—

Universidade de Brasilia — UnB
Faculdade UnB Gama — FGA

Engenharia de Software

Challenges in React Native Development: A
Study of Stack Overflow Posts

Autora: Gabriela Barrozo Guedes

Orientadora: Profa. Dra. Carla Rocha Aguiar

Brasilia, DF
2022

Gabriela Barrozo Guedes

Challenges in React Native Development: A Study of
Stack Overflow Posts

Monografia submetida ao curso de gradu-
acao em Engenharia de Software da Universi-
dade de Brasilia, como requisito parcial para
obtencao do Titulo de Bacharel em Engen-
haria de Software.

Universidade de Brasilia — UnB
Faculdade UnB Gama — FGA

Supervisor: Profa. Dra. Carla Rocha Aguiar

Brasilia, DF
2022

Gabriela Barrozo Guedes
Challenges in React Native Development: A Study of Stack Overflow Posts/

Gabriela Barrozo Guedes. — Brasilia, DF, 2022-
63 p. : il. (algumas color.) ; 30 cm.

Supervisor: Profa. Dra. Carla Rocha Aguiar

Trabalho de Conclusdo de Curso — Universidade de Brasilia — UnB

Faculdade UnB Gama — FGA | 2022.

1. React Native. 2. Mobile development. I. Profa. Dra. Carla Rocha Aguiar.
II. Universidade de Brasilia. III. Faculdade UnB Gama. IV. Challenges in React
Native Development: A Study of Stack Overflow Posts

CDU 02:141:005.6

Gabriela Barrozo Guedes

Challenges in React Native Development: A Study of
Stack Overflow Posts

Monografia submetida ao curso de gradu-
acao em Engenharia de Software da Universi-
dade de Brasilia, como requisito parcial para
obten¢ao do Titulo de Bacharel em Engen-
haria de Software.

Trabalho aprovado. Brasilia, DF, 29 de junho de 2022:

Profa. Dra. Carla Rocha Aguiar
Orientador

Prof. Dr. Renato Coral Sampaio
Convidado 1

Profa. Dra. Milene Serrano
Convidado 2

Brasilia, DF
2022

Abstract

Mobile App development is growing with smartphones and the significant advances in
technologies. Therefore there is more use of mobile app development tools to create those
apps.

React Native is one of the most popular frameworks for hybrid development. This frame-
work makes it possible for the developer to write one code in JavaScript and generate
apps for iOS and Android. With the rise in the development of mobile apps, more devel-
opers are using React Native, creating a community that helps each other with developing

issues.

This study aims to analyze the community of React Native developers by investigating
the difficulties reported on Stack Overflow. This study used Scoccia, Migliarini e Autili
(2021) as a base project for the dataset analysis with the Mallet tool and improved it to
be reused by other datasets.

Key-words: react-native, development, mobile app, stack-overflow, mallet.

Resumo

O desenvolvimento de aplicativos méveis estd em expansao devido ao crescente uso de
smartphones e aos avancos significativos da tecnologia, de forma que o uso das ferramentas

de desenvolvimento para criar esses aplicativos também aumentou.

React Native é um dos frameworks mais populares para desenvolvimento hibrido. Esse
framework possibilita que o desenvolvedor escreva um cédigo em JavaScript e obtenha
aplicativos para ambos os sistemas Android e iOS. Com o crescimento de aplicagoes
moveis, mais desenvolvedores estao utilizando React Native, criando assim uma grande

comunidade que se ajuda com duvidas de desenvolvimento.

Esse estudo tem como objetivo analisar a comunidade de desenvolvedores de React Native
através das perguntas feitas pelo Stack Overflow. Utiliza como base para o desenvolvi-
mento, o projeto de Scoccia, Migliarini e Autili (2021) que possui scripts para a utilizagao

do Mallet que sdo evoluidos para se adaptar a datasets diferentes.

Palavras-chave: react-native, desenvolvimento, aplicagoes maéveis, stack-overflow, mal-
let.

List of Figures

Figure 1 — Mobile OS Chart (StatCounter, 2021) 19
Figure 2 — Mobile Development (NUNKESSER, 2018) 20
Figure 3 — Native Mobile App (TUN, 2014) 21
Figure 4 — Hybrid Mobile App (TUN, 2014) 22
Figure 5 — Methodology Diagram 28
Figure 6 — Questions’ Title Word Cloud 34
Figure 7 — Questions’ Tags Word Cloud 35
Figure 8 — Questions’ Body Word Cloud 35
Figure 9 — Amount of questions by time 36
Figure 10 — Amount of comments by time 37
Figure 11 — Amount of answers by time 37
Figure 12 — Amount of score by time L. 38
Figure 13 — Amount of favorite by time 38
Figure 14 — Amount of views by time L. 39
Figure 15 — Value of Answer Count 40
Figure 16 — Value of Comment Count 40
Figure 17 — Value of Score 41
Figure 18 — Value of Favorite Count 41
Figure 19 — Value of View Count 42
Figure 20 — Added file tree 43
Figure 21 — Topic files generated oo 46
Figure 22 — Topic 1 o 47
Figure 23 — Topic 9 47
Figure 24 — Topic 11 o o 48
Figure 25 — Topic 14 o e 48
Figure 26 — Topic 2 e 49
Figure 27 — Output folder file tree L. 51
Figure 28 — Notebook exporting variables cell 53
Figure 29 — Notebook prepare dataset cell 53
Figure 30 — Notebook run mallet commands cell 54

Figure 31 — Notebook parse results cell 54

List of Tables

Table 1 — Data returned from the query in Stack Exchange.. 29
Table 2 — 10 Topics division context 55
Table 3 — 15 Topics division context 56
Table 4 — 20 Topics division context 56
Table 5 — Topics identified Y

List of abbreviations and acronyms

RAM Random-access memory

GPS Global Positioning System

OS Operating System

API Application Programming Interface
SDK Software Development Kit

LDA Latent Dirichlet Allocation

Q&A Questions and Answers

SQL Structured Query Language

CSV Comma Separated Values

HTML Hypertext Markup Language

CSS Cascading Style Sheets

1.1
1.2

2.1
2.2
2.3
23.1
232
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
371
3.7.2
3.7.3
3.7.4
3.75
3.7.6

4.1
411
4.1.2

Contents

INTRODUCTION e e e e e e e e s 17
Objectives 17
Work Structure 18
BACKGROUND et e e e e e e e e et e e 19
Mobile App Development 19
Hybrid Solutions 21
Differences Between Native and Hybrid Development 21
Native Development 21
Hybrid Development 22
React Native 22
Stack Overflow 23
The Developer’s Profile 23
Open source software 24
Topic Modeling and The Mallet Toolkit 24
Related Works 25
PROPOSAL e e e e e e e e e e 27
Research Questions 27
Methodology 27
Data collection 28
Data processing 29
Data Analysis 30
Evolve the repository 30
Technologies 31
Git . e 31
Stack Exchangeo 31
SQL . . o 31
Mallet e 32
Python 32
Jupyter . . L 32
RESULTS e e e e e e e e e e e e 33
Exploratory phase 33
Word Clouds 33

Data analysisover time 36

4.1.3
414
4.2
421
4211
4212
4213
4214
4215
4.2.1.6
4.3
43.1
4311
4.3.2
4.3.3
4.4
441
4.4.72
443
444

Value analysis L 39
Preliminary Discussion 42

Understand the Scoccia, Migliarini e Autili (2021) project repository 43

Apply mallet on the React Native dataset 43
Create similar file tree to run experiment L. 43
Clean the datasets data 44
Export dataset to Malleto 44
Run Mallet e 44
Understand the mallet output 44
Results. e e 46
Evolve the Scoccia, Migliarini e Autili (2021) project repository . . 49
Custumize inputs and outputs 49
Refactor code to accept different inputs 49
Refactor the scripts into modules. 51
Create a notebook to run the steps 52
Calibrating and running the React Native dataset 55
10 topics L 55
15 topics 55
20 tOPICS e 56
Result 57
CONCLUSION s e e e e e e e e e e e e 59

17

1 Introduction

Software technology is expanding to automate processes that used to be made
manually or in person. An example is food delivery, stores, etc. The use of smartphones
and other mobile devices is also growing significantly. More people opt only to have a
smartphone instead of having a computer. The higher use of mobile devices and the auto-
mated process results in the growth of mobile apps and the use of mobile apps development

tools to create those apps.

One of those tools is React Native (2021b), an open-source framework for mobile
development that builds iOS and Android apps. React Native was created in 2015 by

Facebook. It is a highly used framework with an extensive community.

Developers communities commonly use forums to communicate, interact and help
each other in solving issues. Stack Overflow (2021b) is a questions and answers website
that is highly used in those developers’ communities, especially in solving problems that
come with technology. React Native community also makes use of Stack Overflow, having

over 107.468 questions under the react-native tag.

This study proposes the analysis of the React Native questions on Stack Overflow
to identify the issues and difficulties of using this framework. The analysis of the main
topics under the React Native community will help understand this community better
and visualize what aspects the framework needs to evolve to attend to its users. This
work is based on an open-source repository and aims to structure the original repository

to allow other people to create similar studies using this method.

1.1 Objectives

This study aims to evolve the Scoccia, Migliarini e Autili (2021) project to analyze
the React Native community and identify developers’ main challenges when using this

framework. The following goals must be accomplished to achieve the study’s initial goal.

