addition and therefore more accuracy in the final result.

• The creation of an original saliency model incorporating new ideas appearing in the visual
attention modelling and machine learning domains, such as transformers and alternatives to
LSTMs. In order to create this saliency model, several videos with their respective fixation
annotations would be necessary, as well as a thorough study of the current state-of-the-art in
this and other data-driven domains. This idea could be explored in partnership with Saigg
and Scholles, expanding their framework to contemplate 3D specific metrics and other types
too.

• In the area of Quality Metrics, the exploration of other objective metrics is an evident
addition; in particular the spherical metrics and the newer machine learning metrics, the
latter being the state-of-the-art in the area such as the one proposes in [41]. Methods such as
S-PSNR, S-SSIM and other similar methods which attribute weights to the quality metrics
provide a more accurate representation of how quality is perceived in the 360◦ environment.

• In the specific case of the exploration of the VQA-ODV dataset, we can expand the analysis
to the full set of 60 reference videos as well as the exploration of the distortions caused by the
Cubic and TSP projections. Still on the exploration of this dataset, an analysis of the DMOS
values and of the HM and EM measurements can be interesting to get more accurate results
for our metrics and ground truth saliency maps to compare with the saliency estimations of
all the other methods.

• A more robust way of incorporating the saliency maps can also be explored, taking into
account more of the mathematical peculiarities of each one of the Quality of Experience
metrics at play. A good idea would be to make this incorporation inside the framework for
calculating metrics. With that, the framework would just receive the reference, impaired
videos and saliency maps and for each quality metric the framework would include the
saliency maps in an adapted way for that metric.
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• In our discussion, a deeper dive into the runtime errors, into the saliency maps themselves
and also into the graphic plots in order to more closely inspect all of the facets of the results,
how to solve any problems that arise and how each aspect influences the final result. By
doing this, we can get a more complete understanding of all aspects playing in this research.

• Finally, as the Covid-19 pandemic safety measures get relaxed, a dataset of University of
Brasilia’s authoring could motivate a whole new batch of research in the area.

In summary, this work has just scratched the surface of the potential surrounding the area
of visual attention and quality of experience, an area so new and which motivates so many ideas
towards a future where fully immersive media will be widespread. We can expect more and more
research in the field as the new area becomes increasingly important and the user experience and
retention more relevant as the amount of information being transmitted through immersive media
increases.
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Chapter 6

Appendix

Table 6.1: Full information table for BMS360 without saliency inclusion.
Reference Video Distorted Video Mos height width psnr msssim vmaf
G1BajaCalifonia_3840x2160_fps23.976 G1BajaCalifonia_ERP_3840x2160_fps23.976_qp27_41186k 64.942 2160 3840 39.988 0.998 91.863
G1BajaCalifonia_3840x2160_fps23.976 G1BajaCalifonia_ERP_3840x2160_fps23.976_qp37_12633k 60.041 2160 3840 33.600 0.983 64.470
G1BajaCalifonia_3840x2160_fps23.976 G1BajaCalifonia_ERP_3840x2160_fps23.976_qp42_5570k 47.554 2160 3840 30.745 0.956 44.335
G1BikingToWork_3840x2160_fps23.976 G1BikingToWork_ERP_3840x2160_fps23.976_qp27_12306k 55.828 2160 3840 42.450 0.997 95.194
G1BikingToWork_3840x2160_fps23.976 G1BikingToWork_ERP_3840x2160_fps23.976_qp37_3596k 54.019 2160 3840 37.138 0.984 75.539
G1BikingToWork_3840x2160_fps23.976 G1BikingToWork_ERP_3840x2160_fps23.976_qp42_1855k 36.841 2160 3840 34.200 0.965 58.895
G2AstonVillaGoal_3840x2048_fps24 G2AstonVillaGoal_ERP_3840x2048_fps24_qp27_11596k 72.924 2048 3840 38.892 0.998 90.817
G2AstonVillaGoal_3840x2048_fps24 G2AstonVillaGoal_ERP_3840x2048_fps24_qp37_2141k 47.285 2048 3840 33.601 0.990 75.628
G2AstonVillaGoal_3840x2048_fps24 G2AstonVillaGoal_ERP_3840x2048_fps24_qp42_872k 25.691 2048 3840 30.922 0.977 61.476
G3BackcountrySkiing_3840x1920_fps25 G3BackcountrySkiing_ERP_3840x1920_fps25_qp27_19131k 68.007 1920 3840 40.336 0.998 91.464
G3BackcountrySkiing_3840x1920_fps25 G3BackcountrySkiing_ERP_3840x1920_fps25_qp37_4153k 63.254 1920 3840 34.765 0.991 75.065
G3BackcountrySkiing_3840x1920_fps25 G3BackcountrySkiing_ERP_3840x1920_fps25_qp42_1608k 44.197 1920 3840 31.881 0.982 56.697
G3GetYoGurl_3840x1920_fps29.97 G3GetYoGurl_ERP_3840x1920_fps29.97_qp27_14177k 62.896 1920 3840 41.726 0.998 94.595
G3GetYoGurl_3840x1920_fps29.97 G3GetYoGurl_ERP_3840x1920_fps29.97_qp37_3395k 56.638 1920 3840 36.445 0.991 81.489
