
Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

SkillSpace: A learning environment with social
capabilities

André Macedo P. Valle

Monografia apresentada como requisito parcial
para conclusão do Curso de Engenharia da Computação

Orientador
Prof. José Edil Guimarães De Medeiros

Brasília
2022

Universidade de Brasília
Instituto de Ciências Exatas

Departamento de Ciência da Computação

SkillSpace: A learning environment with social
capabilities

André Macedo P. Valle

Monografia apresentada como requisito parcial
para conclusão do Curso de Engenharia da Computação

Prof. José Edil Guimarães De Medeiros (Orientador)
ENE/UnB

Prof. Dr. Georges Daniel Amvame Nze Prof. Dr. Daniel Guerreiro e Silva
Universidade De Brasília Universidade De Brasília

Prof. Dr. João Luiz Azevedo de Carvalho
Coordenador do Curso de Engenharia da Computação

Brasília, 05 de outubro de 2022

Agradecimentos

Agradeço à minha mãe por todo amor e cuidado que recebi durante toda minha vida, e
por todo suporte que tive durante meu perído de graduação.

Agradeço também aos meus irmãos Marcella e Gabriel e ao meu sobrinho Samuel, que
até mesmo em momentos mais distantes, sei que estão lá por mim.

Agradeço à minha avó Nadir e ao meu avô Edmundo por todo o amor e carinho que
sempre deram à mim e a todos os seus netos. Sei que nem sempre consigo estar presente
junto deles, em especial desde a pandemia, mas sempre sinto o amor deles perto de mim.

Agradeço às minhas tias e primos por todo o carinho que sempre recebi e por todos
os momentos bons que tivemos com a família toda reunida.

Agradeço aos meu fiel grupo de amigos, Gabriel, Juliana, Luiz, Nathalia e Pedro, por
tudo que vivemos juntos desde o ensino fundamental. Os momentos que tive com cada
um estarão sempre guardados no meu coração.

Agradeço as amizades que fiz na UnB, Danilo, Felipe, João, Kalley, Eduardo, Hevelyn,
Otho e tantos outros, por todas as experiências que compartilhamos e momentos que pas-
samos juntos nessa graduação. Vocês definitivamente tornaram o processo de graduação
mais fácil e divertido. E ao Felipe que realizou esse projeto junto comigo, agradeço em
dobro. Se não fosse por ele, esse projeto nem sequer existia.

Agradeço à Struct e a todo mundo de lá por todo o conhecimento que obtive ao
participar da empresa e por ter contríbuido por talvez a parte mais importante de todo
o meu período na UnB. Agradeço em especial ao Arthur, Felipe, Venzi, Kayran e Xavier
pelo tempo que passamos juntos como diretores da empresa.

Agradeço ao Edil por ter sido meu orientador nesse projeto e por todas as reuniões
que tivemos nesse períodos e às dicas e aconselhamentos que recebi, que irei levar para
além dessa monografia.

Por fim, agradeço à UnB e a todos os professores que tive durante minha graduação
por todos os momentos inesquecíveis que vivenciei nesse período e por todo conhecimento
que obtive.

iii

Resumo

Esse trabalho tem como objetivo propor e projetar uma plataforma online capaz de prover
aos usuários um ambiente social e de aprendizado. Essa plataform permite que seus ad-
ministradores organizem um fluxo de aprendizado com a criação de atividades e disponi-
bilização de material didático, classificando também essas ativdades em estágios para fins
de organização da plataforma. Com o objetivo de aproximar os usuários, a plataforma
também provê um ambiente de rede social, em que os conteúdos aprendidos podem ser de-
batidos e compartilhados, além de uma funcionalidade de eventos, para promover palestras
e encontros entre os membros. Como objetivo final, é esperado que os organizadores que
optarem por usar a plataforma consigam aumentar o engajamento com o curso e criar
uma comunidade ao redor dos tópicos debatidos.

Palavras-chave: educação, plataforma online, rede social

iv

Abstract

This work delves into designing and projecting an online platform capable of providing
to its users a social and learning environment. This platform allows its administrators to
organize a learning flow with the creation of activities and providing educational materials,
classifying these activities into stages in order to better organize the platform. In order to
get the users close to each other, the platform also provides a social network environment,
in which the educational content provided can be discussed and shared, also featuring
an event functionality, to provide lectures and meetings between the members. As the
end goal, it is expected that the organizers that opt into using the platform are able to
increase the participation with the course and create a community around the debated
topics.

Keywords: education, online platform, social network

v

Contents

1 Introduction 1

2 Database Design 4
2.1 The User Model . 6
2.2 The Activities Model . 7

2.2.1 Theoretical Activities . 8
2.2.2 Practical Activities . 8
2.2.3 Social Activities . 8
2.2.4 Events Activities . 9
2.2.5 Activities Requirements . 9

2.3 Grouping the Activities into Stages . 11
2.4 Events . 12
2.5 The social area of the platform . 15

3 Back-End Development 19
3.1 API Technologies . 19
3.2 Defining Models and Migrations . 20
3.3 Creating the Controller . 22

3.3.1 Controller Methods . 23
3.3.2 Managing the User Access and Privileges 23
3.3.3 Mapping the Controller into Routes 25

3.4 Handling File Uploads . 25

4 Non-Functional Prototype 27
4.1 Login and Sign Up Pages . 28
4.2 The Navigation Sidebar . 30
4.3 Stages and Activities Area . 30
4.4 Events Area . 33
4.5 Social Feed and Messages Capabilities . 36
4.6 The Administrator Dashboard . 39

vi

5 Front-End Development 43
5.1 Making API Requests . 44
5.2 Navigating Through the Front-End Pages 45
5.3 Managing The User Context . 46
5.4 Achieved Implementation . 46
5.5 What was left from the scope? . 47

6 Conclusion 49
6.1 Future Work . 49

References 51

Appendix 52

A Non-standard methods in controller 53

vii

List of Figures

2.1 Table definition in the dbdiagram tool. 5
2.2 Defining relationships on dbdiagram.. 5
2.3 Defining a join table on dbdiagram. 6
2.4 Diagram of the User Model and its associations. 7
2.5 Diagram of the Activity Model and its associations. 10
2.6 Diagram of the Stage Model and its associations. 12
2.7 Diagram of the Event Model and its associations. 14
2.8 Diagram of the Follower and Post models and its associations. 16
2.9 Diagram of the models from the messaging feature. 17

3.1 Example of Model definition using the Sequelize package. 21
3.2 Example of association definition using the Sequelize package. 22
3.3 Graph comparing the salt round value to the time each request takes. . . 24
3.4 Example of Route definition using Express. 25

4.1 Prototype of the Login page. 28
4.2 Prototype of the first step in the Register page. 29
4.3 Prototype of the second step in the Register page. 29
4.4 Prototype of the navigation sidebar. 30
4.5 Prototype of the Stages page. 31
4.6 Prototype of Activities index page. 32
4.7 Prototype of Activity details page. 33
4.8 Prototype of Events index page. 34
4.9 Prototype of the Event details modal. 35
4.10 Prototype of the feedback submission modal. 35
4.11 Prototype of Feed page. 36
4.12 Prototype of Post comments page. 37
4.13 Prototype of the user own Profile page. 38
4.14 Prototype of the Chat page. 39
4.15 Prototype of the Admin navigation sidebar. 40

viii

4.16 Prototype of the Index pages from the Admin dashboard. 41
4.17 Prototype of the Visualization pages from the Admin dashboard. 42
4.18 Prototype of the Form pages from the Admin dashboard. 42

5.1 Code snippet of the creation of an Axios instance. 44
5.2 Code snippet of a post request using Axios. 45
5.3 Code snippet of a route definition using React Router. 45

ix

List of Tables

A.1 List of non-standard methods in the project controllers 55

x

Acronyms

API Application Programming Interface.