Fetch the questions under the react-native tag on Stack Overflow

« Evolve the Scoccia, Migliarini e Autili (2021) scripts to use other datasets

Divide the question into topics with the scripts

o Analyze the results

18 Chapter 1. Introduction

1.2 Work Structure

This work presents itself with a background chapter, which explains the context
of meaningful topics addressed in the study and related works. A proposal chapter that
defines the study’s proposal, research questions, methodology, and technologies used. A
results chapter shows the dataset first analysis, experiments made to understand the
project scripts, and the processes to evolve the project repository. And finally, a chapter

for the study’s conclusion.

19

2 Background

2.1 Mobile App Development

Mobile app development is growing with the rise of technologies and mobile de-
vices. Unlike web apps where the software providers are responsible for selecting the
machine where the service will run, an app on a mobile phone has limited resources, such
as storage memory, RAM, and battery, and the users are responsible for the device se-
lection. The software may run on an incredible amount of different phones, dealing with
different types of resources. Despite having similar features to the web app, it can access

many more functionalities, such as GPS, camera, Bluetooth, etc.

Besides the resources, a mobile phone also may have different types of operating
systems. Nowadays, as shown in Figure 1, there are two leading OS, iOS and Android,
each one of them with different official development approaches and tools. An Android
app uses Android Studio to develop and build apps written on Java or Kotlin. Therefore

an iOS app has XCode as a developing tool and is written in Objective-C or Swift.

Mobile Operating System Market Share Worldwide
Sept 2020 - Aug 2021

Android 72,45%

i0S

Other | 0,72%

0 0,2 0,4 0,6 0,8

Figure 1 — Mobile OS Chart (StatCounter, 2021)

20 Chapter 2. Background

Through time, many mobile app development frameworks emerged to help the
developer accelerate the development cycle. Besides the official development supported
by each OS company, there are many ways to develop a mobile app. Nunkesser (2018)
suggests the division of three different main types of development: Pandemic, Endemic and
Ecdemic, as depicted in Figure 2. An Endemic App is made in a traditional development
supported by the OS vendors. A Pandemic App is an app made using tools supported by
most mobile OSs, for example, a web app made with HTML and CSS or a C/C++ game.
As for an Ecdemic App uses cross-platform frameworks with a not endemic language,

such as Xamarin.

Ecdemic

Endemic Endemic

Pandemic

C/C++
HTML/CSS/JS

Java
Kotlin

Objective-C
Swift

Ruby

Lua ActionScript

Figure 2 — Mobile Development (NUNKESSER, 2018)

As for a more traditional taxonomy, Smutny (2012) defines Native and Hybrid
Apps. A Native App is an app developed in the device’s native runtime environment,
which has access to all the device’s facilities. It is, however, tied to the device’s operating
system, as for apps built in Java or Kotlin for Android and Objective C or Swift for iOS.
Hybrid Apps, otherwise, rely on frameworks that ensure cross-platform compatibility and

provide access to the device’s facilities.

2.2. Hybrid Solutions 21

2.2 Hybrid Solutions

Hybrid Apps, such as Native Apps, are installed on the device and have access to
the device’s facilities only in a more limited way. Unlike the native approach, this approach
allows web app development tools to target multiple mobile platforms (MEIRELLES et
al., 2019).

Frameworks for Hybrid Apps uses a combination of web app-development tools,
such as HTML, CSS, and JavaScript, and wrappers that contain a cross-platform API that
bridges all the requests from the web-based code to the corresponding Platform’s API.
These frameworks also contain a native wrapper that allows the apps to be distributed
on multiple app stores. This type of development solves the portability problem of the
native apps. By enabling the development of only one code source that generates an app
distributed on multiple platforms, with minimal changes. (MALAVOLTA et al., 2015)

2.3 Differences Between Native and Hybrid Development

Native and Hybrid development are two approaches that must be evaluated before
starting a mobile app project. The difference between Native and Hybrid is a layer that
translates the request to the platform’s API on the hybrid development, which is evident
when looking at Figures 3 and 4.

2.3.1 Native Development

Application
Source Code

L SDK Tools
Distributable

Package

L App Store

Figure 3 — Native Mobile App (TUN, 2014)

22 Chapter 2. Background

Native development has direct access to SDK Tools, which gives higher perfor-
mance and direct access to the device’s facilities and integrations. It also has the advan-
tage of being up to date with the device’s technology since the same company maintains
it. However, it only works for one type of operating system, limiting its number of users.
To deal with this problem it is necessary to build another app for another OS, increasing
cost and development time. (TUN, 2014)

2.3.2 Hybrid Development

Application
Source Code

Hybrid

Framewaork

L SDK Tools
Distributable

Package

L App Store

Figure 4 — Hybrid Mobile App (TUN, 2014)

Hybrid development reaches more users since it targets more than one OS, making
it a cheaper and faster alternative. Nevertheless, its additional layer provides less support
to the device’s integrations and impacts its performance since it is one more layer to
process (TUN, 2014).

2.4 React Native

React Native (2021b) is a JavaScript framework for hybrid mobile solutions created
by Facebook in 2015. React Native is one of the most popular frameworks for hybrid mobile
app development. In 2018 it had the second-highest number of contributors for any GitHub
repository according to Octoverse (2019). Currently, 27.509 public repositories match the
React Native topic on GitHub (2021), and the React Native package on npm (2021) has
486.189 weekly downloads.

2.5. Stack Overflow 23

React Native uses the React JS framework and native iOS and Android compo-
nents. Using this framework, the developer writes one code in JavaScript and builds the
app on Android and iOS. As the React Native (2021a) documentation explains, the frame-
work is built on top of native components. Therefore, it renders as the operating system
design. In a native Android app, a view is developed in Java or Kotlin. As in 108, it is
developed in Swift or Objective-C. In React Native, these views are created at runtime
for their corresponding system. React Native also allows the developer to build native
components for Android or iOS and use them on the app when the hybrid JavaScript

code does not meet the app’s needs.

This framework is popular in the mobile development community for multiple rea-
sons: using JavaScript, one of the most used programming languages; Facebook’s constant
support and improvement on the framework; high performance; being a free, open-source
framework with an active community supported by Facebook; building the app on iOS
and Android, making the development cheaper; possibility to combine Hybrid develop-
ment with Native components; (ZOHUD; ZEIN, 2021)

2.5 Stack Overflow

Stack Overflow is a questions and answers website that focuses on developers’ tech-
nical difficulties. When Stack Overflow user encounters a problem they do not know how
to solve alone, they publish a question. Other Stack Overflow users, seeing the question
with a problem they know how to solve, answer it and help the other. The answered ques-
tions are kept open for anyone with the same difficulty to see and solve their problems

faster.

Stack Overflow (2021b) is one of the 50 most popular websites globally, receiving
over 100 million visitors per month, and has more than 21 million questions registered.
This website is also highly used for react-native developers, having 107.468 questions
under the react-native topic, making Stack Overflow an excellent database for storing

most of the difficulties of using this technology.

2.6 The Developer’s Profile

Stack Overflow periodically researches the developer persona, which is their web-
site’s primary user and the authors of the questions posted. Analyzing the 2021 survey
(Stack Overflow, 2021a), we can conclude that most developers are from the United States
of America (18,33%). Also that 32,52% are between 25 to 34 years old, and 91,67% are

men. On a race and ethnicity aspect, 58,42% are white or European descendants.

When looking at their experience, we see that 59,53% learned to code from online

24 Chapter 2. Background

resources. Most developers have 5 to 9 years of experience (29,91%), while developers
with less than five years represent only 19,62%. As for education, most have a bachelor’s

degree (42,37%).

When analyzing the type of developer, we see that mobile developers represent
14,74% (the 5th position). Seeing the React Native statistics, we see that JavaScript (the
framework’s primary language) is the most popular programming language, with 64,96%.
React JS (the framework on which React Native is based) is the most used web framework
with 40,14%. React Native is the 6th non-web framework most used, with 14,51%. On
the loved or dreaded analysis, 58,08% love React Native.

2.7 Open source software

Open source is a initiative that comes from the Free Software concept. Free software
is a software developed under a license that guarantees users the rights to run, copy,
distribute, study and change the software (GNU, 2022). The "free" term is considered as
freedom, not as free of price (DIBONA; OCKMAN, 1999). Free Software characterizes
itself by the four essential freedoms as described in DiBona e Ockman (1999):

The freedom to run the program;

The freedom to change the program by accessing the source code;
o The freedom to copy and distribute the program;

The freedom to redistribute modified copies;

Developing open source software has been adopted globally and proved a valuable
approach. This type of development can be a catalyst for better practices of development.
It also creates software communities and is an excellent way to disseminate software
innovations and research. (FUGGETTA, 2003)

2.8 Topic Modeling and The Mallet Toolkit

Mallet (Machine Learning for Language Toolkit) is a Java package for natural
language processing. For document classification, clusterization, topic modeling, or other
machine learning application on text. (MCCALLUM, 2002)

The Mallet tool applies the Latent Dirichlet Allocation (LDA) algorithm, a popular
topic modeling algorithm created by Blei, Ng e Edu (2003). Topic modeling tools such
as the LDA algorithm look for patterns in the use of words, attempting to identify the

document’s semantics. Topic models extract topics from a particular text by assuming

2.9. Related Works 25

each word in a text is from a particular topic, making it possible to decompose a text and
identify the topics that compose it. (GRAHAM; WEINGART; MILLIGAN, 2012)

Some words harm the topic modeling assumption that every word is from a specific
context. The tool categorizes topics based on words, and some words may often be enough
for the tool to categorize it as a topic without having the context to make a topic,
misleading the algorithm. Those misleading words are referred to as stopwords, which are

removed from the dataset during a pre-processing step. Some examples of stopwords are

"each", "about", "such", "the" and "and". (SARICA; LUO, 2021)

The Mallet tool is applied in many kinds of research related to identifying doc-
ument contexts. For example, Novel Approach to Cluster Patient-Generated Data Into
Actionable Topics: Case Study of a Web-Based Breast Cancer Forum (JONES et al.,
2018) researches a breast cancer forum using the mallet algorithm. Another example is
Systematic Mapping Study on Software Engineering for Sustainability (SE4S) (PENZEN-
STADLER et al., 2014) which uses Mallet to study the topics being discussed under the

Software Engineering for Sustainability context.