G3GetYoGurl_3840x1920_fps29.97 G3GetYoGurl_ERP_3840x1920_fps29.97_qp42_1688k 37.557 1920 3840 33.847 0.982 71.522
G2ForgottenBook_7680x3840_fps30 G2ForgottenBook_ERP_7680x3840_fps30_qp27_41804k 59.033 3840 7680 41.972 0.998 92.490
G4WingsuitFlight_3840x2048_fps29.97 G4WingsuitFlight_ERP_3840x2048_fps29.97_qp27_12696k 56.289 2048 3840 42.370 0.998 94.392
G5EbinShader_7168x3584_fps30 G5EbinShader_ERP_7168x3584_fps30_qp27_31040k 70.924 3584 7168 42.855 0.999 88.110
G5Neighborhood_3840x1920_fps23.976 G5Neighborhood_ERP_3840x1920_fps23.976_qp27_24718k 62.925 1920 3840 39.328 0.998 98.583
G6DragonTale_3840x2160_fps30 G6DragonTale_ERP_3840x2160_fps30_qp27_13868k 72.102 2160 3840 42.475 0.998 93.437
G6GTRDriving_3840x2160_fps30 G6GTRDriving_ERP_3840x2160_fps30_qp27_28748k 68.049 2160 3840 41.353 0.999 96.504
G7DragonCastleAttatck_3840x2048_fps24 G7DragonCastleAttatck_ERP_3840x2048_fps24_qp27_15133k 77.435 2048 3840 42.155 0.998 95.265
G7PressConference_4096x2048_fps30 G7PressConference_ERP_4096x2048_fps30_qp27_4909k 65.319 2048 4096 41.454 0.998 88.344
G8AlpsParagliding_3840x1920_fps25 G8AlpsParagliding_ERP_3840x1920_fps25_qp27_8437k 72.284 1920 3840 40.714 0.997 90.428
G8ANewEmpire_3840x2048_fps29.97 G8ANewEmpire_ERP_3840x2048_fps29.97_qp27_33327k 68.867 2048 3840 40.121 0.998 99.690
G9ConcertLive_4096x2048_fps30 G9ConcertLive_ERP_4096x2048_fps30_qp27_7102k 74.963 2048 4096 47.596 0.999 93.107
G10BoatInPark_4096x2048_fps30 G10BoatInPark_ERP_4096x2048_fps30_qp27_14547k 68.308 2048 4096 40.402 0.997 89.711
G10BuddhaCave_4096x2048_fps30 G10BuddhaCave_ERP_4096x2048_fps30_qp27_1289k 65.164 2048 4096 44.319 0.997 88.013
G10XiaoGuang_4096x2048_fps30 G10XiaoGuang_ERP_4096x2048_fps30_qp27_2502k 70.666 2048 4096 40.622 0.999 92.191
G2ForgottenBook_7680x3840_fps30 G2ForgottenBook_ERP_7680x3840_fps30_qp37_9445k 56.442 3840 7680 36.594 0.989 67.885
G4WingsuitFlight_3840x2048_fps29.97 G4WingsuitFlight_ERP_3840x2048_fps29.97_qp37_3545k 57.062 2048 3840 37.082 0.992 79.073
G5EbinShader_7168x3584_fps30 G5EbinShader_ERP_7168x3584_fps30_qp37_4094k 71.059 3584 7168 37.584 0.995 67.915
G5Neighborhood_3840x1920_fps23.976 G5Neighborhood_ERP_3840x1920_fps23.976_qp37_7721k 59.554 1920 3840 33.347 0.988 77.766
G6DragonTale_3840x2160_fps30 G6DragonTale_ERP_3840x2160_fps30_qp37_3984k 61.631 2160 3840 36.954 0.989 71.995
G6GTRDriving_3840x2160_fps30 G6GTRDriving_ERP_3840x2160_fps30_qp37_8912k 62.608 2160 3840 35.409 0.994 83.600
G7DragonCastleAttatck_3840x2048_fps24 G7DragonCastleAttatck_ERP_3840x2048_fps24_qp37_4272k 62.215 2048 3840 36.454 0.991 75.216
G7PressConference_4096x2048_fps30 G7PressConference_ERP_4096x2048_fps30_qp37_1038k 43.919 2048 4096 37.300 0.993 73.822
G8AlpsParagliding_3840x1920_fps25 G8AlpsParagliding_ERP_3840x1920_fps25_qp37_1995k 52.499 1920 3840 35.139 0.990 71.184
G8ANewEmpire_3840x2048_fps29.97 G8ANewEmpire_ERP_3840x2048_fps29.97_qp37_10885k 61.291 2048 3840 33.914 0.988 79.572
G9ConcertLive_4096x2048_fps30 G9ConcertLive_ERP_4096x2048_fps30_qp37_2256k 61.501 2048 4096 41.814 0.992 76.633
G10BoatInPark_4096x2048_fps30 G10BoatInPark_ERP_4096x2048_fps30_qp37_3270k 58.305 2048 4096 35.661 0.986 71.708
G10BuddhaCave_4096x2048_fps30 G10BuddhaCave_ERP_4096x2048_fps30_qp37_236k 34.698 2048 4096 40.105 0.990 69.059
G10XiaoGuang_4096x2048_fps30 G10XiaoGuang_ERP_4096x2048_fps30_qp37_644k 45.178 2048 4096 36.256 0.996 83.191
G2ForgottenBook_7680x3840_fps30 G2ForgottenBook_ERP_7680x3840_fps30_qp42_4374k 41.642 3840 7680 33.739 0.967 46.469
G4WingsuitFlight_3840x2048_fps29.97 G4WingsuitFlight_ERP_3840x2048_fps29.97_qp42_1877k 41.085 2048 3840 34.179 0.984 63.753
G5EbinShader_7168x3584_fps30 G5EbinShader_ERP_7168x3584_fps30_qp42_1383k 56.605 3584 7168 34.643 0.983 43.739
G5Neighborhood_3840x1920_fps23.976 G5Neighborhood_ERP_3840x1920_fps23.976_qp42_3894k 50.164 1920 3840 30.215 0.971 58.551
G6DragonTale_3840x2160_fps30 G6DragonTale_ERP_3840x2160_fps30_qp42_2057k 38.656 2160 3840 34.046 0.974 51.099
G6GTRDriving_3840x2160_fps30 G6GTRDriving_ERP_3840x2160_fps30_qp42_4245k 52.463 2160 3840 32.633 0.988 71.596
G7DragonCastleAttatck_3840x2048_fps24 G7DragonCastleAttatck_ERP_3840x2048_fps24_qp42_2084k 46.729 2048 3840 33.613 0.977 56.169
G7PressConference_4096x2048_fps30 G7PressConference_ERP_4096x2048_fps30_qp42_509k 22.707 2048 4096 34.170 0.984 59.569
G8AlpsParagliding_3840x1920_fps25 G8AlpsParagliding_ERP_3840x1920_fps25_qp42_964k 37.148 1920 3840 31.929 0.975 51.891
G8ANewEmpire_3840x2048_fps29.97 G8ANewEmpire_ERP_3840x2048_fps29.97_qp42_5571k 50.376 2048 3840 30.904 0.970 60.319
G9ConcertLive_4096x2048_fps30 G9ConcertLive_ERP_4096x2048_fps30_qp42_1246k 43.130 2048 4096 38.627 0.980 60.741
G10BoatInPark_4096x2048_fps30 G10BoatInPark_ERP_4096x2048_fps30_qp42_1507k 40.372 2048 4096 33.153 0.971 55.883
G10BuddhaCave_4096x2048_fps30 G10BuddhaCave_ERP_4096x2048_fps30_qp42_170k 20.475 2048 4096 36.452 0.941 44.491
G10XiaoGuang_4096x2048_fps30 G10XiaoGuang_ERP_4096x2048_fps30_qp42_393k 25.278 2048 4096 32.241 0.975 68.229
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Table 6.2: Full information table for Cubepadding without saliency inclusion.