CORS Cross-Origin Resource Sharing.

CRUD Create, Read, Update and Delete.

CSS Cascading Style Sheets.

DOM Document Object Model.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

IFL Instituto de Formação de Líderes.

JS JavaScript.

JSON JavaScript Object Notation.

MVC Model-View-Controller.

NPM Node Package Manager.

SQL Structured Query Language.

UI User Interface.

URL Uniform Resource Locator.

xi

Chapter 1

Introduction

The Instituto de Formação de Líderes (IFL) [1] from Brasília is an institution that
focus on the formation of leaders, with the goal to instruct young people in Brazil, capable
of putting in practice their leadership, entrepreneurship, and management abilities. To
achieve these goals, they not only provide recommendations of books and articles to be
read by its members, but organize events for them and create an environment where
the members can share their thoughts and discuss about either the content and events
provided by the organization, or any other relevant topic that they may find pertinent for
the other members.

Generating this environment where each member can easily obtain the desired study
materials and discuss it with other members, bridging the gap between the two, is a
challenge. While IFL has an online platform [2] to register its members and provide the
contents to be studied by them, the way they are presented may not be ideal for the
institution needs. Not only there could be more flexibility on the way the components
curriculum is structured, but there could also be more proactive exercises, influencing
its members to write more about what they learned and practice their knowledge. When
it comes to the social aspect, their platform lacks any meaningful way for members to
interact with each other, with this interaction being left to happen on other social services,
such as WhatsApp or Discord, and while these are good general use social platforms, they
fail to create a unified learning environment for the members, that can easily reference
the study materials and separate all the discussions happening into its relevant topics.

While the situation described until now is focused on IFL, a platform that manages to
provide a learning environment for its users, with access to both a learning and a social
space on the same place can be useful to several other institutions with the same goals
as IFL, and also to organizations and individuals that desires to offer online courses, a
modality that saw a great spike in popularity in recent years, specially after the pandemic.
For this last public, that have mostly been selling courses through social networks like

1

Instagram or using platforms such as Hotmart and Udemy, which lack real social features
besides a comment section, an attempt to create a social environment between their
students is made by providing access to services such as Discord servers, which can fail
to reach all the students due to being an external platform to where they are consuming
the course, or advising the students to use the comment section these platforms have,
which does not have the organization and resources you would expect from an online
social environment.

One option one would have to solve this issue would be to use Moodle, a learning
platform used in many educational environments such as universities, and, while Moodle
does features a highly customize course structure and social features like chat rooms and
forums, its use can be challenging to non-tech savvy users. For those setting up the course,
Moodle may require the exploration of an extensive documentation to properly that may
not be intuitive for some one just wanting to create or distribute a course, and for those
actually using the platform, Moodle does not feature an intuitive user interface that is
easily understandable by a tech illiterate, which the course may appeal to.

To solve this problem we envisioned the SkillSpace platform, which has the objective
of bridging the gap between a social and a learning environment, featuring an activity
center with every theoretical and practical activity that members in the platform should
do, a social network-like feed where users can post their thoughts and engage in meaningful
discussions with other people and an events area, where administrators can invite members
to events and speeches organized by them.

Regarding the activity area, administrators will have the ability to register theoretical
activities, representing content users should use to study, such as books, articles, videos,
podcasts, or any other material relevant to the space, practical exercises where users
can make their submissions and receive feedback from the organizers, and also social
and events activities, that promotes the creation of posts on the social area and the
participation in events, respectively. To better organize these activities, administrators
can provide a flux which determinates the order activities should be done by defining
requirements, with activities being locked until all are met, and with the creation of
stages, which group various activities in the same level or topic together, while also
allowing stages to be requirements for other stages to be unlocked, as with the activities.

The social area will have its focus on a post feed resembling the ones already made
familiar by other social networks and platforms, with any user being able to create a new
post on the space, therefore starting new discussions and conversations with its peers,
and finding and interacting with posts made by other users, either by reacting to it using
emojis or commenting on it, further engaging the discussion. The platform also has the
goal of making the discussions started on it easily searchable and organized, by providing

2

ways to search for older discussions and categorizing the posts by appropriate tags, set
up by the administrators. We also acknowledge that it may be desirable by some to have
private conversations and discussions with other users without having to resort to other
services, where they might need to share private information such as phone numbers, for
that reason, a chat feature is also available, allowing users to engage in private chat rooms
inside the SkillSpace platform.

Lastly, the events functionality allows administrators to register events and speeches
that will happen and invite the users to participate. The invitations can happen in a
general way, inviting all users registered in the platform, or specifically selecting those
that they think should participate. User then can find all the events that are bound to
happen in the events area of the platform, both the ones they have been invited and other
that are also scheduled to happen and state their intention of participating in the event.
They can also leave feedback for the events they attended, which can then be used by the
organizers to improve future events.

The scope of this work will focus on the implementation and organization of the
SkillSpace platform, and all the parts needed to make it work. In chapter 2 the focus
will be in designing the database that will store all relevant information on the platform,
while in chapter 3 we will see the implementation of the back-end part of the application,
focusing on the logic behind the implemented services, the database implementation and
the creation of the API that will provide the service. In chapter 4 we will discuss the
prototype of the UI that users will interact on the final product, which will have its
implementation addressed on chapter 5.

3

Chapter 2

Database Design

The development process of the SkillSpace platform began by designing and developing
the back-end portion of the application. The first stage of the design process was to decide
the structure of the database itself and how it would be organized to fulfill the needs of
the desired system.

The first decision made in the development of the platform was about the type of
database to be used, with the two options being relational and non-relational databases
(also known as SQL and NoSQL databases, respectively) [3]. While relational databases fea-
tures a more strict structure of the data, organizing it in tables with pre-defined fields and
fixed relationships among the tables, non-relational databases allows for more flexibility
while storing the information, with no pre-defined structure of what each data set stores
and how it relates to other in the system. While non-relational databases are really useful
for systems where the information being stored is not always predictable, also providing
better scalability for the system, the decision to use relational databases was made due to
the predictable nature of the SkillSpace platform design, having a low need for a flexible
option like NoSQL, while reaping benefits from relational database, such as data integrity,
due to the rigid nature of the table and its fields, and easier execution of complex queries
that involves many of the tables and its relationships.

To properly design the database structure, the online tool dbdiagram.io [4] was used
to plan the tables needed to match the proposed system criteria, alongside its fields and
relationships. The tool features its own syntax language that is used to define all the
elements present in the database. The definition of a Table using the tool syntax can be
seen in Fig. 2.1, where we define the table name after the Table keyword, an alias for the
table using the as keyword, and, inside the Table block, each field is defined, followed by
its corresponding type. A field that is present in most of the tables designed is the id,
which functions as the primary key of the table, with requirements of not being null nor
repeating in any instance of the table.

4

Figure 2.1: Table definition in the dbdiagram tool.

To define the relationships on the tool, a reference field is added inside the table
definition, stating both the type of relationship between the tables and which field from
which table is being referenced (usually the id field), with examples of three types of
relationship being shown in Fig. 2.2. In the example figure, the Address table is in
a many-to-one relationship with the Country table, by using the > operator, meaning
that one instance of the Country can be referenced by multiple Address instances. The
opposite is shown in the one-to-many relationship between Address and Order, with the
use of the < operator, where one Address can connect to multiple Orders. The final
relationship is the one-to-one, achieved using the - operator, where only one connection
is possible for both sides of the relationship in each instance.

Figure 2.2: Defining relationships on dbdiagram..