2.9 Related Works

Similar to the purpose of this paper, Challenges in Developing Desktop Web Apps:
a Study of Stack Overflow and GitHub (SCOCCIA; MIGLIARINT; AUTILI, 2021) works is
a study that researches topics under web apps development. This research used the Mallet
tool to filter StackOverflow and GitHub Issues topics. They searched for questions over
NW.js and Electron frameworks to find relevant topics on developing these frameworks

and evaluate which ones are more difficult for the developers.

Challenges in Chatbot Development: A Study of Stack Overflow Posts (ABDEL-
LATIF et al., 2020) studies topics under chatbot development. This work inspired the
Scoccia, Migliarini e Autili (2021) research and also uses the LDA algorithm with Mallet
to find StackOverflow topics, which in this case are for chatbot development. This study
researches the difficulties of chatbot developers by analyzing what those developers ask

questions and which ones are most difficult to answer.

27

3 Proposal

This work is based on the methodology presented in Scoccia, Migliarini e Autili
(2021). They study the Stack Overflow and GitHub data searching to identify the difficul-
ties of developing a desktop web app. This work will use the same data collection process
and analysis of Stack Overflow questions under the React Native context, adapting their

repository to be used in different contexts.

3.1 Research Questions

This study aims to analyze the React Native community, map the main difficulties
in developing React Native apps, and understand the developer using this framework.
This work will allow the community to accurately attack the framework’s problems by
acknowledging the user’s pain (the React Native Developer). This research is done by
using the Scoccia, Migliarini e Autili (2021) methodology and adapting their repository
to receive and run different types of research, creating a software community around it.

This study aims to answer the following research questions.
RQ. 1 What are the topics on React Native development developers ask questions?

RQ. 2 How to evolve the Scoccia, Migliarini e Autili (2021) project to analyze

different stack overflow datasets?

Using the LDA algorithm, this study will collect the Stack Overflow questions and
cluster them into more specific topics under the react-native context. The list of topics

gathered from this process will answer RQ. 1.

This study will involve a contribution to Scoccia, Migliarini e Autili (2021) project
where the project will be structured to receive different inputs to be used in different
researches. RQ. 2.

3.2 Methodology

The diagram in Figure 5 was made to illustrate the methodology used and how
the steps are used to answer the Research Questions, showing all the steps to be followed

in this study.

1

28 Chapter 3. Proposal

RO1!
'
meﬁﬂﬁ%gﬂuer ;?;s?; 0'??;33' LDA topic modeling Categorize and label List of React Native
the react-native tag dataset using Mallet topics topics
RQ2!
'
Understand the Adapt the code to Creata a
pojects code different inputs componentized Create notebooks Add documentation
architecture

Figure 5 — Methodology Diagram

3.3 Data collection

The first step is to collect technical discussions about React Native. For this pur-
pose, the Stack Overflow website is an excellent target since it stores many discussions on
this topic. The Stack Exchange Data Explorer (2021) will be used to collect the data. It

allows us to compose a SQL Query to search the Stack Overflow database.

The following queries will be used to search questions with the react-native tag.

The Stack Exchange Data has a limit of 50.000 rows. Therefore, it will not contain all the
Stack Overflow questions on the react-native topic. The script will need to run several
times to collect the complete list of discussions around React Native. The script orders
its result by Id. The Id is compared on the second and third run, so the following query
continuous the one before.
SELECT *

FROM Posts as Questions

WHERE

Questions.PostTypeld = 1

AND Questions.Tags LIKE ’Y<react-native>)’
ORDER BY Questions.Id DESC

Listing 1 — First query to retrieve Stack Overflow data

On the query below, the Id comparison number will be changed to equal the last

Id number in the query’s result table before.

SELECT x*
FROM Posts as Questions
WHERE
Questions.PostTypeld = 1
AND Questions.Id < 40603514

3.4. Data processing 29

6 AND Questions.Tags LIKE ’Y<react-native>),’
7 ORDER BY Questions.Id DESC

Listing 2 — Following query to retrieve the remaining data

The queries return a table that is possible to download in a CSV format. The
tables will be merged into one dataset. The result table will contain all the questions
stored data, which have the attributes depicted in Table 1.

Questions’ attributes |

Id

PostTypeld
AcceptedAnswerld
ParentId
CreationDate
DeletionDate

Score

ViewCount

Body

OwnerUserld
OwnerDisplayName
LastEditorUserld
LastEditorDisplayName
LastEditDate
LastActivityDate
Title

Tags

AnswerCount
CommentCount
FavoriteCount
ClosedDate
CommunityOwnedDate
ContentLicense

Table 1 — Data returned from the query in Stack Exchange.

As the database contains many questions, after the topics are divided, this analysis

will use the first five questions of each topic to identify its context.

3.4 Data processing

This step aims to analyze the initial dataset and group discussions into specific
contexts to understand the main topics addressed. Python (2021) and Jupyter (2021)
Notebooks will be used to make a preliminary analysis and evaluate if the data can be
used as expected. The notebook will use the initial dataset to collect metrics to validate

the dataset’s quality.

30 Chapter 3. Proposal

An automated algorithm will cluster the discussions into related topics, and quality
analysis will validate the topics created. The Latent Dirichlet Allocation (LDA) (BLEI,
NG; EDU, 2003) algorithm analyzes a document and identifies which group of pre-
designated topics compose it. This algorithm assumes that documents under the same
topics use a similar group of words, that every document contains many topics, and that
every topic is composed of a distribution of words. The LDA algorithm can also work

backward and identify a number of topics, given a set of documents.

With the initial dataset, the Mallet tool (MCCALLUM, 2002) will be used. It is
a software that uses the LDA algorithm and separates the content into related topics,
making it possible to cluster the questions on the dataset on a higher level of abstraction.
The algorithm needs an entry parameter K that will be the number of generated topics.
K will be set by experimenting with a range of numbers to choose from, evaluating if the
generated topics make sense. This process will be rerun after the best range is specified,

incrementing on each turn until finding the best outcome.

This process will adapt Scoccia, Migliarini e Autili (2021), which is available as an

open-source project on https://github.com/gianlucascoccia/MSR2021Replication.

3.5 Data Analysis

This step analyzes the generated clusters to extract each group’s typical charac-
teristics to name, understand, and qualify the topic. It also aims to map the most relevant

topics and answer the research questions.

After the automated division of clusters, it is necessary to understand what makes
each cluster a topic identified by the LDA algorithm. Each cluster will be analyzed by

reading the set of posts and summarizing what they have in common.

3.6 Evolve the repository

This study will use Scoccia, Migliarini e Autili (2021) work repository to follow
their methodology and steps to separate the dataset into different topics with the Mallet
tool (MCCALLUM, 2002). Their repository consists of helper codes to structure the
Mallet outputs and clean the inputs from their original dataset. This study will evolve
their work to be used in different contexts. The code must be able to receive inputs
other than the original dataset used in Scoccia, Migliarini e Autili (2021) work. This

contribution process will follow the steps bellow:
1. Understand the code

The first step to using and contributing to the repository is to understand the

3.7. Technologies 31

code and how to run it. Get the original dataset and run the scripts, analyzing what each

script does.
2. Adapt the code to different inputs

In this step, it is necessary to remove the hardcoded paths to the original dataset

and adapt the code to receive different datasets and process them.
3. Create a componentized architecture

Componentize the code into modules, so the functions can be called more straight-

forwardly, in which the users do not need to know all the processes made.
4. Create notebooks

The original code does not have much documentation on how to run the scripts or
what order they should be run. Part of the contribution is to create a Jupyter Notebook
in which all steps will be explained and ready to be executed in the correct order to run
the Mallet tool correctly and fetch the results.

5. Documentation

Add documents necessary for good open-source software practices.

3.7 Technologies

In this section we describe the set of tools, technologies adopted to develop the

research.

3.7.1 Git

Git (2021) is an open-source system for version control created by Linus Torvalds
to help developers track code versions and control changes made, being able to undo them.

All code developed in this study will be stored on a Git repository.

3.7.2 Stack Exchange

Stack Exchange (2021) is a network with over 173 Q&A communities, including
Stack Overflow. Stack Exchange also provides a Data Explorer where it allows query
searches on the communities database. In this study, this tool will be used to search

react-native questions on Stack Overflow.

3.7.3 SQL

SQL (Structured Query Language) is a language used to search and manipulate
databases. The Stack Exchange Data Explorer uses SQL to formulate queries. A SQL

32 Chapter 3. Proposal

script will be used to make the query to search Stack Overflow questions on the react-

native topic.

3.7.4 Mallet

Mallet (MCCALLUM, 2002) is a tool to process natural language and cluster doc-
uments into specific topics. It uses the LDA algorithm to make the topic modeling, which

will be used in this study to identify more specific topics in the react-native discussions.

3.7.5 Python

Python (2021) is an open-source programming language with an active community
and multiple libraries. Python will be used in the study to manipulate the collected data

and gather metrics.

