
Universidade de Brasília
Faculdade de Tecnologia

Kinematic Predictive Control
for Trajectory of a

Robotic Manipulator

Lucas de Moura Quadros

TRABALHO DE GRADUAÇÃO

ENGENHARIA DE CONTROLE E AUTOMAÇÃO

Brasilía

2022

Universidade de Brasília
Faculdade de Tecnologia

Kinematic Predictive Control
for Trajectory of a

Robotic Manipulator

Lucas de Moura Quadros

Trabalho de Graduação submetido como re-
quisito parcial para obtenção do grau de En-
genheiro de Controle e Automação.

Orientador: Prof. Dr. Geovany Araújo Borges

Brasilía

2022

Moura Quadros, Lucas de.
M929k Kinematic Predictive Controlfor Trajectory of aRobotic Manip-

ulator / Lucas de Moura Quadros; orientador Geovany Araújo
Borges. -- Brasilía, 2022.

74 p.

Trabalho de Graduação em Engenharia de Controle e Au-
tomação -- Universidade de Brasília, 2022.

1. kinematics. 2. predictive. 3. control. 4. robot. I. Araújo Borges,
Geovany, orient. II. Título

Universidade de Brasília
Faculdade de Tecnologia

Kinematic Predictive Control
for Trajectory of a

Robotic Manipulator

Lucas de Moura Quadros

Trabalho de Graduação submetido como re-
quisito parcial para obtenção do grau de En-
genheiro de Controle e Automação.

Trabalho aprovado. Brasilía, 11 de Maio de 2022:

Prof. Dr. Geovany Araújo Borges,
UnB/FT/ENE
Orientador

Guilherme Caribe de Carvalho,
UnB/FT/ENM

Examinador interno

José Maurício Santos Torres da Motta,
UnB/FT/ENM

Examinador interno

Brasilía
2022

Dedico este trabalho à minha mãe Valéria Maria
e ao meu pai, Luiz Alberto.

Acknowledgements

AUniversidade de Brasília me proporcionoumuitos aprendizados, no quesito técnico
acadêmicomas também em relação a questões interpessoais, sociais, políticas e até filosóficas.
Penso que esse é o intuito de se haver a Universidade, inclusiva, que valoriza a ciência e
a formação de seus alunos. Foi possível conhecer várias pessoas diferentes, em termos de
personalidade, estilos de vida e professores com diferentes metodologias, abordagens.

Ao Professor Geovany, sou grato por vários ensinamentos sobre robótica inclusive
antes de terme orientado, da sua forma serena e inteligente de lecionar. À professoraMariana,
agradeço bastante por ter se disposto de tão boa vontade de ter aceitado me orientar em
meio à pandemia de Covid-19, por ter sido sempre tão cordial, atenciosa e assertiva nos seus
ensinamentos e proposições. Mesmo no ensino à distância, pude ficar bem confortável para
sanar diferentes dúvidas e explicar origens de certos desafios encontrados.

Ao colega de áreaMarcos Pereira, queme orientou em vários aspectos sobre como tra-
balhar comdiferentes ferramentas necessárias para o trabalho, pela sua simpatia, inteligência
e postura eloquente em ajudar a resolver problemas.

Aos meus colegas e amigos com quem pude ter a oportunidade de conviver ao longo
da graduação, também agradeço bastante pela companhia e pelos aprendizados de pessoas
astutas e inteligentes que puderam me ensinar diferentes modos de pensar e agir.

Abstract

Robotics is a very wide field that involves diverse engineering types, computer science,
mathematics and so on. There are multiple tools that enable to work with robotics, even in
simulation environments. One important aspect of a robotic system is the fulfillment of a
geometrical task, in a specific period of time. Even if the assignment is not feasible within
the requested time, it is important to maintain the satisfaction of the geometrical task.

In this context, this work consists in exert the kinematic control of a redundant robot
manipulator, using dual quaternion algebra. Two kinds of controllers were developed: one is
known as the Local method, which only considers information related to the current state
of the robot, while the other takes into account the future evolution of the task in order to
compute the control law.

A scaling factor was also considered, which enables to make the task more flexible in terms
of the total time requested to satisfy it. Both the kinds of controllers applied the scaling
factor, in which for one of the two trajectories tested, the Model predictive control (MPC)
produced a higher scaling factor, while for the other one, the Local method provided a lower
scaling factor. Different physical quantities were also taken into account and compared. It
was possible to analyze the advantages of the MPC controller towards the Local method.

Without considering a scaling factor, a simpler MPC controller was developed, in order to
compare its performance with a proportional controller based in a different error metric.

Keywords: kinematic, control, robot, manipulator, predictive

List of Figures

Figure 1 – Imaginary quaternion 𝑝 = 𝑝𝑥𝚤 + 𝑝𝑦𝚥 + 𝑝𝑧𝑘̂ (ADORNO, 2017) 18
Figure 2 – Rotation angle 𝜃 around the unit rotation axis n (ADORNO, 2017) . . . 18
Figure 3 – Illustration of frame rotation (ADORNO, 2017) 19
Figure 4 – Rigid motion represented by quaternions (ADORNO, 2017) 22
Figure 5 – Illustration of the input and output in a MPC system (CAMACHO; BOR-

DONS; ALBA, 2004) . 25
Figure 6 – Kuka LBR4p used for the simulations in CoppeliaSim 33
Figure 7 – Mainmethods of Class DQ (figure extracted from (ADORNO;MARINHO,

2021)) . 36
Figure 8 – SimplifiedUML class diagramprovided byDQRobotics (ADORNO;MAR-

INHO, 2021) . 36
Figure 9 – 2D plot of the circle Trajectory obtained for the MPCmethod, with period

of 2 seconds. 42
Figure 10 – 2D plot of the circle Trajectory obtained for the Local method, with period

of 2 seconds. 42
Figure 11 – 3D plot of the circle Trajectory obtained for the MPCmethod, with period

of 2 seconds. 43
Figure 12 – 3D plot of the circle Trajectory obtained for the Local method, with period

of 2 seconds. 43
Figure 13 – Behavior of each translation element. 44
Figure 14 – Behavior of each translation element for the Local Method. 45
Figure 15 – Behavior of each rotation element for the MPC method. 45
Figure 16 – Behavior of each rotation element for the Local method. 46
Figure 17 – Behavior of each control action for the MPC method (from joint 1 to 4). 47
Figure 18 – Behavior of each control action for the Local method (from joint 1 to 4). 47
Figure 19 – Behavior of each control action for the MPC method(from joint 5 to 7). . 48
Figure 20 – Behavior of each control action for the Local method (from joint 5 to 7). 48
Figure 21 – Behavior of each joint angle (from joint 1 to 4). 49
Figure 22 – Behavior of each joint angle (from joint 5 to 7). 50
Figure 23 – Behavior of each applied torque (from joint 1 to 4). 50
Figure 24 – Behavior of each applied torque (from joint 5 to 7). 51
Figure 25 – 2D plot of the circle Trajectory obtained for the MPCmethod, with period

of 2 seconds. 53
Figure 26 – 2D plot of the circle Trajectory obtained for the Local method, with period

of 2 seconds. 53

Figure 27 – 3D plot of the circle Trajectory obtained for the MPCmethod, with period
of 2 seconds. 54

Figure 28 – 3D plot of the circle Trajectory obtained for the Local method, with period
of 2 seconds. 54

Figure 29 – Behavior of each translation element. 55
Figure 30 – Behavior of each translation element for the Local Method. 56
Figure 31 – Behavior of each rotation element. 56
Figure 32 – Behavior of each rotation element for the Local method. 57
Figure 33 – Behavior of each control action (from joint 1 to 4). 58
Figure 34 – Behavior of each control action for the Local method (from joint 1 to 4). 58
Figure 35 – Behavior of each control action (from joint 1 to 4). 59
Figure 36 – Behavior of each control action for the Local method (from joint 1 to 4). 59
Figure 37 – Behavior of each joint angle (from joint 1 to 4). 60
Figure 38 – Behavior of each joint angle (from joint 5 to 7). 61
Figure 39 – Behavior of each applied torque (from joint 1 to 4). 61
Figure 40 – Behavior of each applied torque (from joint 5 to 7). 62
Figure 41 – 3D Plot of circular trajectory using the proportional controller 64
Figure 42 – 2D Plot of circular trajectory using the proportional controller 64
Figure 43 – Curves of each element of the rotation axis, using the proportional controller 65
Figure 44 – Curves of each translation element, using the proportional controller . . 65
Figure 45 – Curves of joint velocities (from joint 1 to 4), using the proportional controller 66
Figure 46 – Curves of joint velocities (from joint 5 to 7), using the proportional controller 66
Figure 47 – 3D Plot of circular trajectory using the MPC controller 67
Figure 48 – 2D Plot of circular trajectory using the MPC controller 67
Figure 49 – Curves of each element of the rotation axis, using the MPC controller . 68
Figure 50 – Curves of each translation element, using the MPC controller 68
Figure 51 – Curves of joint velocities (from joint 1 to 4), using the MPC controller . 69
Figure 52 – Curves of joint velocities (from joint 5 to 7), using the MPC controller . 69

List of Tables

Table 1 – Tabel containing the main results of the simulations 63

Contents

1 INTRODUCTION . 12
1.1 Contextualization . 12
1.2 Problem definition . 13
1.3 Project Goal . 14
1.4 Results . 14
1.5 Text Organization . 14

2 MATHEMATICAL FOUNDATIONS 16
2.1 Quaternions . 16
2.1.1 Translation . 17
2.1.2 Rotation . 17
2.2 Dual Numbers . 20
2.3 Dual Quaternions . 20
2.3.1 Rigid Motions . 21
2.4 Kinematic Control . 22
2.4.1 Proportional Controller for Invariant Error Function 23

3 MODEL PREDICTIVE CONTROL 25
3.1 Introduction . 25
3.2 MPC applied to manipulators . 26
3.3 Mathematical formulations . 27
3.3.1 Conception of the Predictive Model . 29
3.3.2 Selection Criteria of the Predictive and Control Instants 29
3.3.3 Task Fulfillment . 30

4 DEVELOPMENT AND IMPLEMENTATION 32
4.1 CoppeliaSim . 32
4.2 Robot Operating System (ROS) . 34
4.3 DQ Robotics . 35
4.4 Methodology . 35
4.4.1 The Implementation . 37
4.4.1.1 Solutions without time scaling . 37
4.4.1.2 Solutions with time scaling . 38
4.4.1.3 Definition of the constraints . 39

5 RESULTS AND EVALUATION . 40

5.1 Circular Trajectory . 40
5.1.1 Data Analysis . 41
5.2 Sinusoidal Trajectory . 51
5.2.1 Data Analysis . 52
5.3 Main Results . 62
5.4 Comparison betweenMPC and proportional controller 63

6 CONCLUSIONS . 70
6.1 Future Works . 71

REFERENCES . 72

12

1 Introduction

The impetus of working with robots began to gain strength in the beginning of the last
century (DE ALMEIDA, n.d.), motivated by the urge to increase productivity and upgrade
product quality. Hence, right in that epoch, the primary applications for the industrial robots
were originated. George Devol(1912-2011) was the one who founded the industrial robotics,
as e invented the first industrial robot calledUnimate 1, whichwas installed at the FordMotor
Company plant in Trenton (New Jersey) in 1961 2. Thanks to countless capabilities that
embedded and micro-controlled systems provide, the field of robotics is, nowadays, going
through a period of continuous growth that will enable, in a near future, the implementation
of robots with capacity to predict situations and act properly.

Robotics consists in a technological and educational discipline that manages systems
composed of mechanical parts usually combined together with integrated circuits, making
motorized mechanical systems controlled by electronic components and computational
systems. Robotics is the object of study in several areas: computing, aerospace, mechanics,
automation, electrical, control theory, etc.

The everyday use of robotics is growing, such as robot vacuum, and robots for medical
surgery (SANTOS; LEME; STEVAN, 2018). This applied science, nowadays used by innu-
merable factories and segments of industries, has generally been efficient in handling issues
such as in reducing cost, improving productivity and alleviating labor problems (CRAIG,
2005). However, even considering these advantages, the employment of robotics causes
many problems in the social context of society, such as structural unemployment (REIS,
n.d.). Nevertheless, robotic manipulators are made to make life easier and can be well used
to replace repetitive jobs, thus directing people to jobs that demand more human qualities.

1.1 Contextualization

A robot manipulator is a set of bodies connected by joints, forming kinematic chains
that define a mechanical structure. The manipulator includes the actuators, which act on
the mechanical structure, modifying its configuration, and the transmission, which connects
the actuators to the structure. The terms manipulator and robot are often used for the same
purpose, although formally this is not precise. Nevertheless, in the context of this project,
the robot is a manipulator.

There are manifold robot manipulator applications nowadays that, in a near future,
1 https://www.history101.com/unimate-first-industrial-robot/
2 https://www.thehenryford.org/collections-and-research/digital-collections/artifact/373806/#slide=gs-

253931

13

may depend upon precise tracking of a pre-specified continuous path. Typical cases of
applications in such sense consists in seam tracking, arc welding, cutting (laser and water
jet), spray painting, contours inspection, coordinated parts transfer and manufacturing
operations. The geometrical tasks are normally defined in relation to the end effector of
the robotic manipulator and may establish trajectories as a function of time (which is the
usual), but also as a function of position. There are some trouble of fulfilling this request of
temporal path tracking:

• significant nonlinearities are present in the dynamics and geometry;

• unidentified parameters, modeling and measurement errors;

• unplanned changes in operating conditions;

• other disturbances may affect the robot;

These issues may be a great challenge in tuning an accurate control for the robot involved.