Many-to-many relationships, on the other hand, are defined by creating a join table
between the two desired tables. This special table makes many-to-one references to each
table being joined, with both working together as primary keys of the join table, removing
the need of a separate id field on it, as it is shown in Fig. 2.3. These join tables may also
feature more field than the tables references, if needed.

5

With the tables being defined using the tool syntax, dbdiagram also generates a visual
design of the modeled database, which will be used during thorough this document to
illustrate the tables being described.

Figure 2.3: Defining a join table on dbdiagram.

2.1 The User Model

The User model represents the instances of the registered users on the platform, containing
its basic personal and login info, such as the email and a field to store the encrypted
password. There is also an Address model in the database, associated with the User model
in a one-to-one relationship, with its instances created alongside the users registrations.
Some Boolean fields in the User model are used to determinate the role and status of the
user on the system, these being the admin, owner and is_active fields.

The owner and admin fields, both represents administrators on the platform, with
access to areas and configurations not available to regular users. The difference between
them is, while the owner has full access to all the configurations available on the plat-
form, the admin is limited by the permissions given to him. These permissions are defined
by another model in the database with each instance having a unique name that repre-
sents the functionality associated with the permission, such as registering a new event
or giving feedback to user submissions, for example. The Permission and User models
are associated in a many-to-many association using a junction table, allowing one single
administrator to have multiple permissions on the platform.

An overall view of the User, Address, Permission and AdminPermission models
can be seen in Fig. 2.4, which features the models and its fields as it was designed in
prototyping stages using the online tool dbdiagram.io.

6

Figure 2.4: Diagram of the User Model and its associations.

2.2 The Activities Model

In the center of the activities area from the SkillSpace platform is the Activity model,
which represents the core content and tasks the platform administrators believe the regis-
tered users should consume and partake. The model, then, stores the necessary informa-

7

tion to describe and identify the activity, such as name and description. A join table is
also created between the Activity and User models, to identify the activities which the
user started and finished, with new entries of the join table being created when the user
starts an activity, which is then updated when the user finishes it, registering both started
and finished dates to create a track for the time the user used to complete the activity.
Also associated with the activity model are the Category and ActivityType tables, the
first one representing categories that administrators can create to better categorize the
activities into topics that makes sense for their platform, while the second one represents
the types that each activity can assume on the platform, with the four available being
defined directly on the database.

2.2.1 Theoretical Activities

As the name implies, theoretical activities are the ones which only features a material to
be consumed by the user, such as a book, article, or video. Administrators can directly
upload the file to the system and make it available for users to download or directly link
it on the description field. Being only a theoretical activity, users can start and finish the
activity without submitting anything.

2.2.2 Practical Activities

As far as registering the activity goes, practical activities (also referred as exercises) can
feature everything the theoretical ones have, including file uploads for material to be used
by the user, the key difference here is that these exercises require a submission to be
sent from the user when finalizing the activity, which comprises of either a text written
directly from the platform or a submission file, and is stored in the ActivitySubmission
table in the database, which is directly linked to the Activity and User join table. Once
submitted, its vital for the user to be able to receive feedback on the work they have
done, allowing them to improve on their skills and acknowledge where they are doing
right or wrong. For that purpose, an administrator with the proper privilege can access
the submission and provide the user with feedback of their work, which can include a text
detailing the feedback with its praises and corrections and an optional numbered score.
These feedbacks are stored in a separate model, ActivityFeedback also linked to the
Activity and User join table.

2.2.3 Social Activities

The social activities exist to further encourage users to start discussions on the social area
of the platform, as such, to finalize this type of activity the user is required to make a

8

post on the platform directly from the activity page. Moreover, administrators can also
specify a tag that the post should be a part of to finish the activity.

2.2.4 Events Activities

The last type of activities available are the events ones, which requires the participation
in an event on the website to be completed. These are the only activities that are not
finalized by the user themselves, instead being marked as complete once an administrator
confirms the user presence on an event while they have already started the activity on
their dashboard.

2.2.5 Activities Requirements

While registering the activities on the platform, the administrators might require that
users complete some activities before starting another. For that reason, the
ActivityRequirement table on the database stores a relationship of requirement between
two activities. Users are then unable to start a certain activity if all the requirements for
it are not yet met.

In Fig. 2.5, we are able to see the schematics of the Activity model and its associations
as described above. In the figure, there is also the representation of other models that,
while not being strictly a part of the activities area, are connected to it, such as Stage,
User, Event, Tag and Post. The fields of these models were omitted for organization
purposes and the details of each one will be better described in the following sections.

9

Figure 2.5: Diagram of the Activity Model and its associations.

10

2.3 Grouping the Activities into Stages

To allow administrators to create a better flux of the activities in the platform, SkillSpace
allows the activities to be inserted onto stages created by the admins. The idea of the
stages is to group together activities that either are on the same difficulty levels (creating
Beginner and Advanced stages for instance) or that are under the same topics (such as a
Mathematics and Chemistry stage). Such as with the activities, there is also a join table
between the Stage and User models, to indicate its start and completion just like it was
done in the activities. Also similar is the presence of a StageRequirement model, that
essentially locks a stage from being started if its requirements are still not met by the
user.

To finalize a stage the user must meet two conditions according to the configuration
of the stage. Administrators can determinate a certain time requirement that users must
meet from the day they started the stage to finalize it. This configuration, although
optional, may be used for cases where the planners of the platform may want to avoid
students progressing on the stages too fast, creating a big discrepancy between users
that started studying at the same time. The second condition to finalize a stage is
having completed all the mandatory activities inside that stage, allowing administrators
to determinate which ones are essential to be done as the user progress on their studies
and which ones are seen as extra activities to be performed. The information of which
activities are mandatory is stored in a Boolean field on the activities themselves.

The diagram from Fig. 2.6 represents the organization of the Stage model and its
associations on the database, omitting the fields from the User for organization purposes.

11

Figure 2.6: Diagram of the Stage Model and its associations.

2.4 Events

To allow the platform community to come together in events, such as speeches and lec-
tures, the SkillSpace platform comes with functionality to its administrators manage and
sent invite to these events and to users to view these invites and information about the
events and provide feedback for the ones they attended. In the back-end, the center of this
functionality is the Event model, which contains the basic information about the event,
such as a description and its date, also storing information about whether it is a remote
event in a Boolean field and the link to the event (for the case it is remote). The adminis-
trators may also want to provide information about invited speakers that will participate
in the event, which is stored in a separate table in the database containing information
about these participants to be shown to the users on the website. The InvitedSpeakers
and the Event tables are connected through a join table and the invited participants are
not required to be registered on the platform.

12

To manage the invitations, a join table between User and Event, called Guest, is
created, and the entries of this table are created when an invitation is sent by the admin-
istrators or the user declares their intention of participation in the event after visualizing
it on the platform. This join table also stores whether the guest is the organizer of the
event, their intent of participation, through enum values, and their presence, which is
updated after the event happens. A second join table between Event and User is the
EventFeedback, which stores the feedback for a specific event that the user attended.
The user may leave a text with their feedback and a numbered score. They may also
choose to not let their name appear to the administrators while reviewing the feedbacks,
through a Boolean anonymous field.

Fig. 2.7 shows the Event and InvitedSpeaker models, alongside its join tables. The
User model represented in the figure, as usual, have its fields omitted for organization
purposes.

13

Figure 2.7: Diagram of the Event Model and its associations.

14

2.5 The social area of the platform

The final main area of the platform is the social area, with its main part being the Post
model, that represents posts made by the users to be displayed in the front-end just like
a social media platform, storing the details about the post alongside a reference to the
user that created it. To better organize the topics of conversation that the post falls to,
users can select tags to be inserted in the post. These tags are stored on a separate table
and are created beforehand by the administrators, representing topics of relevance to the
specific Space it belongs to. The Tag and Post models are connected through a join
table to allow a single post to be a part of multiple tags, while another join table is also
created, connecting the Tag and the User, allowing users to select which topics they are
more interested in, allowing for future customized posts recommendations on their feed.