3.7.6 Jupyter

Jupyter (2021) notebook is an open-software web application to make documents
with live Python code cells. The notebook is used to make the preliminary analysis of the

dataset and in the contribution to simplify the use of the scripts.

1
2
3
1

33

4 Results

4.1 Exploratory phase

The initial dataset was built using the Stack Exchange Data Explorer and the
queries described in the methodology’s data collection step. The questions’ Ids ordered
the queries. The first query returned a table with 50.000 rows, of which the last row had
the Id equal to 58759902. The second query searched for questions with the Id under
58759902. It returned 50.000 rows, and the last row had the Id equal to 40603514. The
third and last query searched for questions with an Id less than 40603514. The result was
a table with 7.468 rows.

The three queries results were downloaded as a CSV files. The three files were
merged to build one dataset with all Stack Overflow questions under the react-native tag,
which is the dataset for this study. The generated table has 107.468 rows and the expected

columns for the questions’ attributes.

The initial analysis was made using Python and Jupyter notebook, with the help of
Pandas (2021), Word Cloud (MUELLER, 2020) and D-Tale (Man Group, 2021) libraries
to explore the table and get metrics from the dataset. All the work made is stored in a

GitHub repository on https://github.com/gabibguedes/TCC_ preliminary results.

4.1.1 Word Clouds

Using the Word Clouds library, the dataset generated word clouds for the ques-
tions’ Title, Body, and Tags to make an initial verification if there are different subjects
to be identified and clustered. An array of words was built to filter the words shown on
the clouds to make them more straightforward. The words placed on the array were con-
junctions and other common words that would have too much impact on the word cloud
but were not relevant for the analysis. The questions’ Body is built with HTML and has
a lot of standard tags. Those tags were added to the filter array to clear the body’s word

cloud.

The function below was used to build those word clouds by manipulating the Pan-
das’ table to join the attributes from the column to be analyzed and remove unnecessary
words.
def make_wordcloud(column_name) :

column = df.dropna(subset=[column_name], axis=0) [column_name]

all_inputs = ’ ’.join(s for s in column)

ot

© o g O

10
11
12
13
14

16
17
18

34 Chapter 4. Results

stopwords=[’and’, ’to’, ’how’, ’is’, ’in’, ’on’, ’with’,
’p’, ’i’, ’href’, ’gt’, ’1t’, ’quot’, ’pre’,
’code’, ’nofollow’, ’noreferrer’, ’style’, ’png’
’rel’, ’com’, ’http’, ’amp’, ’imgur’, ’blockquote’,
’this’, ’github’, ’https’, ’www’, ’alt’, ’1i’, ’a’,
’of’, ’the’, ’from’, ’here’

]

wordcloud = WordCloud(stopwords=stopwords,
background_color=’white’,
width=1600, height=800) .generate(all_inputs)

wordcloud.to_file(’../images/questions_{}_wordcloud.png’

.format (column_name.lower ()))

Listing 3 — Function to create word clouds

On the Title’s (Figure 6) and the Tags’ (Figure 7) word clouds, words of different
topics are evident. A few examples found are: Navigation; Components; Flatlist; Android,

10S; Expo; TypeScript; JavaScript; Firebase; Reduz; Database; etc.

object evaluatingNatiye Expo 'v;native firebase functionme
change

native module e
. dan _arra)
Flrestlé'r’el Clist setState Y pda t e key o cerver pass

© store project = icon
bljlt‘th\ﬁé[y class button new app header®, ® L not showing

b map
lssueO aren = displa
implement C I {e a C t s N a -Elghl V <creen

pusqlornotlflcatlon Javascrlpt Could not dynamically Unable

handle

an objectset "¢ inside,JUS€ " content
texth';]ve ' ?after ReactNative 1tem natlve webv1ewExpo access

doesn't work
: files yaluexs Android” undefined xcode §
natlve appE user Native FlatList ””1"9 ’F’F’lmfmﬂ background

t
o b Taa 00 T2, COMPONeNTt it (0], /5ot

ti
hen open “cCannot read et
work pase scrollfor¥§U native 1mage my S
cukeyboar view: __'Om ge child £ Invariant Violation when u51ng

1
native Fetch it onFress without string error

error React
different

type yhy

EE
proble

o state.

Q)
(_'_

?"SIOH

iy

7} retgrn L.y run android
not foundnative run™x 1F75 disable add Webview, 5o React

mert reaCt n av 1gat 10N make-wiiedo I nce
wiew Native Android v duindow AP T oy rende reomect

r Androld What Liseyiah TextInput
ive navigationcregte 5 etUS1NG react ;¢ custon

application Natlve REduX instead

ther

S

n
=
[

0

> fixreduxve
FlatList

S
Y]
et

0

<
%)
o
g

Figure 6 — Questions’ Title Word Cloud

4.1. FExploratory phase 35

javascript arrays navigation stack expo android native routerflatiicy mdroid natl_/e We_zbv1ew
4 native jsX navigator react los android fTa{.i._.retln]age ot
‘ atlist javascrip
npm expo
react navigation novigation react)s
Css react £ amazon web firebase authentication
Css reactjs g fl rebase Fea C‘t andrmd firebase He map; (]Loufl Tll F‘thI e json react .
jsx react navigation drawer stview reac 8 android Gnilator android studio =]
native socket native hstv1ew animation react ucg
react reduxnative fetch android reactjs D
native testing services react i ti 1 =3
redux avascrl t flrebase cloud :]
navigation react Jd SCript - 2atifase 8008 Conjective c ik
i i google cloud ‘t flatlist react o
native flatllSt google maps Js reaCt J ava S C r l p L [-eta C natllve visual 5
Sxtinput reac 5
native react S native flexbox socket io andr ;ﬂla\tlve\fvgé expo Javas‘:”pftlexbox react
© native gradle name amazon wnit testigreact hook S 5 native ecmascript
3 dux saga 5 F] swift react
— maps]avascrlpt ° 56 O a . . Ceate react
£ maps react g %‘5 ° % Jjava androld create rea
2 ¢ reac § w8 3 5 ios reactjsJavascript css
¥ gradie " & g A I native base
grealtime database u]avascrlpt typescript H 0t reactjs typescript aws amplify ®
native jestjs 52 2
2 J and;old exnan a Ve a n g3 firestore react I
Z node _]S ative babeljssltyled Components t et(h blob =2 ”:;levep‘i"‘t]:te native ’tfl rebase (@) E’_ gg
u r 4+
H naati\fe S(‘lroll\/lew nat Do typescrlprn a lve J ava S C r lp Feact animated SXPC reac anaalve v1deom f:i Il
@ xcode react macos react api react . arrays react o=k o
native P“S’z native bluetooth native express native animation fetth api scrollview rr]e?cg lve regux JOR: :% ©
Tarrays reactjs reactjs firebase ios javascript L -oC =
stack nav1gatornat lve lo) d r O l d r e a C t native web ~ES
native npm

navigation bottom

native facebook
na‘tlve ex[:)olmage react typebscrlptflreaCEreddtlj‘);wré?dllpe(act JS reaCtJSandrold androidressas 1ng react
native realm web servicesflux reac native paper native asyncstorage o
native cocoapods native node google play nav1gat10n v5

database react oo oYp react -—)
Javascript android | usn notificationine s redux react android ios’EniEs

sqlite react

Figure 7 — Questions’ Tags Word Cloud

The Body’s word cloud in Figure 8 is not as straightforward as the others. As for
the type of input, which uses more words and some code snippets to explain the problem.
There are a lot of common words that cannot be placed in one specific context, as Console
log; Return; Have; Text; Fxport; Default; etc. However, there can still be identified words
to specific contexts as: TouchableOpacity; StyleSheet; Navigation; setState; node__modules;

ete.

am us 1ng r ea C tknn "ame p clcaosmspf’lnaen”gt ‘C,[,)&?rguacnsors ‘tmget e ent er lmage
p Lglsipg(reait facebook react T'm trylng sdvance (5% instend alignltems center’ +

cu
i ‘t r fal d e UttO there NOW ro v U
> Flatlist . S O n but wh]e_nem a se ata do ug C page > p 1m;?0rt ‘1‘ew

ryin 1” rJ. ontent cente
'|—| get PXP T T const :S %ﬁm a:]orfttmélfz exarf
does not Cﬁ?c?att:tyles 5 ata console(lass App
43P an error have fridd ot sure index 3 width height
e X O r' t e t l) Cou d not ~
rc eact? Onent undefined

ackage json =

e €9 Ct NAVL g a t 1on @ 1a ang js U_Tﬂygrelc;uld N needrhank L W

E‘- SetStatenathe 1mport onPr‘ess let L value number Link g na pp q)
ol

following erro

-l—,:' < inside o ﬂauve commumty
U i 9)
rG; z same or el following g% E_ string :m
¢ S &
w‘ % what ':‘E below 'E-E‘if you It o add However ﬁ_‘
. - i . . which 3 androld name " Stack Navigator props super g
v & .
Limage deSC tlon const S axtends Componenty source reavire ®)
o StyleSheet android app [7,) 2 Com onent render EE
JSON strlnglfy Fende r e, em " = P eso
Wa O e o] % would like create container native project
my appretum rate C 35 rende o Feturnmes me)2
Please help . div class Any help ind npm ERR

stion,

idea

Y

build gra[

5o 1 container flex . Style —D

56 Wﬁ}lyb]ées ConfEEC]EEjEr t St;llglssstg)}esmm lgal‘tlctl'l elJ"'rEr : l mg S r Ch ge e X t Jr; :
i %4}

sa=Stack “import React ™ I 2 0.E

s . A) h super prop don*t know
o ihiieprettyprint override 4 props nav1gat10nI”‘i;;;gh?;‘lgg,w ennavigation navigate

An,

Figure 8 — Questions’ Body Word Cloud

36 Chapter 4. Results

4.1.2 Data analysis over time

The D-Tale library was used to generate graphs of the questions’ attributes’ values
over time. Using the CreationDate value, modified only to contain the day information,
removing the hours’ data. The result value placed the questions on a timeframe of their

creation day.

