
Trabalho de Conclusão de Curso

Universidade de Brasília - UnB
Faculdade UnB Gama - FGA

Engenharia de Software

Resolvendo Pipe Mania como Planejamento

Autor: Guilherme Antonio Deusdará Banci
Orientador: Prof. Dr. Bruno César Ribas

Brasília, DF
2022

Guilherme Antonio Deusdará Banci

Resolvendo Pipe Mania como Planejamento

Monografia submetida ao curso de graduação
em (Engenharia de Software) da Universi-
dade de Brasília, como requisito parcial para
obtenção do Título de Bacharel em (Enge-
nharia de Software).

Universidade de Brasília - UnB

Faculdade UnB Gama - FGA

Orientador: Prof. Dr. Bruno César Ribas

Brasília, DF
2022

Guilherme Antonio Deusdará Banci
Resolvendo Pipe Mania como Planejamento/ Guilherme Antonio Deusdará

Banci. – Brasília, DF, 2022-
56 p. : il. (algumas color.) ; 30 cm.

Orientador: Prof. Dr. Bruno César Ribas

Trabalho de Conclusão de Curso – Universidade de Brasília - UnB
Faculdade UnB Gama - FGA , 2022.
1. SAT. 2. Pipe Mania. I. Prof. Dr. Bruno César Ribas. II. Universidade de

Brasília. III. Faculdade UnB Gama. IV. Resolvendo Pipe Mania como Planeja-
mento

CDU 02:141:005.6

Resumo
Este trabalho de conclusão de curso busca comparar quatro métodos que solucionam uma
variação do jogo Pipe Mania, que chegou a ser um dos jogos mais bem sucedidos no
período de seu lançamento. Pipe Mania é um puzzle em que o jogador deve conectar
pedaços de tubulação em uma grade, criando um caminho com um comprimento mínimo
dentro de um tempo limitado. Os métodos que serão comparados neste trabalho resolvem
o jogo encontrando um caminho válido entre duas peças de inicio e fim. As primeiras duas
soluções são construídas baseadas na busca em profundidade e na busca em largura. As
outras duas são construídas como uma instância de planejamento.

Palavras-chaves: Pipe Mania. Busca em profundidade. Busca em largura. Planejamento.

Abstract
This undergrad thesis seeks to compare four methods that solve a variation of the Pipe
Mania game, which became one of the most successful games in the period of its release
and has been reproduced several times. Pipe Mania is a puzzle in which the player must
connect pipes in a grid, creating a path with a minimum length within a limited time
frame. The methods that will be compared in this thesis solve the game by finding a
valid path between two pieces. The first and second methods aim to solve the game based
on the depth-first search algorithm and breadth-first search, respectively. The third and
fourth methods aim to solve it by two AI Planning models.

Key-words: Pipe Mania. Depth-first Search. Breadth-first Search. AI Planning.

List of Figures

Figure 1 – Original Pipe Mania Game (1989) . 11
Figure 2 – Type B pipe illustration . 22
Figure 3 – Type R pipe illustration . 22
Figure 4 – Type L pipe illustration . 22
Figure 5 – Possible pipe B positions (Positions 1, 2, 3 and 4 respectively) 22
Figure 6 – Possible pipe R positions (Positions 1, 2, 3 and 4 respectively) 23
Figure 7 – Possible pipe L positions (Positions 1, 2, 3 and 4 respectively) 23
Figure 8 – Visual representation of the example level 24
Figure 9 – Mp Domain Comparison . 48

List of Tables

Table 1 – AI Planning results (no rotation) . 49
Table 2 – AI Planning results (with rotation) . 50
Table 3 – All solution results . 51
Table 4 – BFS and M with S=1 comparison . 52

Listings

2.1 Example of a domain file in PDDL . 15
2.2 Example of a problem file in PDDL . 18
3.1 String representation of a level . 23
4.1 General view of the find path function . 26
4.2 Type B pipe roles . 27
4.3 Type R pipe roles . 28
4.4 Type L pipe roles . 29
4.5 Pipe structure inside the matrix . 31
4.6 Pipe location structure stored in the queue 31
4.7 General view of the breadth-first search solution 32
4.8 Type B pipe case . 33
4.9 Type B pipe case . 34
4.10 Type B pipe case . 34
4.11 Go to next function . 35
4.12 Go to next function . 36
5.1 Requirements types and predicates of the domain 38
5.2 Go-right action . 40
5.3 Rotate action . 41
5.4 Objects of a level . 43
5.5 Declaring predicates on the problem file . 44
5.6 The goal of a level . 44
5.7 Madagascar solution exemple . 45

List of abbreviations and acronyms

SAT Boolean Satisfiability

DFS Depth-first Search

BFS Breadth-first Search

ADT Abstract Data Type

NP Non-Deterministic Polynomial Time

AI Artificial Intelligence

Contents

Listings . 7

1 INTRODUCTION . 11
1.1 Contribution . 11

2 THEORETICAL FOUNDATIONS AND BACKGROUND 13
2.1 Graph . 13
2.2 Depth-first Search . 13
2.3 Breadth-first search . 13
2.4 AI Planning . 14
2.5 PDDL . 14
2.5.1 Domain Files . 15
2.5.1.1 Domain Name . 16
2.5.1.2 Requirements . 16
2.5.1.3 Predicates . 17
2.5.1.4 Actions . 17
2.5.2 Problem Files . 17
2.5.2.1 Objects . 17
2.5.2.2 Initial State . 17
2.5.2.3 Goal . 18
2.6 The AI Planning PDDL Wiki . 18
2.7 Madagascar . 19
2.8 Considerations . 19

3 GAME DEFINITION . 20
3.1 Gameplay variations . 20
3.2 Rules Definition . 21
3.3 Representation of the game . 21

4 GRAPH BASED SOLUTIONS . 25
4.1 Depth-first Search Solution . 25
4.2 Function Checks . 26
4.2.1 Pipe B . 27
4.2.2 Pipe R . 28
4.2.3 Pipe L . 28
4.2.4 Considerations . 29

4.3 Breadth-first Search Solution . 30
4.3.1 General view of the function . 31
4.3.2 Pipe B . 33
4.3.3 Pipe R . 33
4.3.4 Pipe L . 34
4.3.5 Go to next auxiliary function . 34
4.3.6 Create path function . 36

5 AI PLANNING MODELING . 37
5.1 Domain File . 37
5.1.1 Requirements, Types and Predicates . 37
5.1.2 Actions . 39
5.2 Problem File . 43
5.2.1 Objects of a level . 43
5.2.2 Initializing a level . 43
5.2.3 The goal of a level . 44
5.3 Extending the domain . 45
5.4 Considerations . 45

6 RESULTS . 46
6.1 Considerations . 47

7 CONCLUSIONS . 53

BIBLIOGRAPHY . 54

11

1 Introduction

The video game industry has been growing exponentially since when it started,
in 1972, when Atari was released (WALLACH, 2020). Despite all the evolution of video
games, some of the first concepts and gameplays remained until the present day.

Pipe Mania is a puzzle first developed in 1989 by The Assembly Line (ADAMS,
2008), in which the player must connect pipes in a grid, creating a path with a minimum
length within a limited time frame. The game became one of the most successful puzzle
games ever, selling over 4 million units worldwide (ADAMS, 2008). It was ported to several
other platforms by Lucasfilm Games, the leading distributor in the US, which named it
Pipe Dream. An image of the original game can be seen in figure 1.

Pipe Mania has been reproduced several times, under titles like Wallpe; Oilcap; Oil-
cap Pro; MacPipes; Pipe Master ; Pipeworks; DragonSnot; PipeNightDreams and Fun2Link
(VIGLIETTA, 2014). After a long time, Pipe Mania’s concept came back as mini-games,
with thematic variations. Recently, several big companies in the game industry used the
Pipe Mania concept as a mini-game, such as Bioshock, Alien Swarm, Saints Row IV,
Warframe and Spider Man (2018) (GOLDFARB, 2013) (GRAEBER, 2018).

Figure 1 – Original Pipe Mania Game (1989)

1.1 Contribution
This thesis compares four methods to solve a level of the Pipe Mania game. Given

a level with pieces placed in a matrix, these methods return a valid path between two
pipes from a beginning to an end.

1.1. Contribution 12

The first and second methods that solve the game are graph based solutions. The
former explores the depth-first search, which uses a recursive function to go through the
pieces in the matrix. The latter uses the breath-first search algorithm, which iterates the
pieces through a while loop and a queue.

The third and fourth methods solve the game using AI Planning. These two so-
lutions are two distinct planning domains. One of them solves a level considering just
the number of pipes to find a path, just like the graph based solutions. The other goes
beyond. It considers how many rotations are necessary to find a path.

This work is divided into seven chapters. The second chapter presents the basic
concepts for understanding this work, from the graph concepts to AI Planning and PDDL
concepts. The third explains in more detail the Pipe Mania gameplay and how the game’s
rules were sought to create a well-defined scope for the project. The fourth chapter explains
in detail the implementation of both graph based solutions. The fifth presents the AI
Planning based solutions, describing their domains and problem files. The sixth chapter
show comparisons between the solutions. Finally, the last chapter concludes this thesis.

13

2 Theoretical Foundations and Background

To understand how the solutions of the Pipe Mania game will be carried out in
this undergrad thesis, it is necessary to understand some concepts that will be explained
in this chapter.

2.1 Graph

Graph is an abstract data type that consists of a finite (and possibly exchangeable)
set of vertices (also called nodes or points). A set of pairs of these vertices are known as
edges (also called links or lines). Vertices can be part of the graph structure, or they
can be external entities represented by integer indices or references (BIGGS; LLOYD;
WILSON, 1986).

A graph data structure can also associate some value with each edge, such as a
symbolic label or a numerical attribute (cost, capacity, length, etc.) for its proper repre-
sentation in a practical problem.