To fulfill this task of accurate path following, an efficient control strategy is needed,
which implies the following aspects:

• accurate tracking the specified trajectory of the end effector, usually as a function of
time;

• minimal complexity as possible, to enable fast computation and a high sampling rate
for the control system;

• reliability, specially in regard of robustness of the control methodology.

It is important to satisfy the geometrical task that is required to the robot, even if it
is not possible to fulfill it in the specified time. To produce a large discrepancy in relation
to the original task might cause harm to the manipulator itself or be dangerous for people
around it.

1.2 Problem definition

For a given task assigned to a robotic manipulator, a temporal function of a pose is
defined, in the set of dual quaternions, that the end effector must fulfill. However, depending
on the limitations of the actuators, the assignment of the trajectory in the specified time
may not be feasible. Physical restrictions can be the range of joint angles, joint speed or
maximum torque that the actuator can exert.

14

1.3 Project Goal

The objective of this work is to control the trajectory of the end effector, in order to
preserve the desired geometric path, even if the trajectory is not feasible in the pre-established
time. To satisfy this task, two different kinematic controllers were tested, taking into account
the robot capabilities to determine the control law.

One of themethods usedwas named Localmethod, since it only considers the current
configuration of the robot to compute the control law. The alternate method is known as
Model Predictive Control (MPC), since it considers a kinematic model to make predictions
of the manipulator’s state to determine the control signal.

The robot involved is presented in a simulation environment called CoppeliaSim
and the control methods were developed in Matlab, wherein these programs exchange data
through a tool called ROS. The objective is to test the controllers in a simulation before,
in future works, implement it in the real robot Meka A2, that is located at LARA in the
University of Brasilia.

1.4 Results

For the two trajectories worked in this project, different comparisons are made,
in regard to fulfillment of the task in the specified time, the level of deformation of the
path, the torques applied, the computed control actions, scaling factor and even the joint
angular positions measured along the trajectory. Many graphs were constructed to enable a
qualitative and quantitative analysis.

The results have shown the effectiveness of the MPC controller in relation to the
other purely local method, specially for the one MPC with more prediction instants. It was
not easy, however, to explore the nuances that permitted to achieve plausible results with
the MPC. A comparison was made between the MPC controller and a proportional method
based on the Moore-Penrose pseudo-inverse matrix of the robot pose Jacobian.

1.5 Text Organization

The progress of this text consists in:

1. presentation of theoretical concepts necessary for the understanding of the work, such
as the algebra of dual quaternions, the paradigm of differential kinematic controlling
and model predictive control;

2. description of the three frameworks used in this project and how they are used: the
robot simulator named CoppeliaSim (ROHMER; SINGH, S. P. N.; FREESE, 2013),

15

the program for mathematical computations known as Matlab (MATLAB, 2010) and
the software needed to communicate the nodes, which is called ROS (STANFORD
ARTIFICIAL INTELLIGENCE LABORATORY ET AL., 2018) (Robot Operational
System);

3. exhibition and discussion of the results obtained through different controllers, in the
two tested trajectories.

4. conclusions and suggestions of future works.

16

2 Mathematical Foundations

In this chapter, it is presented some mathematical foundations that enable to under-
stand how to use the dual quaternions to represent rigid motions in a three-dimensional
space. This set of numbers was proved to be very convenient for the matters of this project.
It is also explained some fundamentals in regard to kinematic controlling.

2.1 Quaternions

In 1843, the mathematician William Rowan Hamilton created the quaternions num-
bers, which have three imaginary units 𝚤,𝚥,𝑘̂, wherein the quaternionic unit 𝑖 is equivalent to
the one defined for complex numbers (ADORNO, 2017). As a matter of fact, the quaternions
may be considered as an extension of complex numbers, wherein the imaginary units 𝚥,𝑘̂ are
analogous to 𝑖, presenting the properties (HAMILTON, 1844):

𝚤2 = 𝚥2 = 𝑘̂2 = 𝚤𝚥𝑘̂ = −1 (2.1)

The real and imaginary parts of a quaternion are orthogonal to each other, wherein
𝚤,𝚥,𝑘̂ can be regarded as unit versions of a right handed coordinate frame, in which can be
applied the same convention as for the cross product. The formal definition of the set ℍ of
quaternions is given by (ADORNO, 2017):

ℍ
△
= {𝑞1 + 𝑞2𝚤 + 𝑞3𝚥 + 𝑞4𝑘̂ ∶ 𝑞1,𝑞2,𝑞3,𝑞4 ∈ ℝ} (2.2)

The scalar 𝑞1, named as Re (q), is the real part of a quaternion q. The part that contains
the imaginary elements is given by Im(q) = 𝑞2𝚤 + 𝑞3𝚥 + 𝑞4𝑘̂. Therefore, the quaternion can
be expressed as 𝑞 = Re (𝑞) + Im (𝑞), whereas its conjugate is defined by 𝑞∗ = Re (𝑞) - Im (𝑞)
(ADORNO, 2017).

The usual operations of sum and subtraction are simply defined as, respectively, a
sum/subtraction of each term in each coordinate of the quaternion numbers involved, as
exhibited in (ADORNO, 2017). As for the quaternion multiplication, it can be applied the
distributive property, wherein the actual operation definition is also shown in (ADORNO,
2017).

It is pertinent to define a quaternion norm, which is given by ||𝑞|| △
=
√
𝑞𝑞∗. The

norm is useful to obtain a quaternion inverse and also there are cases in which quaternions
with unitary norm have special properties. A quaternion inverse is determined as (ADORNO,
2017):

𝑞−1 =
𝑞∗

||𝑞||2
(2.3)

17

which, of course, is only valid if the norm is not zero.

An operation that can be important is the one known as 𝑣𝑒𝑐4, which extracts the
quaternion coordinates, transforming it into a vector; for a quaternion 𝑞 = 𝑞1 + 𝑞2𝑖 + 𝑞3𝑗̂ +
𝑞4𝑘̂ (ADORNO, 2017):

𝑣𝑒𝑐4(𝑞) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑞1
𝑞2
𝑞3
𝑞4

⎤
⎥
⎥
⎥
⎥
⎦

(2.4)

It is also relevant to highlight the existence of the Hamiltonian operators
+
𝐻4(⋅) and

−
𝐻4(⋅), which are defined as (ADORNO, 2017):

+
𝐻4(𝑞) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑞1 −𝑞2 −𝑞3 −𝑞4
𝑞2 𝑞1 −𝑞4 𝑞3
𝑞3 𝑞4 𝑞1 −𝑞2
𝑞4 −𝑞3 𝑞2 𝑞1

⎤
⎥
⎥
⎥
⎥
⎦

,
−
𝐻4(𝑞′) =

⎡
⎢
⎢
⎢
⎢
⎣

𝑞′1 −𝑞′2 −𝑞′3 −𝑞′4
𝑞′2 𝑞′1 𝑞′4 −𝑞′3
𝑞′3 −𝑞′4 𝑞′1 𝑞′2
𝑞′4 𝑞′3 −𝑞′2 𝑞′1

⎤
⎥
⎥
⎥
⎥
⎦

(2.5)

wherein these represented matrices have the following property:

𝑣𝑒𝑐4(𝑞𝑞′) =
+
𝐻4(𝑞)𝑣𝑒𝑐4(𝑞′)

≡
−
𝐻4(𝑞′)𝑣𝑒𝑐4(𝑞)

(2.6)

It can be useful to work with these defined operators in equations 2.4 and 2.5 to do
some procedures, some calculations needed in a control system with representations in
quaternions.

2.1.1 Translation

A specific type, called pure quaternions (which have null real part), is associated
to the representation of translation movements in a three dimensional space (ADORNO,
2017). In figure 1, it is illustrated a pure quaternion p, wherein each coordinate is shown as
a projection in the respective axis.

It will be shown later, in the section dedicated to dual quaternions, how exactly pure
quaternions are used to compute a translation in the space.

2.1.2 Rotation

It is known that complex numbers enable to perform rotations of a two-dimensional
vector in a plane. Similarly, the vectors in three dimensions can be submitted to an analogous
operation, through the use of unit quaternions, that form a group of rotations 𝑆𝑂(3) inside a
sphere (FIGUEREDO, 2016).

18

Figure 1 – Imaginary quaternion 𝑝 = 𝑝𝑥𝚤 + 𝑝𝑦𝚥 + 𝑝𝑧𝑘̂ (ADORNO, 2017)

Similarly to the fact that complex numbers enable to perform rotations in a plane, unit
quaternions form the group of three-dimensional rotations𝑆𝑂(3) in the sphere (FIGUEREDO,
2016). The unit quaternion 𝑟 = cos(𝜃∕2) + 𝑛 sin(𝜃∕2) represents a rotation of an angle 𝜃
around the axis 𝑛 = 𝑛𝑥𝚤 + 𝑛𝑦𝚥 + 𝑛𝑧𝑘̂ (KUIPERS, 1999), which is illustrated in figure 2. It is
possible to show that the imaginary quaternion 𝑛 is also unitary:

||𝑟||2 = 1 = cos2(𝜃∕2) + sin2(𝜃∕2) (𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧)

⇒ 1 = 1 − sin2(𝜃∕2) + sin2(𝜃∕2) (𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧)

⇒ sin2(𝜃∕2)(𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧 − 1) = 0

∴𝑛2𝑥 + 𝑛2𝑦 + 𝑛2𝑧 = ||𝑛||2 = 1

(2.7)

Figure 2 – Rotation angle 𝜃 around the unit rotation axis n (ADORNO, 2017)

As regard of unit quaternions, the conjugate 𝑟∗ = cos(𝜃∕2) − sin(𝜃∕2)𝑛 performs the
inverse operation: rotation of an angle −𝜃 around the axis 𝑛. As a matter of fact, for any unit
quaternion 𝑞, it is valid 𝑞𝑞∗ = 1, which makes, by definition, that 𝑞∗ = 𝑞−1.

A point or a vector can be represented through distinct frames. Considering a point
𝑝, the representations in quaternions in relation to the coordinate frames ℱ0 and ℱ1 are

19

given, respectively, by the pure quaternions 𝑝0 and 𝑝1. Considering, for example, that the
frame ℱ1 is originated by a a rotation of ℱ0, through a quaternion 𝑟01, the point 𝑝 can then
be expressed, in relation to ℱ1, as (KUIPERS, 1999):

𝑝1 = 𝑟10𝑝
0𝑟10

∗ (2.8)

The conversion in equation 2.8 is known as frame rotation (FIGUEREDO, 2016),
illustrated in figure 3.

Figure 3 – Illustration of frame rotation (ADORNO, 2017)

In regard of the same transformation, but with another point of view, it is considered
𝑝00 to be a vector expressed in relation to a coordinate frame ℱ0. A rotation of 𝑝00 can then be
represented with respect to the same frame (KUIPERS, 1999):

𝑝01 = 𝑟01𝑝
0
0𝑟

0
1
∗ (2.9)

The transformations of frame and vector rotation differ solely in amatter of geometric
interpretation, as the calculations are equal. For the frame rotation, the point remains
immobile while the frame moves. Alternatively, for the rotation of a point, the coordinate
frame remains static while the vector rotates (FIGUEREDO, 2016).

The difficulties that emanate from Euler angle/axis representations can be overcome
with the usage of the unit quaternions. A rotation of an angle −𝜃 around an axis −𝑛 yields
to the same quaternion corresponding to a rotation 𝜃 around the axis 𝑛. This property is a
solution to the non-uniqueness problem of the angle-axis representation (B. SICILIANO
L. SCIAVICCO; ORIOLO, 2009). However, the unit quaternion representation is subject
to the unwinding phenomenon wherein the attitude of the rigid body may diverge to the
antipodal representation, generating needless rotation. This problem presents topological
issues (SILVA PEREIRA, 2016).

Rotation quaternions are, hence, a four-parameter representation with unit norm,
which restrains it to three degrees of freedom actually. This set presents a particular algebra
and permits to compute rotations using fewer terms in relation to rotation matrix (SILVA
PEREIRA, 2016). In addition, quaternions solve the singularities ´problems associated to the
optimization of rotation descriptions (MARINHO, 2014).

20

2.2 Dual Numbers

The algebra associated to the dual unit was developed by Clifford in 1871 and is
known as the algebra of dual numbers, in which the dual unit 𝜖 is nilpotent and presents
the following properties (ADORNO, 2017):

𝜖 ≠ 0, 𝜖2 = 0 (2.10)

A dual number is generically given by 𝑑 = 𝑑 + 𝜖𝑑′ , wherein the coefficient 𝑑 is
the primary part whereas 𝑑′ is the dual part. Besides, the primary and dual parts can be
considered separately, applying the operators 𝒫(𝑑) and𝒟(𝑑), respectively (ADORNO, 2017).
Therefore:

𝑑 = 𝒫(𝑑) + 𝜖𝒟(𝑑) (2.11)

The base operations of sum, subtraction and multiplication take into consideration
the dual unit 𝜖 and are defined in(ADORNO, 2017). The dual numbers do not form a division
algebra, then, the inverse can only be defined if 𝑑 ≠ 0 (ADORNO, 2017).