The first generated graph is the number of created questions over time (Figure
9), in which we can see the number of questions under the react-native tag grew as the

framework became more used and popular.

Count of __index__ by CreationDate

120

100

80

index

60

40

Count of

20

2016 2017 2018 2019 2020 2021

CreationDate

Figure 9 — Amount of questions by time

The questions’ attributes show different graphs. A clear example of how time
influences the questions’ attributes is the Comments (Figure 10) and Answers (Figure 11)
count. It mostly followed the technology’s growth. However, a question still needs time to
collect a considerable amount of comments and answers. That is why the number of most

recent comments and answers fall.

4.1. FExploratory phase 37

Sum of CommentCount by CreationDate

Sum of CommentCount

2016 2017 2018 2019 2020 2021

CreationDate

Figure 10 — Amount of comments by time

Sum of AnswerCount by CreationDate

Sum of AnswerCount

2016 2017 2018 2019 2020 2021

CreationDate

Figure 11 — Amount of answers by time

The Score (Figure 12), Favorite (Figure 13) and View (Figure 14) graphs are
influenced by time. The older the post, the more interactions it can accumulate, however,
it still seems to have an average value that dictates over time, and only a few posts seem

overly popular.

38

Chapter 4. Results

Sum of Score

Sum of FavoriteCount

Sum of Score by CreationDate

1200

1000

800

2016 2017 2018 2019 2020 2021

CreationDate

Figure 12 — Amount of score by time

Sum of FavoriteCount by CreationDate

200

2016 2017 2018 2019 2020 2021

CreationDate

Figure 13 — Amount of favorite by time

4.1. FExploratory phase 39

Sum of ViewCount by CreationDate

600000
500000

400000

300000

Sum of ViewCount

200000

100000

0
2016 2017 2018 2019 2020 2021

CreationDate

Figure 14 — Amount of views by time

4.1.3 Value analysis

D-Tale library was also used to analyze the values of those attributes. As can be
seen on the tables below, the Answer Count(Figure 15), the Comment Count (Figure
16), and Score (Figure 17) usually value smaller than 10. The Favorite Count (Figure 18)
reaches values a little higher but still mostly smaller than 20. The attribute that uses more

significant values is the View Count (Figure 19) that reaches hundreds of visualizations.

40

Chapter 4. Results

AnswerCount s

{Use 1 | buttons to switch columns)

| Describe | Histogram Q-Q Plot |

(Use + — buttons to switch charts)

To (Ordinal |
(Pleast ed) | 5”“| (Choose Col/Age) | Select... M | | Sum

60.000

50.000
40.000
30.000
20.000
10.000 I
. B.__
1 0 2 .3

4 5 6 7 8 9 11 10 13 12 14 15 16 19

Figure 15 — Value of Answer Count

CommentCount s

{Use t | buttons to switch columns)

| Describe | Histogram Q-Q Plot |

(Use — — buttons to switch charts)

22 25 34 27T 26 3

Top | Ordinal |
(Plesseredt) | 500| (Chaose ColfAgq) | Select... e | | Sum

60.000

50.000

40.000

30.000

20.000

10.000

]

9
T

Figure 16 — Value of Comment Count

0 1 2 3 4 5 [7 a

<» Code Export

29 30 32 33 36 45 47 48 61

<> Code Export

23 24 25 26 M

.1. FEaxploratory phase 41
4 P Y p

Score s

(Use 1 | buttons to switch columns)

(o o [R5 7 o Gose Expn

{Use + — buttons to switch charts)

Toj (Ordinal | (
(Ploase edit) | 42 | (Chuose Coljagg) | Select.. '| | Sum M

60.000

50.000
40.000
30.000
20.000
10.000
0 I I A
o 1 2 .3 4 -1 5 6

7 -2 8 9 1011 -3 12 13 14 15 16 18 17 20 19 21 22 -5 24 -4 26 25 28 23 27 29 30 31 32 34 33 36 -6

Figure 17 — Value of Score

FavoriteCount goatss)

{Use 1 | buttons to switch columns)

[Describe | Histogram Q-Q Plat | <> Code Export
(Use — — buttons to switch charts)

To [Cate Breakdown | 1
{Plaasepadul} | ‘ tfi’h:ge Col/hgg) Answe... X ¥ ‘ | Sum -

10.000 8.000
9.000 7000
8.000

6.000
7.000
6.000 5.000

5.000 4,000
4,000 5000
3.000

2,000

2.000

1000 1.000
1] 0

01 2 3 4 5 & 7 B 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 26 27 28 29 30 31 32 33 34 36 38 45 46 47 48 49 &1

Figure 18 — Value of Favorite Count

42 Chapter 4. Results

-
ViewCount s
{Use t | buttons to switch columns)
Describe | Histogram Q-Q Plot <» Code Export
(Use «+ — buttens to switch charts)
Top Ordinal
(Pleasa ect) | 500 | (Choose Coyage) | Select.. - Sum -

700

600

0
4
3
200
0
ra\fl?

4.1.4 Preliminary Discussion

=}

en
=}

=
=]

=
=]

=

=
g

~

T - ~
G PP PN RN

& © o o & SR I SR O o 2
FFELLsLFEL R R G &P

Qg
L

Figure 19 — Value of View Count

Analyzing the generated graphs on this preliminary analysis is possible to see
different topics on the word clouds. It is possible to see discussions on different aspects
of React Native development. An example is the navigation topic that can be seen on
all word clouds. It is possible to assume that it is difficult for the developers to navigate
between the created pages. Another example that appears on Titles’ and the Tags’ word
clouds is Redux, a tool to help the React Native developer save states on the application
to be accessed and updated by the whole app. Its appearance on the word clouds means

that many developers have doubts about its use.

The fact that it is possible to see different aspects of React Native development
on the word clouds generated means that specific words are used on the questions that
categorize the discussion’s topics. The Mallet tool will use those words to separate the

questions into those topics seen in the word clouds.

On the value analysis, it is possible to see which values are used on each at-
tribute. Most of them use a number between 0 and 10. However, some attributes take
more significant values. An example is the view count that reaches more than a hundred

visualizations.

4.2. Understand the Scoccia, Migliarini e Autili (2021) project repository 43

4.2 Understand the Scoccia, Migliarini e Autili (2021) project repos-
itory

The Scoccia, Migliarini e Autili (2021) project repository was forked to run ex-
periments and make the contributions for this study. The forked repository is at the link
https://github.com/gabibguedes/MSR2021Replication/.

4.2.1 Apply mallet on the React Native dataset

This experiment was made to understand the project structure and get a first look
at how to adapt it to receive different inputs. This first experiment aims to get the first

division of topics of the react-native dataset.

4.2.1.1 Create similar file tree to run experiment

The Scoccia, Migliarini e Autili (2021) repository uses a folder structure to store
their dataset and save their output files to run the experiments. A new file tree was created
to start a new experiment with this project. This new file tree is similar to the original

one to store the dataset and the generated outputs.

tcc_data/
processed/
L SO_T_output_Mallet/
L topics/
raw/
|: so_questions.csv

so_questions.csv.zip
tcc_mallet/
extra_stopwords_so.txt
so_data/
so_results/
tcc_topics/

Figure 20 — Added file tree

The project’s dataset was added at tcc__data/raw/so__questions.csv. All scripts

used in the notebooks/ folder were adapted to fit this experiment’s file tree.

44 Chapter 4. Results

4.2.1.2 Clean the datasets data

The first step was to clean the dataset’s data using the clean__stackoverflow__data.py

script. Entering the notebooks/ folder and running the following command:
1 python3 clean_stackoverflow_data.py

Listing 4 — Runs script to clean the dataset

This script generated another dataset CSV file without HTML tags and stopwords

at tcc__data/processed/so__questions.csv.

4.2.1.3 Export dataset to Mallet

The Mallet tool needs the questions input to be separated into different documents.
The export__so__to__mallet.py script creates .txt files for all questions on the CSV
dataset.

For this experiment, the files were created using the questions title and body. The
script was run on the command line, inside the notebooks/ folder.
| python3 export_so_to_mallet.py

Listing 5 — Runs script to export dataset to Mallet

The files for each questions were stored at the tcc__mallet /so__data/ folder. The

file names are the question’s IDs.

4.2.1.4 Run Mallet

The following mallet commands were used with the questions separated into dif-
ferent files.
1 mallet/mallet-2.0.8/bin/mallet import-dir --input tcc_mallet/so_data/ --

output tcc_mallet/so.mallet --keep-sequence --remove-stopwords --

extra-stopwords tcc_mallet/extra_stopwords_so.txt

[\]

.-

mallet/mallet-2.0.8/bin/mallet train-topics --random-seed 100 --input
tcc_mallet/so.mallet --num-topics 15 --optimize-interval 20 --output-
state tcc_mallet/so-topic-state.gz --output-topic-keys tcc_mallet/
so_keys.txt --output-doc-topics tcc_mallet/so_composition.txt --

diagnostics-file tcc_mallet/so_results/so_diagnostics.zxml

Listing 6 — Mallet commands

4.2.1.5 Understand the mallet output

To understand the mallet output the following script was used to create .csv tables

to separate the files in the topics using the output generated by the mallet tool.