2.2 Depth-first Search

Depth-first Search (or DFS) is an algorithm for traversing graphs. The algorithm
starts at an arbitrarily selected root point and explores as many points or nodes as possible
along all edges found before going backward (i.e., backtracking) (KOZEN, 1992). DFS uses
a stack (LIFO, which stands for Last In First Out) or recursion to traverse a graph. At
each node, it will first explore one of the vertices it has, goes through all possibles paths
from this vertice, and then try the next one. This algorithm can be built as a recursive
function (JR, 1987), which can be defined, in programming terms, as a routine that calls
itself directly or indirectly.

DFS is used in various computational problems, such as topological sorting (ZHOU;
MÜLLER, 2003), cycle detection in graphs (SHMUELI, 1983), scheduling problems (MENCÍA;
SIERRA; VARELA, 2013) and solving puzzles with only one solution, as in mazes (BARNOUTI
et al., 2016) and sudoku (LINA; RUMETNA, 2021).

2.3 Breadth-first search

Breadth-first search (or BFS) is another algorithm for traversing graphs. The dif-
ference between DFS and BFS is that while the former uses a stack (LIFO), the latter uses

2.4. AI Planning 14

a queue (FIFO, which stands for First In First Out) to choose the next edge to explore
(KOZEN, 1992). In a nutshell, the breadth-first search traverses through a graph like a
wave, where the closest nodes from the beginning are explored first, then the closest nodes
from the last ones, and so on. Compared to DFS, BFS is better at finding the shortest
path between two nodes (FRANCIOSA; FRIGIONI; GIACCIO, 1997).

2.4 AI Planning
AI planning can be described as a field of study of computational models and

methods for creating, analyzing, managing, and executing plans (HASLUM et al., 2019).
A plan can be described as a set of actions that can be applied to an initial state to find
the desired state. (HENDLER; TATE; DRUMMOND, 1990). In AI planning, to create a
plan, we need to define a planning problem.

According to (WELD, 1999), a planning problem is defined from three inputs:

• a description of the initial state of the world;

• a description of the possible actions that can be performed;

• a description of the agent’s objective (i.e., what behavior is desired).

A problem, once described, can be solved with many different AI planning sys-
tems. An AI planning system (we can call it a “planner”) takes the planning problem as
input and uses some problem-solving technique, such as heuristic search, propositional
satisfiability, or other technique, to create its solution. The solution created by the plan-
ner is going to be the most optimized plan for the problem (with fewer steps to find the
desirable state). The planner doesn’t need to know what the problem is about, which
means it can be applied to any situation that can be expressed as a planning problem
(HASLUM et al., 2019).

AI Planning can be used in several situations, as long as it can be modeled as
a planning problem. Some of those situations can be: manufacturing operations (NAU;
GUPTA; REGLI, 1995), the composition of internet services (PEER, 2005), chatbot tests
(BOZIC; TAZL; WOTAWA, 2019) or even genetic programming (SPECTOR, 1994).

2.5 PDDL
The inputs previously mentioned of a planning problem can be described by some

formal language. The Planning Domain Definition Language (PDDL) is a language that
allows you to define a planning problem. It was first developed by Drew McDermott
in 1998 (GHALLAB et al., 1998), based primarily on ADL (PEDNAULT, 1989) and

2.5. PDDL 15

STRIPS (BYLANDER, 1994), to be used in the International Planning Competition
(IPC) 1998/2000 (YOUNES; LITTMAN, 2004).

Problems in PDDL are defined in two types of files, the domain files and the
problem files. They will be described in the following sub-sections.

2.5.1 Domain Files

A domain file describes the “physics” of a planning problem, that is, what pred-
icates are there, what actions are possible, what is the structure of compound actions,
and what are the effects of actions. (GHALLAB et al., 1998). Essentially, these are the
aspects that do not change, regardless of what specific situation we are trying to solve.
An example of this type of file can be seen in listing 2.1 below.

Listing 2.1 – Example of a domain file in PDDL
(define

(domain construction)
(:requirements :strips :typing)
(:types

site material - object
bricks cables windows - material

)
(:predicates

(walls-built ?s - site)
(on-site ?m - material ?s - site)
(material-used ?m - material)

)
(:action BUILD-WALL

:parameters (?s - site ?b - bricks)
:precondition (and

(on-site ?b ?s) (not (walls-built ?s)) (not (material-used ?b))
)
:effect (and (walls-built ?s) (material-used ?b))

)
)

As can be seen in listing 2.1, PDDL uses the Lisp syntax (WINSTON; HORN,
1986), which is made up of three basic building blocks:

• Atom: a number or string of contiguous characters, including numbers and special
characters;

• list: a sequence of atoms and/or other lists enclosed in parentheses;

2.5. PDDL 16

• string: a group of characters enclosed in double quotation marks.

PDDL uses lists to build expressions (or arguments). Each expression can describe
a specific characteristic of the problem and/or contain other expressions inside. These
expressions have specific words that are important to PDDL. It is possible to see them
in listing 2.1, such as :requirements, :types, :predicates and :action. They represent the
declaration of some aspect of the problem. Each of this words will be explained in detail
in the sub-sections bellow.

This project explains the expressions of PDDL used in the AI planning solutions
of this thesis. It is important to know that there are many other expressions that can be
used in the domain file. 1

2.5.1.1 Domain Name

A domain always begins by being named. Imediately after starting to define the
domain, we use the expression (domain <name>) (it is possible to see it in listing 2.1).
It is important because it is by this name that the problem file will do reference to it’s
domain (GHALLAB et al., 1998). This expression is used only once in the domain file.

2.5.1.2 Requirements

The :requirements field is a set of features that can be used while describing a
domain, just like import/include statements in programming languages. Each name listed
in this field enables the usage of some specific expressions. A set of requirements allows
a planner to quickly know if it will be able to understand the domain. Planners are built
to understand a specific set of requirements (GHALLAB et al., 1998). This field is only
used once in the domain file.

The requirements used in this project are: 2

• strips: allows the usage of add and delete effects as specified in STRIPS;

• typing: allows the definition of types of objects. Typing is similar to classes and
sub-classes in Object-Oriented Programming;

• conditional-effects: allows that actions have different effects depending on what state
the predicates are. Essentially, if some condition is true, then apply some effect, if
other condition is true, than apply other effect.

1 All domain expressions in PDDL 1.2 can be found at https://planning.wiki/ref/pddl/domain
2 Other requirements for PDDL 1.2 can be found at https://planning.wiki/ref/pddl/requirements

2.5. PDDL 17

2.5.1.3 Predicates

The :predicates field consists of a set of declarations of predicates, using the typed-
list syntax to declare the arguments of each one. Predicates are the possible states of
the “world” been described. They are boolean, which means they can be true or false,
depending of the situation of a problem. Predicates represent a state of a specific object
in the world and/or the relationship between objects. The names of the predicates can be
defined arbitrarily, but they should make sense for the situations or problems that will
use it (GHALLAB et al., 1998). This field also appears in the domain file only once.

2.5.1.4 Actions

An :action field defines a transformation of the state of the world. It is what
changes the state of the predicates. Therefore a plan executes the actions to achieve
the desirable state of the world. This field can be declared multiple times, which means
domains can have multiple actions. An action is broken down into three distinct parts:

• parameters: a set of objects that can be changed by the action;

• precondition: a set of predicate conjunctions and disjunctions which must be satisfied
in order for the action the applied;

• effect: a conjunctive logical expression, which defines which predicates of the objects
received should be set to true or false if an action is applied.

2.5.2 Problem Files

The problem file describes a specific situation. Multiple problem files can do ref-
erence to a single domain file. It defines which objects exist, what is true about them,
and what is the end goal (desired state when the plan is completed) (GHALLAB et al.,
1998). An example of this file can be seen in the algorithm 2.2.

2.5.2.1 Objects

The :objects field is the set of objects which exist within a problem. Each object
name must be unique.

2.5.2.2 Initial State

The initial state is described within the :init field. It consists of a list of predicates
that are true at the start of the problem. The other predicates that does not appear in
this list are considered false.

2.6. The AI Planning PDDL Wiki 18

2.5.2.3 Goal

The :goal field can be described as a logical expression of predicates which must
be satisfied in order for a plan to be considered a solution. Therefore it represents the
desired state of the problem. Note that as a logical expression, if this expression excludes
some predicate, then the value of that predicate is not considered important. This means
that a goal should not only consist of the predicates that should be true, but also the
predicate that should be false.

Listing 2.2 – Example of a problem file in PDDL
(define

(problem buildingahouse)
(:domain construction)
(:objects

s1 - site
b - bricks
w - windows
c - cables

)
(:init

(on-site b s1)
(on-site c s1)
(on-site w s1)

)
(:goal (and

(walls-built ?s1)
(cables-installed ?s1)
(windows-fitted ?s1)

)
)

)

2.6 The AI Planning PDDL Wiki

This wiki can be found at planning.wiki3. It provides easy access to resources
related to the field of AI Planning and PDDL, such as:

• Explanation of what is AI Planning and PDDL. It also describes in detail the usage
of each PDDL version (from PDDL 1.2 to PDDL 3 and PDDL+);

3 https://planning.wiki/

2.7. Madagascar 19

• planner tools, for validating and testing planners;

• refers to a PDDL editor website, that can be found at editor.planning.domains4;

• reference to books and articles related to this field of study.

2.7 Madagascar
Madagascar is a planning system that is built on top of SAT solvers. SAT is

the prototypical NP-complete problem of testing the satisfiability of the formulas in the
classical propositional logic planner (RINTANEN, 2014). This planner implements com-
pact and efficient encodings based on ∃-step plans, parallelized and interleaved search
strategies, invariant algorithms, SAT heuristics specialized for planning, and data struc-
tures supporting parallelized SAT solving with extensive problem instances (RINTANEN;
HELJANKO; NIEMELÄ, 2006) (RINTANEN, 2011) (RINTANEN, 2014).