Its also fundamental to allow interactions among all users of the platform to the posts
published on the website. To achieve that, the Post table also features a parent field,
which references itself, representing which post the new one is responding to. A null value
on this field indicates that the post is a parent post while a valid reference represents that
it is a comment on another post. Another way of interacting with the posts is by reacting
to it, through a join table between the Post and the User, containing an enum value with
types of reaction, ranging from like and love to sad and angry. In Fig. 2.8 we are able to
see an overview of the Post model and its associations as described above.

15

Figure 2.8: Diagram of the Follower and Post models and its associations.

The social area of the website also features a more direct connection between the users,
with a Follower table allowing a user to follow another one, which allows us to prioritize
posts published by people the user is following on their feed. We can also see this model in
Fig. 2.8 above. This direct communication between users is more evident in the messaging
function on the platform, that allows multiple users to communicate with each other

16

via the SkillSpace website itself, without requiring them to exchange personal contact
information with each other if they don’t wish to. This messaging feature is composed
by three main tables: the first one is the Chat table, that only stores an identification
number for the instance, automatically generated by the back-end. The second table is a
join between the User and Chat and is used to represent all the participants of the chat
that are able to view and send messages to it. Finally, the Message table references the
Chat it is from, the User that sent it and all other information required by the message,
such as the message itself and a timestamp from when it was sent. All the models from
the messaging feature can be seen in Fig. 2.9 below.

Figure 2.9: Diagram of the models from the messaging feature.

With a complete design of the database that represents the SkillSpace platform, along-
side all tables and its relationships, the next step in the development is to proper imple-

17

ment these definitions into code and create the back-end logic that will properly use the
defined database to provide the SkillSpace functionalities.

18

Chapter 3

Back-End Development

To provide a functional website, the back-end was implemented as an API developed using
the Node.js [5] environment linked to a MySQL [6] database to store and organize the
necessary information for the application. The decision of making the back-end separated
from the front-end, by making it as an API, was to make it as an independent part of the
system, allowing the development of multiple different front-ends in the future if needed,
such as mobile applications and different websites that uses the same business logic.

3.1 API Technologies

Node.js is a runtime environment that allows the execution of JavaScript code outside
the web browser. As such, it allows for the development of web applications, such as
web servers and APIs, using an already popular language in web development. For the
SkillSpace API development, several options of languages and frameworks were available
to choose from, like Ruby, Python and PHP. The choice of using Node.js (and JavaScript
for that matter) came from the high availability of tutorials, guides, and overall references
for it on the internet, the high number of open-source packages and tools available using
the technology package manager (NPM [7]) and the possibility to use the same programming
language across the API and front-end development. The use of the Express [8] framework
was also chosen to further help on the development process. In our API development,
the Express framework particularly helps while managing the different HTTP requests
received and its routes, also providing the ability to configure middleware’s to be executed
in those requests. Being the most popular web framework for Node.js, the community
support is unparalleled among other alternatives available for Node.js development.

Working alongside Express as middlewares, two other node packages were used to
further configure the developed API, CORS [9] and body-parser [10]. The CORS package
adds Cross-Origin Resource Sharing [11] to the project, which allows the API to inform

19

web browsers outside domains which the server may request resources to, by setting up
the appropriate headers on all requests and responses made by the API. For development
purposes, CORS on this project is currently configured to allow access to all outside do-
mains, a configuration that should be changed when deploying the site into production.
Finally, the body-parser package is used to parse the body content of all incoming re-
quests to JSON format, making it available in all upcoming steps of the request-response
cycle.

As the connection with the database is another essential part for the API, Sequelize [12],
another popular Node.js package, was chosen to further help development. This package
provides an abstraction layer in the connection between the API and the database, allow-
ing the use of the database with JavaScript code instead of SQL queries. As Sequelize
works with multiple relational database management system, the decision of which one
to use didn’t make much difference, with MySQL chosen for the previous familiarity with
the tool.

3.2 Defining Models and Migrations

Using the MVC [13] architecture as reference, Sequelize was used to write the application
models, composed by the tables stored in the database along all its fields and relationship
references. After having the models defined, Sequelize provides a JavaScript object that
represents it and is accessible thorough the rest of the project code. This model object
features the methods that are used to replace the SQL queries, such as methods to create
a new instance on the database and to find stored instances. An example of defining a
model using Sequelize can be seen in Fig. 3.1. In this example, it is possible to see that
each of the defined fields has a determined type to it, which is chosen among the options
available for the MySQL database. Other constraints and options are possible for each field,
such as requiring the field to be filled, by not allowing nulls, and not allowing repeated
field values across the instances of the table, using the unique option. The id field is
also set as the primary key of the table and, with the autoIncrement option set to true,
the database takes the responsibility of setting the id on each instance using a value that
increases on every instance creation of the table, maintaining the constraint of uniqueness
required by a private key. The references fields are also indicated when defining a model,
stating which model and field is being referenced. By using the onDelete and onUpdate
options, we can define what will happen with the table instance when a referenced table
is deleted or modified, respectively, being able to choose to cascade the action to the table
referencing it, restricting the action to be done, setting the field to null or doing nothing.

20

Figure 3.1: Example of Model definition using the Sequelize package.

While Sequelize allows syncing with the database using only the models definition,
the decision of using migrations, another feature available in the package, was made to
track the changes made to the database as the development progressed. Each migration
represents the changes made to the database, being it a new table or changes to a table’s
field, and features up and down rules that dictates how to perform the migration and
how to undo it, respectively. The use of migrations helps while working in the model
development as a team and avoids the database to be always reconstructed when multiples

21

changes are made to it.
To properly interact with the relationships on the database, Sequelize also requires

each relationship to be explicitly defined outside the model, informing the type of re-
lationship that happens between the two models, as can be seen in Fig. 3.2, where a
many-to-many relationship is defined using a join table. On this project, it was decided
to create a middleware to store all the associations and to make it available to all requests
made to the API, centralizing the relationships in one single file of the code. In the as-
sociation definition, besides the onDelete and onUpdate options described before, which
are also accessible here, we are able to define the join table to be used on many-to-many
relationships, using the through option, and also define aliases for the association, which
is specially useful when the table references the same table in more than one field.

Figure 3.2: Example of association definition using the Sequelize package.

All this knowledge on defining the models, migrations and associations was used to
properly configure the database described on the previous section of this document, and
with all configured, we can then use these models to properly create the methods that
will access it to provide the SkillSpace functionalities in the controller.

3.3 Creating the Controller

In a MVC architecture, the Controller provides the interface between the Model (database)
and the View (front-end), also defining the rules of this access, implementing the business

22

logic. In the SkillSpace project, several controller files are created each representing a
model or functionality of the API, containing methods specialised in executing a specific
function of the platform.

3.3.1 Controller Methods

The CRUD acronym stands for Create, Read, Update and Delete and defines the set
of functions that provides this functionalities to a specific model in the system, which,
for the SkillSpace API is provided by the functions create, responsible of creating an
instance of the model in the database, show, which returns all the information from one
specific instance, index, which retrieves information from all instances of a model in the
database, update, that updates and instance, and delete, to remove an instance from the
database. Among the models of the platform, Tag, Stage, Post, InvitedSpeaker, Event,
Category, Address, ActivityType and Activity features full CRUD implementation
with all the five methods described above. The Permission model, on the other hand,
features only the index method, since the creation of its instances should be done directly
on the database to tie to the business logic. Most of the remaining models are from
join tables, and are indirectly accessed and created as needed inside methods from others
models controllers, and some may not feature all CRUD functionalities when not needed.