2.3 Dual Quaternions

Generally, the primary and dual parts of a dual number are formed by the same
kind of elements, which can be scalars, complex numbers or quaternions, for instance. If
the primary and dual parts are quaternions, dual numbers are customarily named dual
quaternions and constitute the setℋ, which presents the formal definition as (ADORNO,
2017):

ℋ
△
= {𝑞 + 𝜖𝑞′ ∶ 𝑞,𝑞′ ∈ ℍ } (2.12)

wherein 𝜖 is the dual unit.

Similarly for the quaternions, the dual quaternions present analogous operations
and properties (ADORNO, 2017). They have, for instance, a real and an imaginary part:

𝑅𝑒(𝑞) ∶= 𝑅𝑒(𝑃(𝑞)) + 𝜖𝑅𝑒(𝐷(𝑞)) (2.13)

𝐼𝑚(𝑞) ∶= 𝐼𝑚(𝑃(𝑞)) + 𝜖𝐼𝑚(𝐷(𝑞)) (2.14)

Hence, for any dual quaternion, 𝑞 ≡ 𝑅𝑒(𝑞) + 𝐼𝑚(𝑞) (ADORNO, 2017). A dual quaternion
conjugate is defined as (ADORNO, 2017):

𝑞∗ = 𝑅𝑒(𝑞) − 𝐼𝑚(𝑞) (2.15)

and its norm is given by (ADORNO, 2017):

||𝑞|| =
√
𝑞 𝑞∗ (2.16)

21

The analogous operation of 𝑣𝑒𝑐4 (defined for quaternions) is extended do the setℋ,
defined as(ADORNO, 2017):

𝑣𝑒𝑐8(𝑞) =
⎡
⎢
⎣

𝑣𝑒𝑐4(𝑃(𝑞))
𝑣𝑒𝑐4(𝐷(𝑞))

⎤
⎥
⎦

(2.17)

therefore, 𝑣𝑒𝑐8 maps a dual quaternion into a vector (or column matrix) of real elements
that represent each coordinate of the original number. There is also an analogous operation,
in dual quaternions, for the hamiltonian operators, which are given by:

+
𝐻8(𝑞) =

⎡
⎢
⎢
⎣

+
𝐻4(𝑃(𝑞)) 04
+
𝐻4(𝐷(𝑞))

+
𝐻4(𝑃(𝑞))

⎤
⎥
⎥
⎦

,
−
𝐻8(𝑞) =

⎡
⎢
⎢
⎣

−
𝐻4(𝑃(𝑞)) 04
−
𝐻4(𝐷(𝑞))

−
𝐻4(𝑃(𝑞))

⎤
⎥
⎥
⎦

(2.18)

wherein the operators
+
𝐻8(⋅) and

−
𝐻8(⋅) satisfy the property:

𝑣𝑒𝑐8(𝑞𝑞′) =
+
𝐻8(𝑞)𝑣𝑒𝑐8(𝑞′)

≡
−
𝐻8(𝑞′)𝑣𝑒𝑐8(𝑞)

(2.19)

A vector definition that can be useful is:

𝐶8 ∶= 𝑑𝑖𝑎𝑔(1, − 1, − 1, − 1,1, − 1, − 1, − 1) (2.20)

so the following is valid:
𝑣𝑒𝑐8(𝑞∗) = 𝐶8𝑣𝑒𝑐8(𝑞) (2.21)

these definitions are important to allow certain mathematical manipulations needed for the
control process.

2.3.1 Rigid Motions

Rigidmotions consist of the completemovement between coordinate frames (ADORNO,
2017), which is illustrated in figure 4. The use of unit dual quaternions is very convenient to
represent rigid motions, and they also belong to the set (ADORNO, 2017)

𝒮
△
= {𝑞 ∈ ℋ ∶ ||𝑞|| = 1} (2.22)

22

Figure 4 – Rigid motion represented by quaternions (ADORNO, 2017)

The elements of 𝒮, taking into account the multiplication operation, represent the
ones of 𝑆𝑝𝑖𝑛(3) ⋉ ℝ3, the group of rigid motions that double covers 𝑆𝐸(3)(SELIG, 2005).
Considering a quaternion r∈ 𝑆𝑂(3) and an imaginary quaternion t, the unit dual quaternion
associated to the translation t followed by the rotation r is determined as

𝑥 = 𝑟 + 𝜖
2𝑡 𝑟 (2.23)

The concatenation of rigid transformations is calculated by the multiplication of a
sequence of dual quaternions (ADORNO, 2017). Besides, for a dual quaternion 𝑥 ∈ 𝒮, the
inverse transformation of rigid motion corresponds to the conjugate 𝑥∗, which belongs to
the group inverse of 𝑆𝑂(3) ⋉ ℝ3 because 𝑥∗𝑥 = 𝑥 𝑥∗ = 1 (SELIG, 2005).

2.4 Kinematic Control

As for themathematical description of a robotmanipulator kinematics, it is expressed
the vector 𝑥 related to pose of the end-effector, which has eight elements (SILVA PEREIRA,
2016):

𝑥 = 𝑣𝑒𝑐8(𝑥) (2.24)

wherein 𝑥 is the dual quaternion of the manipulator’s pose. The vector 𝜃, that contains the
joint variables 𝜃1, 𝜃2, ..., 𝜃𝑛, may be expressed as a function of 𝑥, which is a function related
to the Inverse Kinematics (IK) (SILVA PEREIRA, 2016):

𝜃 = 𝑔(𝑥) (2.25)

To determine, analytically, this function 𝑔(𝑥) can be extremely difficult, even not
possible in some cases, having to resort to numerical algorithms. However, the proposal
of this work involves another mathematical artifice to work around this problem, using
analytic expressions. First, it is necessary to express the function of direct kinematics (SILVA

23

PEREIRA, 2016):
𝑥 = 𝑓(𝜃) (2.26)

The function 𝑓(𝜃) is usually obtained by the Denavit-Hartenberg parameters. Differ-
entiating equation 2.26 with respect to time leads to

𝑥̇(𝑡) =
𝜕𝑓(𝜃)
𝜕𝜃

𝜕𝜃
𝜕𝑡

(2.27)

wherein

𝜕𝑓(𝜃)
𝜕𝜃

∶= 𝐽 =
⎡
⎢
⎢
⎢
⎣

𝜕𝑓1
𝜕𝜃1

⋯ 𝜕𝑓1
𝜕𝜃𝑛

⋮ ⋱ ⋮
𝜕𝑓8
𝜕𝜃1

⋯ 𝜕𝑓8
𝜕𝜃𝑛

⎤
⎥
⎥
⎥
⎦

(2.28)

in which 𝐽 is known as the Jacobian matrix of the manipulator.

Therefore, the so called differential kinematics can be solved by minimizing the cost
function

𝐽(𝑞)𝜃̇(𝑡) − 𝑥̇𝑑(𝑡) (2.29)

wherein 𝑥𝑑(𝑡) = 𝑣𝑒𝑐8(𝑥𝑑) is the desired pose vector, with 𝑥𝑑 being the dual quaternion of the
end-effector. To achieve an exponential decay, a closed loop with error 𝑒𝑐 = 𝑥𝑑 − 𝑥 feedback
can be constructed. Hence, the cost function can actually be defined as (SILVA PEREIRA,
2016)

𝐽𝜃̇ − 𝑥̇𝑑 + 𝐾(𝑥 − 𝑥𝑑) = 0 (2.30)

in which 𝐾 is a positive real number.

2.4.1 Proportional Controller for Invariant Error Function

The error function, instead of being expressed as 𝑥𝑑 − 𝑥 (as in equation 2.30), can be
be defined as (SILVA PEREIRA, 2016):

𝑒
𝑐
= 1 − 𝑥∗𝑥

𝑑
(2.31)

in which 𝑒
𝑐
is the invariant error function. This name is justified by the fact that this error

presents the same value for different reference systems for the pose (SILVA PEREIRA, 2016).
The time derivative of 𝑒

𝑐
is given by (SILVA PEREIRA, 2016):

𝑒̇
𝑐
= −𝑥̇∗𝑥

𝑑
− 𝑥∗𝑥̇

𝑑
(2.32)

therefore:

𝑣𝑒𝑐8(𝑒̇𝑐) = 𝑣𝑒𝑐8(−𝑥̇
∗𝑥

𝑑
) − 𝑣𝑒𝑐8(𝑥∗𝑥̇𝑑)

= −
−
𝐻(𝑥

𝑑
)𝑣𝑒𝑐8(𝑥̇

∗) − 𝑣𝑒𝑐8(𝑥∗𝑥̇𝑑)

= −
−
𝐻(𝑥

𝑑
)𝐶8𝐽𝜃̇ − 𝑣𝑒𝑐8(𝑥∗𝑥̇𝑑)

≡ −𝑁𝜃̇ − 𝑣𝑒𝑐8(𝑥∗𝑥̇𝑑)

(2.33)

24

wherein 𝑁 ∶=
−
𝐻(𝑥

𝑑
)𝐶8𝐽. In order to produce an exponential decay in the invariant error

function, it is imposed that 𝑒̇
𝑐
= −𝐾𝑒

𝑐
(again, 𝐾 is a positive real gain). Hence, the control

law is determined by:
𝜃̇ = 𝑁†(𝐾 𝑣𝑒𝑐8(𝑒𝑐) − 𝑣𝑒𝑐8(𝑥∗𝑥̇𝑑)) (2.34)

in which 𝑁† is the Moore Penrose pseudo-inverse of 𝑁.

25

3 Model Predictive Control

3.1 Introduction

In the mid 70’s, the Model Based Predictive Control (MBPC), or simply Model Pre-
dictive Control (MPC) emerged and has noticeably evolved thenceforth (CAMACHO; BOR-
DONS; ALBA, 2004). This paradigm isn’t considered a specific control approach, it actually
encompasses a wide variety of control strategies (CAMACHO; BORDONS; ALBA, 2004). Lin-
ear multi-variable controllers can then be obtained by the use of MPC, considering a discrete
or continuous system (WANG, 2009). For a control strategy to be considered MPC, some
directives must be fulfilled (CAMACHO; BORDONS; ALBA, 2004): expressly acknowledge
a mathematical model for the process in order to predict the future outputs of the system,
within a finite time horizon; a sequence of control signals must be computed in pursuance of
the minimization of an objective function; the idea of a receding predictive horizon, which
consists of a fixed time interval, counting from the current instant, must be examined in
order to make the outputs and inputs prediction.

Figure 5 shows an example of time functions for the control input 𝑢(𝑡) and the
controlled output 𝑦(𝑡). With the help of this illustration, the MPC methodology can be
explained. Firstly, it is important to highlight that the notation (𝑡 + 𝑘|𝑘) indicates that
the quantity is considered at the instant 𝑡 + 𝑘 but was computed in the instant 𝑡, wherein
𝑘 varies from 1 to 𝑁. For a specified prediction horizon 𝑁, the future outputs 𝑦(𝑡 + 𝑘|𝑘)
rely upon the current control signal and output variables and also the predicted inputs
𝑢(𝑡 + 𝑘|𝑘) (CAMACHO; BORDONS; ALBA, 2004).

Figure 5 – Illustration of the input and output in a MPC system (CAMACHO; BORDONS; ALBA,
2004)

26

The control law for a MPC is computed by the optimization of some mathematical
formulation that tends to lead the outputs to follow a reference signal 𝑟(𝑡 + 𝑘) (CAMACHO;
BORDONS; ALBA, 2004). Mainly, this design can be formulated as a quadratic cost function
of the error computed by the difference of the predicted output variables in relation to the
predicted reference signal (CAMACHO; BORDONS; ALBA, 2004). The solution will then
generate a set of control inputs, in which 𝑢(𝑡|𝑡) is the one to be applied in the system (CA-
MACHO; BORDONS; ALBA, 2004). The future control signals are discarded, since, in the
later iterations, the values needed to compute them might have changed.

3.2 MPC applied to manipulators

The use of redundant manipulators is very recurrent in industry and in research,
due to its versatility in the task execution (FARONI; BESCHI; PEDROCCHI, et al., 2019).
Some functions, like manipulability maximisation, joint availability or minimum energy
consumption, may be completely or partially satisfied, using the additional degrees of free-
dom (FARONI; BESCHI; TOSATTI, 2017).

It is important to accomplish a task in a way that it does not interfere in the perfor-
mance of eventual tasks with higher priority. In (FARONI; BESCHI; PEDROCCHI, et al.,
2019), it is made a review of some methods that manage secondary tasks while the execu-
tion of primary one is not affected. These approaches, however, do not manifestly consider
the existence of boundaries for the manipulator’s movement, which may lead to a inverse
kinematic solution that is inconvenient or even impracticable for the manipulator. It is
also quoted in (FARONI; BESCHI; PEDROCCHI, et al., 2019) methodologies that take into
account rigid limits of redundant robot manipulators, creating a cost function which induces
the joint positions to remain within the pre-established limits. It is also mentioned in (FA-
RONI; BESCHI; PEDROCCHI, et al., 2019) a reference that handles kinematic bounds, such
as joint velocities and accelerations, through a procedure that demands the computation
of a weighted pseudo-inverse matrix related to the constrained inverse kinematics. The
inconvenience of these approaches is that the robot limits are not necessarily respected, even
in the quoted procedures that take them into account. Therefore, the actuators might get
saturated or even damaged, culminating in the unfulfillment of the desired trajectory.

