

UNIVERSIDADE DE BRASÍLIA INSTITUTO DE QUÍMICA ENGENHARIA QUÍMICA

Rebecca Rodrigues de Carvalho

Projetos para uma torre de separação de n-hexano, n-heptano e n-octano

Brasília

Rebecca Rodrigues de Carvalho

Projetos para uma torre de separação de n-hexano, n-heptano e n-octano

Trabalho Conclusão do Curso de Graduação em Engenharia Química do Instituto de Química da Universidade de Brasília como requisito para a obtenção do título de Bacharel em Engenharia Química. Orientador: Prof. Dr. José Joaquín Linares León.

Brasília 2021

Este trabalho é dedicado aos meus colegas de classe, aos meus pais e aos meus professores.

AGRADECIMENTOS

Agradeço à minha família que me trouxe suporte nessa jornada, à minha mãe e meu irmão por estarem sempre ao meu lado, ao meu pai e minhas irmãs por sempre estarem dispostos a me ouvir. Agradeço a todos os professores do curso que através de seus ensinamentos permitiram que eu chegasse até aqui. Em especial agradeço pelas orientações do professor Leonardo Giordano Paterno, que me despertou interesse pela pesquisa e pela carreira acadêmica, e ao professor José Joaquín Linares León por sua imensa paciência e dedicação ao ensino das matérias de Projetos de Engenharia Química 1 e 2 e várias outras matérias do curso.

Agradeço a todos os meus colegas de curso, com a companhia de cada um foi possível chegar até aqui. Agradeço aos meus colegas veteranos por prestarem apoio e orientação em momentos difíceis, agradeço por terem desbravado as áreas de atuação que poderíamos ter em Brasília. Em especial agradeço aos amigos William Mendes Cunha e Nayara dos Santos Oliveira que me acompanharam nas disciplinas finais do curso e nas disciplinas de projetos finais. Agradeço também às amigas Manuella Tavares Silveira Portilho e Caroline Cibin Ribeiro por terem me acompanhado e auxiliado em diversas matérias ao longo do curso.

RESUMO

Neste trabalho de conclusão de curso foram elaboradas partes do projeto de uma torre de separação de n-hexano, n-heptano e n-octano. Com dados extraídos de simulações feitas pelo software Aspen HYSYS e através do método de Fenske-Underwood-Gilliland foram calculados os parâmetros iniciais para então ser calculado o custo do projeto da torre. Também foram projetados os trocadores de calor necessários para a operação da torre, as bombas centrífugas que serão utilizadas e o diagrama de controle e automação da planta projetada. Todos os cálculos realizados partem de questões propostas nas matérias de Projetos de Engenharia Química 1 e Projetos de Engenharia Química 2.

Palavras-chave: Projeto de Engenharia Química, Projeto de coluna de destilação.

ABSTRACT

In this project, parts of the project of an n-hexane, n-heptane and n-octane separation tower were elaborated. With data extracted from simulations made by the Aspen HYSYS software and using the Fenske-Underwood-Gilliland method, the initial parameters were calculated as the cost of the tower and of the equipments. The heat exchangers needed for the operation of the tower, the centrifugal pumps that must be used and the control and automation diagram of the projected plant were also designed. All calculations performed are based on questions proposed in the subjects of Chemical Engineering Projects 1 and Chemical Engineering Projects 2.

Keywords: Chemical Engineering Projects. Distillation Column Design.

LISTA DE FIGURAS

Figura 1 - Representação da torre e composição de suas correntes.	14
Figura 2 - Correntes para a determinação do balanço de massa da torre.	18
Figura 3 - Correntes da zona de retificação.	19
Figura 4 - Representação da organização do vaso pulmão, da bomba e torre	26
Figura 5 - Representação dos vasos ligados à bomba	42
Figura 6 - Diagrama simplificado das correntes a serem automatizadas	52
Figura 7 - Diagrama completo do sistema projetado	52
Figura 8 - Laço de controle 01 em detalhe	53
Figura 9 - Laço de controle 05 em detalhe	53
Figura 10 - Laço de controle 12 em detalhe	54

LISTA DE TABELAS

Tabela 1 - Dados das correntes.	16
Tabela 2 - Valores para o cálculo de estágios reais.	18
Tabela 3 - Vazões de vapor e líquido.	20
Tabela 4 - Diâmetro e seção transversal.	20
Tabela 5 - Altura da coluna.	21
Tabela 6 - Informações vaso pulmão.	22
Tabela 7 - Diâmetros estimados do vaso pulmão.	23
Tabela 8 - Dados para os cálculos do condensador.	23
Tabela 9 - Resultados para o condensador.	24
Tabela 10 - Dados para os cálculos do refervedor.	25
Tabela 11 - Resultados para o refervedor.	25
Tabela 12 - Resultados para a bomba.	26
Tabela 13 - Resultados de potência da bomba.	27
Tabela 14 - Valores obtidos para espessura e peso da torre.	28
Tabela 15 - Custo atualizado da torre.	29
Tabela 16 - Custos do vaso pulmão.	29
Tabela 17 - Custos do condensador.	30
Tabela 18 - Custos do refervedor.	30
Tabela 19 - Parâmetros para os cálculos da bomba.	31
Tabela 20 - Custos relativos à bomba.	31
Tabela 21 - Custos dos equipamentos e valor bruto do investimento.	31
Tabela 22 - Custos por hora e em 15 anos.	32
Tabela 23 - Custo de todo o projeto.	33
Tabela 24 - Especificações dos pratos	33
Tabela 25 - Especificações das correntes materiais	35
Tabela 26 - Especificações dos vasos e torres	38
Tabela 27 - Ficha de especificações da bomba	45
Tabela 28 - Ficha de especificações do refervedor	50
Tabela 29 - Especificações dos instrumentos de vazão	54
Tabela 30 - Especificações dos instrumentos de nível	55

	9
Tabela 31 - Especificações dos instrumentos de temperatura	55
Tabela 32 - Especificações dos instrumentos de pressão	56
Tabela 33 - Especificações dos laços de controle	56
Tabela 34 - Especificação das válvulas de controle	57

LISTA DE ABREVIATURAS E SIGLAS

RR - Razão de refluxo

CEPCI - Índice de custo de plantas de engenharia química

SUMÁRIO

1	INTRODUÇÃO	12
2	DESENVOLVIMENTO	13
2.1	PROJETO DA TORRE	13
2.2	PROJETO DO VASO PULMÃO	22
2.3	PROJETO INICIAL DOS TROCADORES DE CALOR	23
2.4	PROJETO INICIAL DA BOMBA CENTRÍFUGA	25
2.5	CÁLCULO DE CUSTOS DA PLANTA	27
2.5.1	Custo da torre	27
2.5.2	Custo do vaso pulmão	29
2.5.3	Custo dos trocadores de calor	30
2.5.4	Custo da bomba	30
2.5.5	Custos operacionais e totais	31
2.6	PROJETO DETALHADO DA BOMBA	41
2.7	PROJETO DETALHADO DO REFERVEDOR	47
2.8	PROJETO DE AUTOMAÇÃO DA TORRE	51
3	CONCLUSÃO	58
	REFERÊNCIAS	59
	ANEXO A – Correntes de processo da torre de destilação	60
	ANEXO B – Correntes da entrada do refervedor	64
	ANEXO C – Correntes de saída do refervedor	67
	ANEXO D - Dados da simulação de bombas	70

1 INTRODUÇÃO

Esse trabalho foi desenvolvido ao longo das disciplinas de Projeto de Engenharia Química 1 e Projeto de Engenharia Química 2 pela resolução de exercícios focados no projeto de cada etapa do projeto final. Os dados fornecidos nos enunciados de cada exercício, que se encontram nos anexos, provém de simulações realizadas pelo software Aspen HYSYS. Ao longo das duas matérias ministradas são revistos os principais conceitos estudados durante todo o curso, a destacar viabilidade econômica de projetos, definição e alcance do projeto, engenharia de detalhe e construção, funcionamento e operação, segurança em um projeto, conceitos de engenharia de processo, dentre os quais estão: torres, recipientes e reatores, trocadores de calor, bombas, projeto de instrumentação e de controle, entre outros.

Nesse trabalho será realizado o projeto de uma torre de separação de uma mistura de hidrocarbonetos composta por n-hexano, n-octano e n-heptano assim como o projeto dos trocadores de calor e das bombas que serão necessários para a sua operação. Será avaliado o custo do projeto da torre e seus trocadores acompanhados de um vaso pulmão para então encontrar a melhor razão de refluxo a ser adotada no processo. Por fim será realizado um projeto inicial de controle e automação para todo o processo.

O projeto de destilação de misturas possui um papel central na Engenharia Química. Processos de separação são de suma importância para a maioria dos processos industriais, as colunas de destilação são o carro-chefe das indústrias de petróleo, petroquímica, química e processos relacionados (STICHLMAIR; KLEIN; REHFELDT, 2021).

Nesse processo, em cada prato da coluna, coexistem duas fases da mistura, líquido e vapor, em equilíbrio termodinâmico. Como as substâncias a serem separadas possuem volatilidades diferentes é possível separá-las explorando essa diferença de volatilidade. O mecanismo fundamental de destilação é a transferência de massa entre uma fase gasosa e uma fase líquida. A força motriz para esta transferência de massa é a diferença entre a concentração real e de equilíbrio das fases (STICHLMAIR; KLEIN; REHFELDT, 2021). A coluna é aquecida de tal forma que o gradiente de temperatura seja decrescente de sua base ao topo, ou seja, as temperaturas mais elevadas se encontram na base da coluna. A presença dos pratos na coluna permite separar a mistura por permitir que em cada prato haja uma mistura de líquido e vapor de composições diferentes, a medida que os compostos mais voláteis entram em ebulição as misturas dos pratos mais elevados se tornam mais ricas nos compostos

mais leves, enquanto as misturas dos pratos abaixo da alimentação se tornam mais ricas nos compostos menos voláteis.

Para a operação de uma coluna é necessário projetar mais do que apenas os pratos e a coluna em si, são necessários aparelhos de suporte que permitam que a separação aconteça inteiramente. O uso de bombas centrífugas para transporte de líquidos é fundamental para qualquer processo químico, no projeto apresentado as bombas permitem o transporte das substâncias a serem separadas, seja do vaso pulmão de volta para a coluna ou da coluna para uma unidade de recolhimento do destilado ou produto de fundo. É extremamente importante que sejam projetadas corretamente, evitando assim problemas de cavitação.

Outros aparelhos de grande importância para a operação de uma coluna de separação são os trocadores de calor. Em uma coluna de destilação faz se necessária a presença de um condensador, ao topo da coluna, e de um refervedor, ao fundo, para que as correntes que retornam à coluna estejam na temperatura correta para o processo. Os trocadores projetados têm como função manter a coluna em funcionamento ótimo e contínuo ao fornecer correntes de refluxo e de líquido a ser enriquecido para a coluna. Além disso é fundamental a presença de um projeto de automação e controle para que eventuais problemas e mau funcionamentos sejam identificados de forma imediata.

2 DESENVOLVIMENTO

2.1 PROJETO DA TORRE

No projeto de uma planta de um processo de separação através de uma torre de destilação é possível utilizar o método de Fenske-Underwood-Gilliland para uma destilação multicomponente. Os componentes da mistura em questão a serem separados são n-hexano, n-heptano e n-octano, os dois primeiros são removidos como produto de topo e o último é removido como produto de fundo. Para a realização dos cálculos o n-hexano é considerado o componente chave leve, o n-octano é considerado o componente chave pesado e o n-heptano é um componente intermediário. Assim, o n-hexano será removido como destilado no topo da coluna, juntamente com parte do n-heptano, e o n-octano será removido como produto de fundo. Na Figura 1 está organizada a situação problema apresentada, assim como as composições de cada uma das correntes da coluna de destilação.

Figura 1 - Representação da torre e composição de suas correntes.

O cálculo do equilíbrio de fases na corrente do destilado é realizado considerando o condensador como um condensador total, assim é possível calcular o ponto de bolha da mistura através de iterações. Aproximando o sistema de um sistema ideal, torna-se possível utilizar a equação de Antoine.

As temperaturas de ebulição dos componentes são $T_{B1} = 341,95 K, T_{B2} = 371,5 K$ e $T_{B3} = 398,8 K$ respectivamente para o n-hexano, n-heptano e n-octano, então a temperatura do ponto de bolha está compreendida entre a maior temperatura de ebulição e a menor temperatura de ebulição. Então utilizando a equação de Antoine (1), na qual P_i^{sat} está em mmHg e T_e em graus Celsius, com os respectivos coeficientes para cada componente é encontrada a pressão de saturação de cada substância.

$$\log_{10} P_i^{sat} = A_i + \frac{B_i}{T_e + C_i}$$
(1)

Após calcular tais valores, é possível calcular a constante de equilíbrio utilizando a lei de Raoult. Aplicável a soluções ideais, a lei de Raoult pode ser utilizada de forma a obter um resultado aproximado em sistemas com baixas pressões e em soluções diluídas. As soluções que se aproximam de uma solução ideal incluem misturas de hidrocarbonetos não polares (PLISGA et al., 2011). O cálculo da constante de equilíbrio é realizado através da equação (2).

$$K_i = \frac{P_i^{sat}}{P} \tag{2}$$

Na equação [2] Pi^{sat} representa a pressão de saturação do componente analisado e *P* representa a pressão do sistema. Com o valor da constante de equilíbrio, também é possível calcular a fração molar dos componentes em sua fase líquida e vapor, através da equação (3).

$$K_i = \frac{y_i}{x_i} \tag{3}$$

Também é possível calcular a volatilidade relativa, ao dividir a constante de equilíbrio do componente analisado pela constante de equilíbrio do componente chave pesado. Assumindo que os subscritos 1, 2 e 3 se referem ao n-hexano, n-heptano e n-octano respectivamente, o cálculo das volatilidades relativas é feito pela equação abaixo.

$$K_i = \frac{K_i}{K_3} \tag{4}$$

Então o último passo para calcular o ponto de bolha é somar as frações de vapor encontradas, na tentativa de que esse resultado seja igual a 1. Caso seja maior do que 1, é preciso retornar e diminuir a temperatura do ponto de bolha assumida no início da iteração, caso o resultado seja menor que 1 é preciso aumentar a temperatura de bolha assumida inicialmente até que o resultado do somatório das frações de vapor seja igual a um.

Tais parâmetros foram obtidos pelo software Aspen Plus, e os resultados se encontram resumidos na tabela abaixo.

Tabela 1- Dados das correntes.