Besides the index, show, create, update and delete methods, the controllers also
features other functions that provides more specific functionalities needed by the system.
These methods are described in the Table A.1.

3.3.2 Managing the User Access and Privileges

The User controller, instead of the usual create method, features a signup one, that
besides creating an User instance, also create instances of Address and TagUser. The
signup method also handles the encryption of the password before storing in the database,
using a hash function, that receives the user password and generates a predictable hash
that can only be retrieved by using the original password. To further increase security, a
salt (a randomly generated string) is used alongside the hash function to produce different
hashes even when the original password is the same. This salted hash function is not
implemented by hand, instead, the bcrypt.js [14] package is used to achieve the desired
result. This package, in its hash function, also allows for a salt round parameter, which
controls how much time is needed to calculate a single hash, with higher values increasing
the time needed to calculate a single hash, while making it more difficult for brute-force
attacks to succeed. The standard value for the salt rounds in the bcrypt.js package
is 10, and, since this value has not been updated by the package in at least 6 years, other

23

values were tested in order to select the appropriate one. In Fig. 3.3 the evolution of the
time each request takes in relation to each salt round value is shown. To plot this graph,
five requests under the same processing conditions were run for each salt round value,
using the mean value of the five values in the plot and computing the standard deviation
across the values, also shown in the graph. The value 12 was then chosen to be used on
the project as the salt round, being the higher value such that the request time was still
in an acceptable range to not disturb the platform users, being lower than 500 ms.

Figure 3.3: Graph comparing the salt round value to the time each request takes.

To allow the authenticated user to make requests to the API from the front-end
side, without sending the login information on each request, the login method uses
the jsonwebtoken [15] package to generate a JSON Web Token object [16] containing
the user information, which can be sent on the header of the API requests as a mean
to authenticate the user making those requests. These tokens are encrypted using a key
only available on the API, securing malicious parties of reading the token information or
generating false tokens, and also have an expiration time of 3 hours, avoiding old tokens
to be retrieved and used by hackers.

24

The controller also implements a restriction functionality to each method based on
the role of the user on the website and the privileges that the administrator holds, which
is done in the router level using middlewares. The first middleware available just verifies
if the user is properly authenticated by reading the token on the request header, without
regards to the user role or status, also adding the user information retrieved on the
token to the request information, to be used by future middlewares and methods. Two
other middlewares, is-admin and is-owner, analyses the retrieved user from the previous
middleware to see if it’s a admin and a owner on the platform, respectively. The final
authorization middleware receives the name of a permission and analyses if the user
making the request is either an owner or have the proper permission associated with him,
and, if not, restricts the user access to the desired method.

3.3.3 Mapping the Controller into Routes

In order to make the methods of the controller available for the users of the API, we need
to map each method into a route, which is the URL endpoint from which the method is
accessed. The routes can be of 5 different types, GET, when the endpoint only retrieves
a information with no modifications on the database, POST, when resources are created,
DELETE, for methods that delete resources, PUT, when a resource is completely modified
by the request and PATCH, for when only a set of changes are applied to a resource. An
example of a route definition using Express can be seen in Fig. 3.4, where the router is
an object generated by Express with methods for each one of the route types described
before. Theses methods takes as the first parameter the URL endpoint from which the
route will be accessed and all the middlewares that should be used by the request (such
as the authorization middlewares from the previous subsection), with the final parameter
being the method that the route redirects into.

Figure 3.4: Example of Route definition using Express.

3.4 Handling File Uploads

In several areas of the Skill Space application, we require the upload of files by the user to
correctly serve the proposed functionality, such as allowing file submissions upon finishing
practical activities with the work the student has done. But file uploading and saving
is drastically different from storing text data in a database, with database management

25

systems, like MySQL used in this project, not having support for this functionality. To add
this functionality in our project, we decided to use the node package Multer [17], which
does two things to support file upload: it first allows us to receive and decode multipart
forms from the POST requests made to the API. What this means is that instead of the
usual encoding used on requests, application/x-www-form-urlencoded, which simply
concatenates the form information using the ’&’ operator (ex: name=Maria&age=21),
the multipart/form-data groups each key-value pair into its own section, each with
its own header, content type and content disposition, allowing the submission of more
complex information, such as files, with the trade-off of having more overload of data
per information sent. The second way the Multer package helps is by providing helper
methods that handles saving the files to the desired destination on the computer. Finally,
to link the uploaded files to its respective databases entries, a string field is added to
the required tables storing the path and filename used in the upload. There is only one
problem with the configuration provided above, the files can only be stored locally on
the machine running the API. While this behavior is acceptable in a locally development
environment, its incredible inefficient on a production one, since the machines used to host
an API service are not correctly optimized to deliver big file data to users, also causing
more intense traffic on the application, which can hinder its use by the users. The solution
is to store the files in an appropriate cloud tool optimized for this use, such as Amazon S3
service, a part of their Amazon Web Services package. This functionality is added to the
application with the use of two more node packages, the Amazon provided aws-sdk [18],
which allows the direct communication between our application and the Amazon services,
and Multer-S3 [19], which builds upon Multer functionalities to allow the S3 service to
be used as storage option. With the proper configuration of this package, we’re able to
store all files related to the project in a bucket on the S3 servers.

With both the Model and Controller configured, alongside the definition of the API
endpoints through the routes, we can start projecting the final part of the MVC archi-
tecture, the View, which is the front-end of our application. We begin by presenting a
prototype of it in the chapter that follows.

26

Chapter 4

Non-Functional Prototype

With the advancements in web development, the development of User Interfaces got
harder, with the need to dedicate a bigger amount of time to code a web page from scratch
and style it accordingly. This task is made harder by constant testing and changes made
to a UI interface during development, to make sure the pages feel not only intuitive but
beautiful to look at, and, due to the non-intuitive nature of web development, making all
these tests directly on code is highly inefficient. For instance, even making small visual
changes, such as moving a button to the other side of the screen, can prove to be a not
so trivial task and, when doing it only for testing purposes, it can represent a wasted
time on your development schedule. To avoid doing the entire front-end development
from scratch, it is necesary to create a prototype of the pages, with a clear definition of
the design and the elements placement on the page, allowing for an easier testing and
validation of the pages structure. For this purpose, the online tool Figma [20] was chosen
to prototype the website, with all the pages needed being first created on the tool, and
then translated into code, in an already validated design. Figma allows to easily create
design prototypes, using basic shapes (like squares and circles), importing icons to be
used on the website and structuring the overall look and feel of the pages in an easy
and intuitive way, which also allows elements to be quickly changed for testing purposes.
Figma also allows to create components, that once created and styled, can be reused across
different prototypes. Moreover, after designing your prototype, the tool allows for a quick
glance on the CSS code that can be used on the web page implementation, even though
this code is usually non responsible for different screen sizes than the one it was designed
for.

27

4.1 Login and Sign Up Pages

As means of accessing the system and registering into the platform, the Login and Sign
Up pages are the first the user will be given access to. The login page, seen in Fig. 4.1,
features a simple form with options to the user input its login credentials, as its expected
for this type of page. The sign up page, is divided into two parts, the first one, seen
in Fig. 4.2, features the form with all the inputs needed to register into the system, the
second part, seen in Fig. 4.3, however, features options for the user to select all topics
(Tags) that are in the user interest, to allow the platform to recommend Posts according
to the user preference right out of the register step.

Figure 4.1: Prototype of the Login page.

28

Figure 4.2: Prototype of the first step in the Register page.

Figure 4.3: Prototype of the second step in the Register page.