To handle the physical limits of the manipulator, a relevant trend lately has been the
formulation of the inverse kinematic as a Least Square Problem (LSP) (FARONI; BESCHI;
PEDROCCHI, et al., 2019). It can be made a search in a set of joint variables that satisfy both
the trajectory and the robot constraints, while eventual tasks can be managed. The whole
point of converting the IK problem into a LSP consists in the fact that it can be effectively
solved, including hard bounds, by numerical quadratic programming (QP) solvers (FARONI;
BESCHI; PEDROCCHI, et al., 2019). QP consists in the optimization of an objective function

27

that is quadratic in regard of some set of variables; this method is considered to be one of the
most convenient for non-linear programming (FRANK; WOLFE, 1956). The possibilities are
that from bi-linear to second degree polynomial terms might be inserted in the objective
function, whereas the constraints have to be linear and might be expressed by inequalities
or equalities (FLOUDAS; VISWESWARAN, 1995).

The constraints considered for the manipulator influence the quality of fulfillment
of the assignment. Usually, the primary task is defined as a trajectory. A very comprehensive
procedure to keep a robot on its geometrical path is the time scaling of the task, which permits
the trajectory to be made in a shorter period. There are some methods quoted in (FARONI;
BESCHI; PEDROCCHI, et al., 2019) that use time scaling, through different approaches.

The previous works mentioned in (FARONI; BESCHI; PEDROCCHI, et al., 2019)
consider, in each iteration for the respective algorithm used, information about only the
current configuration of the robot. They are, hence, known as local methods and present a
solution that is optimal in relation to the current state, but not necessarily in relation to the
total accomplishment of the task. As demonstrated in (FARONI; BESCHI; TOSATTI, 2017),
the solution of a local optimization problem might lead to a result that is unfavorable for
the global execution of the assignment, if compared to an algorithm that takes into account
the task evolution. The high computational cost is a considerable limitation for calculating
the solution for the IK and the scaling factor considering the global task. Therefore, as
in (FARONI; BESCHI; PEDROCCHI, et al., 2019), in this project, it is used the paradigm of
MPC with a finite predictive horizon to compute an optimal control law.

3.3 Mathematical formulations

For an initial development, it is considered the following equation for the inverse
kinematics:

𝑠𝑥̇(𝜎) = 𝐽(𝑞)𝜃̇(𝑡) (3.1)

wherein the term 𝑠 is the scaling element, enabling the time dilation of the task, as long as it
is imposed that its value remains between one and zero (FARONI; BESCHI; PEDROCCHI,
et al., 2019). As for 𝜎, it corresponds to the dilated time function defined for the pose task 𝑥,
wherein:

𝜎(𝑡) = ∫
𝑡

0
𝑠 𝑑𝜏 (3.2)

therefore, 𝑠 = 𝑑𝜎∕𝑑𝑡. Considering the discrete-time system for implementation in a simula-
tion environment, the following approximation is adopted:

𝜎[𝑘] = 𝜎[𝑘 − 1] + 𝑇𝑠[𝑘 − 1] (3.3)

28

in which 𝜎[0] = 0, 𝑠[0] = 1 and 𝑇 corresponds to the sampling time of the control system
involved. Equation 3.3 is the one used to compute the parameter 𝜎 used in each iteration for
the assigned task 𝑥(𝜎).

Considering the optimization problem shown in equation 2.30, the inverse kinematics
problem with proportional error feedback adapted with the inclusion of a scaling factor can
be given by

𝐽𝜃̇ − 𝑠(𝑥̇𝑑 − 𝐾(𝑥 − 𝑥𝑑)) = 0 (3.4)

This formulation in equation 3.4 can be converted into a LSP (enabling to find a
solution by a QP solver) such as:

Ω1 ∶= ||𝐽𝜃̇ − 𝑠(𝑥̇𝑑 − 𝐾(𝑥 − 𝑥𝑑))||2 (3.5)
Ω2 ∶= (1 − 𝑠)2 (3.6)

in which Ω1 is a cost function with higher priority then the cost function Ω2. To solve both
the cost functions and, eventually, other ones with lower priorities can be challenging,
demanding complex methods of programming, specially if the hard bounds are considered.
A more straightforward procedure is to convert Ω1 and Ω2 into:

Ω ∶= 𝜆1||𝐽𝜃̇ − 𝑠(𝑥̇𝑑 − 𝐾(𝑥 − 𝑥𝑑))||2 + 𝜆2(1 − 𝑠)2 (3.7)

wherein 𝜆1 and 𝜆2 are the Lagrange multipliers. If it is established a much larger value for 𝜆1
than for 𝜆2, the cost functionΩ can fulfill the role of considering the functionΩ1 as being the
primary one to be minimized and, secondly, minimizeΩ2 (FARONI; BESCHI; PEDROCCHI,
et al., 2019). The hard bounds can be expressed by:

Θ𝑚𝑖𝑛 ≤ 𝜃 ≤ Θ𝑚𝑎𝑥 (3.8)
Θ̇𝑚𝑖𝑛 ≤ 𝜃̇ ≤ Θ̇𝑚𝑎𝑥 (3.9)
Θ̈𝑚𝑖𝑛 ≤ 𝜃̈ ≤ Θ̈𝑚𝑎𝑥 (3.10)

0 ≤ 𝑠 ≤ 1 (3.11)

However, the minimization of the cost function Ω produces results only for 𝑠 and for
𝜃̇. Hence, the constraints for the joint positions and accelerations must be formulated as a
function of the joint velocities. For a discrete system, this bounds can be approximated as:

Θ𝑚𝑖𝑛 ≤ 𝜃(𝑡) + 𝑇𝜃̇(𝑡) ≤ Θ𝑚𝑎𝑥 ⇒
Θ𝑚𝑖𝑛 − 𝜃(𝑡)

𝑇 ≤ 𝜃̇(𝑡) ≤
Θ𝑚𝑎𝑥 − 𝜃(𝑡)

𝑇 (3.12)

Θ̈𝑚𝑖𝑛 ≤
𝜃̇(𝑡) − 𝜃̇(𝑡 − 𝑇)

𝑇 ≤ Θ̈𝑚𝑎𝑥 ⇒ 𝑇Θ̈𝑚𝑖𝑛 + 𝜃̇(𝑡 − 𝑇) ≤ 𝜃̇(𝑡) ≤ 𝑇Θ̈𝑚𝑎𝑥 + 𝜃̇(𝑡 − 𝑇) (3.13)

Finally, the problemof calculating the scaling factor and the joint velocities is formally
defined as:

[
𝜃̇
𝑠
] = 𝑎𝑟𝑔𝑚𝑖𝑛

[𝜃̇ 𝑠]
𝑇
∈ 𝜁

(Ω) (3.14)

29

wherein 𝜁 corresponds to the set that limits 𝜃̇ and 𝑠 to their pre-defined restraints. Anumerical
QP solver can determine the optimal solution.

As for the global method, which applies the paradigm of MPC, needs to take into
account, as already mentioned, the progression of the variables along the predictive horizon.
The primary idea of the procedure is to develop, at each time step, the resolution of the
predictive IK cost function with the scaling factor as a constrained QP. Thereupon, in the
interest of receding horizon control, the first input of the sequence is utilized in the system.
This operation is remade until all the path is covered.

3.3.1 Conception of the Predictive Model

The kinematic predictive model for a robot manipulator can be obtained by formu-
lating a state-space description, as developed in (FARONI; BESCHI; TOSATTI, 2017). Even
if the implementation model is discrete, the work in (FARONI; BESCHI; TOSATTI, 2017)
considered a continuous time function for the kinematic variables, what enabled an analysis
that was convenient for a relatively long prediction horizon. Taking this into account and
the small homogeneous sampling time period, it would lead to a deeply extensive quantity
of control variables taking part in the predictive model (DIMITROV et al., 2008).

In the interest of reducing the intricacy of the predictive model, the methodology
proposed in (FARONI; BESCHI; TOSATTI, 2017) has been utilized. Such strategy enables to
have a small quantity of prediction and control time instants along the prediction horizon,
instead of considering all the sampling times. Expressly, for a sequence of prediction time
instants {𝜏𝑖}, 1 ≤ 𝑖 ≤ 𝑝 , and a sequence of control time instants {𝑡𝑗}, 1 ≤ 𝑗 ≤ 𝑐 , the predictive
horizon (given in seconds) is denoted by 𝜏𝑝 . The control horizon (also in seconds) is named
𝑡𝑐 .

3.3.2 Selection Criteria of the Predictive and Control Instants

The predictive formulation depends on the pre-established distribution of the pre-
diction and control time instants 𝜏𝑖 and 𝑡𝑗 throughout the respective predictive horizons.
Despite the fact that prediction and control time instants don’t need to be imposed as equal,
henceforward they are chosen to be the same, which does not imply in loss of generality.
Considering that the reference signal (corresponding to the geometrical assignment) is not
typically constant, an optimal distribution for 𝜏𝑖 and 𝑡𝑗 cannot be determined. Thereupon, it
is adopted, similar to (FARONI; BESCHI; TOSATTI, 2017), an elementary empiric tuning
rule established on the resulting directives:

• The control and prediction time instants are equally distributed: 𝜏𝑖 = 𝑡𝑖.

• The first time instant is equal to zero: 𝜏1 = 𝑡1 = 0.

30

• The difference between two considered time instants grows as the index increases.

Therefore, for a specific quantity of time instants 𝑐 = 𝑝 and the width of the horizon
𝜏𝑝 given in seconds, (FARONI; BESCHI; PEDROCCHI, et al., 2019) proposes a parabolic
distribution of 𝜏𝑖 and 𝑡𝑖 in the form:

𝜏𝑖 = 𝑡𝑖 =
𝜏𝑝

(𝑝 − 1)2
(𝑖 − 1)2 (3.15)

in which 1 ≤ 𝑖 ≤ 𝑝. And so, a relatively small amount of time instants is enough to work
with both the predictive and control time horizons.

3.3.3 Task Fulfillment

The fulfillment of the primary task by the means of the global method relies also
upon the resolution, through a QP solver, of the IK problem formulated as a LSP, which,
similar to (FARONI; BESCHI; PEDROCCHI, et al., 2019), considers the time instants 𝜏𝑖
mentioned in the section 3.3.2. The cost function of IK, formulated as a LSP, is given by:

Ω1 ∶= || 𝐽∗(Θ(𝜏))Θ̇(𝜏) − (𝑋̇𝑑(𝜏) − 𝐾(𝑋(𝜏) − 𝑋𝑑(𝜏)))𝑆(𝜏) ||2 (3.16)

wherein

𝐽∗(Θ(𝜏)) = blkdiag(𝐽(𝜃(𝑡 + 𝜏1)) , ... , 𝐽(𝜃(𝑡 + 𝜏𝑝)))

Θ(𝜏) = [𝜃(𝑡 + 𝜏1)𝑇 , ... , 𝜃(𝑡 + 𝜏𝑝)𝑇]𝑇

𝑆(𝜏) = [𝑠(𝑡 + 𝜏1)𝑇 , ... , 𝑠(𝑡 + 𝜏𝑝)𝑇]𝑇

𝑋(𝜏) = blkdiag(𝑥(𝜎(𝑡) + 𝜏1) , ... , 𝑥(𝜎(𝑡) + 𝜏𝑝))

𝑋𝑑(𝜏) = blkdiag(𝑥𝑑(𝜎(𝑡) + 𝜏1) , ... , 𝑥𝑑(𝜎(𝑡) + 𝜏𝑝))

in which 𝑏𝑙𝑘𝑑𝑖𝑎𝑔 corresponds to a kind ofmatrix that is formed as a function of other smaller
matrices that fill the diagonal of the block diagonal matrix. This type of matrix are important
to enable the calculations needed to determine the solutions for the LSP. This matrices in
equation 3.16 are augmented versions of the ones in equation 3.4.

Strictly analyzing, equation 3.16 is non-linear in relation to the control signal Θ̇,
as the augmented Jacobian matrix is a function of current and future joint positions (that
relies upon the current and future joint velocities). Hence, an approximation of the problem
is considered, so it can be actually considered as a LSP: the future joint positions used in
the Jacobians are calculated by a simple integration of the joint velocities computed in the
previous iteration (considering them as linear functions of time). For the first loop, the joint
velocities used for the calculation of the approximated Jacobians are zero.

The vector containing the scaling factors must also be computed by the QP solver.
Analogously to the local method, the optimization regarding the scaling factor has lower

31

priority than the trajectory task. The cost function to work with the scaling factor is given
by:

Ω2 ∶= ||1𝑝×1 − 𝑠(𝜏)||2 (3.17)

in which 1𝑝×1 is a column matrix formed by ones in all its 𝑝 lines.

Just like for the local method, the priority of the cost functions Ω1 and Ω2 can be
formulated into one single cost function Ω as:

Ω ∶= 𝜆1|| 𝐽∗(Θ(𝜏))Θ̇(𝜏) − (𝑋̇𝑑(𝜏) − 𝐾(𝑋(𝜏) − 𝑋𝑑(𝜏)))𝑠(𝜏) ||2 + 𝜆2||1𝑝×1 − 𝑠(𝜏)||2 (3.18)

wherein 𝜆1 needs to have a much larger value than 𝜆2 to emulate the difference of priorities.
Also for this method, the trajectory task is the primary one, while the maximization of the
scaling factor is the secondary.