4.2. Understand the Scoccia, Migliarini e Autili (2021) project repository 45

1 python3 parse_topics_composition.py

Listing 7 — Runs script to parse Mallet’s result

A script was created to place all the topic’s content into one file to compare and

understand the similarities and evaluate the generated topics.

I import pandas as pd
2

3 def df _to_file(row, topic):

4 file_name = str(int(row[’filename’]))

5

6 text_file = open("../tcc_mallet/so_data/{}.txt".format(file_name), "
"

7 content = text_file.pread()

8 text_file.close ()

9

10 path = ’../tcc_topics/’ + topic + ’.txt’

11

12 with open(path, ’a+’) as file:

13 file.write(content + ’\n\n’)

14

15 print (’Uniting documents...’)

17 for i in range(1,15):

18 topic = ’topic_{}’.format (i)

19 print (topic)

20 so = pd.read_csv(’../tcc_data/processed/S0_T_output_Mallet/topics/{}.
csv’.format (topic))

21 for index, row in so.iterrows ():

22 df _to_file(row, topic)

24 print (’Done!’)

Listing 8 — Created script to gather topic’s documents

The following command was used to run the created script.

| python3 unite_topics_in_one_file.py

Listing 9 — Runs the script to unite topic’s question in one file

This script’s result is demonstrated in the picture below (21). All questions under

one topic are placed into one file, creating N files for N topics generated.

46 Chapter 4. Results

(armg4) gabibs@Maui -» tcc_topics use_rn_dataset) x tree

topic_1.txt
topic_10.txt
topic_11.txt
topic_12.txt
topic_13.txt
topic_14.txt
topic_2Z2.txt
topic_3.txt
topic_4.txt
topic_5.txt
topic_6.txt
topic_7.txt
topic_8.txt
topic_9.txt

@ directories, 14 files

Figure 21 — Topic files generated

4216 Results

Running this experiment made the project more understandable. Reading the
script and comprehending its purpose and how this project operates was necessary. After
executing the project, it was possible to see different contexts in each topic file while
analyzing the result of the topic division. The pictures below (22, 23, 24, 25) show some
of the topics identified.

It is possible to identify some contexts in some document files. As in Figure 22,
the topic determined by the algorithm is ListViews, a react component. All questions seen
in this topic file are related to this subject. In 23, all questions are related to the Fetch
function, a JavaScript function to make API requests. In 24 the questions are about the

app’s navigation. And in 25 the questions are related to images and media.

4.2. Understand the Scoccia, Migliarini e Autili (2021) project repository 47

£ topic_1.txt U X
tcc_topics > = topic_1.txt

> listView Aa ab, ¥ 1de 2527 ™ML = x

list view header about react native
I want create React Native demo component : render : function () { (! this.state.loade

ListView removing wrong row on dataSource update
I React Native ListView seems removing wrong row UI I update state new section & amp ;

listview show header without data source in react native?
I click page data source server.It data show cell data show header.i debug project founc

React-Native Updating List View DataSource
I i0S app I making react-native . The Game class contains ListView component . I set st:

react-native: ListView, how to push new row from top
I trying understand I could manage make ListView recieve often new data push front . Wi

Under what circumstance would trigger °rowHasChanged® on ListView?
I create like : var data = [{ id : 1 , count : 1 } , { id : 2 , count : 1 }] ; vard -

X §Puse_rn_datasett* ® ®OAO0 @ # LiveShare Espagos: 2 UTF-8 LF Texto sem Formatagéo

Figure 22 — Topic 1

£ topic 9.txt U X
tcc_topics >

> fetch Aa ab, ¥ ?de 7361

React-Native fetch XML data
I 'm new React-Native . Trying make simple apps . Ca n't figure fetch XML data . With J¢

Requi g unknown module "crypto" in react-native environment
I 'm writing simple Twitter app using react-native . Using twit module get twitter feed ==

React Native Fetch Request Fails
I using react native Fetch API get JSON data request fails following error message .

How to get JSON data from fetch (react-native)
I 'm writing small app iPhone using react native . I 'm trying fetch JSON data website 1

Using an authorization header with Fetch in React Native
I 'm trying use React Native grab information Product Hunt API . I 've obtained proper /

Requiring 'fetch' is returning an empty object in a React-Native app
I 'm currently working second react-native application . Previously I simply required fe==

X §ouse_rn_datasetr ® ®OAO0 R # LiveShare Espagos: 2 UTF-8 LF Texto sem Formatagdo &' 0Q

Figure 23 — Topic 9

48 Chapter 4. Results

£ topic_11.txt U X
tcc_topics > = topic_11.txt
> Navigator Aa ab, ¥ 1de 19999+ ™y = X

How to add Right Button in NavigatorIOS in Tabs for React Native
I trying add right button Navigation Bar PUSH View . I want Tab Class . I using code fo

Getting access to this.props.navigator from inside NavigatorIOS.onRightButtonPress =
I 'm struggling 'onRightButtonPress ' event NavigatorIOS component . The handler n't see:

How can I change the text in TabBarIOS in React Native?
In react native documentation I find way change bottom word ? & 1t ; TabBarItemIOS name:

React Native Pass property on navigator pop
I 'm using NavigatorIOS react native app . I want pas property navigating back previous :

why I change the navigator prop execute twice handler?
View switch page this.props.navigator.push ({ component : QuestionDetail , passProps :

NavigatorIOS onRightButtonPress Access View Data
I view I want user able select multiple item . After selecting item I want click Done t¢

X PP use_rn_datasetr ® ®OAO0 @ # LiveShare Espagos: 2 UTF-8 LF Texto sem Formatagdo &7

Figure 24 — Topic 11

£ topic_14.txt X
tcc_topics > = topic_14.txt
> |imagel Aa @b, * | 1de 19090 NN

In React Native, what would be the preferred way to play audio streams?
The HTML audio player API best way I 've found Cordova , i.e . using plugins , emerging-

Use <Image> with a local file
The documentation say way reference static image use require . But I 'm sure react expec

How to upload file to server using react-native
I developing app need upload image server . Based image get response need render ? . Car—

Can't call function on react-native-video item
I 'm attempting display image call Video component onPress . The image display fine , I

React native image from Parse
I trying add image Parse React Native Project . Everything ok adding text : & 1t ; Text

React Native Retrieve Actual Image Sizes
I would like able know actual size network-loaded image passed work size (taken http :

X PP use_rn_datasetr ® ®OAO0 @ # LiveShare Espagos:2 UTF-8 LF Texto sem Formatagéo

Figure 25 — Topic 14

Some topics aren’t clear enough, meaning that the number of topics configured
needs to be calibrated, and there are still some words to be added to the stop words list,
as they are influencing the results and don’t mean much to this study. As can be seen,

the picture below (26) shows a common quote tag identifies a topic.

4.3. Ewvolve the Scoccia, Migliarini e Autili (2021) project repository 49

= topic 2.txt U X e () ees
tcc_topics > = topic_2.txt

I 've declared state : consi > " Aa ab, | 8956de 19999+ T | = X st

yncStorage.setItem (& quot ; announcementData & quot ; , JSON.stringify (result.data.Ai=

json devDependencies look like & quot ; devDependencies & quot ; :

nched app . My TextInput Component : & 1t ; TextInput blurOnSubmit= { false } placeholde

App.json look like & quot ; expo & quot ; : { & quot ; name & quot ; : & quot ; Unit &

quot ; ~5.9.3 & quot ; Any help would appreciated . I getting error .

1

X §Puse_rn_datasett* ® ®OAO0 @ # LiveShare Espagos: 2 UTF-8 LF Texto sem Formatagéo

Figure 26 — Topic 2

4.3 Evolve the Scoccia, Migliarini e Autili (2021) project repository

The same fork used in the previous section was used to evolve the Scoccia, Migliarini
e Autili (2021) repository project (https://github.com/gabibguedes/MSR2021Replication/).
A Pull Request was made for this contribution. The Pull Request can be accessed at
https://github.com /gianlucascoccia/MSR2021Replication /pull /2.

4.3.1 Custumize inputs and outputs
4.3.1.1 Refactor code to accept different inputs

The next step towards evolving the Scoccia, Migliarini e Autili (2021) code was
to adapt it to accept different dataset inputs. The original code contains a hardcoded
reference to the path where the dataset is located. The reference was removed to use only
an environment variable that the user can set manually. The command below saved the

dataset path as an environment variable.
1 export DATASET_PATH=./tcc/so_questions.csv

Listing 10 — Exports the dataset path

The clean__stackoverflow__data.py script was changed, using the environment
variable instead of the hardcoded path. The script followed the example below to access

the environment variable.

I import pandas as pd

w

wt

[\]

.

[\]

w

1

5

50 Chapter 4. Results

import os
DATASET_PATH = os.getenv (’DATASET_PATH’)
pd.read_csv (DATASET_PATH) # Example of how the dataset is accessed

Listing 11 — Access environment variable for dataset path

The number of topics was also hardcoded in some scripts, which were replaced to
use en environment variable. The Listing bellow shows how this variable was exported

using the command line.
export TOPICS_NUM=15

Listing 12 — Exports the number of topics

And the scripts were adapted to use this variable following the example.

import os

TOPICS_NUM = int(os.getenv(’TOPICS_NUM’))

Listing 13 — Access environment variable for number of topics

Besides path to the dataset and the number of topics, the scripts also contained
hardcoded paths to outputs files, and those were also changed to environment variables
making the project more customizable. The command below was used to export the output

file as an environment variable.
export OUTPUT_PATH=output/

Listing 14 — Exports the output path

The scripts were adapted to use the folder from the environment variable and call
a new function (Listing 15) to create the subfolders where each output will be placed. The

scripts were adapted to call this function to get the subfolder path and ensure it exists.

import os
OUTPUT_PATH = os.getenv (’0UTPUT_PATH’)

def get_output_folder (folder_name):
subfolder = os.path.join(OUTPUT_PATH, folder_name)

if not os.path.exists (subfolder):
os.makedirs (subfolder)
print (’Folder {} created!’.format (subfolder))

return subfolder

Listing 15 — Access environment variable for output path and create subfolder

4.3. Ewvolve the Scoccia, Migliarini e Autili (2021) project repository 51

On the Listing bellow there is an example of how this function is called in the

scripts.