29

4.2 The Navigation Sidebar

As a means of easily navigating through the site multiple functionalities, upon login the
user will see on all the platform pages a sidebar on the left side of the screen containing
shortcuts to all different sections of the platforms into six main icons, Activities, Events,
Posts, Messages, Help and Configurations, with each icon lighting up representing where
in the site the user is in the moment. In the bottom of the sidebar, the users name and
profile picture will be seen, serving as a link to the user own profile. To improve user
experience, the sidebar may be collapsed, taking less space on the screen, but with all
the shortcuts still easily accessed. The prototype design for the sidebar can be seen in
Fig. 4.4.

Figure 4.4: Prototype of the navigation sidebar.

4.3 Stages and Activities Area

For the activities section of the website, the user will first be presented with a list of all
the stages on the platform, as can be seen in Fig. 4.5. The stages are displayed in cards
indicating its name and information regarding the number of activities on the stage and
how many were already completed by the user. The cards also indicates if the activity is
blocked due to requirements not being met, by showing a lock icon in the top right corner

30

of the card. They can also be filtered by searching for a stage name or choosing to show
only completed, unlocked, or not unlocked stages. This page also features general statics
about the completion of stages by the user, such as the percentage of progress throughout
the whole course.

Figure 4.5: Prototype of the Stages page.

When choosing a stage on the page, the user will be taken to the table in Fig. 4.6,
with all the activities on the stage, once again containing general information about the
progress of the stage alongside filter and search options. The table itself shows at a quick
glance the basic information about the activity, such as its name, type, category, status,
and grade (if applicable). Icons may also appear on the far-right column of the table
indicating whether the activity is locked due to missing requirements and if the activity
is mandatory to completing the stage. Upon clicking on any activity on the table, it is
expanded to show its description and links to access the activity itself, which leads us to
the last page on the activities section, the activity details.

31

Figure 4.6: Prototype of Activities index page.

In Fig. 4.7 the activity details page is shown, containing all the information regarding
the activity, including files that may be attached to it, alongside a button to properly
start or finish the activity. If the activity requires a submission, we can also see tabs on
the top area to visualize the provided submission and the feedback provided to it. Also
in this case, we will be able to see the score of the submission throughout all the tabs.

32

Figure 4.7: Prototype of Activity details page.

4.4 Events Area

The events area is composed of one single page featuring multiple tabs and modals. Upon
first entering the page, the user is greeted with the list in Fig. 4.8, containing the upcoming
events on the platform, each showing its most important information upfront, such as the
date, location, and description. The page places a particularly bigger focus on events
which the user have been explicitly invited to, with these appearing on top of the page.
After that, the page shows all upcoming events in ascending order by its date. The user
may also use the tabs on the page to visualize events he has been to and to see all past
event on the platform.

33

Figure 4.8: Prototype of Events index page.

Upon clicking to see more details of the event, the modal in Fig. 4.9 appears on the
page showing all its details, and the details of the invited speakers to it, if any. This
modal also features options to the users state their intent of participating in the event if
it is an upcoming one. If the event was one that the user participated, an option to give
feedback to the event will appear, which opens the modal in Fig. 4.10, that allows the
user to write a feedback, grade it and choose if the feedback should be anonymous or not.

34

Figure 4.9: Prototype of the Event details modal.

Figure 4.10: Prototype of the feedback submission modal.

35

4.5 Social Feed and Messages Capabilities

The social area features a post feed like the ones found in social networks like Facebook,
LinkedIn, and Twitter, with a field to write a new post on top and the posts itself in
an infinite scroll view, as can be seen in Fig. 4.11. When writing a new post, the user
can, besides writing the text it features, add tags that fits on the topic being written and
include files to be linked with the post. When viewing posts on the feed, the user is able
to visualize the user that created the post, its content and the quantity of reaction and
comments. When clicking in a post, the page in Fig. 4.12 will appear, with the user being
able to visualize all the comments made to that post and click on its reaction to view
details as to how many of each reaction was given to the post. Still in the feed, the users
are also able to find a filter on top to browse for posts inside a specific tag, instead of
featuring all posts of the platform.

Figure 4.11: Prototype of Feed page.

36

Figure 4.12: Prototype of Post comments page.

When entering in a member profile page, the user will be able to see all posts made by
that member and updates on the activities progress for that member. From this page, the
user can also follow the member and see overall statistics of its follower and following count
and of its posting and activities information. If a user enters in its own profile, beside
his own posts it will be shown an overall progress on the activities and cards featuring
started activities that the user can continue doing, which can be seen in Fig. 4.13.

37

Figure 4.13: Prototype of the user own Profile page.

As the last section of the social area, the user can partake on chats with other users
or chat groups featuring multiple users. The chat area is like those found in several other
messaging services and can be seen in Fig. 4.14, with speech bubbles representing each
participant in the chat with timestamps for each message.

38

Figure 4.14: Prototype of the Chat page.

4.6 The Administrator Dashboard

The administrator dashboard is planned as the main area to administrators manage the
space, by registering events, activities, stages, and tags, and visualizing the users sub-
missions and providing feedback to them. The admin area appears as a separate one
from the rest of the platform, featuring a different sidebar, seen in Fig. 4.15, that, instead
of showing the areas of the site, provides links to every single option on the dashboard,
categorized by the functionality it belongs to in collapsible buttons.

39

Figure 4.15: Prototype of the Admin navigation sidebar.

While these pages were not implemented on the final version of the front-end of the
website, three types of pages were designed on Figma to represent its functionalities.
The first type of page are the indexes, seen in Fig. 4.16, which are tables that features
all instances of a certain model registered on the database, showing each of its fields,
options to view, delete or edit them and a search field to easily find the instance that the
administrator is looking for. The second type of page is shown in Fig. 4.17 and is called the
visualization page, that simply features a more detailed view on the item registered in the
database, which may feature information hidden from the table due to size constraints.
Finally, the forms in Fig. 4.18 are the pages used to create or edit information on the
platform, each featuring all the fields required to create an instance of the desired model
on the database.

40

Figure 4.16: Prototype of the Index pages from the Admin dashboard.

With the prototype of the web site made using Figma, the next and final step of the
platform development is to actually implement theses pages into a functional site, also
connecting the created front-end to the back-end described in the previous chapter.

41

Figure 4.17: Prototype of the Visualization pages from the Admin dashboard.

Figure 4.18: Prototype of the Form pages from the Admin dashboard.

42

Chapter 5

Front-End Development

The basis for any modern web page is the combination of three languages: HTML, describing
the content and organization of a web page; CSS, providing styling for the pages; and
JavaScript (JS), which adds a layer of interactivity on the website. While these three
languages alone provide the tools to create a modern website, many other technologies
and frameworks can be used to either help the front-end development or improve the
website capabilities. One of these frameworks is ReactJS [21], a JavaScript library that
allow developers to build user interface based on UI components. These components are
standalone UI elements that can be coded once and easily reused across the whole website.
For instance, let’s consider you have a button on your website, with its own HTML, CSS, and
JS code, that will be used across different pages on the site, instead of copying and paste
its entire code on each instance of its usage, ReactJS allows developers to easily create
a component for the button and use it on the entire site. This also helps if you decide
to update your button, either its style or behavior, a simple change in the component
and it will reflect across all pages that uses it, without needing to manually change every
instance like you would have using a copy-and-paste method.