	Alimenta	Alimentação Destilado		Resíduc)	Volatilidade	
Componente	$A / kmol h^{-1} xi_A D / kmol h^{-1} xi_D$			ri	relativa		
			μ	λ_D^{n} B / kmol h		[α]	
Hexano	40	0,40	40	0,534	0	0	2,7
Heptano	35	0,35	34	0,453	1	0,04	2,22
Octano	25	0,25	1	0,013	24	0,96	1,00

Para calcular o número mínimo de pratos é utilizada a equação de Fenske (5), em que x_{cl} é referente à fração do componente chave leve e x_{cp} é referente à fração do componente chave pesado, D é relativo à composição da corrente no destilado e B é relativo à composição da corrente de produto e fundo.

$$N_{min} + 1 = \frac{log\left[\left(\frac{x_{cl}}{x_{cp}}\right)_{D}\left(\frac{x_{cp}}{x_{cl}}\right)_{B}\right]}{log(\alpha_{cl,cp})_{médio}}$$
(5)
$$N_{min} + 1 = \frac{log\left[\left(\frac{0.453}{0.013}\right)_{D}\left(\frac{0.96}{0.04}\right)_{B}\right]}{loglog (2,22)} = 8,437 - 1$$

$$N_{min} = 7,437$$

Dessa forma, arredondando para o maior número inteiro mais próximo ao valor encontrado, a estimação inicial para o número mínimo de pratos é de 8 pratos. Para calcular a quantidade de estágios reais através da equação de Gilliland é necessário antes calcular a razão de refluxo mínima pela equação de Underwood (6) utilizando os valores da Tabela 1 e considerando *q*igual a 1.

$$\frac{\alpha_{cl} \cdot x_{cl,A}}{\alpha_{cl} - \theta} + \frac{\alpha_{cp} \cdot x_{cp,A}}{\alpha_{cp} - \theta} + \dots + \frac{\alpha_{i} \cdot x_{i,A}}{\alpha_{i} - \theta} + \dots = 1 - q$$

$$\frac{2,7 \cdot 0,4}{2,7 - \theta} + \frac{1 \cdot 0,25}{1 - \theta} + \frac{2,22 \cdot 0,35}{2,22 - \theta} = 1 - 1$$

$$2, 10 \cdot \theta^{2} + 7,58 \cdot \theta + 5,99 = 0$$

$$\theta_{1} = 1,172 \ e \ \theta_{2} = 2,426$$
(6)

Os valores encontrados para $\theta_1 e \theta_2 estão contidos na faixa esperada, entre o menor e o maior valor de volatilidade relativa, ou seja <math>\alpha_{cl} < \theta_i < \alpha_{cp}$. Com tal valor é possível calcular a volatilidade relativa utilizando a equação abaixo para cada um dos valores de θ encontrados.

$$\frac{\alpha_{cl} \cdot x_{cl,D}}{\alpha_{cl} - \theta} + \frac{\alpha_{cp} \cdot x_{cp,D}}{\alpha_{cp} - \theta} + \dots + \frac{\alpha_{i} \cdot x_{i,D}}{\alpha_{i} - \theta} + \dots = R_{m} + 1$$
(7)

Para $\theta = 1, 172$:

 $\frac{2,7 \cdot 0,534}{2,7 - 1,172} + \frac{1 \cdot 0,013}{1 - 1,172} + \frac{2,22 \cdot 0,453}{2,22 - 1,172} = R_m + 1$

$$R_m = 0,943 - 0,075 + 0,959 - 1$$

 $R_{m1} = 0,8276$

Para $\theta = 2,426$:

$$\frac{2,7 \cdot 0,534}{2,7 - 2,426} + \frac{1 \cdot 0,013}{1 - 2,426} + \frac{2,22 \cdot 0,453}{2,22 - 2,426} = R_m + 1$$

$$R_m = 0,395 - 0,018 - 0,207 - 1$$

$$R_{m2} = -0,6289$$

O resultado negativo encontrado não possui sentido físico, assim, o verdadeiro valor da razão de refluxo mínima é igual a $R_m = 0,8276$. Com esse valor em mãos, é possível calcular o número aproximado de estágios reais através da equação de Gilliland (8), na qual o valor de X é calculado através da equação (9), o novo número estimado de pratos é calculado pela equação (10) e o número real de pratos é calculado pela equação (11) considerando uma eficiência de 80%.

$$Y = 1 - exp\left[\left(\frac{1 + 54.4 \cdot X}{11 + 117.2 \cdot X}\right)\left(\frac{X - 1}{\sqrt{X}}\right)\right]$$
(8)

$$X = \frac{\frac{L}{D} - \left(\frac{L}{D}\right)_{min}}{\frac{L}{D} + 1}$$
(9)

$$N = \frac{N_{\min} + Y}{1 - Y} \tag{10}$$

$$N_R = \frac{N}{\eta_G} \tag{11}$$

Os cálculos são realizados com valores para a taxa de refluxo iguais a 20%, 40%, 60% e 100% acima da taxa de refluxo mínima encontrada anteriormente. Os valores encontrados se encontram resumidos na Tabela 2.

Incremento em RR	Taxa de refluxo	Х	Y	Ν	NR
20%	0,9937	0,083	0,571	18,68	24
40%	1,1564	0,153	0,502	15,94	20
60%	1,3216	0,213	0,449	14,31	18
100%	1,6520	0,311	0,372	12,44	16

Tabela 2 - Valores para o cálculo de estágios reais.

Para determinar as vazões volumétricas de líquido e vapor da torre é realizado o balanço de massa da região de enriquecimento da torre. Na Figura 2 estão representadas todas as correntes externas à torre e na Figura 3 estão representadas as correntes da região de retificação.

Figura 2 - Correntes para a determinação do balanço de massa da torre.

Figura 3 - Correntes da zona de retificação.

As correntes de vapor e líquido dentro da coluna são consideradas constantes. Na região de retificação, acima da alimentação, a corrente de líquido, L, que circula na região é equivalente ao valor da corrente de refluxo que volta para a coluna. O vapor, ao chegar ao condensador, é completamente condensado, ou seja, trata-se de um condensador total, e se separa nas correntes de refluxo, RR, e destilado, D. A corrente de alimentação, F, é um líquido saturado, ou seja, qualquer adição de calor fará com que o líquido se converta em vapor (CENGEL, BOLES, 2013). O valor da corrente de vapor que chega ao topo da coluna, V, é encontrado calculando a soma da corrente de refluxo, RR, com o destilado, D. As equações de balanço de massa da região de enriquecimento se encontram a seguir.

$$V = L + D \tag{12}$$

$$L = RR \cdot D \tag{13}$$

$$V = D \cdot (RR + 1) \tag{14}$$

Com tais equações é possível calcular o valor de cada corrente para todos os valores de razão de refluxo encontrados. Com o valor da densidade molar da mistura,

 $\rho = 0,0349 \ kmol/h$, é possível converter a vazão molar da corrente de vapor em vazão volumétrica.

Incremento	RR (L/D)	$L(kmol.h^{-1})$	$V(kmol.h^{-1})$	$V(m^3.h^{-1})$
20%	0,9937	74,582	149,582	4286,013
40%	1,1564	87,012	162,012	4642,183
60%	1,3216	99,442	174,442	4998,352
100%	1,6520	124,303	199,303	5710,691

Tabela 3 - Vazões de vapor e líquido.

Com o objetivo de evitar o arraste de líquido dentro da coluna, é calculada a velocidade limite da fase vapor pela equação de York (15). Assumindo que *k*é igual a 0,23, que a densidade do líquido, ρ_L , é igual a 616, 1 *kg*. m^{-3} e que a densidade do vapor, ρ_G , é de 3, 242 *kg*. m^{-3} .

$$v_{Lim} = k \sqrt{\frac{\rho_L - \rho_G}{\rho_G}}$$
(15)
$$v_{Lim} = 0.23 \sqrt{\frac{616.1 \, kg.m^{-3} - 3.242 \, kg.m^{-3}}{100}}$$

$$V_{Lim} = 0, 23 \sqrt{3,242 \, kg.m^{-3}}$$

$$v_{Lim} = 3,162 \, ft. \, s^{-2} = 0,964 \, m. \, s^{-1}$$

Então é possível calcular a seção transversal mínima da coluna, $S_{mín}$, e o diâmetro mínimo, $D_{mín}$, através das equações abaixo, para cada valor calculado para a taxa de refluxo. Como fator de segurança será adicionado 20% do valor encontrado ao valor final do diâmetro. Os valores encontrados estão representados na Tabela 4.

$$S_{\min} = \frac{V}{v_{\lim}}$$
(16)

$$D_{min} = \sqrt{\frac{4 \times S_{min}}{\pi}}$$
(17)

Incremento em RR	Smin (m^2)	Dmin (<i>m</i>)	S (<i>m</i> ²)	D (<i>m</i>)
20%	1,23	1,25	1,78	1,50
40%	1,34	1,30	1,93	1,56
60%	1,44	1,35	2,07	1,62
100%	1,65	1,45	2,37	1,74

Tabela 4 - Diâmetro e seção transversal.

Então é possível calcular os valores de altura da coluna. Inicialmente é calculada a altura do fundo da coluna utilizando a equação (18), utilizando a densidade molar do produto de fundo, que é igual a 5,375 $kmol/m^3$. A altura da torre foi calculada utilizando como critério 1,5 ft de separação entre os pratos pelo processo ser considerado um processo limpo e será considerado um tempo de retenção de 10 minutos. Com o valor da altura de fundo é possível calcular a altura desconsiderando o fundo, pela equação (19) e então a altura total pela equação (20).

$$H_{fundo} = \frac{(L+A) \cdot 10}{60 \cdot 5,375 \cdot S}$$
(18)

$$H_{sem\,fundo} = (N_R - 2) \cdot 0,46 + 3 \cdot 0,96 \tag{19}$$

$$H_{total} = H_{fundo} + H_{sem\,fundo} \tag{20}$$

Para cada valor estimado de razão de refluxo são obtidos os resultados da Tabela 5. Tabela 5 - Altura da coluna.

Incremento de RR	$H_{sem fundo}(m)$	H _{fundo} (m)	H (m)
20%	13,00	3,04	16,04
40%	11,16	3,01	14,17
60%	10,24	2,98	13,22
100%	9,32	2,93	12,25

2.2 PROJETO DO VASO PULMÃO

Os dados para o projeto do vaso pulmão se encontram na Tabela 6. Dados como tensão de cisalhamento, S_t , eficiência de solda, E, complexidade, X, e espessura de corrosão, CA, são valores fornecidos pelo enunciado. A pressão de operação, $P_{D,op}$, é obtida através dos dados contidos na ficha de informação das correntes e será convertida para a unidade a ser utilizada. Para utilizá-la nos cálculos foi acrescido o valor de 1,8, assim obtendo a pressão de desenho, $P_{D, desenho}$. Índices de custo de plantas de projetos de engenharia química serão utilizados para estimar os preços do vaso pulmão, além de uma correção de tal valor para o ano de 2018. Os cálculos de diâmetro mínimo do vaso pulmão serão realizados considerando cada razão de refluxo calculada anteriormente para a coluna de destilação, e serão utilizadas as equações (21), (21), (23) e (24).

$$Q = \frac{V}{\rho_{D}}$$
(21)

$$Vol_{\acute{u}til} = \frac{Q \cdot t}{60 \min/h}$$
(22)

$$Vol_{geo} = Vol_{\acute{u}til} \cdot 2 \tag{23}$$

$$D_{min} = \sqrt[3]{\frac{4 \cdot Vol_{geométrico}}{\pi \cdot (L/D)}}$$
(24)

Tabela 6 - Informações vaso pulmão.

t _r (min)	10
L/D	5
$\rho_D(kmol/m^3)$	6,638
Е	0,85
S _t	1055
Х	2

$P_{D,op}(kg/cm^2)$	1
$P_{D,desenho} (kg/cm^2)$	2,8
CA (mm)	3

Após realizadas as contas para o diâmetro do vaso pulmão, os resultados encontrados para cada razão de refluxo estão na Tabela 7. Para análise de cálculos futuros, foram adicionados 20% do valor calculado ao valor do diâmetro, e também foi analisado um acréscimo de 0,3m no diâmetro calculado.

Tabela 7 - Diâmetros estimados do vaso pulmão.

Incremento de	Q	$\mathit{Vol}_{_{\acute{u}til}}$	Vol _{geo}	D _{min}	D _{20%}	D(m)
RR	(m^3/h)	(m^{3})	$(m^{3}))$	<i>(m)</i>	<i>(m)</i>	D _{0,3} (<i>m</i>)
20%	22,53	3,75	7,51	1,24	1,49	1,54
40%	24,40	4,06	8,13	1,27	1,53	1,57
60%	26,27	4,38	8,76	1,30	1,56	1,60
100%	30,02	5,00	10,00	1,36	1,63	1,66

2.3 PROJETO INICIAL DOS TROCADORES DE CALOR

Na planta em questão serão utilizados dois trocadores de calor, um condensador, utilizado no topo da coluna, e um refervedor, utilizado no fundo da coluna. Primeiramente serão realizados os cálculos para o condensador. O valor do calor latente do destilado, $Q_{L,D}$, é retirado das fichas de especificação das correntes fornecidas, seu valor é de 7602 *kcal/mol*. A temperatura da água de refrigeração é a temperatura de entrada, T_e , de 28°C. A temperatura de saída, T_s , é de 45°C. O coeficiente global de troca térmica, U, é igual a 500 $W/m^{2o}Cou$ 429, 92 *kcal/m²h°C*. É utilizado um fator de correção de 0,86. Tais dados estão resumidos na Tabela 8. Utilizando tais valores é possível calcular o calor trocado no condensador utilizando a equação (25). Então é utilizada a equação (26) para calcular a temperatura através de uma média logarítmica entre as temperaturas da corrente de destilado de entrada e saída. Por fim é calculada a área de troca térmica pela equação (27).

$Q_{L,D}$ (kcal/kmol)	7602
U (<i>W</i> / <i>m</i> ² . ^o C)	500
U (<i>kcal/m². h. ⁰C</i>)	429,92
$T_{D}(^{\circ}C)$	79,66
$T_{e}^{(\mathbf{Q}C)}$	28
$T_{s}(^{\circ}C)$	45

Tabela 8 - Dados para os cálculos do condensador.

$Q_{cond} = V \cdot Q_{L,D}$	(25)
$\begin{pmatrix} T & -T \end{pmatrix} - \begin{pmatrix} T & -T \end{pmatrix}$	

$$\Delta T = \frac{\left(\frac{T_D - T_e}{T_D - T_s}\right)}{\ln\left(\frac{T_D - T_s}{T_D - T_s}\right)}$$
(26)

$$A_{cond} = \frac{Q_{cond}}{U \cdot \Delta T}$$
(27)

Os valores obtidos para cada termo calculado variando a razão de refluxo, se encontram na Tabela 9.

Tabela 9 - Resultados para o condensador.

Incremento de RR	Qcond (<i>kcal/h</i>)	$\Delta T (^{\circ}C)$	$A_{cond} (m^2)$
20%	1137121,31	42,596	62,094
40%	1231616,53	42,596	67,254
60%	1326111,75	42,596	72,414
100%	1515102,19	42,596	82,734

Para o cálculo do refervedor o calor latente da mistura de fundo, é também encontrado nas fichas de especificação. O calor latente do produto de fundo, $Q_{L,B}$, é de 7847 *kcal/mol*, o coeficiente global de troca térmica,*U*, é de 750 *W/m²* Cou 644, 88 *kcal/m² h* °C. Diferentemente do cálculo do condensador, é utilizada a temperatura do vapor de baixa pressão, T_{vap} , que é igual a 230°C. Seus dados se encontram na Tabela 11.

O calor trocado no refervedor, Q_{refv} , é calculado pela equação (28). Como ocorre mudança de fase no refervedor, as correntes possuem temperatura constante, assim, a variação de temperatura é calculada pela equação (29). A área de troca do refervedor é encontrada através da equação (30).

$$Q_{refv} = (L + A) \cdot Q_{L,B}$$
⁽²⁸⁾

$$\Delta T = T_{vap} - T_{res} \tag{29}$$

$$A_{refv} = \frac{Q_{refv}}{U \cdot \Delta T}$$
(30)

Tabela 10 - Da	ados para	os cálcul	os do re	fervedor

$Q_{L,B}$ (kcal/kmol)	7847	
U (<i>W/m</i> . ² ° <i>C</i>)	750	
U (<i>kcal/m</i> ² . <i>h</i> . ^o <i>C</i>)	644,88	
$T_D(^{\underline{o}}C)$	150,6	
$T_{vap} (^{\underline{o}}C)$	230	

Os resultados encontrados para cada razão de refluxo se encontram na Tabela 11.