Reference Video Distorted Video Mos height width psnr msssim vmaf
G10BoatInPark_4096x2048_fps30 G10BoatInPark_ERP_4096x2048_fps30_qp27_14547k 68.308 2048 4096 40.402 0.997 89.711
G10BuddhaCave_4096x2048_fps30 G10BuddhaCave_ERP_4096x2048_fps30_qp27_1289k 65.164 2048 4096 44.319 0.997 88.013
G10XiaoGuang_4096x2048_fps30 G10XiaoGuang_ERP_4096x2048_fps30_qp27_2502k 70.666 2048 4096 40.622 0.999 92.191
G1AbandonedKingdom_7680x3840_fps30 G1AbandonedKingdom_ERP_7680x3840_fps30_qp27_45406k 68.452 3840 7680 41.841 0.999 91.781
G1Aerial_7680x3840_fps25 G1Aerial_ERP_7680x3840_fps25_qp27_18646k 80.186 3840 7680 41.809 0.998 87.243
G2ForgottenBook_7680x3840_fps30 G2ForgottenBook_ERP_7680x3840_fps30_qp27_41804k 59.033 3840 7680 41.972 0.998 92.490
G2FormationPace_7680x3840_fps29.97 G2FormationPace_ERP_7680x3840_fps29.97_qp27_15300k 76.729 3840 7680 45.795 0.998 88.911
G3BackcountrySkiing_3840x1920_fps25 G3BackcountrySkiing_ERP_3840x1920_fps25_qp27_19131k 64.916 1920 3840 40.336 0.998 91.464
G3GetYoGurl_3840x1920_fps29.97 G3GetYoGurl_ERP_3840x1920_fps29.97_qp27_14177k 60.037 1920 3840 41.726 0.998 94.595
G4CliffsideMansion_7680x3840_fps30 G4CliffsideMansion_ERP_7680x3840_fps30_qp27_21044k 72.270 3840 7680 43.840 0.998 93.426
G5Neighborhood_3840x1920_fps23.976 G5Neighborhood_ERP_3840x1920_fps23.976_qp27_24718k 62.925 1920 3840 39.328 0.998 98.583
G5ResistMarch_3840x1920_fps29.97 G5ResistMarch_ERP_3840x1920_fps29.97_qp27_19898k 72.314 1920 3840 38.205 0.999 93.211
G6AngelFallsClimbing_7680x3840_fps29.97 G6AngelFallsClimbing_ERP_7680x3840_fps29.97_qp27_54581k 88.617 3840 7680 39.041 0.999 90.635
G7OrchestraOfSpheres_7680x3840_fps24 G7OrchestraOfSpheres_ERP_7680x3840_fps24_qp27_4824k 81.154 3840 7680 48.172 0.999 90.710
G8DivingWithSharks_7680x3840_fps29.97 G8DivingWithSharks_ERP_7680x3840_fps29.97_qp27_42160k 72.322 3840 7680 44.434 0.999 85.266
G8YourMan_7680x3840_fps29.97 G8YourMan_ERP_7680x3840_fps29.97_qp27_10412k 74.758 3840 7680 43.695 0.999 90.592
G9ConcertLive_4096x2048_fps30 G9ConcertLive_ERP_4096x2048_fps30_qp27_7102k 74.963 2048 4096 47.596 0.999 93.107
G9DrivingInCity_3840x1920_fps30 G9DrivingInCity_ERP_3840x1920_fps30_qp27_11315k 70.135 1920 3840 39.608 0.998 90.854
G4HachaWaterfall_3840x1920_fps29.97 G4HachaWaterfall_ERP_3840x1920_fps29.97_qp27_27203k 71.501 1920 3840 39.230 0.999 91.684
G7UcaimaWaterfall_3840x1920_fps29.97 G7UcaimaWaterfall_ERP_3840x1920_fps29.97_qp27_46307k 72.326 1920 3840 37.733 0.999 91.983
G10BoatInPark_4096x2048_fps30 G10BoatInPark_ERP_4096x2048_fps30_qp37_3270k 58.305 2048 4096 35.661 0.986 71.708
G10BuddhaCave_4096x2048_fps30 G10BuddhaCave_ERP_4096x2048_fps30_qp37_236k 34.698 2048 4096 40.105 0.990 69.059
G10XiaoGuang_4096x2048_fps30 G10XiaoGuang_ERP_4096x2048_fps30_qp37_644k 45.178 2048 4096 36.256 0.996 83.191
G1AbandonedKingdom_7680x3840_fps30 G1AbandonedKingdom_ERP_7680x3840_fps30_qp37_9283k 58.828 3840 7680 36.466 0.994 69.652
G1Aerial_7680x3840_fps25 G1Aerial_ERP_7680x3840_fps25_qp37_3307k 61.639 3840 7680 36.248 0.990 62.317
G2ForgottenBook_7680x3840_fps30 G2ForgottenBook_ERP_7680x3840_fps30_qp37_9445k 56.442 3840 7680 36.594 0.989 67.885
G2FormationPace_7680x3840_fps29.97 G2FormationPace_ERP_7680x3840_fps29.97_qp37_3823k 59.280 3840 7680 41.177 0.992 75.882
G3BackcountrySkiing_3840x1920_fps25 G3BackcountrySkiing_ERP_3840x1920_fps25_qp37_4153k 60.379 1920 3840 34.765 0.991 75.065
G3GetYoGurl_3840x1920_fps29.97 G3GetYoGurl_ERP_3840x1920_fps29.97_qp37_3395k 54.064 1920 3840 36.445 0.991 81.489
G4CliffsideMansion_7680x3840_fps30 G4CliffsideMansion_ERP_7680x3840_fps30_qp37_4698k 61.179 3840 7680 38.414 0.988 74.992