Madagascar is composed by three configurations:

• M : uses the standard VSIDS heuristic, limits search to plan lengths 5i for inte-
gers 𝑖 ≥ 1, and runs the SAT solvers at varying rates according to the geometric
strategy B (RINTANEN, 2014). This strategy evaluates in an interleaved manner an
unbounded number of formulae. The amount of CPU given to each formula depends
on its index: if formula 𝑘 is given t seconds of CPU during a certain time interval,
then a formula 𝜑𝑖, 𝑖 ≥ 𝑘 is given 𝛾𝑖𝑘 t seconds. This means that every formula gets
only slightly less CPU than its predecessor (RINTANEN, 2004);

• Mp: is like M except that it replaces VSIDS with the heuristic based on backward-
chaining (RINTANEN, 2014);

• MpC : is like Mp but it replaces the horizon lengths 5𝑖 by horizon lengths 5(
√

2)𝑖,
with all SAT solvers run at the same rate (RINTANEN, 2014).

2.8 Considerations
To build the first and second methods of solving a Pipe Mania phase, it is necessary

to understand the concepts of a graph, depth-first search, and breadth-first search, as
explained in this chapter. In these methods, a level is represented as a graph, and a
function will be constructed that implements a variation of both depth-first search and
breadth-first search algorithms to find a valid path, in the game, between two start and end
pieces. Furthermore, the third and fourth methods are AI Planning instances described
with PDDL.
4 http://editor.planning.domains/

20

3 Game Definition

Using a variety of pipe pieces randomly presented in a queue apart from the matrix
from which they will be placed, the player must build a path starting from the starting
piece, where the flooz starts. The flooz symbolizes a sewage liquid that starts to flow after
some time from the start of the round. The path built by the player must have a minimum
length, which depends on the level the player is at. This length is counted by the number
of pipes used in the path. If the fluid reaches the last pipe in the path without having this
minimum length, the player loses. Otherwise, it wins and goes to the next round. Some
rounds also include an end piece. In these cases, in addition to meeting the minimum pipe
length requirement, the player must build a pipe that is terminated by this additional
piece.

Pieces from the queue cannot be rotated; they are placed in the matrix as presented
in the queue. The player can replace a previously placed piece by clicking on it, as long
as flooz has not yet reached it; however, this causes a time delay for the placement of the
next piece.

At higher levels, some special pipe pieces appear in the game, such as reservoirs,
obstacles, and one-way pieces. If a player manages to finish the level using five cross-
section tiles and filling them both ways, points and bonus rounds will be awarded. Bonus
rounds present the player with a grid filled with pipe pieces and open space; The purpose
of this bonus is to slide the pieces and make the longest possible path to the flooz.

3.1 Gameplay variations

When Pipe Mania reappeared as a minigame within larger games, it ended up
suffering some gameplay variations. In Bioshock, a game developed by 2K Games (GOLD-
FARB, 2013), the Pipe Mania-style puzzles always have a starting piece, and an ending
piece in the rounds, and all pieces are already placed into their positions on the field, or
that is, there is no queue of pieces apart from the matrix. With the pipes in place, the
player can rotate them to create the path to the final piece.

In Spider Man, developed by Insomniac Games and published by Sony Interac-
tive Entertainment, the variation of the puzzle is called Lab Circuit Projects (GRAEBER,
2018), where pipes are symbolized as electrical circuits. This variation has the rules men-
tioned in Bioshock but with some changes. Some of the puzzle pieces have values or
weights, symbolized as charges, whether positive or negative, and the goal of the game is
to get from the initial piece to the final piece with the sum of the charges equivalent to

3.2. Rules Definition 21

the value predetermined by the round. In addition, the field is formed by deactivated or
blocked pieces, being possible to use only the active pieces presented in the field in their
respective positions.

3.2 Rules Definition
For the accomplishment of this work, the rules of the game were strictly defined.

This chapter describes how the problem is modeled.

Pipe mania is composed of a matrix of pieces called pipes. All pipes have openings
for two sides, either inlets or outlets. There will be 3 (three) types of pieces:

• Begin/End pipe (represented in figure 2): They have a straight shape, that is, the
exits will be on opposite sides (e.g., right and left or on top and bottom), and cannot
be moved by the player. It will be these pieces that the player will need to connect
to finish the game. One level can have two or more pieces of this type in the game;

• Straight Pipe (represented in figure 3): They also have a straight shape, such as the
begin/end pipe, but it will be movable, that is, it can be rotated in order to try to
fit in other pipes;

• L-shaped pipe (represented in figure 4): These pieces have exits on consecutive sides
(e.g., left and bottom), and it can be rotated as well.

The goal of the game is to connect the pipes so that a piece of the start/end type
finds a path to another piece of the same type. First, the player will first have to find an
initial piece (of type B) in the matrix and, from there, rotate the pieces present in the
game to find a valid path to another piece of type B.

3.3 Representation of the game
The levels of the game will be represented by a string in matrix format. Each pipe

will be represented by two characters: the first indicating the type of the pipe, and the
second, its rotation.

The first character can be represented by different letters:

• ’B’: Begin/End pipe (represented in figure 2)

• ’R’: Straight Pipe (represented in figure 3)

• ’L’: L-shaped Pipe (represented in figure 4)

3.3. Representation of the game 22

• ’#’: empty space

Figure 2 – Type B pipe illustration

Figure 3 – Type R pipe illustration

Figure 4 – Type L pipe illustration

The representations of the second character, which indicate the rotations of a pipe,
are the following:

• ’1’: initial position of the pipe, without rotation;

• ’2’: pipe rotated by 90 degrees;

• ’3’: pipe rotated by 180 degrees;

• ’4’: pipe rotated by 270 degrees;

• ’#’: irrelevant rotation;

Visual representations of the rotated pipes B, R, and L can be found, respectively,
in figures 5, 6 e 7,

Figure 5 – Possible pipe B positions (Positions 1, 2, 3 and 4 respectively)

3.3. Representation of the game 23

Figure 6 – Possible pipe R positions (Positions 1, 2, 3 and 4 respectively)

Figure 7 – Possible pipe L positions (Positions 1, 2, 3 and 4 respectively)

An example of the representations described above: consider ’B1’. This string rep-
resents a start piece (’B’) in the start position or without rotation (’1’). Another example
is ’L3’, which is an L-shaped pipe (’L’) in the third position, rotated 180 degrees (’3’).
The empty space tile will be represented by ’##’ as its position is irrelevant to the game.

From the union of the pieces described above, we can indicate an example of a
string that represents a complete level of the game, as shown in listing 3.1. The visual
representation1 of the level created from this string can be found in figure 8.

Listing 3.1 – String representation of a level
##################################
##L1R2L3R4L3L4R4L3R1L4L4L1L3R4L1##
##L1R2L3R1R1L2R1L1R2L2L4L1L3R4L1##
##B1L4L1L2L1R2L3L4R2L3L1L3R1R1B1##
##L1R2L2L3L4L3R2L2R1L4L3L1L3R4L1##
##L1R2L3R2L2L1R2L1R2L2L1L1L3R4L1##
##L1R2L3R1L4L3L1L3R1L1L4L1L3R4L1##
##L1L2L1L2L2L1R1L1R2L3L4L1L3R4L1##
##################################

The position of the piece in the string indicates which position in the game matrix
it will be. Finally, we can conclude that the example above is a 9 by 15 matrix, that is,
with 9 rows and 15 columns. The part at position (1, 1) is ’L1’, and the part at position
(5, 2) is ’R2’.

1 To create the visual representation of a level from a string, an application was made using the frame-
work React Native, which can be found at this link

3.3. Representation of the game 24

Figure 8 – Visual representation of the example level

25

4 Graph Based Solutions

This chapter is divided in three sections. The first section describes the depth-first
search based solution. The second describes the breadth-first search based solution.

4.1 Depth-first Search Solution
To find some path from an initial pipe to a final pipe, a variation of the depth-first

search algorithm was created in C++1. The construction of this algorithm takes place
through a recursive function. This function traverses through the pieces and, at each
piece, checks which paths it can take, considering where the previous piece is at. In this
section, it will be explained how the algorithm works through pseudo-code.

The function created to solve the problem has some parameters. Parameters are
variables passed into the function as a way of communication between it and external
routines. There are two types of parameters:

• Input parameters: they pass external values to the scope of the functions. Depending
on the programming language, input parameters can be received by the function in
several ways. For example, call by value, which just replicates the external data to
the function scope; and call by reference, which just references the data passing its
address in the memory (HOROWITZ, 2012);

• Output parameters: returns one or more data from a function to the external scope
(HOROWITZ, 2012).

The recursive function we use has the following input parameters:

• A matrix: where each value within the matrix contains two pieces of information:
the pipe, indicated by the two characters explained above; and an integer (0 or 1)
or boolean (true or false), indicating whether or not the pipe was already used by
the current path;

• A pair of positive integers, indicating the position of the current part, 𝑟 and 𝑐, which
𝑟 being one row and 𝑐 one column of the matrix;

• A positive integer from 0 to 4, indicating which was the previous piece, if it was the
one on the left (1), the one on top (2), the one on the right (3), the one below (4),
or if it does not exist a previous piece (0) in case it is the initial piece.

1 The code can be found at this link

4.2. Function Checks 26

On top of that, the function also has output parameters, which are the following:

• A modified matrix: indicates the solution of the level, or the original matrix, in case
no path was found;

• An integer (0 or 1) indicating whether or not a solution was found.

The output parameters will be indicated as validated matrix in the explanation
bellow.

4.2 Function Checks

When entering the function scope, the first thing to do is check if the current pipe
has been used before in the current attempt to create a path. If the pipe has already
been used, the function returns the current matrix and 0, indicating that this path is not
possible. This can be represented in listing 4.1.

If it is not a used part, the algorithm continues to the next steps. From now on,
the function will basically check what is the type of the current pipe to find out, according
to the previous pipe, what is possible to do from it, as shown in listing 4.1.