The hard bounds considered for the local method are also taken into account in the
global one. However, their formulation has a subtle difference:

Θ̇𝑚𝑖𝑛 ≤ 𝜃(𝑡 + 𝜏𝑖) + 𝑇𝜃̇(𝑡 + 𝜏𝑖) ≤ Θ̇𝑚𝑎𝑥

⇒
Θ𝑚𝑖𝑛 − 𝜃(𝑡 + 𝜏𝑖)

𝑇 ≤ 𝜃̇(𝑡 + 𝜏𝑖) ≤
Θ𝑚𝑎𝑥 − 𝜃(𝑡 + 𝜏𝑖)

𝑇

(3.19)

and:

Θ̈𝑚𝑖𝑛 ≤
𝜃̇(𝑡 + 𝜏𝑖) − 𝜃̇(𝑡 + 𝜏𝑖 − 𝑇)

𝑇 ≤ Θ̈𝑚𝑎𝑥

⇒ 𝑇Θ̈𝑚𝑖𝑛 + 𝜃̇(𝑡 + 𝜏𝑖 − 𝑇) ≤ 𝜃̇(𝑡 + 𝜏𝑖) ≤ 𝑇Θ̈𝑚𝑎𝑥 + 𝜃̇(𝑡 + 𝜏𝑖 − 𝑇)
(3.20)

the inequalities are applied to the different time instants considered in the predictive
horizon. Therefore, there are constraints between the control signals for each instant 𝜏𝑖.

Hence, the problem of calculating the predictive scaling factor and joint velocities is
formally defined as:

[
Θ̇
𝑆
] = 𝑎𝑟𝑔𝑚𝑖𝑛

[Θ̇ 𝑆]
𝑇
∈ 𝜁

(Ω) (3.21)

wherein 𝜁 corresponds to the set that limits Θ̇ and 𝑆 to their pre-defined restraints. The same
numerical QP solver used for the local method can compute the optimal solution for the
MPC method.

32

4 Development and Implementation

4.1 CoppeliaSim

Robotic systems integrates the use of actuation, sensing and control, which makes
them powerful but also complex. Such systems depend upon essential apparatus and a
consistent background on kinematics, dynamics, motion planning, control techniques and,
eventually, computer vision (SPONG; HUTCHINSON; VIDYASAGAR, 2005). In general,
robot manipulators employment framework needs to provide means to deal with these cited
fields (SILVA PEREIRA, 2016). Hence, a multi-functional robot simulator is required to
enable the simulation to work properly and be useful for different analysis.

Coppelia Robotics 1 created a robot simulator named CoppeliaSim (formerly V-REP).
This software is versatile, scalable, yet mighty work environment that aims to merge all the
required computational resources for complex, comprehensive simulation scenarios, such
as distributed, cascade control architecture (ROHMER; SINGH, S.; FREESE, 2013).

There is a plenty of robot simulation platforms that, although provide useful func-
tionalities, often fail to offer a wide repertoire of programming techniques, in addition to the
simulation models and controllers being only partially portable: each one needs different
management (ROHMER; SINGH, S.; FREESE, 2013). These restraints makes it difficult to
port between hardware or platforms.

CoppeliaSim enables the choice among diversified programming procedures simul-
taneously. It is even possible to combine these different techniques (ROHMER; SINGH,
S.; FREESE, 2013): embedded scripts in Lua, plug-ins to interface to specific hardware,
remote API via socket communication, add-ons for customization and ROS. In particular, in
this work, it is used a ROS node in Matlab to communicate with another ROS node in the
CoppeliaSim scene containing the robot manipulator.

For the current work, CoppeliaSim was used to test the kinematic controllers in
the robot manipulator Kuka LBR4p shown in figure 6. It is important to simulate different
trajectories, under different constraints, before implementing the controllers in the actual
robot. It permits to verify if there are stability issues in controllers, caused by possible
numerical conditioning, numerical drifting and other eventual problems. Therefore, the
simulation can prevent possible damages to the actual manipulator.

The software used provide different kinds of elemental objects (ROHMER; SINGH,
S.; FREESE, 2013):
1 https://www.coppeliarobotics.com

33

Figure 6 – Kuka LBR4p used for the simulations in CoppeliaSim

• Joints: feature that connects two ormore scene objects, presenting one to three degrees
of freedom, depending if the joint is prismatic, revolute, screw-like or spherical. They
can work in distinct modes, like in force, torque or inverse kinematics mode. The
interesting thing is that each joint can be associated with a script, both to apply a
control law, and to publish data, such as effort, speed and position.

• Shapes: triangular meshes, with usage in rigid body simulation and visualization. The
dynamics module depend greatly on shapes for its calculations.

• Graphs: element that enables to record and directly display data, in different ways.

• Cameras: make it possible to visualize a scene with a specific view-port.

• Lights: they can illuminate the whole scene or specific scene objects, which influences
the view through cameras.

• Dummies: a reference frame that can be placed in a scene, which helps in the fulfill-
ment of multiple tasks.

In figure 6, it is possible to observe, in a list in the left part of the screen, the exis-
tence of seven joints (LBR4p_joint1 to LBR4p_joint7), eight links with dynamics module
enabled (LBR4p_link1 to LBR4p_link8) and seven visible links (LBR4p_link1_visible to

34

LBR4p_link7_ visible) that enables the robot to be illustrated. The elements cited are struc-
tured as a hierarchy tree, wherein each joint’s movement influences in the links that are
listed below the respective joint.

4.2 Robot Operating System (ROS)

The integration of diverse systems can be a critical aspect to achieve good results in
controlling experimentation. There is a plenty of communication protocols and computer
architectures that can enable to exchange data between different programs. Complex robotic
systems require such tasks, as they are continually in a scale growth. A suitable framework is
Robotic Operating System (ROS) 2, as it allows to write robot software in a flexible way. ROS is
a meta-operating, open-source system dedicated for robot programming (YOONSEOK PYO
HANCHEOLCHO; LIM, 2017), designedwith the objective of associating large-scale robotics
applications (QUIGLEY et al., 2009). This tool implements typical features of an operating
system, such as data transfer between processes and package handling (YOONSEOK PYO
HANCHEOL CHO; LIM, 2017).

ROSwas used in this work to communicate the robot simulation in CoppeliaSimwith
a program in Matlab that computes the task planning and the control law. The main ROS
features utilized were ROS nodes 3 and topics 4. A node corresponds to a program that can
be executed to realize computations needed for a process that can be visible, communicable
via ROS (YOONSEOK PYO HANCHEOL CHO; LIM, 2017). Nodes can be connected in a
graph and exchange data through ROS topics and are supposed to communicate at a large
rate (YOONSEOK PYOHANCHEOL CHO; LIM, 2017). All the nodes being executed present
a unique identification in the graph that differs each one within the system (YOONSEOK
PYO HANCHEOL CHO; LIM, 2017).

The employment of ROS nodes present a series of advantages (YOONSEOK PYO
HANCHEOL CHO; LIM, 2017):

• Tolerance to failures is higher, since breakdowns are segregated into separate nodes;

• In relation to monolithic systems, the complexity of algorithms is diminished;

• The nodes advertise the least possible API to the other part of the graph, which enables
to omit particular technicalities of the implementation;

• Distinct nodes can be implemented in different programming languages and still have
an efficient communication.

2 http://www.ros.org
3 http://wiki.ros.org/Nodes
4 http://wiki.ros.org/Topics

35

Topics consist in buses through which nodes transfer and receive data and present
particular publishing and subscribing semantics, which decouples the data sources from its
acquisition (YOONSEOK PYO HANCHEOL CHO; LIM, 2017). Usually, it is not transpar-
ent to each node what are the other parts in the communication process. Actually, nodes
can subscribe to a topic to receive a certain type of messages or publish data to the topic
involved (YOONSEOK PYO HANCHEOL CHO; LIM, 2017).

In this project, there are two nodes for each kinematic controller: the controlling
node in Matlab, that performs calculations in dual quaternions needed to obtain the control
law; the node in the simulator CoppeliaSim, that provides the sensing necessary information
about the poses and joint variables for the control module.

4.3 DQ Robotics

There are computational frameworks that are more suitable to work with complex
calculations, like the ones needed in the process of robot modelling and kinematic control
using the set of dual quaternions. Fortunately, to this purpose, there is a library provided
for Matlab(as for Python and C++) named DQ Robotics (ADORNO; MARINHO, 2021),
which is a very convenient to understand and use, besides being computationally efficient.
Reference (ADORNO; MARINHO, 2021) mentions some libraries that provide tools to
work with quaternions and dual quaternions in Lua, MATLAB and C++, but not with
functionalities suitable for robot manipulators as DQ Robotics.

DQ Robotics supports object-oriented commands. There is a class named DQ that
encompasses the main methods of this library are shown in figure 7. These methods are
very important to compute the necessary calculations involving dual quaternions, such
as conversions between coordinate systems and other operations related to determine the
control law.

In figure 8, it is illustrated a simplified UML class diagram of the robot model-
ing classes with the main methods available. Essentially, this project has used the classes
DQ_Kinematics and DQ_SerialManipulator (which inherits the methods of the former
class). The constructor method of DQ_SerialManipulator requires the Denavit-Hartenberg
parameters, which enables to compute direct kinematics and the pose jacobian, for instance.

4.4 Methodology

The controllers implemented in this project were developed in Matlab, since this
program has support to communicate through ROS, supports the library DQ robotics and
posses an efficient QP solver, the function quadprog, which can consider equality and
inequality constraints in the interest of minimizing a cost function. In the case of this

36

Figure 7 – Main methods of Class DQ (figure extracted from (ADORNO; MARINHO, 2021))

Figure 8 – Simplified UML class diagram provided by DQ Robotics (ADORNO; MARINHO, 2021)

work, the cost function is the kinematic equation including the feed-forward term, as in
equation 2.30 for the methods that use the QP solver. As for the proportional controller, the
control law is obtained through equation 2.34.

The controlled trajectory is that of the end-effector. The measurements that enable
to calculate its pose is the joint angles of the Kuka manipulator. However, this computed
pose is in relation to the robot’s base. The measured poses, though, are provided from the
CoppeliaSim to the Matlab with respect to the world coordinate frame of the simulator. A
pose 𝑥 defined with respect to the reference frame shown in figure 6 (the one floating near

37

to the robot) can be expressed, in relation to the coordinate frame attached to the robot’s
base, as

𝑥 = 𝑏∗
𝑝
𝑟𝑒𝑓

𝑝
𝑥
0

(4.1)

wherein 𝑏
𝑝
is the robot’s base pose (in relation to the world coordinate frame), 𝑟𝑒𝑓

𝑝
is the

reference frame pose (in relation to the world coordinate frame) and 𝑥
0
is a generic pose

defined with respect to reference frame. Therefore, a desired trajectory can be specified in
relation to this reference frame, which is the procedure done in this project.

4.4.1 The Implementation

The first procedure to start working with the robot is to determine its Denavit-
Hartenberg parameters. The robot manipulator Kuka LBR4p has seven degrees of freedom,
in which all the joints are rotational. Hence, the variable parameters of Kuka’s DH matrix
are the angles 𝜃 (the joint angular positions), which enable to compute the direct kinematics.
The DH matrix of Kuka is determined as

𝐷𝐻𝐾𝑢𝑘𝑎 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐷𝐻𝜃

𝐷𝐻𝑑

𝐷𝐻𝑎

𝐷𝐻𝛼

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 𝜃7
0.2 0 0.4 0 0.39 0 0.078
0 0 0 0 0 0 0
𝜋∕2 −𝜋∕2 𝜋∕2 −𝜋∕2 𝜋∕2 −𝜋∕2 0

⎤
⎥
⎥
⎥
⎥
⎦

(4.2)

which was constructed from measurements and observing the orientation of the coordinate
frames in a scene with the robot in CoppeliaSim. In possession of 𝐷𝐻𝐾𝑢𝑘𝑎, it is necessary to
measure the pose of the first link of the manipulator with respect to its base, so the direct
kinematics can be calculated correctly. This pose of the first link is given by

𝑙
𝑝
= 1 + 0.5𝜖(0.51𝑘̂) (4.3)

as the link rotation is null and it is dislocated 0.51𝑚 from the base (which was also verified
using the scene in CoppeliaSim).

Afterwards, the rate of communication by ROS between CoppeliaSim and the con-
trolling node in Matlab is set as 𝑇 = 0.05𝑠. The programs in Matlab and in CoppeliaSim
determine its publishers and subscribers: the first one sends the desired joint velocities to
achieve a certain pose by the end-effector while the simulator sends the joint state (con-
taining the measured angular positions, velocities and effort in each joint), but firstly the
program in CoppeliaSim provides the poses 𝑟𝑒𝑓

𝑝
and 𝑏

𝑝
needed by the controlling node in

Matlab.