Tabela 11 - Resultados para o refervedor.

Incremento de RR	$Q_{refv}(kcal/h)$	$\Delta T(^{\circ}C)$	$A_{refv}(m^2)$
20%	1327171,31	79,4	25,91

40%	1421666,53	79,4	27,76
60%	1516161,75	79,4	29,61
100%	1705152,19	79,4	33,30

2.4 PROJETO INICIAL DA BOMBA CENTRÍFUGA

Primeiramente é calculada a vazão volumétrica de refluxo, Q_{ref} , então é calculada a carga hidráulica no impulso, H_{imp} , e a carga hidráulica na admissão, H_{adm} . Para o cálculo da altura na admissão foi somado metade do diâmetro do vaso pulmão a 3 metros de elevação do vaso. E para o cálculo da altura no impulso foi somada a altura da bomba a 3 metros de elevação. A Figura 4 mostra a organização do vaso pulmão e da bomba com relação à torre de destilação.

Figura 4 - Representação da organização do vaso pulmão, da bomba e torre

Para realizar o cálculo das pressões manométricas de admissão, $P_{m, adm}$, e de impulso, $P_{m, imp}$, foram utilizadas as equações (31) e (32) que correlacionam cargas hidráulicas a aceleração gravitacional, g, e a densidade mássica da corrente do destilado, ρ_D . E então foi calculada a diferença de pressão pela equação (33). Os resultados para cada valor estimado da razão de refluxo se encontram na Tabela 12.

$$P_{m,adm} = H_{adm} \cdot \rho_D \cdot g \tag{31}$$

$$P_{m,imp} = H_{imp} \cdot \rho_D \cdot g \tag{32}$$

$$\Delta P = P_{m,imp} - P_{m,adm} \tag{33}$$

Incremento	$O(m^3/h)$	H _{adm}	H_{imp}	P (Pa)	<i>P</i> (<i>Pa</i>)	$\Lambda P(Pa)$
de RR	Q(<i>m</i> / <i>n</i>)	<i>(m)</i>	<i>(m)</i>	adm ```	imp \$	
20%	11,236	3,771	19,043	22788,61	159222,31	136433,70
40%	13,108	3,787	17,170	22889,76	147899,88	125010,12
60%	14,981	3,803	16,221	22985,87	142166,43	119180,56
100%	18,726	3,833	15,255	23165,17	136324,53	113159,36

Tabela 12 - Resultados para a bomba.

Assim é possível encontrar a potência útil, Pot_{util} , a potência absorvida, Pot_{abs} , e a potência elétrica, Pot_{el} , através das equações (34), (35) e (36) considerando uma eficiência hidráulica de 45% e uma eficiência elétrica de 90%. Os resultados se encontram na Tabela 13. $Pot_{util} = \frac{Q \cdot \Delta P}{3600}$ (34)

$$Pot_{abs} = \frac{Pot_{\acute{u}til}}{0.45}$$
(35)

$$Pot_{el} = \frac{Pot_{abs}}{0.9}$$
(36)

Incremento de RR	$Pot_{\mathrm{\acute{u}til}}\left(\mathrm{W} ight)$	Pot _{abs} (W)	$Pot_{el}^{}(\mathrm{kW})$
20%	425,809	946,24	1,051
40%	455,182	1011,51	1,124
60%	495,950	1102,11	1,225
100%	588,617	1308,04	1,453

Tabela 13 - Resultados de potência da bomba.

2.5 CÁLCULO DE CUSTOS DA PLANTA

Para avaliar a viabilidade econômica do projeto é necessário realizar uma avaliação econômica que comprove sua rentabilidade. Utilizando as equações fornecidas juntamente

27

com os dados retirados do livro Chemical Engineering Design foi possível avaliar a rentabilidade do projeto em questão.

2.5.1 Custo da torre

Os coeficientes estabelecidos para a torre de destilação são: a = 10.000, 00, b = 29,00 e n = 0,85, para os pratos os coeficientes são: a = 180,00, b = 340,00 e n = 1,90. Então é possível calcular a espessura mínima (e_{min}) e a espessura por tensão longitudinal (e_{long}) usando as equações (37) e (38) em que P_i representa a pressão interna do vaso, D representa o diâmetro da torre calculado anteriormente, S representa o valor máximo de tensão a qual o material é capaz de resistir, e é igual a 906, 96 kg/cm^2 , E representa a eficiência de solda, e é igual a 0, 85.

$$e_{\min} = \frac{P_i D}{2 \cdot S \cdot E - 1, 2 \cdot P_i}$$
(37)

$$e_{long} = \frac{P_i D}{4 \cdot S \cdot E - 0, 8 \cdot P_i}$$
(38)

Então é calculado o peso da coluna, dado por W_v , pela equação (39). O termo C_w é um fator que representa uma relação entre a massa dos componentes para torres de destilação complexas e é igual a 1,5 no caso analisado. Já os demais termos se referem a estruturas físicas da torre, D_c se refere ao diâmetro interno somado à espessura da torre, calculada anteriormente, e *H*se refere à altura da torre também calculada anteriormente. Os resultados encontrados considerando o incremento da razão de refluxo avaliada estão na Tabela 14.

$$W_{v} = 240 \cdot C_{w} \cdot D_{e} \cdot \left(H + 0, 8D_{e}\right) \cdot e_{tot}$$

$$\tag{39}$$

Tabela 14 - Valores obtidos para espessura e peso da torre.

Incremento de RR	e _{min}	e_{long}	$W_v(N)$	m (kg)
20%	3,43	1,71	56090,91	5723,56
40%	3,56	1,78	52674,28	5374,93
60%	3,70	1,85	52038,03	5310,00
100%	3,95	1,97	53511,59	5460,37

Então é possível estimar o custo total da torre de destilação tratando-a como um vaso, C_{vaso} , e somando com os custos dos pratos, C_{pratos} através das equações (40), (41) e (42). Com dados de custos estimados de 2007 é possível atualizar aproximadamente os valores utilizando o índice de custo de plantas de engenharia química (CEPCI), ou seja, é possível obter o fator de correção de Lang para o investimento pela equação (43).

$$C_{Vaso} = a + b \cdot W_{v}^{n}$$
(40)

$$C_{Prato} = a + b \cdot D^{n} \tag{41}$$

$$C_{total} = C_V + C_P \cdot N_R \tag{42}$$

$$C_{2018} = C_{2007} \times \frac{I_{2018}}{I_{2007}}$$
(43)

Os resultados obtidos para cada incremento na razão de refluxo se encontram na Tabela a seguir.

Incremento de RR	C _{Vaso} (\$)	$C_{Prato}(\$)$	$C_{total,2007}(\$)$	$C_{total,2018}(\$)$
20%	55333,00	919,16	77392,74	83849,26
40%	52974,88	977,39	72522,70	78572,93
60%	52533,25	1035,40	71170,50	77107,93
100%	53554,85	1150,82	71967,99	77971,95

Tabela 15 - Custo atualizado da torre.

2.5.2 Custo do vaso pulmão

Para os cálculos do vaso pulmão foram considerados os dados apresentados na Tabela 6. Com tais valores, é possível calcular o custo do equipamento pelas equações (44), (45) e (46). Então é feita a conversão do custo de 2006 para o valor estimado de 2018, através dos índices de custo de plantas de engenharia química (CEPCI), representados por *I*na equação (47). Os resultados se encontram na Tabela 16.

$$e = \frac{P_{D,op} \cdot (D/2) \cdot 1000}{S_t \cdot E - 0.6 \cdot P_{D,op}} + CA$$
(44)

$$W = 24, 6 \cdot D_{0,3} \cdot (L + 0, 8 \cdot D) \cdot (e + X)$$
(45)

$$C_{2006} = -2500 + 200 \cdot W^{0,6} \tag{46}$$

$$C_{2018} = C_{2006} \cdot \frac{I_{2018}}{I_{2006}}$$
(47)

Tabela 16 - Custos do vaso pulmão.

Incremento	e (mm)	W (kg)	C2006 (\$)	C2018 (\$)
20%	5,4278	2517,76	19460,36	22156,61
40%	5,4805	2646,97	20129,75	22918,75
60%	5,5306	2773,41	20772,27	23650,29
100%	5,6241	3019,06	21987,99	25034,44

2.5.3 Custo dos trocadores de calor

Utilizando os resultados de calor latente e área de troca térmica encontrados para cada um dos trocadores de calor, que se encontram nas Tabelas 9 e 11 é possível estimar o custo dos equipamentos através da equação (48) considerando que se tratam de trocadores de calor do tipo casco tubo. Os custos serão ajustados para valores de 2018 pelo índice de custo de plantas de engenharia química (CEPCI). Serão utilizados os parâmetros iguais a a = 24000, b = 46 e n = 1, 2.Os resultados obtidos se encontram na Tabela 17 para o condensador e na Tabela 18 para o refervedor.

$$C_{cond} = a + b \cdot A_{cond}^{n} \tag{48}$$

Tabela 17 - Custos do condensador.

Incremento	C _{ccnd,2007} (\$)	C _{cond,2018} (\$)
20%	30522,49	33068,84
40%	31178,21	33779,26

60%	31844,07	34500,68
100%	33203,98	35974,04

Tabela 18 - Custos do refervedor.

Incremento	$C_{refv,2007}($ \$)	$C_{refv,2018}(\$)$
20%	26286,17	28479,10
40%	26482,86	28692,21
60%	26682,19	28908,17
100%	27088,24	29348,09

2.5.4 Custo da bomba

Para calcular os custos relacionados à bomba será utilizado o método apresentado no arquivo Chemical Engineering Design. Serão adotados os parâmetros da Tabela 19 para o motor da bomba e para o primeiro estágio da bomba centrífuga. Os cálculos serão realizados separadamente, então será obtido um resultado para o custo da bomba centrífuga, C_{BC} , e um resultado para o custo do motor da bomba, C_{MB} , calculados pelas equações (49) e (50) em que Q_{ref} é a razão de refluxo.Então os resultados se encontram na Tabela 20.

$$C_{MB.2007} = a + b \cdot Q_{ref}^{n} \tag{49}$$

$$C_{BC,2007} = a + b \cdot Q_{ref}^{n}$$
(50)

Tabela 19 - Parâmetros para os cálculos da bomba.

	Motor da bomba	Bomba primeiro estágio
a	-950	6900
b	1770	206
n	0,6	0,9

Tabela 20 - Custos relativos à bomba.

Incremento em RR	C _{bomba,2007} (\$)	C _{Motor,2007} (\$)	$C_{B,2007}(\$)$
20%	7473,76	2553,88	10027,34
40%	7559,15	2893,42	10452,23
60%	7643,32	3214,02	10856,97
100%	7808,65	3810,57	11618,78

2.5.5 Custos operacionais e totais

Para encontrar o valor bruto do investimento, *Y*, será utilizada a equação (51), na qual $C_{CE,2007}$ é o custo total com os equipamentos, f_L é o fator de Lang, e é igual a 4, 74. Os valores encontrados para cada incremento na razão de refluxo se encontram na Tabela 21.

$$Y = C_{CE,2007} \cdot f_L \tag{51}$$

Tabela 21 - Custos dos equipamentos e valor bruto do investimento.

Incremento em RR	C _{CE,2007} (\$)	Y (\$)
20%	163685,38	775868,709
40%	160761,85	762011,1824
60%	161321,82	764665,4412
100%	165862,13	786186,5154

Considerando que a planta operará por 15 anos, os consumos de água e refrigeração do topo da torre são calculados com a equação (52). Em que $C_{p,água}$ é a capacidade calorífica da água, igual a 1 *kcal/kg°C*, f_a é o preço do m^3 da água de refrigeração, $\rho_{água}$ é a densidade da água, T_{AS} é a temperatura de saída da água do trocador, T_{AE} é a temperatura de entrada da água e C_{Top} é o calor que é trocado no condensador. Ao final os custos relativos ao consumo são convertidos de horas para anos. Para calcular os custos operacionais relativos aos vapores utilizados no aquecimento do refervedor é utilizada a equação (53), em que L_v se refere ao calor latente do vapor, na temperatura de operação do trocador. Para calculá-lo foi utilizada a

equação de Regnault (54). Ainda sobre os termos da equação (54), f_v se refere ao custo da tonelada do vapor de aquecimento e C_{fundo} é o calor total trocado no refervedor.

$$C_{\acute{a}gua,h} = \left(\frac{C_{T_{op}}}{Cp_{\acute{a}gua} \cdot (T_{as} - T_{ae}) \cdot \rho_{\acute{a}gua}}\right) \times f_{a}$$
(52)

$$C_{vapor,h} = \left(\frac{C_{fundo}}{L_v}\right) \cdot f_v$$
(53)

$$L_{\nu} = 606, 5 - 0,695 \cdot T \tag{54}$$

Para que os cálculos estejam de acordo com o tempo de operação da planta, é necessário converter os valores de horas para anos. então são calculados os custos operacionais relativos à eletricidade pela equação (55), em que f_{el} se refere ao custo da energia e Pot_{el} se refere à potência consumida pela bomba o resultado em horas é convertido para anos. Então é possível calcular o custo operacional total pela equação (56). Os resultados encontrados se encontram na Tabela 22.

$$C_{el,h} = Pot_{el} \cdot f_{el} \tag{55}$$

$$C_{OP,15} = C_{água,15} + C_{vap,15} + C_{el,15}$$
(56)

Incremento	C _{água,h}	C água,anos	C _{vap,h}	C _{vap,anos}	$C_{el,h}$	C _{el,anos}	C _{total 15 anos}
20%	6,69	879839,67	29,81	3921659,68	0,26	34571,72	4836071,07
40%	7,24	952950,39	31,94	4200864,94	0,28	36956,55	5190771,87
60%	7,80	1026061,10	34,06	4480070,19	0,31	40266,48	5546397,77
100%	8,91	1172282,54	38,31	5038480,71	0,36	47790,19	6258553,44

Tabela 22 - Custos por hora e em 15 anos.

Então para se calcular os custos totais do projeto os valores encontrados para os custos operacionais são somados aos valores de custos de investimentos. Assim é possível determinar a melhor razão de refluxo para a torre de destilação. Tais valores se encontram na Tabela 23, a partir dos valores encontrados é possível inferir que o projeto com menos gastos

é o projeto que utiliza a razão de refluxo em 20% a mais do valor calculado no início do projeto.

Incremento de RR	Custos Totais (\$)
20%	5611939,78
40%	5952783,05
60%	6311063,21
100%	7044739,95

Tabela 23 - Custo de todo o projeto.

Nas Tabelas abaixo se encontram maiores especificações sobre a coluna e os vasos a ela conectados.

Tabela 24 - Especificações dos pratos.					
ESPECIFICAÇÕES PRATOS					
Número do equipamento	1				
Descrição		Torre de des	tilação		
Número de seções da coluna					
SEÇÃO 1 D	DA COLUNA	L			
Identificação		Enriquecin	nento		
De prato/A prato	1	10			
Pressão	0,35	0,45	$K \alpha / cm^2 \alpha$		
Perda de pressão	0,05		Kg/clil g		
Temperatura	79,66	101,4	°C		
Vazão mássica de vapor/fase orgânica	13898,769	13898,769	K ɑ/h		
Vazão mássica de líquido/fase aquosa	6931,269	6931,269	Kg/II		
Vazão volumétrica de vapor/fase	4286.81	4286.81			
orgânica @ P e T de operação	4200,01	4200,01	m³/h		
Vazão volumétrica de líquido/fase	11 23	11,23			
aquosa @ P e T de operação	11,23				
Densidade da fase vapor/fase orgânica	3 242	3 242			
@ P e T de operação	5,212	5,212	Kø/m ³		
Densidade da fase líquida/fase aquosa @	616.1	616.1	126/111		
P e T de operação	010,1	010,1			

Tabela 24 - Especificações dos pratos.