Listing 4.1 – General view of the find path function
validate_matrix find_path(matrix level, pair<int, int> current_position, int

before) {
int line = current_position.first;
int column = current_position.second;
string position_value = level[line][column].first;
int is_used = level[line][column].second;
char type = position_value[0];
char position = position_value[1];
// if piece is been used to build path, it is disabled
if (is_used) { return make_pair(level, 0); }
// now pipe in use
level[line][column].used = 1
if (type == 'B') { /* ... actions for a type B pipe */ }
if (type == 'R') { /* ... actions for a type R pipe */ }
if (type == 'L') { /* ... actions for a type L pipe */ }
// invalid path
return make_pair(level, 0);

}

4.2. Function Checks 27

4.2.1 Pipe B

If the pipe is a type B piece, there are two possibilities for it: or it is the first piece
on the way, without a previous piece to begin with (indicated as 0); or it is the last piece
on the way, indicating the possibility of the end of the game. It is important to remember
that this type of pipe is the only one that cannot be moved by the player.

In the first case, the algorithm will make an attempt to build a path along one side
of the pipe. If this attempt returns 0 (path not possible), it will make another attempt on
the other side. In the second case, we compare the position of the pipe with the previous
part to check whether the path was successfully completed or not. For example, if pipe B
is at position 1 (horizontally) and the previous piece of the path is from the top or bottom,
the function will return the value 0 as an invalid path because they don’t connect with
each other. However, if the previous piece connects to pipe B, we indicate that the path
was performed successfully, returning 1 (indicating path completed). Listing 4.2 shows
how the return will be in these two cases.

Listing 4.2 – Type B pipe roles

if (before) {
if (

((position == '1' || position == '3') && (before == 1 || before == 3)) ||
((position == '2' || position == '4') && (before == 2 || before == 4))) {

// Path found!
return make_pair(level, 1);

}
// this is not the right path
return make_pair(level, 0);

}
if (position == '1' || position == '3') {

aux = find_path(level, make_pair(line, column + 1), 1); // go right
if (aux.second) {

return aux;
}
return find_path(level, make_pair(line, column - 1), 3); // go left

}
aux = find_path(level, make_pair(line - 1, column), 4); // go up
if (aux.second) {

return make_pair(aux.first, 1);
}
return find_path(level, make_pair(line + 1, column), 2); // go down

}

4.2. Function Checks 28

4.2.2 Pipe R

If the current pipe is of type R, the steps are simple. Unlike part B, this one can
be rotated, so we can fit it with the previous part, regardless of where it comes from.
Despite this, for this piece, there will be only one possible path. The piece R, having a
straight shape, will follow the same positions indicated as the previous piece, that is, if it
is indicated by 1, the piece R will be placed with position 1, and so on.

Considering that 𝑟 is the row and 𝑐 the column, to go to the next piece, there will
be the following possibilities: if the previous piece is 1 or 2 (indicating that it is on the left
or above), the posterior piece will be the next column or row, respectively. For example,
if the previous piece is indicated by 1 (coming from the left), the next piece will have the
position [𝑙][𝑐 + 1], that is, the same row and the next column. If it is 2, the next one will
have the position [𝑙 + 1][𝑐], being in the next row and in the same column. In case 3, it
will be equivalent to case 1, but with the previous column, [𝑙][𝑐 − 1], and in case 4, with
the previous line [𝑙 − 1][𝑐]. This explanation can be exemplified as shown in listing 4.3.

Listing 4.3 – Type R pipe roles
if (type == 'R')
{

int sum = 1;

// comes from right or bottom
if (before == 3 || before == 4)
{

sum = -1;
}
// maintain in the same line
if (before == 1 || before == 3)
{

level[line][column].first = "R1";
return find_path(level, make_pair(line, column + sum), before);

}
// maintain in the same column
level[line][column].first = "R2";
return find_path(level, make_pair(line + sum, column), before);

}

4.2.3 Pipe L

If the current pipe is of type L, there will be two possible paths for each previous
position. That is, if the position is 1 (coming from the left), the path to be taken can be

4.2. Function Checks 29

up or down. If it is 2 (from above), the path can be to the sides (going left or right), and
so on. If the algorithm finds that the first possibility created a solution, it will return it.
If not, it will try the second possibility. Last but not least, this piece can be rotated by
the player. The logical representation of these cases can be seen in listing 4.4.

Listing 4.4 – Type L pipe roles
if (type == 'L')
{

// from left, it will go up or down
if (before == 1)
{

// go up
level[line][column].first = "L1";

aux = find_path(level, make_pair(line - 1, column), 4);
if (aux.second)
{

return aux;
}

// go down
level[line][column].first = "L4";
return find_path(level, make_pair(line + 1, column), 2);

}

if (before == 2) {
// from top, it will go left or right

}
if (before == 3) {

// from right, it will go up or down
}
if (before == 4) {

// from bottom, it will go left or right
}

}

4.2.4 Considerations

The function described above aims to find a path between two pieces of type B
based on the same principle of depth-first search. Thus, from an initial pipe B, the function
explores as many parts as possible along all the routes (or edges) found until it finds a

4.3. Breadth-first Search Solution 30

path to another pipe B. On the other hand, the path returned by the function is the first
path found, regardless of its characteristics. Therefore, the path created by this solution
will not necessarily be the shortest or longest possible path but the first valid path found.

4.3 Breadth-first Search Solution

In contrast to the depth-first search solution, the breadth-first search comes into
place to always find the shortest path between two pipes. It uses the same level of rep-
resentation that can be seen in table 3.1. Unlike the DFS solution, this algorithm is not
built using a recursive function. It uses a queue (FIFO) to traverse through the graph,
where, at each node, it selects the possible paths that can be taken considering the previ-
ous piece, putting these possible paths on the queue. In this section, it will be explained
how the algorithm works through pseudo-code.

The function created using this approach has two input parameters:

• A Matrix that represents the level to be solved. Each position of this matrix will
have the following information (a code representing this information can be found
in listing 4.5):

– value: which will have the two characters representing the piece and its rotation
(e.g., ”L3“ and ”R2“);

– before: A positive integer from 0 to 4, indicating which was the previous piece,
if it was the one on the left (1), the one on top (2), the one on the right (3), the
one below (4), or if a previous piece does not exist (0) in case it is the initial
piece of type B.

– path sizes: each side of the pipe (1, 2, 3, and 4) will have a value that represents
the smallest path size found from the first pipe to the current one.

• The position of the first pipe, where the algorithm will begin.

The output parameters of the function are similar to the former solution, that is,
a modified matrix representing the result and a boolean representing if a path was found
or not. The difference is that the output parameters of this solution have a matrix with
the same structure above.

4.3. Breadth-first Search Solution 31

Listing 4.5 – Pipe structure inside the matrix

struct pipe
{

string value;
int before = 0;
int path_size_1 = 0;
int path_size_2 = 0;
int path_size_3 = 0;
int path_size_4 = 0;

};

Furthermore, the queue in this approach will not store pipes, but the positions of
the pipes inside the matrix, alongside which piece came before, and the size of the current
path from the first pipe to the current one. A structure of that can be seen in listing 4.6

Listing 4.6 – Pipe location structure stored in the queue

struct pipe_location
{

int before = 0;
int i = 0; // line
int j = 0; // column
int path_size = 0;

};

4.3.1 General view of the function

As explained in the previous section, this solution uses a FIFO queue to go through
the pipes to find the shortest path between two nodes. In addition to this, it uses a while
loop, which will keep looping until it finds the path or the queue becomes empty.

The function will start by taking the initial position, received as an input param-
eter, creating a pipe location structure with that, and storing it in the queue. After that,
it will start the while loop. Inside the loop, it will get the first value of the queue and
verify where it came from (using the before value). With this information, it will create
the next pipe location structures according to the current pipe type, incrementing by one
the path size of the current one and adding these to the queue. This logic sidecan be seen
in listing 4.7

4.3. Breadth-first Search Solution 32

Listing 4.7 – General view of the breadth-first search solution
validate_matrix find_path(matrix level, pair<int, int> current_position) {

list<pipe_location> pipe_list;

pipe_location first;

first.i = current_position.first;
first.j = current_position.second;

pipe_list.push_back(first);

while (pipe_list.size())
{

pipe_location curr_location = pipe_list.front();
pipe_list.pop_front();
pipe curr = level[curr_location.i][curr_location.j];

char type = curr.value[0];
char position = curr.value[1];
int before = curr_location.before;

pipe_location right, left, up, down;
// fill theses pipe locations with their positions and before values
// ...
right.path_size = path_size + 1;
down.path_size = path_size + 1;
left.path_size = path_size + 1;
up.path_size = path_size + 1;

if (type == 'B')
{

// ... actions for a type B pipe
} else if (type == 'R') {
// ... actions for a type R pipe

} else if (type == 'L') {
// ... actions for a type L pipe

}
}
//it didn't find a valid path
return make_tuple(level, 0, 0);

}

4.3. Breadth-first Search Solution 33

4.3.2 Pipe B

If the current pipe is of type B, either it is the first pipe, or it is the last. If the
before value of the current pipe location is 0, then it is the first pipe. In this case, it will
try to create paths from both sides of the pipe, which can be left and right, or up and
down. It does that by using the go to next function, which will be explained in details
later on.

However, if before is a value from 1 to 4, it should be the last pipe. In this case,
it will verify if it is connected to the previous pipe. If it is, the shortest path was found,
and it will call a function to create this path, which will also be explained in detail later
on. If not, it will do nothing. This logic side can be seen in listing 4.8.

Listing 4.8 – Type B pipe case
if (before)
{

if (
((position == '1' || position == '3') && (before == 1 || before == 3)) ||
((position == '2' || position == '4') && (before == 2 || before == 4)))
{

// Path found!
return create_path(level, curr_location);

}
// this is not the right path
// do nothing

} else {
if (position == '1' || position == '3')
{

// go right and left
go_to_next(level, pipe_list, right);
go_to_next(level, pipe_list, left);

} else {
// go up and down
go_to_next(level, pipe_list, up);
go_to_next(level, pipe_list, down);

}
}

4.3.3 Pipe R

The piece R, having a straight shape, will follow the same positions indicated as
the previous piece. So, for each side of the pipe, it will go straight to the next. That is, if

4.3. Breadth-first Search Solution 34

before is left (represented by 1), then the next pipe will be the right one, and so on. This
logic side can be seen in listing 4.9.