4.4.1.1 Solutions without time scaling

For the proportional controller using the invariant error function, the control loop
must simply compute the control law expressed in equation 2.34. For the MPC method,

38

before beginning the loop, the controlling node must define the constraints and some other
parameters to provide for the QP solver. The function quadprog used demands matrices as
arguments to compute the control action 𝑢(𝑡), which are named 𝐻, 𝑓, 𝐴, 𝑏, 𝑙𝑏 and 𝑢𝑏. The
quadprog function works to minimize the cost function:

1
2𝑢

𝑇𝐻𝑢 + 𝑓𝑇𝑢 (4.4)

restrained to the inequalities
⎧

⎨
⎩

𝐴𝑢 ≤ 𝑏

𝑙𝑏 ≤ 𝑢 ≤ 𝑢𝑏
(4.5)

In terms of the kinematic variables, the cost function is

𝐶𝜔 ∶= ||𝐽𝜃̇ − 𝑥̇𝑑 + 𝐾(𝑥 − 𝑥𝑑)||2 (4.6)

Considering 𝑥̇𝑑 = 𝑣𝑒𝑐8(𝑥̇𝑑), 𝑥𝑑 = 𝑣𝑒𝑐8(𝑥𝑑) and 𝑥 = 𝑣𝑒𝑐8(𝑥), the cost function be-
comes

𝐶𝜔 ∶= 𝜃̇𝐽𝑇𝐽𝜃̇ − 2(𝐾(𝑋𝑑 − 𝑥) − 𝑥̇𝑑)𝑇𝐽 + 𝜙 (4.7)

wherein 𝜙 is a number that depends on the other kinematic variables, but not on the the
control signals. Therefore:

𝐻 = 𝐽𝑇𝐽

𝑓 = −𝐽𝑇(𝐾(𝑥𝑑 − 𝑥) + 𝑥̇𝑑)
(4.8)

4.4.1.2 Solutions with time scaling

In terms of the kinematic variables, the cost function is

𝐶𝜔 ∶= 𝜆1||𝐽(𝜃)𝜃̇ − (𝑣𝑒𝑐8(𝑥̇𝑑) + 𝐾 𝑣𝑒𝑐8(𝑥𝑑 − 𝑥))𝑠||2 + 𝜆2||1 − 𝑠||2 (4.9)

Considering 𝑥̇𝑑 = 𝑣𝑒𝑐8(𝑥̇𝑑), 𝑥𝑑 = 𝑣𝑒𝑐8(𝑥𝑑) and 𝑥 = 𝑣𝑒𝑐8(𝑥), the cost function becomes

𝐶𝜔 = 𝜆1(𝐽(𝜃)𝜃̇−(𝑥̇𝑑+𝐾(𝑥𝑑−𝑥))𝑠)𝑇(𝐽(𝜃)𝜃̇−(𝑥̇𝑑+𝐾(𝑥𝑑−𝑥))𝑠)+𝜆2(1−𝑠)𝑇(1−𝑠) (4.10)

Developing equation 4.10 into a matrix form, it is possible to conclude:

𝐻 = [
𝜆1𝐽𝑇𝐽 −𝜆1𝐽𝑇(𝐾𝑒𝑐 + 𝑥̇𝑑)

−𝜆1(𝐾𝑒𝑐 + 𝑥̇𝑑)𝑇𝐽 𝜆1(𝐾𝑒𝑐 + 𝑥̇𝑑)𝑇(𝐾𝑒𝑐 + 𝑥̇𝑑) + 𝜆2𝐼
] (4.11)

𝑓𝑇 =
[
0𝑛𝑗𝑝 − 𝜆21𝑝

]
(4.12)

wherein 𝑒𝑐 = 𝑥𝑑 − 𝑥 is the control error function and 𝐼 is the identity matrix. For the Local
method, 𝑝 = 1 while for the MPC method, it was tested 𝑝 = 6 and 𝑝 = 10. The dimensions
of the matrices considered rely upon the value of 𝑝, as exposed in section 3.3.3.

39

4.4.1.3 Definition of the constraints

As for the restrictions it was considered joint ranges to be:

−𝜋

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
2.5
2.5
2.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜃̇1
𝜃̇2
𝜃̇3
𝜃̇4
𝜃̇5
𝜃̇6
𝜃̇7

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≤ 𝜋

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
2.5
2.5
2.5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.13)

which were empirically obtained values that worked well for the situations tested.

To work with the feasibility of the trajectory, it was considered a restraint of mean
acceleration, that was estimated, for the circle trajectory, considering the measured torques
provided by the ROS node in CoppeliaSim and the measured velocities as

𝜏𝑚𝑎𝑥 = 𝐼𝑛|𝛼𝑚𝑒𝑎𝑛| = 𝐼𝑛
||||𝜃̇(𝑛−1) − 𝜃̇(𝑛−2)

||||
∆𝑡 (4.14)

wherein 𝜃̇𝑘−𝑙 is themeasured vector of joint velocities in the iteration 𝑙 times before the current
iteration. For the two first iterations, 𝛼𝑚𝑒𝑎𝑛 was taken as 10𝑟𝑎𝑑∕𝑠2. 𝐼𝑛 is the vector containing
the momentum of Inertia of each joint, which can be estimated with regard to equation 4.14,
as 𝜏𝑚𝑎𝑥 have their values specified in the constraints of the scene in CoppeliaSim. Therefore,
a inequality is formulated as

−∆𝑡𝐼𝑛𝜏𝑚𝑎𝑥 + 𝜃̇(𝑘−1) ≤ 𝜃̇ ≤ ∆𝑡
𝐼𝑛𝜏𝑚𝑎𝑥 + 𝜃̇(𝑘−1) (4.15)

which is adapted to the form of matrix equations so the matrices 𝐴 and 𝑏 in 4.15 are estab-
lished. In the case of the MPC method, these matrices are constructed in a more complex
way, as it was considered this restraint of mean angular acceleration between two predicted
joint velocities, which is an essential idea to make the predictive control work well.

As for the sinusoidal trajectory, this estimation of the momentum of inertia didn’t
work well, as it is only an approximation and it depends on the joint configuration. A value
that was empirically good was the acceleration of 10𝑟𝑎𝑑∕𝑠2.

40

5 Results and Evaluation

Different simulations were made to test the two controllers involved in this project.
Two kinds of trajectories were approached: a circular and a sinusoidal one, both tested
for distinct assigned periods to be fulfilled. These paths can show the effectiveness of the
trajectory controllers, considering the nature of their curves.

One section was made, in this chapter, for each trajectory to evaluate the manipula-
tor performance with the two controllers applied, both with time period specified of two
seconds. It is shown in figures and discussed the path obtained, the control actions, the
angular positions and torques applied to each joint. The number of predictions of the MPC
approached in these sections was 𝑝 = 10. The control horizons used in all the situations for
the MPC was 𝜏𝑝 = 20𝑇 = 1𝑠.

In the last section, the results of mean scale, error and control action are exhibited
and discussed for all the different periods assigned to fulfill the task, as also the two MPC
controllers with 𝑝 = 6 and 𝑝 = 10.

5.1 Circular Trajectory

The circular trajectory was performed in the XY plane, keeping the Z coordinate
fixed. It is convenient to define the trajectory with respect to the origin of the reference
coordinate frame. The parametric equation that defines the translation that corresponds
to a circumference with radius 𝑅 and centered at the origin of the reference frame can be
expressed as

𝑡𝑟 = 0 + 𝑅 𝑐𝑜𝑠(Ω𝜎(𝑡))𝚤 + 𝑅 𝑠𝑖𝑛(Ω𝜎(𝑡))𝚥 + 0𝑘̂ (5.1)

wherein 𝑡𝑟 is a quaternion, 𝜎(𝑡) is the function formerly defined as the dilated time func-
tion and Ω is the angular frequency. Considering a reference trajectory that has the same
orientation as the reference frame, the rotation quaternion is, hence, given by

𝑟𝑜𝑡 = 1 + 0𝚤 + 0𝚥 + 0𝑘̂ (5.2)

so the dual quaternion 𝑡𝑟𝑎𝑗 = 𝑟𝑜𝑡 + 0.5𝜖(𝑡𝑟 𝑟𝑜𝑡) can determine the requested path.

To express the trajectory dual quaternion pose 𝑥
𝑑
in relation to the robot’s base, it is

necessary to perform the multiplication

𝑥
𝑑
= 𝑏∗

𝑝
𝑟𝑒𝑓

𝑝
𝑡𝑟𝑎𝑗(𝜎)

𝑥
𝑑
= 𝑏∗

𝑝
𝑟𝑒𝑓

𝑝
(1 + 𝜖(𝑅∕2 𝑐𝑜𝑠(Ω𝜎)𝚤 + 𝑅∕2 𝑠𝑖𝑛(Ω𝜎)𝚥))

41

then, finally, 𝑣𝑒𝑐8(𝑥𝑑) can be the reference signal of the desired pose provided to the controller.
The pose velocity is determined as

𝑣𝑒𝑐8(𝑣𝑥𝑑)(𝜎) =
d(𝑣𝑒𝑐8(𝑥𝑑))

d𝜎
𝑣𝑒𝑐8(𝑣𝑥𝑑)(𝜎) = 𝑣𝑒𝑐8(𝑏

∗
𝑝
𝑟𝑒𝑓

𝑝
𝜖(−Ω𝑅∕2 𝑠𝑖𝑛(Ω𝜎)𝚤 + Ω𝑅∕2 𝑐𝑜𝑠(Ω𝜎)𝚥))

For the local and MPC methods, a tuning rule that worked well for the proportional
gain to perform the circle trajectory was 𝐾 = 200 ⋅ 2𝜋∕Ω, as 2𝜋∕Ω is the period of the
assigned task. The circle trajectory tested that is considered in this section is the one with
radius 𝑅 = 0.1𝑚 and nominal period of 2 seconds.

5.1.1 Data Analysis

In figures 9 and 10, it is exhibited the measured points obtained (in meters), respec-
tively, by the MPC and Local methods. In blue, it is shown the expected trajectory for the
end-effector, while the symbol in red shows the measured points that were achieved. It is
evident that the MPC method worked much better than the Local method at preserving
the original circular path. The trajectory started at the point on the far right (as in a regular
trigonometric cycle). Until the third quarter of the circumference, the Local method seemed
to be working well, even better than the MPC in terms of scaling (it is possible to observe
that the points are less spaced). In the third quarter, however, the Local method deformed
the path considerably (which also harmed the scaling) as the MPC was able to manage to
keep a low error. It is also possible to verify that the Local method produced an increasing
error at the end of the last quarter.

The figures 11 and 12 show the obtained trajectories for, respectively, the MPC and
the Local methods. The pictures help to reiterate that the Local method noticeably deformed
the original path while the MPC was efficient to preserve it. The plots in three dimensions
also showed that, in the third quarter or the circular trajectory, the Local method produced
a substantial error along the direction of the Z axis, and a smaller yet perceptible error in
this vertical direction at the end of the path.

42

Figure 9 – 2D plot of the circle Trajectory obtained for the MPC method, with period of 2 seconds.

Figure 10 – 2D plot of the circle Trajectory obtained for the Local method, with period of 2 seconds.

43

Figure 11 – 3D plot of the circle Trajectory obtained for the MPC method, with period of 2 seconds.

Figure 12 – 3D plot of the circle Trajectory obtained for the Local method, with period of 2 seconds.

It is also interesting to analyze the behavior of each element of the pose (the three
degrees of freedom of translation and the three ones of rotation). Figures 13 and 14 show the
translation coordinates (in meters) in function of 𝜎(𝑡) (in seconds). It is visible to confirm the

44

previous analysis about the effectiveness of MPC, oppositely to the Local method, in regard
of the third quarter of the cycle (around 𝜎 = 1.5𝑠) and the end of the fourth quarter (around
𝜎 = 2𝑠) , wherein it is possible to verify the discrepancy between the reference function (in
blue) and the measured coordinates (in red). Both the MPC and Local methods presented
problem to keep a low error for Y in the beginning of the trajectory, which highlights the
difficulty of using the kinematic control with constraints that may not be convenient for
certain states. It may seem that the Z coordinate in the graphs has undergone a larger
variation, but its scale is very different from the ones taken into account in the two graphs
for the coordinates X and Y. Nevertheless, the noisy function obtained shown in figure 13
highlights what may be the small inaccuracies from the QP solver used or limitations of the
joint control.

In regard to rotation degrees of freedom, graphs of spin coordinates are shown in
figures 15 and 16, in reference to the MPC and Local methods, respectively. It is important to
evaluate its behavior, since in the trajectories plots, it is not possible to observe the orientation
behavior. It can be verified that even the orientation coordinates obtained (in red) diverged
greatly from the reference (in blue) for the local method around 𝜎 = 1.5𝑠 (same period of fail
for the translation coordinates), while the error for the MPC method remained in a smaller
range along the whole period. Despite that, the rotation coordinates where similar. The noise
may also be a consequence from the restraints of joint control and numerical inaccuracies
from the QP solver used.

Figure 13 – Behavior of each translation element.

45

Figure 14 – Behavior of each translation element for the Local Method.

Figure 15 – Behavior of each rotation element for the MPC method.

46

Figure 16 – Behavior of each rotation element for the Local method.

Although the same QP solver is used in the two methods compared, they produced
very different control signals in order to perform the same trajectory in the nominal time of
2 seconds. Figures 17 and 19 show the joint velocities for the MPC method and figures 18
and 20 show the joint velocities for the Local method, all in function of 𝜎(𝑡) (in seconds).
The joint velocities are given in 𝑟𝑎𝑑∕𝑠. It is expected the joint velocities measured (in red)
to be delayed by one sampling time 𝑇 = 0.05𝑠 from the reference joint velocities (in blue),
which, in general, occurred. However, it is noticeable that, in some periods, the measured
joint velocities did not follow their reference, which clearly exposes the limitations imposed
by the joint control in the cascade. It is interesting to notice that, right around 𝜎 = 1.5𝑠 the
joint velocities in the local (specially the joints 1 to 4) were submitted to large variations, in
order to recover from the significant error generated at this period. It can also be verified
that, from one sampling time to another, in general, the joint velocities varied more for the
MPC method, as in every instant, this procedure makes a different prediction that depends
on the approximation of future Jacobians, so the strategy tend to be more susceptible to
changes.

47

Figure 17 – Behavior of each control action for the MPC method (from joint 1 to 4).