Viscosidade da fase vapor/fase orgânica		0.4000	
@ P e T de operação	0,2083	0,1909	D
Viscosidade da fase líquida/fase aquosa			сР
@ P e T de operação	0,2383	0,1909	
Diâmetro	15	00	mm
Número de pratos	1	0	
Espaçamento entre pratos	46	50	mm
Tipo de pratos (válvulas, perfurados)	válv	ulas	
Altura de recheio	-		mm
Tipo de recheio (anéis Raschig, selas			
Intalox)	-		
SEÇÃO 2 I	DA COLUNA		
Identificação		Esgotam	ento
De prato/A prato	10	24	
Pressão	0,45	0,54	$K \alpha / cm^2 \alpha$
Perda de pressão	0,05		Kg/ciii g
Temperatura	101,4	150,6	°C
Vazão mássica de vapor/fase orgânica	13898,769	13898,769	Kα/h
Vazão mássica de líquido/fase aquosa	16221,26	16221,26	Kg/II
Vazão volumétrica de vapor/fase	22.53	22.53	
orgânica @ P e T de operação	22,00	22,33	m ³ /h
Vazão volumétrica de líquido/fase	33.48	33.48	111 / 11
aquosa @ P e T de operação	55,10	55,10	
Densidade da fase vapor/fase orgânica	3 242	3 242	
@ P e T de operação	<i>c</i> , <i>_</i>	-,	Kg/m ³
Densidade da fase líquida/fase aquosa @	616.1 616.1		6
P e T de operação	010,1		
Viscosidade da fase vapor/fase orgânica	0,1909 0,1613		
@ P e T de operação			cP
Viscosidade da fase líquida/fase aquosa			
@ P e T de operação	-,-/ -/	-,	
Diâmetro	1500	mm	
---------------------------------------	----------	----	
Número de pratos	10		
Espaçamento entre pratos	460	mm	
Tipo de pratos (válvulas, perfurados)	válvulas		
Altura de recheio	-	mm	
Tipo de recheio (anéis Raschig, selas			
Intalox)	-		

Tabela 25 - Especificações das correntes materiais

CORRENTES MATERIAIS					
Número de corrente 1					
Descrição	Alimentação				
Pressão	0,45	Kg/cm ² g			
Temperatura	101,4	°C			
Vazão mássica	9810	Kg/h			
Vazão molar	100	Kmol/h			
Entalpia total	-4.842e+006	Gkcal/h			
Fração de sólidos		0			
Fração de vapor	0				
PROPRIEDADES DA FASE LÍQUIDA					
Vazão volumétrica @P	16.2	m ³ /h			
e T de operação	10,2	111 / 11			
Peso molecular	98,1	Kg/kmol			
Densidade	605,5	Kg/m ³			
Viscosidade	0,1909	cP			
Condutividade	0 09886	W/m·°C			
térmica					
Calor específico	2,473	kJ/kg·°C			
Tensão superficial	11,97 dinas/cm				
COMPOSIÇÃO					
Componente	Fração molar	Fração mássica			
Hexano	0,4 0,351				

Heptano	0,35	0,357
Octano	0,25	0,291

CORRENTES MATERIAIS					
Número de corrente	Número de corrente 1				
Descrição	Des	Destilado			
Pressão	0,35	0,35			
Temperatura	79,66		°C		
Vazão mássica	6967		Kg/h		
Vazão molar	75		Kmol/h		
Entalpia total	-3,569e+006		Gkcal/h		
Fração de sólidos		0			
Fração de vapor		0			
Р	ROPRIEDADES DA FASE LÍ	QUIDA			
Vazão volumétrica @P	11.3		m ³ /h		
e T de operação	11,5				
Peso molecular	92,9		Kg/kmol		
Densidade	616,7		Kg/m ³		
Viscosidade	0,2083		cP		
Condutividade	0 1025		W/m·°C		
térmica	0,1025		w/m C		
Calor específico	2,361		kJ/kg·°C		
Tensão superficial	13,33		dinas/cm		
COMPOSIÇÃO					
Componente	Fração molar	Fra	ação mássica		
Hexano	0,534	0,495			
Heptano	0,453	0,488			
Octano	0,013	0,013 0,015			

CORRENTES MATERIAIS

Número de corrente	1				
Descrição	Resíduo				
Pressão	0,54	Kg/cm ² g			
Temperatura	150,6	°C			
Vazão mássica	8525	Kg/h			
Vazão molar	75	Kmol/h			
Entalpia total	-3.826e+006	Gkcal/h			
Fração de sólidos		0			
Fração de vapor		0			
Р	PROPRIEDADES DA FASE LÍ	QUIDA			
Vazão volumétrica @P	14.50	m ³ /h			
e T de operação	14,39	111 /11			
Peso molecular	113,7	Kg/kmol			
Densidade	584,3	Kg/m ³			
Viscosidade	0,1613	сР			
Condutividade	0.0033	W/m.°C			
térmica	0,0955	w/m C			
Calor específico	2,716	kJ/kg·°C			
Tensão superficial	9,797	dinas/cm			
COMPOSIÇÃO					
Componente	Fração molar	Fração mássica			
Hexano	0	0			
Heptano	0,04	0,0352			
Octano	0,96 0,9647				

Tabela 26 - Especificações dos vasos e torres.

ESPECIFICAÇÕES VASOS/TORRES/REATORES				
Número do equipamento	1			
Descrição	Torre de destilação			
Pressão no topo	0,35			
Pressão no fundo	0,55	Kg/cm ² g		
Pressão de projeto	3,5			

Temperatu	ıra no topo		79,66				
Temperatu	ra no fundo		150,6				
Temperatur	a de projeto		180,6				
Nível norma	al de líquido		4400				
Nível máxin	no de líquido						
(80	%)		-				
Nível máxin	10 de líquido		000	mm			
(20	%)		880				
Alt	ura		17230				
Diân	netro		1512				
Mat	erial		Aço carbono				
	P]	ROPRIEDADE	CS DO FLUÍDO				
Densidade da	fase leve @P						
e T de opera	ção no prato		3,242				
cha	ave						
Densidade da	a fase pesada						
@P e T de o	operação no	616,1 Kg/m ³					
prato	chave						
		CONE	XÕES				
Sigla	Número	Diâmetro	Serviço				
Α	1		Saída de vapor p	pelo topo			
В	2		Entrada do re	efluxo			
С	3		Aliment	0			
D	4		Vapor do refe	rvedor			
E	5		Líquido de fundo				
F	6	2"	2" Ventilação				
G	7	2"	2" Drenagem				
Н	8	2"	Purga com v	rapor			
I, J, K	9		Medidor de temperatura				
L, M	10		Medidor de	nível			
Ν	11	24"	Bocal de ins	peção			

ESPECIFICAÇÕES VASOS/TORRES/REATORES					
Número do equipamento 3					
Descrição	Vaso pulmão				
Pressão no topo	0,35				
Pressão no fundo	1,019	Kg/cm ² g			
Pressão de projeto	3,5				
Temperatura no topo	79,66	°C			
Temperatura no fundo	79,66				

Temperatur	a de projeto		109,66		
Nível norma	al de líquido		770		
Nível máxim	10 de líquido		1232		
(80	%)				
Nível máxim	no de líquido		308	mm	
(20	%)		500		
Alt	ura		7710		
Diân	netro		1540		
Mat	erial		Aço carbono		
	P	ROPRIEDAD	ES DO FLUÍDO		
Densidade da	fase leve @P				
e T de opera	ção no prato		3,242		
cha	ave				
Densidade da	a fase pesada				
@P e T de o	peração no		616,1	Kg/m ³	
prato	chave				
		CONE	CXÕES		
Sigla	Número	Diâmetro	Serviço	D	
Α	1		Entrada do l	íquido	
В	2		Entrada do r	efluxo	
С	3		Saída		
D	4		Medida de	nível	
E	5	Medida de nível			
F	6	4" Ventilação			
G	7	2" Drenagem			
ESQUEMA DO RECIPIENTE					

2.6 PROJETO DETALHADO DA BOMBA

Será feito o projeto da bomba de refluxo da torre de destilação que separa a mistura de n-C6, n-C7 e n-C8. O sistema é composto por uma torre que recebe a alimentação em formato de líquido saturado em ponto de bolha e é introduzida em uma torre de fracionamento. Nela, pela parte inferior, extrai-se uma corrente enriquecida em n-octano, enquanto pelo topo, obtém-se um destilado líquido rico em n-hexano. Como parte do projeto, existe uma bomba centrífuga cuja função é formar o refluxo da torre, como ilustrado na figura abaixo. Na figura, também são representadas as pressões de operação dos vasos envolvidos no projeto da bomba.

Figura 5 - Representação dos vasos ligados à bomba.

Alguns dados devem ser considerados antes de iniciar o projeto da bomba. Para estimar a perda de pressão nas tubulações, será considerada no duto de admissão uma perda de pressão de $0,5 kg cm^{-2} km^{-1}$ de tubo. Já para o duto de impulsão, há uma perda de $2 kg cm^{-2} km^{-1}$ de tubo. Para as estimações dos comprimentos dos tubos, será aplicada a equação (57).

$$L = 1, 3 \cdot H \tag{57}$$

As dimensões do vaso pulmão, representado em C2, são as seguintes: d=1 m; comprimento = 5m. A altura total da torre de destilação, representada em C1, é de 12,3 m, com um diâmetro de 1,6 m. O projeto será feito considerando uma vazão volumétrica de refluxo de 13, 1 $m^3 h^{-1}$, com uma densidade mássica da corrente de 616, 5 $kg m^{-3}$. Além disso, será considerado que a válvula fornece uma perda de carga de 0, 1 $kg cm^{-2}$.

Para começar a projetar a bomba, é preciso analisar as contribuições positivas e negativas em sua aspiração e impulsão. Na aspiração da bomba em questão, a pressão é igual à pressão interna do vaso pulmão e contribui de forma positiva para o cálculo a ser realizado. A altura do tanque em relação ao solo e o nível de líquido contido nele também influenciam positivamente nos cálculos, nesse caso, o tanque C2 opera com metade de sua capacidade total, ou seja, o nível de líquido dentro do vaso é de 0,5m. A contribuição negativa para os cálculos da pressão na aspiração são relativos à tubulação e seus acidentes. Assim será usada

a equação (57) para calcular o comprimento da tubulação que vai do tanque pulmão à bomba. Tal valor é multiplicado pelo valor de perda de pressão por comprimento da aspiração para se obter o valor de perda de pressão total.

$$L = 1, 3 \cdot H = 1, 3 \cdot 3m = 3, 9m$$

$$P_{tub} = \frac{0.5kg \, cm^{-2}m^{-1}}{1000} \cdot L = 5 \cdot 10^{-4} \, kg \, cm^{-2}m^{-1} \cdot 3, 9m$$

$$P_{tub} = 1,95 \cdot 10^{-3} \, kg \, cm^{-2}$$

Na impulsão da bomba as contribuições positivas são dadas pela pressão na torre de destilação, pela altura da torre em relação ao solo, pela válvula e pela pressão exercida pela tubulação. Seguindo o mesmo raciocínio feito para a aspiração, considerando que o comprimento da tubulação é igual à soma das alturas da torre em relação ao solo e sua altura total, a pressão exercida pela tubulação na impulsão é encontrada pela equação (58):

$$L = H_{solo} + H_{torre}$$

$$L = 3 m + 12, 3 m = 15, 3 m$$

$$P_{tub} = \frac{2kg \ cm^{-2}m^{-1}}{1000} \cdot L = 2 \cdot 10^{-3} \ kg \ cm^{-2}m^{-1} \cdot 15, 3 m$$

$$P_{tub} = 3, 9 \cdot 10^{-2} \ kg \ cm^{-2}$$
(58)

Então, primeiro é calculada a pressão na aspiração. Considerando P_A referente à pressão na aspiração, P_{tp} a pressão do tanque pulmão, P_h a pressão relativa à altura do tanque em relação ao solo, P_{liq} a pressão exercida pelo líquido presente no tanque pulmão e P_{tub} a pressão perdida na tubulação, o cálculo de P_A é feito a partir da relação abaixo. $P_A = P_{tp} + P_h + P_{liq} - P_{tub}$ (59)

Com os dados fornecidos é obtido:

$$P_{A} = 1kg \ cm^{-2} + \frac{616.5 \ kg \ m^{-3} \cdot 9.81m \ s^{-2} \cdot (3m + 0.5m)}{98067 \ cm^{2} \ s^{-2} \ m^{-1}} - 1,95 \cdot 10^{-3} \ kg \ cm^{-2}$$

 $P_{A} = 1,21 \ kg \ cm^{-2}$

Então é feito o cálculo da pressão na impulsão a partir da mesma lógica, pela equação (60).

$$P_I = P_{td} + P_H + P_{tub} + P_{valv}$$

$$\tag{60}$$

Em que P_{td} é referente à perda de pressão devido à torre de destilação, P_H é a perda de pressão devido à altura da torre de destilação em relação ao solo, P_{tub} é a perda de carga na tubulação e P_{valv} é referente à perda de carga na válvula. Com os valores, a memória de cálculo se torna:

$$P_{I} = 1,35kg \ cm^{-2} + \frac{616,5 \ kg \ m^{-3} \cdot 9,81 \ m \ s^{-2} \cdot (3m+12,3m)}{98067 \ cm^{2} \ s^{-2} \ m^{-1}} - 3,9 \cdot 10^{-2} kg \ cm^{-2} + 0,1 \ kg \ cm^{-2} \qquad P_{I} = 2,43 \ kg \ cm^{-2}$$

Assim, o ΔP de operação da bomba e o ΔP de shut off são obtidos pelas equações (61) e (62). $\Delta P_{op} = P_I - P_A$ (61) $\Delta P_{op} = 2,43 kg cm^{-2} - 1,21 kg cm^{-2}$ $\Delta P_{op} = 1,22 kg cm^{-2}$

$$\Delta P_{shut off} = 1.2 \cdot \Delta P_{op}$$

$$\Delta P_{shut off} = 1.2 \cdot 1,22 \ kg \ cm^{-2}$$

$$\Delta P_{shut off} = 1,46 \ kg \ cm^{-2}$$
(62)

Com tais pressões calculadas, é possível obter as pressões de aspiração e de impulsão máxima por meio dos seguintes cálculos, considerando que o tanque C_2 está cheio e que P_{proj} é a pressão estabelecida pelo projeto para o vaso C2, P_h é a pressão exercida pela altura do tanque em relação ao solo, P_{liq} é a pressão exercida pelo líquido do vaso C2 completamente

cheio, nesse caso, o líquido ocupa o equivalente a um metro de altura dentro do vaso completamente cheio, e P_{tub} é a perda de carga gerada pela tubulação:

$$P_{m\acute{a}x\,asp} = P_{proj} + P_h + P_{liq} - P_{tub}$$
(63)

$$P_{m \acute{a}x \, asp} = 4,5 \, kg \, cm^{-2} + \frac{616,5 \, kg \, m^{-3} \cdot 9,81m \, s^{-2} \cdot (3m+1m)}{98067 \, cm^2 \, s^{-2} \, m^{-1}} - 1,95 \, \cdot \, 10^{-3} \, kg \, cm^{-2}$$

$$P_{max \, asp} = 4,74 \, kg \, cm^{-2}$$

Já a pressão máxima na impulsão é dada pela equação (64).