Listing 4.9 – Type B pipe case
if (before == 1) {

go_to_next(level, pipe_list, right);
} else if (before == 2) {

go_to_next(level, pipe_list, down);
} else if (before == 3) {

go_to_next(level, pipe_list, left);
} else if (before == 4) {

go_to_next(level, pipe_list, up);
}

4.3.4 Pipe L

In case the current pipe is of type L, it will do similar to type R, but instead of
having one possible way, it has two. For instance, if the previous pipe is on the left or
right, the next ones will be up and down. Otherwise, the up and down pipes will be put
in the queue. This logic can be seen in listing 4.10.

Listing 4.10 – Type B pipe case
if (before == 1 || before == 3) {

go_to_next(level, pipe_list, up);
go_to_next(level, pipe_list, down);

} else {
go_to_next(level, pipe_list, right);
go_to_next(level, pipe_list, left);

}

4.3.5 Go to next auxiliary function

The go to next function used in all types of pipe in this solution plays an important
role in the algorithm. This function decides if it puts the next location structure or not
in the queue and updates the path size of the sides of the pipe.

First, it verifies if it is a valid location. It does that by verifying if the next line or
column is a valid one (e.g., it is bigger than the size of the matrix) and if the next piece
is an empty space (represented as ’#’) or not.

Second, if it is a valid location, it verifies if the current pipe already has a path
size for the current side (1, 2, 3, or 4). If the value is zero, it puts the location on the

4.3. Breadth-first Search Solution 35

queue.

Third and last, it compares the current path’s size to the value saved in the pipe
of that side. If the current path’s size is smaller, then it is stored in the pipe. Otherwise,
it will do nothing. This logic can be seen in listing 4.11.

Listing 4.11 – Go to next function

void go_to_next(matrix &level, list<pipe_location> &pipe_list, pipe_location
loc) {

int i = loc.i;
int j = loc.j;

if (level.size() && loc.i < level.size() && loc.j < level[0].size() &&
level[loc.i][loc.j].value[0] != '#') {

if (loc.before == 1 && !level[loc.i][loc.j].path_size_1) {
pipe_list.push_back(loc);

} else if (loc.before == 2 && !level[loc.i][loc.j].path_size_2) {
pipe_list.push_back(loc);

} else if (loc.before == 3 && !level[loc.i][loc.j].path_size_3) {
pipe_list.push_back(loc);

} else if (loc.before == 4 && !level[loc.i][loc.j].path_size_4) {
pipe_list.push_back(loc);

}

if (loc.before == 1 && (level[loc.i][loc.j].path_size_1 > loc.path_size ||
!level[loc.i][loc.j].path_size_1)) {

level[loc.i][loc.j].path_size_1 = loc.path_size;
} else if (loc.before == 2 && (level[loc.i][loc.j].path_size_2 >

loc.path_size || !level[loc.i][loc.j].path_size_2)) {
level[loc.i][loc.j].path_size_2 = loc.path_size;

} else if (loc.before == 3 && (level[loc.i][loc.j].path_size_3 >
loc.path_size || !level[loc.i][loc.j].path_size_3)) {

level[loc.i][loc.j].path_size_3 = loc.path_size;
} else if (loc.before == 4 && (level[loc.i][loc.j].path_size_4 >

loc.path_size || !level[loc.i][loc.j].path_size_4)) {
level[loc.i][loc.j].path_size_4 = loc.path_size;

}
}

}

4.3. Breadth-first Search Solution 36

4.3.6 Create path function

The create path function is used when a path is found. Its usage can be seen in
listing 4.8. It does the backtracking of the shortest path and connects the pipes to build
the path. Here, the before inside the pipe structure is used, and it references the previous
pipe considering the path from the last pipe to the first one. So, it verifies from where it
comes from, and, in case it is a type L pipe, it chooses the shortest path to go. The logic
behind this can be seen in listing 4.12.

Listing 4.12 – Go to next function
validate_matrix create_path(matrix phase, pipe_location curr_location) {

int i = curr_location.i;
int j = curr_location.j;

pipe curr = phase[i][j];
int firstB = 0;

while(!(phase[i][j].value[0] == 'B' && firstB)) {
if (phase[i][j].value[0] == 'B') {

firstB = 1;
// goes to the previous piece
// ...
continue;

}

if (phase[i][j].value[0] == 'R') {
// ...
continue;

}

if (phase[i][j].value[0] == 'L') {
// ...

}
}

return make_tuple(phase, 1, curr_location.path_size);
}

37

5 AI Planning Modeling

The AI Planning solutions was built on top of PDDL to define the pipe mania
situation as a planning problem. Therefore, the domain files describes the pieces that can
exist and the rules of the game. On the other hand, the problem files describes one level
of the game, which means it describes the set of pieces, their positions in the matrix, and
their rotations, according to the rules.

In this project, we created two types of domains: one that finds the shortest path
between the beginning and the end, and other that find the shortest path considering the
number of rotations, which means that it finds the path with as few pieces and rotations as
possible. The two solutions have very similar implementations, so they will be explained
together.

5.1 Domain File

First of all, to define an AI planning problem, we need to describe the physics of
the Pipe Mania game in the domain file. This description was made using Requirements,
Types, Predicates, and Actions.

5.1.1 Requirements, Types and Predicates

The requirements used in these solutions are the following: strips, typing and
conditional-effects. They are explained in more detail in the theoretical chapter of this
project. Last but not least, the conditional-effects requirement is used only by the solution
that considers the rotations of the pipes, and it will be explained later in this section.

For this problem, just one object is defined in the :types expression: the piece. All
pipes in a level will be the object piece in Pipe Mania’s world. On top of that, all the
other characteristics and differences between pipes are defined in the :predicates part. It is
important to remember that each predicate can tell if something is true or false about an
object. In this case, the object is the piece. So, the predicates of this problem are going to
tell which type a pipe is (B, R, or L), which rotation the piece is at, the adjacent pieces,
if the piece is being used or not in the path, and last, in which piece of a level the planner
is at (to find its way from one pipe to another).

5.1. Domain File 38

Listing 5.1 – Requirements types and predicates of the domain
(define

(domain pipeMania)
(:requirements :strips :typing :conditional-effects)
(:types

piece - object
)
(:predicates

(on-piece ?p - piece)

(from-left ?p - piece)
(from-right ?p - piece)
(from-top ?p - piece)
(from-bottom ?p - piece)

(used ?p - piece)
(left ?p - piece ?l - piece)
(right ?p - piece ?r - piece)
(top ?p - piece ?t - piece)
(bottom ?p - piece ?b - piece)
(is-type-B ?p - piece)
(is-type-R ?p - piece)
(is-type-L ?p - piece)

(on-vertical ?p - piece) ;for both types B and R
(on-horizontal ?p - piece)
(L-on-position-1 ?p - piece) ; left to up / up to left
(L-on-position-2 ?p - piece) ; up to right / right to up
(L-on-position-3 ?p - piece) ; right to bottom / bottom to right
(L-on-position-4 ?p - piece) ; bottom to left / left to bottom

)
; ...

)

Predicates showed in listing 5.1 have the following meaning:

• on-piece indicates in which pipe the planner is at;

• from-right, from-left, from-top and from-bottom have the same role as the before in
the other solutions. They represent where the previous piece is so that it can know
what it can do next;

5.1. Domain File 39

• right, left, top and bottom indicates the adjacent pipes of some specific pipe. They
receive two pieces as parameters: the first one is the main pipe of the relation, and
the second is the pipe at the main’s indicated side;

• is-type-* indicates the type of a pipe (B, R or L);

• on-vertical and on-horizontal indicates the position for pipes of types B and R (both
of these types have a straight shape);

• L-on-position-* indicates the rotations of a piece of type L.

It is important to say that for the solution that does not consider rotations, it is
irrelevant to know the rotation of a piece unless it is a piece of type B because it can not
be rotated in the game. So, in this case, the predicates L-on-position-* will not be used.
Besides, the on-vertical and on-horizontal predicates will be used, but only by a type B
piece, and only because it can not be rotated.

5.1.2 Actions

Both AI planning solutions will have these four basic actions: go-right, go-left, go-
up and go-down. The solution that considers rotations will have one more action: rotate.

In PDDL, an action is divided into three parts: parameters, preconditions, and
effects. The basic actions have the same parameters and effects in both solutions. The
:parameters will have two pipes. The :effects will change some predicates of the two
parameters. It will change the on-piece predicates on both (i.e., not on the current piece,
but on the next one). It will also set used to true for the current pipe and set from where
the next piece is coming from, depending on which action (e.g. the go-right will set the
next piece with from-left).

The preconditions will be slightly different between the two solutions because the
first one will not consider the rotation of the pieces (just type B rotations), and the second
one will. In spite of this, they will share most of the conditions. To explain what is the
precondition of these actions, we are going to focus on the go-right action because the
other actions will have the same structure, but suited for their specific situation.

The preconditions of the go-right action are:

• It needs to be in the first piece received as parameter (indicated by the on-piece
predicate);

• the next piece needs to be on the right of the current one (indicated by the right
predicate);

5.1. Domain File 40

• the next piece can not be used in the current path already (indicated by the used
predicate);

• in case it is a piece of type R, the previous piece must be the left one (indicated by
the from-left predicate). For the second solution, this piece needs to be on horizontal
(indicated by the on-horizontal predicate);

• in case it is a piece of type L, the previous piece can be only the top one and the
bottom one (indicated by the from-top and from bottom predicates). For the second
solution, the current solution will also need to be on the second position (L-on-
position-2) or third position (L-on-position-3), depending of the previous piece;

• in case it is a piece of type B, it needs to be on horizontal for both solutions
(indicated by the on-horizontal predicate)

The go-right action can be seen in PDDL in the algorithm 5.2 (this go-right action
is for the second solution, because it has all the preconditions of the first one, plus the
position preconditions).