G5Neighborhood_3840x1920_fps23.976 G5Neighborhood_ERP_3840x1920_fps23.976_qp37_7721k 59.554 1920 3840 33.347 0.988 77.766
G5ResistMarch_3840x1920_fps29.97 G5ResistMarch_ERP_3840x1920_fps29.97_qp37_3644k 59.341 1920 3840 31.775 0.996 79.477
G6AngelFallsClimbing_7680x3840_fps29.97 G6AngelFallsClimbing_ERP_7680x3840_fps29.97_qp37_5981k 77.647 3840 7680 33.508 0.994 71.398
G7OrchestraOfSpheres_7680x3840_fps24 G7OrchestraOfSpheres_ERP_7680x3840_fps24_qp37_1330k 50.493 3840 7680 43.351 0.992 78.120
G8DivingWithSharks_7680x3840_fps29.97 G8DivingWithSharks_ERP_7680x3840_fps29.97_qp27_42160k 72.322 3840 7680 44.434 0.999 85.266
G8YourMan_7680x3840_fps29.97 G8YourMan_ERP_7680x3840_fps29.97_qp37_2519k 57.932 3840 7680 39.679 0.995 78.506
G9ConcertLive_4096x2048_fps30 G9ConcertLive_ERP_4096x2048_fps30_qp37_2256k 61.501 2048 4096 41.814 0.992 76.633
G9DrivingInCity_3840x1920_fps30 G9DrivingInCity_ERP_3840x1920_fps30_qp37_2350k 47.478 1920 3840 35.675 0.992 76.687
G4HachaWaterfall_3840x1920_fps29.97 G4HachaWaterfall_ERP_3840x1920_fps29.97_qp37_6897k 62.788 1920 3840 33.265 0.994 74.363
G7UcaimaWaterfall_3840x1920_fps29.97 G7UcaimaWaterfall_ERP_3840x1920_fps29.97_qp37_13551k 67.724 1920 3840 30.901 0.993 67.835
G10BoatInPark_4096x2048_fps30 G10BoatInPark_ERP_4096x2048_fps30_qp42_1507k 40.372 2048 4096 33.153 0.971 55.883
G10BuddhaCave_4096x2048_fps30 G10BuddhaCave_ERP_4096x2048_fps30_qp42_170k 20.475 2048 4096 36.452 0.941 44.491
G10XiaoGuang_4096x2048_fps30 G10XiaoGuang_ERP_4096x2048_fps30_qp42_393k 25.278 2048 4096 32.241 0.975 68.229
G1AbandonedKingdom_7680x3840_fps30 G1AbandonedKingdom_ERP_7680x3840_fps30_qp42_4140k 48.628 3840 7680 33.634 0.980 47.491
G1Aerial_7680x3840_fps25 G1Aerial_ERP_7680x3840_fps25_qp42_1216k 54.221 3840 7680 33.329 0.965 39.949
G2ForgottenBook_7680x3840_fps30 G2ForgottenBook_ERP_7680x3840_fps30_qp42_4374k 41.642 3840 7680 33.739 0.967 46.469
G2FormationPace_7680x3840_fps29.97 G2FormationPace_ERP_7680x3840_fps29.97_qp42_1749k 36.226 3840 7680 38.728 0.984 65.679
G3BackcountrySkiing_3840x1920_fps25 G3BackcountrySkiing_ERP_3840x1920_fps25_qp42_1608k 42.188 1920 3840 31.881 0.982 56.697
G3GetYoGurl_3840x1920_fps29.97 G3GetYoGurl_ERP_3840x1920_fps29.97_qp42_1688k 35.850 1920 3840 33.847 0.982 71.522
G4CliffsideMansion_7680x3840_fps30 G4CliffsideMansion_ERP_7680x3840_fps30_qp42_2239k 41.513 3840 7680 35.484 0.966 58.012
G5Neighborhood_3840x1920_fps23.976 G5Neighborhood_ERP_3840x1920_fps23.976_qp42_3894k 50.164 1920 3840 30.215 0.971 58.551
G5ResistMarch_3840x1920_fps29.97 G5ResistMarch_ERP_3840x1920_fps29.97_qp42_1484k 44.988 1920 3840 28.832 0.991 66.122
G6AngelFallsClimbing_7680x3840_fps29.97 G6AngelFallsClimbing_ERP_7680x3840_fps29.97_qp42_1663k 34.241 3840 7680 27.686 0.960 30.777
G7OrchestraOfSpheres_7680x3840_fps24 G7OrchestraOfSpheres_ERP_7680x3840_fps24_qp42_683k 22.367 3840 7680 39.933 0.976 66.186
G8DivingWithSharks_7680x3840_fps29.97 G8DivingWithSharks_ERP_7680x3840_fps29.97_qp42_5645k 49.405 3840 7680 36.352 0.986 43.541
G8YourMan_7680x3840_fps29.97 G8YourMan_ERP_7680x3840_fps29.97_qp42_1193k 34.826 3840 7680 36.452 0.985 66.267
G9ConcertLive_4096x2048_fps30 G9ConcertLive_ERP_4096x2048_fps30_qp42_1246k 43.130 2048 4096 38.627 0.980 60.741
G9DrivingInCity_3840x1920_fps30 G9DrivingInCity_ERP_3840x1920_fps30_qp42_1069k 33.589 1920 3840 33.132 0.983 61.944
G4HachaWaterfall_3840x1920_fps29.97 G4HachaWaterfall_ERP_3840x1920_fps29.97_qp42_2776k 60.077 1920 3840 30.687 0.985 59.734
G7UcaimaWaterfall_3840x1920_fps29.97 G7UcaimaWaterfall_ERP_3840x1920_fps29.97_qp42_5233k 56.358 1920 3840 27.997 0.982 47.292
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Table 6.3: Full information table for BMS360 with saliency inclusion.