$$P_{m \acute{a}x imp} = P_{m \acute{a}x asp} + \Delta P_{shut off}$$

$$P_{m \acute{a}x imp} = 4,74 \ kg \ cm^{-2} + 1,46 \ kg \ cm^{-2} = 6,20 \ kg \ cm^{-2}$$
(64)

Partindo para o cálculo das vazões, os valores da vazão máxima e vazão de projeto são dados por, considerando que Q, vazão normal de operação, é igual a 13, 1 $m^3 h^{-1}$:

$$Q_{min} = Q \cdot 0, 6$$

$$Q_{min} = 13, 1 \cdot 0, 6 = 7, 86 m^{3} h^{-1}$$

$$Q_{proj} = Q \cdot 1, 2$$

$$Q_{proj} = 13, 1 \cdot 1, 2 = 15, 72 m^{3} h^{-1}$$
(66)

O cálculo de potência absorvida é dado pela seguinte relação (67).

$$W_{a}(CV) = \frac{Q \cdot \Delta P_{shut off}}{27,4}$$

$$W_{a}(CV) = \frac{13.1 \, m^{3} \, h^{-1} \cdot 1.46 \, kg \, cm^{-2}}{27,4} = 0,69 \, CV$$
(67)

Convertendo de CV para Wé obtido o seguinte resultado. $W_a = 0,51 \, kW$

A potência hidráulica é dada pela equação (68), considerando uma eficiência de 45%:

$$W_{h} = \frac{Wa}{\eta}$$

$$W_{h} = \frac{0.51 \, kW}{0.45} = 1,14 \, kW$$
(68)

47

E a potência real consumida é dada pela seguinte relação, em que η_m é a eficiência mecânica e é igual a 92,5%:

$$W_{h} = \frac{Wh}{\eta_{m}}$$

$$W_{c} = \frac{1.14 \ kW}{0.925} = 1,23 \ kW$$
(69)

	ESPECIFICAÇÕES BOMBAS					
Identificação do equipamente	D	Operação	Res	Reserva		
operação / reserva		Operação	i i i i i i i i i i i i i i i i i i i			
Descrição		Bor	nba de refluxo			
Número de bombas operação	/	01a	0	1b		
reserva		01a	0	10		
Tipo de bomba (centrífuga,						
volumétrica alternativa,	Centrífuga					
volumétrica rotativa)						
Funcionamento (contínuo ou	l	Contínuo	Con	Contínuo		
descontínuo / série ou paralelo)		Continuo		Continuo		
CARACTERÍSTICAS DO	S FLUÍDO	S E CONDIÇ	ÕES DE OPER	AÇÃO		
PARTE DA BOMBA	Asp	iração	Impul	são		
Vazão volumétrica de		13.1		m ³ /h		
operação		15,1		111 / 11		
Pressão	1,21	kg/cm ² g	2,43	kg/cm ² g		
Temperatura	80,6	°C	80,6	°C		
Densidade	616,5	616,5 kg/m ³ 61		kg/m ³		
Viscosidade	0,2083	2083 cP 0,2083 cP		cP		
Pressão de vapor	1,033	kg/cm ² g	1,033	kg/cm ² g		

Tabela 27 - Ficha de especificações da bomba

CARACTERÍSTICAS DE PROJETO DA BOMBA					
Vazão de projeto (1 op	10 ou 120% da vazão de eração)	15,72	m ³ /h		
Vazão mínima de pr op	Vazão mínima de processo (60% da vazão de operação)				
Pressão na aspiração na vazão de projeto 1,21					
Pressão na impuls	ão na vazão de projeto	2,43	Kg/onn g		
Pressão	diferencial	1,22	kg/cm ²		
Altura	m				
NPSH	m				
Máxima pressão difer	kg/cm ²				
Pressão máxima na aspiração 4,74					
Pressão máx	Kg/CIII g				
Diâmetro da tubula	ção aspiração/impulsão		polegadas		
CC	ONDIÇÕES DE PROJETO N	IECÂNICO			
Pressão de projeto	4,5		Kg/cm ² g		
Temperatura de projeto	°C				
CA	RACTERÍSTICAS DE ACIO	NAMENTO			
Potência elétrica a vazão de projeto	kW				
ESQU	EMA DO SISTEMA DE BON	MBEAMENTO			

2.7 PROJETO DETALHADO DO REFERVEDOR

Os trocadores de calor da coluna projetada são do tipo casco tubo, nesse tipo de trocador a transferência de calor ocorre entre um fluido que escoa dentro dos tubos e outro que escoa fora dos tubos, através do casco (ÇENGEL, GHAJAR, 2012). No caso do refervedor, o trocador de calor que se encontra na base da coluna, o objetivo é fornecer calor ao fluido interno aos tubos para fazê-lo retornar à coluna na fase vapor. Enquanto no condensador ocorre a situação contrária, é retirado calor do fluido para retorná-lo à coluna na fase líquida. A simulação com ajuda do Aspen HYSYS resultou que o refervedor precisa de 796 Mcal/h para a sua operação, e será utilizado vapor de baixa pressão cuja temperatura de condensação é de 180 °C como fluido de troca de calor.

O projeto dos trocadores de calor da coluna de destilação analisada é realizado de forma separada. Inicialmente foi projetado o refervedor utilizando a equação (70) para determinar o coeficiente global de troca térmica. Nessa equação h_c representa o coeficiente individual de troca de calor do fluido quente, h_f representa o coeficiente individual de troca de calor do fluido quente, h_f representa o coeficiente individual de troca de calor do fluido quente, h_f representa o coeficiente individual de troca de calor do fluido quente, h_f representa o coeficiente individual de troca de calor do fluido quente, h_f representa o coeficiente individual de troca de calor do fluido frio. Tais parâmetros dependem do tipo de fluido quente a ser utilizado no

refervedor, nesse caso, será utilizado vapor de água. Como tais coeficientes são tabelados, para essa combinação de fluidos os coeficientes encontrados na literatura são iguais a $h_c = 9800 \ kcal/m^2 \ h^{\circ}C$, $h_f = 1000 \ kcal/m^2 \ h^{\circ}C$, que representam os coeficiente individual de transmissão de calor para o fluido quente e frio respectivamente, e $r_c = 1,5 \cdot 10^{-4} m2 \ h^{\circ}C/kcal$ e $r_f = 1,5 \cdot 10^{-4} m2 \ h^{\circ}C/kcal$, que representam o fator de deposição de cada um dos fluidos utilizados..

$$\frac{1}{U} = \frac{1}{h_c} + \frac{1}{h_f} + r_c + r_f$$

$$\frac{1}{U} = \frac{1}{9800} + \frac{1}{1000} + 1,5 \cdot 10^{-4} + 1,5 \cdot 10^{-4}$$
(70)

$$\frac{1}{U} = 1,40 \cdot 10^{-3}$$
$$U = 713,25 \ kcal/m^2 \ h^{\circ}C$$

Então deve ser calculada a variação de temperatura no refervedor pela equação (71), uma vez que o fluido de troca de calor opera tanto na entrada quanto na saída da corrente em seu ponto de condensação. Nessa equação T_{vap} representa a temperatura do vapor de baixa pressão, e é igual a 180°*C*, e T_{rec} representa a temperatura do resíduo, e é igual a 150, 6°*C*.

$$\Delta T = T_{vap} - T_{res}$$

$$\Delta T = 180 - 150, 6$$
(71)

 $\Delta T = 29, 4^{\circ}C$

Então é calculado o vapor latente de vaporização do processo pela equação de Regnault (72). Para então estimar a área de troca térmica do trocador de calor pela equação (73) em que Qrepresenta a quantidade de calor que o refervedor necessita, 796 000 *kcal/h*. $L_v = 606, 5 - 0, 695 \cdot T_{vap}$ (72) $L_v = 606, 5 - 0, 695 \cdot 180$ $L_v = 481, 4 kcal/kg$

$$A = \frac{Q}{U \cdot \Delta T}$$

$$A = \frac{796\,000}{713,25 \cdot 29,4}$$

$$A = 37,96\,m^2$$
(73)

51

Convertendo as pressões fornecidas pela simulação de bar para kg/cm^2g , a pressão de entrada da corrente de vapor passa a ser igual a 1,97 kg/cm^2g e a pressão de saída 1,99 kg/cm^2g . A pressão de 10 *bar* dentro do tubo é convertida para 10,2 kg/cm^2g , já a pressão de saída do tubo do trocador de calor é encontrada ao somar a perda de carga igual a 0,7 kg/cm^2g .

Para encontrar o diâmetro dos tubos a serem utilizados foi adotada a equação (74), que divide a área de troca térmica pela geometria do tubo.

$$A = \pi \frac{D_c^2}{4}$$

$$D_c = \sqrt{\frac{4A}{\pi}}$$

$$D_c = \sqrt{\frac{4 \cdot 37,96}{\pi}}$$

$$D_c = 6,95m$$

$$(74)$$

Então para o cálculo do número de tubos é considerado que o diâmetro de cada tubo, $D_{T'}$, é igual a ³/₄", ou 1, 9 *cm*, por ser o diâmetro exterior mais utilizado em serviços limpos, não corrosivos e pouco viscosos, e é utilizada a relação abaixo (75). Em que L representa o comprimento dos tubos, igual a 20 pés, ou 6,096 m, fornecido pelo enunciado.

$$N_{tubos} = \frac{A}{\pi DL}$$

$$N_{tubos} = \frac{37,96}{\pi \cdot 6,95 \cdot 6,096}$$

$$N_{tubos} = 104$$

$$(75)$$

Assim, serão necessários 104 tubos para o refervedor. A espessura destes tubos é escolhida de acordo com o fluido que transportam e pelo seu diâmetro. Como foram adotados tubos de diâmetro igual a ³/₄" para um fluido limpo não corrosivo, serão utilizados tubos de espessura BWG14, ou 2,11mm. Além disso, por se tratar de um serviço limpo a disposição dos tubos será triangular.

ESPECIFICAÇÕES TROCADORES DE CALOR							
Número do equipamento					-		
Descrição				Refervedor da torre de destilação			
Tipo de trocador (cas	sco-1	tubo, placas	5,		Casco-	tubo	
tubos concêr	ntric	cos)			Caseo-	luoo	
Para casco-tubo, defin	nir c	tipo TEM	A		AK	U	
Disposição (horizo	onta	l/vertical)			Horizo	ontal	
Circulação (forçada	, ter	mosifão)			Força	ıda	
Número de	E	m série ou		1	1		
carcaças estimadas		paralelo?		1	L		
CARACTER	ÍST	ICAS DOS	FLUÍDO	DS E CONI	DIÇÕES D	E OPERA	,ÇÃO
Lado		CASCO / C EXTERIOR FRIO DO TRO PLAC		SCO JUÍDO DOR DE	TUBO / TUBO INTERIOR/FLUÍDO QUEN DO TROCADOR DE PLAC		UBO DO QUENTE DE PLACAS
		Entrada Saída			Entrada	Saída	
Vazão total		1417	70	Kg/h			Kg/h
Fração de vapor/gás	5	0	1		1	1	
Vazão de vapor/gás	5	0	99,98	K a/h	1653,5	1653,5	K a/h
Vazão de líquido		14170	0	Kg/II	-	-	Kg/II
Temperatura		148,6	150,6	°C	180	180	°C
Pressão		1,99	2,04	Kg/cm2 g	10,2	10,9	Kg/cm2 g
Perda de pressão permitida		0,07		Kg/cm2	0,07 Kg/c		Kg/cm2
Coeficiente individua de transmissão de cal	al or	1000		Kcal / h m2 °C	9800 Kcal / h °C		Kcal / h m2 °C
Fator de deposição		0,000)15	h m2 °C/ kcal	0,00015 h m2 °C kcal		h m2 °C/ kcal

Tabela 28: Ficha de especificações do refervedor.

Coeficiente global de	712.05			Kcal / h m2
transmissão de calor		/13,25		°C
ΔTml		29,4		
FT		1		
Calor trocado		0,796		Gcal/h
С	CONDIÇÕES DE PROJETO MECÂNICO			
Pressão de projeto	12,7			Kg/cm2 g
Temperatura de projeto	202,5			°C
CARACTERÍSTICAS CONSTRUTIVAS DO TROCADOR				
Área de troca	de calor	38		m2
Diâmetro do	os tubos	3/4"	polegadas/mm	
Comprimento	dos tubos	20	pés/mm	
Espessura do	os tubos	BWG14	BWG	
Espaçamento entre c	0,083	pés/mm		
Tipo de disposição dos tubos (triangular,		Triongular		
triangular rotada, quadi	rangular, rômbica)	111ang	gulai	
Diâmetro do	o casco	22,8		pés/mm

2.8 PROJETO DE AUTOMAÇÃO DA TORRE

A corrente de alimentação da coluna é pré-aquecida por um trocador de calor, E-1, que opera com a corrente de saída do fundo da torre, antes de ser enviada para a torre de fracionamento, C-1. Então o alimento acessa a torre C-1 onde ocorre a separação. Pelo topo, obtém-se uma corrente de vapor enriquecida em n-hexano que será condensado em sua totalidade e enviado a um vaso pulmão C-2. Dele, obtém-se a corrente refluxo, devolvida à torre, C-1, com ajuda de uma bomba, P-1, e o destilado que sai do sistema. Pelo fundo da torre é extraída uma corrente que é dividida, uma parte que irá para o refervedor, E-3, e formará o vapor que sobe pelo setor de esgotamento e a corrente resíduo que é enviada para aproveitamento de sua energia ao trocador E-1 com ajuda da bomba P-2.

Figura 6 - Diagrama simplificado das correntes a serem automatizadas.

Adicionando a esse diagrama os instrumentos necessários para a operação de todo o projeto é obtido então o diagrama da Figura 7.

Figura 7 - Diagrama de controle completo do sistema projetado.

É dado destaque aos laços de controle na alimentação, representado na Figura 8, em que FT-01 representa o medidor de vazão da alimentação. Tal medidor está conectado a um controlador de vazão, FC-01, que por sua vez está conectado à válvula FCV-01. Assim é controlada a vazão de entrada na torre.

Figura 8 - Laço de controle 01 em detalhe.

Outro laço presente no projeto é o que se localiza entre a saída do vaso pulmão e a coluna de destilação. Nesse laço é importante controlar a vazão de refluxo que entra na coluna, assim mantendo a taxa de refluxo calculada. Os instrumentos demonstrados na Figura 10 são: FT-05, transmissor de sinal de vazão; FC-05, controlador de vazão; FIC-05, instrumento controlador de vazão; FCV-05, válvula de controle de vazão.

Figura 9 - Laço de controle 05 em detalhe.

O último laço de controle do projeto está localizado entre a coluna de destilação e a corrente de produto de fundo. Representado na Figura 10, tal laço tem como objetivo regular as correntes de saída da coluna, mais especificamente, do produto de fundo. O instrumento de medida e transmissão de sinal de nível LIT-12 é conectado a um controlador de vazão, FC-12, que regula a abertura da válvula FCV-12.

Figura 10 - Laço de controle 12 em detalhe.

As demais especificações do sistema de automação e controle da coluna se encontram nas Tabelas a seguir.

ESPECIFICAÇÕES INSTRUMENTOS DE VAZÃO					
Identificação	Localização (núm. da tubulação)	Fase (L, G ou M)	Vazão normal / kg/h		
FC-01	01	L	-		
FT-01	01	L	-		
FC-05	05	L	-		
FT-05	05	L	-		
FIC-05	05	L	-		

Tabela 29 - Especificações dos instrumentos de vazão

FIC-06	06	L	-
FC-09	09	G	-
FIC-09	09	G	-
FC-12	12	L	-

Tabela 30 - Especificações dos instrumentos de nível.