Listing 5.2 – Go-right action
(:action GO-RIGHT

:parameters (?p - piece ?next - piece)
:precondition (and

(on-piece ?p) (right ?p ?next) (not (used ?next))
(or

(and (from-left ?p) (is-type-R ?p) (on-horizontal ?p))
(and (is-type-L ?p)
(or

(and (from-top ?p) (L-on-position-2 ?p))
(and (from-bottom ?p) (L-on-position-3 ?p))

))
(and (is-type-B ?p) (on-horizontal ?p))

)
)
:effect (and

(not (on-piece ?p))
(on-piece ?next)
(used ?next)
(from-left ?next)

))

5.1. Domain File 41

The rotate action, as mentioned before, is only used in the solution that considers
the number of rotations for making the path. This action is responsible for making every
type of piece rotate. In the game, each time the rotate action is performed, visually, it
makes a 90-degree clockwise rotation on the piece. So, to connect a pipe into a path, it
may need to rotate multiple times.

This action uses the conditional-effects requirement for changing different predi-
cates, depending on the type of pipe and on its current position. This requirement makes
it possible for one action to have multiple effects depending on the situation.

For example, for pieces of types B and R, if they are in the horizontal position,
they will change to a vertical position, and vice versa. On the other hand, pieces of type L
connect with different adjacent pipes for each 90-degree rotation, so it has four positions.
If it is on position 1, it goes to 2. If it is on 2, it goes to three, and so on. The PDDL code
of this action can be seen in the algorithm 5.3

Listing 5.3 – Rotate action
(:action ROTATE

:parameters (?p - piece)
:precondition (and

(on-piece ?p)
(not (is-type-B ?p))

)
:effect (and

(when
;Antecedent
(and (is-type-R ?p) (on-horizontal ?p))
;Consequence
(and

(not (on-horizontal ?p))
(on-vertical ?p)

)
)
(when

;Antecedent
(and (is-type-R ?p) (on-vertical ?p))
;Consequence
(and

(not (on-vertical ?p))
(on-horizontal ?p)

)
)

5.1. Domain File 42

(when
;Antecedent
(and (is-type-L ?p) (L-on-position-1 ?p))
;Consequence
(and

(not (L-on-position-1 ?p))
(L-on-position-2 ?p)

)
)
(when

;Antecedent
(and (is-type-L ?p) (L-on-position-2 ?p))
;Consequence
(and

(not (L-on-position-2 ?p))
(L-on-position-3 ?p)

)
)
(when

;Antecedent
(and (is-type-L ?p) (L-on-position-3 ?p))
;Consequence
(and

(not (L-on-position-3 ?p))
(L-on-position-4 ?p)

)
)
(when

;Antecedent
(and (is-type-L ?p) (L-on-position-4 ?p))
;Consequence
(and

(not (L-on-position-4 ?p))
(L-on-position-1 ?p)

)
)

)
)

5.2. Problem File 43

5.2 Problem File

The problem file defines a specific situation of a domain. In the Pipe Mania case,
it represents a level itself. It describes where the pipes are positioned in the matrix, the
types of the pipes, where is the beginning piece and which piece it needs to reach to create
a solution (a valid path).

5.2.1 Objects of a level

The :objects section of Pipe Mania’s problem file is filled with a set of pieces of
the current level. These pieces are just declared here. For the purpose of visualizing the
pieces in a matrix, the names were standardized following the pattern p[line]-[column]
(i.e., p10-15, where it is on line 10 and column 15 of the matrix). An example of the
:objects section can be found in listing 5.4.

Listing 5.4 – Objects of a level

(define
(problem fase-v4h5)
(:domain pipeMania)
(:objects

p1-1 p1-2 p1-3 p1-4 p1-5 p1-6 - piece
p2-1 p2-2 p2-3 p2-4 p2-5 p2-6 - piece
p3-1 p3-2 p3-3 p3-4 p3-5 p3-6 - piece
p4-1 p4-2 p4-3 p4-4 p4-5 p4-6 - piece
p5-1 p5-2 p5-3 p5-4 p5-5 p5-6 - piece
p6-1 p6-2 p6-3 p6-4 p6-5 p6-6 - piece
p7-1 p7-2 p7-3 p7-4 p7-5 p7-6 - piece

)
;...

5.2.2 Initializing a level

The :init section of Pipe Mania’s problem file defines the characteristics of the
pieces in the level. It tells the planner the adjacency of the pieces, their types and rotations,
and where the planner will start looking for a path. I will do that by defining which
predicates described in the domain file are true for every piece. An example of a :init
section can be found in listing 5.5.

5.2. Problem File 44

Listing 5.5 – Declaring predicates on the problem file

(:init
(on-piece p3-6) ;start piece

(is-type-L p1-1)
(L-on-position-1 p1-1)
(bottom p1-1 p2-1)
(right p1-1 p1-2)

(is-type-R p1-2)
(on-vertical p1-2)
(bottom p1-2 p2-2)
(left p1-2 p1-1)
(right p1-2 p1-3)

(is-type-L p1-3)
(L-on-position-4 p1-3)
(bottom p1-3 p2-3)
(left p1-3 p1-2)
(right p1-3 p1-4)
;... for all pieces

5.2.3 The goal of a level

The :goal section of Pipe Mania’s problem file defines which piece is the final piece
and from where it needs to come. As we already know, the last pipe will have the B type,
which means it cannot be rotated. So if the current pipe is horizontal, the planner must
find a way for its left or right side to consider a valid path. On the other hand, if it is
vertical, the planner will try to reach its top or bottom sides. A :goal section example can
be found in listing 5.6.

Listing 5.6 – The goal of a level

(:goal (and
(on-piece p5-1)
(or

(from-left p5-1)
(from-right p5-1)

)
))

5.3. Extending the domain 45

5.3 Extending the domain
Using AI planning has some advantages over the graph based solutions. Changing

rules in PDDL can be much easier than it is on the graph based solutions. For example,
to create a path between three pipes instead of just two, in PDDL, add one more piece in
the :goal field, and it is done. On the other hand, it can be much harder to do the same
thing in the graph based solutions.

Another example is adding more types of pipes, such as one-directional pipes,
adding one more predicate symbolizing these new pipes, and then adding them to the
preconditions and effects of the actions. To add new pieces to the graph based solutions,
we need to add all the logic of these pieces to the code.

5.4 Considerations
As we can see, both solutions can have the same problem file. It was made this

way to use the same problem file for running both solutions, changing just the domain
file. Also another thing to know is that an AI planning solution is a set of actions. If doing
these actions to the letter on the level, we will get the shortest valid path between the
two pieces. An example of a solution found by a planner called Madagascar 1 can be seen
in listing 5.7.

Listing 5.7 – Madagascar solution exemple
PLAN FOUND: 45 steps
STEP 1: go-left(p3-15,p3-14)
STEP 2: go-left(p3-14,p3-13)
STEP 3: rotate(p3-13)
STEP 4: go-left(p3-13,p3-12)
STEP 5: rotate(p3-12)
STEP 6: rotate(p3-12)
STEP 7: rotate(p3-12)
STEP 8: go-down(p3-12,p4-12)
STEP 9: rotate(p4-12)
STEP 10: rotate(p4-12)
STEP 11: go-left(p4-12,p4-11)
STEP 12: rotate(p4-11)
...

1 The Madagascar planner was made by Professor Dr. Jussi Rintanen and it can be found at this link

46

6 Results

To compare the methods that solve a Pipe Mania level, we created 39 levels, with
sizes ranging from 10x10 to 40x40 in the string format (an example of this format can be
seen in table 3.1). After that, we created a parser from this format to a PDDL problem
file so that all solutions have the same levels to solve

With that in hands, the graph based solutions and the parser mentioned above
were compiled using GCC (GNU Compiler Collection), but specifically g++ (The compiler
for C++) (STALLMAN et al., 2003). The parameters to compile the codes were the
following: CXXFLAGS=-O2 -std=c++17. The CXXFLAGS=-O2 parameter is for telling the
compiler to use the O2 level of optimization. This level is the best safe level of optimization,
without incurring any risk (meaning the execution flow is not broken or there’s too much
optimizations on registers or pointers). The -std=c++17 parameter is telling the compiler
to use version 17 of C++.

On the other hand, to run the AI planning solutions, all the variations of the
planning system Madagascar were used (M, Mp and MpC). The machine used to make
the experiments has an Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz, with 16 GB of
RAM. The comparisons between solutions were made based on the time spent to run a
solution (in seconds, represented with 𝑡), the memory used (in MB, represented with 𝑀)
and the path size created (number of pipes in the path, represented with 𝑠). To measure
time and memory, the command time -f "\%e \%M" was used, where %𝑒 represents the
time in seconds, and %𝑀 the memory usage in KB, later converted to MB.

Table (1) compares all the Madagascar planners in the AI Planning domain that
do not consider rotations as a factor for making the path. Table (2) show the results of
all Madagascar planners in the domain that consider rotations. Table (3) compares the
DFS based solution, the BFS, and the Mp configuration of Madagascar. Table (4) shows
the comparison between BFS and the M planner with just one step for horizon lengths
(𝑆 = 1). Columns that do not have values (-) represents that the method was not able
to find a solution.

Even though planners are supposed to find the best solutions for a problem, in
table 1, it is possible to see that the different planners found different path sizes for levels
6, 8, 18, 19, 20, 22, 25, 26, 28, 30, 31, 33, and 39. In table 2, the different path sizes can
be found in levels 2, 4, 6, 7, 11, 12, 13, 17, 18, 19, 20, 22, 24, 29, 31, 32, 33, and 34. These
differences in path sizes occurred because the step for horizon lengths (S) is bigger than 1.
Table 4 shows that the BFS and Madagascar with 𝑆 = 1 have the same results. However,
this configuration uses more time and memory to find the solutions.