Reference Video Distorted Video Mos height width psnr msssim vmaf
G1BajaCalifonia_3840x2160_fps23.976_preprocess G1BajaCalifonia_ERP_3840x2160_fps23.976_qp27_41186k_preprocess 64.942 2160 3840 46.399 0.999 95.550
G1BajaCalifonia_3840x2160_fps23.976_preprocess G1BajaCalifonia_ERP_3840x2160_fps23.976_qp37_12633k_preprocess 60.041 2160 3840 40.371 0.993 81.456
G1BajaCalifonia_3840x2160_fps23.976_preprocess G1BajaCalifonia_ERP_3840x2160_fps23.976_qp42_5570k_preprocess 47.554 2160 3840 37.607 0.982 68.394
G1BikingToWork_3840x2160_fps23.976_preprocess G1BikingToWork_ERP_3840x2160_fps23.976_qp27_12306k_preprocess 55.828 2160 3840 47.686 0.999 96.595
G1BikingToWork_3840x2160_fps23.976_preprocess G1BikingToWork_ERP_3840x2160_fps23.976_qp37_3596k_preprocess 54.019 2160 3840 42.729 0.995 83.870
G1BikingToWork_3840x2160_fps23.976_preprocess G1BikingToWork_ERP_3840x2160_fps23.976_qp42_1855k_preprocess 36.841 2160 3840 39.830 0.989 70.525
G2AstonVillaGoal_3840x2048_fps24_preprocess G2AstonVillaGoal_ERP_3840x2048_fps24_qp27_11596k_preprocess 72.924 2048 3840 44.531 0.999 93.681
G2AstonVillaGoal_3840x2048_fps24_preprocess G2AstonVillaGoal_ERP_3840x2048_fps24_qp37_2141k_preprocess 47.285 2048 3840 39.350 0.997 83.293
G2AstonVillaGoal_3840x2048_fps24_preprocess G2AstonVillaGoal_ERP_3840x2048_fps24_qp42_872k_preprocess 25.691 2048 3840 36.603 0.992 71.703
G3BackcountrySkiing_3840x1920_fps25_preprocess G3BackcountrySkiing_ERP_3840x1920_fps25_qp27_19131k_preprocess 68.007 1920 3840 43.918 0.999 94.390
G3BackcountrySkiing_3840x1920_fps25_preprocess G3BackcountrySkiing_ERP_3840x1920_fps25_qp37_4153k_preprocess 63.254 1920 3840 38.283 0.998 81.577
G3BackcountrySkiing_3840x1920_fps25_preprocess G3BackcountrySkiing_ERP_3840x1920_fps25_qp42_1608k_preprocess 44.197 1920 3840 35.397 0.995 66.433
G3GetYoGurl_3840x1920_fps29.97_preprocess G3GetYoGurl_ERP_3840x1920_fps29.97_qp27_14177k_preprocess 62.896 1920 3840 46.040 0.999 95.331
G3GetYoGurl_3840x1920_fps29.97_preprocess G3GetYoGurl_ERP_3840x1920_fps29.97_qp37_3395k_preprocess 56.638 1920 3840 40.992 0.996 85.604
G3GetYoGurl_3840x1920_fps29.97_preprocess G3GetYoGurl_ERP_3840x1920_fps29.97_qp42_1688k_preprocess 37.557 1920 3840 38.391 0.991 76.690
G2ForgottenBook_7680x3840_fps30_preprocess G2ForgottenBook_ERP_7680x3840_fps30_qp27_41804k_preprocess 59.033 3840 7680 45.793 0.999 93.406
G4WingsuitFlight_3840x2048_fps29.97_preprocess G4WingsuitFlight_ERP_3840x2048_fps29.97_qp27_12696k_preprocess 56.289 2048 3840 46.293 0.999 95.926
G5EbinShader_7168x3584_fps30_preprocess G5EbinShader_ERP_7168x3584_fps30_qp27_31040k_preprocess 70.924 3584 7168 45.641 1.000 90.652
G5Neighborhood_3840x1920_fps23.976_preprocess G5Neighborhood_ERP_3840x1920_fps23.976_qp27_24718k_preprocess 62.925 1920 3840 43.634 0.999 97.222
G6DragonTale_3840x2160_fps30_preprocess G6DragonTale_ERP_3840x2160_fps30_qp27_13868k_preprocess 72.102 2160 3840 46.007 0.999 94.477
G6GTRDriving_3840x2160_fps30_preprocess G6GTRDriving_ERP_3840x2160_fps30_qp27_28748k_preprocess 68.049 2160 3840 46.119 1.000 98.063
G7DragonCastleAttatck_3840x2048_fps24_preprocess G7DragonCastleAttatck_ERP_3840x2048_fps24_qp27_15133k_preprocess 77.435 2048 3840 46.525 0.999 95.918
G7PressConference_4096x2048_fps30_preprocess G7PressConference_ERP_4096x2048_fps30_qp27_4909k_preprocess 65.319 2048 4096 46.124 0.999 91.850
G8AlpsParagliding_3840x1920_fps25_preprocess G8AlpsParagliding_ERP_3840x1920_fps25_qp27_8437k_preprocess 72.284 1920 3840 45.921 0.999 93.279
G8ANewEmpire_3840x2048_fps29.97_preprocess G8ANewEmpire_ERP_3840x2048_fps29.97_qp27_33327k_preprocess 68.867 2048 3840 43.429 0.999 99.327
G9ConcertLive_4096x2048_fps30_preprocess G9ConcertLive_ERP_4096x2048_fps30_qp27_7102k_preprocess 74.963 2048 4096 50.979 0.999 93.614
G10BoatInPark_4096x2048_fps30_preprocess G10BoatInPark_ERP_4096x2048_fps30_qp27_14547k_preprocess 68.308 2048 4096 46.068 0.999 92.672
G10BuddhaCave_4096x2048_fps30_preprocess G10BuddhaCave_ERP_4096x2048_fps30_qp27_1289k_preprocess 65.164 2048 4096 49.897 0.999 90.696