Figure 18 – Behavior of each control action for the Local method (from joint 1 to 4).

48

Figure 19 – Behavior of each control action for the MPC method(from joint 5 to 7).

Figure 20 – Behavior of each control action for the Local method (from joint 5 to 7).

As the joint velocities have different outlines from one method to the other, con-
sequently the angular positions obtained will also differ, which is exhibited in figures 21

49

and 22. In green, it is illustrated the joint angular positions obtained through the MPC and
in magenta, the ones obtained through the Local method.

To obtain these different profiles of velocity and angular position, certainly the two
methods needed to apply distinct torques, which is shown in figures 23 and 24. In general,
the torques of MPC (in green) and the Local method (inmagenta) remained in similar ranges.
However, for the joints 4 and 5, there were peaks of torque from the Local method that were
very far from the maximummagnitude of the MPC torque peaks.

Figure 21 – Behavior of each joint angle (from joint 1 to 4).

50

Figure 22 – Behavior of each joint angle (from joint 5 to 7).

Figure 23 – Behavior of each applied torque (from joint 1 to 4).

51

Figure 24 – Behavior of each applied torque (from joint 5 to 7).

5.2 Sinusoidal Trajectory

The sinusoidal trajectory was performed in the XZ plane (keeping the Y coordinate
fixed), also defined in relation to the reference frame. The parametric equation that defines
the translation corresponding to the sinusoidal curve of 𝑍 in function of 𝑋 with amplitude
𝐴𝑚𝑝 can be defined as

𝑡𝑟 = 0 + 𝑣 𝜎(𝑡)𝚤 + 0𝚥 + 𝐴𝑚𝑝 ⋅ 𝑠𝑖𝑛(Ω𝑣𝜎(𝑡))𝑘̂ (5.3)

wherein 𝑡𝑟 is a quaternion, 𝜎(𝑡) is the dilated time function, Ω is an angular frequency in
terms of the 𝑋 coordinate and 𝑣 is the linear velocity of 𝑋 (associated to 𝜎(𝑡)).

The reference of this trajectory also has the same orientation as the reference frame.
Therefore, rotation quaternion is expressed as in equation 5.2, with the dual quaternion
𝑡𝑟𝑎𝑗 = 𝑟𝑜𝑡 + 0.5𝜖(𝑡𝑟 𝑟𝑜𝑡) representing the desired path. Hence, the dual quaternion 𝑥

𝑑
associated to the required pose, in relation the robot’s base, is determined as

𝑥
𝑑
= 𝑏∗

𝑝
𝑟𝑒𝑓

𝑝
(1 + 𝜖 (𝑣𝜎2 𝚤 +

𝐴𝑚𝑝
2 𝑠𝑖𝑛(Ω𝑣𝜎)𝑘̂)) (5.4)

then, 𝑣𝑒𝑐8(𝑥𝑑) is the reference vector of the controller. The pose velocity 𝑣𝑥𝑑 is, therefore,

52

given by

𝑣𝑒𝑐8(𝑣𝑥𝑑)(𝜎) =
d(𝑣𝑒𝑐8(𝑥𝑑))

d𝜎
𝑣𝑒𝑐8(𝑣𝑥𝑑)(𝜎) = 𝑣𝑒𝑐8 (𝑏

∗
𝑝
𝑟𝑒𝑓

𝑝
(1 + 𝜖 (𝑣2 𝚤 +

𝐴𝑚𝑝Ω
2 𝑐𝑜𝑠(Ω𝑣𝜎)𝑘̂)))

For the Local and MPC methods, a tuning rule that worked well for the proportional
gain to perform the sinusoidal trajectory was 𝐾 = 500∕𝑃, wherein 𝑃 is the period of the task,
imposed to be 2𝜋∕(15𝑣). The sinusoidal trajectory tested that is approached in this section
is the one with 𝐴𝑚𝑝 = 0.1𝑚 and a nominal period of 2 seconds. Hence, the gain used was
𝐾 = 250. The values of 𝑣 andΩ were chosen to be 𝜋∕15 and 60, respectively, which produce
a sinusoidal path with curves that have great inflection, which is a good way to test the
controllers and the quality of the prediction of MPC.

5.2.1 Data Analysis

Themeasured points in𝑋 and𝑍 coordinates obtained by theMPC and Local methods
are shown, respectively, in figures 25 and 26. In blue, it is shown the expected trajectory for
the end-effector, while the asterisk in red shows the measured points that were reached. Also
for the sinusoidal trajectory, the MPC method presented much better results than the Local
method, as it is clear the predictive one was able to preserve the original path, oppositely to
the the purely local. Right close the curves in the peaks, it is evident that the Local method
presented its limitations, which were overcame by the MPC, that was able to predict well
the accomplishment of those sharp turns. The points around the two last valleys were the
ones that presented the largest errors of the Local method. It can be verified that, for the
MPC (figure 25), the points are spaced before reaching the curve in the peak, oppositely to
when the curve in being made, which denotes that the scaling factor decreased (for a good
reason) right before these regions.

In figures 27 and 28, it is shown, respectively, the 3d plot of the trajectory obtained
through the MPC and Local methods. These pictures shows that, in addition to errors in 𝑋
and 𝑍, the peak curves were a source of significant errors in 𝑌 for the Local method, while
the MPC method worked well to keep a low error through the whole path.

53

Figure 25 – 2D plot of the circle Trajectory obtained for the MPC method, with period of 2 seconds.

Figure 26 – 2D plot of the circle Trajectory obtained for the Local method, with period of 2 seconds.

54

Figure 27 – 3D plot of the circle Trajectory obtained for the MPC method, with period of 2 seconds.

Figure 28 – 3D plot of the circle Trajectory obtained for the Local method, with period of 2 seconds.

The six elements of the pose were also taken into account in the sense of showing
their evolution through the dilated time function. Figures 29 and 30 illustrate the translation
elements (in meters) in function 𝜎(𝑡) (in seconds). In red, the measured translation coordi-
nates are shown and, in blue, their references. It is reiterated, observing the pictures, that

55

the Local method presented larger errors, specially near to the curves in the peaks of the sine
reference. It might seem that the error of 𝑌 for the MPC was larger, but it is necessary to pay
attention to the scale in the axis of the plot. Nevertheless, this noisy curve obtained (even
with a small variance of a maximum of 2mm) highlights the limitations already mentioned
of the joint control and/or the QP solver.

In figures 31 and 32, the rotation degrees of freedom obtained through the MPC
and Local methods, respectively, are shown. Right before 𝜎 = 1.5𝑠, the obtained rotation
coordinates (in red) for the Local method presented a high peak, greatly above their averages.
The MPC method produced a small variation (observing the scale of 10−3), as a consequence
of the limitations of the resolution.

Figure 29 – Behavior of each translation element.

56

Figure 30 – Behavior of each translation element for the Local Method.

Figure 31 – Behavior of each rotation element.

57

Figure 32 – Behavior of each rotation element for the Local method.

For the sinusoidal trajectory, it is also possible to observe that the two methods taken
into account demanded considerably distinct control actions to fulfill the same task, although
there are some peculiar similarities. Figures 33 and 35 show the joint velocities(in 𝑟𝑎𝑑∕𝑠)
for the MPC, which are shown, for the Local method, in Figures 34 and 36, all in function
of 𝜎(𝑡) (in seconds). In general, the measured joint velocities were delayed in relation to
the reference by one sampling time of 𝑇 = 0.05𝑠. In some points, however, it is verifiable
that the reference was not followed with null error, again exposing the limitations of joint
control. One peculiar similarity between the methods is that the joint velocities 2, 4 and 6
presented a certain periodicity for the two methods, even though the functions obtained
for each joints is different from one method to another. Also for this trajectory, the MPC
method produced a larger variation in the control signal from one sampling time to another.

58

Figure 33 – Behavior of each control action (from joint 1 to 4).

Figure 34 – Behavior of each control action for the Local method (from joint 1 to 4).

59

Figure 35 – Behavior of each control action (from joint 1 to 4).

Figure 36 – Behavior of each control action for the Local method (from joint 1 to 4).

Figures 37 and 38 show the joint angular positions measured(in 𝑟𝑎𝑑) for the MPC
(in green) and Local (in magenta) methods. As expected, the angular positions differ from

60

one method to the other, although the similarity of the nearly periodical behaviour remains
for the joints 2, 4 and 6. It is possible to observe that the Local method produced a very
abrupt variation in the first and seventh angular positions, near 1.4 seconds, while the MPC
obtained ones remained in a much smaller range.

The different applied torques are exhibited in figures 39 and 40. It is very evident
that the torques applied for the Local method (in green) presented a larger range of values
than the ones obtained through the MPC procedure, which is another advantage of this
algorithm, as the trajectory was better fulfilled with less effort.

Figure 37 – Behavior of each joint angle (from joint 1 to 4).

61

Figure 38 – Behavior of each joint angle (from joint 5 to 7).

Figure 39 – Behavior of each applied torque (from joint 1 to 4).

62

Figure 40 – Behavior of each applied torque (from joint 5 to 7).

5.3 Main Results

Other tests with the controllers were made, in order to test their effectiveness under
different conditions. In regard to all the distinct total periods 𝑇𝑡𝑜𝑡 assigned to the circular and
sinusoidal trajectories, the table 1 presents the mean error, the mean value of the control
actions and the mean value of the scaling factor for the Local method and the MPC methods
with 𝑝 = 6 and 𝑝 = 10.

For the circular trajectory, in general, the MPC controller was able to keep a lower
error than the Local method. However, for 𝑝 = 6 and the total period of 𝑇𝑡𝑜𝑡 = 8𝑠, the MPC
produced a larger mean error, while even the mean value of the control action was higher
than the obtained through the Local method. The smallest mean values of error and control
actions were obtained by the MPC method with 𝑝 = 10, as the higher mean values of the
scaling, which shows the superiority of this controller for this application.

As for the Sinusoidal trajectory, lower mean values were also obtained for the error
using the MPC controller. Nevertheless, for 𝑇𝑡𝑜𝑡 = 16𝑠 and 𝑇𝑡𝑜𝑡 = 8𝑠, the MPC controller
with 𝑝 = 6 produced higher mean error values than the Local method. Although the scaling
factor presented higher mean values for the Local method, it is debatable to assert something
about its quality, as there is a trade-off between obtained error and scaling factor. Anyway, it
was shown that the Local method produced a large malformation of the path in peaks of the

63

curves, which is certainly undesirable. In general, the MPC method was able to obtain lower
mean values of the control signal.

Circular Trajectory
𝑒𝑚𝑒𝑎𝑛 𝑢𝑚𝑒𝑎𝑛(rad/s) 𝑠𝑚𝑒𝑎𝑛

𝑇𝑡𝑜𝑡(s) Local 𝑝 = 6 𝑝 = 10 Local 𝑝 = 6 𝑝 = 10 Local 𝑝 = 6 𝑝 = 10
8 3 ⋅ 10−3 3.4 ⋅ 10−3 2 ⋅ 10−3 1.5427 1.7393 1.8393 0.9785 0.9906 0.9927
4 3.36 ⋅ 10−2 3.2 ⋅ 10−3 2.5 ⋅ 10−3 3.6286 2.8961 2.6303 0.4786 0.5639 0.5714
2 1.44 ⋅ 10−2 3.2 ⋅ 10−3 2.9 ⋅ 10−3 3.4070 2.6016 2.8281 0.1789 0.2984 0.3640
1 8.23 ⋅ 10−2 2.8 ⋅ 10−3 2.6 ⋅ 10−3 4.0542 3.0039 3.0258 0.0418 0.1990 0.2285

Sinusoidal Trajectory
𝑒𝑚𝑒𝑎𝑛 𝑢𝑚𝑒𝑎𝑛(rad/s) 𝑠𝑚𝑒𝑎𝑛

𝑇𝑡𝑜𝑡(s) Local 𝑝 = 6 𝑝 = 10 Local 𝑝 = 6 𝑝 = 10 Local 𝑝 = 6 𝑝 = 10
16 2.7 ⋅ 10−3 3.1 ⋅ 10−3 1.7 ⋅ 10−3 2.1787 2.3175 1.7413 0.9996 0.9400 0.9863
8 2.6 ⋅ 10−3 3.5 ⋅ 10−3 2.2 ⋅ 10−3 4.0662 3.1583 2.6165 0.7573 0.5938 0.6598
4 4.4 ⋅ 10−3 3.3 ⋅ 10−3 1.5 ⋅ 10−3 4.3542 2.5370 2.4295 0.3394 0.2444 0.3196
2 8.57 ⋅ 10−2 3.0 ⋅ 10−3 1.3 ⋅ 10−3 5.0194 2.4326 2.3035 0.1648 0.1319 0.1562

Table 1 – Tabel containing the main results of the simulations

5.4 Comparison between MPC and proportional con-

troller

It was also considered a simpler form of MPC (without the usage of time scaling) for
the circular trajectory, with the goal of comparing with the performance of the proportional
controller based on the invariant error function. Figures from 41 to 52 show the main results
obtained for the two methods considered. The reference circular trajectory corresponded
to the same path of the one considered for the methods that used time scaling. For both
controllers, the obtained trajectory presented reasonable results, as is observed in the three-
dimensional plots in Figures 41 and 47 and in the 2D plots shown in Figures 41 and 47. The
curves obtained for the rotation axis, illustrated in figures 43 and 49, show a small deviation
in relation to the reference for both methods. It is important to highlight that a different
error metric was used for the proportional controller. Even so, the obtained errors presented
the same order of magnitude, also for the translation, what can be observed in Figures 44
and 50.