6.1. Considerations 47

The comparison between DFS, BFS and the MpC planner in table 3 shows that
the BFS solution is the best of these cases. It finds solutions in milliseconds and uses 3
MB of RAM for every level. Also, it always finds the shortest path in comparison to the
other solutions.

6.1 Considerations
Tables 1 and 2 show that just by adding the number of rotations in consideration in

the domain file, the memory and time spent in the solutions can increase by a significantly
margin. For example, the memory usage and time of level 4 in table 2 are almost seven
times more than in table 1.

Figure 9 compares the time in seconds of the solutions between the two domains
using the Mp configuration. It shows that the domain with rotation is slower in almost all
cases. It also shows that time disparity increases with the difficulty and size of the levels.
Notice that the levels not solved by the domain with rotations were removed from this
comparison.

Another thing to notice is that changing the Madagascar configuration can main-
tain the same pattern of improvement for all problems of these domains. For example, it
is possible to see that, for most situations, variation M is the one with more time spent
and memory used, and the MpC is the one with less. However, sometimes it finds the
worse solutions (with more extensive paths). The Mp stays in the middle between the
two.

Meanwhile, it is possible to see in table 3 that Madagascar planners consume a
lot more memory than the graph based solutions. It happens due to very large quadratic
size encodings, top-level strategies that are forced to unnecessarily establish a ”parallel
optimality“ property, and the lack of planning specific heuristics to drive the search for
the best solution (RINTANEN, 2011).

6.1. Considerations 48

Figure 9 – Mp Domain Comparison

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80 90 100

W
it

h
 r

o
ta

ti
o
n

No rotation

6.1. Considerations 49

Table 1 – AI Planning results (no rotation)

Level M Mp MpC
s t M s t M s t M

1 21 0.20 31.50 21 0.19 30.86 21 0.19 31.57
2 15 0.37 43.62 15 0.37 43.11 15 0.39 46.06
3 39 1.17 91.65 39 1.07 88.82 39 1.02 80.78
4 52 3.41 214.02 52 2.95 206.13 52 2.52 171.16
5 22 0.27 37.00 22 0.28 36.23 22 0.26 37.07
6 25 1.27 91.02 23 1.19 89.46 23 1.22 90.98
7 12 1.15 82.63 12 1.07 81.89 12 1.10 82.77
8 22 7.87 252.14 24 7.61 249.46 24 7.67 252.16
9 17 79.60 1052.64 17 73.59 1047.88 17 78.48 1052.38
10 18 0.18 28.43 18 0.31 27.92 18 0.19 28.40
11 28 1.49 99.66 28 1.38 97.64 28 1.36 93.87
12 38 7.60 284.09 38 7.54 278.20 38 7.16 260.41
13 58 98.29 1331.09 58 94.39 1303.26 58 88.42 1210.44
14 78 581.94 4103.52 78 557.59 4018.47 78 546.14 3471.07
15 22 0.20 31.61 22 0.22 30.93 22 0.24 31.61
16 22 0.23 31.61 22 0.21 30.93 22 0.22 31.65
17 22 1.29 91.35 22 1.22 89.81 22 1.24 91.35
18 30 1.33 99.25 30 1.26 97.24 38 1.27 100.64
19 21 1.29 93.88 25 1.24 92.35 25 1.26 93.86
20 47 2.07 134.79 47 1.89 129.91 55 1.72 113.71
21 29 1.37 97.38 29 1.26 95.39 29 1.35 98.68
22 30 6.93 255.88 30 6.68 252.21 32 6.85 258.36
23 32 7.15 266.98 32 6.75 262.30 32 6.83 257.44
24 35 6.82 261.75 35 6.47 257.11 35 6.49 252.20
25 34 7.33 267.77 34 7.06 263.14 40 7.01 258.20
26 40 7.30 279.08 36 6.86 273.17 36 6.57 255.73
27 44 1.21 97.18 44 1.11 93.84 44 1.05 87.50
28 35 6.61 264.14 35 6.38 259.45 39 6.36 254.50
29 40 7.75 281.05 40 7.32 275.23 40 7.17 257.52
30 44 7.50 296.25 44 6.95 288.98 42 7.50 299.11
31 30 6.76 256.71 30 6.40 253.14 40 6.45 259.27
32 34 7.34 266.84 34 7.11 262.22 34 6.85 257.37
33 68 3.35 239.73 66 2.85 228.54 66 2.19 172.59
34 64 18.96 637.72 64 17.20 618.07 64 15.14 532.24
35 109 396.61 4161.38 109 323.24 4022.43 109 262.17 2993.96
36 12 0.06 13.03 12 0.04 12.95 12 0.04 13.09
37 22 0.24 31.61 22 0.22 30.93 22 0.21 31.65
38 10 0.41 45.44 10 0.38 45.06 10 0.42 45.75
39 20 0.39 43.95 18 0.40 43.25 18 0.40 43.82

6.1. Considerations 50

Table 2 – AI Planning results (with rotation)

Level M Mp MpC
s t M s t M s t M

1 21 0.39 63.67 21 0.36 61.04 21 0.36 51.96
2 15 0.59 78.85 15 0.60 84.97 17 0.55 81.43
3 39 2.74 300.67 39 2.17 231.55 39 1.93 187.10
4 52 16.45 1422.30 52 6.88 836.16 62 4.47 461.53
5 22 0.61 74.87 22 0.58 71.48 22 0.53 61.04
6 25 2.19 184.63 25 2.06 177.35 31 1.95 161.20
7 12 1.97 151.68 12 1.89 146.29 24 1.83 139.10
8 22 14.85 437.88 22 14.37 425.07 22 14.08 396.41
9 17 113.13 1459.13 17 116.34 1435.32 17 111.92 1347.97
10 22 0.38 71.88 22 0.32 68.53 22 0.34 61.29
11 28 3.86 395.66 36 2.98 334.78 36 2.23 200.18
12 38 19.33 1094.45 44 15.13 937.98 44 11.29 528.70
13 62 252.74 5528.16 62 157.73 3777.18 72 131.94 2041.29
14 – – – – – – – – –
15 22 0.42 75.73 22 0.39 72.38 22 0.37 64.61
16 22 0.43 75.73 22 0.40 72.38 22 0.34 64.61
17 30 2.87 244.61 24 2.34 184.81 26 2.26 167.48
18 30 2.87 285.46 30 2.53 271.03 38 2.21 197.92
19 25 2.69 211.60 25 2.39 183.44 27 2.28 167.17
20 47 4.30 415.98 47 3.83 392.17 57 3.48 307.66
21 29 2.74 251.48 29 2.31 216.70 29 2.06 162.18
22 30 13.44 596.88 32 12.32 568.74 38 12.21 513.99
23 32 13.96 644.82 32 12.32 569.25 32 11.21 440.68
24 35 13.10 638.02 41 11.59 559.91 41 10.44 430.50
25 32 12.58 509.65 32 11.94 490.86 32 11.36 388.57
26 38 18.11 995.27 38 12.16 607.92 38 10.33 433.18
27 44 4.15 481.35 44 2.54 339.22 44 1.94 209.64
28 35 17.92 939.71 35 11.61 614.68 35 10.03 434.77
29 40 15.94 709.38 40 14.83 676.18 44 12.96 444.16
30 44 22.77 1288.29 44 14.68 876.34 44 12.85 660.02
31 30 12.99 596.99 30 11.80 571.54 36 10.83 442.40
32 34 14.50 652.53 34 13.11 610.77 42 11.72 438.44
33 70 30.42 2499.47 70 7.43 1032.25 74 3.64 414.34
34 66 117.75 4657.33 64 35.25 2213.16 64 21.76 1074.69
35 – – – – – – – – –
36 12 0.09 19.04 12 0.07 18.77 12 0.07 19.17
37 22 0.42 75.73 22 0.39 72.38 22 0.36 64.61
38 10 0.69 75.61 10 0.71 73.80 10 0.67 75.97
39 20 0.84 107.07 20 0.74 101.37 20 0.73 91.02

6.1. Considerations 51

Table 3 – All solution results

Level DFS BFS MpC
s t M s t M s t M

1 45 0.00 3.95 21 0.00 3.54 21 0.19 30.86
2 21 0.60 4.64 15 0.00 3.45 15 0.37 43.11
3 59 0.01 4.74 39 0.00 3.54 39 1.07 88.82
4 168 0.01 7.01 52 0.00 3.39 52 2.95 206.13
5 50 0.00 3.80 22 0.00 3.52 22 0.28 36.23
6 61 0.00 4.32 21 0.00 3.46 23 1.19 89.46
7 28 11.41 5.38 12 0.00 3.44 12 1.07 81.89
8 – – – 22 0.00 3.41 24 7.61 249.46
9 171 0.01 12.61 17 0.00 3.62 17 73.59 1047.88
10 52 0.00 3.95 18 0.00 3.33 18 0.31 27.92
11 112 0.00 5.51 28 0.00 3.38 28 1.38 97.64
12 220 0.01 9.40 38 0.00 3.59 38 7.54 278.20
13 524 0.02 32.59 58 0.00 3.62 58 94.39 1303.26
14 908 0.11 87.93 78 0.00 3.79 78 557.59 4018.47
15 22 0.00 3.53 22 0.00 3.36 22 0.22 30.93
16 22 0.00 3.60 22 0.00 3.52 22 0.21 30.93
17 116 0.00 5.33 22 0.00 3.48 22 1.22 89.81
18 106 0.00 5.18 30 0.00 3.46 30 1.26 97.24
19 77 0.00 4.72 21 0.00 3.46 25 1.24 92.35
20 77 0.25 5.10 47 0.00 3.38 47 1.89 129.91
21 113 0.00 5.37 29 0.00 3.38 29 1.26 95.39
22 202 0.01 8.62 30 0.00 3.44 30 6.68 252.21
23 – – – 32 0.00 3.43 32 6.75 262.30
24 215 0.00 9.35 35 0.00 3.43 35 6.47 257.11
25 200 0.01 8.58 32 0.00 3.43 34 7.06 263.14
26 218 0.00 9.30 36 0.00 3.55 36 6.86 273.17
27 52 0.44 5.15 44 0.00 3.46 44 1.11 93.84
28 131 0.00 6.90 35 0.00 3.51 35 6.38 259.45
29 212 0.01 9.31 40 0.00 3.50 40 7.32 275.23
30 182 0.01 8.14 42 0.00 3.61 44 6.95 288.98
31 184 0.01 9.02 30 0.00 3.42 30 6.40 253.14
32 84 0.00 5.54 34 0.00 3.50 34 7.11 262.22
33 112 0.03 6.53 66 0.00 3.59 66 2.85 228.54
34 214 0.01 11.91 64 0.00 3.54 64 17.20 618.07
35 1033 5.21 99.94 109 0.00 3.79 109 323.24 4022.43
36 14 0.00 3.65 12 0.00 3.33 12 0.04 12.95
37 22 0.00 3.50 22 0.00 3.41 22 0.22 30.93
38 50 0.00 4.32 10 0.00 3.55 10 0.38 45.06
39 38 0.06 4.06 18 0.00 3.35 18 0.40 43.25