G10XiaoGuang_4096x2048_fps30_preprocess G10XiaoGuang_ERP_4096x2048_fps30_qp27_2502k_preprocess 70.666 2048 4096 44.266 0.999 93.564
G2ForgottenBook_7680x3840_fps30_preprocess G2ForgottenBook_ERP_7680x3840_fps30_qp37_9445k_preprocess 56.442 3840 7680 40.779 0.995 75.925
G4WingsuitFlight_3840x2048_fps29.97_preprocess G4WingsuitFlight_ERP_3840x2048_fps29.97_qp37_3545k_preprocess 57.062 2048 3840 41.244 0.997 84.392
G5EbinShader_7168x3584_fps30_preprocess G5EbinShader_ERP_7168x3584_fps30_qp37_4094k_preprocess 71.059 3584 7168 40.563 0.998 74.898
G5Neighborhood_3840x1920_fps23.976_preprocess G5Neighborhood_ERP_3840x1920_fps23.976_qp37_7721k_preprocess 59.554 1920 3840 37.815 0.995 81.223
G6DragonTale_3840x2160_fps30_preprocess G6DragonTale_ERP_3840x2160_fps30_qp37_3984k_preprocess 61.631 2160 3840 40.612 0.996 78.450
G6GTRDriving_3840x2160_fps30_preprocess G6GTRDriving_ERP_3840x2160_fps30_qp37_8912k_preprocess 62.608 2160 3840 40.303 0.998 88.395
G7DragonCastleAttatck_3840x2048_fps24_preprocess G7DragonCastleAttatck_ERP_3840x2048_fps24_qp37_4272k_preprocess 62.215 2048 3840 41.117 0.996 81.557
G7PressConference_4096x2048_fps30_preprocess G7PressConference_ERP_4096x2048_fps30_qp37_1038k_preprocess 43.919 2048 4096 42.001 0.997 80.419
G8AlpsParagliding_3840x1920_fps25_preprocess G8AlpsParagliding_ERP_3840x1920_fps25_qp37_1995k_preprocess 52.499 1920 3840 40.580 0.996 79.194
G8ANewEmpire_3840x2048_fps29.97_preprocess G8ANewEmpire_ERP_3840x2048_fps29.97_qp37_10885k_preprocess 61.291 2048 3840 37.356 0.995 82.878
G9ConcertLive_4096x2048_fps30_preprocess G9ConcertLive_ERP_4096x2048_fps30_qp37_2256k_preprocess 61.501 2048 4096 45.245 0.997 80.484
G10BoatInPark_4096x2048_fps30_preprocess G10BoatInPark_ERP_4096x2048_fps30_qp37_3270k_preprocess 58.305 2048 4096 41.495 0.996 82.017
G10BuddhaCave_4096x2048_fps30_preprocess G10BuddhaCave_ERP_4096x2048_fps30_qp37_236k_preprocess 34.698 2048 4096 44.705 0.998 74.275
G10XiaoGuang_4096x2048_fps30_preprocess G10XiaoGuang_ERP_4096x2048_fps30_qp37_644k_preprocess 45.178 2048 4096 39.467 0.997 84.684
G2ForgottenBook_7680x3840_fps30_preprocess G2ForgottenBook_ERP_7680x3840_fps30_qp42_4374k_preprocess 41.642 3840 7680 38.044 0.986 57.704
G4WingsuitFlight_3840x2048_fps29.97_preprocess G4WingsuitFlight_ERP_3840x2048_fps29.97_qp42_1877k_preprocess 41.085 2048 3840 38.398 0.993 71.732
G5EbinShader_7168x3584_fps30_preprocess G5EbinShader_ERP_7168x3584_fps30_qp42_1383k_preprocess 56.605 3584 7168 37.822 0.993 53.884
G5Neighborhood_3840x1920_fps23.976_preprocess G5Neighborhood_ERP_3840x1920_fps23.976_qp42_3894k_preprocess 50.164 1920 3840 34.752 0.987 64.662
G6DragonTale_3840x2160_fps30_preprocess G6DragonTale_ERP_3840x2160_fps30_qp42_2057k_preprocess 38.656 2160 3840 37.772 0.990 60.930
G6GTRDriving_3840x2160_fps30_preprocess G6GTRDriving_ERP_3840x2160_fps30_qp42_4245k_preprocess 52.463 2160 3840 37.538 0.995 78.522
G7DragonCastleAttatck_3840x2048_fps24_preprocess G7DragonCastleAttatck_ERP_3840x2048_fps24_qp42_2084k_preprocess 46.729 2048 3840 38.345 0.990 65.862
G7PressConference_4096x2048_fps30_preprocess G7PressConference_ERP_4096x2048_fps30_qp42_509k_preprocess 22.707 2048 4096 38.719 0.991 67.071
G8AlpsParagliding_3840x1920_fps25_preprocess G8AlpsParagliding_ERP_3840x1920_fps25_qp42_964k_preprocess 37.148 1920 3840 37.502 0.990 63.081
G8ANewEmpire_3840x2048_fps29.97_preprocess G8ANewEmpire_ERP_3840x2048_fps29.97_qp42_5571k_preprocess 50.376 2048 3840 34.362 0.986 65.558
G9ConcertLive_4096x2048_fps30_preprocess G9ConcertLive_ERP_4096x2048_fps30_qp42_1246k_preprocess 43.130 2048 4096 42.100 0.992 66.679
G10BoatInPark_4096x2048_fps30_preprocess G10BoatInPark_ERP_4096x2048_fps30_qp42_1507k_preprocess 40.372 2048 4096 39.018 0.992 70.791
G10BuddhaCave_4096x2048_fps30_preprocess G10BuddhaCave_ERP_4096x2048_fps30_qp42_170k_preprocess 20.475 2048 4096 40.465 0.990 50.016
G10XiaoGuang_4096x2048_fps30_preprocess G10XiaoGuang_ERP_4096x2048_fps30_qp42_393k_preprocess 25.278 2048 4096 35.335 0.984 68.685
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Table 6.4: Full information table for Cubepadding with saliency inclusion.