ReactJS also creates a Virtual DOM [22] while rendering you web pages, that stores
a data-structure cache of the page and computes the difference with the real DOM [23] to
only change in the page the elements that are needed, avoiding the browser to recalculate
the CSS style and render the entire page again, in a process called reconciliation. For
example, if your website features a navbar containing navigation shortcuts that should
appear on every page on your site, the ReactJS library, instead of rendering the navbar in
every page change, will instruct the browser to only load the actual changes in the page,
saving resources and improving the overall performance while browsing the website. This
Virtual DOM feature is also useful while using states on ReactJS, that are special types
of variables that React keeps watching for changes on it to be rendered on the website.
When using traditional JavaScript variables, if their values are updated while the site is

43

being used, either by an API request or user interaction, the visual components are not
changed unless explicit requested to. Using ReactJS states makes this update on the
elements automatic, and, using the reconciliation feature, only the components that use
the updated state changes, without the need to reload what remained equal.

5.1 Making API Requests

To actually make the implemented pages functional, we need a way to communicate
the front-end pages to the API, which, in this project, it is done using the Axios [24]
package for ReactJS. Axios allows the creation of an object instance with some main
configurations used on the requests, such as the base URL for use on those requests, as
can be seen in the code snippet in Fig. 5.1. This instance gives access to all request type
methods, such as get, post, pacth, put and delete. Then, the created Axios instance
can be imported to each desired page on the web site, in order for a request to be made.
The get requests are usually made inside another ReactJS feature, the useEffect hooks,
which contains code to be run in each page render, since it is needed to load data from
the API to properly display the desired pages. Other types of methods, instead, may be
used outside the useEffect hook, being called when needed or requested by the user. In
Fig. 5.2, an example of a post request is shown, where both the API endpoint and the
request body is specified to the method.

Figure 5.1: Code snippet of the creation of an Axios instance.

44

Figure 5.2: Code snippet of a post request using Axios.

5.2 Navigating Through the Front-End Pages

To proper map each created page component into a route in the application, the React
Router package [25] was used. This package allows for the creation of a Router compo-
nent, containing all the routes definition inside, which is imported in the main ReactJS
file, App.js. The routes definition, as seen in Fig. 5.3, defines the URL path for the
route access and the component element, or the page, mapped to the route. This is also
the location where fixed components, such as the sidebar, are called. React Router also
provides access to the components to a useNavigate hook, which can be used to redirect
to other pages of the application when needed.

Figure 5.3: Code snippet of a route definition using React Router.

45

5.3 Managing The User Context

Since most of the pages from the web site requires the user to be logged in, it is essential
for our front-end application to be able to store and retrieve the users credentials during
runtime, also providing access to this information across all pages of the platform. To
achieve this goal, ReactJS provides the ability to use contexts, which are special com-
ponents that creates a way to pass data through the component tree without manually
providing props to each page or component that requires the context. This functionality
is then used to create the user context, that stores the user state, with all the user
information retrieved upon login, the login and sign_out methods and the functionality
to retrieve the user data if its lost upon the page reload.

The login method receives the user email and password and makes a request to the
appropriate route on the API, logging in the user. Upon receiving the API response, the
function also sets the user state and set Axios Authorization header with the retrieved
JSON Web Token, to be used on all future requests from the platform. The user data and
Token are also stored in the web browser Cookies using the js-cookie [26] ReactJS
package, to be retrieved in case the user state is lost during page reloads. To secure
the user information, this Cookies is encrypted using the crypto-js [27] package, with
a key stored in the project environment variables. The sign_out method, in contrast,
unset the user state, the Cookies and the Axios headers.

As previously stated, the user state may be lost during page reloads, or when the
user closes the page and gets back in a latter moment. To handle this situation, the user
context also uses the ReactJS useEffect hooks feature. The useEffect code inside
the context simply access the stored Cookies and use the retrieved information to set
the user state and Authorization headers. Since the user context is available across
all pages on the website, this hook is prepared to run across all the pages as well.

5.4 Achieved Implementation

Following the implementation details previously described in this document, a functional
prototype of the SkillSpace platform was developed, featuring the functionalities deemed
essential to demonstrate the platform capabilities. Due to time constraints and hindrances
found during the application development, some of the intended functionalities were not
able to be implemented on time, which will be better discussed on the next section of this
chapter.

Regarding the back-end development, most of the intended functionalities were suc-
cessfully developed, with the entire of the projected database design being implemented

46

alongside API endpoints to manipulate and manage these models. It was successful in
the development of authentication measures for the user model, alongside endpoint pro-
tections to limit its accesses from non-authorized personnel, such as common users and
administrators without the necessary clearance to the functionality. The connection with
third-party services, like Amazon S3, was also made to allow a reliable and efficient storage
of files uploaded to the system.

Regarding the use of the Figma software to design the web pages, its use was proven
to be essential once the actual front-end development started. Not only it provided a
quick way to plan and test different designs and prototypes to the required page, also
gathering feedback after each page was done, the prototypes provided a more streamlined
development once the pages were implemented on ReactJS, also helping with the provided
CSS code on the inspect feature of Figma. One area where the prototyping was cut short
was while designing the admin dashboard pages. Since most of it was intended to be very
similar to each other, only the three pages were created, one of each of the three types
described on Section 4, to avoid wasting time by doing a huge number of pages that would
be similar to each other.

The front-end development, being the last step in the development process, was the
most affected by the time constraints mentioned, but it was still able to make a usable
demonstration of all the platform functionalities from the user standpoint. By that, the
user can navigate on the platform using the sidebar and exploring the social, activities
and events areas of the web site. In the developed prototype, it is possible for the user
to navigate across the platform stages, start and finish activities and track its overall
progress on them. In the events area, the user can freely see all the upcoming events
and state their intent of participation in them. Finally, the users can also create posts
to the platform and navigate across the ones created by other members of the Space.
The code for the implemented prototype can be found in the GitHub repositories for the
back-end [28] and the front-end [29].

5.5 What was left from the scope?

On the initial stage of this project, while gathering information about the project re-
quirements, it was intended to feature more functionalities on the platform relating to
the administration management, such as financial management for paid spaces, featuring
options to directly connect to payment providers and managing invoices, and also more
analytics visualizations for each functionality of the platform, from graphs with most
popular posts and tags on the social area to statistics about the general evolution of the
users on the activities. There was also a plan to include gamification options to the users,

47

that would reward them with badges and exclusives customization options for their evo-
lution on the activities, participation on events and interactions in the social area. These
features were already not planned to be implemented on the initial scope of the platform
due to concerns with the time constraints of the project and the overall complexity that
these features, that were not considered essential for the platform use, would take to be
implemented.

Besides that, some features that were on the initial scope, most from the front-end,
were not implemented due to time constraints, the most prominent one being the adminis-
trator dashboard. Even though the sidebar for the dashboard was created as a component
in ReactJS, with its code being latter reused while creating the user sidebar, the pages
itself were not developed, thus not being possible to register items to the database from
the website. These features, however, does exist on the back-end as endpoints accessible
from the API, thus being possible to make direct requests to it to simulate what should
be possible from the admin dashboard.

Also left from the front-end implementation was the Chat page, another functionality
that, although working on the back-end, has no means of accessing it from the web
platform. Some other functionalities, such as a calendar view for the events, the ability to
provide feedback for the events and a way to finish Social activities from the Activity
Page, also falls under the category of left out implementations on the front-end that are
available to use through the API.

As far as functionalities that were limited by not being implemented on the back-end,
one would be the ability to finish Events activities, due to the logic of finishing this type
of activity being quite different from the other type available. The creation of personalized
feed suggestions based on the user followed users and tags was also not implemented on
time due to the high complexity to develop the feature. Finally, deemed not essential for
the prototype, there is also no way for a user to regain its access to the platform in case
of forgetting the password.

48

Chapter 6

Conclusion

This project started with the goal of creating a unified educational platform to allow
institutions, companies and even individuals to create a space where its members, clients
or followers could learn with the provided material in a course-like learning environment,
participate in events promoted by the space organizers and interact with each other,
building a unified, collaborative, and secure space for these educational means, all in one
single platform.