6.1. Considerations 52

Table 4 – BFS and M with S=1 comparison

Level BFS M w/ S=1
s t M s t M

1 21 0.00 3.54 21 0.27 44.09
2 15 0.00 3.45 15 0.44 55.05
3 39 0.00 3.54 39 2.12 186.27
4 52 0.00 3.39 52 7.05 482.71
5 22 0.00 3.52 22 0.36 53.64
6 21 0.00 3.46 21 1.55 120.42
7 12 0.00 3.44 12 1.19 91.61
8 22 0.00 3.41 22 9.09 311.85
9 17 0.00 3.62 17 82.11 1135.84
10 18 0.00 3.33 18 0.23 38.04
11 28 0.00 3.38 28 2.06 157.29
12 38 0.00 3.59 38 11.25 478.68
13 58 0.00 3.62 58 138.73 2385.07
14 78 0.00 3.79 – – –
15 22 0.00 3.36 22 0.28 45.96
16 22 0.00 3.52 22 0.27 45.97
17 22 0.00 3.48 22 1.61 125.67
18 30 0.00 3.46 30 2.07 168.12
19 21 0.00 3.46 21 1.60 123.36
20 47 0.00 3.38 47 3.83 295.74
21 29 0.00 3.38 29 1.98 158.39
22 30 0.00 3.44 30 9.10 380.18
23 32 0.00 3.43 32 9.57 398.79
24 35 0.00 3.43 35 9.92 428.49
25 32 0.00 3.43 32 9.77 400.76
26 36 0.00 3.55 36 10.13 444.99
27 44 0.00 3.46 44 2.37 218.25
28 35 0.00 3.51 35 9.75 433.06
29 40 0.00 3.50 40 11.81 502.03
30 42 0.00 3.61 42 12.01 530.89
31 30 0.00 3.42 30 8.80 379.44
32 34 0.00 3.50 34 10.05 420.61
33 66 0.00 3.59 66 8.96 632.62
34 64 0.00 3.54 64 39.70 1427.60
35 109 0.00 3.79 – – –
36 12 0.00 3.33 12 0.05 14.78
37 22 0.00 3.41 22 0.27 45.96
38 10 0.00 3.55 10 0.43 50.48
39 18 0.00 3.35 18 0.48 58.38

53

7 Conclusions

This thesis discussed four solvers for the Pipe Mania game. It explains the basic
concepts of graphs, graph traversal, AI Planning, and PDDL. It also explains the game
in detail, gives some variation examples, and defines the rules for creating the solutions.
It describes two graph based solutions for this game and two AI Planning models. On top
of that, it shows the upper and downsides of each type of solution and compares them.

Also, it explains that while the graph based solutions have better use of time and
space, the AI Planning solutions have a more flexible implementation, enabling drastic
changes in the rules and results without much effort.

Finally, this thesis leaves many things to explore, such as using other configurations
of Madagascar to search for better results, improving the domain implementation of the
game, reducing predicates and expressions for less memory usage, testing other planners
to find solutions with better performance, and creating new rules for the game.

54

Bibliography

ADAMS, H. Pipe Mania, Development done, out in North America at
the end of the month. 2008. <https://www.gamesindustry.biz/articles/
pipe-mania-development-done--out-in-north-america-at-the-end-of-the-month>.
Acessado em 22/04/2022. 11

BARNOUTI, N. H. et al. Pathfinding in strategy games and maze solving using a* search
algorithm. Journal of Computer and Communications, Scientific Research Publishing,
v. 4, n. 11, p. 15, 2016. 13

BIGGS, N.; LLOYD, E. K.; WILSON, R. J. Graph Theory, 1736-1936. [S.l.]: Oxford
University Press, 1986. 13

BOZIC, J.; TAZL, O. A.; WOTAWA, F. Chatbot testing using ai planning. In: IEEE.
2019 IEEE International Conference On Artificial Intelligence Testing (AITest). [S.l.],
2019. p. 37–44. 14

BYLANDER, T. The computational complexity of propositional strips planning.
Artificial Intelligence, Elsevier, v. 69, n. 1-2, p. 165–204, 1994. 15

FRANCIOSA, P. G.; FRIGIONI, D.; GIACCIO, R. Semi-dynamic shortest paths and
breadth-first search in digraphs. In: SPRINGER. Annual Symposium on Theoretical
Aspects of Computer Science. [S.l.], 1997. p. 33–46. 14

GHALLAB, A. M. et al. Pddl| the planning domain definition language. Technical
Report, Tech. Rep., 1998. 14, 15, 16, 17

GOLDFARB. Vending Machines. 2013. <https://www.ign.com/wikis/bioshock-infinite/
Vending_Machines>. Acessado em 22/04/2022. 11, 20

GRAEBER. Lab Circuit Projects. 2018. <https://www.ign.com/wikis/spider-man-ps4/
Lab_Circuit_Projects>. Acessado em 22/04/2022. 11, 20

HASLUM, P. et al. An introduction to the planning domain definition language.
Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan & Claypool
Publishers, v. 13, n. 2, p. 1–187, 2019. 14

HENDLER, J. A.; TATE, A.; DRUMMOND, M. Ai planning: Systems and techniques.
AI magazine, v. 11, n. 2, p. 61–61, 1990. 14

HOROWITZ, E. Fundamentals of programming languages. [S.l.]: Springer Science &
Business Media, 2012. 25

JR, H. R. Theory of recursive functions and effective computability. [S.l.]: MIT press,
1987. 13

KOZEN, D. C. Depth-first and breadth-first search. In: The design and analysis of
algorithms. [S.l.]: Springer, 1992. p. 19–24. 13, 14

Bibliography 55

LINA, T. N.; RUMETNA, M. S. Comparison analysis of breadth first search and depth
limited search algorithms in sudoku game. Bulletin of Computer Science and Electrical
Engineering, v. 2, n. 2, p. 74–83, 2021. 13

MENCÍA, C.; SIERRA, M. R.; VARELA, R. Depth-first heuristic search for the job shop
scheduling problem. Annals of Operations Research, Springer, v. 206, n. 1, p. 265–296,
2013. 13

NAU, D. S.; GUPTA, S. K.; REGLI, W. C. AI planning versus manufacturing-operation
planning: A case study. [S.l.], 1995. 14

PEDNAULT, E. P. Adl: Exploring the middle ground between. In: MORGAN
KAUFMANN PUB. Proceedings of the first international conference on Principles of
knowledge representation and reasoning. [S.l.], 1989. p. 324. 14

PEER, J. Web service composition as AI planning: a survey. [S.l.]: University of St.
Gallen Switzerland, 2005. 14

RINTANEN, J. Evaluation strategies for planning as satisfiability. In: ECAI. [S.l.: s.n.],
2004. v. 16, p. 682. 19

RINTANEN, J. Madagascar: Efficient planning with sat. The 2011 International
Planning Competition, v. 61, 2011. 19, 47

RINTANEN, J. Madagascar: Scalable planning with sat. Proceedings of the 8th
International Planning Competition (IPC-2014), v. 21, p. 1–5, 2014. 19

RINTANEN, J.; HELJANKO, K.; NIEMELÄ, I. Planning as satisfiability: parallel plans
and algorithms for plan search. Artificial Intelligence, Elsevier, v. 170, n. 12-13, p.
1031–1080, 2006. 19

SHMUELI, O. Dynamic cycle detection. Information Processing Letters, Elsevier, v. 17,
n. 4, p. 185–188, 1983. 13

SPECTOR, L. Genetic programming and ai planning system. In: Proceedings of the
Twelfth National Conference on Artificial Intelligence, AAAI. [S.l.: s.n.], 1994. v. 94, p.
1329–1334. 14

STALLMAN, R. M. et al. Using the gnu compiler collection. Free Software Foundation,
v. 4, n. 02, 2003. 46

VIGLIETTA, G. Gaming is a hard job, but someone has to do it! Theory of Computing
Systems, Springer, v. 54, n. 4, p. 595–621, 2014. 11

WALLACH. 50 Years of Gaming History, by Revenue Stream (1970-2020). 2020.
<https://www.visualcapitalist.com/50-years-gaming-history-revenue-stream/>.
Acessado em 22/04/2022. 11

WELD, D. S. Recent advances in ai planning. AI magazine, v. 20, n. 2, p. 93–93, 1999.
14

WINSTON, P. H.; HORN, B. K. Lisp. Addison Wesley Pub., Reading, MA, 1986. 15

YOUNES, H. L.; LITTMAN, M. L. Ppddl1. 0: The language for the probabilistic part
of ipc-4. In: Proc. International Planning Competition. [S.l.: s.n.], 2004. 15

Bibliography 56

ZHOU, J.; MÜLLER, M. Depth-first discovery algorithm for incremental topological
sorting of directed acyclic graphs. Information Processing Letters, Elsevier, v. 88, n. 4,
p. 195–200, 2003. 13