Reference Video Distorted Video Mos height width psnr msssim vmaf
G10BoatInPark_4096x2048_fps30_preprocess G10BoatInPark_ERP_4096x2048_fps30_qp27_14547k_preprocess 68.308 2048 4096 43.745 0.999 92.061
G10BuddhaCave_4096x2048_fps30_preprocess G10BuddhaCave_ERP_4096x2048_fps30_qp27_1289k_preprocess 65.164 2048 4096 47.405 0.999 89.868
G10XiaoGuang_4096x2048_fps30_preprocess G10XiaoGuang_ERP_4096x2048_fps30_qp27_2502k_preprocess 70.666 2048 4096 44.133 0.999 93.337
G1AbandonedKingdom_7680x3840_fps30_preprocess G1AbandonedKingdom_ERP_7680x3840_fps30_qp27_45406k_preprocess 68.452 3840 7680 45.368 0.999 94.901
G1Aerial_7680x3840_fps25_preprocess G1Aerial_ERP_7680x3840_fps25_qp27_18646k_preprocess 80.186 3840 7680 46.111 0.999 91.746
G2ForgottenBook_7680x3840_fps30_preprocess G2ForgottenBook_ERP_7680x3840_fps30_qp27_41804k_preprocess 59.033 3840 7680 45.029 0.999 94.342
G2FormationPace_7680x3840_fps29.97_preprocess G2FormationPace_ERP_7680x3840_fps29.97_qp27_15300k_preprocess 76.729 3840 7680 48.271 0.999 91.968
G3BackcountrySkiing_3840x1920_fps25_preprocess G3BackcountrySkiing_ERP_3840x1920_fps25_qp27_19131k_preprocess 64.916 1920 3840 43.974 0.999 96.179
G3GetYoGurl_3840x1920_fps29.97_preprocess G3GetYoGurl_ERP_3840x1920_fps29.97_qp27_14177k_preprocess 60.037 1920 3840 44.606 0.999 96.389
G4CliffsideMansion_7680x3840_fps30_preprocess G4CliffsideMansion_ERP_7680x3840_fps30_qp27_21044k_preprocess 72.270 3840 7680 46.924 0.999 95.918
G5Neighborhood_3840x1920_fps23.976_preprocess G5Neighborhood_ERP_3840x1920_fps23.976_qp27_24718k_preprocess 62.925 1920 3840 43.364 0.999 98.906
G5ResistMarch_3840x1920_fps29.97_preprocess G5ResistMarch_ERP_3840x1920_fps29.97_qp27_19898k_preprocess 72.314 1920 3840 41.311 1.000 95.005
G6AngelFallsClimbing_7680x3840_fps29.97_preprocess G6AngelFallsClimbing_ERP_7680x3840_fps29.97_qp27_54581k_preprocess 88.617 3840 7680 42.339 0.999 92.676
G7OrchestraOfSpheres_7680x3840_fps24_preprocess G7OrchestraOfSpheres_ERP_7680x3840_fps24_qp27_4824k_preprocess 81.154 3840 7680 50.276 0.999 92.282
G8DivingWithSharks_7680x3840_fps29.97_preprocess G8DivingWithSharks_ERP_7680x3840_fps29.97_qp27_42160k_preprocess 72.322 3840 7680 49.173 1.000 92.132
G8YourMan_7680x3840_fps29.97_preprocess G8YourMan_ERP_7680x3840_fps29.97_qp27_10412k_preprocess 74.758 3840 7680 45.699 0.999 92.310
G9ConcertLive_4096x2048_fps30_preprocess G9ConcertLive_ERP_4096x2048_fps30_qp27_7102k_preprocess 74.963 2048 4096 50.630 0.999 93.878
G9DrivingInCity_3840x1920_fps30_preprocess G9DrivingInCity_ERP_3840x1920_fps30_qp27_11315k_preprocess 70.135 1920 3840 43.034 0.999 93.680
G4HachaWaterfall_3840x1920_fps29.97_preprocess G4HachaWaterfall_ERP_3840x1920_fps29.97_qp27_27203k_preprocess 71.501 1920 3840 43.055 0.999 94.052
G7UcaimaWaterfall_3840x1920_fps29.97_preprocess G7UcaimaWaterfall_ERP_3840x1920_fps29.97_qp27_46307k_preprocess 72.326 1920 3840 41.330 0.999 93.752
G10BoatInPark_4096x2048_fps30_preprocess G10BoatInPark_ERP_4096x2048_fps30_qp37_3270k_preprocess 58.305 2048 4096 39.034 0.994 78.515
G10BuddhaCave_4096x2048_fps30_preprocess G10BuddhaCave_ERP_4096x2048_fps30_qp37_236k_preprocess 34.698 2048 4096 42.662 0.996 71.620
G10XiaoGuang_4096x2048_fps30_preprocess G10XiaoGuang_ERP_4096x2048_fps30_qp37_644k_preprocess 45.178 2048 4096 39.501 0.997 84.635
G1AbandonedKingdom_7680x3840_fps30_preprocess G1AbandonedKingdom_ERP_7680x3840_fps30_qp37_9283k_preprocess 58.828 3840 7680 40.232 0.996 78.298
G1Aerial_7680x3840_fps25_preprocess G1Aerial_ERP_7680x3840_fps25_qp37_3307k_preprocess 61.639 3840 7680 40.983 0.996 74.717
G2ForgottenBook_7680x3840_fps30_preprocess G2ForgottenBook_ERP_7680x3840_fps30_qp37_9445k_preprocess 56.442 3840 7680 39.926 0.993 75.075
G2FormationPace_7680x3840_fps29.97_preprocess G2FormationPace_ERP_7680x3840_fps29.97_qp37_3823k_preprocess 59.280 3840 7680 43.844 0.996 81.879
G3BackcountrySkiing_3840x1920_fps25_preprocess G3BackcountrySkiing_ERP_3840x1920_fps25_qp37_4153k_preprocess 60.379 1920 3840 38.475 0.997 82.820
G3GetYoGurl_3840x1920_fps29.97_preprocess G3GetYoGurl_ERP_3840x1920_fps29.97_qp37_3395k_preprocess 54.064 1920 3840 39.521 0.995 86.257
G4CliffsideMansion_7680x3840_fps30_preprocess G4CliffsideMansion_ERP_7680x3840_fps30_qp37_4698k_preprocess 61.179 3840 7680 41.834 0.994 83.656