ESPECIFICAÇÕES INSTRUMENTOS DE NÍVEL				
Identificação	Localização (núm. do vaso)	Tipo de interfase (L-L ou L-V/G)	Nível normal / mm	
LIC-01	C-1	L-V	-	
LIC-02	C-2	L-L	-	

Tabela 31 - Especificações dos instrumentos de temperatura.

ESPECIFICAÇÕES INSTRUMENTOS DE TEMPERATURA					
Identificação	Localização (núm. da	Fase	Temperatura		
Identificação	tubulação ou vaso)	(L, G ou M)	normal / °C		
TI-01	01	L	-		
TI-02	02	L	-		
TT-09	C-1	М	-		
TC-09	C-1	М	-		
TI-03	03	G	-		
TI-04	04	L	-		
TI-06	06	L	-		
TI-07	07	L	-		
TI-08	08	М	-		
TI-09	09	G	-		
TI-10	10	L	-		
TI-12	12	L			

Tabela 32 - Especificações dos instrumentos de pressão.

ESPECIFICAÇÕES INSTRUMENTOS DE PRESSÃO					
Identificação	Localização (núm. da tubulação ou vaso)	Fase (L, G ou M)	Pressão normal / kg/cm² g		
PI-01	01	L	-		
PI-02	02	L	-		
PI-03	03	G	-		
PI-04	04	L	-		
PI-05	05	L	-		
PI-06	06	L	-		
PI-07	07	L	-		
PI-09	09	G	-		
PI-11	11	L	-		
PI-12	12	L	-		

Tabela 33 - Especificações dos laços de controle.

ESPECIFICAÇÕES LAÇOS DE CONTROLE					
Identificação	Localização (núm. da	Descrição da	Elementos vinculados (medidor, controle,		
mecânico	tubulação ou	ação	acionador e válvula de		
	vaso)		controle)		
FT-01 / FC-01	01	Controle da alimentação da torre	FT-01: Medidor de vazão FC-01: Controlador de vazão FCV-01: Válvula de controle		
FT-05/ FC-05	05	Controle da vazão do refluxo	FT-05: Medidor de vazão FC-05: Controlador de vazão FIC-09: Controlador de vazão FCV-05: Válvula de controle		
TIC-09	09	Controle da temperatura da torre de destilação	TT-09: Medidor de temperatura TIC-09: Controlador de temperatura (controlador mestre)		

			FT-09: Medidor de vazão
		Controle da	FIC-09: Controlador de vazão
FIC-09	09	vazão do	FCV-09: Válvula de controle
		refervedor	(controlador escravo ai
			TIC-09)
			LIT-12 Medidor de nível da
			torre
		Controlador do	LIC-12 Controlador de nível
L11-12	C-1	nível da torre	da torre
			FIC-12: Controlador de vazão
			FCV-12: Válvula de controle
	6.2	Controle do nível	LIC-02: Medidor de nível do
LIC-02	C-2	do vaso pulmão	vaso pulmão

Tabela 34 - Especificações das válvulas de controle.

	ESPECIFICAÇÕES VÁLVULAS DE CONTROLE						
Identificaçã o no diagrama mecânico	Localizaçã o (núm. da tubulação)	Vinculada ao laço de controle	Vazão normal do fluído circulante	Ação à falha no ar (abrir ou fechar completamente)			
FCV-01	02	FT-01/ FC-01	-	FECHAR			
FCV-05	05	FT-05/ FC-05	-	ABRIR			
FCV-06	06	FC-06	-	ABRIR			
FCV-09	09	TIC-09/FIC-09	-	FECHAR			
FCV-12	12	LIT-12	-	ABRIR			

3 CONCLUSÃO

O trabalho realizado conta com o projeto da torre, seus trocadores de calor, as bombas necessárias para a sua operação e o projeto de controle da planta. Com o projeto de cada parte proposta pelas situações problema expostas nas disciplinas de Projeto de Engenharia Química 1 e Projeto de Engenharia Química 2 foi possível criar um projeto inicial para a separação dos hidrocarbonetos em questão.

Com a análise da viabilidade econômica foi possível assegurar que o projeto é economicamente viável, o somatório dos gastos tanto de projeto quanto de operação da planta é plausível. O projeto da torre foi realizado utilizando como base as equações de Fenske-Underwood-Gilliland considerando o n-hexano como componente chave leve e o n-octano como componente chave pesado. A partir de informações sobre as correntes fornecidas pelo software Aspen HYSYS foi calculado então o número mínimo de pratos e a razão de refluxo mínima. Além disso, para o projeto foram calculados outros parâmetros relativos à torre, como seu diâmetro necessário, sua altura, sua seção transversal, entre outros. Cada parâmetro então calculado foi calculado para razões de refluxo iguais a diversas porcentagens acima da razão de refluxo mínima, com o objetivo de ao fim avaliar qual seria a razão de refluxo economicamente mais viável.

Para os cálculos de projeto do vaso pulmão também foram utilizados dados fornecidos pelas fichas de informação fornecidas no momento da apresentação da situação problema. Para estimar seu preço foram utilizados índices de custo de plantas de projetos de engenharia química. Foram então calculados seus parâmetros de projeto como diâmetro e volume útil. Já no projeto do trocador de calor da torre foram essenciais os dados das correntes de entrada e saída fornecidos pelo software Aspen HYSYS. Assim, foram calculados seus parâmetros de operação como área de troca térmica, número de tubos necessários, assim como seu preço. No projeto da bomba centrífuga também foram utilizados dados fornecidos pelo software, para então calcular suas pressões de operação, a perda de carga nas tubulações, sua vazão mínima e suas potências, assim como seu custo.

REFERÊNCIAS

ÇENGEL, Y. A.; GHAJAR, A. J. **Heat and Mass Transfer**: Fundamentals and Applications. 4. ed. Nova York: McGraw-Hill, 2012. 904 p.

Chemical Engineering Plant Cost Index (averaged over year). Variação do Índice CEPCI de 1995 a 2011.

ÇENGEL, Y. A.; BOLES, M. A. Thermodynamics: An Engineering Approach. 7. ed. Nova York: McGraw-Hill, 2013. 1020 p.

Chemical Engineering Plant Cost Index (averaged over year). Variação do Índice CEPCI de 1995 a 2011.

FENG, L. C. et al. Vapor-Liquid Equilibria of Binary Mixtures 2-Butanol + Butyl Acetate, Hexane + Butyl Acetate, and Cyclohexane + 2-Butanol at 101.3 kPa. J. Chem. Eng. Data, [S. l.], v. 43, p. 658-661, 13 jun. 1998.

FOUST, Alan et al.; Princípios das Operações Unitárias. LTC: Rio de Janeiro, 2ª Edição, 1982.

HIAKI, T. et al. Vapor-Liquid Equilibria of Ethanol + Octane at 343.15 K and 1-Propanol + Octane at 358.15 K. J. Chem. Eng. Data, [S. l.], v. 40, p. 271-273, 1 jan. 1995.

HORVATH, Ari L. Calculations in Industrial Chemistry: A Series of Solved Problems. Reino Unido: Wiley, 1996. 260 p. ISBN 978-0-471-96675-3.

PERRY, Robert H.; GREEN, Don W. **Perry's chemical engineers' handbook**. 7. ed. Nova York: McGraw-Hill, 2008. 2471 p.

PLISGA, B. S. et al. Standard Handbook of Petroleum and Natural Gas Engineering. Países Baixos: Elsevier Science, 2011. 1568 p.

SINNOTT, R.; TOWLER, G. Chemical Engineering Design: SI Edition. 6^a ed. Butterworth-Heinemann. 2020.

STICHLMAIR, Johann; KLEIN, Harald; REHFELDT, Sebastian. **Distillation**: Principles and Practice. 2. ed. [S. l.]: Wiley, 2021. 660 p.

WISNIAK, J. et al. Isobaric Vapor-Liquid Equilibria in the Systems 2-Butanone + Heptane and 3-Butanone + Oxolane. J. Chem. Eng. Data, [S. l.], v. 43, p. 537-540, 7 mai. 1998.

1			Case Name:	NoName.hsc		
2	Company Name	Not Available				
3	USA Bedford, MA		Unit Set:	EuroSI		
5	131.85441990		Date/Time:	Wed Oct 28 14:10:53	2020	
6	Material Otros and				Fluid Package:	Basis-1
7	Material Stream	: Alimento	0		Property Package:	Peng-Robinson
9			CONDITIONS			-
10			CONDITIONS			
11	Vanaur / Phase Fraction	Overall	Liquid Phase	Vapour Phase		
13	Temperature: (C)	101.4	101.4	101.4		
14	Pressure: (bar)	1.500 *	1.500	1.500		
15	Molar Flow (kgmole/h)	100.0 *	100.0	0.0000	1	
16	Mass Flow (kg/h)	9810	9810	0.0000		
18	Molar Enthalpy (kcal/kgmole)	-4.842e+004	-4.842e+004	-3.917e+004		-
19	Molar Entropy (kJ/kgmole-C)	135.4	135.4	212.6		-
20	Heat Flow (kcal/h)	-4.842e+006	-4.842e+006	0.0000		
21	Liq Vol Flow @Std Cond (m3/h)	14.30 *	14.30	0.0000		
23			PROPERTIES			
24		Overall	Liquid Phase	Vapour Phase		
25	Molecular Weight	98.10	98.10	92.30		
26	Molar Density (kgmole/m3)	6.173	6.173	5.100e-002	-	
28	Act. Volume Flow (m3/h)	16.20	16.20	0.0000		
29	Mass Enthalpy (kcal/kg)	-493.6	-493.6	-424.4		2
30	Mass Entropy (kJ/kg-C)	1.380	1.380	2.303		
31	Heat Capacity (kJ/kgmole-C)	250.9	250.9	187.0		
32	Mass Heat Capacity (kJ/kg-C)	2.558 1.054e+006	2.558 1.054e+006	9.935e+005		
34	HHV Molar Basis (Std) (kcal/kgmole)	1.131e+006	1.131e+006	1.066e+006		
35	HHV Mass Basis (Std) (kcal/kg)	1.153e+004	1.153e+004	1.155e+004		
36	CO2 Loading					
37	CO2 Apparent Mole Conc. (kgmole/m3)	1				
39	LHV Mass Basis (Std) (kcal/kg)	1.075e+004	1.075e+004	1.076e+004		
40	Phase Fraction [Vol. Basis]		1.000			
41	Phase Fraction [Mass Basis]	0.0000	1.000	0.0000		
42	Phase Fraction [Act. Vol. Basis]	0.0000	1.000	0.0000		
44	Partial Pressure of CO2 (bar)	0.0000				
45	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000		
46	Act. Gas Flow (ACT_m3/h)					
47	Avg. Liq. Density (kgmole/m3)	6.965	6.965	7.300		
40	Std. Gas Flow (STD m3/h)	230.9	230.9	0.0000	_	
50	Std. Ideal Liq. Mass Density (kg/m3)	683.3	683.3	673.8		
51	Act. Liq. Flow (m3/s)	4.500e-003	4.500e-003			
52	Z Factor		7.804e-003	0.9445		
53 54	User Property	12.72	12./2	12.76		
55	Partial Pressure of H2S (bar)	0.0000				
56	Cp/(Cp - R)	1.034	1.034	1.047		
57	Cp/Cv	1.034	1.034	1.058		
58	Ideal Gas Cp/Cv Ideal Gas Cp (k.l/kgmole-C)	1.044	1.044	1.047		
60	Mass Ideal Gas Cp (kJ/kg-C)	2.005	2.005	2.003		
61	Heat of Vap. (kcal/kgmole)	8029				
62	Kinematic Viscosity (cSt)	0.3153	0.3153	1.544		
63 64	Liq. Mass Density (Std. Cond) (kg/m3)	685.8 14 30	685.8 14 30	676.7		
65	Liquid Fraction	1.000	1.000	0.0000		
66	Molar Volume (m3/kgmole)	0.1620	0.1620	19.61		
67	Mass Heat of Vap. (kcal/kg)	81.85		1		
68 69	Phase Fraction [Molar Basis]	0.0000	1.0000	0.0000		Page 1 of 4
00	Aspen reunididgy Inc.	ASP	CITITOTO VEISIC	211-1-1		Fage 1014

ANEXO A – Correntes de processo da torre de destilação

Licensed to: Company Name Not Available

* Specified by user.

1			Case Name:	NoName.hsc		
2	Company Name Bedford, MA	Not Available	Unit Set:	EuroSI		
4 5	USA		Date/Time:	Wed Oct 28 14:10:53	2020	
6 7 8	Material Stream	: Alimento	o (continue	ed)	Fluid Package: Property Package:	Basis-1 Peng-Robinson
9			PROPERTIES			
11		Overall	Liquid Phase	Vapour Phase		
12	Surface Tension (dyne/cm)	11.97	11.97			
13	Thermal Conductivity (W/m-K)	9.886e-002	9.886e-002	1.864e-002		
14	Bubble Point Pressure (bar)	1.500		<u></u>		
15	Viscosity (cP)	0.1909	0.1909	7.269e-003		
16	Cv (Semi-Ideal) (kJ/kgmole-C)	242.6	242.6	178.7		
17	Mass Cv (Semi-Ideal) (kJ/kg-C)	2.473	2.473	1.936		
18	Cv (kJ/kgmole-C)	242.6	242.6	1/6.8		
20	Mass CV (KJ/Kg-C)	2.473	2.473	1.910		
20	Mass Cy (Ent. Method) (kJ/kg-C)					
22	Cp/Cv (Ent. Method)					
23	Reid VP at 37.8 C (bar)	0.1851	0.1851	0.2543		
24	True VP at 37.8 C (bar)	0.1854	0.1854	0.2546		
25	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	14.30	14.30	0.0000		
26	Viscosity Index	-21.23				
27					Fluid Package:	Basis-1
28	Material Stream	: Destilad	0		Property Package:	Pena-Robinson
30			CONDITIONS		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5
31		0	CONDITIONS	Versen Disses		
32	Vanaur / Phase Fraction	Overall	Liquid Phase	Vapour Phase		
34	Temperature: (C)	79.66	79.66	79.66		
35	Pressure: (bar)	1 000 *	1 000	1 000		
36	Molar Flow (kgmole/h)	75.00 *	75.00	0.0000		
37	Mass Flow (kg/h)	6967	6967	0.0000		
38	Std Ideal Liq Vol Flow (m3/h)	10.32	10.32	0.0000		
39	Molar Enthalpy (kcal/kgmole)	-4.758e+004	-4.758e+004	-3.930e+004		
40	Molar Entropy (kJ/kgmole-C)	126.6	126.6	204.3		
41	Heat Flow (kcal/h)	-3.569e+006	-3.569e+006	0.0000		
42	Liq Vol Flow @Std Cond (m3/h)	10.29 *	10.29	0.0000		
43 44			PROPERTIES			
45		Overall	Liquid Phase	Vapour Phase		
46	Molecular Weight	92.90	92.90	89.95		
47	Molar Density (kgmole/m3)	6.638	6.638	3.555e-002		
48	Mass Density (kg/m3)	616.7	616.7	3.198		
49	Act. Volume Flow (m3/h)	11.30	11.30	0.0000		
50	Mass Enthalpy (kcal/kg)	-512.2	-512.2	-436.9		
51	Mass Entropy (kJ/kg-C)	1.362	1.362	2.272		
52	Heat Capacity (kJ/kgmole-C)	227.7	227.7	1/2.8		
54	HV Molar Basis (Std) (kcal/kamola)	2.401 9.998e+005	2.401 9.998e±005	9 680e+005		
55	HHV Molar Basis (Std) (kcal/komole)	1.073e+006	1.073e+006	1.040e+005		
56	HHV Mass Basis (Std) (kcal/kg)	1.155e+004	1.155e+004	1,156e+004		
57	CO2 Loading		_			
58	CO2 Apparent Mole Conc. (kgmole/m3)					
59	CO2 Apparent Wt. Conc. (kgmol/kg)					
60	LHV Mass Basis (Std) (kcal/kg)	1.076e+004	1.076e+004	1.077e+004		
61	Phase Fraction [Vol. Basis]		1.000			
62	Phase Fraction [Mass Basis]	0.0000	1.000	0.0000		
63	Phase Fraction [Act. Vol. Basis]	0.0000	1.000	0.0000	-	
64 6F	Mass Exergy (kcal/kg)	2.506				-
66	Cost Based on Flow (Cost/a)	0.0000	0.0000	0.0000		
67	Act Gas Flow (ACT m3/b)		0.0000	0.0000		0
68	Avg. Liq. Density (kgmole/m3)	7.265	7.265	7.446		
69	Aspen Technology Inc.	Asp	en HYSYS Version	n 11		Page 2 of 4
	Licensed to: Company Name Not Available					* Specified by user.