I from output_folder import get_output_file, get_output_folder

)

3 OUT_FOLDER = get_output_folder(’so_data/’)

Listing 16 — Call to get_ output_ folder function to ensure the output path

After running the project scripts, the output folder contains all outputs generated,

as shown in Figure 27.

(arme4) gabibs@aui -» MSR2021Replication enable-other-datasets) x tree output --filelimit 10 -F
output/
processed/
SO_T_output_Mallet/
t:: so_topic_matrix.csv
topics/ [15 entries exceeds filelimit, not opening dir]
so_questions.csv
so-topic-state.gz
so.mallet
so_composition.txt
so_data/ [107468 entries exceeds filelimit, not opening dir]
so_diagnostics.xml
so_keys.txt
topics/ [15 entries exceeds filelimit, not opening dir]

5 directories, 7 files

Figure 27 — Output folder file tree

Considering the original file tree is to no longer be used, the files for the extra
stopwords, both for GitHub and Stack Overflow dataset, were moved to another folder

called extra_ stopwords/ on the repository root.

4.3.2 Refactor the scripts into modules

The Scoccia, Migliarini e Autili (2021) project scripts are not componentized, as it
was implemented for the whole file to be executed. This next step for evolving the project
was to refactor the scripts into modules so that other scripts could import them, making

the code behind it more abstract.

In this part of the contribution, the scripts were refactored to be componentized

into functions. The main function was also added, maintaining the script execution.

Two new scripts were created. One script is to call all the steps necessary to clean
the Stack Overflow dataset, named prepare_ dataset.py (Listing 17) and the other,

named manage__results.py, to interpret the results (Listing 18).

1
2
2

o

4

t

V]

ot

-3

52 Chapter 4. Results

from clean_stackoverflow_data import clean_so_data

from export_so_to_mallet import export_to_mallet

if __name__ == ’_ _main__"’:
print (’Cleaning dataset...’)
clean_so_data()
print (’Exporting documents to Mallet...’)
export_to_mallet ()

print (’Done!’)

Listing 17 — Script to clean Stack Overflow dataset

from parse_topics_composition import parse_topics

from unite_topics_in_one_file import unite_questions_documents_by_topic

if __name == ’_ main__’:

print (’Parsing topics...’)
parse_topics ()
print (’\nUniting questions by topic...’)

unite_questions_documents_by_topic ()

Listing 18 — Script to interpret the Mallet results

With those scripts, the new steps to execute the project are:

1. Export the dataset input, the output path and the number of topics as environment

variables
2. Run the script to clean the stack overflow dataset
3. Run the Mallet commands

4. Run the script to interpret the results

4.3.3 Create a notebook to run the steps

This project is complicated, and part of this study is to make it easier for other
developers to use and understand. The last contribution step was creating a Jupyter
Notebook with all steps and explanations to execute the project. Notebooks are a great
tool because they contain cells that support markdown to the explanations and have cells
that can execute python and bash codes to run the scripts, which will be necessary to run

the code with different inputs.

The notebook was made based on the created scripts (Listing 17 and 18), adding
instructions and explanations to what happens in each step. The user is instructed to
export the correct path for the dataset used and the notebook’s output folder at the

beginning. After configuring the environment variables, the notebook follows the scripts

4.3. Ewvolve the Scoccia, Migliarini e Autili (2021) project repository

53

to clean the dataset, run the mallet and run the scripts to parse the results. See the

pictures below (28, 29, 30 and 31).

" Jupyter SO_dataset_analysis uosaved

File Edit View Insert Cell Kernel Help

B+ x @& B 4 ¥ PRuin B C MW Code

Export variables

To customize the scripts to the correct dataset and output path, configure the environment
variables to use the path for your dataset and configure the output folder.

In [2]: # Export path to the raw dataset

%senv DATASET_PATH=./tcc/so_questions.csv

Export the output path
%senv OUTPUT_PATH=. /output

Export the number of topics division

%senv TOPICS_NUM=15

env: DATASET_PATH=./tcc/so_questions.csv

env: OUTPUT_PATH=./output
env: TOPICS_NUM=15

A

Logout

Trusted | & |Pyth0n3 [)

Figure 28 — Notebook exporting variables cell

: Ju pytel’ SO_dataset_anaIysis Last Checkpoint: an hour ago (unsaved changes)

File Edit View Insert Cell Kernel Help

B+ x &A@ B 42 v PRun B C » Code

Prepare dataset for Mallet

Trusted

A

'

Logout

Python3 O

The following scripts cleans the StackOverflow dataset and prepare the documents where the Mallet tool will execute the

algorithm to separate the topics.

In [3]: from clean_stackoverflow_data import clean_so_data
from export_so_to_mallet import export_to_mallet

print('Cleaning dataset...')
clean_so_data()

print('Exporting documents to Mallet...')

export_to_mallet()
print('Done!")

Folder ./output/so_data/ created!
Cleaning dataset...
./tcc/so_questions.csv

Loaded CSV!

Removed HTML tags!

Removed stopwords!

Folder ./output/processed/ created!
Saved new csv!

Exporting documents to Mallet...
Done!

Figure 29 — Notebook prepare dataset cell

54 Chapter 4. Results
.7 JupytEr SO_dataset_analysis Last Checkpoint: an hour ago (autosaved) ﬂ Logout
File Edit View Insert Cell Kernel Help Trusted | Python3 O
B + x<x @ B 4 ¥ PRin B C » Markdown V@

Run the Mallet Tool
The next step is to run the Mallet tool. The mallet commands are using the environment variables set in the beggining of
this notebook.

In [7]: !'mallet/mallet-2.0.8/bin/mallet import-dir --input $OUTPUT_PATH/so_data/ -—output $OUTPUT_PA’
Labels =

./output/so_data/
In [8]: !mallet/mallet-2.0.8/bin/mallet train-topics --random-seed 100 --input $OUTPUT_PATH/so.malle
7
tle export stack header route login createstacknavigator navigate navigationoptions default
9 0,27455 native react work code react-native android user screen ios problem working
time change make expo issue http component image device
10 0,05232 error image console.log response data const fetch url file http api request
return catch await post function header json code
11 0,01131 android project file error implementation task failed build run compile dep
endency gradle http release react-native native true find def debug
12 0,03646 text textinput input style const label placeholder onchangetext password vi
ew email this.setstate button type amp form false import true return
13 09,0279 android notification import string true public return video void override k
ey permission false null push webview class activity native camera
14 0,1018 component view import text react return prop render class extends export bu
tton style default function react-native constructor error this.setstate super
Figure 30 — Notebook run mallet commands cell
Jupyter SO_dataset_analysis Last Checkpoint: 2 hours ago (autosaved) p Logout
File Edit View Insert Cell Kernel Help Trusted ‘ Python 3 O
B+ x @ B 44 ¥ PRin B C » Code REE=

Parse results

The following script parse the mallet output and place all questions from the same topic into one file. Resulting in one file
per document.

In [3]: from parse_topics_composition import parse_topics
from unite_topics_in_one_file import unite_questions_documents_by_topic

print('Parsing topics...")
parse_topics()

print('Uniting questions by topic...')
unite_questions_documents_by_topic()
print('Done!")

Parsing topics...

Uniting questions by topic...
Folder ./output/topics created!
Done!

In [1:

Figure 31 — Notebook parse results cell

Considering the original project used both Stack Overflow and GitHub datasets,

some scrips are prepared to deal with a Stack Overflow dataset and others with GitHub.

One dataset cannot be used in all scripts. This notebook can only be used with a Stack

Overflow dataset.

4.4. Calibrating and running the React Native dataset 55

4.4 Calibrating and running the React Native dataset

After being implemented, the notebook was used to rerun the algorithm for the
react-native dataset. As concluded in the 4.2.1, the algorithm needed to calibrate before
running the react-native dataset and get better results. The first run was considered to
calibrate the algorithm, as adding some stopwords that weren’t being counted before was

necessary.

Stopwords were added, and the notebook was used to rerun the scripts. The sec-
tions below describes the experiments made with different number of topics, analyzing
the context of each topic created. The subjects were analyzed by the first five questions

of each topic’s document.

441 10 topics

Table 2 represents the analysis made in the results with 10 topics.

Topic 1 | Problems related to View scroll.

Topic 2 | AwesomeProject setup problems, an example project

Topic 3 | Unclear

Topic 4 | App’s navigation

Topic 5 | Application styling

Topic 6 | Android app not building

Topic 7 | Instalation, first run questions and some media handling problems
Topic 8 | TextInput component

Topic 9 | Unclear

Topic 10 | Fecth and authentication to connect to other services APIs

Table 2 — 10 Topics division context

4.42 15 topics

Table 3 represents the analysis made in the results with 15 topics.