G5Neighborhood_3840x1920_fps23.976_preprocess G5Neighborhood_ERP_3840x1920_fps23.976_qp37_7721k_preprocess 59.554 1920 3840 37.652 0.993 83.100
G5ResistMarch_3840x1920_fps29.97_preprocess G5ResistMarch_ERP_3840x1920_fps29.97_qp37_3644k_preprocess 59.341 1920 3840 35.020 0.997 83.600
G6AngelFallsClimbing_7680x3840_fps29.97_preprocess G6AngelFallsClimbing_ERP_7680x3840_fps29.97_qp37_5981k_preprocess 77.647 3840 7680 36.970 0.997 77.744
G7OrchestraOfSpheres_7680x3840_fps24_preprocess G7OrchestraOfSpheres_ERP_7680x3840_fps24_qp37_1330k_preprocess 50.493 3840 7680 45.562 0.996 81.545
G8DivingWithSharks_7680x3840_fps29.97_preprocess G8DivingWithSharks_ERP_7680x3840_fps29.97_qp27_42160k_preprocess 72.322 3840 7680 49.173 1.000 92.132
G8YourMan_7680x3840_fps29.97_preprocess G8YourMan_ERP_7680x3840_fps29.97_qp37_2519k_preprocess 57.932 3840 7680 41.816 0.997 81.446
G9ConcertLive_4096x2048_fps30_preprocess G9ConcertLive_ERP_4096x2048_fps30_qp37_2256k_preprocess 61.501 2048 4096 44.997 0.996 80.652
G9DrivingInCity_3840x1920_fps30_preprocess G9DrivingInCity_ERP_3840x1920_fps30_qp37_2350k_preprocess 47.478 1920 3840 39.083 0.996 82.337
G4HachaWaterfall_3840x1920_fps29.97_preprocess G4HachaWaterfall_ERP_3840x1920_fps29.97_qp37_6897k_preprocess 62.788 1920 3840 37.380 0.996 81.033
G7UcaimaWaterfall_3840x1920_fps29.97_preprocess G7UcaimaWaterfall_ERP_3840x1920_fps29.97_qp37_13551k_preprocess 67.724 1920 3840 34.586 0.995 75.401
G10BoatInPark_4096x2048_fps30_preprocess G10BoatInPark_ERP_4096x2048_fps30_qp42_1507k_preprocess 40.372 2048 4096 36.489 0.986 65.113
G10BuddhaCave_4096x2048_fps30_preprocess G10BuddhaCave_ERP_4096x2048_fps30_qp42_170k_preprocess 20.475 2048 4096 38.673 0.981 44.700
G10XiaoGuang_4096x2048_fps30_preprocess G10XiaoGuang_ERP_4096x2048_fps30_qp42_393k_preprocess 25.278 2048 4096 35.444 0.984 68.648
G1AbandonedKingdom_7680x3840_fps30_preprocess G1AbandonedKingdom_ERP_7680x3840_fps30_qp42_4140k_preprocess 48.628 3840 7680 37.388 0.987 59.178
G1Aerial_7680x3840_fps25_preprocess G1Aerial_ERP_7680x3840_fps25_qp42_1216k_preprocess 54.221 3840 7680 38.269 0.985 56.183
G2ForgottenBook_7680x3840_fps30_preprocess G2ForgottenBook_ERP_7680x3840_fps30_qp42_4374k_preprocess 41.642 3840 7680 37.131 0.981 55.634
G2FormationPace_7680x3840_fps29.97_preprocess G2FormationPace_ERP_7680x3840_fps29.97_qp42_1749k_preprocess 36.226 3840 7680 41.442 0.992 73.385
G3BackcountrySkiing_3840x1920_fps25_preprocess G3BackcountrySkiing_ERP_3840x1920_fps25_qp42_1608k_preprocess 42.188 1920 3840 35.565 0.993 67.082
G3GetYoGurl_3840x1920_fps29.97_preprocess G3GetYoGurl_ERP_3840x1920_fps29.97_qp42_1688k_preprocess 35.850 1920 3840 36.949 0.989 77.385
G4CliffsideMansion_7680x3840_fps30_preprocess G4CliffsideMansion_ERP_7680x3840_fps30_qp42_2239k_preprocess 41.513 3840 7680 39.041 0.984 70.357
G5Neighborhood_3840x1920_fps23.976_preprocess G5Neighborhood_ERP_3840x1920_fps23.976_qp42_3894k_preprocess 50.164 1920 3840 34.560 0.983 66.375
G5ResistMarch_3840x1920_fps29.97_preprocess G5ResistMarch_ERP_3840x1920_fps29.97_qp42_1484k_preprocess 44.988 1920 3840 32.077 0.994 71.382
G6AngelFallsClimbing_7680x3840_fps29.97_preprocess G6AngelFallsClimbing_ERP_7680x3840_fps29.97_qp42_1663k_preprocess 34.241 3840 7680 30.861 0.975 41.264
G7OrchestraOfSpheres_7680x3840_fps24_preprocess G7OrchestraOfSpheres_ERP_7680x3840_fps24_qp42_683k_preprocess 22.367 3840 7680 42.243 0.988 70.820
G8DivingWithSharks_7680x3840_fps29.97_preprocess G8DivingWithSharks_ERP_7680x3840_fps29.97_qp42_5645k_preprocess 49.405 3840 7680 41.447 0.994 63.060
G8YourMan_7680x3840_fps29.97_preprocess G8YourMan_ERP_7680x3840_fps29.97_qp42_1193k_preprocess 34.826 3840 7680 38.585 0.989 69.119
G9ConcertLive_4096x2048_fps30_preprocess G9ConcertLive_ERP_4096x2048_fps30_qp42_1246k_preprocess 43.130 2048 4096 41.843 0.989 66.591
G9DrivingInCity_3840x1920_fps30_preprocess G9DrivingInCity_ERP_3840x1920_fps30_qp42_1069k_preprocess 33.589 1920 3840 36.503 0.991 69.482
G4HachaWaterfall_3840x1920_fps29.97_preprocess G4HachaWaterfall_ERP_3840x1920_fps29.97_qp42_2776k_preprocess 60.077 1920 3840 34.859 0.990 68.954
G7UcaimaWaterfall_3840x1920_fps29.97_preprocess G7UcaimaWaterfall_ERP_3840x1920_fps29.97_qp42_5233k_preprocess 56.358 1920 3840 31.686 0.987 57.757
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