The developed application, while not complete with all intended functionalities, shows
a working prototype with that initial vision implemented, with the main functionalities
working as intended. Administrators can use the designed platform to design simple
or complex courses while users can easily navigate through it, while also explore the
community features available to them. The developed prototype code can also continue
to grow in order to become a full-fledged tool or product to be used by organizations of
different kinds to help them achieving their needs and goals.

The intention of this project is that institutions and providers of educational courses,
after starting to use the SkillSpace application, could see an increase in the engagement of
the users, transforming online learning experiences from an almost impersonal experience
to one where they can find support and build a trustable network among its peers with
similar interests and objectives, improving their overall satisfaction and retaining them in
the institution.

6.1 Future Work

In future revisions of the developed application described in this document, many new
features and improvements are planned to be made. Besides overall improvements and
validations on functionalities already on the website, the first step for future versions
would be to allow administrators to properly manage the platform from the web site, by

49

implementing the administrator dashboard that is missing from the current version of the
software. It is also important to complete the left out functionalities described in Section
5.5.

Another step would be to implement better statistics and analytic functionalities to
help administrators manage the website, billing options with the integration of third-
party payment providers and gamification options for the users, to further increase their
participation on the platform. Besides that, the API developed was made with the intent
to be used with multiple different front-ends, and in future works, it would be interesting to
develop a SkillSpace mobile application, to better fit in the way users nowadays consume
and use internet content. Furthermore, since the web front-end was done using ReactJS,
part of its code could be reused on the mobile development, by using frameworks like
React Native and Ionic.

50

References

[1] IFL Brasil’s institutional website. https://iflbrasil.com.br/, visited on 2022-27-
09. 1

[2] IFL Brasil’s platform to manage associated member’s progress. https://iflportal.
azurewebsites.net/, visited on 2022-27-09. 1

[3] Bartholomew, Daniel: SQL vs. NoSQL. https://dl.acm.org/doi/fullHtml/10.
5555/1883478.1883482, visited on 2022-27-09. 4

[4] dbdiagram.io official website. https://dbdiagram.io/home, visited on 2022-27-09.
4

[5] Node.js official website. https://nodejs.org/en/, visited on 2022-27-09. 19

[6] MySQL official website. https://www.mysql.com/, visited on 2022-27-09. 19

[7] NPM official website. https://www.npmjs.com/, visited on 2022-27-09. 19

[8] Express.js official website. https://expressjs.com/, visited on 2022-27-09. 19

[9] cors package repository. https://github.com/expressjs/cors, visited on 2022-27-
09. 19

[10] body-parser package repository. https://github.com/expressjs/body-parser, vis-
ited on 2022-27-09. 19

[11] CORS documentation on MDN Web Docs. https://developer.mozilla.org/
en-US/docs/Web/HTTP/CORS, visited on 2022-27-09. 19

[12] Sequelize package repository. https://github.com/sequelize/sequelize, visited
on 2022-27-09. 20

[13] Pop, Dragos Paul and Adam Altar: Designing an MVC model for rapid web appli-
cation development. Procedia Engineering, 69:1172–1179, 2014, ISSN 1877-7058.
https://www.sciencedirect.com/science/article/pii/S187770581400352X,
24th DAAAM International Symposium on Intelligent Manufacturing and Automa-
tion, 2013. 20

[14] bcryptjs package repository. https://github.com/dcodeIO/bcrypt.js, visited on
2022-27-09. 23

51

[15] jsonwebtoken package repository. https://github.com/auth0/
node-jsonwebtoken, visited on 2022-27-09. 24

[16] JSON Web Token official standard website. https://jwt.io/, visited on 2022-27-09.
24

[17] multer package repository. https://github.com/expressjs/multer, visited on
2022-27-09. 26

[18] aws-sdk package repository. https://github.com/aws/aws-sdk-js, visited on 2022-
27-09. 26

[19] multer-s3 package repository. https://github.com/anacronw/multer-s3, visited
on 2022-27-09. 26

[20] Figma official website. https://www.figma.com/design/, visited on 2022-27-09. 27

[21] ReactJS official website. https://reactjs.org/, visited on 2022-27-09. 43

[22] Virtual DOM documentation on ReactJS official website. https://reactjs.org/
docs/faq-internals.html, visited on 2022-27-09. 43

[23] DOM documentation on MDN Web Docs. https://developer.mozilla.org/
en-US/docs/Web/API/Document_Object_Model/Introduction, visited on 2022-27-
09. 43

[24] Axios package repository. https://github.com/axios/axios, visited on 2022-27-
09. 44

[25] React Router official website. https://reactrouter.com/en/main, visited on 2022-
27-09. 45

[26] js-cookie package repository. https://github.com/js-cookie/js-cookie, visited
on 2022-27-09. 46

[27] crypto-js package repository. https://github.com/brix/crypto-js, visited on
2022-27-09. 46

[28] Vaz, Felipe L. and André M. P. Vale: SkillSpace back end repository. https://
github.com/andremacedopv/skill-space-api, visited on 2022-27-09. 47

[29] Vaz, Felipe L. and André M. P. Vale: SkillSpace front end repository. https://
github.com/andremacedopv/skill-space-front, visited on 2022-27-09. 47

52

Appendix A

Non-standard methods in controller

Method Controller Description
addRequirements Activities Adds new requirements for an

activity
addDependents Activities Add a dependency for an activ-

ity
requirements Activities Return all requirements of an

activity
dependents Activities Return all dependents of an ac-

tivity
start ActivityUsers Start an Activity
userIndex ActivityUsers Retrieves all activities started

by the user
mySubmission ActivityUsers Get the user submission for an

activity
userSubmission ActivityUsers Allow the administrator to get

the user submission of an activ-
ity

editSubmission ActivityUsers Allows the user to edit a sub-
mission

indexSubmissions ActivityUsers Retrieves all submissions made
by users

giveFeedback ActivityUsers Allows the administrator to
provide feedback for a subms-
sion

53

editFeedback ActivityUsers Allows the administrator to
edit a feedback made for a
submssion

pendingFeedbacks ActivityUsers Retrieves all submissions pend-
ing of feedback

myChats Chats Retrieves all chats by an user
setInvites Events Send invites to users for an

event
invites Events Get all invites for an event
myInvites Events Get all invites sent to an user
createFeedback Events Send feedback to an event
feedbacks Events Get all feedbacks for an event
follow Followers Follow an user
followers Followers Retrieves all followers of an

user
following Followers Retrieves all followings of an

user
followerCount Followers Retrieves the amount of users

following an account
followingCount Followers Retrieves the amount of users

an account follows
confirmPresence Guests Confirm intention of participa-

tion on an event
comments Posts Retrieves all comments from a

post
react Reactions React to a post
removeReaction Reactions Remove the reaction to a post
userReactions Reactions Retrieves all posts the user re-

acted to
postReactions Reactions Retrieves all reactions to a post
reactionCount Reactions Retrieves the reaction count by

type of reaction for a post
startStage Stages Start a stage
finishStage Stages Finish a stage
myStages Stages Retrieves all stages started by

the user

54

myStageActivities Stages Retrieves all activities from a
stage started by the user

follow Tags Follow a tag
toggleFollow Tags Toggle following a tag
unfollow Tags Unfollow a tag
followedTags Tags Retrieve all followed tags
signup Users Create an account on the plat-

form
login Users Login on the platform
profile Users Get the profile information of

the logged user
promote Users Promote an user to admin
demote Users Demote an user from admin
updatePermissions Users Update the permissions of an

admin
deactivate Users Deactivate an user
activate Users Activate an user
updateProfilePicture Users Update or remove a user profile

picture
Table A.1: List of non-standard methods in the project
controllers

55