As for the joint velocities, whose curves can be seen in Figures 45 and 46 for the
Proportional controller and in Figures 51 and 52 for the MPC method. For this trajectory,
it was considered, for MPC, bounds of ±2𝑟𝑎𝑑∕𝑠 for the joint velocities and ±40𝑟𝑎𝑑∕𝑠2

for the joint accelerations. The intention was to show that certain limits can be imposed
to the joint variables, as the trajectory is still feasible. The mean error produced by the
proportional method was 0.0014, while its maximum reached 0.0097. The mean error for
the MPC controller was 0.0018, while its maximum reached 0.0054.

64

Figure 41 – 3D Plot of circular trajectory using the proportional controller

Figure 42 – 2D Plot of circular trajectory using the proportional controller

65

Figure 43 – Curves of each element of the rotation axis, using the proportional controller

Figure 44 – Curves of each translation element, using the proportional controller

66

Figure 45 – Curves of joint velocities (from joint 1 to 4), using the proportional controller

Figure 46 – Curves of joint velocities (from joint 5 to 7), using the proportional controller

67

Figure 47 – 3D Plot of circular trajectory using the MPC controller

Figure 48 – 2D Plot of circular trajectory using the MPC controller

68

Figure 49 – Curves of each element of the rotation axis, using the MPC controller

Figure 50 – Curves of each translation element, using the MPC controller

69

Figure 51 – Curves of joint velocities (from joint 1 to 4), using the MPC controller

Figure 52 – Curves of joint velocities (from joint 5 to 7), using the MPC controller

70

6 Conclusions

This project presented the evaluation of two kinds of kinematic controllers using
dual quaternions. It was possible to explore a lot of different tools, such as ROS, DQ Robotics,
Matlab and the simulator CoppeliaSim. The usage of ROS to exchange data between Matlab
and CoppeliaSim has shown to be very convenient. Originally, the node programmed in Lua
in the CoppeliaSim scene was made to communicate with a controlling node in C++, but it
was very straightforward to adapt the controlling node to Matlab. To work with publishers
and subscribers in Matlab was even easier than in C++, in addition to the fact that storing
and plotting data using Matlab is much more favorable.

It was clear that the MPC controllers, specially with 𝑝 = 10, was more effective, in
general aspects analysed in this project, than the Local method. Although the predictions
made for the robot state used an approximation of the Jacobians, they were able to prevent
the controller to deform the original path, which has happened for the Local method in both
of the trajectories taken into account.

Themean value of the control action also presented better results for theMPCmethod
(specially for the bigger number of predictions). Yet, it does not mean that it necessarily
would be obtained lower effort for the joints, as the dynamics were not considered to exert
the control of pose. However, for the cases analyzed, the torques applied presented lower
peaks for the MPC method.

As for the scaling factor, in the circular trajectory, the MPC method produced much
better results (higher mean values), which reinforces the improvements of the predictive
control. For the sinusoidal trajectory, however, the scaling factor for the Local method, in all
the cases, was higher than the ones obtained through the MPC controller. However, MPC
(still for the sinusoidal path) produced lower mean values and did not present deformations
in the obtained path such as the Local controller.

A great challenge encountered in this work was to tune a good tuning for the MPC
controller: for a specific set of constraints, a certain range of proportional gain and a control
horizon worked well. The changing of these different parameters was done several times
before it could be obtained good results for the MPC. In fact, it was only possible to achieve
significant results after considering constraints between the predictive control actions (which
corresponds to a limitation in the mean acceleration).

The comparison between the simpler MPC method and the Proportional controller
based on the invariant error function was made with the main goal to show that a feasible
trajectory can be made with the two controllers involved, wherein using a QP solver, there is
the advantage of imposing some constraints to the control signal.

71

6.1 Future Works

It would be interesting to continue some features of this work, such as testing other
kinds of trajectories, that even involve variant orientation through the path. The trajectories
executed in this project considered a null rotation of the end-effector pose along the path
and, even so, there was a small noisy error associated to orientation.

A limitation of this work is that it was not formulated a low level control for the
dynamics of the joints. The employment of such control level could improve some results
and its small disturbances and even a better formulation of the constraints. The study of
the dynamics of the manipulator, in general, would be interesting to make more precise
elaboration of the restraints.

Another aspect that could improve would be to minimize the different cost functions
(of inverse kinematics and scaling) using the lexicographic method, as in this work, the
lagrange multipliers 𝜆1 and 𝜆2 were applied, which decreases the precision of the resolution.

What could also be studied is the fulfillment of a task that fits in the null space of the
primary assignment. This project considered only one geometrical task, but it is possible to
consider more than one, which would add a considerable complexity to the work.

Finally, the sampling time achieved in this work was 𝑇 = 0.05𝑠 which is higher than
the desired one of the order of milliseconds. That influences the quality of the kinematic
control and also the magnitude of the proportional gain applied, so a future work could
work on that manner.

72

References

ADORNO, B. V. Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra.
HAL Archives, v. 1, Feb. 2017. Cit. on pp. 16–22.

ADORNO, B. V.; MARINHO, M. M. DQ Robotics: A Library for Robot Modeling and Control.
IEEE Robotics & AutomationMagazine, v. 28, p. 102–116, 2021. Cit. on pp. 35,
36.

B. SICILIANO L. SCIAVICCO, L. V.; ORIOLO, G. Robotics - Modelling, Planning and
Control. Springer, 2009. Cit. on p. 19.

CAMACHO, E.; BORDONS, C.; ALBA, C.Model Predictive Control. Springer London,
2004. (Advanced Textbooks in Control and Signal Processing). ISBN 9781852336943.
Available from: <https://books.google.com.br/books?id=Sc1H3f3E8CQC>.
Cit. on pp. 25, 26.

CRAIG, J. Introduction to Robotics: Mechanics and Control. Pearson/Prentice Hall,
2005. (Addison-Wesley series in electrical and computer engineering: control engi-
neering). ISBN 9780201543612. Available from: <https://books.google.com.br/
books?id=MqMeAQAAIAAJ>. Cit. on p. 12.

DE ALMEIDA, P. Indústria 4.0: Princıpios básicos, aplicabilidade e implantação.
Saraiva Educação S.A. ISBN 9788536530468. Available from: <https://books.
google.com.br/books?id=cYywDwAAQBAJ>. Cit. on p. 12.

DIMITROV, D.; WIEBER, P.-B.; FERREAU, H. J.; DIEHL, M. On the implementation of
model predictive control for on-line walking pattern generation. In: 2008 IEEE
International Conference on Robotics and Automation. 2008. P. 2685–2690. DOI:
10.1109/ROBOT.2008.4543617. Cit. on p. 29.

FARONI, M.; BESCHI, M.; PEDROCCHI, N.; VISIOLI, A. Predictive Inverse Kinematics
for Redundant Manipulators With Task Scaling and Kinematic Constraints. IEEE
Transactions on Robotics, v. 35, n. 1, p. 278–285, 2019. DOI: 10.1109/TRO.2018.
2871439. Cit. on pp. 26–28, 30.

FARONI,M.; BESCHI,M.; TOSATTI, L.M.APredictiveApproach to RedundancyResolution
for Robot Manipulators. IFAC (International Federation of Automation and
Control), 2017. Cit. on pp. 26, 27, 29.

FIGUEREDO, L. F. D. C.Kinematic Control Based onDual QuaternionAlgebra and its
Application to Robot Manipulators. 2016. PhD thesis – Universidade de Brasília.
Cit. on pp. 17–19.

https://books.google.com.br/books?id=Sc1H3f3E8CQC
https://books.google.com.br/books?id=MqMeAQAAIAAJ
https://books.google.com.br/books?id=MqMeAQAAIAAJ
https://books.google.com.br/books?id=cYywDwAAQBAJ
https://books.google.com.br/books?id=cYywDwAAQBAJ
https://doi.org/10.1109/ROBOT.2008.4543617
https://doi.org/10.1109/TRO.2018.2871439
https://doi.org/10.1109/TRO.2018.2871439

73

FLOUDAS, C. A.; VISWESWARAN, V. "Quadratic Optimization" Nonconvex Optimiza-
tion and Its Applications. 1995. Cit. on p. 27.

FRANK, M.; WOLFE, P. An algorithm for quadratic programming. Naval Research Logis-
tics Quarterly, v. 3, n. 1-2, p. 95–110, 1956. DOI: https://doi.org/10.1002/nav.
3800030109. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/
nav.3800030109. Available from: <https://onlinelibrary.wiley.com/doi/
abs/10.1002/nav.3800030109>. Cit. on p. 27.

HAMILTON, W. R. On Quaternions, Or On a New System Of Imaginaries In Algebra.
Philosofical Magazine, 1844. Cit. on p. 16.

KUIPERS, J. Quaternions and Rotation Sequences: A Primer with Applications to
Orbits, Aerospace, and Virtual Reality. Princeton University Press, 1999. Cit. on
pp. 18, 19.

MARINHO, M. M. Robot-aided Endoscope Control Under Laparoscopic Surgery Con-
straints Using Dual Quaternions. Univerdiade de Brasília, 2014. Cit. on p. 19.

MATLAB. version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc., 2010.
Cit. on p. 15.

QUIGLEY, M.; CONLEY, K.; GERKEY, B.; FAUST, J.; FOOTE, T.; LEIBS, J.; WHEELER, R.;
NG, A. ROS: an open-source Robot Operating System. In: v. 3. Cit. on p. 34.

REIS, F. Revolução 4.0 A Educação Superior Na Era Dos Robôs. EDITORA DE CUL-
TURA. ISBN 9788529302126. Available from: <https://books.google.com.br/
books?id=hNQSygEACAAJ>. Cit. on p. 12.

ROHMER, E.; SINGH, S. P. N.; FREESE, M. V-REP: A versatile and scalable robot simulation
framework. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2013. P. 1321–1326. DOI: 10.1109/IROS.2013.6696520. Cit. on p. 14.

ROHMER, E.; SINGH, S.; FREESE, M. V-REP: A versatile and scalable robot simulation
framework. In: p. 1321–1326. DOI: 10.1109/IROS.2013.6696520. Cit. on p. 32.

SANTOS, M.; LEME, M.; STEVAN, S. Indústria 4.0: FUNDAMENTOS, PERSPECTIVAS
E APLICAÇÕES. ERICA, 2018. ISBN 9788536527208. Available from: <https:
//books.google.com.br/books?id=v7yStwEACAAJ>. Cit. on p. 12.

SELIG, J. M. Geometric Fundamentals of Robotics. 2. ed.: Springer-Verlag New York
Inc., 2005. Cit. on p. 22.

SILVA PEREIRA, M. da. Trajectory Control of Anthropomorphic Compliant Manip-
ulator with Dual Quaternion Based Kinematic Controllers. Univerdiade de
Brasília, 2016. Cit. on pp. 19, 22, 23, 32.

https://doi.org/https://doi.org/10.1002/nav.3800030109
https://doi.org/https://doi.org/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/pdf/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://onlinelibrary.wiley.com/doi/abs/10.1002/nav.3800030109
https://books.google.com.br/books?id=hNQSygEACAAJ
https://books.google.com.br/books?id=hNQSygEACAAJ
https://doi.org/10.1109/IROS.2013.6696520
https://doi.org/10.1109/IROS.2013.6696520
https://books.google.com.br/books?id=v7yStwEACAAJ
https://books.google.com.br/books?id=v7yStwEACAAJ

74

SPONG, M.; HUTCHINSON, S.; VIDYASAGAR, M. Robot Modeling and Control. Wiley,
2005. ISBN 9780471649908. Available from: <https://books.google.com.br/
books?id=jyD3xQEACAAJ>. Cit. on p. 32.

STANFORD ARTIFICIAL INTELLIGENCE LABORATORY ET AL. Robotic Operating
System. 23 May 2018. Available from: <https://www.ros.org>. Cit. on p. 15.

WANG, L. Model Predictive Control System Design and Implementation Using MATLAB.
In. Cit. on p. 25.

YOONSEOK PYO HANCHEOL CHO, R. J.; LIM, T. ROS Robot Programming. ROBOTIS
Co.,Ltd., 2017. ISBN 979-11-962307-1-5. Available from: <www.robotis.com>. Cit.
on pp. 34, 35.

https://books.google.com.br/books?id=jyD3xQEACAAJ
https://books.google.com.br/books?id=jyD3xQEACAAJ
https://www.ros.org
www.robotis.com

	Title page
	Approval
	Dedication
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Contextualization
	Problem definition
	Project Goal
	Results
	Text Organization

	Mathematical Foundations
	Quaternions
	Translation
	Rotation

	Dual Numbers
	Dual Quaternions
	Rigid Motions

	Kinematic Control
	Proportional Controller for Invariant Error Function

	Model Predictive Control
	Introduction
	MPC applied to manipulators
	Mathematical formulations
	Conception of the Predictive Model
	Selection Criteria of the Predictive and Control Instants
	Task Fulfillment

	Development and Implementation
	CoppeliaSim
	Robot Operating System (ROS)
	DQ Robotics
	Methodology
	The Implementation
	Solutions without time scaling
	Solutions with time scaling
	Definition of the constraints

	Results and Evaluation
	Circular Trajectory
	Data Analysis

	Sinusoidal Trajectory
	Data Analysis

	Main Results
	Comparison between MPC and proportional controller

	Conclusions
	Future Works

	References