1						
2	Company Name	Not Available	Case Name:	NoName.hsc		
3	(aspentech Bedford, MA		Unit Set:	EuroSI		
4	USA		Date/Time:	Wed Oct 28 14:10:53	2020	
5					E 1 D 1	0.14
7	Material Stream	: Destilado	(continu	ued)	Fluid Package:	Basis-1
8			(,	Property Package:	Peng-Robinson
9		1	PROPERTIES			
10		Overall	Liquid Phase	Vanour Phase		1
12	Specific Heat (kJ/kgmole-C)	227.7	227.7	172.8		
13	Std. Gas Flow (STD m3/h)	1773	1773	0.0000		
14	Std. Ideal Liq. Mass Density (kg/m3)	674.9	674.9	669.7		
15	Act. Liq. Flow (m3/s)	3.138e-003	3.138e-003			
16	Z Factor		5.135e-003	0.9589		
17	Watson K	12.75	12.75	12.78		
18	User Property	1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -				
19	Partial Pressure of H2S (bar)	0.0000				
20	Cp/(Cp - R)	1.038	1.038	1.051		
21		1.038	1.038	1.059		
23	Ideal Gas Cp (k l/kamole_C)	176.0	1.049	1.051		
24	Mass Ideal Gas Cp (kJ/kd-C)	1.904	1.904	1.905		
25	Heat of Vap. (kcal/kgmole)	7602				
26	Kinematic Viscosity (cSt)	0.3377	0.3377	2.145		
27	Liq. Mass Density (Std. Cond) (kg/m3)	677.0	677.0	672.5		
28	Liq. Vol. Flow (Std. Cond) (m3/h)	10.29	10.29	0.0000		
29	Liquid Fraction	1.000	1.000	0.0000		
30	Molar Volume (m3/kgmole)	0.1506	0.1506	28.13		
31	Mass Heat of Vap. (kcal/kg)	81.83				
32	Phase Fraction [Molar Basis]	0.0000	1.0000	0.0000		
33	Surface Tension (dyne/cm)	13.33	13.33			
34	Ihermal Conductivity (W/m-K)	0.1025	0.1025	1.687e-002		
36	Viecesity (oP)	0.2082	0.2082	6 8600 002		
37	Cv (Semi-Ideal) (k.l/kamole-C)	219.3	219.3	164.5		
38	Mass Cv (Semi-Ideal) (kJ/kg-C)	2.361	2.361	1.829		
39	Cv (kJ/kgmole-C)	219.3	219.3	163.2		
40	Mass Cv (kJ/kg-C)	2.361	2.361	1.814		
41	Cv (Ent. Method) (kJ/kgmole-C)					
42	Mass Cv (Ent. Method) (kJ/kg-C)		50 F.S.			
43	Cp/Cv (Ent. Method)					
44	Reid VP at 37.8 C (bar)	0.2335	0.2335	0.2798		
45	True VP at 37.8 C (bar)	0.2337	0.2337	0.2801	-	
40	Liq. Vol. Flow - Sum(Sta. Cona) (m3/n)	-18 79	10.29	0.0000	· · · · · · · · · · · · · · · · · · ·	
48	Viscosity index	10.75			Eluid Bookogo:	Regin 1
49	Material Stream	: Resíduo			Fluid Package:	Basis-1
50					Property Package:	Peng-Robinson
51			CONDITIONS			
52						
53	Veneur (Dhana Erzetia	Overall	Liquid Phase	Vapour Phase		
55	Vapour / Phase Fraction	150.6	1.0000	0.0000		
56	Pressure: (C)	2 000 *	150.6	2 000		
57	Molar Flow (kamole/h)	75.00 *	75.00	0.0000		
58	Mass Flow (kg/h)	8525	8525	0.0000		
59	Std Ideal Liq Vol Flow (m3/h)	12.10	12.10	0.0000		
60	Molar Enthalpy (kcal/kgmole)	-5.101e+004	-5.101e+004	-4.308e+004		
61	Molar Entropy (kJ/kgmole-C)	141.5	141.5	220.5		
62	Heat Flow (kcal/h)	-3.826e+006	-3.826e+006	0.0000		
63	Liq Vol Flow @Std Cond (m3/h)	12.05 *	12.05	0.0000		
64		1	PROPERTIES			
65		Querall	Liquid Phase	Vanour Phone		
67	Molecular Weight	113.7	113.7	112.2		
68	Molar Density (kamole/m3)	5.140	5.140	6.166e-002		
69	Aspen Technology Inc.	Aspe	n HYSYS Versio	on 11	·	Page 3 of 4
_	Licensed to: Company Name Not Available					* Specified by user

Specified by user.

1			Case Name: NoName.hsc				
3	Company Name N Bedford, MA	ot Available	Unit Set: EuroSI				
4	USA		Date/Time: \	Wed Oct 28 14:10:53	2020		
6 7 8	Material Stream:	Resíduo	(continued	d)	Fluid Package: Property Package:	Basis-1 Peng-Robinson	
9	PROPERTIES						
10		Overall	Liquid Phase	Vapour Phase			
12	Mass Density (kg/m3)	584.3	584.3	6.982			
13	Act. Volume Flow (m3/h)	14.59	14.59	0.0000			
14	Mass Enthalpy (kcal/kg)	-448.8	-448.8	-380.4	-		
15	Mass Entropy (kJ/kg-C)	1.244	1.244	1.947	-		
16	Heat Capacity (KJ/kgmole-C)	317.0	2 789	255.8			
18	LHV Molar Basis (Std) (kcal/kgmole)	1.217e+006	1.217e+006	1.213e+006			
19	HHV Molar Basis (Std) (kcal/kgmole)	1.305e+006	1.305e+006	1.300e+006			
20	HHV Mass Basis (Std) (kcal/kg)	1.148e+004	1.148e+004	1.148e+004			
21	CO2 Loading						
22	CO2 Apparent Mole Conc. (kgmole/m3)						
23	CO2 Apparent Wt. Conc. (kgmol/kg)	1.0710+004	1.0710/004	1.074-+004			
24	Phase Fraction IVol. Basis	1.07 Te+004	1 000	1.071e+004			
26	Phase Fraction [Mass Basis]	0.0000	1.000	0.0000			
27	Phase Fraction [Act. Vol. Basis]	0.0000	1.000	0.0000			
28	Mass Exergy (kcal/kg)	12.66					
29	Partial Pressure of CO2 (bar)	0.0000					
30	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	-		
31	Act. Gas Flow (ACT_m3/h)	 6 200	6 200				
33	Avg. Liq. Density (kgmole/m3)	317.0	317.0	255.8			
34	Std. Gas Flow (STD m3/h)	1773	1773	0.0000			
35	Std. Ideal Liq. Mass Density (kg/m3)	704.7	704.7	704.2			
36	Act. Liq. Flow (m3/s)	4.053e-003	4.053e-003				
37	Z Factor		1.104e-002	0.9207			
38	Watson K	12.67	12.67	12.67			
39	Diser Property Partial Procesure of H2S (bar)	0.0000					
41	Cp/(Cp - R)	1.027	1.027	1.034			
42	Cp/Cv	1.027	1.027	1.046			
43	Ideal Gas Cp/Cv	1.034	1.034	1.034			
44	Ideal Gas Cp (kJ/kgmole-C)	253.4	253.4	252.3			
45	Mass Ideal Gas Cp (kJ/kg-C)	2.229	2.229	2.228			
46	Heat of Vap. (kcal/kgmole)	7847	0.0761				
47	Lig Mass Density (Std Cond) (kg/m3)	707.5	707.5	706.9			
49	Liq. Vol. Flow (Std. Cond) (m3/h)	12.05	12.05	0.0000			
50	Liquid Fraction	1.000	1.000	0.0000			
51	Molar Volume (m3/kgmole)	0.1945	0.1945	16.22			
52	Mass Heat of Vap. (kcal/kg)	69.03					
54	Phase Fraction [Molar Basis]	9 797	1.0000 0.707	0.0000	-		
55	Thermal Conductivity (W/m-K)	9.338e-002	9.338e-002	2.119e-002			
56	Bubble Point Pressure (bar)	2.000					
57	Viscosity (cP)	0.1613	0.1613	7.428e-003			
58	Cv (Semi-Ideal) (kJ/kgmole-C)	308.7	308.7	247.5			
59	Mass Cv (Semi-Ideal) (kJ/kg-C)	2.716	2.716	2.186	-		
60	CV (kJ/kgmole-C)	308.7	308.7	244.5			
62	Cv (Ent. Method) (k.l/kamole-C)	2.710	2.710	2.159			
63	Mass Cv (Ent. Method) (kJ/kg-C)						
64	Cp/Cv (Ent. Method)						
65	Reid VP at 37.8 C (bar)	4.115e-002	4.115e-002	4.350e-002			
66	True VP at 37.8 C (bar)	4.118e-002	4.118e-002	4.352e-002			
67	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	12.05	12.05	0.0000			
68	Viscosity Index	-27.00				Deer 1 of 1	
69	Aspen Technology Inc.	Asp	en HYSYS Version			Page 4 of 4	

Licensed to: Company Name Not Available

* Specified by user.

65

ANEXO B – Correntes de entrada no refervedor

1		Case Name: Exemplo de vasos, torres e reatores 2.hsc					
3	(e)aspentech Company Nar Bedford, MA	ne Not Available	Unit Set:				
4	USA		Date/Time: Mon Dec 14 20:28:14 2020				
6					Fluid Package:	Basis-1	
7	Material Stream	m: To Rebo	oiler		Property Package:	Peng-Robinson	
9							
10		Overall	Vapour Phase	Liquid Phase			
12	Act. Gas Flow (ACT m3/h)						
13	Act. Liq. Flow (m3/s)	6.719e-003		6.719e-003			
14	Act. Volume Flow (m3/h)	24.19	0.0000	24.19			
15	Avg. Liq. Density (kgmole/m3)	6.215	6.246	6.215			
16	Bubble Point Pressure (bar)	1.950					
17	CO2 Apparent Mole Conc. (kgmole/m3)			<u></u>			
18	CO2 Apparent Wt. Conc. (kgmol/kg)						
19	CO2 Loading						
20	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000	-		
21		1.027	1.034	1.027			
23	Cp/Cy (Ent. Method)	1.027	1.047	1.027	1	-	
24	Cv (kJ/kamole-C)	306.5	242.1	306.5			
25	Cv (Ent. Method) (kJ/kgmole-C)						
26	Cv (Semi-Ideal) (kJ/kgmole-C)	306.5	245.0	306.5			
27	HHV Mass Basis (Std) (kcal/kg)	1.148e+004	1.149e+004	1.148e+004			
28	HHV Molar Basis (Std) (kcal/kgmole)	1.301e+006	1.294e+006	1.301e+006			
29	Heat Capacity (kJ/kgmole-C)	314.8	253.4	314.8	_		
30	Heat of Vap. (kcal/kgmole)	7879					
31	Ideal Gas Cp (kJ/kgmole-C)	251.6	250.0	251.6			
32	Ideal Gas Cp/Cv	1.034	1.034	1.034			
34	Kinematic Viscosity (CSt)	1.0710+004	1.092	1.071a+004		E	
35	LHV Molar Basis (Std) (kcal/komole)	1.07 Te+004	1.07 Te+004	1.07 Te+004			
36	Lig. Mass Density (Std. Cond) (kg/m3)	707.0	706.1	707.0			
37	Liq. Vol. Flow (Std. Cond) (m3/h)	20.04	0.0000	20.04			
38	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	20.04	0.0000	20.04			
39	Liquid Fraction	1.000	0.0000	1.000			
40	Mass Cv (kJ/kg-C)	2.705	2.149	2.705			
41	Mass Cv (Ent. Method) (kJ/kg-C)						
42	Mass Cv (Semi-Ideal) (kJ/kg-C)	2.705	2.176	2.705			
43	Mass Density (kg/m3)	585.7	6.789	585.7			
44	Mass Entrany (kcal/kg)	-450.3	-381.9	-450.3			
46	Mass Exergy (kcal/kg)	12.27		1.231			
47	Mass Heat Capacity (kJ/kg-C)	2.778	2.249	2.778			
48	Mass Heat of Vap. (kcal/kg)	69.53					
49	Mass Ideal Gas Cp (kJ/kg-C)	2.220	2.219	2.220			
50	Molar Density (kgmole/m3)	5.169	6.028e-002	5.169			
51	Molar Volume (m3/kgmole)	0.1935	16.59	0.1935			
52	Molecular Weight	113.3	112.6	113.3			
53	Partial Pressure of CO2 (bar)	0.0000					
54	Phase Fraction (Act Vol. Pasia)	0.0000	0.0000				
56	Phase Fraction [Act. vol. Basis]	0.0000	0.0000	1.000	n		
57	Phase Fraction [Molar Basis]	0.0000	0.0000	1.000			
58	Phase Fraction [Vol. Basis]			1.000			
59	Reid VP at 37.8 C (bar)	4.308e-002	4.685e-002	4.308e-002			
60	Specific Heat (kJ/kgmole-C)	314.8	253.4	314.8	-		
61	Std. Gas Flow (STD_m3/h)	2956	0.0000	2956			
62	Std. Ideal Liq. Mass Density (kg/m3)	704.3	703.4	704.3			
63	Surface Tension (dyne/cm)	9.916		9.916			
64	Thermal Conductivity (W/m-K)	9.375e-002	2.106e-002	9.375e-002			
65	Irue VP at 37.8 C (bar)	4.310e-002	4.686e-002	4.310e-002	-		
67	Viscosity (cD)	0 1630	7 4110-003	0.1630			
68	Viscosity Index	-26.60	7.4118-003	0.1030	1		
69	Image: Provide and the second secon					Page 1 of 2	

Licensed to: Company Name Not Available

* Specified by user.

1			Case Name:	Case Name: Exemplo de vasos, torres e reatores 2.hsc		
3	(aspentech Bedford, M	Name Not Available /A	Unit Set:	EuroSI		
4	USA		Date/Time:	Mon Dec 14 20:28:14	2020	
6				n	Fluid Package:	Basis-1
7	Material Stre	am: To Re	eboiler (conti	nued)	Property Package:	Peng-Robinson
9			PROPERTIES			
11		Overall	Vapour Phase	Liquid Phase		
12	Watson K	12.6	7 12.67	12.67		
13 14	Z Factor		0.9226	1.076e-002		
15						
16 17						
18						
19 20						
21						
22						
24						
25						
20						
28						
30						
31						
32						
34						
35 36						
37						
38						
40						
41						
42						
44						
45						
47						
48 49						
50						
51 52						
53						
54						
56						
57						
58 59						
60						
61 62						
63						
64 65						
66						
67						
69	Aspen Technology Inc.		Aspen HYSYS Versio	on 11		Page 2 of 2
_	Licensed to: Company Name Not Available					* Specified by user.