Chapter 4. Results

Topic Context

Topic 1 | Maps and geolocation

Topic 2 | Animation

Topic 3 | Redux and DateString

Topic 4 | Image and View Dimensions

Topic 5 | AwesomeProject, used to setup the development environment
Topic 6 | ListView component

Topic 7 | Instalation problems

Topic 8 | Authentication in outside services

Topic 9 | App’s navigation

Topic 10 | Instalation, first run questions and some media handling problems
Topic 11 | Connecting to APIs and using the Fetch function

Topic 12 | Android app not building

Topic 13 | TextInput component

Topic 14 | Unclear

Topic 15 | Unclear

Table 3 — 15 Topics division context

4.4.3 20 topics

Table 4 represents the analysis made in the results with 20 topics.

Topic Context

Topic 1 | Unclear

Topic 2 | Initial installation

Topic 3 | Unclear

Topic 4 | Android app not building

Topic 5 | TextInput component

Topic 6 | API calls and outside services authentication. This topic is a little unclear.
Topic 7 | Unclear

Topic 8 | WebView component

Topic 9 | Redux

Topic 10 | Integration with Camera, and other similar native problems. More iOS related.
Topic 11 | Map view, coordinates and geolocation

Topic 12 | Unclear

Topic 13 | Apps navigation

Topic 14 | Unclear

Topic 15 | View styles and other Ul problems

Topic 16 | Instalation and first run questions

Topic 17 | Date string and date picker

Topic 18 | Other style problems

Topic 19 | ListView component

Topic 20 | More app’s navigation problems

Table 4 — 20 Topics division context

4.4. Calibrating and running the React Native dataset 57

444 Result

After uniting all the clear topics division from the experiments with 10, 15, and
20 topics, removing the unclear divisions, and separating the mixed contexts identified,
we have Table 5 as a result of this analysis for the React Native discussed topics in
StackOverflow.

Topics

AwesomeProject setup problems, an example project
Installation

First run questions

Media handling problems

Problems related to View scroll.

ListView component

App’s navigation

Application styling

Android app not building

TextInput component

Maps and geolocation

Animation

Redux

DateString and DatePicker

Image and View Dimensions

Authentication in outside services

Connecting to APIs using the Fetch function
WebView component

Integration with Camera, and other similar native problems. More iOS related.

Table 5 — Topics identified

99

5 Conclusion

The contribution to the original project made it easier to run the script with other
datasets, and the possibility to differentiate the output result made it easier to analyze
the run on a different number of topics. Also, running the experiments was an excellent

opportunity to understand the project better.

The Pull Request was accepted to the Scoccia, Migliarini e Autili (2021) repository
and is already available to be used to study Stack Overflow datasets in other contexts.
This contribution facilitates understanding the code by bringing documentation on how
to use it and get the dataset. The notebooks facilitate the execution of scripts, having all

configurations needed on the notebook and the python scripts call simplified.

However, the contribution in this paper is made only for Stack Overflow datasets,
while the original project also has scripts to handle Github datasets. A next contribution
should include the Github dataset handling into the Jupyter Notebooks. There are other
scripts to get metrics on the results that weren’t explored in this paper. Also, in a future
contribution, other aspects of the Stack Overflow dataset could be used to categorize the

topics, such as the number of answers or views.

Running the notebook using the react-native dataset proved that the contribution
optimized the use of the scripts and facilitated using the Mallet tool. The notebook ran
with 10, 15, and 20 topics division to calibrate the algorithm for the react-native dataset.
The experiment running the mallet with 15 topics was the one with a more precise division.
However, uniting with the 10 and 20 topics run, we have better understated the issues

discussed in the React Native framework.

61

Bibliography

ABDELLATIF, A. et al. Challenges in chatbot development: A study of stack overflow

posts. Proceedings - 2020 IEEE/ACM 17th International Conference on Mining Software
Repositories, MSR 2020, Association for Computing Machinery, Inc, p. 174-185, 6 2020.
Cited on page 25.

BLEI, D. M.; NG, A. Y.; EDU, J. B. Latent dirichlet allocation michael i. jordan.
Journal of Machine Learning Research, v. 3, p. 993-1022, 2003. Cited 2 times on pages
24 and 30.

DIBONA, C.; OCKMAN, S. Open sources: Voices from the open source revolution. [S.1.]:
" O’Reilly Media, Inc.", 1999. Cited on page 24.

FUGGETTA, A. Open source software - an evaluation. Journal of Systems and Software,
v. 66, p. 77-90, 4 2003. ISSN 01641212. Cited on page 24.

Git. Git. 2021. Disponivel em: <https://git-scm.com/>. Cited on page 31.

GitHub. React Native Topic. 2021. Disponivel em: <https://github.com/topics/
react-native>. Cited on page 22.

GNU. What is Free Software? 2022. Disponivel em: <https://www.gnu.org/philosophy/
free-sw.en.html#f1>. Cited on page 24.

GRAHAM, S.; WEINGART, S.; MILLIGAN, 1. Getting started with topic modeling and
MALLET. [S.1], 2012. Cited on page 25.

JONES, J. et al. Novel approach to cluster patient-generated data into actionable
topics: case study of a web-based breast cancer forum. JMIR medical informatics, JMIR
Publications Inc., Toronto, Canada, v. 6, n. 4, p. €9162, 2018. Cited on page 25.

Jupyter. Jupyter. 2021. Disponivel em: <https://jupyter.org/>. Cited 2 times on pages
29 and 32.

MALAVOLTA, 1. et al. End users’ perception of hybrid mobile apps in the google play
store. 2015. Disponivel em: <http://cs.gssi.infn.it/ms>. Cited on page 21.

Man Group. wordcloud. 2021. Disponivel em: <https://pypi.org/project/dtale>. Cited
on page 33.

MCCALLUM, A. K. MALLET: A Machine Learning for Language Toolkit. 2002.
Disponivel em: <http://mallet.cs.umass.edu/>. Cited 3 times on pages 24, 30, and 32.

MEIRELLES, P. et al. A students’ perspective of native and cross-platform approaches
for mobile application development. In: . [S.1.]: Springer Verlag, 2019. v. 11623 LNCS, p.
586—601. ISBN 9783030243074. ISSN 16113349. Cited on page 21.

MUELLER, A. wordcloud. 2020. Disponivel em: <https://amueller.github.io/word
cloud/index.html>. Cited on page 33.

62 Bibliography

npm. React Native. 2021. Disponivel em: <https://www.npmjs.com/package/
react-native>. Cited on page 22.

NUNKESSER, R. Beyond web/native/hybrid: A new taxonomy for mobile app
development. Proceedings - International Conference on Software Engineering, IEEE
Computer Society, p. 214-218, 5 2018. ISSN 02705257. Cited 2 times on pages 9 and 20.

Octoverse. Projects. 2019. Disponivel em: <https://octoverse.github.com/2018/
projects#repositories>. Cited on page 22.

Pandas. Pandas. 2021. Disponivel em: <https://pandas.pydata.org/>. Cited on page
33.

PENZENSTADLER, B. et al. Systematic mapping study on software engineering for
sustainability (seds). In: Proceedings of the 18th International Conference on Evaluation
and Assessment in Software Engineering. [S.1.: sn.], 2014. p. 1-14. Cited on page 25.

Python. Python. 2021. Disponivel em: <https://www.python.org/>. Cited 2 times on
pages 29 and 32.

React Native. Core Components and Native Components. 2021. Disponivel em:
<https://reactnative.dev/docs/intro-react-native-components>. Cited on page 23.

React Native. React Native. Learn once, write anywhere. 2021. Disponivel em:
<https://reactnative.dev/>. Cited 2 times on pages 17 and 22.

SARICA, S.; LUO, J. Stopwords in technical language processing. Plos one, Public
Library of Science San Francisco, CA USA, v. 16, n. 8, p. 0254937, 2021. Cited on
page 25.

SCOCCIA, G. L.; MIGLIARINI, P.; AUTILI, M. Challenges in developing

desktop web apps: a study of stack overflow and github. 2021. Disponivel em:
<https://gianlucascoccia.github.io/assets/pdf/MSR2021.pdf>. Cited 14 times on pages
5, 7,16, 17, 25, 27, 30, 43, 45, 47, 49, 51, 53, and 59.

SMUTNY, P. Mobile development tools and cross-platform solutions. In: . [S.L.: s.n.],
2012. p. 653-656. ISBN 9781457718687. Cited on page 20.

Stack Exchange. Stack Fzchange. 2021. Disponivel em: <https://stackexchange.com/>.
Cited on page 31.

Stack Exchange Data Explorer. Stack Exchange Data Ezxplorer. 2021. Disponivel em:
<https://data.stackexchange.com/>. Cited on page 28.

Stack Overflow. 2021 Developer Survey. 2021. Disponivel em: <https://insights.
stackoverflow.com /survey/2021>. Cited on page 23.

Stack Overflow. Who we are. 2021. Disponivel em: <https://stackoverflow.com/
company>. Cited 2 times on pages 17 and 23.

StatCounter. Mobile Operating System Market Share Worldwide - Sept 2020 - Aug 2021.
2021. Disponivel em: <https://gs.statcounter.com/os-market-share/mobile/worldwide/
#monthly-202009-202108-bar>. Cited 2 times on pages 9 and 19.

Bibliography 63

TUN, P. M. Choosing a mobile application development approach. 2014. Disponivel em:
<https://www.researchgate.net /publication/342437581>. Cited 3 times on pages 9, 21,
and 22.

ZOHUD, T.; ZEIN, S. Cross-platform-mobile-app-development-in-industry-a-multiple-
case-study. 2021. Cited on page 23.