Stream Name	To Reboiler	Vapour Phase	Liquid Phase
Vapour / Phase Fraction	0.0000	0.0000	1.0000
Temperature [C]	148.6	148.6	148.6
Pressure [bar]	1.950	1.950	1.950
Molar Flow [kgmole/h]	125.0	0.0000	125.0
Mass Flow [kg/h]	1.417e+004	0.0000	1.417e+004
Std Ideal Liq Vol Flow [m3/h]	20.11	0.0000	20.11
Molar Enthalpy [kcal/kgmole]	-5.103e+004	-4.301e+004	-5.103e+004
Molar Entropy [kJ/kgmole-C]	141.8	222.2	141.8
Heat Flow [kcal/h]	-6.380e+006	0.0000	-6.380e+006
Liq Vol Flow @Std Cond [m3/h]	20.04	0.0000	20.04
Fluid Package	Basis-1		
Utility Type			

Image: Company Name Not Available Bedford, MA USA Case Name: Exemplo de vasos, torres e reatores 2.hsc 0 Unit Set: EuroSI 0 Date/Time: Mon Dec 14 20:29:42 2020 0 Fluid Package: Basis 0 Property Package: Peng 0 Property Package: Peng 10 PROPERTIES 11 11 Overall Vapour Phase 1 12 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 14 Mass Density (kgmole/m3) 6.166e-002 1 1 15 Act. Volume Flow (m3/h) 1622 1622 1 1 16 Mass Entropy (kcal/kg) -380.4 -380.4 1 1 1 18 Heat Capacity (k/J/kg-C) 1.255.8 2.255.8 1 1 1 19 Mass Heat Capacity (k/J/kg-C) 2.259 2.259 1 1 20 LHV Molar Basis (Std) (kcal/kgmole)	
Bedford, MA Unit Set: EuroSI 6 Date/Time: Mon Dec 14 20:29:42 2020 7 Material Stream: Boilup Fluid Package: Basis 8 Property Package: Penge 9 Property Package: Penge 10 PROPERTIES 11 11 Overall Vapour Phase 1 12 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 14 Mass Density (kg/m3) 6.982 6.982 1 15 Act. Volume Flow (m3/h) 1622 1622 1 1 16 Mass Entropy (kcal/kg) -380.4 -380.4 1 1 18 Heat Capacity (k/J/kg-C) 1.948 1.948 1 1 18 Heat Capacity (kal/kgmole) 1.213e+006 1.213e+006 1 1 19 Mass Heat Capacity (kal/kgmole) 1.300e+006 1.213e+006 1 1 20 LHV Molar Basis (Std	
4 USA Date/Time: Mon Dec 14 20:29:42 2020 6 Fluid Package: Basis 7 Material Stream: Boilup Property Package: Peng 9 PROPERTIES Property Package: Peng 10 Overall Vapour Phase 1 11 Overall Vapour Phase 1 12 Molac Density (kgmole/m3) 6.166e-002 6.068e-002 1 13 Molar Density (kg/m3) 6.982 1 1 14 Mass Entralpy (kcal/kg) -380.4 -380.4 1 1 16 Mass Entropy (kJ/kg-C) 1.948 1.948 1 1 18 Heat Capacity (kJ/kg-C) 2.259 2.259 1 1 19 Mass Besis (Std) (kcal/kgnole) 1.213e+006 1.213e+006 1 1 20 LHV Molar Basis (Std) (kcal/kgnole) 1.300e+006 1.300e+006 1 2 21 HHV Mass Basis (Std)<	
6 Fluid Package: Basis 7 Material Stream: Boilup Property Package: Peng 9 PROPERTIES Property Package: Peng 10 Overall Vapour Phase 1 1 11 Overall Vapour Phase 1 1 12 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 1 13 Molar Density (kg/km3) 6.982 1 1 1 14 Mass Density (kg/m3) 6.982 1 1 1 14 Mass Entralpy (kcal/kg) -380.4 -380.4 1 1 15 Act. Volume Flow (m3/h) 1622 1 1 1 16 Mass Entropy (kcal/kg) -380.4 -380.4 1 1 18 Heat Capacity (k/J/kg-C) 2.259 2.259 1 1 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 1 <td></td>	
Org Fluid Package: Basis 7 Material Stream: Boilup Property Package: Peng 9 Property Package: Peng 10 Overall Vapour Phase 11 Overall Vapour Phase 12 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 13 Molar Density (kg/m3) 6.982 14 Mass Density (kg/m3) 6.982 16 Mass Entropy (kcal/kg) -380.4 -380.4 17 Mass Entropy (kJ/kg-C) 1.948 1.948 18 Heat Capacity (kJ/kgrole-C) 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 21 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
B Property Package: Peng 9 PROPERTIES PROPERTIES 11 Overall Vapour Phase 12 Molecular Weight 113.2 113.2 13 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 14 Mass Density (kg/m3) 6.982 15 Act. Volume Flow (m3/h) 1622 1622 16 Mass Entropy (kcal/kg) -380.4 -380.4 18 Heat Capacity (kJ/kg-C) 1.948 1.948 19 Mass Heat Capacity (kJ/kg-C) 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 21 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004 <th>·1</th>	·1
9 0 PROPERTIES 11 Overall Vapour Phase 0 12 Molecular Weight 113.2 113.2 1 13 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 1 14 Mass Density (kg/m3) 6.982 6.982 1 1 15 Act. Volume Flow (m3/h) 1622 1622 1 1 16 Mass Entropy (kcal/kg) -380.4 -380.4 1 1 1 17 Mass Entropy (kcal/kgnole-C) 255.8 255.8 1 1 18 Heat Capacity (kJ/kg-C) 2.259 2 1 1 19 Mass Heat Capacity (kal/kgmole) 1.213e+006 1.213e+006 1 1 20 LHV Molar Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 1 1 21 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004 1 1	Robinson
Interview Interview Interview Overall Vapour Phase Image: Comparison of the compari	
I1 Overall Vapour Phase 12 Molecular Weight 113.2 113.2 13 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 14 Mass Density (kg/m3) 6.982 6.982 15 Act. Volume Flow (m3/h) 1622 1622 16 Mass Entralpy (kcal/kg) -380.4 -380.4 17 Mass Entropy (kcal/kg-C) 1.948 1.948 18 Heat Capacity (kJ/kg-C) 2.259 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 11 HW Mass Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
12 Molecular Weight 113.2 113.2 13 Molar Density (kgmole/m3) 6.166e-002 6.166e-002 14 Mass Density (kg/m3) 6.982 6.982 15 Act. Volume Flow (m3/h) 1622 1622 16 Mass Enthalpy (kcal/kg) -380.4 -380.4 17 Mass Entropy (kcal/kg-C) 1.948 1.948 18 Heat Capacity (kJ/kg-C) 2.259 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 21 HHV Mars Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
Isolar Density (kg/mail/minis) 0.1064-002 <t< th=""><th></th></t<>	
Index Extration (kg/nk) 0.002 0.002 15 Act. Volume Flow (m3/h) 1622 1622 16 Mass Enthalpy (kcal/kg) -380.4 -380.4 17 Mass Entropy (kcl/kg-C) 1.948 1.948 18 Heat Capacity (kJ/kg-C) 2.55.8 255.8 19 Mass Heat Capacity (kcl/kgmole) 2.259 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 21 HHV Mars Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
16 Mass Enthalpy (kcal/kg) -380.4 -380.4 17 Mass Entropy (kJ/kg-C) 1.948 1.948 18 Heat Capacity (kJ/kg-C) 255.8 255.8 19 Mass Heat Capacity (kJ/kg-C) 2.259 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 21 HHV Mars Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
17 Mass Entropy (kJ/kg-C) 1.948 1.948 18 Heat Capacity (kJ/kgmole-C) 255.8 255.8 1 19 Mass Heat Capacity (kJ/kg-C) 2.259 2.259 1 1 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 1 1 21 HHV Molar Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 1 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004 1	
18 Heat Capacity (kJ/kgmole-C) 255.8 255.8 19 Mass Heat Capacity (kJ/kg-C) 2.259 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 21 HHV Molar Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
19 Mass Heat Capacity (kJ/kg-C) 2.259 2.259 20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 21 HHV Molar Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
20 LHV Molar Basis (Std) (kcal/kgmole) 1.213e+006 1.213e+006 21 HHV Molar Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
21 HHV Molar Basis (Std) (kcal/kgmole) 1.300e+006 1.300e+006 22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
22 HHV Mass Basis (Std) (kcal/kg) 1.148e+004 1.148e+004	
24 CO2 Loading	
Zer GOZ Apparent Mole Colic. (kgmol/kg)	
26 LHV Mass Basis (Std) (kcal/kd) 1.071e+004 1.071e+004	
27 Phase Fraction [Vol. Basis] 1.000 1.000	
28 Phase Fraction [Mass Basis] 1.000 1.000	
29 Phase Fraction [Act. Vol. Basis] 1.000 1.000	
30 Mass Exergy (kcal/kg) 32.95	
31 Partial Pressure of CO2 (bar) 0.0000	
32 Cost Based on Flow (Cost/s) 0.0000 0 b.to. 5.1 (1000)	
33 Act. Gas Flow (Act_m3/h) 1622 1622 4 Act. Gas Flow (Act_m3/h) 1622 1622	
3m Avg. Ltd. Density (Rgmorerma) 0.219 0.219 35 Specific Heat (k) (kmole_C) 255.8 255.8	
Composition result (Minigration O) 2000 2000 2000 1000	
37 Std. Ideal Lig. Mass Density (kg/m3) 704.2 704.2	
38 Act. Liq. Flow (m3/s)	
39 Z Factor 0.9207 0.9207	
40 Watson K 12.67 12.67	
41 User Property	
42 Partial Pressure of H2S (bar) 0.0000	
43 Cp/(Cp - R) 1.034 1.034	
The CprCv 1.040 1.040	
46 Ideal Gas Cp (kJ/kgmole-C) 252.3 252.3	
47 Mass Ideal Gas Cp (kJ/kg-C) 2.228 2.228	
48 Heat of Vap. (kcal/kgmole) 7861	
49 Kinematic Viscosity (cSt) 1.064 1.064	
50 Liq. Mass Density (Std. Cond) (kg/m3) 706.9 706.9	
51 Liq. Vol. Flow (Std. Cond) (m3/h) 16.02 16.02	
b2 Liquid Fraction 0.0000 0.0000 52 Malas (a)	
53 involativolume (morkgmole) 10.22 10.22 54 Mass Heat of Van (kral/kn) 60.43	
55 Phase Fraction (Molar Basis) 1,000 1,000	
56 Surface Tension (dyne/cm)	
57 Thermal Conductivity (W/m-K) 2.119e-002 2.119e-002	
58 Bubble Point Pressure (bar) 2.055	
59 Viscosity (cP) 7.430e-003 7.430e-003	
60 Cv (Semi-Ideal) (kJ/kgmole-C) 247.5 247.5	
61 Mass Cv (Semi-Ideal) (kJ/kg-C) 2.186 2.186	
b2 CV (kJ/kgmole-C) 244.5 244.5 62 Mass Ov ////////////////////////////////////	
Wass Cv (KJ/Kg-C) Z.159 Z.159 64 Cv (Ent Method) /k l/kgmole-C)	
65 Mass Cv (Ent. Method) (kJ/kg-C)	
66 Cp/Cv (Ent. Method)	
67 Reid VP at 37.8 C (bar) 4.355e-002 4.355e-002	
68 True VP at 37.8 C (bar) 4.358e-002 4.358e-002	
69 Aspen Technology Inc. Aspen HYSYS Version 11	Page 1 of 2

ANEXO C – Correntes de saída do refervedor

ified by u

ed to: Company Name Not Available

1				Case Name:	Exemplo de vasos, to	orres e reatores 2.hsc	
2	(aspentech	Company Name No Bedford, MA	t Available	Unit Set:	EuroSI		
4	Ċ.	USA		Date/Time:	Mon Dec 14 20:29:42	2 2020	
5 6						Fluid Package:	Basis-1
7	Materia	I Stream:	Boilup	(continued)	Property Package:	Peng-Robinson
9				PPOPEPTIES			,
10 11			Overall	Vapour Phase			
12	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	16.02	16.02			
13 14	Viscosity Index		-27.23				
15							
16 17							
18							
19							
21							
22							
23							
25							
26							
28							
29 30							
31							
32							
34							
35							
37							
38							
40							
41							
42							
44							
45							
47							
48 49							
50							
51 52							
53							
54 55							
56							
57 58							
59							
60 61							
62							
63 64							
65							
66							
68							
69	Aspen Technology Inc.	vailable	A	Aspen HYSYS Versio	on 11		Page 2 of 2

Stream Name	Boilup	Vapour Phase
Vapour / Phase Fraction	1.0000	1.0000
Temperature [C]	150.6	150.6
Pressure [bar]	2.000	2.000
Molar Flow [kgmole/h]	99.98	99.98
Mass Flow [kg/h]	1.132e+004	1.132e+004
Std Ideal Liq Vol Flow [m3/h]	16.08	16.08
Molar Enthalpy [kcal/kgmole]	-4.308e+004	-4.308e+004
Molar Entropy [kJ/kgmole-C]	220.5	220.5
Heat Flow [kcal/h]	-4.307e+006	-4.307e+006
Liq Vol Flow @Std Cond [m3/h]	16.02	16.02
Fluid Package	Basis-1	
Utility Type		
ANEXO D – Dados da simulação de bombas

Simulation Report	Details		
DWSIM 6.3	Title: MySimulation	1_21	
	Comments:		
Object: MSTR-01			
Type: Material Stream			
Property	Value		
Temperature	80.588	С	
Pressure	1.033	kgf/cm2	
Mass Flow	8082.72	kg/h	
Molar Flow	87.01	kmol/h	
Volumetric Flow	13.1104	m3/h	
Density (Mixture)	616.512	kg/m3	
Molecular Weight (Mixture)	92.8941	kg/kmol	
Specific Enthalpy (Mixture)	-234.463	kJ/kg	
Specific Entropy (Mixture)	-0.56003	kJ/[kg.K]	
Molar Enthalpy (Mixture)	-21780.2	kJ/kmol	
Molar Entropy (Mixture)	-52.0235	kJ/[kmol.K]	
Thermal Conductivity (Mixture)	0.104402	W/[m.K]	
Mixture Molar Fraction			
N-hexane	0.534		
N-heptane	0.453		
N-octane	0.013		
Object: MSTR-02			
Type: Material Stream			
Property	Value		
Temperature	80.588	С	
Pressure	1.033	kgf/cm2	
Mass Flow	8082.72	kg/h	
Molar Flow	87.01	kmol/h	
Volumetric Flow	13.1104	m3/h	
Density (Mixture)	616.512	kg/m3	
Molecular Weight (Mixture)	92.8941	kg/kmol	
Specific Enthalpy (Mixture)	-234.463	kJ/kg	
Specific Entropy (Mixture)	-0.56003	kJ/[kg.K]	
Molar Enthalpy (Mixture)	-21780.2	kJ/kmol	
Molar Entropy (Mixture)	-52.0235	kJ/[kmol.K]	
Thermal Conductivity (Mixture)	0.104402	W/[m.K]	

Page 1 of 2

Simulation Report	Details		
DWSIM 6.3	Title:	MySimulation_21	
	Comments		
Mixture Molar Fraction			
Mixture Molar Fraction N-hexane		0.534	
Mixture Molar Fraction N-hexane N-heptane		0.534 0.453	